Autonomous Navigation using Gravity Gradient Measurements Rachit Bhatia, Dr. David Geller **UtahState**University

13th April 2017 Student Research Symposium

Where?

The art of navigation was first developed with the need to explore sea. Earliest records show that navigation is older than 1000 B.C.

When?

On 21st Dec 1968, with the launch of Apollo 8 mission, we pioneered Space Navigation.

Satellite Navigation Systems

Global Navigation Satellite	Regional Navigation		
System (GNSS)	Satellite System (RNSS)		
Operational In Development	Operational In		
	Development		
L.GPS (USA) 1. Galileo (EU)	1.NAVIC (India)		
2. G L O N A S S 2. Compass (China)	2. BeiDou 1. QZSS (Japan)		
(Russia)	(China)		

Current GNSS

Autonomous Navigation

- Strong Dependence on Ground-Based Infrastructure ⇒ Low Accuracy
- 2. Range Limitation, Constant Maintenance Requirement, & Continuous Tracking ⇒ Unsuitable for Beyond Earth Exploration Missions

- 1. Self-Contained & Passive System ⇒ Enhanced Accuracy
- 2. Autonomous, Resistant to Signal Blockage & Spoofing → Suitable for Beyond Earth Exploration Missions

Magnetometer **GPS/STST Onboard Optical Measurement Gradient** Systems IMU Gamma Ray Photons Conventional Autonomous **Space Navigation** Navigation Techniques Starlight Refraction Doppler Star X-ray Gravity **Delta-DOR** Tracker **Pulsars** Gradient

Geoid HUST-Grace2016s - Ellipsoid l = 4 - 2200 grid = 0,2° 10.000 (174°,60°) light = (11°,23°,3,0)

The Gravity Gradiometry has been in use since mid 20th century, mostly for Marine Navigation & the survey of Mineral/Oil Fields.

However, the space application of the Gravity Gradiometer has been very limited.

Source- International Center for Global Earth Models (ICGEM), the model used is HUST-Grace2016s, with Orion Nebula in the background.

The Gravity Gradient Tensor (ν_g) is defined as the second order derivative of the gravitational potential ν -:

 $\nabla g \downarrow ij = \partial f^2 U / \partial r \downarrow i \partial r \downarrow j , i, j = X, Y, Z$ r is Position vector

 $\nabla g = \left[\blacksquare \nabla g \downarrow XX \& \nabla g \downarrow XY \& \nabla g \downarrow XZ @ \nabla g \downarrow XY \& \nabla g \downarrow YZ @ \nabla g \downarrow XZ \& \nabla g \downarrow ZY \& \nabla g \downarrow ZZ \right] (\text{Cesare S., 2008})$

Artist's view of the GOCE satellite (image credit: ESA-AOES MediaLab)

History of Gravity Gradiometer Instruments (Richeson J.A., 2008)

Gradiometer	Developer	Noise, 1- σ Eö	Data Rate,sec	
Rotating Accel. GGI	Bell Aerospace/Textron	2(Lab.),10 (Air)	10	
Rotating Torque GGI	Hughes Research Lab	0.5(Goal)	10	
Floated GGI	Draper Lab 1(Lab.)		10	
Falcon AGG	LM/BHP Billiton	3	Post Survey	
ACVGG	Lockheed Martin(LM)	1	1	
3D FTG	LM/Bell Geospace	5	Post Survey	
FTGeX	LM/ARKeX	10(Goal)	1	
UMD SGG (Space)	Univ. of Maryland	0.02(Lab.)	1	
UMD SAA (Air)	Univ. of Maryland	0.3(Lab.)	1	
UWA OQR	Univ. of Western Australia	1(Lab.)	1	
Exploration GGI	ARKeX	1(Goal)	1	
HD-AGG	Gedex/UMD/UWA	1(Goal)	1	
Electrostatic GGI	European Space Agency	0.001(Goal)	10	
Cold Atom Interfer.	Stanford Univ./JPL	30(Lab.)	1	

Illustration of EGG system onboard GOCE (image credit:ESA,ONERA)

The objective is to use 6 accelerometers arranged on a distance of 1 meters, on three mutually perpendicular baselines, as shown in the figure. (Cesare S., 2008)

Assuming that all perturbations, except drag are negligible. A simple acceleration Measurement Model (ECI frame) can be defined as: $a \downarrow i = a \downarrow grav (r \downarrow Sc) - a \downarrow grav (r \downarrow Sc + R \downarrow i) + a \downarrow drag (r \downarrow Sc, V \downarrow Sc) + \omega \times (\omega \times R \downarrow i) + (\omega \times R \downarrow i)$

Ӿ) сом

Y1_{OGR}

D1_{OGR}a

X1_{OGR}

 $\downarrow i$) +2 $\omega \times R \downarrow i + R \downarrow i$

The accelerometer model can now be written as-:

 $a \downarrow i = -(\nabla g - [\Omega \uparrow 2] - [\Omega])R \downarrow i + 2[\Omega]R \downarrow i + R \downarrow i + D$

where term $(-\nabla g) R \downarrow i = a \downarrow grav (r \downarrow Sc) - a \downarrow grav (r \downarrow Sc + R \downarrow i),$

 $[\Omega] = [\blacksquare 0 \& -\omega JZ \& \omega JY @ \omega JZ \& 0 \& -\omega JX @ -\omega JY \& \omega JX \& 0]$ is the cross-product matrix, and

p is the acceleration due to non-gravitational forces, like Atmospheric Drag.

Assuming ideal case the 3 OAGRFs are coincident, we get: $C \downarrow_1 = C \downarrow_2 = C \downarrow_3 = C$

The vectors RJi and its derivatives can thus be expressed as-:

 $R \downarrow i = A \downarrow i - C$, $R \downarrow i = -C$, $R \downarrow i = -C$

Rewriting the equation for *a i* , we get-:

 $a \downarrow i = -(\nabla g - [\Omega \uparrow 2] - [\Omega])(A \downarrow i - C) + 2[\Omega](-C) - C + D$

 $\Rightarrow a \downarrow i = -(\nabla g - [\Omega \uparrow 2] - [\Omega])A \downarrow i + (\nabla g - [\Omega \uparrow 2] - [\Omega])C - 2[\Omega]C - C + D$

To isolate the Perturbation (Drag) and Gravity Gradient Tensor, we define following two modes-: (Cesare S., 2008)

1. Common-Mode Acceleration measured by the accelerometers A_{i} , A_{j} -: $a \downarrow c, ij = 1/2 (a \downarrow i + a \downarrow j)$

 $\Rightarrow a \downarrow c, ij = -(\nabla g - [\Omega^{\uparrow}2] - [\Omega])A \downarrow c, ij + (\nabla g - [\Omega^{\uparrow}2] - [\Omega])C - 2[\Omega]C - C + D$

where $A \downarrow c, ij = 1/2 (A \downarrow i + A \downarrow j)$

To isolate the Perturbation (Drag) and Gravity Gradient Tensor, we define following two modes-: (Cesare S., 2008)

2. Differential-Mode Acceleration measured by the accelerometers A_{i} , A_{j} -: $a \downarrow d, ij = 1/2 (a \downarrow i - a \downarrow j)$

 $\Rightarrow a \downarrow d, ij = -(\nabla g - [\Omega^{\uparrow 2}] - [\Omega])A \downarrow d, ij$

where $A \downarrow d, ij = 1/2 (A \downarrow i - A \downarrow j)$

- Now, if the accelerometer A_{i} , A_{i} belong to the same OAG (ij = 14, 25, 36), then $A_{i}c,ij=0$, and $A_{i}d,ij=A_{i}i$
- 1. Common-Mode Accel. $\Rightarrow a \downarrow c, ij = (\nabla g [\Omega \uparrow 2] [\Omega])C 2[\Omega]C C + D$ 2. Differential-Mode Accel. $\Rightarrow a \downarrow d, ij = -(\nabla g - [\Omega \uparrow 2] - [\Omega])A \downarrow i$

Assuming $c_{=0}$, i.e. COM of the Spacecraft is coincident with the center of all 3 OAGs.

Thus, ignoring terms $(\nabla g - [\Omega f^2] - [\Omega f)C$, $2[\Omega]C$, C, we get:

 $a \downarrow c, ij = D$

 $a \downarrow d, ij = -(\nabla g - [\Omega \uparrow 2] - [\Omega])A \downarrow i$

Hence, using the common-mode, the non-gravitational force like drag, can be measured, while using the differential-mode, the GGT can be measured.

Results have been obtained for an Orbit defined as-:

Altitude = 400 km. Eccentricity = 0.01 Inclination = pi/6 rad. Right Ascension of the Ascending Node = pi/6 rad. Argument of Periapsis = pi/2 rad. True Anomally = 0 rad.

Results have been shown for an ideal Gravity Gradiometer Measurement Model, using 3x3 Spherical Harmonics Gravity Model Simulated Orbit for Spherical Harmonics Model, using Analytical method

However, we can never have perfect measurements.

Hence, there is always a need for-:

Error Modelling of the system

Estimation Techniques like Kalman Filter

Covariance Analysis by Monte Carlo or Linear Covariance

Future work includes-:

- i. Formulate the Measurement Model with appropriate error model,
- ii. Implement Kalman Filter for Orbit Determination, and
- iii. Complete Covariance Analysis using techniques like Monte Carlo or Linear Covariance analysis
- iv. Identify various Error Sources, and determine the contribution of each.

	Year	Gradiometer	Developer	Noise, 1- <i>σ</i> Eö	Data Rate,sec
Backup Slide	1960s-70s	Rotating Accel. GGI	Bell Aerospace/Textron	2(Lab.),10 (Air)	10
	1960s-70s	Rotating Torque GGI	Hughes Research Lab	0.5(Goal)	10
	1960s-70s	Floated GGI	Draper Lab	1(Lab.)	10
	March'94	Falcon AGG	LM/BHP Billiton	3	Post Survey
		ACVGG	Lockheed Martin(LM)	1	1
		3D FTG	LM/Bell Geospace	5	Post Survey
	2005	FTGeX	LM/ARKeX	10(Goal)	1
		UMD SGG (Space)	Univ. of Maryland	0.02(Lab.)	1
		UMD SAA (Air)	Univ. of Maryland	0.3(Lab.)	1
		UWA OQR	Univ. of Western Australia	1(Lab.)	1
		Exploration GGI	ARKeX	1(Goal)	1
		HD-AGG	Gedex/UMD/UWA	1(Goal)	1
		Electrostatic GGI	European Space Agency	0.001(Goal)	10
		Cold Atom Interfer.	Stanford Univ./JPL	30(Lab.)	