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ABSTRACT 

Image segmentation is one of the fundamental problems in computer vision. The outputs of 

segmentation are used to extract regions of interest and carry out identification or classification 

tasks. For these tasks to be reliable, segmentation has to be made more reliable. Although there 

are exceptionally well-built algorithms available today, they perform poorly in many instances by 

producing over-merged (combining many unrelated objects) or under-merged (one object 

appeared as many) results. This leads to far fewer or more segments than expected. Such 

problems primarily arise due to varying textures within a single object and/or common textures 

near borders of adjacent objects. The main goal of this report is to pre-process the input images 

to nullify the effects of such textures. We introduce a pre-processing technique that prepares the 

input images, before the application of segmentation algorithms. This technique has 

demonstrated an enhancement in quality of the segments produced. This pre-processing method 

is called the de-texturing method.  We experimented with the effect of the proposed de-texturing 

method on two existing segmentation methods, namely,  the Statistical Region Merging (SRM) 

method  [1] and a k-means-based method as  suggested in [2]. 
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1. Introduction 

Image segmentation basically divides images into groups of pixels, based on shared attributes 

among the pixels. Different computer vision tasks require different levels of segmentation. While 

certain tasks require segmentation of one specific type/class of objects, others require segments 

of all possible objects that can be extracted from the image. Depending upon the requirement, a 

segmentation method either tries to search for certain features throughout the image and group 

their matching portions as foreground and the remaining as background, or, tries to cluster the 

pixels with matching local features into multiple segments. As each task has its own segmentation 

requirement, this makes image segmentation an important precursor in most of the computer 

vision applications. 

Any object in a given image does not exhibit a uniform pattern throughout its structure. There are 

usually varying textures within an object that make the segmentation algorithms assume that 

these features belong to different objects. It is also not uncommon to see a smooth gradient, i.e., 

uniform texture or color patterns along the boundary of adjacent objects. As a result, the 

segmentation algorithms may merge these adjacent patterns as a single object. These two 

scenarios are termed as under-merging and over-merging, respectively.  

 

Figure 1.1: An image and its possible segmentation results. The number of segmented regions 
increases as we go from the left to the right. 
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Fig.1.1 presents the varying number of segments in the outputs, which are obtained by employing 

the same algorithm with different levels of threshold(s) of variations in the pixels’ features. All 

these segmentation results are desirable. The segmentation results with a smaller number of 

regions are termed as coarse results.  The segmentation results with a larger number of regions 

are termed as fine results. Certain applications that follow a coarse-to-fine hierarchy for their 

feature identification tasks [3] need coarser segments, while some require smaller segments [4]. 

The end goal of any segmentation method is, therefore, to improve the quality of these segments, 

irrespective of their coarseness. This quality enhancement is verified in terms of the improved 

boundary accuracy, and the overlapping accuracy of segments over corresponding ground truths, 

which contain segments manually labeled by human subjects. To visualize the segmentation 

results as an RGB image, we need to assign each labeled region a color corresponding to certain 

R, G, and B values. Fig. 1.2 shows a sample image and three ground truths labeled by different 

human subjects. The labeled regions were assigned by colors whose three channels are 

respectively the mean R, G, and B values of the corresponding regions in the input image. 

Figure 1.2: An image and its three ground-truths labeled by different human subjects. 
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2. Related Work 

There are numerous approaches available today, which are used for solving image segmentation. 

Objects in an image can be segmented based on a variety of cues.  Some algorithms look for 

homogeneity in intensity or texture. For example, Weeks et al. [5] tried segmentation in HIS color 

space and Sagiv et al. [6] tried segmentation using texture. Many algorithms have also attempted 

at finding homogeneity in multiple properties of an image.  For example, Shi et al. [7] used 

smoothness and boundary continuity to find segments in an image.  

Adams and Bischof in their breakthrough paper [8] took a different approach by assuming 

underlying statistical cues, in which they tried to find homogeneity. They introduced the concept 

of the seeded region growing (SRG) for intensity images, where the user controls the 

segmentation procedure by inputting seed pixels from which the regions grow. By carefully 

selecting the appropriate seeds and the statistics governing the grouping, it was possible to 

extract all objects in an image. The main drawback of this paper is the requirement of human 

intervention. Nock and Nielsen took a similar statistical approach in SRM [1], where they 

eliminated the need for any manual input of the seed pixels. In their proposed algorithm, virtually 

all pairs of pixels act as seeds. Each seed pair is ordered in an increasing order of their dissimilarity 

and merging is sequentially carried out on the ordered seed pairs. The segmentation is done 

hierarchically by increasing the scale value for every iteration. As the segmentation undergoes 

each iteration, it gradually produces bigger segments depending upon the merging criteria. The 

segments that do not merge remain smaller throughout all the iterations. Throughout these 

iterations, the order of the pixel pairs, depending upon the similarity between their respective 

segments, is not changed. As pointed in [9], SRM does not give importance to changing these 

orders in the middle of segmentation process when there is a change in the scale parameter, we 
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bypassed this problem in our proposed approach. In other words, instead of making it a 

hierarchical segmentation, we ran the image through multiple segmentation runs, one run per 

scale value, to find a different number of segments.  

While statistical approaches utilized the underlying distributions such as cues for region merging, 

texture based methods took the route of defining regions and pixels through feature 

representation. Usage of Gabor filter banks is a stable method in extracting features of pixels and 

their local neighborhoods. This is due to the known fact that the human visual cortex processes 

the images they see in a similar way as the Gabor functions [10]. Cheng et al. defined rotational 

invariant uniform local binary patterns (RIU-LBP) to define each pixel’s texture. Their approach 

utilized the basic SRM algorithm, which continued to merge the regions based on the ordered 

seed pairs until the size of regions were over 20 pixels. Beyond this, a region merging had to satisfy 

another criterion to ensure the two merged regions are similar in terms of the RIU-LBP texture 

features.  To this end, the Bhattacharya distance was utilized to compute the similarity between 

the regions.  

One common end goal of texture-based segmentation methods is to merge or group pixels or 

regions  using any minimization, optimization, or clustering algorithm [6] on the texture feature 

vector. Wang et al. suggested such a method that effectively utilizes texture features obtained 

from the Daubechies-4 wavelet transformation of the L-component of the input image 

transformed to the LUV color space[2].  
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3. Proposed Technique 

The method we propose in this report is, de-texturing the input images prior to passing them on 

to any segmentation methods, specifically, the SRM or the SIMPLIcity segmentation methods. 

While many methods as we have discussed earlier and others in the vast available literature have 

strived for better representation of textures of pixels, the method offered by Mignotte in [11] 

simplifies the input images by denoising the interiors, while preserving the edges of regions [12]. 

In this report, we present a modified de-texturing method that improves upon both SRM and 

SIMPLIcity segmentation methods. 

 

3.1. Brief Overview of the SRM segmentation method 

Before introducing our improvement, let us have a brief look at the SRM segmentation 

algorithm. The algorithmic overview of SRM is summarized as follows: 

1. All pixels of the image are grouped into pairs of 2, p and p’, where p is the pixel under 

consideration and p’ is any one of the border pixels based on 4-connectivity as shown 

in Figure 3.1. 

 
Figure 3.1: 4- connectivity of a pixel consists of its top, left, bottom, and right border 
pixels. 

2. Calculate the similarity function f (p, p’) of all these pixel pairs. The choice of the 

similarity function ‘f’ here is an absolute difference in pixel intensities. 
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3. All pixel pairs are sorted in the ascending order of their similarity function value. 

4. For each ascendingly ordered pair of pixels: 

4.1 If the pair has been selected, process the next pixel pair. 

4.2 Otherwise, another check is performed to see if the pixels in the pair belong 

to the same region. If they belong to the same region, process the next pixel 

pair. 

4.3 If both are untrue (i.e., the pair has not been selected and the pixels in the 

pair do not belong to the same region), then a merging predicate is evaluated 

to check if the pixels, or the regions to which they belong to, can be merged 

or not. The predicate P is given as 

𝑃(𝑅, 𝑅′) = { 𝑡𝑟𝑢𝑒, 𝑖𝑓 |�̅� − 𝑅′̅̅ ̅| ≤  √𝑏2(𝑅) +  𝑏2(𝑅′)

𝑓𝑎𝑙𝑠𝑒,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where R and R’ are regions to which the pixel pair, p and p’, belong to, and  

𝑏(𝑅) = 𝑔√(
1

2𝑄|𝑅|
) ln (

𝑚𝑖𝑛(|𝑅|, 𝑔)(|𝑅|+1)

𝛿
) 

Where𝛿 =  
1

6|𝐼|2 , |R| is the number of pixels in region R, |I| is the number of 

pixels in the entire image, Q is the scale factor with the values of 1, 2, 4, 8, 16, 

32, 54, 128, and 256, respectively. 

4.4 If the predicate is true, then the pixel pair, or the regions they belong to, are 

merged and this pixel pair is marked as selected. 

5. Step 4 is repeated until the order has been exhausted (i.e., all the pairs have been selected). 

3.2. Brief overview of SIMPLIcity segmentation 
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The SIMPLIcity paper [2] suggests a segmentation algorithm that intends to create as many 

segments as possible even if it means under-merging. They build this segmentation system for 

their image retrieval system as a way of creating as many meaningful portions as possible to 

understand the semantics of an image. We plugged in our de-texturing to this algorithm to 

improve the quality of these segments and avoid overlap of a segment over multiple objects. 

The algorithmic view of SIMPLIcity segmentation is summarized as follows, where the input is an 

RGB image and a value max-K is passed for multiple k-means clustering results. 

1. Apply padding to the image so that its rows and columns are a multiple of 4’s. 

2. Transform the image to the LUV color space. 

3. Apply a one level Daubechies-4 wavelet transform to L component. 

4. The decomposition produces 4 subbands, namely, A, H, V, and D representing 

average intensities, horizontal features, vertical features, and diagonal features, 

respectively, of the original image. 

5. Divide each band into non-overlapping 2x2 blocks as shown in Figure 3.2.  It should 

be noted that each 2x2 block corresponds to a 4x4 block in the original image as 

illustrated in Figure 3.3. 
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Figure 3.2: Each sub-band of the decomposed image is divided into non-overlapping 
2x2 blocks.  The size of each subband is one quarter of the size of the original image. 
 

 
Figure 3.3: The corresponding 4x4 block section in the original image for every 2x2 
block of the sub-band. 
 
 

6. For each 2x2 block of H, V, and D sub-bands 

6.1 Compute its root-mean-square (RMS) values as rms(H), rms(V) and rms(D), 

respectively 

6.2 Compute the means of its corresponding 4x4 block of the 3 channels of the RGB 

image as mean(R), mean(G) and mean(B), respectively. 

6.3 Construct its 6-featured vector (rms(H), rms(V), rms(D), mean(R), 

mean(G),mean(B)).  
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7. For each integer value k ranging from 3 to Max-k 

7.1 Obtain clusters of 2x2 blocks with labels by clustering these feature vectors 

using the k-means clustering algorithm. 

7.2 Create unique labels for disconnected components of the same cluster. 

7.3 Apply the labels to the original image size by resizing the output matrix. 

7.4 Remove the padding. 

7.5 Obtain the segmented output corresponding to the k value 

 

3.3. The Proposed Modified De-texturing Method 

The algorithmic overview of the proposed modified de-texturing method is summarized as 

follows: 

1. Get input image in the RGB color space. 

2. Convert it to 4 other color spaces, which are HSV, YIQ, LUV, and LAB.  

3. For each color space 

3.1 Quantize the gray levels ranging from 0 to 255 to five quantization levels of 1 to 

5 

3.2 Quantize the combination of the three channels, with each channel having values 

ranging from 1 to 5, to a single channel with values ranging from 1 to 125 by 

multiplying the corresponding quantized values at each pixel location in each of 

the three channels. 

3.3 From this single channel matrix, construct a 125 bin histogram for a 5x5 window 

around each pixel.  This histogram will act as the pixel’s feature vector. 

4. For every pixel, concatenate the feature vectors obtained from the above step for all color 

spaces to create a feature descriptor of size 625 (e.g., 125*5).  
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5. Apply principal component analysis (PCA) on the descriptors of all pixels to reduce the 

dimensionality of the feature vectors.  

6.  Use K-means on the dimensionally reduced features to cluster the descriptors of all the 

pixels, for k = 8. 

7. Create a labeled matrix based on the obtained clusters.  

8. Convert this labeled matrix into an RGB image by replacing each cluster’s label with the 

average R, G, and B values of the corresponding cluster in the original input image. 

  

Thus, we have a de-textured input image, which is transformed to the YIQ color space before 

applying the SRM algorithm on it. In our proposed system, we used five color spaces, namely, 

RGB, HSV, YIQ, LUV and LAB, to extract features.  These five color spaces provide complementary 

information.  Specifically, HSV, standing for hue, saturation and value, is used as it decouples 

chromatic information from shadow information. In YIQ color space, Y encodes luminance 

information and I and Q encode chrominance information. The LAB color space or the CIE L a*b* 

color space as it is officially called, is used as it approximates human vision, especially in human 

perception of lightness or darkness of an image. LUV color space approximates human vision in 

its perception of color changes. Finally, RGB color space is used for its similarity to human 

perception of complex colors. Although M. Mignotte in [11] suggests to use XYZ color space in 

addition to the above color spaces, we decided to drop it after our experiments showed an 

improvement in segmentation results upon removing XYZ images in getting the de-textured 

images.  In our proposed de-texturing method, we applied PCA to reduce the dimensionality of 

the feature vector, which captures the few largest variance (i.e., the most distinguishable 

features) totaling to at least 80% of the variance, to facilitate the clustering process. 
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Figure 3.4 presents the block diagram of the proposed detextured-based SRM method. The same 

de-textured image is transformed to the LUV color space before applying the SIMPLIcity’s 

segmentation algorithm on it.  Figure 3.5 presents the block diagram of the proposed de-textured-

based SIMPLIcity method. 

 

Figure 3.4: De-Textured-YIQ-SRM (Statistical Region Merging). 

 

Figure 3.5: De-Textured-LUV-SIMPLIcity Segmentation. 

De-Textured Image

Transform to YIQ color space

For Scale parameter = 1,2,4,8,16,32,64,128,256

Statistical Region Merging

9 Segmentation Output per input

De-Textured Image

Transform to LUV color space

For K  = 3,4,5

SIMPLIcity Segmentation

3 Segmentation Outputs per input



19 
 

4. Experimental Results 

4.1.  Dataset and Metrics 

Berkeley Segmentation Dataset has been widely used as a benchmark for measuring the 

effectiveness of a segmentation algorithm. All benchmarks are computed under two scenarios: 

a. Optimal Dataset Scale (ODS) – Since we get multiple segmentation outputs, by varying 

the values of the scale parameter Q in SRM or by varying the values of k in SIMPLIcity, we 

fix one segmentation scale for the whole dataset that has overall best segmentation 

results and compute the benchmark on these results. 

b. Optimal Individual Scale (OIS) – We select the segmentation that gives the best results for 

each image, and calculate an aggregate benchmark for these outputs. 

There are two different ways of measuring the effectiveness – boundary benchmarks and region 

benchmarks. Boundary benchmarks measure the strength of region contour with respect to the 

contours of the ground truth. Measures used are: 

a. Precision: It is the probability that a contour pixel is a true boundary pixel.  It is computed 

as 

Precision =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 , where true positives are pixels accurately 

labeled as boundary pixels and false positives are pixels inaccurately labeled as boundary 

pixels.  

b. Recall: It is the probability of the detection of boundary pixels. It is computed as,  

Recall =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 , where false negatives are boundary pixels 

inaccurately labeled as non-boundary pixels. 
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c. F-measure: It is a single measure to incorporate both recall and precision. The higher the 

F-measure, the greater the balance between precision and recall. It is computed as 

F = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

Region benchmarks measure the strength of the regions using the following measures: 

a. Segmentation Covering (SC) – It measures the overlap of regions of the segmentation 

output and the regions of the ground truth. The higher the SC value, the better the quality 

of segmentation. 

b. Variation of Information (VI) – It measures the distance between output’s segmentation 

and ground truth’s segmentation. The lower the VI value, the better the segmentation 

results. 

c. Probability Rand Index (PRI) – It measures the accuracy of labels assigned to pairs of pixels 

in a cluster. A higher PRI value indicates more accurate segmentation. 

 

4.2. Experimental Setup 

The de-texturing code and SRM and SIMPLIcity segmentation methods were written in separate 

MATLAB files. The datasets BSDS300 and BSDS500 [13] have found wide acceptance as 

benchmarks for evaluating different segmentation algorithms. BSDS300 contains 200 training 

images and 100 testing images. BSDS500 uses BSDS300 as the training dataset and adds 200 new 

testing images. All the testing images encompass a wide variety of geographic features, objects, 

plants and animals.  

As our proposed technique is an unsupervised method that does not require any prior training, 

we directly ran it on the testing images. For SRM, 9 different scales were used for each image, 

instead of iteratively changing the scale. For SIMPLIcity segmentation, we varied the values of k 
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from 3 to 5. As a result, for each input image, we get 9 different segmentation results from the 

De-texturing-YIQ-SRM process and 3 different segmentation results from the De-texturing-LUV-

SIMPLIcity process. 

These outputs are stored as label matrices. These label matrices are then passed to the files 

provided by the Berkeley database to compute the corresponding measures for the boundary 

benchmarks and the region benchmarks.  

 

4.3. Results 

Figure 4.1 shows a sample image, its ground truth images, and the segmentation results of De-

texturing-YIQ-SRM and De-texturing-LUV-SIMPLIcity. 

Figure 4.1: Comparison of the ground truth segmentation results and the segmentation results 
obtained from the two proposed segmentation methods. The top row shows the original image 
and 3 ground truth segmentation results manually labeled by human subjects. The second row 
shows De-texturing-LUV-SIMPLIcity segmentation results for four values of k, i.e., 2, 3, 4, and 5. 
The third row shows De-Texturing-YIQ-SRM segmentation results for four scale values of Q, i.e., 
1, 4, 5, and 7. 
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Figure 4.2: Comparison of the outputs of the SRM-RGB segmentation algorithm (shown on the 
left-hand side) and the outputs of the De-Texturing-YIQ-SRM segmentation algorithm (shown on 
the right-hand side) for different values of Q’s, where the top row presents the results for Q= 4, 
the middle row presents the results for Q = 5, and the bottom row presents the results for Q=6. 
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Figure 4.2 shows a visual comparison of SRM segmentation results against De-texturing-YIQ-SRM 

segmentation results for another picture.  Figure 4.3 shows a visual comparison of SIMPLIcity 

segmentation results against De-texturing-LUV- SIMPLIcity segmentation results for a different 

picture. Table 4.1 lists the values of the three boundary benchmark measures computed from the 

segmentation results obtained by applying different segmentation methods on the databases 

Figure 4.3: The comparison of the outputs of the 
SIMPLIcity -RGB segmentation algorithm (shown on 
the left-hand side) and the outputs of the De-
Texturing-LUV- SIMPLIcity segmentation algorithm 
(shown on the right-hand side) for different values 
of k’s, where the top row presents the results for k = 
3, the middle row presents the results for k= 4, and 
the bottom row presents the results for k= 5. 
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BSD300 and BSD500. The first row in the table lists the results for the best segmentation method 

and the last row in the table lists the results for the worst segmentation method.  It clearly shows 

that the proposed detexturing-YIQ-SRM approach respectively improves the YIQ-SRM by 0%, 

1.6%, and 22% on BSDS300 database for the measures of ODS, OIS, and AP, and respectively 

improves the YIQ-SRM by 0%, 0%, and 26% on BSDS500 database for the measures of ODS, OIS, 

and AP.  It also respectively improves the original RGB-SRM by 0%, 1.6%, and 29.4% on BSDS300 

for the measures of ODS, OIS, and AP and respectively improves the original RGB-SRM by 1.6%, 

0%, and 33.33% on BSDS500 for the measures of ODS, OIS, and AP.  Similarly, the proposed 

detexturing-LUV-SIMPLIcity respectively improves the original LUV-SIMPLIcity by  3.8%, 1.8%, and 

0% on BSDS300 database for the measures of ODS, OIS, and AP and respectively improves the 

original LUV-SIMPLIcity by  1.8%, 1.8%, and 16.7% on BSDS500 database for the measures of ODS, 

OIS, and AP. 

Table 4.1: Comparison of segmentation results of different segmentation methods in terms of 
boundary benchmarks on datasets BSDS300 and BSDS500.  

 BSDS300 BSDS500 

Algorithm ODS OIS AP ODS OIS AP 

Human 0.79 0.79 - 0.8 0.8 NA 

gPb-owt-ucm 0.71 0.74 0.73 0.73 0.75 0.73 

gPb 0.7 0.72 - 0.71 0.74 0.65 

Mean Shift 0.63 0.66 0.54 0.64 0.68 0.56 

Ncuts 0.62 0.66 0.43 0.64 0.68 0.45 

Detexturing-YIQ-SRM 0.6 0.64 0.44 0.63 0.65 0.48 

YIQ-SRM 0.6 0.63 0.36 0.63 0.66 0.38 

RGB-SRM 0.6 0.63 0.34 0.62 0.65 0.36 

Canny-owt-ucm 0.58 0.63 0.58 0.6 0.64 0.58 

Canny 0.58 0.62 0.58 0.58 0.63 0.58 

Felz-Hutt 0.58 0.59 0.53 0.61 0.64 0.56 

SWA 0.56 0.59 0.54 NA NA NA 

Detexturing-LUV-Simplicity 0.54 0.57 0.11 0.55 0.58 0.14 

LUV-Simplicity 0.52 0.56 0.11 0.54 0.57 0.12 
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Table 4.2 and Table 4.3 list the 3 region benchmarks, SC, PRI and VI when applying different 

segmentation methods on BSDS300 and BSDS500 databases, respectively. In measuring the three 

values, they are averaged over each segmentation in the output with respect to the ground truth. 

For PRI, there are segments that arguably present with the best possible accuracy, i.e., a value 

close to 1. And similarly for VI, few segments might present the least possible differences in 

clustering, i.e., a value close to 0. Since the best PRI or the best VI do not reflect the actual 

performance of the algorithm, they are not included in the comparison tables as suggested in the 

literature as well. 

 

Table 4.2 lists region benchmark measures computed from the segmentation results obtained by 

applying different segmentation methods on the databases BSDS300. The first row in the table 

lists the results for the best segmentation method and the last row in the table lists the results for 

the worst segmentation method.  It clearly shows that the proposed detexturing-YIQ-SRM 

approach respectively improves the YIQ-SRM by 2%, 3.5%, and 3% for the three measures of SC 

(ODS, OIS, and the best SC, respectively), by 0% and 0% for the two measures of PRI (ODS and OIS, 

respectively), and by 2% and 4% for the two measures of VI (ODS and OIS, respectively).  It also 

improves the original RGB-SRM by 4%, 5%, and 6% for the three measures of SC (ODS, OIS, and 

the best SC, respectively), by 0% and 1.2% for the two measures of PRI (ODS and OIS, respectively), 

and by 7% and 8% for the two measures of VI (ODS and OIS, respectively).  Similarly, the proposed 

detexturing-LUV-SIMPLIcity respectively improves the original LUV-SIMPLIcity by 4%, 4%, and 0% 

for the three measures of SC (ODS, OIS, and the best SC, respectively), by 0% and 0% for the two 

measures of PRI (ODS and OIS, respectively), and by 2% and 5% for the two measures of VI (ODS 

and OIS, respectively).  
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Table 4.2: Region benchmarks for the dataset BSDS300. 

 

Table 4.3 lists region benchmark measures computed from the segmentation results obtained by 

applying different segmentation methods on the databases BSDS500. The first row in the table 

lists the results for the best segmentation method and the last row in the table lists the results for 

the worst segmentation method.  It clearly shows that the proposed detexturing-YIQ-SRM 

approach respectively improves the YIQ-SRM by 4%, 3.5%, and 4.5% for the three measures of SC 

(ODS, OIS, and the best SC, respectively), by 4% and 1% for the two measures of PRI (ODS and OIS, 

respectively), and by 1% and 4% for the two measures of VI (ODS and OIS, respectively).  It also 

improves the original RGB-SRM by 10%, 9%, and 10% for the three measures of SC (ODS, OIS, and 

the best SC, respectively), by 2% and 3% for the two measures of PRI (ODS and OIS, respectively), 

and by 8% and 11% for the two measures of VI (ODS and OIS, respectively).  Similarly, the 

proposed detexturing-LUV-SIMPLIcity respectively improves the original LUV-SIMPLIcity by 2% 

      BSDS300       

Algorithm SC PRI VI 

 ODS OIS Best ODS OIS ODS OIS 

Human 0.73 0.73 NA 0.87 0.87 1.16 1.16 

gPb-owt-ucm 0.59 0.65 0.75 0.81 0.85 1.65 1.47 

Mean Shift 0.54 0.58 0.66 0.78 0.80 1.83 1.63 

Detexturing-YIQ-SRM 0.52 0.59 0.68 0.75 0.82 1.89 1.68 

Felz-Hutt 0.51 0.58 0.68 0.77 0.82 2.15 1.79 

YIQ-SRM 0.51 0.57 0.66 0.76 0.82 1.93 1.75 

RGB-SRM 0.50 0.56 0.64 0.75 0.81 2.02 1.82 

Detexturing-LUV-Simplicity 0.50 0.54 0.55 0.74 0.76 2.26 2.07 

Canny-owt-ucm 0.48 0.56 0.66 0.77 0.82 2.11 1.81 

SWA 0.47 0.55 0.66 0.75 0.80 2.06 1.75 

Ncuts 0.44 0.53 0.66 0.75 0.79 2.18 1.84 

LUV-Simplicity 0.48 0.52 0.55 0.74 0.76 2.30 2.17 

Total Var. 0.57 NA NA 0.78 NA 1.81 NA 

T+B Encode 0.54 NA NA 0.78 NA 1.86 NA 

Av. Diss. 0.47 NA NA 0.76 NA 2.62 NA 

Chan Vese 0.49 NA NA 0.75 NA 2.54 NA 
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and 3.4% for the two measures of VI (ODS and OIS, respectively). In dataset BSDS500 under region 

benchmarks, we can see that the proposed detexturing-LUV-SIMPLIcity respectively improves the 

original LUV-SIMPLIcity predominantly in the VI measures compared to SC or PRI. This could be 

attributed to the fact the L component of the LUV color space, which the input image is 

transformed into, is not really dependent on textures for accurate segmentation. But it also 

indicates that the de-texturing definitely improves upon the placement of the segments with 

respect to the ground truth, which can be observed in the reduction of the VI (ODS and OIS) 

measure. 

Table 4.3: Region benchmarks for the dataset BSDS500. 

 

Figure 4.4 shows precision-recall curves of the proposed De-Texturing-YIQ-SRM method and the 

original RGB-SRM method for the datasets BSD300 and BSD500, respectively. The green 

background curves represent the graph for fixed F-measure values. The green dot is the F-

measured derived from segmentations made by multiple human subjects.  It clearly shows the 

proposed Detexturing-YIQ-SRM achieves better segmentation results than the original RGB-SRM 

   BSDS500    

Algorithm SC PRI VI 

 ODS OIS Best ODS OIS ODS OIS 

Human 0.72 0.72 NA 0.88 0.88 1.17 1.17 

gPb-owt-ucm 0.59 0.65 0.74 0.83 0.86 1.69 1.48 

Mean Shift 0.54 0.58 0.66 0.79 0.81 1.85 1.64 

Detexturing-YIQ-SRM 0.53 0.59 0.69 0.79 0.83 1.91 1.69 

Felz-Hutt 0.52 0.57 0.69 0.8 0.82 2.21 1.87 

YIQ-SRM 0.51 0.57 0.66 0.76 0.82 1.93 1.75 

Detexturing-LUV-Simplicity 0.5 0.53 0.56 0.77 0.78 2.32 2.07 

LUV-Simplicity 0.5 0.53 0.56 0.77 0.78 2.36 2.14 

Canny-owt-ucm 0.49 0.55 0.66 0.79 0.83 2.19 1.89 

RGB-SRM 0.48 0.54 0.63 0.77 0.81 2.08 1.88 

Ncuts 0.45 0.53 0.67 0.78 0.8 2.23 1.89 
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on both databases since its precision-recall curves cover larger areas than the precision-recall 

curve of the original RGB-SRM.   Figure 4.5 shows precision-recall curves of De-Texturing-LUV-

SIMPLIcity and LUV-SIMPLIcity for the datasets BSD300 and BSD500, respectively. It clearly shows 

the proposed Detexturing-LUV-SIMPLIcity achieves better segmentation results than the original 

LUV-SIMPLIcity on both databases since its precision-recall curves cover larger areas than the 

precision-recall curves of the original LUV-SIMPLIcity.   However, the area under both the curves 

in both the cases is small because we only considered k-values of 3 to 5. Any higher k values will 

result in finer segments. 
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Figure 4.4: Comparison of precision and recall curves for the proposed De-Textured-YIQ-SRM 
method and the RGB-SRM method for datasets BSD300 and BSD500, respectively. 

 

 

 

 

 

 

 

 

Figure 4.5: Comparison of precision and recall curves for the proposed De-Textured-LUV-
SIMPLIcity method and the LUV-SIMPLIcity method for datasets BSD300 and BSD500, 
respectively. 
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5. Conclusion 

While SRM and Simplicity-segmentation are capable standalone algorithms, they still have a lot 

more room to improve. SRM specifically does not make use of other color spaces. In our method, 

we show that SRM performs its best while using the YIQ color space of the image as input. 

Irrespective of the color space, the algorithms produce better results when applying the 

detexturing algorithm on the inputs to obtain the pre-processed inputs. De-texturing is initially 

introduced as a simple denoising technique.  In our study, we employed the detexturing algorithm 

as the pre-processing step to obtain the pre-processed inputs for the segmentation algorithms.  

Our extensive experimental results on the Berkeley Segmentation Dataset clearly show that the 

segmentation results obtained with detexturing are better than the segmentation results 

obtained without detexturing in term of Segmentation Covering, Variation of Information, 

Probability Rand Index, and F-Measures under any of the three applicable conditions such as ODS, 

OIS, and best, when employing either SRM or Simplicity-segmentation as the segmentation 

method.  
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