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Abstract
Understanding the response of species with differing life-history traits to habitat edges and

habitat conversion helps predict their likelihood of persistence across changing landscape.

In Brazil’s Atlantic Forest, we evaluated frog richness and abundance by breeding guild at

four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest,

iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee planta-

tion, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types).

By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 spe-

cies, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-

body breeders) was the most important variable explaining frog distributions in relation to

edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness

and abundance from the forest interior toward the matrix habitats. Water-body breeders

increased in richness toward the matrix and remained relatively stable in abundance across

distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog

richness and abundance across distances. Twenty species found in the interior of the forest

were not found in any matrix habitat. Richness and abundance across breeding guilds were

higher in the rainy season but frog distributions were similar across the four distances in the

two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations,
whereas water-body species primarily used coffee plantations. Bromeliad breeders were

not found inside any matrix habitat. Our study highlights the importance of primary forest for

bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and

matrix habitats to reach breeding habitats along the valleys. Including life-history character-

istics, such as breeding guild, can improve predictions of frog distributions in response to

edge effect and matrix types, and can guide more effective management and conservation

actions.

PLOS ONE | DOI:10.1371/journal.pone.0156781 June 7, 2016 1 / 13

a11111

OPEN ACCESS

Citation: Ferreira RB, Beard KH, Crump ML (2016)
Breeding Guild Determines Frog Distributions in
Response to Edge Effects and Habitat Conversion in
the Brazil’s Atlantic Forest. PLoS ONE 11(6):
e0156781. doi:10.1371/journal.pone.0156781

Editor: Mathew S. Crowther, University of Sydney,
AUSTRALIA

Received: February 15, 2016

Accepted: May 19, 2016

Published: June 7, 2016

Copyright: © 2016 Ferreira et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The authors confirm
that all data underlying the findings are fully available
without restriction. All relevant data are within the
paper and its Supporting Information Files.

Funding: RBF received funding from The
Herpetologists' League, Ecology Center at Utah State
University, Dr. Dinesh and Kalpana Patel Fellowship,
IdeaWild, Jack Berryman Institute, the Rufford
Foundation, Centro Nacional de Desenvolvimento
Científico e Tecnológico (CNPq; 231020/2013-9),
Coordenação de Aperfeiçoamento de Pessoa de
Nível Superior (CAPES), and Fundação de Amparo à
Pesquisa e Inovação do Espírito Santo (FAPES).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/84291572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0156781&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Rapid habitat loss in the tropics has increased our need to understand how species respond to
novel landscape features, such as edges and human-modified habitats [1,2,3,4]. Due to their
great conservation implications, edge effects are one of the most studied topics in landscape
ecology; however, because they influence a large number of variables, their role in species
occurrences is complex and depends greatly upon the species studied. Examples of the com-
plexities involved in studying edge effects include the wide range of distances that different
edge effects can penetrate the forest [5]; the ability of edge effects to change over time with sea-
sonal variation [6,7]; and the idea that different surrounding converted habitats (hereafter
matrix types) may influence edge effects differently [8,9,10].

The degree of structural similarity between the forest interior and a matrix habitat may be
the most important factor influencing species responses to edge and matrix habitats [11,12].
However, few studies carried out in tropical forests have evaluated the ability of different
matrix types to influence edge effects and to harbor different species [3,9,13]. One hypothesis is
that forest-associated species will use a matrix habitat that has low structural contrast with for-
ests more than a matrix habitat with high structural contrast with forests [9]. For example,
mature stands of Eucalyptus adjacent to primary forest are reported to have greater faunal rich-
ness than other agricultural matrices [14]. This type of information is essential to rank the con-
servation value of each matrix type according to its influence on species persistence [3].
Amphibians might be particularly sensitive to edge effects and matrix habitats because
expected changes in temperature, humidity, wind speed, and soil moisture might increase their
susceptibility to desiccation [15]. In addition, because frogs use a variety of reproductive habi-
tats, including ponds, streams, bromeliads, and leaf litter, their response to habitat changes is
expected to vary across breeding guilds [16,17].

More specifically, studies conducted in the highly disturbed Brazil’s Atlantic Forest (14.5%
of the area is currently forest remnants) [18] show that certain reproductive modes of amphibi-
ans are more vulnerable to landscape alterations than others [1,2,19,20]. For example, because
water-body breeders have different life history stages that use different habitats, separation of
these habitats (termed “habitat split”) greatly affects them due to the risk associated with
migrating from upland forest to reproductive habitats in the valleys [19,20]. Furthermore, bro-
meliad breeders may not often occur in matrix habitats or small forest fragments because bro-
meliads are often absent in these habitats [1]. In a lowland region of Brazil’s Atlantic Forest,
Pardini et al. [21] found that forest-specialist leaf-litter breeders tended to avoid edges in large
fragments, while Dixo & Martins [22] found no difference in the richness and abundance of
leaf-litter breeders between edges and the interior of large fragments. Dixo & Martins [22] sug-
gested that the lack of a detectable edge effect on leaf litter breeders may be due to the different
types of matrix habitats surrounding the forest fragments in their study.

Although most land area across the Atlantic Forest has been converted to other land uses,
the use of these different matrix types by frog species and their influence on edge effects
remains largely unknown. Furthermore, much of the frog diversity of the Atlantic Forest is still
being discovered and little is known concerning frog responses to landscape alteration as com-
pared to studies conducted across temperate regions. The objective of this study was to investi-
gate how frog richness and abundance, particularly across different breeding guilds, change
with distances from the forest edge and with the three dominant matrix types in a mountainous
region of Atlantic Forest. To help understand the mechanisms driving frog responses to these
landscape changes, we also investigated how frog richness and abundance are related to habitat
characteristics and microclimatic variables.
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Materials and Methods

Study region
Research was conducted within and around the Reserva Biológica Augusto Ruschi (hereafter
REBIO; Fig 1A; 19°45’- 20°00’ S, 40°27’- 40°38 W; 3,598 ha), in Santa Teresa, Espírito Santo
state, Brazil. REBIO is in the northern portion of the Serra do Mar ecoregion in the Atlantic
Forest biome and is classified as montane and sub-montane rain forest composed of moist
broadleaf trees [23,24]. Santa Teresa was forested until the arrival of European settlers in 1874.
Today this municipality has 42% forest cover [18]. The landscape of Santa Teresa is typical of
mountainous regions in this biome; forest remnants are mostly restricted to hilltops, and water
bodies (i.e. pond, stream, etc.) are located in the valleys, which are dominated by different
types of human-modified matrix (e.g., coffee plantations, Eucalyptus spp. plantations, aban-
doned pastures, and settlements).

Santa Teresa’s climate is classified as humid-subtropical (Cwa-Cfa) according to Köppen-
Geiger’s classification [25]. The dry season is mostly fromMay to August and the rainy season
is from September to April. Mean annual precipitation is 1868 mm with highest rainfall in
November and lowest in June, when the mean rainfall is less than 60 mm [26]. Mean annual
temperature is 20°C, with minimum and maximum monthly temperatures averaging 14.3 C
and 26.2 C, respectively [27].

Sampling design
We surveyed amphibians at 21 sites (elevational range = 793–908 m) within and around the
REBIO (Fig 1B). Each site was surveyed once from September to December 2012 (rainy season)
and once from June to July 2013 (dry season). Sites comprised seven replicates of each of the

Fig 1. Study sites and sampling design. (A) Location of Santa Teresa municipality in the original extent of
Brazil’s Atlantic Forest, (B) 21 sampled sites, adjacent to abandoned pasture (red circle), coffee plantation
(blue triangle), and Eucalyptus plantation (yellow square), located within and around a biological reserve, and
(C) sampling design showing a 250 m transect with paired plots (black square) by distance from the forest
edge.

doi:10.1371/journal.pone.0156781.g001
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three most widespread matrix types in this region (sun-grown coffee plantation, non-native
Eucalyptus spp. plantation, and abandoned pastures).

At each site, we established a 250-m transect that ran perpendicular to the forest edge, from
50 m inside the matrix to 200 m inside the forest reserve. Along each transect, we surveyed at
four distances: i) 50 m inside the matrix, ii) at the forest edge, iii) 50 m inside the forest, and iv)
200 m inside the forest (Fig 1C). At each distance on each transect, we established two 5 m x 5
m plots (hereafter paired-plots) 5 m from each other for measuring frog richness and abun-
dance, microclimate variables, and habitat characteristics.

Sites were chosen in and around the REBIO to minimize potential confounding factors,
such as fragment area and degree of isolation [28]. We selected sites that met the following cri-
teria: i) matrix area was at least 100 m x 100 m; ii) Eucalyptus plantations were between four
and seven years old; iii) coffee plantations were all sun-grown (i.e., no shade trees) and at a
mature stage (i.e., harvesting stage); and iv) abandoned pastures were between 10 and 20 years
old. We avoided selecting sites with human disturbance inside the forest during the last 10
years (e.g., bromeliad harvesting, heavy logging, and cattle).

Frog sampling
This study was carried out in strict accordance with the recommendations in the Guidelines
for euthanasia of animals from the veterinary medical association of both Brazil and United
States of America [29,30]. Research protocol was approved by Instituto Chico Mendes de Con-
servação da Biodiversidade (ICMBio, Permit Number: 28607–3) and Institutional Animal Care
and Use Committee of Utah State University (IACUC-USU, Permit Number 2002).

We hand-captured frogs in the leaf litter, in bromeliads and on the vegetation up to 2 m off
the forest floor during nocturnal surveys from 1800 to 2300 hr. Four people worked simulta-
neously by moving the leaf litter for 20 minutes to survey each 5 m x 5 m plot.

We placed captured frogs in moist plastic tubes or plastic bags to prevent dehydration, and
later brought them to the laboratory for identification. We released most frogs at the same site
the following day; some frogs were euthanized because the amphibian taxonomy of the region
is incomplete. We euthanized the frogs by ventral application of 7.5% to 10% benzocaine, fixed
them in 10% formalin, and preserved them in 70% ethanol within one to five days of fixation.
These specimens were deposited in the collections of Museu Nacional, Universidade Federal
do Rio de Janeiro (MNRJ), State of Rio de Janeiro and the Museu de Biologia Mello Leitão
(MBML), State of Espírito Santo, both in Brazil.

Species traits
We classified each species according to its breeding habitat [bromeliad guild (lays eggs in bro-
meliads), leaf-litter guild (lays eggs on the forest floor), rock guild, or water-body guild (lays
eggs in pond, river, or stream)]. We based classifications on Haddad et al. [31] and our field
and laboratory observations along with expert observation, as necessary.

Environmental variables
To measure microclimate variables, we placed a data logger (Onset HOBO U12-012) in each
paired-plot to measure air temperature, air relative humidity, and light intensity during the 24
hours prior to frog sampling. We used a digital thermometer pistol to measure leaf-litter tem-
perature from two corners of each plot. We used a portable weather station (Kestrel 2500) to
measure wind speed from each paired-plot.

To measure habitat characteristics in each plot, we counted all trees and characterized them
according to diameter at breast height (DBH) as: i) large trees (DBH> 15 cm), ii) medium-
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sized trees (DBH between 5 and 15 cm), and iii) small trees (DBH<5 cm). We counted tank
bromeliads (Bromeliaceae) within 2 m height off the forest floor. We measured the leaf-litter
depth in the four corners of each plot. We used a spherical densitometer to estimate the percent
canopy cover in each plot.

Statistical analysis
We employed generalized linear mixed models (GLMMs) to evaluate how frog richness (num-
ber of species) and abundance (total number of individuals) change with distance from edge
(hereafter ‘Distance’), breeding guild (hereafter ‘Guild’), season, matrix type (hereafter
‘Matrix’), and environmental variables (microclimate variables and habitat characteristics).
First, we tested 15 models using the full dataset to evaluate the main effects of ‘Distance’,
‘Guild’, ‘Matrix’, ‘Season’ and all possible interactions. Second, we tested eight models that
included the frogs collected at each distance separately, except in the matrix because of the low
number of collected frogs, to evaluate the effect of ‘Guild’, ‘Matrix’, ‘Season’ and all possible
interactions. Finally, we tested another 10 models by taking the best-fitting model from our
overall analysis and including each environmental variable as an interaction term to evaluate if
any of these variables improved model fit.

For each predictive model, we assessed the effects of the fixed factors using a mixed model
with two random effects factors: site within matrix type and distance within site. We specified a
Poisson distribution with a log link. These analyses were conducted using the package lme4 [32].
Because we studied a mountainous region, ‘elevation’ was included as “offset” in the models to
address differences in elevation both across distances within the same transect and across sites.

Models were compared using an information theoretic approach, with lower values of
Akaike’s information criterion corrected for small sample size (AICc) indicating better-fitting
models [33]. We also calculated ΔAICc (difference in AICc for each model from the most parsi-
monious model) and wAICc (AICc weight). Visual inspection of residual plots did not reveal
any obvious deviations from homoscedasticity or normality.

We found no difference in habitat variables between the paired 5 m x 5 m plots sampled in
the same transect, distance from edge, and season (Wilcoxon signed-rank test; package stats).
Consequently, we summed some variables (tree structure and number of bromeliads) and took
the mean of others (leaf-litter depth and canopy cover) from these paired-plots for analysis.
We also summed frog richness and abundance found in these paired-plots.

Prior to analysis, we used variance inflation factors (VIF) to assess collinearity among air
temperature, relative humidity, light intensity, and leaf-litter temperature using the package
vegan [34]. We also visually inspected scatterplots using the package corrgram [35]. Leaf-litter
temperature was excluded because it was correlated with air temperature. Mean, maximum,
and minimummeasurements of the other microclimate variables were highly correlated and
were excluded from the analysis. Instead, we used the range (difference between maximum and
minimum) for air temperature (hereafter ‘temperature range’), relative humidity (hereafter
‘humidity range’), and light intensity (hereafter ‘light range’) because VIF was smaller than 3.
Resulting environmental variables were standardized to a mean of zero and a standard devia-
tion of one to improve convergence of the fitting algorithm and to place the estimated coeffi-
cients on the same scale [36].

Due to small sample sizes inside the matrix, we used a Pearson’s chi-square exact test (χ2)
to investigate whether richness and abundance of each breeding guild differed across ‘matrix
type’. We also used Pearson’s chi-square exact test to evaluate the difference of richness and
abundance between seasons across distances and breeding guilds. We conducted these chi-
square tests using a Monte Carlo simulation based on 999 replicates with the packageMASS
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[37]. We performed one-way analysis of variance to test for differences of environmental vari-
ables across both edges and matrix types. We used package agricolae [38] to run Tukey’s Hon-
estly Significant Difference method (Tukey HSD) to control Type I error among pairwise mean
comparisons. All analyses were conducted in version 3.0.3 of R software [39].

Results
We recorded 622 individual frogs representing nine families and 29 species across the 168
paired-plots (4 distances x 21 sites x 2 seasons) (S1 Table). We documented a mean of 3.7 (±
4.0 standard error) individuals and 2.3 (± 2.1 standard error) species per paired-plot. We
found three undescribed species: Brachycephalus sp., Ischnocnema sp. (aff. parva) 1, and Isch-
nocnema sp. (aff. parva) 2. We recorded 562 individuals of 12 leaf-litter breeding species, 37
individuals of 12 water-body breeding species, 22 individuals of four bromeliad breeding spe-
cies, and one individual rock breeding species. We recorded 387 individuals of 27 species dur-
ing the rainy season and 235 individuals of 17 species during the dry season.

‘Distance � Guild’ was the best-fitting model for frog richness (wAICc = 0.99) and abun-
dance (wAICc = 0.99) across the landscape (Table 1). ‘Distance � Guild’ remained the best-fit-
ting model for richness (wAICc = 0.73) and abundance (wAICc = 0.74) even after excluding the
three most abundant species from the dataset (A. glandulata, H. binotatus, and I. cf. parva 1
represented 68% of total individuals) (S2 Table). Furthermore, ‘Guild’ was the best-fitting
model for richness and abundance by analyzing each distance inside the forest separately (S3
Table). Richness and abundance were higher in the rainy season regardless of ‘Distance’ (S1
Fig) or ‘Guild’ (S2 Fig). No environmental variable improved model fit for frog richness or
abundance (Table 2). Within these environmental models, however, ‘Distance � Guild � Large
trees’ was the best-fitting model for richness (wAICc = 0.97) and ‘Distance � Guild � Total bro-
meliads’ was the best model for abundance (wAICc = 0.89) (Table 2).

Leaf-litter breeders had higher richness and abundance at every distance as compared to
bromeliad and water-body breeders in both dry and rainy seasons (Fig 2; S1 Table). Bromeliad

Table 1. Model comparison of frog richness and abundance. Response variables evaluated in relation to 'Breeding guild', 'Distance', 'Matrix type', and
'Season' across 21 sites in the mountainous region of Brazil’s Atlantic Forest.

Models Richness Abundance

AICc ΔAICc wAICc AICc ΔAICc wAICc

Distance * Guild 570.99 0 0.99 665.19 0 0.99

Distance * Guild * Season 585.47 14.48 0 674.31 9.124 0

Null 690.84 119.84 0 891.76 226.57 0

Distance 679.72 108.73 0 872.84 207.65 0

Guild 590.75 19.76 0 699.53 34.34 0

Matrix 694.84 123.84 0 895.80 230.61 0

Season 673.71 102.72 0 856.89 191.70 0

Guild * Matrix 599.38 28.39 0 707.62 42.43 0

Guild * Season 589.18 18.19 0 691.74 26.55 0

Distance * Guild * Matrix 599.39 28.40 0 680.73 15.54 0

Guild * Matrix * Season 611.77 40.78 0 714.25 49.06 0

Distance * Matrix 682.56 111.57 0 877.76 212.57 0

Distance * Season 668.90 97.91 0 843.911 178.72 0

Matrix * Season 681.74 110.75 0 862.94 197.74 0

Distance * Guild * Matrix * Season 697.38 126.39 0 771.989 106.79 0

doi:10.1371/journal.pone.0156781.t001

Frog Responses to Edge and Matrix

PLOS ONE | DOI:10.1371/journal.pone.0156781 June 7, 2016 6 / 13



and leaf-litter breeders decreased in richness and abundance from the forest interior toward
the matrix (Fig 2). Water-body breeders increased in richness toward the matrix and remained
relatively stable in abundance across distances (Fig 2). The number of large trees and bromeli-
ads increased toward forest interior, whereas the range of microclimate variables tended to
decrease toward forest interior (Table 3).

Of the frogs collected in the matrix habitats, five were water-body breeders, three were leaf-
litter breeders, and one was a rock breeder, totaling 31 individuals of nine species (S1 Table).
Bromeliad breeders were not found inside any matrix habitat. Four species were exclusively
found in the matrix of which three were water-body breeders (S1 Table). Eight and 14 species
found in the 50 m and 200 m forest plots, respectively, were not found in any matrix habitat.
Across breeding guilds, these species found only inside the forest represent nine leaf-litter, four
water-body and three bromeliad breeders.

Richness of leaf-litter breeders was higher in Eucalyptus than in abandoned pastures and
coffee plantations, and abundance was higher in both Eucalyptus and abandoned pastures than
in coffee plantations (Fig 3). Richness and abundance of water-body breeders were higher in

Table 2. Model comparison of frog richness and abundance. Response variables evaluated in relation to environmental variables (microclimate and
habitat characteristics).

Models Richness Abundance

AICc ΔAICc wAICc AICc ΔAICc wAICc

Reference model

Distance * Guild 570.99 0.00 1.00 665.19 0.00 0.99

Ref. model*Env. var.

Large trees 579.24 0.00 0.97 Bromeliads 667.43 0.00 0.89

Light range 587.14 7.90 0.02 Wind 669.64 2.21 0.11

Leaf-litter depth 588.34 9.10 0.01 Large trees 672.95 5.52 0.03

Bromeliads 593.17 13.93 0.00 Small trees 674.19 6.76 0.02

Small trees 594.19 14.95 0.00 Canopy cover 676.21 8.78 0.01

Temp. range 601.01 21.77 0.00 Leaf-litter depth 676.99 9.56 0.00

Humidity range 597.81 18.57 0.00 Temp. range 678.90 11.47 0.00

Medium-sized trees 600.39 21.15 0.00 Humidity range 679.22 11.79 0.00

Canopy cover 595.54 16.30 0.00 Light range 684.11 16.69 0.00

Wind 599.10 19.86 0.00 Medium-sized trees 693.51 26.09 0.00

doi:10.1371/journal.pone.0156781.t002

Fig 2. Response to edge effect by breeding guild. (A) Mean richness and (B) abundance of breeding guilds across distance from the forest edge across
21 sites.

doi:10.1371/journal.pone.0156781.g002
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coffee plantations than in the other matrix types (Fig 3). Leaf-litter breeders were not found in
coffee plantations, whereas water-body breeders were found in all three matrix types (Fig 3).
The only environmental variables that differed among the three matrix types were medium-
and large-sized trees, which were higher in abandoned pastures and Eucalyptus plantations
than in coffee plantations (Tukey HSD, P<0.05). There was no difference in any environmen-
tal variable at edges adjacent to the three matrix types (Tukey HSD, P>0.05).

Discussion
The richness and abundance of frogs we studied in the mountainous region of Atlantic Forest
varied across distances from forest edge (i.e., edge effect) and across matrix types (i.e., matrix
effect). Breeding guild was the most important variable explaining these differences. More spe-
cifically, we found that bromeliad and leaf-litter species that do not require breeding habitats

Table 3. Microclimate variables and habitat characteristics. Measurements conducted by 'Distance' across 21 sites. Values are mean ± standard
deviation.

Variables (units) Matrix Edge 50m Forest 200m Forest

Microclimate variables

Temp. average (°C) 18.2 ± 1.9 17.4 ± 1.8 16.9 ± 1.7 17.1 ± 1.7

Temp. range (°C) 11.8 ± 4.1 7.2 ± 2.7 5.3 ± 1.9 5.5 ± 2.2

Humidity average (%) 91.6 ± 4.2 92.4 ± 8.9 96.8 ± 3.6 96.6 ± 3.8

Humidity range (%) 31.6 ± 13.9 18.8 ± 9.8 9.8 ± 9.5 10.6 ± 9.7

Light average (lx) 1459.8 ± 968.4 491.5 ± 484.5 119.9 ± 126.6 205.9 ± 330.4

Light range (lx) 13225.4 ± 8091.1 6292.6 ± 5663.6 3071.2 ± 3685.5 2837.5 ± 3384.6

Wind speed (Km/h) 2.4 ± 3.85 1.85 ± 3.6 1.7 ± 3.7 1.5 ± 1.4

Habitat characteristics

Number of bromeliads 0.02 ± 0.1 1.6 ± 2.3 4.5 ± 5.6 7.4 ± 5.9

Small trees 20.2 ± 9.4 47.8 ± 14.0 42.7 ± 10.2 38.7 ± 8.4

Medium-sized trees 4.1 ± 2.6 10.9 ± 3.5 10.1 ± 2.1 10.1 ± 3.2

Large trees 1.2 ± 1.0 3.3 ± 2.5 4.6 ± 1.6 4.7 ± 1.8

Canopy cover (%) 66.2 ± 25.4 85.4 ± 14.1 91.4 ± 3.3 88.2 ± 11.7

Leaf litter depth (cm) 7.9 ± 2.9 8.6 ± 2.4 10 ± 4.0 12.7 ± 4.2

doi:10.1371/journal.pone.0156781.t003

Fig 3. Use of matrix types by breeding guild.Mean and standard error of (A) richness and (B) abundance of breeding guilds inside seven replicates of
each matrix type. Means with different letters are significantly different (χ2; P < 0.05).

doi:10.1371/journal.pone.0156781.g003
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outside the forest had lower richness and abundance in edge and matrix habitats whereas
water-body species that may require breeding habitats in the valleys increased in richness
toward the matrix and remained relatively stable in abundance across distances. Richness and
abundance across breeding guilds were higher in the rainy season but frog distributions were
similar across the four distances in the two seasons. Across matrix types, leaf-litter species
more often used Eucalyptus plantations, whereas water-body species more often used coffee
plantations. Our data suggest that consideration of breeding habitat requirements can assist in
predicting frog response to both edge effects and matrix habitats [1,16].

The increase in richness and abundance of bromeliad and leaf-litter breeders toward the for-
est interior may be in response to the increase of both large trees and bromeliads toward the
forest interior. Pardini et al. [21] showed that forest-specialist leaf-litter breeders prefer the for-
est interior, which may be attributed to the higher concentration of large trees inside the forest.
We observed a reduction in the range of microclimate variables (i.e. temperature, humidity
and light intensity) toward the forest interior, which may be related to the increase in large
trees. Trees buffer microclimate and also provide more leaf litter and suitable habitat for repro-
duction of species not dependent on bodies of water [7,40]. Furthermore, trees host epiphytic
bromeliads, which may contribute to the observed increase of both bromeliads and bromeliad
breeders toward the forest interior. As hypothesized, our results suggest that primary forest is
more suitable for reproduction for bromeliad and leaf-litter breeders than matrix habitats.

We suggest that water-body breeders use edge and matrix habitats because they need to
reach water bodies along the valleys [1,2,20]. Of the 12 water-body breeding species we
observed, nine were forest specialists (as opposed to open habitat specialist or generalist; S1
Table), and forest specialists made up 84% of the individual water-body breeders collected.
Based on this information, our data suggest that these individuals are likely just moving
through these habitats.

Previous studies carried out in habitat fragments in the Atlantic Forest show that forest frag-
ments disjunct from water bodies have lower richness and abundance of water-body breeders
as compared to forests connected to these reproductive habitats [1,20]. Our study, however,
was conducted in and around a reserve and resources required for water-body breeders are
both inside the forest and in the matrix. The frogs in our study region appear to use water bod-
ies in the valleys outside the reserve despite the risk of migration through a potentially inhospi-
table habitat. This might occur because of natal philopatry. It would be important to determine
if this is the case and whether this movement is reducing their population densities. The fact
that our study recorded only 16% of water-body breeding species ever recorded in Santa
Teresa, compared to 57% of bromeliad breeders and 70% of leaf-litter breeders [41,42] indi-
cates that most water-body breeders may be reproducing deeper than 200 m inside the forest
reserve, and that perhaps those water-body breeders living near the edge of the reserve have
already declined.

Contrary to other studies [6,7], edge effects were not influenced by seasonality. Richness
and abundance of frogs were higher in the rainy season regardless of distance or guild. This
result suggests that the response of frogs to edge effects may be studied in either season. Similar
to other tropical regions, the rainy season is the reproductive season for most frogs at our study
sites [2,43]. The dry season is less suitable for frog activity due to shorter photoperiod and
lower temperature and humidity [44,45,46], and thus researchers are less likely to encounter
frogs during the dry season.

Matrix type had no measurable effect on frog distributions or environmental variables in the
forest edges or in the forest interior. This is surprising considering the lower abundance of
medium- and large-sized trees inside coffee plantations compared to the other matrix types. On
the other hand, the breeding guilds used the matrix types differently. Bromeliad and leaf-litter
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breeders were not found in coffee plantations possibly because coffee plantations in our study are
open canopy. Studies have shown that shade-growth coffee plantations are suitable matrix type
for frogs across Neotropical ecoregions [47]. Surprisingly, coffee plantation was the most used
matrix type by water-body breeding species. This might be a result of location of water bodies
and the history of the amphibians in the area rather than a preference for this matrix type. Euca-
lyptus plantation is the most forest-like matrix type in our studied region, which might explain
the higher richness of leaf-litter breeding species in this habitat. Many studies have pointed out
the importance of secondary forests for amphibians as compared to agricultural or plantation
matrix types [21,48,49]. Abandoned pastures in our region are not becoming secondary forest,
because secondary forest and other agricultural areas are being converted to Eucalyptus planta-
tions. This landscape change could be detrimental to water-body breeders, considering that they
had the lowest richness and abundance in Eucalyptus plantations.

Conclusions
Our study tested for the importance of considering the influence of surrounding matrix type in
edge effects on frogs; however, we found the interaction between matrix type and edge effects
unimportant. For the first time, we showed that the edge effects for Atlantic Forest frogs were
not influenced by different surrounding matrix types.

Our results agree with previous suggestions that primary forest is critical for the persistence
of most frogs in Atlantic Forest [1,21,50]. The lower richness and abundance of bromeliad and
leaf-litter frogs inside the matrix compared to the forest interior suggests that the conversion of
the existing natural habitats to any type of matrix will have strong deleterious effects on these
breeding guilds. However, the fact that three species were found exclusively in the matrix
shows that these habitats are important for sustaining amphibian diversity.

The fact that water-body breeders are more associated with edge and matrix habitats in our
study sites suggests that matrix quality could be important for these species as they migrate
toward reproductive habitats in the valleys. Ferreira, Dantas & Tonini [2] showed that forest
corridor connecting upland forests and water bodies in the valleys have higher richness and
abundance of frogs than water bodies surrounded by Eucalyptus plantation and human con-
struction. To conserve the diversity of breeding guilds of frogs in Atlantic Forest, we recom-
mend that conservation initiatives focus on maintaining protected areas and improving the
connection between upland forested areas and water bodies in the valleys.

Supporting Information
S1 Fig. Frog response to season across distance.Mean and standard error of (A) richness and
(B) abundance of frogs across distance by season across 21 sites. Means with different letters
are significantly different (χ2; P< 0.05).
(TIF)

S2 Fig. Frog response to season by breeding guild.Mean and standard error of (A) richness
and (B) abundance of frog’s breeding guilds by season across 21 sites. Means with different let-
ters are significantly different (χ2; P< 0.05).
(TIF)

S1 Table. List of the 29 species recorded in Santa Teresa municipality, southeastern Brazil.
The list includes species traits and abundance by distance from the forest edge. Breeding guild:
BR = bromeliad, LL = leaf litter, RW = rock wall, and WB = water body (pond, stream, or
river). Forest association: F = forest dependent, O = open-habitat, and G = habitat-generalist. �
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disregarded in the statistical analysis.
(DOCX)

S2 Table. Model comparison of frog richness and abundance. Response variables evaluated
in relation to ‘Breeding guild’, ‘Distance’, and ‘Season’, after excluding the three most abundant
frog species from the dataset.
(DOCX)

S3 Table. Model comparison of frog richness and abundance. Response variables evaluated
in relation to ‘Breeding guild’, ‘Matrix type’, and ‘Season’ for data collected in each of the three
distances inside the forest separately.
(DOCX)
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