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Abstract

Background: Although the dimension of the entire genome can be extremely large, only a parsimonious set of
influential SNPs are correlated with a particular complex trait and are important to the prediction of the trait. Efficiently
and accurately selecting these influential SNPs from millions of candidates is in high demand, but poses challenges.
We propose a backward elimination iterative distance correlation (BE-IDC) procedure to select the smallest subset of
SNPs that guarantees sufficient prediction accuracy, while also solving the unclear threshold issue for traditional
feature screening approaches.

Results: Verified through six simulations, the adaptive threshold estimated by the BE-IDC performed uniformly better
than fixed threshold methods that have been used in the current literature. We also applied BE-IDC to an Arabidopsis
thaliana genome-wide data. Out of 216,130 SNPs, BE-IDC selected four influential SNPs, and confirmed the same
FRIGIDA gene that was reported by two other traditional methods.

Conclusions: BE-IDC accommodates both the prediction accuracy and the computational speed that are highly
demanded in the genomic selection.
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Background
Genomic selection is an important task for increasing the
efficiency of plant breeding, disease diagnosis, person-
alized medicine, and genotyping chip design. Genomic
selection is improved by identifying a small subset of
influential single nucleotide polymorphisms (SNPs) from
high-dimensional genetic information to efficiently pre-
dict individual’s phenotype [1–5]. The rapid develop-
ments of high-throughput genomic technologies, such as
whole genome genotyping, next generation sequencing,
gene expression microarray, and RNA-seq, have dramati-
cally boosted the landscape and power of genomic selec-
tion [6, 7], while nevertheless bringing unprecedented
challenges for statistical modeling.
Feature screening has been receiving extensive attention

as a powerful approach to handle ultrahigh dimensional
data, which is defined as p = exp(nζ ), for some ζ > 0.
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Here p is the number of features and n is the number
of observations [8–19]. Specifically, Li et al. developed
a distance correlation based sure independence feature
screening (DC-SIS) strategy that defines an association
strength measure for each feature based on its distance
correlation with the phenotype [16]. The idea of DC-SIS is
to theoretically satisfies the sure screening property, ranks
the features from the most important to the least impor-
tant by decreasing distance correlation values, and filters
the majority of noise with low values of the defined asso-
ciation strength measure. A very attractive property of
DC-SIS is that it effectively captures both the linear and
nonlinear association between the feature and the pheno-
type, and feasible for binary, continuous, and categorical
features and phenotype, without assuming any specific
model structure, distribution, or data type. In addition,
DC-SIS outperforms the traditional sure independence
screening (SIS) [9] and sure independent ranking and
screening (SIRS) approaches [13]. Therefore, DC-SIS has
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great potential in serving genomic selection and recogniz-
ing the truly influential SNPs from millions of candidates
covering the entire genome.
However, a limitation that restricts the application of

DC-SIS and other feature screening approaches is the lack
of a clear threshold determination to separate influential
features from noise, which is crucial in genomic selec-
tion. Frequently, an arbitrary decision as to the number of
genes to retain is made. For example, some papers used
sheer empirical experience to select the 50 or 150 high-
est ranked genes [20–22]. Other traditional approaches
selected the SNPs passing the threshold of −log(0.05/p)
[23–26]. However, this approach requires that a p-value is
accessible, and hence annuls the possibility of applying any
approaches that do not compute a p-value. Current fea-
ture screening literature keeps the top d features having
the highest rankings, where d is often computed from an
integral multiplier of [n/log(n)] (e.g., d1 =[n/log(n)] , d2 =
2[n/log(n)], or d3 = 3[n/log(n)] is suggested) [9, 16,
17, 27]. These options may work well for some circum-
stances, but several drawbacks also present themselves:
1) It is still not clear what d exactly should be. For a
real data analysis, we have no any idea whether d1, d2,
d3, or an even larger value should be used. 2) A for-
mula such as [n/log(n)] is only restricted by the sample
size, but unreasonably neglect two indispensable consid-
erations: the number of features, and the signal-to-noise
ratio. Assuming the sample size is fixed, it is unreasonable
to set the same threshold for one dataset with 100 features
and another dataset with 100,000 features. For a dataset
with a large number of features, but a weak signal-to-noise
ratio, the threshold may be relatively large, whereas for a
much easier scenario, the threshold may be small. Kong et
al. recognized these limitations and proposed a theorem
to adaptively determine the threshold for DC-SIS, pio-
neering threshold determination research [28]. However,
they assumed that noise SNP was purely independent of
the influential SNPs and the phenotype, which may not be
true in the genome-wide datasets.
In particular, determining a threshold that separates

influential SNPs from noise SNPs is a necessity in genomic
selection. But method for determining the threshold is
also limited in the genomic selection literature. Fre-
quently, an arbitrary decision as to the number of genes
to retain was made. For example, some papers used
sheer empirical experience to select the 50 or 150 high-
est ranked genes. Other traditional approaches selected
the SNPs passing the threshold of −log(0.05/p). How-
ever, this approach requires that a p-value is accessible,
and hence annuls the possibility of applying many other
feature screening approaches which do not compute a
p-value.
This article extends the work of Zhong et al. [27],

and proposes a backward elimination iterative distance

correlation (BE-IDC) procedure that adaptively and auto-
matically determines an optimal threshold for genomic
selection while guaranteeing prediction accuracy. The
smoothly clipped absolute deviation (SCAD) penalized
regression model fitting the bootstrap samples is used
to compute the mean square prediction error (MSPE). A
certain percentage of SNPs (controlled by the drop rate)
are backward eliminated after iterative DC-SIS ranks the
SNPs from the most important to the least important,
and the point at which the minimum MSPE is attained is
determined as the final threshold. One aim is to optimize
the threshold, which is not trivial. If the standard is too
stringent and the number of SNPs selected is too small,
we may fail to cover all influential SNPs, and hence the
power will be reduced; whereas if the rule is too liberal
and the number of SNPs selected is too large, too much
of the noise will be mistreated as influential features, and
hence the false discovery rate will be inflated [29]. Another
aim is to obtain the smallest possible set of SNPs that
can still achieve acceptable prediction accuracy. The pro-
posed BE-IDC realizes these two aims, serves as a good
genomic selection procedure for the ultrahigh dimen-
sional genome-wide dataset, and overcomes the limitation
of previous feature screening approaches.and boosts the
potential of feature screening approaches to bring a new
horizon for genomic selection
We explored the performances of the BE-IDC approach

using six different simulation settings and one real
genome-wide dataset. We also compared the results of
the adaptive threshold estimated by BE-IDC with those
found by the fixed thresholds suggested by current feature
screening literature [9, 16, 17, 27]. The average thresholds
estimated by BE-IDC are uniformly lower than the fixed
thresholds while yet achieving 100% power. It is worth
mention that the BE-IDC uses an average threshold as
small as 5.54 to achieve a 100% power for Example 1,
which is only 7% of the fixed threshold, d = 2[n/log(n)]=
74, used by the current literature [9, 27]. In addition, BE-
IDC can flexibly and automatically adjust the threshold
when the dataset has harder conditions (see Example 3
and Additional file 1: Supplementary example 1). From
these six simulations, we conclude that BE-IDC shows
uniformly excellent performances even when the signal-
to-noise ratio is low (e.g., only four influential features
are truly associated with the phenotype, and 4996 fea-
tures are noise), and when the number of features is much
larger than the number of observations (e.g., p = 5, 000
and n = 200). We also demonstrate that the BE-IDC
approach selects a very small set of SNPs for Arabidopsis
thaliana data. Here, only four SNPs are selected from a
pool of 216,130 SNPs covering the entire genome, and the
FRIGIDA gene, reported to be highly associated with the
FRIGIDA expression trait being analyzed [23], is success-
fully picked out.
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Methods
Iterative DC-SIS
Szekely et al. defined an association strength measure for
each feature based on its distance correlation (Dcorr) with
the phenotype and showed that the Dcorr of two random
vectors equals zero if and only if the two random vectors
are independent [30]. Li et al. proposed the DC-SIS fea-
ture screening approach, ranked the SNPs from the most
important to the least important by decreasing the values
of Dcorr, and proved the sure screening theorem to the-
oretically ensure that DC-SIS will not miss any influential
SNPs if the sample size is large enough [16].
Let y be the analyzed phenotype. Let Xj be the geno-

type of each SNP, j = 1, . . . , p. For each biallelic locus,
the three possible genotypes can be coded as 0 (for aa), 1
(for Aa), and 2 (for AA). The distance covariance between
the phenotype and each SNP is defined as

dcov2(y,Xj) =
∫ ∥∥φy,Xj(t, s) − φy(t)φXj(s)

∥∥2
× w(t, s)dtds,

(1)

where φy(t) and φXj(s) are the respective characteristic
functions of y and Xj, and φy,Xj(t, s) is the joint character-
istic function of (y,Xj), and

w(t, s) = {
π2 ‖t‖2 ‖s‖2}−1 ,

where || · || stands for the Euclidean norm. Then the Dcorr
between the phenotype and each SNP is defined as

Dcorr
(
y,Xj

) = dcov
(
y,Xj

)
√
dcov (y, y) dcov

(
Xj,Xj

) . (2)

Szekely et al. gave a numerically easier estimator of
d̂cov2(y,Xj) as

d̂cov2
(
y,Xj

) = Ŝ1 + Ŝ2 − 2Ŝ3. (3)

Let yi1, yi2, Xi1,j, and Xi2,j denote the ith1 and ith2 sample
observations for y and Xj, respectively. Then

Ŝ1 = 1
n2

n∑
i1=1

n∑
i2=1

∥∥yi1 − yi2
∥∥ ∥∥Xi1,j − Xi2,j

∥∥
p

Ŝ2 = 1
n2

n∑
i1=1

n∑
i2=1

∥∥yi1 − yi2
∥∥ 1

n2
n∑

i1=1

n∑
i2=1

∥∥Xi1,j − Xi2,j
∥∥
p ,

Ŝ3 = 1
n3

n∑
i1=1

n∑
i2=1

n∑
i3=1

∥∥yi1 − yi3
∥∥ ∥∥Xi2,j − Xi3,j

∥∥
p .

(4)

Finally, the point estimator ̂Dcorr(y,Xj) can be esti-
mated by Eqs. (2), (3) and (4). We are then able to rank
all SNPs, from the most influential to the least influential,
by decreasing values of ̂Dcorr(y,Xj), j = 1, . . . , p [16]. Let
Xp = {X∗

k , k = 1, . . . , p}, be the reordered SNPs, where

the asterisk is used to differentiate the top kth SNP after
selection by DC-SIS from the originally observed kth SNP.
While DC-SIS is a very powerful feature selection

approach for ultrahigh dimensional data, it may neglect
some important SNPs that are marginally not relevant,
but jointly associated with the phenotype; or, it may rank
highly some noise SNPs that are spuriously correlated
with the phenotype due to their strong linkage disequi-
librium (LD) with other important SNPs. To overcome
these shortcomings, Zhong et al. introduced an iterative
distance correlation feature screening approach (IDC-SIS)
[27]. Themain idea of IDC-SIS is to iteratively regress uns-
elected SNPs on selected SNPs, regain information from
the residuals, and effectively break down the effects of
correlation structure among SNPs.
DC-SIS ranks all SNPs and achieves the set Xp in a

single step, while IDC-SIS builds upXp gradually with sev-
eral steps, i.e. Xp = Xp1

⋃
Xp2

⋃
. . .

⋃
Xpm, with p =

p1 + p2 + . . . + pm, where Xpi stands for the set of SNPs
selected at the ith iterative step, pi denotes the size of each
set Xpi; i = 1, . . . ,m, and m is the number of iterative
steps. Zhong et al. claimed that a small number of itera-
tions is adequate to guarantee good performance and they
suggested m = 2, p1 = 5, p2 = d − 5, and d = 2[ n/logn]
[27]. Note that this article aims to adaptively determine d
without assuming it is given, hence we set m = 3, p1 =
3, p2 = 3, and p3 = p − 6 to rank all features. This setting
is empirically proven to work well in all simulations.
Thedetails of IDC-SIS can be summarized as follows [27]:

• Step 1: Use DC-SIS for y and X and select the first p1
features into Xp (i.e. Xp = Xp1).

• Step 2: Define Xr = {In − Xp(XT
pXp)−1XT

p }XC
p ,

where XC
p is the complement set of Xp. Use DC-SIS

for y and Xr and select the second p2 features into Xp
(i.e. Xp = Xp1

⋃
Xp2).

• Step 3: Repeat Step 2 for m times until all p features
are ranked, i.e., Xp = Xp1

⋃
Xp2

⋃
. . .

⋃
Xpm, with

p = p1 + p2 + . . . + pm. Note that the computational
cost will be shockingly large if we repeat step 2 for too
many times for a large number of SNPs. Additionally,
the theoretical sure screening property may not
continue to be true if too many iterations are applied.
To balance the computational cost and accuracy, we
only selected the first one hundred SNPs by IDC-SIS
and then applied DC-SIS for all remaining SNPs. This
combination worked well after verifying by quite a
few empirical studies (see simulation section).

Backward elimination
Let d denote the threshold that we need to determine.
Let XC = {X∗

k , k = 1, . . . , d} be the subset of influen-
tial SNPs, i.e., the conditional distribution function of y
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depends on Xmerely through XC , and let XN = {X∗
k , k =

d + 1, . . . , p} be the set of noise SNPs, i.e., the comple-
ment set ofXC . The goal of genomic selection is to remove
XN and pick the subset XC . DC-SIS is able to rank impor-
tant features before noise, but a genomic selection process
cannot be finalized if d is not determined. The current
feature screening literature suggests using a fixed thresh-
old of d = [n/logn] ([ ·] is the nearest integer function)
[16, 27]. But again, this has several limitations as discussed
in the Introduction section.
Starting from the biggest pool, Xp, which contained all

reordered SNPs as ranked by IDC-SIS, we discarded the
noise SNPs by a backward elimination process through
several iterations. For each iteration, we computed mean
square prediction error based on its current pool, threw
away a certain drop rate of SNPs from the bottom of the
rank (i.e., those having the smallest Dcorr values), then
moved to the next iteration step. The backward elim-
ination considered all SNPs at the initial stage of the
modeling to attenuate possible modeling biases.

SCAD penalized regression model
To predict the phenotypic values for the test data
while accommodating the ultrahigh dimensionality of the
genome-wide data (in particular for the first couple of iter-
ations of the backward elimination process), we applied
a penalized regression model with the non-concave
SCAD penalty function [31]. Unlike the traditional regres-
sion model, the penalized least squares estimators were
obtained by minimizing

1
2
(y − Xβ)T (y − Xβ) + n

p∑
j=1

pλ(|βj|),

where the SCAD penalty function was given as

pλ(|βj|) =

⎧⎪⎨
⎪⎩

λ|βj|, |βj| ≤ λ;
−|βj|2−2αλ|βj|+λ2

2(α−1) , λ < |βj| ≤ αλ;
(α + 1)λ2/2, |βj| > αλ.

Two unknown tuning parameters λ and α are contained
in the penalty function. As suggested by Fan et al. [31], α =
3.7 is a good choice for various problems, and λ is selected
by cross validation. This penalty function corresponds
to a quadratic spline function with knots at λ and αλ.
Besides its capability of handling ultrahigh dimensional
genome-wide data, the SCAD penalty function satisfied
three properties that are important for genomic selection:
It is singular at the origin to produce sparse solutions and
shrink unimportant parameters to zero to reduce model
complexity; the resulting estimator is continuous, which
retains stability in model prediction; and it is bounded by
a constant to produce nearly unbiased estimates for large
coefficients to avoid unnecessary modeling bias [31].

Scheme of BE-IDC
The details of BE-IDC are summarized as follows:

• Step 1: Rank all SNPs by IDC-SIS, and obtain the
reordered set (i.e., Xp), where p is expected to be
ultrahigh.

• Step 2: Start from the biggest pool (size of p), Xp, and
compute the MSPE for the corresponding model.

• Step 3: Remove a certain drop rate of SNPs having
the lowest Dcorr values, based on the ranks obtained
from Step 1. Then compute the MSPE for the model
corresponding to the current pool. For more details
about the drop rate, please see the simulation section.

• Step 4: Repeat Step 3 until the smallest pool (size of 1
at minimum) is reached.

• Step 5: Draw a plot of the MSPE versus the number
of SNPs and locate the model size for which the
MSPE is minimized, as model size decreases from p
to 1. Finally, the selected influential SNP set (i.e., XC)
and the adaptive threshold (i.e., d̂) can be
simultaneously determined from this optimal spot.
The noise set XN is already thrown away during the
iterations of Steps 3 and 4.

The computation of theMSPEmentioned in above steps
2 and 3 is done as follows: Draw 1000 bootstrap sam-
ples with replacement, divide each bootstrap sample into
training data (the observations being drawn) and test data
(the observations not being drawn, also called out of bag
(OOB) observations), fit the SCAD penalized regression
model using the training data, predict for the test data,
then compute themean square prediction errors for all the
bootstrap samples.
Following this BE-IDC scheme, the prediction accuracy

and reproducibility of results on new datasets should be
guaranteed because the minimum mean square predic-
tion error is used. However, if a very small threshold is
preferred, we suggest using the smallest number of SNPs
whose MSPE is within 1 standard error (1 s.e. rule) above
the minimum MSPE. In this case, the number of SNPs
may be smaller than d̂, and the prediction error a little
larger than the minimum MSPE value but the MSPE will
still lie within an acceptable range. However, it is expected
that the power may decrease and influential SNPs may be
missed if this 1 s.e. rule is used. Therefore, unless a very
small number of SNPs is preferred for reason of saving
experimental cost in breeding or disease diagnosis appli-
cations, we suggest taking the threshold to be that for
which the MSPE is minimized.

Results
Simulation studies
The performances of DC-SIS and IDC-SIS have been
investigated by Li et al. [16] and Zhong et al. [27] using
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a fixed threshold. In this section we examined the perfor-
mance of the adaptive threshold estimated from the new
approach BE-IDC through six simulation studies. Addi-
tionally, we compared the performance of the adaptive
threshold with the fixed threshold d̂ = 2[n/log(n)]= 74
used by Li et al. [16] and Zhong et al. [27]. To make the
comparisons fair, the first two examples were imitated
from the current literature [9, 27, 32]. In the third exam-
ple, we increased the level of rigor. As with the first two
simulations, we also used the same criteria that have been
widely used to assess the power of a method in current
feature screening literature [16, 17, 27]:

• Average Threshold ¯̂d: the average value of the
adaptive thresholds estimated from the 100
simulation replicates;

• Strict Power Pa: the proportion of the 100 replicates
for which all truly influential features are
simultaneously selected by d̂;

• Individual Power Pj: the proportion of the 100
replicates for which each individual influential
feature is selected by d̂ respectively.

We simulated 100 replicate datasets consisting of n =
200 observations and p = 5, 000 features for Example 1-
2 and Additional file 1: Supplementary example 1-2. We
simulated 100 replicate datasets consisting of n = 200
observations and p = 2, 000 features for Example 3 and
Additional file 1: Supplementary example 3.

Example 1
Similar to Zhong et al. [9, 27], we simulated data for
Example 1 from the model

y = 5X1 + 5X2 + 5X3 − 15√ρX4 + ε, (5)

where the features were generated from a normal dis-
tribution with zero mean, unit variance, and covariance
structure following AR(1) design with auto correlation
parameter ρ = 0.5. Model (5) actually sets the first
four features as the influential ones, and all remaining
4,996 features as noise. The white noise was generated
from the standard normal distribution and the continuous
phenotype y was generated fromModel (5) accordingly.
Table 1 summarizes the simulation results of average

thresholds ¯̂d, strict power Pa, and individual power Pj, j =

1, . . . , 4, achieved by fixed threshold d = 2[ n/log(n)] and
adaptive threshold, respectively. From Table 1, we can see
that BE-IDC achieved 100% strict power using only 5.54
features on average after searching 5,000 features for 100
replications, while the fixed threshold used a threshold
of 74, which is 13 times larger than the result of BE-IDC
to achieve the same power. Simulation further indicated
that BE-IDC only made an average of 1.54 spurious sig-
nal, but that the fixed threshold made an average of 70
spurious signals for 100 simulations (akin to a type I error
rate). Note that X4 was jointly important but marginally
independent to the phenotype y, so it trapped the DC-
SIS (P4 = 0%) but was successfully detected by BE-IDC
using a very small model size (P4 = 100%). In addition,
we assessed the average of 100 mean square prediction
errors using the 5-fold cross validation for these three
methods, respectively. The BE-IDC achieved the best pre-
diction accuracy (see Table 1). Given the fact that IDC-SIS
already beat four other feature screening approaches [27],
to wit, LASSO [33], sure independence screening (SIS) [9],
iterative sure independence screening (ISIS) [9], and DC-
SIS [16], this improvement is agreeable. The strict power
of BE-DC (i.e., backward elimination distance correlation
without iteration) is zero even using 9 times more features
because X4 is purposely designed to be trapped by noise.
This example illustrates that the benefits of BE-IDC over
BE-DC.
We also tested the sensitivity of different drop rates

(i.e., the percentage of the noise SNPs discarded at each
iteration, mentioned in Step 3 of the BE-IDC scheme)
using this simulation study and empirically verified that
the results are quite stable when drop rate varies dramati-
cally from 10 to 50% (see Table 2). The thresholds, d̂, have
only negligible differences according to the five different
resolutions of the drop rates. Throughout this article, we
used a drop rate of 50% to save the computational cost and
found that such a big drop rate is able to achieve high pow-
ers and small thresholds. But if a high resolution is needed
and computational cost is not a concern, a smaller drop
rate, say 10%, is suggested.

Example 2
We simulated SNP data for Example 2 following the pro-
cedure of Li et al. [32]. Firstly, uij was generated from a
standard normal distribution with correlation structure of

Table 1 Strict and individual statistical power for methods using fixed or adaptive thresholds for Example 1

Methods Average d̂ Pa P1 P2 P3 P4 Average MSPE

DC-SIS (d = 74) 74 0% 100% 100% 100% 0% 6.91

IDC-SIS (d = 74) 74 100% 100% 100% 100% 100% 1.82

BE-IDC 5.54 100% 100% 100% 100% 100% 1.04
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Table 2 Strict power and average threshold for BE-IDC approach
under different drop rates

Drop Rate Average d̂ Pa

50% 5.54 100%

40% 5.45 100%

30% 5.34 100%

20% 5.39 100%

10% 5.33 100%

ρ = cov(uij,uik) = 0.1. To simulate SNPs with equal allele
frequencies, we set

Xij =
⎧⎨
⎩
AA (coded as 2), uij > c
Aa (coded as 1), −c ≤ uij ≤ c
aa (coded as 0), uij < −c,

where c is the third quartile of a standard normal distri-
bution. Secondly, the additive (Xa

ij ) and dominant feature
(Xd

ij ) of each SNP were coded as follows,

Xa
ij =

⎧⎨
⎩
1, if Xij = AA
0, if Xij = Aa
−1, if Xij = aa,

Xd
ij =

{
1, if Xij = Aa
0, if Xij = AA or aa.

Thirdly, we let the set j ∈ {100, 200, 300, 400, 500} con-
tains the indices of truly influential SNPs, and the additive
(βa

j ) and dominant coefficients (βd
j ) of the influential

SNPs are given by Table 3.
Finally, the phenotype y was generated following Li

et al.’s design [32],

yi =
∑
j

βa
j X

a
ij +

∑
j

βd
j X

d
ij + ε, (6)

where ε ∼ N(0, 1). Note that Xij is the feature that we
analyzed, therefore the Example 2 connected y and Xij
indirectly by way of Eq. (6).
As can been seen from Table 4, BE-IDC achieved the

smallest average threshold, ¯̂d = 15.04, which was about

Table 3 Genetic effects of 5 assumed SNPs in Example 2

Position Additive (βa
j ) Dominant (βd

j )

100 1.2 0.8

200 1.2 0.4

300 1.2 0.8

400 0.8 1.2

500 1.0 1.2

1/5 of the fixed threshold. In addition, BE-IDC had the
minimumMSPE of 1.92.

Example 3
To increase the rigor of the above two examples, we 1)
weakened the signal of the influential features; and 2)
increased the number of influential features. The SNPs
were generated similar as in Example 2, except the corre-
lation structure between SNPs was a little more complex,
cov(uij,uik) = 0.2|j−k|; j, k = 1, . . . , p. We fix the indices of
ten truly influential SNPs from j ∈ {100, 200, ..., 1000}. The
phenotype y and the truly influential SNPs were directly
connected using a similar model as Example 1, but we
took the indicator function to accommodate the categor-
ical features, yi = ∑

j(βjI(Xij = 1) + 2βjI(Xij = 2)) + ε,
where ε ∼ N(0, 1). The coefficient βj was randomly gen-
erated from Uniform(2, 3), where the magnitudes of these
coefficients were much weaker than those used in Exam-
ple 1. Example 3 was simulated for p = 2, 000 SNPs, with
ten influential and 1990 features as noise.
Table 5 summarizes the simulation results and the com-

parisons of fixed and adaptive thresholds for Example 3.
If using a threshold of 37 (or 74), the DC-SIS approach
only achieved a power as low as 12% (or 44%). Appar-
ently, some feature likeX10 seems to have very weak signal
and trapped the DC-SIS. The results of IDC-SIS are dra-
matically better than those of the DC-SIS. However, the
power of IDC-SIS is only 92% if using a fixed threshold
of [n/logn]= 37. It indicates that IDC-SIS includes 16
more features in average than the ¯̂d = 21.35 estimated
by BE-IDC, but was still unable to simultaneously detect-
ing all ten influential features among all 100 replicates.
To achieve a 100% power as the BE-IDC did, the IDC-
SIS had to increase the threshold to 2[n/logn]= 74, but it
sacrificed 53 more unnecessary noise features on average
than BE-IDC.

Analysis of Arabidopsis data
The BE-IDC procedure was applied to select the most
influential SNPs for a continuous trait of the Arabidop-
sis thaliana disease-resistance phenotype, lesioning and
FRIGIDA expression (FRI), with 164 inbred lines and
216,130 SNPs covering the entire genome. These data
are publicly available from the link (http://arabidopsis.usc.
edu). Two traditional statistical models have been imple-
mented on this same dataset, i.e., the non-parametric
Wilcoxon rank-sum test and a linear mixed model imple-
mented in EMMA (Supplementary material of Atwell
et al. [23]).
The four influential polymorphisms that were selected

by BE-IDC are summarized in Table 6. Using the Ara-
bidopsis Genome Initiative (AGI) genetic map and the

http://arabidopsis.usc.edu
http://arabidopsis.usc.edu
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Table 4 Strict and individual statistical power for methods using fixed or adaptive thresholds for Example 2

Methods Average d̂ Pa P100 P200 P300 P400 P500 Average MSPE

DC-SIS (d = 74) 74 97% 100% 99% 100% 99% 99% 3.67

IDC-SIS (d = 74) 74 100% 100% 100% 100% 100% 100% 2.70

BE-IDC 15.04 100% 100% 100% 100% 100% 100% 1.92

Arabidopsis information resource (TAIR.org, verified on
9/5/2016) GBrowse database, we matched our signifi-
cant findings with three genes. The rank 1 SNP lay
approximately 217 bp away from the FRIGIDA region
(269026 - 271503 bp). Like all other approaches work-
ing on this same dataset, the BE-IDC procedure also
identified exactly the same position (Chr 4, 268809 bp)
as reported by current literature. This SNP was associ-
ated with the highest peak on the Manhattan plot by all
approaches, including BE-IDC. Besides the unanimous
agreement on this peak, we detected three new positions
that were not found by these traditional approaches for
the same dataset. In particular, the rank 4 SNP lay exactly
within the single large exon of FRIGIDA or FLOWER-
ING LOCUS A (FLA) region (269026 - 271503 bp), which
locates the expected gene more closely than the previ-
ously discussed highest peak. Specifically, FRI encodes
a major determinant of natural variation in Arabidop-
sis flowering time and has been reported to regulate this
lesioning and FRIGIDA expression trait under analysis.
Additionally, we also found that the rank 2 and rank 3
SNPs lay within exon4 and intron2 in the neighboring
RNAHELICASE-LIKE 8 (RH8) gene (274257 - 278737 bp),
respectively.
Figure 1a illustrates the MSPE plot versus the number

of SNPs, covering the entire search region, during which
the backward elimination removed SNPs from 216,130
to 1 iteratively at a drop rate of 50%. We observed that

the minimum MSPE is achieved at a very crowded region
where the number of SNPs is small. After magnifying this
crowded region (Fig. 1b), the optimal spot d̂ = 4 is rec-
ognized. Figure 2 demonstrates the Manhattan plot of the
continuous FRI trait along the entire genome, based on
the iterative Dcorr values of 216,130 SNPs against their
individual physical chromosomal position. Unlike the tra-
ditional Manhattan plot, we did not use the p-value and
−log(0.05) horizontal line to determine the significance.
Instead, we used the adaptive threshold determined by the
BE-IDC procedure (marked in yellow triangle). Unlike the
regular Manhattan plot having dense signals, Fig. 2 looks
very sparse. We knew that the whole genome data had
low signal-to-noise ratio and expected that the majority of
the noise SNPs could be dramatically filtered out by the
proposed BE-IDC approach. We also knew that IDC-SIS
iteratively regressed unselected SNPs on selected SNPs
and regained information from the residuals. It was also
known that the residuals contain much weaker informa-
tion than the original data. This explains why the majority
of noise SNPs were close to 0 and why Fig. 2 looks sparse.

Discussion
As the level of difficulty increased from Example 1 to
Example 3, the average thresholds ¯̂d estimated by BE-
IDC automatically became larger, causing the power to
approach 100%. Comparing the different results of the

Table 5 Strict and individual statistical power for methods using fixed or adaptive thresholds for Example 3

Methods Average d̂ Pa P100 P200 P300 P400 P500

DC-SIS (d = 37) 37 12% 100% 83% 93% 100% 100%

DC-SIS (d = 74) 74 44% 100% 99% 100% 100% 100%

IDC-SIS (d = 37) 37 92% 100% 100% 98% 100% 100%

IDC-SIS (d = 74) 74 100% 100% 100% 100% 100% 100%

BE-IDC 21.35 100% 100% 100% 100% 100% 100%

Methods P600 P700 P800 P900 P1000 Average MSPE

DC-SIS (d = 37) 100% 81% 99% 100% 22% 4.23

DC-SIS (d = 74) 100% 98% 100% 100% 46% 3.68

IDC-SIS (d = 37) 100% 95% 99% 100% 100% 1.44

IDC-SIS (d = 74) 100% 100% 100% 100% 100% 1.84

BE-IDC 100% 100% 100% 100% 100% 1.17
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Table 6 Influential SNPs selected by BE-IDC based on AGI
physical map (TAIR.org)

Rank Chr SNP pos (bp) Gene Distance to gene (bp)

1 4 268809 FRI or FLA -217

2 4 276143 RH8 0

3 4 275349 RH8 0

4 4 269260 FRI or FLA 0

three simulation examples, we confirmed that BE-IDC
was indeed able to flexibly and adaptively adjust its esti-
mated threshold value according to the specific scenarios
of different datasets. On the contrary, the fixed thresh-
old approaches failed to give a clear and flexible thresh-
old determination. For the real data analysis, where the
truth is never known, this data-driven ability is crucial.
If a threshold is set too small, influential SNPs will be
neglected and power will be decreased (see d = 37 of
Table 5); on the contrary, if the threshold is set too large,
too much of the noise will be mistreated as influential
features (i.e., false discovery) (see Tables 1 and 4).
BE-IDC works well for SNPs with either binary fea-

ture (see Additional file 1: Supplementary example 3
and Table S3) or categorical feature (see Example 2 and
Table 4; Example 3 and Table 5, and Additional file 1:
Supplementary example 2 and Table S2), as well as con-
tinuous features (see Example 1 and Table 1) such as age
or BMI, among others [5, 34]. As for the phenotype, BE-
IDC approach proposed in this article is mainly targeted

for continuous phenotype/trait, hence the models, sim-
ulations, and real data all focus on continuous traits.
However, we tried one simulation study with a categori-
cal phenotype and noticed that the results were also nice
(see Additional file 1: Supplementary example 1 and Table
S1). We will leave this categorical trait for future exam-
ination. This article focuses on the selection of a small
subset of influential genes that still achieve sufficient pre-
diction accuracy for new observations, which is a common
interest in plant breeding in crop, plant, and cattle species
or disease diagnosis and prevention in clinical practices
[4, 35–39]. For the case of several hundreds of influen-
tial SNPs all individually having small effect, the proposed
BE-IDC may not be feasible and we will consider it in
future work.

Conclusion
This article proposes a BE-IDC procedure with the aims of
(1) selecting the smallest possible set of influential genes
from a big pool that are not only associated with the
analyzed phenotype, but also enable accurate prediction
for new observations; and (2) determining an adaptive
threshold effectively separating influential SNPs from the
noise SNPs. An approach with accurate prediction capa-
bility will make the results obtained in one dataset be
reproduced better in a different dataset. The difficulties
that BE-IDC overcomes are as follows: issues of ultra-
high dimensionality when the number of SNPs is in the
tens of thousands or even in the millions, but the num-
ber of observations is in the hundreds or the thousands;

A B

Fig. 1 The MSPE plot. a The MSPE versus the number of SNPs on the interval [1, 216,130]; bMagnification of the MSPE over the small interval [1, 11],
surrounding the minimumMSPE region. The red point is the final threshold determination spot (with size d̂ = 4) achieving the minimumMSPE 0.34.
The black solid curve is the traditional MSPE plot, and the blue dash curve is the MSPE +/- 1 standard error plot. When the model size is 103, the MSPE
has the maximum value 3.95
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Fig. 2 The Manhattan plot. The Manhattan plot of the FRI expression
along the whole genome, based on the Dcorr measures of 216,130
SNPs against each SNP’s chromosomal position. Chromosomes are
shown in alternate colors. The top four SNPs represented by the
yellow triangles are finally selected by the BE-IDC procedure

detecting signals from a sparse structure (i.e., signal-to-
noise ratio is very weak); and detecting truly important
SNPs that are confounded by noise due to strong linkage
disequilibrium.

Additional file

Additional file 1: Supplementary examples. (PDF 122 kb)
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