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Using plant- soil feedbacks to predict plant biomass in diverse 
 communities
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Abstract.   It has become clear that plants can create soils that affect subsequent plant 
growth. However, because plant- soil feedbacks (PSFs) are typically measured in monocul-
ture experiments, it remains unclear to what extent PSFs affect plant growth in commu-
nities. Here we used data from a factorial PSF experiment to predict the biomass of 12 
species grown in 162 plant community combinations. Five different plant growth models 
were parameterized with either monoculture biomass data (Null) or with PSF data (PSF) 
and model predictions were compared to plant growth observed in communities. For each 
of the five models, PSF model predictions were closer to observed species biomass in 
communities than Null model predictions. PSFs, which were associated with a 28% dif-
ference in plant biomass across soil types, explained 10% more variance than Null models. 
Results provided strong support for a small role for PSFs in predicting plant growth in 
communities and suggest several reasons that PSFs, as traditionally measured in mono-
culture experiments, may overestimate PSF effects in communities. First, monoculture data 
used in Null models inherently includes “self ” PSF effects. Second, PSFs must be large 
relative to differences in intrinsic growth rates among species to change competitive out-
comes. Third, PSFs must vary among species to change species relative abundances.

Key words:   coexistence; community assembly; competition; facilitation; model; pathogen; prediction; 
soil; symbiont.

introduction

Plant soil feedbacks (PSFs) have gained attention for 
their potential role in determining plant growth and 
coexistence (Kardol et al. 2006, Bever et al. 2010, van 
der Putten et al. 2013). However, rather than directly 
testing the effect of PSFs in plant communities, most PSF 
research uses data from monoculture pot experiments 
and results from theoretical models to infer the impor-
tance of PSFs to plant growth in communities (Hawkes 
et al. 2013, Revilla et al. 2013, Baxendale et al. 2014). 
For example, PSF studies typically measure monoculture 
plant growth on “self- ” and “other- ”cultivated soils. 
Greater growth on “self” than on “other” soils is defined 
as a positive PSF, whereas greater growth on “other” 
than “self” soils is defined as a negative PSF. Results 
from theoretical models are used to infer that positive 
PSFs will result in competitive exclusion and negative 
PSFs will result in coexistence through species replace-
ments (Bever 1994, Bever et al. 1997, Kulmatiski and 
Kardol 2008).

There are several potential problems with assuming 
that results from “self” vs. “other” PSF experiments are 
important for plant growth in communities. First, it is 

not clear that PSFs measured in monoculture experi-
ments are realized in plant communities (Shannon et al. 
2012, Baxendale et al. 2014, Hilbig and Allen 2015, Jing 
et al. 2015). Second, most “self” vs. “other” experimental 
approaches ignore the fact that PSFs are likely to differ 
among “other” soil types, so for example, a plant may 
realize a negative PSF relative to one soil type, and a 
positive PSF relative to another soil type (Kos et al. 
2015). The extent to which these soil- type- specific PSFs 
occur and whether they are important in plant commu-
nities is not known because the factorial experiments 
needed to test for soil- type- specific PSFs are rarely per-
formed (Casper et al. 2008, Kulmatiski et al. 2011). 
Third, the importance of PSFs to plant growth is usually 
inferred from theoretical model results, but theoretical 
models often assume competitive equivalence among 
plant species; this assumption is typically not valid in 
natural plant communities (Bever 1994, Eppstein and 
Molofsky 2007, Petermann et al. 2008, Turnbull et al. 
2010, Kulmatiski et al. 2011, Suding et al. 2013). As a 
result, despite a growing number of studies that demon-
strate that plants can create soils that change subsequent 
plant growth, for several reasons, it is not clear whether 
typical PSF values are relevant to how plants grow in 
communities (van der Putten et al. 2013, Burns and 
Brandt 2014).

Some of the strongest evidence that PSFs may be 
important to plant communities comes from research 
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showing a correlation between PSFs and plant abun-
dance in communities (Klironomos 2002, Mangan et al. 
2010, Lankau et al. 2011, Anacker et al. 2014), but this 
type of research is rare. Further, a more direct test for 
the role of PSFs is possible. By parameterizing PSF mod-
els with and without PSF effects and comparing model 
predictions to plant growth observed in plant communi-
ties, it is possible to assess the importance of PSFs relative 
to null models (Petermann et al. 2008, Turnbull et al. 
2010, Kulmatiski et al. 2011, 2012, Burns and Brandt 
2014).

Here we develop five simple plant growth models that 
can be implemented with or without PSF data. The five 
models include an Additive Model (Loreau and Hector 
2001), an Exponential Model (Kulmatiski et al. 2011), 
and three logistic models that differed in their expecta-
tion of carrying capacity (Kulmatiski et al. 2011). 
We parameterize these models either with plant growth 
data from monoculture pots (i.e., Null models) or 
with data from a factorial PSF experiment, where each 
species was grown on soils from each of the other species 
in a community (i.e., PSF models). We compare model 
 predictions to plant biomass observed in 162 plant 
 communities comprised of two to 12 plant species grown 
in a greenhouse.

metHods

Factorial PSF experiment

Greenhouse experiments were conducted at the 
USDA- ARS Forage and Range Research Laboratory in 
Logan, Utah, USA. PSFs were determined for 12 species 
common to Temple, Texas, USA and used in previous 
studies (Wilsey and Polley 2004, Wilsey and Wayne 
Polley 2006, Isbell et al. 2009). These species included the 
C4 grasses Bouteloua curtipendula (BC), Bothriochloa 
ischaemum (BI), Bothriochloa saccharoides (BS), Panicum 
coloratum (PC), Sporobolus asper (SA), Sorghastrum 
nutans (SN), and Schizachyrium scoparium (SS); the C3 
grass Nassella leucotricha (NL); and the C3 forbs 
Echinacea purpurea (EP), Oenothera speciosa (OS), 
Ratibida columnifera (RC), and Salvia azurea (SC). We 
did not, however, use Paspalum dilatatum because seeds 
for this non- native, invasive C4 grass were difficult and 
unethical to collect and transport. A standard two- phase 
“self” vs. “other” PSF experimental approach was used 
(Bever 1994, Kulmatiski and Kardol 2008, Brinkman 
et al. 2010). Many PSF studies compare the growth of a 
species on “self- cultivated” (henceforth “self”) soils to 
the growth of the same species on soils cultivated by var-
ious “other” species. In some studies soils cultivated by 
several non- self species are mixed to create an “other” 
soil. In other studies a target plant may be grown in one 
replicate pot of Species B cultivated soil, in a second 
replicate pot of Species C cultivated soil and so on. These 
nonfactorial “self” vs. “other” approaches require few 
replicate pots and provide information on how plants 

grow on “other” soils in general but do not provide reli-
able information about how a target species grows on 
the soil of every other potential species in a community. 
We used a factorial design that measured the growth of 
each plant species on soils cultivated by every other spe-
cies. For example, for Plant A we measured growth on 
replicate pots of Plant A soils, Plant B soils, Plant C soils, 
etc. (Kulmatiski and Kardol 2008).

In Phase I of the experiment, 2,220 pots (20 cm height) 
were filled with 1 L of steam- sterilized growth medium 
(a mixture of 6:1 sand and peat moss) that was inoculated 
with 50 mL (5% by volume) field soil from Temple, Texas, 
USA (Wilsey and Polley 2004). Field soils (0–20 cm) were 
collected under dry conditions (July) from one 3 × 3 m 
area in a field previously used for experiments with the 
target species (Wilsey and Polley 2004). Collected soils 
were homogenized by hand prior to mixing with the 
growth medium. Each of the 12 target species were 
planted into 185 replicate pots (i.e., 12 × 185 = 2,220). 
Four germinated seeds were planted in each pot. After 1 
week, each pot was weeded to include the two largest 
individuals. Plants were grown for three months then 
harvested. At the beginning of Phase II, 16 mL of 
Hoagland solution was added to each pot to compensate 
for nutrients lost as a result of plant harvesting, minimize 
plant- nutrient feedbacks, and isolate plant- microbe feed-
backs (Bever 1994). In Phase II, four germinated seeds 
from each plant species were planted in 185 pots: 20 with 
“self” soils and 15 with soils from each of the other 11 
species. After 1 month in Phase II, each pot was weeded 
to include the two largest individuals. After three months 
in Phase II, aboveground biomass was harvested, dried 
to constant weight at 70°C, and weighed.

Community greenhouse experiment

As in the first experiment, a 6:1 sand to peat mix with 
5% field inoculum was used to fill 198, 12 L pots. Three 
replicate monocultures of each of 12 species were planted 
in 36 pots. Randomly selected but unique 2- , 4- , and 
8- species communities were assigned to 45, 45, and 52 
pots, respectively. Finally, 20 replicate pots were assigned 
to 12- species communities. In each pot, 48 germinated 
seeds were planted and after one week the least vigorous 
individuals of each species were removed so that all pots 
had 24 individuals and an equal number of individuals 
per species after removals. After four months, above-
ground biomass was harvested, dried to constant weight 
at 70°C, and weighed by species.

PSF calculations

Final biomass values from the factorial PSF experi-
ment were used to calculate 132 PSF values: one PSF 
value for each species on each “other” species’ soil type. 
For example, species A would have one PSF value for 
soils created by species B and another PSF value for soils 
created by species C. PSF values were calculated as the 
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difference in growth for a target plant on “self” and 
“other” soils divided by the maximum growth for a target 
plant on “self” and “other” soils: PSFAb = [(Aa – Ab)/
max(Aa, Ab)] (Table 1; Markham and Chanway 1996, 
Kulmatiski and Kardol 2008, Brinkman et al. 2010). PSF 
values can vary from −1 for species that do not grow on 
“self” soils to +1 for species that do not grow on “other” 
soils. If species A grew to 10 g on “self” soil and to 15 g 
on soil type b, then species A would have a PSFAb value 
of −0.33 [i.e., (10–15)/(15) = −0.33].

To test the role of PSFs, we rely primarily on the 
ability of plant growth models to predict plant growth 
in communities (described herein), but we also developed 
a simple index to determine how often the factorial 
experiment produced PSF effects large enough to change 
competitive outcomes between species pairs. This index 
is the difference in the growth of a plant species on 
two soil types divided by the difference in growth 
between two species: [i.e., (Aa – Ab)/(Aa – Bb); Table 1]. 
When plant growth differs more between two soil types 
than between two plant species in a way that changes 
competitive outcomes, this test returns values > 1. When 
plant growth differs more between two species than 
between two soil types, this test returns values < 1. 
To determine if the factorial experiment produced more 
values greater than 1 than would be produced by a 
typical “self” vs. “other” PSF experiment, we replaced 
‘plant growth on soil type b’ with ‘mean plant growth 
on all “other” soil types’ [i.e., (Aa – A

�..�
)/(Aa – Bb)] 

where A
�..�

 is the mean growth of plant A on all “other” 
soils.

Model development

The first model, the Additive model, was used because 
it is a simple model that has been used in related research 

that aimed to predict plant biomass in communities 
(Loreau and Hector 2001). We used this model to provide 
a simpler alternative to the remaining time- specific mod-
els. The exponential model follows that of Bever et al. 
(1997) and was used in similar PSF research by the 
authors (Kulmatiski et al. 2011, 2012). The remaining 
three logistic models were developed to “control” runa-
way growth that occurs in exponential models. This was 
important in this experiment because data from the 
3- month PSF experiment were used to predict plant 
growth in communities that were grown for four months. 
Three different logistic models were used to explore the 
effects of different carrying capacities on model predic-
tions. This ensemble of models allowed comparison to 
results from previous research (exponential model), to 
test different approaches to controlling exponential 
growth (additive vs. logistic models) and, more generally, 
allowed us to explore the effects of PSFs across a range 
of modeling approaches that may be used in future 
research. Each model was parameterized either with 
plant monoculture data on control soils (i.e., Null mod-
els) or with monoculture data from each soil type (i.e., 
PSF models). Control soils were defined as soils that had 
not been cultured by a target plant species.

The Additive model provides a facile approach to 
estimating community composition and biomass based 
only on standing plant biomass (Loreau and Hector 
2001). The Null version of this model simply scales 
the maximum plant biomass observed in monoculture 
pots (from the community greenhouse experiment) by 
its proportion of the community [i.e., max(A

ctrl)/Nj] 
where Nj = the number of species in community j. If  
Plant A grew to a maximum of 5 g in a monoculture 
pot, then Plant A would be predicted to produce 1 g 
of biomass in a 5- species community. A PSF version 
of this model was created by multiplying Null Additive 
model predictions by community- specific PSF values 
{i.e., [(1- CPSFj) × Max(Actrl)]/Nj}. Community- specific 
PSF values were calculated as the mean of PSF values 
for the species in the community. Plant growth values 
[max(Actrl)] were multiplied by 1- CPSF values because 
negative PSF values are predicted to result in over-
yielding in communities and positive PSF values are 
predicted to result in underyielding in communities. 
(Kulmatiski et al. 2012). This model was parameterized 
using the maximum growth observed across monoculture 
pots in the community experiment. Mean or median 
biomass could similarly be used.

The remaining four models were time- specific and sim-
ilar to previously published PSF models (Kulmatiski 
et al. 2011, 2012). These models are based on three prem-
ises: each plant species cultivates a soil type, the growth 
of each soil type is a function of the abundance and 
growth of the plant that cultivates it, and each plant 
grows at a rate that is specific to each soil type (Bever 
1994, Kulmatiski et al. 2011).

The Exponential Model is described in Kulmatiski 
et al. (2012). In this model, plant growth rates are a 

tABle 1. Parameters definitions for Null and plant- soil feed-
back models.

Parameter Definition

At, Bt, …, It Biomass of plants A- I at time t
Aa, Ab, …, Aι Biomass of plant A on soil types a to ι
a, b, …, ι Biomass of soil types associated with plants 

A- I
ΓA, ΓB, …, Γι Growth rates of plants A- I
ΓAa, ΓAb, …, ΓAι Plant A’s growth rate on soil types a to ι
kcommx

Carrying capacity of a community x
kA, kB, …, kI

Carrying capacity of plants A- I
Actrl Monoculture biomass of plant A on control 

soils
Pat

Proportion of soil type A at time t
PSFAb Plant- soil feedback value for species A on 

soil type b
CPSFx Plant- soil feedback value for a species in 

community x
µ Conversion factor for microbial biomass 

growth rates
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function of the proportional abundances of each soil 
type. However, in contrast to previous continuous- 
time models (Bever 2003, Levine et al. 2006, Eppstein 
and Molofsky 2007, Kulmatiski et al. 2011), this model 
used a discrete- time approach that provides specific 
estimates of plant and soil type biomass (e.g., At and 
at; Table 1). The growth of plant biomass A at time- t 
is assumed exponential given by At+1 = (1 + ΓAt)At 
where the growth parameter is a linear combination 
of exponential growth rates on all soil types, weighted 
by the proportion of soil- type present, i.e., ΓAt  
= (ΓAaPAa + ΓAbPAb + ΓAγPAγ +…). Similarly, growth 
for a particular soil type is assumed exponential, and 
the growth rate is a function of the biomass of the 
plant creating that soil type, i.e., at+1 = (1 + μΓAa At)at 
(Table 1). Soil type biomass is typically assumed to 
represent microbial biomass (Bever et al. 1997) and by 
setting the parameter μ to 5, we assume that microbial 
growth rates are greater than plant growth rates 
(Kulmatiski et al. 2011). When parameterized with the 
same data, this model produces quantitatively similar 
results to the analogous continuous- time version of the 
model (Kulmatiski et al. 2011).

The third model (the Logistic Species- Level- K Model) 
uses a logistic form of the Exponential model where  
At +1 = At + ΓA,At((kA – At)/kA) (Table 1). Carrying capac-
ity (k) in the Logistic Species- Level- K model was defined 
as the maximum biomass observed for each species 
across “self” pots in the Community experiment (ki or 
species- specific k). In this model each plant’s growth is 
limited only by the carrying capacity of that species; plant 
growth is not affected by the amount of growth of other 
plants in the community.

To account for the growth of other plants in the com-
munity, the fourth model (the Logistic Pot- Level- K 
model) was calculated as follows: At+1 = At +ΓAAt 
{[kA – (At + Bt + Ct +…)]/kA}. This model assumes that 
each plant’s growth is limited by a species- specific k (kA) 
and total plant growth in the community (i.e., At + Bt 
+ Ct +…).

Finally, because carrying capacity can have an over-
riding effect on final biomass, the fifth model (the Logistic 
Constant- K Model) replaced the species- specific k (ki) in 
the Logistic Pot- Level- K Model with a pot- level K 
(kcommx), which was set as the mean pot biomass + 2SD 
observed across all plant communities in the community 
greenhouse experiment.

For each of the four time- specific growth models, 
plants were assumed to start growth as seed (0.002 g) and 
time- step- specific growth rates were calculated for 40 
time steps as (40√F/I) – 1, where F = final biomass and 
I = initial biomass (Kulmatiski et al. 2012). Growth rates 
were calculated from the 3- month PSF experiment and 
used to model four months of plant growth in the 
Community experiment. Each of the 40 time- steps, there-
fore, represented 2.25 d so models were run for 53 time 
steps to represent the 4- month growth period in the 
Community experiment, unless otherwise noted.

Statistical analyses

Factorial PSF experiment.—To determine if biomass 
differed among species in the factorial PSF experiment, 
a one- factor generalized linear mixed model (GLMM) 
was used with species as the fixed effect. To determine if 
biomass differed by soil type, a one- factor GLMM was 
used with soil type as the fixed effect; analyses were per-
formed by species because we were not interested in spe-
cies by soil type comparisons. Transformations to meet 
assumptions of homogeneity and normality were used as 
necessary. For all tests, a post- hoc Tukey–Kramer 
method was used to adjust for Type I error and determine 
pairwise differences among least square means. Means 
from raw data are reported.

Comparing model predictions to observed species and 
community biomass.—To determine if  PSF data im-
proved Null model predictions across species, a Stu-
dent’s t-test on the absolute difference between observed 
and predicted values for the Null and PSF models was 
conducted. To determine the goodness- of- fit between 
observed and predicted values, a Pearson correlation co-
efficient was calculated and reported as an R2 value. Cor-
relation P values are reported and considered significant 
when P < 0.05; however, we compare R2 values between 
models regardless of significance because if  we assume a 
nonsignificant correlation explains no variance, the var-
iance explained by a significant model is overestimated. 
We also use R2 values to explain both the absolute vari-
ance explained by different models as well as the percent 
of unexplained variance explained by each model. For 
example, if  Null and PSF model predictions produce R2 
values of 0.6 and 0.8, respectively, then the PSF mod-
el is described as explaining 20% of the total variance 
(i.e., 0.8 – 0.6) and 50% of the unexplained variance (i.e., 
1–0.6 = 0.4 and 0.2/0.4 = 0.5 or 50%) relative to the Null 
model.

To test if PSF and Null model predictions of each spe-
cies’ biomass differed from each other and from observed 
values, a one- factor GLMM was used with “data source” 
(i.e., observed data, Null model predictions or PSF model 
predictions) as the fixed effect and species- level biomass 
as the response variable. Correlation, t-test and mixed 
model analyses were computed using the CORR, TTest 
and GLIMMIX procedures, respectively in SAS/STAT 
for Windows, Release 9.2 (SAS Institute Inc., Cary, 
North Carolina, USA).

results

Greenhouse experiments

Plant biomass differed among soil types for five of the 
12 species tested (i.e., demonstrated PSFs; Appendix S1: 
Table S1). In each case, plants grew better on “self” than 
“other” soils. More specifically, mean PSF values across 
soil types for B. curtipendula, B. ischaemum, O. speciosa, 
R. columnifera and S. azurea were 0.38, 0.25, 0.69, 0.54 
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and 0.38, respectively (Appendix S1: Table S2). When 
PSFs were calculated regardless of statistical differences 
among soil types, 10 of 12 species demonstrated positive 
PSFs (Appendix S1: Table S2). Only S. asper and S. sco-
parium demonstrated negative PSFs and these effects 
were small (i.e., mean PSF across soil types were −0.10 
and −0.01, respectively). Across species, the coefficient 
of variation of plant biomass among soil types was 0.29. 
Plant biomass also differed by plant species (F11,1867  
= 42.53, P < 0.001; Table 2, Appendix S1: Table S3). 
Across species, the coefficient of variation of plant bio-
mass among plant species was 0.50. Mean biomass values 
of each species on each soil type (Appendix S1: Table S1) 
were used to parameterize models regardless of statistical 
significance.

Though, on average, biomass varied more by plant 
species than by soil type, in 33 of 132 pairwise compar-
isons plant biomass differed more by soil type than by 
species in a way that would change competitive outcomes 
(Appendix S1: Table S4). When the same test was 
 performed using a mean “other” value instead of soil- 
type- specific values, there were only 14 of 132 pairwise 
comparisons where soil effects were larger than differ-
ences in intrinsic growth rates.

Model predictions

PSF- informed model predictions were closer to 
observed plant biomass than Null model predictions for 
each model individually and when data from all five mod-
els were combined (Fig. 1, Table 3; Appendix S1: Fig. 
S1). Predictions from two of five Null models (i.e., the 
Logistic species- level- K and Logistic pot- level- K) were 
correlated with observed biomass (Fig. 1, Table 4). 
In contrast, predictions from four of five PSF models 
were correlated with observed biomass (all except the 
Exponential; Fig. 1, Table 4). Across all models, PSF 
models explained 10% more total variance than Null 
models. With the exception of the Additive model, 
PSF models explained 2–8% more total variance than the 
Null models (Table 4). This 2–8% of total variance rep-
resented 11–16% of the variance unexplained by Null 
models. PSFs had a greater effect on the Additive model 
where PSFs explained 32% more total variance and 67% 
of the variance unexplained by Null models.

PSF had the greatest effect on predictions of the 
Additive model. Null Additive model predictions were 
not significantly correlated with observed values, but 

PSF Additive model predictions provided some of the 
best correlations with observed values (Fig. 1, Table 4). 
PSF Additive model predictions differed from Null 
model predictions for four of 12 species (B. curtipendula, 
O. speciosa, P. coloratum and R. columnifera; Fig. 1A; 
Appendix S1: Table S5). Two of these species- level 
responses were consistent across models in that PSF 
model predictions for O. speciosa and R. columnifera 
were smaller than Null model predictions for each of the 
five models (Fig. 1). This reflected the fact that these two 
species had the largest positive PSF values (i.e., 0.69 and 
0.54, respectively; Appendix S1: Table S2); positive PSFs 
result in underyielding in the PSF model (Kulmatiski 
et al. 2012). Other species- level differences between Null 
and PSF model predictions were B. curtipendula and 
S. asper in the Exponential model and B. curtipendula in 
the Logistic Species- Level- K model (Fig. 1).

The Additive model was parameterized using the max-
imum observed biomass of species monocultures in large 
pots (i.e., A

ctrl). Alternative biomass values such as mean 
biomass in large monoculture pots or mean biomass in 
small pots from the first phase of the PSF experiment 
would have produced qualitatively similar results (i.e., 
PSF data improved correlations from 0.23 to 0.63 and 
from 0.20 to 0.31, respectively) but are not discussed 
further.

The Exponential model produced some of the worst 
predictions of species biomass in communities (Fig. 1B). 
This occurred despite the fact that we ran the Exponential 
model for 40 time steps (reflecting the length of time of 
parameterization) rather than the 53 time steps that the 
observed communities were grown. When run for 53 time 
steps, the PSF predictions were still closer to observed 
values than Null predictions (R2 = 0.58 and 0.51, respec-
tively) but predictions greatly overestimated total plant 
biomass (i.e., by 2,500% for the Null model; data not 
shown), emphasizing the importance of including carry-
ing capacity in these models.

When run for 53 time steps, Null and PSF Logistic 
Species- Level- K model predictions were similarly corre-
lated to observed species biomass (R2 = 0.5 for both mod-
els) but predictions greatly overestimated total biomass 
(i.e., by 1,700% for the Null model). This logistic model 
overestimated total biomass because individual species 
growth rates were not affected by other species in the pot. 
To allow this model to produce more reasonable biomass 
estimates, the Logistic Species- Level- K model was run for 
40 time steps. When this adjustment was made, both Null 

tABle 2. Mean plant species biomass (± 1 SE). Species names followed by different lower case letters in parentheses are different 
at the alpha = 0.05 level. Species names reported in the Methods section.

Plant species

BC (d) BI (a) BS (de) EP (de) NL (e) OS (e) PC (d) RC (cd) SA (bc) SC (e) SN (b) SS (d)

Biomass 
(g)

0.13  
(0.01)

0.29  
(0.01)

0.10  
(0.01)

0.15  
(0.01)

0.08  
(0.01)

0.10  
(0.01)

0.13  
(0.01)

0.15  
(0.01)

0.18  
(0.01)

0.06  
(0.00)

0.19  
(0.01)

0.13  
(0.01)
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and PSF model predictions were similar to and correlated 
with observed plant biomass (Fig. 1C).

The Logistic Pot- Level- K model constrained total 
plant growth in a pot and was run for 53 time steps. This 

model produced the highest correlations between pre-
dicted and observed results of both the Null and PSF 
models: both Null and PSF versions of this model were 
correlated with observed values. Finally, the Logistic 
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FiG. 1. Observed and modeled plant biomass for 12 species grown in 162 plant communities. Five models [Additive (A), 
Exponential (B), Logistic Species- level- K (C), Logistic Pot- level (D) and Logistic Constant- K (E)] were parameterized either with 
monoculture data (Null) or with plant- soil feedback data (PSF). Lower case letters indicate differences among observed, Null and 
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Constant- K model also constrained total plant growth 
in a pot and was run for four months (Fig. 1E; Appendix 
S1: Table S5). Only the PSF model predictions for this 
model were correlated with observed values; however, 
this model did not perform as well as the other Logistic 
PSF models.

discussion

PSF research rarely tests the extent to which PSFs 
measured in monocultures are associated with plant 

growth in communities (van der Putten et al. 2013). In 
this study, for each of five plant growth models tested, 
PSFs improved predictions of species biomass measured 
in plant communities. PSF- informed models explained 
2–32% more total variance than Null models, though the 
largest effects were only observed in the Additive model. 
In the four discrete- time models, PSF- informed models 
explained 2–8% more total variance than Null models 
and this represented 11–16% of unexplained variance. 
This was smaller but similar to a previous study in which 
the Exponential PSF model explained 17% more total 
variance and 26% of unexplained variance relative to the 
Null Exponential model (Kulmatiski et al. 2011). In both 
studies, improved correlations reflected many small 
improvements in species biomass predictions rather than 
a few large improvements. Results, therefore, provided 
clear support for a small role for PSFs in determining 
plant biomass in plant communities.

PSF research often relies on nonfactorial experimental 
designs that ignore the fact that a plant may grow well 
on soil type B and poorly on soil type C. A factorial PSF 
experiment not only indicates how much plant growth 
varies among “other” soil types but also indicates when 
plant growth differs more by soil type than by plant type. 

tABle 3. Student’s t-test statistic on the absolute difference 
between observed and predicted species biomass for the Null 
and PSF models. The degrees of  freedom is 11 for each test.

Model T- statistic P

Additive 3.50 0.005
All models 7.85 <0.001
Exponential 3.72 0.003
Logistic species level- K 3.51 0.005
Logistic pot- level- K 2.66 0.022
Logistic constant- K 4.29 0.001
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This is important because it determines when PSF effects 
are large enough to overcome differences in intrinsic 
growth rates between species. In 33 of 132 pairwise com-
parisons, PSFs were large enough to change competitive 
outcomes between species pairs (Appendix S1: Tables S1 
and S4). In contrast, using a nonfactorial “self” vs. 
“other” approach with the same data indicated 14 of 132 
pairwise comparisons where PSFs were large enough to 
change competitive outcomes. This is the only study we 
are aware of that has performed a factorial PSF experi-
ment with more than five species and results suggest that, 
relative to the nonfactorial design, the factorial design 
detects more than twice as many instances where PSF 
effects are greater than differences in intrinsic growth 
rates (Casper and Castelli 2007, Lankau et al. 2011, 
Hawkes et al. 2013).

Parameterizing growth models with experimental data 
revealed an obvious but overlooked effect of competitive 
inequality on PSF: plants with little biomass have small 
effects on PSFs in a community. For example, in this 
study, B. ischaemum grew very poorly on B. curtipendula 
and S. azurea soils resulting in relatively large PSF values 
of 0.46 on both soil types. However, because B. curtipen-
dula and S. azurea never had high biomass in communi-
ties, they had little effect on model predictions of 
B. ischaemum growth in communities. One implication 
is that a small PSF for a large plant can have a greater 
effect on model predictions of community composition 
and biomass than a large PSF for a small plant. Another 
implication is that “self” soils will be more important in 
determining the growth of large (or dominant) species 
than small (or rare) species simply because soils culti-
vated by large species will be more abundant than soils 
cultivated by small species (Petermann et al. 2008, 
Turnbull et al. 2010). Similarly, “other” soils will be more 
important to small species than large species (but see; 
Peltzer et al. 2009). More broadly, plant size or abun-
dance can have a large effect on how PSFs are realized 
in a community.

In this study, PSFs were associated with a mean 28% 
difference in growth on different soils, yet PSFs only 
explained 2–8% more variance than Null time- specific 
models. We suggest several reasons that relatively large 

PSF effects will cause relatively small improvements in 
predictions of plant mass in communities. First, Null 
models include plant growth data from “self” soils. As 
noted earlier, large plants are less affected by “other” 
soils than small plants so PSF and Null model predictions 
for large plants are not likely to differ as much as for 
small plants. Consistent with this, a post- hoc test revealed 
that the difference between Null and PSF model predic-
tions, as a proportion of maximum predicted plant bio-
mass, decreased with plant size (i.e., PSFs had a greater 
effect on smaller plants; F

1,11 = 4.91; P = 0.05, R2 = 0.32). 
Second, PSFs must be comparable in size to differences 
in intrinsic growth rates among species to affect rank 
order abundance (Petermann et al. 2008, Turnbull et al. 
2010, Kulmatiski et al. 2011, Revilla et al. 2013, Sun et al. 
2014). For example, PSF will not be important to two 
plants if Plant A grows to between 8 and 10 g on soils 
A- D and Plant B grows to between 1 and 4 g on soils 
A- D. For these two species, there is no case in which 
Plant B will outcompete Plant A, regardless of the size 
of PSF. Third, PSFs must be variable among species to 
affect relative abundances. If all plants in a community 
have a −0.5 PSF , then the relative abundances of species 
would be determined by fitness differences and not PSF; 
whereas, if some plants have a PSF of −0.5 while other 
plants have a PSF of −0.1, then there is an opportunity 
for PSF effects to counteract fitness differences. Finally, 
our models that included carrying capacity limited PSF 
effects because growth rates had relatively small effects 
on the biomass of plants that approach carrying capacity. 
Modeling approaches that incorporate PSF into carrying 
capacities could address this problem.

It is notable that while PSFs improved predictions of 
plant biomass in this experiment, results are unlikely to 
provide insight into plant growth in the field. Plant 
growth in this experiment was not correlated with the 
abundance of the same species in previous field experi-
ments (F

1,11 = 0.57, P = 0.47, R2 = 0.05; Wilsey and 
Polley 2004). Further, most PSFs in this experiment 
were positive, whereas most PSFs reported across the 
literature are negative (Kulmatiski et al. 2008). It is 
likely that different experimental conditions, such as 
more nutrient-  or microbial- rich soils, water stress or 

tABle 4. Pearson correlation coefficients (R2) and associated P values for the relationship between observed species biomass and 
Null and PSF model predictions, respectively. The difference in R2 values between Null and PSF models (R2 difference) and the 
percentage of  variance unexplained by Null models that was explained by PSF models (% explained by PSFs) is shown.

Model N

Null model PSF model
R2 

difference
% explained 

by PSFsR2 P R2 P

Additive 12 0.515 0.086 0.838 <0.001 0.32 67
All models 60 0.560 <0.001 0.620 <0.001 0.06 14
Exponential 12 0.489 0.107 0.547 0.066 0.06 11
Logistic species 

level- K
12 0.687 0.014 0.727 0.007 0.04 13

Logistic pot- level- K 12 0.825 0.001 0.846 <0.001 0.02 12
Logistic constant- K 12 0.500 0.098 0.579 0.049 0.08 16
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soil compaction, would have produced more negative 
PSFs or species abundances that were more similar to 
field experiments (Kyle et al. 2007, Casper et al. 2008). 
Results therefore highlight the potential that PSF may 
vary quantitatively and qualitatively as a function of 
experimental conditions and as a result inference to the 
landscape is likely to require field experiments (Casper 
et al. 2008).

While PSFs improved predictions for all five models 
tested, PSFs had the smallest effect in the best performing 
model—the Logistic Pot- Level K model. We suggest that 
although PSF effects were very small in the best model 
in this study, it is appropriate to consider PSF effects 
across the ensemble of models used here because (1) PSFs 
have demonstrated consistent improvements in predic-
tions across a range of model assumptions and experi-
ments (Petermann et al. 2008, Mangan et al. 2010, 
Kulmatiski 2011, van der Putten et al. 2013) and 
(2) future studies are likely to use a variety of models and 
experimental conditions and it is not clear which model 
will perform best in other experimental conditions 
(Larios and Suding 2014). The fact that the simple PSF 
Additive model performed as well as the Logistic Pot- 
Level K model supports this suggestion.

While PSF effects were small relative to the effect of 
differences in intrinsic growth rates, results were con-
sistent with the idea that PSFs exert widespread effects 
on plant growth and community development, because 
PSFs produced many small improvements in predic-
tions of species biomass across a wide range of commu-
nity compositions. Further, the magnitude of PSF 
effects in this study were similar or smaller than PSF 
effects reported across the literature suggesting that 
PSFs in other communities will have similar or larger 
effects on community composition (Kulmatiski et al. 
2008). PSF effects may also be stronger in long- term 
field experiments or with different species assemblages 
(Petermann et al. 2008, Turnbull et al. 2010, Hawkes 
et al. 2013, Mack and Bever 2014, Maron et al. 2014). 
Where PSFs are important to plant growth, there is 
potential for improved understanding, prediction and 
management of plant communities (Lortie et al. 2004, 
Kulmatiski 2011, Lankau et al. 2011, Nolan et al. 2015, 
Storkey et al. 2015).
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