Utah State University DigitalCommons@USU

All ECSTATIC Materials

ECSTATIC Repository

Fall 2008

Systems Analysis of Resources Development - California State University, Sacramento

Kaveh Madani California State University, Sacramento, k.madani@imperial.ac.uk

Follow this and additional works at: https://digitalcommons.usu.edu/ecstatic_all

Part of the Civil Engineering Commons

Recommended Citation

Madani, Kaveh, "Systems Analysis of Resources Development - California State University, Sacramento" (2008). *All ECSTATIC Materials*. Paper 43. https://digitalcommons.usu.edu/ecstatic_all/43

This Course Syllabus is brought to you for free and open access by the ECSTATIC Repository at DigitalCommons@USU. It has been accepted for inclusion in All ECSTATIC Materials by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

CE250	Systems Analysis of Resources Developmen	t Fall 2008
MW 6:00 pm - 7:15 pm		Instructor: Kaveh Madani
Location: Riverside Hall	room 1006	Email: <u>kmadani@csus.edu</u>

OBJECTIVES

The course presents a variety of systems analysis techniques that can be used for resource planning and management in the civil engineering field. Simulation and optimization techniques (or mathematical programming) are emphasized as they apply to civil engineering problem solving.

By the end of the class, students should be able to:

- Understand the meanings of "Systems Theory", "Systems Analysis", and "Systems Behavior";
- Diagnose the applicability and limitation of different systems analysis approaches in solving various resource management problems;
- Identify and formulate the problem using different simulation and optimization (Operations Research) methods including System Dynamics, Game Theory (Conflict Resolution), Linear Programming, Dynamic Programming, and Multi-Criteria Decision Making.
- Solve basic linear programming optimization using Excel Solver, LINDO, and LINGO.

PREREQUISITES

Graduate student standing or permission from the instructor is required to take CE250.

COURSE TEXT

There is no required text for this course. Handouts will be distributed.

Recommended texts:

Hillier and Lieberman, Introduction to Operations Research, 6th or 7th edition.

Loucks and Van Beek, Water Resources Systems Planning and Management (you can ask the instructor for an electronic copy of this book or purchase the hard copy) Simonovic, Managing Water Resources (under publication, you can order the hard copy at http://www.earthcom.com/2tabid=4377. Some chapters of this book will be provided by the

<u>http://www.earthscan.co.uk/?tabid=4377</u>. Some chapters of this book will be provided by the instructor with permission from the author)

GRADING POLICY

The class will consist of 10 homework assignments, 1 paper review, 1 term project and 1 examination. The grading policy is shown below.

Homework:	35%
Paper Review:	5%
Midterm:	25%
Final Project:	25%
Participation:	10%

EXAMINATION

The midterm is scheduled for Wednesday, November 12, 2008.

Final Project

The Final Project is due on December 22, 2008.

COLLABORATION

Please abide by the honor system for all work. Students may work together on homework assignments, unless otherwise noted. Each student must submit his/her own work. Please write the names of the students with which you collaborated on your homework assignment.

At the instructor's discretion, electronic copies of the homework may be required in addition to the paper hard copy.

All exams must be done individually.

Students are expected to follow the Academic Honesty policy and procedures. For more details see: <u>http://www.csuc.edu/umanual/student/UMA00150.htm</u>

COURSE SOFTWARE REQUIREMENTS

Students must have access to a Windows computer with Microsoft Excel, Vensim, GMCR II, LINDO, and LINGO. Trial versions of LINDO and LINGO are available at <u>http://lindo.com/index.php?option=com_content&view=article&id=34&Itemid=15</u>. Vensim can be downloaded at <u>http://www.vensim.com/freedownload.html</u> GMCR will be provided to students.

CONTACT INFORMATION

Office hours will be held after class.

Outside of class and office hours, email is the preferred method of contact. Please include 'CE250' in the subject line.

TENTATIVE SYLLABUS (Subject to Change)

Date		Торіс	
Sept.	3	System, Systems Analysis, Models	
	8 10	Simulation and Optimization, Problem Formulation System Dynamics	HW#1 Due
	15 17	System Dynamics, Cont. VENSIM & Simulation in Excel (computer lab)	
	22 24	Optimizaion (Objectives, Constraints, & Calculus), Linear/Non-Linear Linear Programming, Network Flow Programming, Graphical Solution & Math Programming	HW#2 Due
Oct.	29 1	Simplex Method Lagrange Multipliers & Sensitivity Analysis	HW#3 Due
6 8 13 15 20 22 27 29	6 8	Duality Non-Linear Programming	HW#4 Due
	13 15	Columbus Day LINDO and Excel Solver (computer lab)	HW#5 Due
	20 22	Dynamic Programming Dynamic Programming, Cont.	HW#6 Due
	27 29	Student Presentations (Paper Discussion) Student Presentations (Paper Discussion)	HW#7 Due
Nov.	3	Application of Systems Analysis in Research: Kaveh tells you about his PhD dissertation (Climate Change Effects on Hydropower Generation in California) Multi-Criteria Decision Making	Paper Review Due
	5		
	10 12	MIDTERM	HW#8 Due
1 19 24	17 19	Guest Lecturer: TBA/ Application of Systems Analysis in Industry Guest Lecturer: TBA/ Application of Systems Analysis in Large Scale Water Resources Modeling	
	24	Conflict Resolution/ Game Theory	Draft final project report*
	26	Conflict Resolution/ Game Theory, Contd.	duc
Dec.	1 3	GMCR II (Computer Lab) Guest Lecturer: TBA/ How to Use Game Theory in International Resources Conflict Resolution	HW#9 due
	8 10	Student Presentations (Final Projects) Student Presentations (Final Projects)	HW#10 Due

*Final project report is due on Dec. 22