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Motivation

Estimated U.S. Energy Use in 2013: ~97.4 Quads National Laboratory
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Source: LLNL 2014. Data is based on DOE/EIA-0035(2014-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory
and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports
consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production
is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80%
for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

https://flowcharts.linl.gov/archive.html
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Motivation
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Figure of Merit (ZT) is a measure of the thermoelectric material’s
efficiency in converting thermal energy to electrical current.

ol
It is defined by the following equation:  ZT = S? -
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Motivation

Why Use Mg,Si?

* Mg is earth abundant
in Utah and much of
the US

e Mg,Siis a relatively
simple compound
when compared to the
other thermoelectrics

* Mg is inexpensive,
resulting in the
production of Mg,Si
being less expensive
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Methodology

Molecular Dynamics

\\\§ r r
(Large-scale Atomic/Molecular Massively Parallel Simulator)
,0T
LT =S 7
T~k =k, +k,
N

LAMMPS can only calculate kp, which makes the
follow up of experimental research to measure ZT
critical

http://lammps.sandia.gov/#nogo
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Experimental Setup

Heat Sink Heat Source

* Periodic Boundaries
e Extended modified embedded
atom method (MEAM) potential
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Pure Mg,Si k,= k,="? k,="?
Mg,Si with 1 Si NP k,="? k,="? k,="?
Mg,Si with 2 Si NP k,=7? k,=7? k,=7?
Mg,Si with 4 Si NP k,=? k,=? k,=?
Mg,Si with 8 Si NP k,=? k,=? k,=?
Mg,Si with 16 Si NP k,=7? k,=7? k,=?
Mg,Si, 34.29 % Si (matching stoichiometry of Mg,Si with 1SiNP)  k,=7? k,=7? k,=?
Mg,Si, 35.32 % Si (matching stoichiometry of Mg,Si with 2 SiNP)  k, =7 k,=7? k,=7?
Mg,Si, 37.29 % Si (matching stoichiometry of Mg,Si with 4 SiNP)  k,=7? k,=? k,=?
Mg,Si, 41.37 % Si (matching stoichiometry of Mg,Si with 8 SiNP)  k,=7? k,=7? k,=7?
Mg,Si, 49.55 % Si (matching stoichiometry of Mg,Si with 16 Si NP) &, = ? p =7 p =7
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Methodology

NPT NVT NVE NVE with
e 0.6ns e 0.6 ns 5 BE @ Heat Flux
e 2.0ns

 Nonequilibrium Molecular Dynamics (NEMD)
e Applied Heat Flux
 Total simulated time of 15 ns
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Methodology

Heat Sink Heat Source

Chunk ] :
Fourier's Law
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Uncertainty Calculations

Simulations were run at the 3 different
equilibration temperatures as previously NPT
described, except that no heat flux was applied e 0.6ns
(we assumed stoichiometry did not significantly
affect the uncertainty in temperature)

The temperatures for each chunk were then averaged all Equilibration Uncertainty (K)
together Temperature (K)

The absolute value of the difference between this value and 300 0.774
the target equilibration temperature was taken as our 600 0.721
uncertainty in temperature

900 0.96

This value was then added to and subtracted from the AT in Fourier’s Law to obtain the minimum and
maximum k,, values, and therefore their associated k, uncertainties
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Si NP in the Effect of NP Placement on kp

wall and

heat sink

e Some simulations had Si NPs in the walls and heat source/sink

e To ensure that this wasn’t a problem, 2 simulations were run with 8 Si NPs each; one
had an Si NP in the heat sink/wall area, the other did not.

* Their k, values were 2.876 (WmK) and 3.063 (Wm™K), respectively, resulting in a
percent change in k, of 6.499%, which we considered negligible.
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LaBotz 7.8
This Work 8.454 + 1.094

We determined that our calculated value for k, above was sufficiently close that of Labotz,
such that we could begin simulation of off-stoichiometry samples of Mg,Si and calculation of
their respective values for k,,.
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FIGURE 3: Lattice thermal conductivity (k,) vs. number of Si NPs present in Mg>Si samples at 300, 600, and 900 K.
Included is an estimation of k, for the 300 K equilibration temperature case, using Eqn[4][8], denoted by NP at 300 K Theor.
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Results — Mg,Si with Si NPs
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FIGURE 5: Lattice thermal conductivity (k,) vs. temperature (7'} for pure Mg»5i (0 NPs) and Mg, Si samples with 1, 2, 4, 8,
Ia . and 16 Si NPs.
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One Si NP Case

* Unexpectedly, the 1 NP cases resulted in lower in k, values than their
respective 2 NP cases
e We thought this might have to do with the NP spacing

NP Spacing: 405.632 A

.k, 5.877 WmK!

NP Spacing: 215.492 A

.k 4.403 Wm'iK1

* |t appears that the closer the Si NP concentration is to the center of the
sample, the lower the k,, despite no change in stoichiometry
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Results — Mg,Si with Si Substitutionals
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FIGURE 4: Lattice thermal conductivity (k,) vs. percent Si present in Mg, Si samples at 300, 600, and 900 K. The percent
Si values correspond to the stoichiometry of the sample of pure Mg,Si (33.33% Si), and respective samples of Mg»Si having

1,2,4, 8, and 16 Si NPs.
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FIGURE 6: Lattice thermal conductivity (kp) vs. temperature (T') for Mg»Si samples with dispersed Si atoms, respectively

matching the stoichiometry of the MgaSi samples with 0, 1, 2, 4, 8, and 16 Si NPs.
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Results — Table Summaries

Pure Mg,Si

Mg,Si with 1 Si NP

Mg,Si with 2 Si NP

Mg,Si with 4 Si NP

Mg,Si with 8 Si NP

Mg,Si with 16 Si NP

Mg,Si, 34.29 % Si (matching stoichiometry of Mg,Si with 1 Si NP)

Mg, Si, 35.32 % Si (matching stoichiometry of Mg,Si with 1 Si NP)

Mg,Si, 37.29 % Si (matching stoichiometry of Mg,Si with 1 Si NP)

Mg Si, 41.37 % Si (matching stoichiometry of Mg,Si with 1 Si NP)

Mg,Si, 49.55 % Si (matching stoichiometry of Mg,Si with 1 Si NP)
£ i

UtahStateUniversity

8.454 £1.094
5.252 +0.416
5.877 £0.586
4.553 +0.387
2.876 £0.211
1.791 +0.124
6.346 +0.624
5.015 +0.441
3.669 +0.272
2.300 £0.133
1.300 £0.053

4.199 +0.342
3.275+0.176
3.456 £0.312
2.972 +0.205
1.930 +£0.119
1.649 +0.157
3.749 +0.283
3.001 +0.244
2.430 +0.186
1.784 +0.126
1.064 +0.117
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3.533 £0.705
2.428 £0.261
2.987 +0.626
2.204 +0.277
1.992 +0.323
1.280 +0.214
2.676 £0.369
2.065 +0.296
1.387 +0.151
1.591 +0.264
0.9347 £0.292
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Increasing the atomic percent Si, either through
substitutional atoms or Si NPs, decreases kp

Samples with substitutional Si atoms resulted in greater
decreases in k, when compared to the k, of the samples
with Si NPs

Boundary resistance, rather than reduction in mean free
path, seems have the greater influence in reducing k, in
the samples with Si NPs for the 1 and 2 NP cases
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Future Work
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Experimental research will need to verify that these
nanostructures actually result in an increased ZT for Mg,Si,
as LAMMPS cannot account for changes in k,

Further work should be done to understand why
substitutional Si atoms lower k, more than the
stoichiometric equivalent of Si NPs in Mg,Si

Further should be done to understand more fully how
concentrations of stoichiometric changes at certain
locations, such as Si NPs at the halfway point between a
heat source and sink, can change k,



References

%C”V(ERNG
1. LaBotz, R. J., and Mason, D. R., 1963. “The thermal conductivities of mg2si and mg2ge”.
Journal of The Electrochemical Society, 110.2, pp. 121-126.
2. Plimpton, S. LAMMPS - large-scale atomic/molecular massively parallel
simulator. http://lammps.sandia.gov/.
3. Rull-Bravo, Marta, et al. "Skutterudites as thermoelectric materials: revisited." Rsc
Advances 5.52 (2015): 41653-41667.
4. Zhang, Hengji, e. a., 2015. “The effect of point defects and nanoparticles on thermal
conductivity of magnesium silicide”. Computational Materials Science, 104, pp. 172-176.

Acknowledgements

1. The Utah Energy Research Triangle Program from the Governor's Office of Energy
Development provided the funding for this project.

A & COLLEGE o
gl)l)’: ENGINEERING

T UtahStateUniversity



Questions?



