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ABSTRACT 

 

 

Understanding the Mechanisms of Insecticide Resistance in Phlebotomus 

 

papatasi and Lutzoymia longipalpis Sand Flies (Diptera: Psychodidae: Phlebotominae) 

 

 

by 

 

 

David S. Denlinger, Doctor of Philosophy 

 

Utah State University, 2017 

 

 

Major Professor: Dr. Scott A. Bernhardt 

Department: Biology 

 

 

 The prevalence of insecticide resistance in vector species around the world is a 

continuous threat for any success at mitigating the spread of vector-borne diseases.  With a 

limited arsenal of new insecticides, it is crucial for public health programs to understand the 

geographic range and the genetic mechanisms of resistance to best approach controlling insect 

vectors.  Insecticide resistance is being increasingly observed in phlebotomine sand fly (Diptera: 

Psychodidae) populations in both the Old World and New World.  Sand flies transmit the 

protozoans that cause leishmaniasis, a disfiguring disease that kills tens of thousands of people 

each year.  The goal of this dissertation was to have both an applied and basic research focus 

towards understanding resistance in phlebotomines.  I began by comparing in vivo and in vitro 

methods for blood-feeding two species of sand flies, Phlebotomus papatasi and Lutzomyia 

longipalpis, in the laboratory, both of which are important leishmaniasis vectors.  I investigated 

the susceptibility of both species to ten different insecticides by calculating lethal concentrations 

that caused varying levels of mortality.  Based on these results, I determined diagnostic doses and 

diagnostic times for both species to the same ten insecticides using an accepted, but novel, assay 

for sand flies.  Finally, I tested for known mechanisms of insecticide resistance in four artificially 
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resistant-selected colonies of sand flies, as well as tested for novel resistance mechanisms.  

Through applied research, I developed methods for efficient sand fly rearing and for 

determination of population resistance to insecticides, tools that have worldwide applicability. 

Through basic research, I determined that laboratory populations of sand flies have sufficient 

standing genetic variation needed to survive sublethal doses of insecticides; however, I was 

unable to develop artificially-selected colonies resistant to these insecticides.  My research has 

generated information to provide new insights into the evolution of insecticide resistance in 

natural sand fly populations.  My results support that resistance development may be possible, but 

evolutionary challenging, an encouraging finding that may be exploited by vector biologists and 

public health officials to prevent or slow the development of resistance in sand flies to 

insecticides 
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PUBLIC ABSTRACT 

 

 

 

Understanding the Mechanisms of Insecticide Resistance in Phlebotomus  

 
papatasi and Lutzoymia longipalpis Sand Flies (Diptera: Psychodidae: Phlebotominae) 

 

David S. Denlinger 

 

 

 

 Sand flies, like mosquitoes, ticks, fleas, and lice, transmit pathogens that cause disease in 

humans.  Leishmaniasis, caused by pathogens transmitted by sand flies, kills tens of thousands of 

people every year.  Insecticides have been used to control sand flies, but there is evidence of 

insecticide resistance in populations of sand flies around the world.  The goal of this dissertation 

was to develop tools to maintain sand flies in the laboratory, develop the ability to identify 

insecticide-resistant populations of sand flies, and to investigate the genetic mechanisms of how 

sand flies become resistant to insecticides.  I began by comparing live animal and artificial 

techniques for blood-feeding two species of sand flies, Phlebotomus papatasi and Lutzomyia 

longipalpis, in the laboratory, both of which are important leishmaniasis vectors.  Next, I 

investigated how susceptible laboratory colonies of both species are to ten insecticides that are 

used worldwide to control sand flies.  Based on my results, I determined diagnostic 

concentrations and diagnostic exposure times for the laboratory colonies to the ten insecticides 

using a known assay that has been used very little for sand flies, which allows researchers to 

determine if a population of sand flies is resistant to an insecticide.  Finally, I tested for known 

mechanisms of insecticide resistance in four artificially resistant-selected colonies of sand flies, 

and I also looked for novel mechanisms.  This dissertation is useful in that it provides researchers 

practical approaches to maintain sand flies to be used for further research and to determine 

resistance in the field.  It also demonstrates that sand fly populations are homogenous, and it 

implies that it is challenging for a population to become resistant to insecticides.  This aspect can 
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be exploited by sand fly researchers and public health officials in effectively controlling sand fly 

populations, which is also beneficial for slowing the transmission of leishmaniasis. 
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CHAPTER 1 

INTRODUCTION 

 

The Evolution of Blood-Feeding in Insects. Insects have been successful over the 

course of their approximate 500-million-year existence because of their taxonomic and ecological 

diversity (Misof et al. 2014).  Insects have evolved to fill an immense number of ecological 

niches (Gullan and Cranston 2010).  One niche, though, has arguably impacted human existence 

more than any other and has been a significant detriment to our development and our society: 

hematophagy. 

Hematophagy has independently evolved many times within the insect orders Diptera, 

Hemiptera, Lepidoptera, Phthiraptera, and Siphonaptera (Black IV and Kondratieff 2005).   Two 

hypotheses explain the independent origin of hematophagy in insects.  First, hematophagy arose 

in nidicolous insect lineages that had prolonged associations with vertebrates and that had not yet 

acquired specializations for blood-feeding.  These insects initially fed on organic matter including 

sloughed skin, hair, or feathers.  There was physiological and behavior selection for individuals 

that had efficient chewing mouthparts and higher propensity for feeding directly on the host.  

Blood is more nutritious than skin, and therefore, there was selection for mouthparts that allowed 

insects to gradually transition to blood-feeding (Lehane 2005).  Second, insects already had 

morphological pre-adaptations for piercing, for feeding on other insects and for piercing plants, 

that evolved into blood-feeding.  Their proteases evolved to digest hemoproteins as they began to 

pierce vertebrate tissues (Lehane 2005).   

Blood-Feeding Flies. The ability for insects to imbibe human blood would be a mere 

annoyance if not for the viral, bacterial, and protozoal pathogens that have exploited this insect-

human relationship.  In no group of insect vectors has this dynamic evolved more times than in 

Diptera.  Diptera, the true flies, contains the greatest number of families that are hematophagous 
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and competent of disease transmission.  Feeding on blood and/or hemolymph has evolved in 

more than twenty families of extinct and extant flies: Athericidae, Blephariceridae, Calliphoridae, 

Carnidae, Ceratopogonidae, Chironomidae, Chloropidae, Corethrellidae, Culicidae, Glossinidae, 

Hippoboscidae, Muscidae, Nycteribiidae, Oestridae, Piophilidae, Psychodidae, Rhagionidae, 

Sarcophagidae, Simuliidae, Streblidae, and Tabanidae.  Between the extant species, several 

thousand are of medical and veterinary interest.  Diseases vectored by flies afflict greater than 

500 million people, and 3.5 billion people are at-risk (Hall and Gerhardt 2009, Wiegmann et al. 

2011). 

Mosquitoes (Culicidae) vector the agents that cause many viral encephalitis diseases, 

chikungunya, Zika, dengue, yellow fever, malaria, and filariasis.  Biting midges 

(Ceratopogonidae) vector the viruses that cause bluetongue, epizootic hemorrhagic fever, and 

African horsesickness in animals, whereas in humans, they vector the agents that cause Oropuche 

fever and mansonellosis.  Black flies (Simuliidae) are best known for vectoring Onchocerca 

nematodes that cause onchocerciasis, or river blindness.  Tsetse flies’ (Glossinidae) ability to 

vector the trypanosomes that cause sleeping sickness in humans and nagana in animals has 

thwarted the development of Africa.  Horse and deer flies (Tabanidae) are adamantly known as 

nuisance pests because of their formidable bites; nevertheless, Chrysops tabanids vector Loa loa, 

the African eyeworm, which causes loaiasis, and at least in the United States, tabanids 

mechanically vector Francisella tularensis (tularemia).  Like tabanids, flies of Muscidae are less 

known for vectoring diseases, but the bazaar fly, Musca sorbens, mechanically transmits 

Chlamydia bacteria that cause trachoma.  Even Liohippelates flies (Chloropidae) can 

mechanically transmit the spirochete Treponema pertenue that causes the syphilis-like, 

disfiguring disease yaws (Adler and McCreadie 2009, Foster and Walker 2009, Hall and Gerhardt 

2009, Krinsky 2009, Moon 2009, Mullen 2009, Mullens 2009, Petersen et al. 2009). 
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Psychodidae.  Taxonomically, the family Psychodidae is sister to the family Tanyderidae 

(primitive crane flies), and together this clade is sister to the family Blephariceridae (net-winged 

midges).  These three families are grouped together into the Psychodomorpha infraorder of 

Diptera (Wiegmann et al. 2011).  Of its six subfamilies, Psychodidae contains two subfamilies 

with blood-feeding individuals: Sycoracinae, blood-feeders of anurans, and Phlebotominae, 

blood-feeders of vertebrates (Bravo and Salazar-Valenzuela 2009, Petrulevičius et al. 2011).  

The subfamily Phlebotominae (sand flies) contains the only anthroponotic 

hematophagous insects of the family Psychodidae, which are capable of vectoring viral, bacterial, 

and protozoan disease agents (Rutledge and Gupta 2009).  The term “sand fly” can be a 

misnomer.  Many people think that sand flies are only found at beaches, and even more 

confusing, colloquially around the world the term “sand fly” is used to describe Culicoides 

midges, simuliid black flies, or mosquitoes (Killick-Kendrick 1999, Maroli et al. 2013).   

The nearly one thousand species of the subfamily Phlebotominae has made developing a 

consistent, reliable taxonomy contentious; the number of genera has fluctuated from six to thirty-

one (Curler and Moulton 2012).  Sand fly taxonomy has historically been based on phenetics of 

morphology, but the subfamily’s systematics are improving because of genetic and genomic 

advances (Akhoundi et al. 2016).  These advances are rapidly expanding Phlebotominae’s 

taxonomy, now to include many tribe and subtribe levels with numerous genera (Akhoundi et al. 

2016).  Phlebotominae’s expanding taxonomy is complicated by epidemiological issues and may 

be impractical for medical parasitologists and physicians who have relied on older taxonomies 

(Ready 2011).  However, advances in phlebotomine taxonomy is needed to stimulate research in 

sand fly vectorial and ecological life histories (Ready 2011).  Despite these recent advances, six 

genera are conservatively agreed upon by many sand fly taxonomists: Phlebotomus, 

Sergentomyia, and Chinius in the Old World, and Lutzomyia, Brumptomyia, and Warileya in the 

in the New World (Akhoundi et al. 2016).  The Grace-Lema et al. (2015) recent phylogeny 
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hypothesizes a tropical Old World origin of Phlebotominae with subsequent diversifications into 

Asia and Europe, and then into the New World. 

Phlebotomine sand flies are distributed in the warm zones of Asia, Africa, Australia, 

southern Europe, and the Americas.  Their northern distribution extends near latitude 50°N in 

southwest Canada, northern France, and Mongolia.  Their southern distribution extends to near 

40°S (Lewis 1982, Young and Perkins 1984).  Sand flies are not found on New Zealand or on the 

Pacific Islands (Maroli et al. 2013).  The altitudinal distribution maximums extend from below 

sea level (near the Dead Sea) to 3,300 meters above sea level in Afghanistan (Killick-Kendrick 

1999). 

Sand flies are holometabolous insects (complete metamorphosis with egg, larva (four 

instars), pupa, and adult stages) that are terrestrial in all life stages (Rutledge and Gupta 2009).    

Eggs are 0.3-0.5 mm in length and are oviposited in habitats with rich organic substrate including 

animal feces or soil, which provide larvae with shelter, nutrition, and moisture.  Larvae resemble 

caterpillars and are best recognized by their prominent caudal setae (Fig. 1.1).  Fourth instar 

larvae will evacuate their gut contents as they search for drier substrate in which to pupate.  

Finding sand fly larvae and pupae in natural environments has proven unproductive and tedious 

(Feliciangeli 2004).  Sand fly pupae resemble chrysalises; the exuvia of the fourth larval instar 

anchors the pupa to a substrate (Maroli et al. 2013).  The life-cycle of a sand fly, from oviposition 

to adult, lasts approximately five weeks, including laboratory conditions (Volf and Volfova 

2011). 

Adult sand flies are less than 5 mm in length, delicate with long legs, densely hairy, and 

usually grey, black, brown, or sandy in color (Fig. 1.1.).  They are most active during crepuscular 

and nocturnal hours when they feed, and during the day they tend to rest in cool, humid, dark 

microhabitats such as tree buttresses, stables, caves, rock fissures, bird’s nests, termitaria, leaf 

litter, caves, animal burrows, latrines, and in homes (Rutledge and Gupta 2009).   Adults are poor  
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Fig. 1.1. Sample photographs of a larval sand fly (left) and adult sand fly (right) (from Maroli et 

al. 2013 and Alten et al. 2015) 

 

 

fliers and are known for their hopping behavior, which has substantiated the belief that 

sand flies are not very vagile (Killick-Kendrick 1999).  Their dispersal seldom exceeds one 

kilometer from their breeding sites (Quate 1964, Alexander and Young 1992).  The reason for 

their poor dispersal ability may be their inability to fly well in windy conditions.   

Both adult male and female sand flies require sugar for growth and development.  Sugar 

sources include plants and honeydew of hemipterans (Schlein and Warburg 1986, Killick-

Kendrick 1999).  Only adult female phlebotomines blood-feed, which they do on mammals, and 

the blood provides nutrition for egg development.  However, some species are autogenous and are 

able to complete one gonotrophic cycle without a blood meal (El Kammah 1973, Montoya-Lerma 

1992).  Females are guided to hosts via CO2, temperature, and humidity cues (Killick-Kendrick 

1999).  Mating can happen before, during, and after blood-feeding and usually occurs near the 

host.  Adult females are telmophagic and use their stylet-like mandibles, maxillae, and labrum to 

lacerate the skin and capillaries from which pooled blood can be imbibed (Black IV and 

Kondratieff 2005).  Because females blood-feed on humans, they are competent to transmit 

disease agents of medical importance.  Sand flies are associated with vectoring the agents that 

cause sand fly fever, bartonellosis, and leishmaniasis in humans.   



6 

 

 

Leishmaniasis. Leishmaniasis is regarded as a neglected tropical disease by the World 

Health Organization (WHO) and is caused by Leishmania protozoans (Trypanosomatida: 

Trypanosomatidae) (WHO 2013a).  Leishmania are dixenous parasites; they are capable of 

surviving in two hosts: mammals, including humans, and phlebotomine sand flies (Dostálová and 

Volf 2012, Maslov et al. 2013).  With very rare exceptions, female phlebotomine sand flies are 

the only way for humans to acquire an infection with Leishmania parasites.  These exceptions can 

include human venereal transmission, human congenital transmission, needle transmission, and 

blood transfusions (Killick-Kendrick 1999, Maroli et al. 2013).  In addition, it has been suggested 

that arthropods other than sand flies are capable of vectoring Leishmania: ticks (Coutinho et al. 

2005, Dantas-Torres et al. 2010, Paz et al. 2010, Dantas-Torres 2011, Solano-Gallego et al. 2012) 

and Forcipomyia and Culicoides midges (Ceratopogonidae) (Dougall et al. 2011, Seblova et al. 

2012, Slama et al. 2014). 

The first reports that leishmaniasis is caused by a parasite came from Major D.D. 

Cunningham of Britain and Army physician Peter Borovsky of Russia in the late nineteenth 

century.  The disease leishmaniasis is named after British Colonel W.B. Leishman who described 

the protozoan agent in 1903 in Dum Dum, India.  That same year, British Colonel C. Donovan, a 

military physician, linked the disease to parasites recovered from a spleen of a living patient.  For 

his work, the amastigote form of Leishmania is also referred to as Leishman-Donovan bodies 

(Crum et al. 2005). 

 Approximately ten percent of sand flies are competent to vector Leishmania to humans, 

and these species putatively belong to the genera Phlebotomus and Lutzomyia (Rutledge and 

Gupta 2009, Maroli et al. 2013, Akhoundi et al. 2016).  Several, but not all, requirements needed 

to incriminate Sergentomyia species as vectors have been met (Maia and Depaquit 2016).  

Competent Phlebotomus and Lutzomyia species together vector approximately twenty species of 

Leishmania that are pathogenic to humans (Bañuls et al. 2007, Antinori et al. 2012, Maroli et al. 
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2013).  The Phlebotominae ancestor likely evolved in the Triassic period, which preceded the 

origin of Leishmania (Jurassic) and mammals (Paleocene).  This means that Leishmania likely 

evolved from a trypanosomatid monoxenous insect parasite that eventually became dixenous 

mammal parasites, approximately 90 million years ago (Akhoundi et al. 2016).  Three hypotheses 

exist of the origin of Leishmania: Palaearctic (Kerr 2000, Kerr et al. 2000), Neotropical (Noyes et 

al. 2000), and Afrotropical (Momen and Cupolillo 2000).  Murid rodents were likely the first 

hosts for Leishmania and were responsible for dispersing Leishmania around the world (Schenk 

et al. 2013, Akhoundi et al. 2016).  Today, each species of Leishmania that is pathogenic to 

humans is maintained in areas where female sand flies, humans, and potentially other mammals 

overlap.  These foci can be divided into two epidemiological groups: zoonotic and anthroponotic 

leishmaniases (Maroli et al. 2013).  Zoonotic leishmaniases include a mammal reservoir host (e.g. 

opossums, monkeys, sloths, rodents, canines, hyraxes, anteaters) in the transmission cycle with 

humans (Gramiccia and Gradoni 2005).  In anthroponotic leishmaniases, humans are the only 

source of infection for phlebotomines (Desjeux 1996).  

Today, leishmaniasis is endemic in at least ninety-eight countries spanning five 

continents and is found in situations where there is poor housing, inadequate sanitation, and 

poverty (Fig. 1.2.) (Alvar et al. 2006, Alvar et al. 2012, WHO 2013a).  The disease occurs in 

semiarid, arid, urban, sylvatic, and rural regions (Desjeux 1996, Rutledge and Gupta 2009).  

Approximately 310 million individuals are at risk world-wide with an annual incidence of 1.3 

million cases, of which 20,000-40,000 deaths are attributed to leishmaniasis (WHO 2013a).  

Clinically in humans, the disease is manifested in two forms: visceral and cutaneous.  Of the 1.3 

million new cases of leishmaniasis each year, 300,000 are visceral and 1.0 million are cutaneous 

(WHO 2013a).  

 Visceral leishmaniasis, known as kala-azar, is the most severe presentation of the disease.  

Ninety percent of all visceral leishmaniasis cases occur in India (predominantly in the state of   
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Fig. 1.2. Global distribution of cutaneous (left) and visceral (right) leishmaniasis (from WHO 

2013a).  The countries highlighted in gray have no data available.  The countries highlighted in 

green represent countries with no autochthonous cases.  The countries highlighted in light pink 

(<100 new cases) to dark purple (>1,000 new cases) represent an increasing annual incidence of 

leishmaniasis.   

 

 

Bihar), Bangladesh, Nepal, Brazil, and Sudan (Hailu et al. 2005, WHO 2013a).  Symptoms of 

visceral leishmaniasis appear over a period of weeks and months, and people become increasingly 

anemic, lethargic, cachectic, and susceptible to secondary infections.  Clinical features of the 

disease include splenomegaly, anemia, pancytopenia, weight loss, weakness, and the disease is 

almost always fatal if untreated (Hailu et al. 2005) (Fig. 1.3). 

Cutaneous leishmaniasis, including the destructive mucocutaneous variant, is more 

geographically widespread than visceral leishmaniasis.  Ninety percent of cases are focused in the 

Maghreb region, the Middle East, Brazil, and Peru.  Recently, surveillance studies have 

discovered that the incidence of cutaneous leishmaniasis cases is increasing in countries 

surrounding these regions (Reithinger et al. 2007, Ready 2010).  Clinically, there is an initial 

erythema where the host was bitten by the sand fly.  Over the course of a few weeks to several 

months, the erythema becomes an ulcerating papule and eventually a lesion (Reithinger et al. 

2007) (Fig. 1.3.).  Fortunately, spontaneous healing usually results in lifelong protection from the 

specific Leishmania species, and it may offer cross-protection to other species.  A cutaneous scar 
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remains for the rest of the individual’s life.  In cases of mucocutaneous leishmaniasis, infection 

manifests as a non-self-healing, disfiguring, and potentially life-threatening destruction of the 

mucous membranes as the parasite metastasizes via the lymphatic system (Fig. 1.3.).  Often, the 

lips, cheeks, soft palate, pharynx, and larynx can be destroyed (Reithinger et al. 2007).  Besides 

the obvious physical challenges associated with cutaneous leishmaniasis, there is a potentially 

more impactful detriment.  The social, cultural, familial, and economic stigmas associated with 

this disease are a severe burden for people (Hotez 2008, Kassi et al. 2008, Hotez 2016).  

Cutaneous leishmaniasis has resurged recently in northern Africa and in the Middle East because 

of the political instability, political terror, and human diaspora (Hotez et al. 2012, Alasaad 2013, 

Salam et al. 2014, Fawcett and Hay 2015, Hotez 2015, Al-Salem et al. 2016, Berry and Berrang-

Ford 2016, Du et al. 2016, Mondragon-Shem and Acosta-Serrano 2016). 

Leishmania Development in Sand Flies. In the female sand fly vector, Leishmania 

parasites are contained only within the digestive tract following the blood-meal and undergo 

cyclodevelopmental horizontal transmission (Sacks 2001, Ramalho-Ortigão et al. 2007, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. Left: visceral leishmaniasis with outlined enlargements of spleens and livers. Center: 

cutaneous leishmaniasis with noticeable pathology on the face. Right: mucocutaneous 

leishmaniasis with destruction of the face and nasal cavity (Murray et al. 2005, Reithinger et al. 

2007, Ekiz et al. 2017). 
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Dostálová and Volf 2012).  Parasites of the subgenus Leishmania (suprapylarian leishmaniasis) 

are restricted only to the sand fly midgut prior to anterior migration while parasites of the 

subgenus Viannia (peripylarian leishmaniasis) enter the sand fly hindgut prior to anterior 

migration (Kamhawi 2006, Dostálová and Volf 2012).  Development of Leishmania in sand flies 

begins with the procyclic promastigote stage and concludes with the mammal-infecting 

metacyclic stage (Fig. 1.4.). 

Early Development and the Peritrophic Matrix. Leishmania development in the female 

sand flies begins when she ingests blood from a vertebrate host containing amastigote-infected 

macrophages (Rogers et al. 2008, Dostálová and Volf 2012).  The intracellular amastigote stage 

of Leishmania is only found within vertebrate host macrophages (Handman and Bullen 2002).  

Since sand flies are telmophagic, the laceration of vertebrate capillaries triggers macrophages to 

assist with wound damage and allows for the macrophages to be imbibed into the gut of the sand 

fly (Bates 2007). 

One of the first physiological processes to occur in the sand fly midgut is the formation of  

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 1.4. Overview of the developmental life stages of Leishmania parasites within a female sand 

fly and the days that each stage exists after a blood-meal.  From Kamhawi (2006). 
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a Type I peritrophic matrix, which is secreted by the sand fly midgut minutes after the 

ingestion of the blood meal as midgut cells are stretched and flattened as the volume of blood 

distends the midgut (Walters et al. 1993, Pimenta et al. 1997, Devenport and Jacobs-Lorena 2005, 

Sádlová and Volf 2009).   The peritrophic matrix is a semipermeable, extracellular layer that 

separates the luminal side of the midgut epithelial cells from the food bolus (Devenport and 

Jacobs-Lorena 2005).  Because the midgut is not protected with chitinous cuticle, the peritrophic 

membrane serves many purposes: it prevents clogging of the epithelial cell microvilli from 

improper food digestion and absorption, it compartmentalizes digestion by acting as a 

permeability barrier for digestive enzymes, and it protects the midgut from pathogenic microbes 

by acting as a barrier to their development (Pimenta et al. 1997).  This matrix, because it 

separates the food bolus from the midgut epithelial cells, must be permeable enough to allow 

digestive enzymes to cross it and reach the food bolus and for the digested products to diffuse in 

the opposite direction to be absorbed by the midgut (Devenport and Jacobs-Lorena 2005).  This 

feature of the peritrophic matrix is both beneficial and detrimental to the Leishmania parasite.  

The peritrophic matrix is the first physical barrier that Leishmania must overcome to complete 

their lifecycle in the sand fly (Rogers et al. 2008).  The peritrophic matrix is now known to serve 

a dual purpose for the Leishmania parasite.   

First, the peritrophic matrix serves as a partial physical barrier to the chitinases secreted 

in the sand fly midgut and protects the Leishmania as they transform from amastigotes to 

procyclic promastigotes in the first 24-48 hours after ingestion (Pimenta et al. 1997).  Procyclic 

promastigotes are weak, motile forms.  Changes in biochemical conditions moving from the 

mammal host to the sand fly gut trigger this morphological transformation (Bates 2007, 

Dostálová and Volf 2012).  The transition from amastigote to procyclic promastigote is when 

Leishmania is most vulnerable to proteolysis because during the same time interval, the ingestion 

of the blood meal by the female sand fly has induced a secretion of large numbers of enzymes.  
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These enzymes participate in various physiological processes that include, among others, 

bloodmeal digestion, and the peritrophic matrix limits the exposure of the parasites to the 

digestive enzymes (Pimenta et al. 1997, Ramalho-Ortigão et al. 2007, Jochim et al. 2008, 

Dostálová and Volf 2012, Pruzinova et al. 2015).   

Second, the peritrophic matrix serves as a barrier to the Leishmania.  After surviving the 

onslaught of proteolytic enzymes, the remaining procyclic promastigotes develop into 

nectomonads, which are large, slender, motile forms whose function is to escape the peritrophic 

matrix.  The nectomonads must escape the peritrophic matrix and establish infection or they are 

excreted when the blood meal is defecated 48-72 hours post-blood-meal (Sacks 2001, Kamhawi 

2006).  In this sense, the peritrophic matrix can be a detriment to Leishmania survival and 

development.  Escape from the peritrophic matrix is facilitated with both sand fly- and 

Leishmania- derived chitinases (Pimenta et al. 1997, Ramalho-Ortigão et al. 2001, Ramalho-

Ortigão and Traub-Csekö 2003, Joshi et al. 2005, Ramalho-Ortigão et al. 2005).   

The temporal relationship between Leishmania-derived chitinases and the sand fly-

induced chitinases is critical.  As Pimenta et al. (1997) describes, overexpression of chitinases by 

the Leishmania is detrimental to itself by degrading the peritrophic matrix too quickly, which 

makes it more porous for the sand fly-induced proteolytic enzymes to destroy the transforming 

amastigotes.  However, as Rogers et al. (2008) discovered, chitinase-overexpressing Leishmania 

that survive the enzyme attack are better able to escape the peritrophic matrix before it is 

defecated by using a combination of their own chitinases and the sand fly-induced chitinases.   

Overcoming Defecation with Lipophosphoglycan. Next, the Leishmania nectomonads 

must overcome midgut defecation of the blood-meal.  This barrier causes most Leishmania loss 

(Sacks 2001, Wilson et al. 2010).  It is imperative for Leishmania to persist in the midgut through 

the defecation of the blood-meal.  Fluorescent micrographs determined that Leishmania survive 
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blood-meal defecation by anchoring their flagella between the female sand fly’s microvilli of the 

midgut epithelial cells (Warburg et al. 1989). 

Leishmania anchor to the midgut epithelial microvilli with their outer surface 

lipophosphoglycan (LPG) molecules on their flagella (Pimenta et al. 1992, Pimenta et al. 1994, 

Sacks et al. 2000).  Pimenta et al. (1994) demonstrated that differences in the LPG molecules 

between different species of Leishmania contribute to varying sand fly vector competencies.  

LPG is festooned on the entire outer surface of the parasite and is structurally a dense glycocalyx 

(Sacks 2001).  Each LPG is a tripartite molecule comprised of a proximal 

glycophosphatidylinositol anchor, a hexasaccharide glycan core, and a distal phosphoglycan (PG) 

domain.  In all Leishmania species, the PG moieties all share a common backbone but are 

distinguished from other species by varying sidechains that come off the PG domain (Turco et al. 

1987, Ilg et al. 1992, McConville et al. 1992, McConville et al. 1995, Mahoney et al. 1999, 

Soares et al. 2002).   

Detachment from the Midgut. Having survived the bloodmeal digestion and defecation, 

the nectomonads must detach from the midgut epithelial microvilli to continue their lifecycle and 

effective transmission.  Metacyclogenesis initiates following microvilli detachment and has been 

initiated in vitro in conditions similar to an evacuated female sand fly midgut (e.g. low pH and 

nutrient depletion) (Bates 1994, Bates 2008).  The process of metacyclogenesis begins with 

conformational changes in the nectomonads.  It involves elongation of the LPG molecules by 

increasing the number of PG units and a regulating the number of side-chain substitutions 

(Pimenta et al. 1992, Sacks et al. 1995).  During metacyclogenesis, LPG can be shed, PG chains 

can be gained or elongated and the terminal sugars on the PG chains can become cryptic (Turco 

et al. 1987, Sacks et al. 1990, McConville et al. 1992, Pimenta et al. 1992, Sacks et al. 1995, 

Mahoney et al. 1999, Soares et al. 2002, Soares et al. 2005).  These changes promote the 

parasites’ ability to be transmitted.   
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Transmission to the Vertebrate Host. Following detachment from the midgut, the 

nectomonads migrate anteriorly towards the stomodeal valve. The stomodeal valve separates the 

foregut and midgut and ensures the unidirectional flow of food by preventing regurgitation (Volf 

et al. 2004).  It consists of a ring of cylindrical epithelial cells and is lined with cuticle.  Some 

nectomonads that reach the stomodeal valve transform into leptomonads, which are short forms 

that begin to replicate (Rogers et al. 2002, Bates 2007).  A percentage of leptomonads further 

differentiate into metacyclics, which are the vertebrate-infective form (Bates 2007).  Other 

nectomonads anchor into the cuticle-lined surface of the stomodeal valve and become 

haptomonads (Killick-Kendrick et al. 1974, Volf et al. 2004, Bates 2007, Rogers et al. 2008).   

Both the haptomonads and leptomonads play a vital, altruistic role in the transmission of 

the metacyclics.  Leishmania haptomonads help to degrade the sand fly’s stomodeal valve by 

separating the stomodeal valve cuticle from its epithelial cells, forcing the valve open, and 

destroying the valve via their own chitinases (Schlein et al. 1992, Volf et al. 2004, Rogers et al. 

2008).  Concurrently, the Leishmania leptomonads secrete a mucin-like filamentous matrix 

known as promastigote secretory gel (PSG) (Rogers et al. 2002).  PSG was first observed and 

recognized as a Leishmania-secreted substance by Stierhof et al. (1994, 1999).  The main 

component of PSG is proteophosphoglycan (PPG), which is unique to Leishmania and makes 

PSG resistant to proteinases (Ilg et al. 1996, Rogers et al. 2004).  The PSG plug is found to 

extend anteriorly into the stomodeal valve and oesophagus and posteriorly into the midgut.  This 

plug ultimately exerts strong mechanical pressure on the fore- and midgut walls (Rogers et al. 

2002, Volf et. al. 2004, Rogers et al. 2008).  Metacyclics are found at the poles of the plug, and 

this feature is thought to assist in their transmission (Bates 2007).   

Together, the haptomonad-damaged stomodeal valve and leptomonad-secreted PSG gel 

plug inoculated with metacyclics support the “blocked fly hypothesis” of Leishmania 

transmission (Bates 2007).  Leishmania physically obstruct the female sand fly’s alimentary canal 
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and must be regurgitated to fully blood-feed.  In Leishmania-infected female sand flies, the 

stomodeal valve remains open (because it is damaged and because of the obstructing PSG plug) 

when blood is imbibed such that the midgut contents and new blood from the host mix together, 

facilitating parasite transmission (Schlein et al. 1992).  This backflow of the midgut contents, 

including the PSG plug carrying Leishmania metacyclics, are deposited on the host skin as the 

female sand fly probes and feeds along with saliva (Rogers et al. 2004, Volf et al. 2004).  Rogers 

et al. (2004) found that the glycan moieties of the regurgitated PPG, and sand fly saliva, are 

virulence factors in the mammalian infection with leishmaniasis (Theodos et al. 1991). 

Rogers and Bates (2007) examined the potential manipulation that Leishmania have on 

the female sand fly.  They found that Leishmania behaviorally manipulate their sand fly host, 

such that the timing of Leishmania development is linked to the sand fly feeding persistence and 

enhancement of Leishmania transmission.  Specifically, they found that Leishmania link their 

infectivity (transformation of metacyclics) with the formation of PSG, reduce the lifespan of the 

female sand fly by exerting fitness costs (stomodeal valve destruction, gut distension, and 

resource diversion), do not alter sand fly fecundity, manipulate the female sand fly to persist in 

blood-feeding, and manipulate the female sand fly to feed on multiple hosts.  These behavioral 

manipulations are adaptive because they increase the virulence of mammalian infection by 

increasing the number of parasites per infected host (Rogers and Bates 2007).  These 

manipulations allow Leishmania to be evolutionary successful by helping to ensure their 

transmission to the human host around the world.   

Integrated Vector Management for Sand Flies. Effective integrated vector 

management (IVM) relies on using multiple control methods to reduce populations of vector 

insects in an effort to delay resistance and mitigate disease transmission (Denholm and Rowland 

1992).  IVM is effective when there is vertical collaboration of all levels of society, from local 

communities to businesses to local and state government to world-wide health agencies (WHO 
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2004).  Proper sand fly IVM in a geographic focus requires characterizing sand fly biology and 

ecology, sand fly population structure, reservoirs, and human population.  These factors should 

guide the implementation of control measures that will have the greatest success (Kishore et al. 

2006, Luckhart et al. 2010, Warburg and Faiman 2011).  While insecticides remain the primary 

resource for controlling sand flies, they are not the only resource.  IVM incorporates programs 

with aspects of environmental control, biological control, community control, that all have 

varying successes in controlling sand flies to diminish the spread of leishmaniasis.   

The goal of environmental control is to alter the physical environment to disrupt a sand 

fly population’s ecology, including breeding, resting sites, and oviposition, to disrupt 

leishmaniasis transmission (Kishore et al. 2006, Amóra et al. 2009).  Larval source reduction is a 

principle approach in environmental control (Beier et al. 2008), but this has been infeasible for 

sand flies because there is poor knowledge of breeding sites and larval environments (Feliciangeli 

2004).  Therefore, larval source reduction is not currently considered practical for controlling 

sand flies in field situations (Warburg and Faiman 2011).  Other types of environmental control 

have been considered for both larval and adult sand flies: treating soil cracks and habitats, 

plastering cracks and crevices of walls, pruning trees to increase sunshine, increased sewage 

treatment, disposal of garbage, vegetation removal, and reservoir control (Lane 1991, Coleman et 

al. 2006, Jassim et al. 2006, Sharma and Singh 2008, Amóra et al. 2009, Faulde et al. 2009, 

Warburg and Faiman 2011).  Which of these approaches will be most effective in vector control 

programs depends heavily on a strong understanding of the ecology of the sand flies in a 

particular leishmaniasis focus (Amóra et al. 2009). 

Many types of biological control have been considered for controlling sand flies, but 

there is a paucity of data.  Biolarvicides are not considered practical because of the diverse 

breeding habitats of sand flies (Kishore et al. 2006).  Phytochemicals have been demonstrated to 

be toxic against larvae and adults by interfering with their development and reproduction (Amóra 
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et al. 2009).  Entomopathogens, such as Bacillus thuringiensis and B. sphaericus have shown 

some success in the laboratory, although application in the field remains challenging (Amóra et 

al. 2009).  The entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae were 

effective at causing mortality in the sand flies P. papatasi, P. duboscqi, and L. longipalpis 

(Warburg 1991, Ngumbi et al. 2011).  Attractive toxic sugar baits applied as sprays and mixed 

with fruit juice in small field studies have shown success (Mascari and Foil 2010, Qualls et al. 

2015).  Interestingly, phlebotomines are reservoirs for the parasitic Psychodiella gregarines 

(Eugregarinorida: Lecudinidae), which can destroy laboratory colonies of sand flies, of which 

nearly 100% of flies are infected; in the field, the prevalence of sand fly infection is 

approximately 25%, which makes using gregarines for biological control unlikely (Votýpka et al. 

2009, Lantová and Volf 2014).  An intestinal nematode was discovered in L. longipalpis from 

Brazil, which under stressful laboratory conditions increases host colonization.  Its infectious and 

lethal effect on L. longipalpis could be exploited for biological control (Secundino et al. 2002). 

Synthetic pheromones have been shown to be effective, especially when used in conjunction with 

other methods (Bray et al. 2010, Bray et al. 2014).  While these biological control approaches 

have potential, their applicability to control sand flies in the field at large scales requires further 

exploration. 

Community control focuses on health education for the public where basic knowledge of 

leishmaniasis is critical and needs to be disseminated (Kishore et al. 2006).  There has been much 

research into the success of community control in Brazil, which has both endemic cutaneous and 

endemic visceral leishmaniasis.  There is a lack of knowledge among the public and health 

professionals.  Public health agencies lack an organized direction, and vector control specialists 

are employed transiently.  The leishmaniasis-affected citizens reside in poor areas and are unable 

to implement control measures.  Despite the collective knowledge of leishmaniasis, there remains 
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an impetus for continued, multi-disciplinary, focused, efforts to reach individuals who need 

serious assistance in combating leishmaniasis (Amóra et al. 2009).  

One success of an integrated approach for controlling sand flies comes from the U.S. 

military at Tallil Air Base (TAB) in southern Iraq during the intial stages of Operation Iraqi 

Freedom and Enduring Freedom.  In 2003, over one thousand cases of leishmaniasis were 

diagnosed in military servicemen (Lay 2004, Aronson et al. 2006, Aronson 2007, Schleier III et 

al. 2009).  Personal protective measures (PPM) including insecticide-treated bed nets and 

uniforms were poorly implemented to thwart sand fly bites because they were unavailable; 

because of noncompliance due to the extreme temperatures, blowing sand, and unfamiliarity; 

because many personnel were unfamiliar with the products; and because many products were 

ineffective (Coleman et al. 2006).  Accordingly, TAB implemented the “Leishmaniasis Control 

Plan” (LCP).  Its four objectives were: 1. sand fly surveillance and testing for Leishmania to 

assess risk. 2. ensuring personnel had access to and used PPM. 3. establishing a control program 

targeting sand flies and reservoirs such as canines and rodents through the application of residual 

insecticides to tents or buildings; hand-held, truck-mounted, and aerial insecticide sprays; thermal 

fogging applications of insecticides; and habitat destruction and 4. educating personnel about the 

risk of leishmaniasis and the PPM required to protect themselves (Coleman et al. 2006).  Over the 

course of several months, the LCP was successful in drastically lowering the number of 

leishmaniasis cases in U.S. military personnel (Aronson 2007).   

The collective IVM effort from environmental control, biological control, community 

control, and other approaches including mosquito nets, repellents, and sand fly trapping may still 

be insufficient for adequate leishmaniasis control (Lane 1991, Casanova 2001, Kishore et al. 

2006, Hoel et al. 2007, Gillespie et al. 2016).  Novel approaches are required.  Remote sensing 

and geographic information systems have allowed epidemiologists to map information about the 

geographic landscapes and to determine abiotic factors that are important to sand fly ecology and 
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leishmaniasis transmission (Kesari et al. 2011).  Rodent and cattle feed-through systems show 

promise in control of both larval and adult sand flies (Mascari et al. 2007, Mascari et al. 2008, 

Mascari et al. 2011, Poché et al. 2013).  Paratransgenic P. argentipes have been developed in the 

laboratory using a bacterial vehicle, but more work is needed to develop the system in the field to 

make P. argentipes refractory to Le. donovani (Hurwitz et al. 2011). 

Insecticide Control of Sand Flies. The unproven success of certain aspects of integrated 

vector management has forced public health programs that target sand flies to rely on chemical 

insecticides (Alexander and Maroli 2003).  The first attempt to control adult phlebotomines 

occurred in 1944 with DDT in the Rimac Valley of Peru, against Lu. verrucarum, and in the same 

year in Naples, Italy, against P. papatasi, both of which were considered successful.  Since then, 

synthetic insecticides have been used in many applications to control sand flies.  As part of 

control programs, sand flies have been exposed to four major classes of synthetic insecticides- 1) 

organochlorines 2) pyrethroids 3) organophosphates, and 4) carbamates.  These exposures have 

been either intentional in directed vector control efforts or have been inadvertent as part of 

malaria control efforts against anophelines (Alexander and Maroli 2003, Surendran et al. 2005, 

Alexander et al. 2009, Dinesh et al. 2010, Faraj et al. 2012, Hassan et al. 2012, Saeidi et al. 2012).    

Insecticides theoretically should be very effective against sand flies.  Sand flies move by 

hopping in short flights and must land on many surfaces as they approach, allowing for 

significant contact time (Killick-Kendrick 1999).  Insecticides have been applied via residual 

spraying of homes, tents, and animal shelters; barrier sprays in sylvatic environments on tree 

trunks and vegetation; in insecticide-treated bed nets; in sprays around termite mounds and 

animal burrows where sand flies breed and oviposit; in impregnated dog collars because dogs are 

reservoirs for zoonotic cutaneous leishmaniasis; in fumigants, ultra-low volume sprays, diffusers, 

foggers, and coils; and in spray clothes and mesh barriers (Alexander et al. 1995, Robert and 
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Perich 1995, Alexander and Maroli 2003, Orshan et al. 2006, Faiman et al. 2009, Claborn 2010, 

Coleman et al. 2011, Warburg and Faiman 2011, Müller et al. 2012, Calzada et al. 2013). 

Insecticide History and Mode of Action. Organochlorines came to exist in 1939 when 

dichlorodiethyltrichloroethane (DDT) was discovered to be an insecticide by Paul Müller (Coats 

1994).  Pyrethroids, derivatives of natural pyrethrum insecticides from Chrysanthemum spp., 

were commercialized on a large-scale in the 1970s (Davies et al. 2008).  Both DDT and 

pyrethroids are neurotoxic to insects and are ligands for insects’ voltage-gated sodium channels in 

axons of nervous tissue involved in action potential propagation.  When bound to the sodium 

channels, these insecticides cause changes in the channels’ ion conductance, ion selectivity, and 

gating properties.  Sodium channels remain open (activated) and are unable to inactivate, which 

causes a continued influx of sodium ions into the cell.  The cell remains hyper-excited, also 

known as “knockdown,” a sublethal incapacitating effect on the insect.  At the cellular level, 

nerve function is altered from continued action potential spasms and disrupted synaptic 

transmission.  This causes a systemic failure of the nervous tissue and ultimately death.  There are 

two groupings of pyrethroids that target sodium channels.  Type I pyrethroids cause sodium 

channel modifications that can last up to tens of milliseconds and effective in causing knockdown 

in insects.  Whereas, Type II pyrethroids cause sodium channel modifications that can last for 

many seconds and are effective in causing mortality in insects (Bloomquist and Miller 1986, 

Davies et al. 2007, Dong et al. 2014).   

Organophosphates (OP) were developed by the Axis powers during World War II as 

nerve gases because of their strong toxicity to humans, and carbamates (CX) are patterned after 

physostigmine, which is the agent isolated from the calabar bean (Coats 1994).  Both OPs and 

CXs are neurotoxins, but they have different targets than DDT and pyrethroids.  OPs and CXs 

target the acetylcholinesterase enzyme, which clears saturated cholinergic synapses of 

acetylcholine following synaptic transmission in nervous tissue.  OPs and CXs inhibit the 
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acetylcholinesterase’s functional ability by phosphorylating (OPs) or carbamylating (CXs) the 

catalytic serine hydroxyl group within the enzyme’s oxyanion hole.  Unable to hydrolyze 

acetylcholine into choline, acetylcholine builds up in the synapse and overstimulates the 

postsynaptic membrane of the dendrite.  For many OPs, the phosphorylation of 

acetylcholinesterases is irreversible, and the constant overstimulation of neurons leads to the 

insect’s death (Toutant 1989; Fukuto 1990; Costa 2006). 

Insecticide Resistance. 

“In any event, the spread of the resistant strains constitutes probably the best proof of the  

effectiveness of natural selection yet obtained.” - Theodosius Dobzhansky (1937) 

Genetics and the Origin of Species 

 

Most species of phlebotomines remain susceptible to insecticides (Coleman et al. 2011); 

however, around the world, there is increasing evidence of insecticide resistance.  The insecticide 

resistance phenotype is defined as a heritable, genetic change in response to insecticide exposure 

that allows for increased survival (Feyereisen 1995, Scott 1999, Hemingway et al. 2002).  

Organochlorines, pyrethroids, organophosphates, and carbamates are all contact insecticides 

(Kolbezen et al. 1954, Casida 1980), and so they must be applied frequently as they degrade.  

Often, delivering insecticides to the microhabitats where sand flies live, breed, and oviposit is 

difficult.  Insecticide treatments targeting sand flies, while initially successful, can degrade 

quickly due to harsh environmental conditions, and re-applications are necessary (Karapet’ian et 

al. 1983, Coleman et al. 2011).  The recurring application of insecticides can be indiscriminant, 

which has exerted tremendous selective pressure for insecticide resistance (Feyereisen 1995, 

WHO 2006).  Increasing the insecticide dosage in response to resistance only exacerbates the 

problem by increasing the frequency of the genetic trait(s) in a vector population (Feyereisen 
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1995).  Insecticide resistance continues to be a threat to the success of insect vector control 

programs that incorporate synthetic chemical insecticides (Rivero et al. 2010). 

Today, resistant sand fly populations have been documented in the Middle East, southern 

Asia, and South America (Yaghoobi-Ershadi and Javadian 1995, Singh et al. 2001, Surendran et 

al. 2005, Alexander et al. 2009, Dinesh et al. 2010, Afshar et al. 2011, Faraj et al. 2012, Hassan et 

al. 2012, Saeidi et al. 2012, Singh et al. 2012, Hassan et al. 2015, Khan et al. 2015, Kumar et al. 

2015, Singh and Kumar 2015).  The number of documented cases of sand fly insecticide 

resistance is low compared to other insect vectors, such as mosquitoes, and this may be due to 

limited field resources, inadequate monitoring, challenges in collecting the necessary number of 

live flies for using in resistance testing bioassays, and because there is a lack of a standardized 

sand fly bioassays to assess resistance to fully evaluate the susceptibility status to insecticides in 

sand flies in many countries (Alexander and Maroli 2003, Saeidi et al. 2012, Li et al. 2015).  It is 

important to understand the prevalence of insecticide resistance and its public health impact if 

resistance is more commonplace than currently understood.   

Detecting Insecticide Resistance. Managing insecticide resistance requires timely, 

accurate data through resistance monitoring and insecticide evaluation to assess a vector species’ 

susceptibility to insecticides (Surendran et al. 2005).  The primary way to assess insecticide 

resistance in many vectors, including sand flies, is to use insecticide susceptibility bioassays.  The 

two most commonly used bioassays worldwide are the WHO exposure kit bioassay and the 

Centers for Disease Control (CDC) bottle bioassay (Brogdon and Chan 2010, WHO 2013b).  

The WHO exposure kit bioassay is a standardized protocol that consists of an exposure 

kit containing tubes lined with filter papers that are impregnated with a specific concentration of 

an insecticide (WHO 2013b).  The CDC bottle bioassay protocol consists of exposing insects to 

concentrations of insecticide that are coated on the interior of glass bottles (Brogdon and Chan 

2010).  Both bioassays have been used to assess insecticide resistance in sand flies, but the WHO 
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bioassay is used more frequently (Santamaría et al. 2003, Surendran et al. 2005, Alexander et al. 

2009, Henriquez et al. 2009, Dinesh et al. 2010, Afshar et al. 2011, Faraj et al. 2012, Hassan et al. 

2012, Saeidi et al. 2012, Singh et al. 2012, Marceló et al. 2014, Coleman et al. 2015, Khan et al. 

2015, Kumar et al. 2015, Singh and Kumar 2015, Karakuş et al. 2016).  To assess resistance with 

the WHO and CDC bioassays, up-to-date diagnostic doses and diagnostic times are fundamental.  

A diagnostic dose of an insecticide is the lowest concentration that causes 100% mortality in a 

susceptible population in some time span, the diagnostic time (Brogdon and Chan 2010).  There 

are very few insecticides for which diagnostic doses and diagnostic times have been determined 

for sand flies (Santamaría et al. 2003, Henriquez et al. 2009, Marceló et al. 2014). 

One issue that has become apparent as the CDC bottle bioassay becomes more popular is 

defining resistance.  The WHO bioassay considers resistance when there is less than 90% 

mortality in the tested population, and the CDC considers resistance if there is less than 100% 

mortality in a tested population (Brogdon and Chan 2010, WHO 2013b).  These criteria for 

resistance for both bioassays are based on mosquitoes.  Saeidi et al. (2012) recommend tailoring 

resistance criteria for sand flies because of the physiological, behavioral, and size differences 

between mosquitoes and sand flies.  Synchronization of diagnostic doses, diagnostic times, and 

criteria for resistance in sand flies will certainly be needed as both the WHO and CDC bioassays 

continue to be used to assess resistance in sand fly populations (Owusu et al. 2015).  Despite the 

recent findings of insecticide resistance in sand fly populations around the world, there remains a 

dearth of information about the genetic mechanisms of resistance in these populations.   

Resistance Mechanisms. Insecticide resistance to synthetic insecticides has been found 

in many important insect vectors: mosquitoes, black flies, triatomines, lice, fleas, and sand flies 

(Hemingway and Ranson 2000, Rivero et al. 2010).  Four mechanisms of resistance are known to 

exist in insects: reduced penetration, behavior avoidance, target-site insensitivity, and metabolic 

detoxification (Ffrench-Constant et al. 2004, Hemingway et al. 2004, Nauen 2007, Lilly et al. 
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2016, Nansen et al. 2016).  Of the four, target-site insensitivity and metabolic detoxification are 

the two most geographically- and entomologically-widespread.  Today, there is evidence of 

target-site insensitivity and metabolic detoxification resistance to the four main classes of 

synthetic insecticides in all major vector species (Mallet 1989, Brogdon and McAllister 1998, 

Nauen 2007, Rivero et al. 2010). 

Target-Site Insensitivity. Target-site insensitivity resistance is caused by single nucleotide 

variants (SNVs) that cause nonsynonymous mutations and change the amino acid at that codon 

locus.  These mutations alter a protein’s conformation such that the insecticide is rendered 

ineffective because it can no longer interact with the target protein.  Many TSI-conferring 

mutations in proteins are conserved across insect species, insect families, insect orders, Insecta, 

and Arthropoda (Soderlund and Knipple 2003, Hemingway et al. 2004, Dong et al. 2014, Douris 

et al. 2016).   In many insect vectors, insensitivity resistance is conferred in three genes: paralytic 

(para), acetylcholinesterase-1 (ace-1), and resistance to dieldrin (Rdl). depending on the class of 

insecticide that resistance is targeted towards (Bloomquist 1996, Soderlund and Knipple 2003, 

Weill et al. 2003, Hemingway et al. 2004).   

Pyrethroids and DDT target the α-subunits of voltage-gated sodium channels of nervous 

tissue, which are encoded by the paralytic (para) gene.  Pyrethroids and DDT normally block the 

channels’ inactivation; cause action potential spasms, involuntary movements, and muscle spasms 

known as knockdown; and eventually kill the insect (Martins et al. 2009).  TSI in para that 

prevent knockdown is known as knockdown resistance (kdr).  Kdr in the para protein decreases 

the channels’ sensitivity to insecticides by decreasing ligand affinity and/or altering the kinetics 

of channels by favoring the closed-state and accelerating deactivation (Bloomquist and Miller 

1986, Davies et al. 2007, Davies et al. 2008, Burton et al. 2011, Dong et al. 2014).  The para 

protein has four domains, and each domain has six transmembrane helices.  Kdr SNV mutations 

have been discovered in many insect species across several orders: Blattodea, Coleoptera, 
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Diptera, Hemiptera, Lepidoptera, Phthiraptera, Thysanoptera, Siphonaptera.  Examples of insect 

kdr has been found in all four domains, and often there is convergent evolution at homologous 

loci, which highlights the importance of certain loci in their interaction with pyrethroids and DDT 

(Martinez-Torres et al. 1997, references in Dong et al. 2014) 

 Target-site insensitivity resistance to organophosphates and carbamates occurs in the 

acetylcholinesterase enzyme, which is encoded by the ace-1 gene.  Like kdr, SNVs have been 

discovered in ace-1, although not at nearly as many loci as in para.  These SNVs code for bulkier 

amino acids that block the interaction of the OP or CX with acetylcholinesterase (Weill et al. 

2002, Weill et al. 2003, Weill et al. 2004, Fournier 2005).  Target-site insensitivity mutations in 

ace-1 have been found in Diptera, Coleoptera, and Hemiptera (Fournier 2005). 

 The Rdl protein is the receptor for the neurotransmitter γ-aminobutyric acid (GABA) 

and is the target of cyclodiene insecticides (organochlorine).  GABA ligand binding to the GABA 

receptor activates chlorine ion channels in nervous tissue.  Rdl has the fewest known examples of 

target-site insensitivity of the three genes that have been discussed.   Only a single codon has 

been shown to confer target-site insensitivity in Rdl, but there has been convergent evolution of 

mutations at this same across many orders of insects (Anthony et al. 1998, Hemingway et al. 

2004, references in Nakao 2016). 

 Metabolic Detoxification. Metabolic detoxification (MD) resistance involves changes 

in the expression of specific enzymes [carboxylesterases (EST), cytochrome P450s (MFO), and 

glutathione S-transferases (GST)] that are capable of binding, sequestering, and metabolizing 

insecticides (Hemingway 2000, Hemingway and Ranson 2000, Ffrench-Constant et al. 2004).  

Increasing the numbers of these enzymes is achieved through gene amplification or through 

changes in gene expression (Rivero et al. 2010).  It is also common for enzyme classes correlated 

with metabolic resistance to detoxify multiple insecticide classes. ESTs can detoxify 

organophosphates, carbamates, and pyrethroids; MFOs can detoxify all insecticide classes; and 
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GSTs can detoxify organophosphates, organochlorines, and pyrethroids (Hemingway and 

Karunaratne 1998, Hemingway 2000, Corbel et al. 2007, Perera et al. 2008, Che-Mendoza et al. 

2009, David et al. 2013). 

Assessing Resistance Mechanisms.  

Target-Site Insensitivity. Linking TSI conferring genes and SNVs has its origins with kdr 

and para in Drosophila melanogaster (Loughney et al. 1989).  Allelism assays were soon 

developed for D. melanogaster and other orthologous para genes in other insects (Doyle and 

Knipple 1991, Williamson et al. 1993, Knipple et al. 1994).  Following those breakthroughs, 

associations were made between TSI and ace-1 and Rdl (Ffrench-Constant et al. 1993, Zhu et al. 

1996).  Advances in sequencing technologies have allowed for an explosion of reverse 

transcription PCR, PCR, allele-specific PCR, and real-time PCRs to become the standards for 

identifying SNVs associated with TSI (Martinez-Torres et al. 1998, Brengues et al. 2003, Bass et 

al. 2004, Weill et al. 2004, Verhaeghen et al. 2006, Bass et al. 2007, Saavedra-Rodriguez et al. 

2007, García et al. 2009).   

One limitation of conventional assessment of TSI is that the genomic region being 

examined is very small compared to the entire genome, and this potentially constrains researchers 

from identifying other TSI mutations.  Genome-wide association mapping can now be done with 

whole-genome techniques, such as genotype-by-sequencing, that identify thousands of SNVs 

associated with a trait of interest, such as insecticide resistance (Romay et al. 2013, Comeault et 

al. 2014, Comeault et al. 2015).   

Metabolic Detoxification. Biochemical assays are used to assess for metabolic 

detoxification.  These assays measure the activity levels of ESTs, MFOs, GSTs, ρ-nitrophenyl 

acetate (PNPA), and acetylcholinesterase.  Biochemical assays are microplate colorometric assays 

that quantify the activity of detoxifying enzymes (Valle et al. 2006).  MD has been assessed using 

biochemical assays in several vector groups: mosquitoes, lice, triatomines, and sand flies 



27 

 

 

(Hemingway et al. 1999, Picollo et al. 2005, Corbel et al. 2007, Ghosh et al. 2015).  Biochemical 

assays have assessed MD in sand flies in Brazil, Sudan, and Sri Lanka (Surendran et al. 2005, 

Alexander et al. 2009, Hassan et al. 2012).  Biochemical assays are limited in that they only 

measure the activity of the enzymes, not the mechanism(s) controlling their activities (Ranson et 

al. 2011).  Nonetheless, biochemical assays are useful in giving a useful profile of families of 

resistance-conferring enzymes (Surendran et al. 2005). 

Overview of Chapters. Despite the recent findings of widespread insecticide resistance 

in phlebotomine sand fly populations around the world, there is limited information about the 

genetic mechanisms of resistance in these populations.  One goal of this dissertation is to 

investigate both known and novel mechanisms of insecticide resistance in two sand fly species 

under artificial selection and to make inferences from an evolutionary perspective.  The second 

goal was to provide worldwide phlebotomine researchers baseline insecticide susceptibilities in 

order to assist applied field research in identifying insecticide populations of sand flies.  Being 

able to identify resistant populations of sand flies and the mechanisms of resistance in these 

populations will provide valuable insight for vector biologists and public health officials in 

making appropriate, informed, and effective decisions about sand fly control to lessen the burden 

of leishmaniasis around the world. 

 

Chapter 2 provides a novel approach to blood-feeding the sand fly Phlebotomus papatasi 

in the laboratory.  It reviews literature about the importance of working with laboratory colonies 

of sand flies and the type of basic and applied research that has resulted from it while discussing 

how to maintain these colonies in the laboratory.  We compared the effectiveness of three blood-

feeding methods in terms of the proportion of blood-fed female P. papatasi, and we looked at the 

importance of the number of females in the colony on blood-feeding success.  We found that in 
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vivo blood-feeding feeds the largest proportion of female P. papatasi, but in vitro methods may 

be comparable in large-sized colonies.  

[Denlinger, D. S., A. Y. Li, S. L. Durham, P. G. Lawyer, J. L. Anderson, and S. A. 

Bernhardt. 2016. Comparison of in vivo and in vitro methods for blood feeding of Phlebotomus 

papatasi (Diptera: Psychodidae) in the laboratory. J. Med. Entomol. 53: 1112-1116.] 

 

 Chapter 3 examines the insecticide susceptibility of Phlebotomus papatasi and Lutzomyia 

longipalpis sand flies using a hybrid of the CDC bottle bioassay and WHO exposure kit bioassay.  

The goal was to determine lethal concentration doses for ten different insecticides that caused 

50%, 90%, and 95% mortality.  The lethal concentration values causing 50% mortality for 

permethrin and malathion served as doses for our artificial selection experiments in Chapters 5 

and 6.   

[Denlinger, D. S., S. Lozano-Fuentes, P. G. Lawyer, W. C. Black IV, and S. A. Bernhardt. 

2015. Assessing insecticide susceptibility of laboratory Lutzomyia longipalpis and Phlebotomus 

papatasi sand flies (Diptera: Psychodidae: Phlebotominae). J. Med. Entomol. 52: 1003-1012.] 

 

 Chapter 4 builds upon Chapter 3 by determining diagnostic doses and diagnostic times 

for the same ten insecticides tested in Chapter 3.  These data represent the first large collection of 

diagnostics using the CDC bottle bioassay protocol for phlebotomine sand flies.  These data will 

serve as important baselines for understanding the susceptibility status of sand flies from 

populations around the world. 

[Denlinger, D. S., J. A. Creswell, J. L. Anderson, C. K. Reese, and S. A. Bernhardt. 2016. 

Diagnostic doses and times for Phlebotomus papatasi and Lutzomyia longipalpis sand flies 

(Diptera: Psychodidae: Phlebotominae) using the CDC bottle bioassay to assess insecticide 

resistance. Parasit. Vectors. 9: 212.] 
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Chapter 5 examines the mechanisms of insecticide resistance in laboratory colonies of 

Phlebotomus papatasi and Lutzomyia longipalpis under artificial resistance selection to 

permethrin and malathion.  We document our process in artificially selecting for resistance over 

the course of several years.  We tested for evidence of target-site insensitivity and metabolic 

detoxification in multiple early-exposed generations.  No evidence of target-site insensitivity or 

metabolic detoxification was found.  We conclude by discussing possible reasons for the lack of 

these mechanisms.  The ability for these populations to survive continued insecticide exposure for 

multiple years suggests that other mechanisms may be responsible 

  

Chapter 6 builds upon Chapter 5 by examining the standing genetic variation of 

insecticide-susceptible Phlebotomus papatasi and Lutzomyia longipalpis.  Susceptible individuals 

of each species were exposed to permethrin or malathion.  Genotype-by-sequencing identified 

single nucleotide variants throughout the genomes of each species.  We found, in all four 

treatments, that insecticide survival is a heritable trait with a modest genetic architecture and 

polygenic mechanisms.  Several variants were found that associated strongly with survival, and 

their genetic consequences were determined using VectorBase.  To conclude, the evolutionary 

implications of monogenic and polygenic resistance are discussed. 

 

 Chapter 7 is the concluding chapter where I summarize the results found in Chapters 2-6.  

I finish by making evolutionary comparisons between the global issues of insecticide resistance 

and antimicrobial resistance, and I conclude by speaking to the social media movement in 

bringing global awareness to these critical issues that we face. 
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CHAPTER 2 

 

COMPARISON OF IN VIVO AND IN VITRO METHODS FOR BLOOD FEEDING 

 

PHLEBOTOMUS PAPATASI (DIPTERA: PSYCHODIDAE) IN THE 

 

LABORATORY1 

  

 

 

Abstract 
 

Phlebotomus papatasi Scopoli is a medically-important insect that has been successfully 

colonized in the laboratory, and blood-feeding is critical for colony propagation. There has been 

much interest in developing established protocols for in vitro blood-feeding systems. The 

objective of this study was to determine if a Parafilm membrane and a hog’s gut membrane could 

be successfully used with in vitro feeding systems. We evaluated percentages of P. papatasi 

females that blood-fed on different blood-feeding systems (a mouse, a Hemotek® feeder, or a 

glass feeder) used with either a Parafilm or a hog’s gut membrane, with cohorts of 250 and 500 P. 

papatasi females, and with or without external exhalations. For all feeding system combinations, 

female P. papatasi blood-fed in higher percentages when in cohorts of 500 individuals and in the 

presence of exhalations. Higher percentages of P. papatasi fed on a mouse, but this study also 

demonstrates that P. papatasi will readily feed with in vitro feeding systems using a Parafilm 

membrane or a hog’s gut membrane. This study suggests that female P. papatasi may use an 

invitation effect to blood-feed and are attracted to blood sources via chemical olfaction cues, both 

of which have been characterized in other blood-feeding arthropods. Our study demonstrates that 

a Parafilm membrane or a hog’s gut membrane, in conjunction with the Hemotek® or glass 

                                                           
1 Coauthored by David S. Denlinger, Andrew Y. Li, Susan L. Durham, Phillip G. Lawyer, Joseph 

L. Anderson, and Scott A. Bernhardt. Reprinted from Journal of Medical Entomology. Vol. 5. 

Pages 1112-1116, 2016. < http://jme.oxfordjournals.org/content/53/5/1112>. 
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feeder system, is potentially a viable alternative to live rodents to blood-feed a colony of P. 

papatasi.  

 

 
The establishment of laboratory colonies is critical for understanding the biology of 

arthropods that vector disease agents (Yaghoobi-Ershadi et al. 2007). Researchers using 

laboratory colonies of phlebotomine sand flies (Diptera: Psychodidae) have been able to study 

sand fly systematics, physiology, insecticide efficacy, disease transmission, and vaccine 

development (Rowton et al. 2008, Volf and Volfova 2011). Fewer than 60 sand fly species have 

been successfully reared in the laboratory, and even fewer have been reared in large numbers 

(Maroli et al. 1987, Harre et al. 2001, Chelbi and Zhioua 2007, Ivović et al. 2007, Mann and 

Kaufman 2010, Alarcón-Elbal et al. 2011, Castillo et al. 2015, Oliveira et al. 2015, Goulart et al. 

2015).   

Phlebotomus papatasi Scopoli, the principal vector of Leishmania major, the agent of 

cutaneous leishmaniasis, is one sand fly species that has been successfully colonized in the 

laboratory (Chelbi and Zhioua 2007). Laboratory P. papatasi females blood feed on anesthetized 

rodents (e.g. mice, hamsters, guinea pigs) to acquire a bloodmeal. The blood of these rodents 

yields sufficient sand fly fecundity, and P. papatasi females are able to readily adapt to feeding 

on these laboratory hosts (Modi and Rowton 1999, Harre et al. 2001, Volf and Volfova 2011).     

To maintain colonies of sand flies, a large number of rodents are required to meet the 

sand fly feeding demands. The cost and maintenance of supporting rodent colonies have 

advocated for alternative blood-feeding methods to be investigated (Ward et al. 1978, Harre et al. 

2001).  Rowton et al. (2008) showed that membrane-feeding was a viable alternative to 

anesthetized hamsters in terms of fecundity and the hatching success of eggs of P. papatasi. 
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The use of Parafilm has garnered little attention as a potential membrane for in vitro 

membrane-feeding. Ready (1978) found that Lutzomyia longipalpis fed more intensely through a 

chick skin membrane than a Parafilm membrane. In that same year, Ward et al. (1978) found that 

Lu. flaviscutellata did not successfully feed through Parafilm membrane. Overall, Parafilm has 

not been endorsed as a viable, alternative membrane (Volf and Volfova 2011). In addition, 

chicken membranes are often used with in vitro feeding systems for Phlebotomus and Lutzomyia 

species (Harre et al. 2001, Noguera et al. 2006, Rowton et al. 2008), but a hog’s gut membrane 

has been used for feeding Lu. shannoni (Mann and Kaufman 2010). In this study, we demonstrate 

that P. papatasi females feed through a Parafilm membrane and a hog’s gut membrane using a 

Hemotek® feeding system, as well as successfully demonstrating the use of a hog’s gut 

membrane with a glass feeder system.   

Materials and Methods 

 

 Phlebotomus papatasi Colony. The Phlebotomus papatasi sand flies used in this study 

were from a laboratory colony at Utah State University (USU, Logan, UT). This colony was 

derived from a long-established P. papatasi colony maintained at Walter Reed Army Institute of 

Research (Silver Spring, MD). All stages were reared in an environmental growth chamber at 

25˚C, 85% relative humidity, and a photoperiod of 16:8 (L:D) h according to methods of Lawyer 

et al. (1991) and Modi and Rowton (1999). Larvae were fed a composted 1:1 mixture of rabbit 

feces and rabbit food (Young et al. 1981, Volf and Volfova 2011). Adults were provided 30% 

sucrose-water solution daily on saturated cotton balls. 

 Only female P. papatasi were used in this experiment. All females used were at least 2-d 

post-eclosion and had never blood-fed. The blood feed trials occurred on the same day and time 

(between 0900 and 1100 hours), and within the same growth chamber as the main laboratory sand 

fly colonies. Adult females used in the feeding trials were aspirated and counted from the main 

colony and released into 24x24x24” cages (BioQuip, Rancho Dominguez, CA).   
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 Feeding Trials. Four replicates of each treatment combination (feeding 

system:membrane, 250 or 500 adult female P. papatasi, and with or without external exhalations) 

were completed. For trials with exhalations, the investigator exhaled in the direction of the feeder 

unit ten times every five minutes. The same investigator exhaled for all the replicates. The 

exhalations were performed to simulate natural carbon dioxide emissions from an animal host. 

Female sand flies that had blood-fed were visually confirmed and were counted as blood-fed if 

they were fully engorged or if they had any blood that was visible in the gut.   

 In vitro Membranes. Two membranes for in vitro blood-feeding were used in this 

experiment: hog’s gut and Parafilm. Hog’s gut was cleaned with de-ionized water and stored at -

20ºC until used. On the day a piece was to be used, the membrane was brought to 25ºC and 

blotted dry before being used with the feeder units. For Parafilm (Neenah, WI), on the day a piece 

was to be used, the piece was cut, stretched, and wrapped around an investigator’s arm for 10 

minutes. Wrapping the Parafilm around the investigator’s arm was an attempt to allow sweat and 

odorants to adsorb onto the Parafilm to lure the females to the heated blood source. The Parafilm 

was then removed from the arm such that the surface in contact with the skin was the outer 

membrane and in direct contact with the probing sand flies. The Parafilm was further stretched, 

tightened, and sealed to an artificial feeding unit. 

In vitro Artificial Feeders. Two in vitro artificial feeding systems were used for this 

experiment: the Hemotek® PS5 electrical feeder (Discovery Workshops, Accrington, United 

Kingdom) and glass feeders (Kontes Custom Glass, Vineland, NJ). For the Hemotek® feeder, the 

Parafilm or hog’s gut membrane was secured to the feeder unit using an O-ring, and 1.5 ml of 

defibrinated bovine blood was added. The now-ready Hemotek® unit was attached to the heating 

source and set to 38˚C, placed inside the sand fly cage on a stand, and female sand flies were 

allowed to blood-feed across the membrane for 1 h (Fig. 2.1A.). For the glass feeders, the 

Parafilm or hog’s gut membrane was secured to the open end of the feeder using a rubber band, 
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and 1.5 ml of defibrinated bovine blood was added. One feeder was placed inside the sand fly 

cage, horizontally secured to a stand, and the blood was heated to 38˚C from circulating water 

using a peristaltic pump (Woessner 2007) and a Fisher Scientific IsotempTM model 2340 water 

bath (Fisher Scientific, Marietta, OH). For 1 h, female sand flies were allowed to blood-feed 

across the membrane.  

Mouse Blood-Feed.  One hairless mouse was anesthetized via intraperitoneal injection of 

a cocktail of ketamine/xylazine/acepromazine maleate. Once immobilized, the mouse was placed 

on its side inside the middle of the cage. Female sand flies were allowed to blood-feed on the 

mouse for 1 h (Fig. 2.1B.).    

 Statistical Analyses.  Statistical analyses were performed using SAS/STAT 14.1 in the 

SAS System for Windows 9.4 TS1M3 using the GLIMMIX procedure (SAS Institute 2015). We 

conducted analyses of two data subsets to accommodate the fact that the mouse feeding system 

cannot be combined with “no exhalations” as it is a living organism.   

 The effects of an in vitro feeder (Hemotek® feeder or glass feeder), membrane (Parafilm 

or hog’s gut), exhalation (presence or absence), and number of females in the cage (250 or 500) 

 

A.      B.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.1. Images of an aggregation of female P. papatasi sand flies feeding through a Parafilm 

membrane with the Hemotek® PS5 in vitro blood-feeder (A) and on anesthetized hairless mouse 

(B).  
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on the percentage of female P. papatasi that blood-fed were analyzed using a four-way factorial 

in a completely randomized design. The effects of feeding system:membrane (mouse, Hemotek® 

feeder:Parafilm membrane, Hemotek® feeder:hog’s gut membrane, glass feeder:Parafilm 

membrane, glass feeder:hog’s gut membrane) and number of females (250 or 500) on the 

percentage of female P. papatasi that blood-fed, only with exhalations, were assessed using a 

two-way factorial in a completely randomized design.      

 Both analyses used a generalized linear model with a binomial distribution and a logit 

link, with observation-level variance estimated to address overdispersion. Pairwise comparisons 

among means were adjusted for inflated Type I error using the Tukey method. A threshold of α = 

0.05 was used for all analyses. 

Results 

 Feeding trials. Mean percentages of female P. papatasi that blood-fed in each trial 

combination are shown in Table 2.1. The mouse system had the highest observed mean 

percentage of females that blood-fed of any of the treatment combinations (38.3% with 500 

females). The glass feeder with a hog’s gut membrane, 500 females, and exhalations had the 

highest observed mean percentage of females that blood-fed of any in vitro combination (26.5%). 

The Hemotek® system with a Parafilm membrane, 250 females, and no exhalations had the 

lowest observed mean percentage of females that blood fed of any in vitro combination (0.8%).  

 In vitro Feeding Outcomes. A higher percentage of female P. papatasi blood-fed in 

larger cohorts of 500 than in cohorts of 250 (P = 0.011). Presence of exhalations increased the 

percentage of female P. papatasi that blood-fed (P < 0.001), as well as the increase was more 

pronounced with the Hemotek® feeder (P = 0.028). The percentage of female P. papatasi that 

blood-fed was higher with hog’s gut membranes than Parafilm (P < 0.001), particularly in the 

absence of exhalations (P < 0.001).   

 In vivo and in vitro Feeding Outcomes in the Presence of Exhalations. The effect of 
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Table 2.1. Mean percentage (± SD) (n=4 per treatment combination) of female P. papatasi 

that blood-fed. 
 Exhalations 

No Yes 

No. of flies in replicate No. of flies in replicate 

250 500 250 500 

Feeder:Membrane     

Mouse 

Glass Feeder:Parafilm 

 

1.0% (± 1.0%) 

 

3.6% (± 0.6%) 

26.4% (± 9.2%) 

7.0% (± 1.7%) 

38.3% (± 3.4%) 

21.0% (± 3.1%) 

Glass Feeder:Hog’s 

Gut 

15.6% (± 5.9%) 18.2% (± 3.9%) 14.9% (± 6.7%) 26.5% (± 10.9%) 

Hemotek®:Parafilm 0.8% (± 0.7%) 1.3 % (± 0.7%) 8.4% (± 4.6%) 22.3% (± 2.7%) 

Hemotek®:Hog’s Gut 6.1% (± 3.1%) 5.5% (± 2.8%) 23.7% (± 12.6%) 23.6 % (± 7.5%) 

 

 

cohort size on percentage of female P. papatasi that blood-fed was not the same for all five 

system:membrane combinations (P = 0.041). With a cohort of 500 female P. papatasi, the 

percentage of females that blood-fed with the mouse system was higher than the percentage with 

any in vitro feeding system (Hemotek® feeder:Parafilm membrane system, P = 0.004; Hemotek® 

feeder:hog’s gut membrane system, P = 0.010; glass feeder:Parafilm membrane system, P = 

0.002; and glass feeder:hog’s gut membrane system, P = 0.055). With a cohort of 250 females, 

the percentage of females that blood-fed with the mouse system was larger than any in vitro 

feeding system using Parafilm (Hemotek® feeder:Parafilm membrane, P = 0.008; glass 

feeder:Parafilm membrane, P = 0.004). The mouse feeding system was not distinguishable from 

either hog’s gut membrane feeding system (Hemotek® feeder:hog’s gut membrane, P = 0.987; 

glass feeder:hog’s gut membrane, P = 0.185). With the mouse system, the percentage of females 

that blood-fed was higher with cohorts of 500 than with 250 (P = 0.028). 
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Discussion 

The findings from this study demonstrate that an in vitro feeding system using Parafilm 

and/or hog’s gut membrane can be successfully used to feed female P. papatasi a blood meal, 

which counters previous reports that suggest that in vitro feeding systems with a Parafilm 

membrane will not adequately provide the required blood meal to sand flies (Ready 1978; Ward 

et al. 1978). This option reduces the cost burden, potential safety hazards, and the need for 

additional protocols associated with maintaining and handling live animals and controlled 

substances (Costa-da-Silva et al. 2014). 

Our initial efforts with the Hemotek® feeder and a Parafilm membrane involved 

numerous iterations to find an effective blood feeding method. Preliminary attempts included the 

use of baited lures with octenol to attract female P. papatasi to the blood source, but these were 

not very effective at increasing the feeding rate. Using arm-wrapped Parafilm with intermittent 

exhaling into the cage near the Hemotek® feeder was a successful combination to lure P. 

papatasi females to the blood source. Many hematophagous Diptera are attracted to some 

combination of chemicals including carbon dioxide, water vapor, and host odors (Gibson and 

Torr 1999). Pinto et al. (2001) found that the closer carbon dioxide traps and human-baited traps 

were positioned to one another, the fewer Lutzomyia sand flies were trapped in carbon dioxide 

traps compared to human-bait traps. Bernier et al. (2008) found that traps baited with carbon 

dioxide and human hair captured more sand flies, although not significantly more, than traps with 

only carbon dioxide or with carbon dioxide plus octenol. Kline et al. (2011) discovered that black 

traps with body heat, moisture, and carbon dioxide captured roughly 40 times more P. papatasi 

than equivalent traps without carbon dioxide. The feasibility of humans to provide carbon dioxide 

in the form of human exhalants may not be deemed practical for long-term, large-scale mass 

rearing of P. papatasi in the laboratory. Other sources of carbon dioxide, such as compressed 

carbon dioxide, or less frequent intervals of human exhalations, should be considered when using 
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in vitro systems of blood-feeding. The research findings from this study though, suggest and 

support a combination of body odorants with carbon dioxide as a potent lure for sand flies. 

   Higher percentages of female P. papatasi blood-fed when in cohorts of 500 compared to 

250. This effect may be explained by an aggregation behavior on hosts or blood feeding sites 

(Tripet et al. 2009). We observed that an aggregation would initiate when a single female probed 

the Parafilm membrane, hog’s gut membrane, or mouse until the sand fly found a suitable 

location to blood-feed (Fig. 2.1A, 2.1B). Schlein et al. (1984) was able to characterize the 

invitational effect for P. papatasi via a pheromone released from the palps of females. The 

invitational effect has been characterized in another sand fly species, Lutzomyia longipalpis, as 

well as ceratopogonids, simuliids, and Ambylomma ticks (Norval et al. 1989, Blackwell et al. 

1994, McCall and Lemoh 1997, Tripet et al. 2009). Aggregations of Lu. longipalpis during blood 

feeds have been suggested to benefit individual females by needing to produce less saliva, 

truncating the time needed complete blood-feeding, and having higher fecundity (Tripet et al. 

2009).   

The use of biological membranes with in vitro feeding systems has been demonstrated to 

be effective in blood-feeding sand flies (Harre et al. 2001, Noguera et al. 2006, Rowton et al. 

2008, Mann and Kaufman 2010). Even with the seemingly low P. papatasi blood-feeding rates 

demonstrated in this study, a Hemotek® feeder with a Parafilm membrane has been used 

successfully at Utah State University to establish new colonies, as well as to maintain 

longstanding colonies. For example, we used a Hemotek® with Parafilm membrane system to 

obtain sufficiently large quantities of flies for the analysis of insecticide resistance (Denlinger et 

al. 2015, Denlinger et al. 2016). Even with an in vitro system feeding rate ranging from 8% to 

22% (Table 2.1.), researchers working to establish a newly formed colony are capable of 

successfully feeding and capturing substantial numbers of female sand flies needed to oviposit on 

a weekly basis through multiple blood-feeds, thereby establishing a colony within a few 



68 

 

 

generations. We hypothesize that a larger colony (e.g. 750, 1000, or 2000 females) would 

increase the percentage of female P. papatasi that blood-feed. A limitation of this study was that 

fecundity rates were not evaluated for all feeding system combinations. It is important to note 

though, that during the initial months of establishing a P. papatasi colony at Utah State 

University when Parafilm was discovered to be an effective membrane, the colony consistently 

yielded sufficient numbers of viable eggs from generation to generation.   

The P. papatasi colony used in this study originally derived from a 30-year established 

colony maintained at the Walter Reed Army Institute of Research. That colony has a history of 

blood-feeding using hamsters and was not pre-adapted for feeding across a membrane used with 

an in vitro feeding system. This history suggests that host-seeking traits in laboratory P. papatasi 

can be quickly selected for and that feeding on a different host or membrane (i.e. mouse, Parafilm 

membrane, or hog’s gut membrane) does not have significant detrimental effects on fecundity.   

Further studies could be developed to understand the success, utility, and impacts of an in 

vitro feeding system, with a Parafilm or hog’s gut membrane, with respects to fecundity and 

hatching rates as a viable alternative where live animals are not feasible as a blood-source. For 

example, studies could include analyzing impact on fecundity and survival of recently field-

collected sand flies, its utility in mass-rearing other laboratory-colonized sand fly species capable 

of vectoring Leishmania, and its ability for initiating and maintaining sand fly species that are not 

yet successfully colonized in the laboratory. Our study demonstrates that in vitro feeding system 

combinations were effective for a single colony of P. papatasi. Feeding success may vary for 

different geographic P. papatasi collections from around the world. In addition, in vitro blood-

feeding systems, especially with a Parafilm membrane, may be viable for other laboratory uses, 

like vector competence analysis. For example, in studies examining sand fly vector competence, 

chick skin membranes have been used with in vitro blood-feeding systems for many types sand 

fly species with Leishmania-infected blood (Hlavacova et al. 2013; Pruzinova and Volf 2013; 
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Sadlova et al. 2013). The effect of Parafilm in lieu of a biological membrane needs to be 

investigated as a potential membrane in vector competence studies.   

The findings from this study suggest that a Parafilm or hog’s gut membrane used with 

either the Hemotek® or glass feeder system is well-suited for maintaining large P. papatasi 

colonies. These combinations can be considered as alternative feeding systems in lieu of rodents 

if the costs and maintenance of keeping rodents is prohibitive.  This option could also potentially 

be used to conduct additional studies to further the understanding of vector competence and the 

sand fly’s contribution to disease transmission. 
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CHAPTER 3 

ASSESSING INSECTICIDE SUSCEPTIBILITY OF LABORATORY LUTZOMYIA 

LONGIPALPIS AND PHLEBOTOMUS PAPATASI SAND FLIES (DIPTERA: 

PSYCHODIDAE: PHLEBOTOMINAE)2 

 

Abstract 

Chemical insecticides are effective for controlling Lutzomyia and Phlebotomus sand fly 

(Diptera: Psychodidae) vectors of Leishmania parasites.  However, repeated use of certain 

insecticides has led to tolerance and resistance.  The objective of this study was to determine 

lethal concentrations (LCs) and lethal exposure times (LTs) to assess levels of susceptibility of 

laboratory Lutzomyia longipalpis (Lutz and Neiva) and Phlebotomus papatasi (Scopoli) to 10 

insecticides using a modified version of the WHO exposure kit assay and Centers for Disease 

Control (CDC) bottle bioassay.  Sand flies were exposed to insecticides coated on the interior of 

0.5-gallon and 1,000-ml glass bottles.  Following exposure, the flies were allowed to recover for 

24 h, after which mortality was recorded.  From dose-response survival curves for L. longipalpis 

and P. papatasi generated with the QCal software, LC’s causing 50, 90, and 95% mortality were 

determined for each insecticide.  The LCs and LTs from this study will be useful as baseline 

reference points for future studies using the CDC bottle bioassays to assess insecticide 

susceptibility of sand fly populations in the field.  There is a need for a larger repository of sand 

fly insecticide susceptibility data from the CDC bottle bioassays, including a range of LCs and 

                                                           
2 Coauthored by David S. Denlinger, Saul Lozano-Fuentes, Phillip G. Lawyer, William C Black 

IV, and Scott A. Bernhardt. Reprinted from Journal of Medical Entomology. Vol. 52. Pages 

1003-1012, 2015. < http://jme.oxfordjournals.org/content/52/5/1003>. 
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LTs for more sand fly species with more insecticides.  Such a repository would be a valuable tool 

for vector management.  

 

Since their introduction in the 1940s, synthetic chemical insecticides remain an effective 

tool for controlling insects that are vectors of disease agents (Hemingway and Ranson 2000, 

World Health Organization [WHO] 2006). Unfortunately, insecticides have been used 

indiscriminately, exerting tremendous selective pressure for insecticide resistance (Feyereisen 

1995, WHO 2006).  The insecticide resistance phenotype is defined as a heritable, genetic change 

in response to insecticide exposure (Feyereisen 1995, Scott 1999, Hemingway et al. 2002).  

Increasing the insecticide dosage in response to resistance only exacerbates the problems of 

resistance by increasing the frequency of the genetic trait(s) in a vector population (Feyereisen 

1995).  Two resistance phenotypes observed in the field are target-site insensitivity and 

metabolic-detoxification resistance (Mallet 1989, Brogdon and McAllister 1998a, Rivero et al. 

2010).  Today, there is evidence of target-site insensitivity and metabolic-detoxification 

resistance to all classes of synthetic insecticides in all major vector species (Nauen 2007, Rivero 

et al. 2010).  Acquiring data on vector species’ susceptibility to insecticides will support the 

strategies directed at effectively managing these vector populations (Surendran et al. 2005).  The 

following two techniques are commonly used to measure a vector species’ susceptibility to 

insecticides: 1) the WHO exposure kit bioassay and 2) the Centers for Disease Control (CDC) 

bottle bioassay (CDC 2010, WHO 2013).  

The WHO exposure kit bioassay is widely accepted because it can measure insecticide 

susceptibility in many species of insect vectors worldwide (Braverman et al. 2004, Ocampo et al. 

2011, Faraj et al. 2012, Aïzoun et al. 2013, Chen et al. 2013).  The assays can be run with live 

insects collected in the field or with their progeny reared in the laboratory.  The WHO bioassay is 
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a standardized protocol that consists of an exposure kit containing tubes lined with filter papers 

that are impregnated with a specific concentration of an insecticide (WHO 1998; 2013).  Despite 

its accepted use, the WHO bioassay is expensive, filter papers are not available for some 

insecticides, and there is a limited range of concentrations that can be purchased for some 

insecticides (Perea et al. 2009, Aïzoun et al. 2013).   

The CDC bottle bioassay is an inexpensive and portable alternative to the WHO bioassay, 

especially in regions where there is little money to implement the WHO bioassay (Perea et al. 

2009, Aïzoun et al. 2013).  The CDC bottle bioassay requires fewer test insects than the WHO 

bioassay (Aïzoun et al. 2013).  The protocol consists of coating the interior of a glass bottle with 

an insecticide that has been diluted in a solvent.  The solvent is then allowed to evaporate, leaving 

the insecticide coated to the glass surface.  Once the bottles are treated, insects are introduced into 

the bottles and exposed to the insecticide for a specified amount of time (Brogdon and McAllister 

1998b, CDC 2010, Aïzoun et al. 2013).  Insect mortality can be scored at distinct time intervals 

during the exposure test (e.g., every 15 min for 1-h), and percent mortality at each time interval is 

plotted (Brogdon and McAllister 1998b).  The CDC bottle bioassay can also be used as an end-

point assay where mortality is only measured at the end of the exposure test.  Susceptibility is 

measured by simply comparing mortality rates between insect populations (Perea et al. 2009). 

Sand flies (Diptera: Psychodidae: Phlebotominae) are among the insect vectors that 

require resistance monitoring because they have been actively targeted with insecticides.  Many 

sand fly species in the genera Lutzomyia and Phlebotomus are capable of vectoring Leishmania 

parasites, infection with which causes leishmaniasis, a disease currently infecting millions of 

people world-wide (Guerin et al. 2002, Rutledge and Gupta 2009).  To control sand flies, 

populations around the world have been exposed to the four main classes of insecticides- 1) 

organochlorines 2) organophosphates, 3) carbamates, and 4) pyrethroids- via residual spraying, 

ultra-low volume spraying, insecticide-treated clothing, and insecticide-treated nets.  These 



77 

 

 

exposures are either intentional in directed vector control efforts or are inadvertent as part of 

vector control efforts targeted against other insect vectors (Alexander and Maroli 2003, 

Surendran et al. 2005, Alexander et al. 2009, Henriquez et al. 2009, Rutledge and Gupta 2009, 

Dinesh et al. 2010, Faraj et al. 2012, Hassan et al. 2012, Saeidi et al. 2012).  

Some sand fly populations have been found to be tolerant or resistant to the insecticides 

used in the Middle East, southern Asia, and South America.  In Montes Claros, Brazil, 29 of 80 

(36.3%) Lutzomyia longipalpis (Lutz and Neiva) survived a 0.05% deltamethrin exposure 

(Alexander et al. 2009).  In a Delft Island population from Sri Lanka, 11 of 80 Phlebotomus 

argentipes (Annandale & Brunetti) (14%) had insensitive acetylcholinesterase, and 20 (25%) had 

elevated esterases, of which both of these findings are associated with resistance to malathion 

(Surendran et al. 2005).  P. argentipes was found to be DDT-resistant throughout the 

Muzaffarpur, Vaishali, and Patna districts of the Bihar state, India, and in the Amahibelha village 

of the Sunsari district, Nepal, as only 43% and 62% of populations died from DDT exposure, 

respectively (Dinesh et al. 2010).  In the Surogia village of Khartoum State, Sudan, 51 

Phlebotomus papatasi (Scopoli) (79.7%) had insensitive acetylcholinesterase, which are 

associated with malathion and propoxur resistance.  Both of these insecticides have been 

extensively used in this region as part of the anti-malaria mosquito control program (Hassan et al. 

2012). 

Many of the examples demonstrating reduced insecticide susceptibility in sand flies have 

been determined using the WHO bioassay.  However, a few studies have used the CDC bottle 

bioassay to measure the susceptibility status of sand fly populations to insecticides (Santamaría et 

al. 2003, Alexander et al. 2009, Henriquez et al. 2009).  These studies have been completed 

entirely in the New World.  The CDC bottle bioassay is preferred over the WHO bioassay 

because the susceptibility results can be generated quickly, the bottles can be prepared with any 
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insecticide, the results are reproducible with fewer insects and fewer replicates, and the results 

allow one to infer the detoxification mechanism conferring resistance (Santamaría et al. 2003). 

It is imperative to develop expansive baseline susceptibility data to different insecticides 

in different sand fly species and in flies from different geographic regions (CDC 2010).  In 

addition, these bioassays require baseline data from known susceptible sand fly populations in 

order to assess insecticide-susceptibility in field populations and for the calculation of relative 

risk ratios (e.g., lethal concentration causing 50% mortality [LC50] in a field population / LC50 

control population).  These data will provide vector management programs the information 

necessary to ensure appropriate and effective insecticide application (Maharaj 2011).  Potentially, 

CDC bottle bioassay is one tool that could be incorporated into sand fly surveillance programs to 

a greater extent worldwide, especially in regions where Leishmania transmission is a concern. 

The objective of this study was to quantify, using a modified version of the WHO 

exposure kit assay and the CDC bottle bioassay, the susceptibility of laboratory L. longipalpis and 

P. papatasi to 10 insecticides that are incorporated globally in vector control efforts.  

Specifically, for each insecticide, a dose-response survival curve was produced.  From each 

curve, LC50, LC90, and LC95 values were determined.  These doses can now be used for 

comparison in future studies to assess sand fly susceptibility to insecticides. 

Materials and Methods 

 Sand Flies. Insecticide-susceptible L. longipalpis and P. papatasi sand fly colonies at 

Utah State University (USU) were derived from long-established colonies maintained at the 

Walter Reed Army Institute of Research (Silver Spring, MD). The original colonies are > 30 

years old and have never been exposed to insecticides. All life stages were reared at USU at 25˚C, 

85% relative humidity, and a photoperiod of 16:8 (L:D) h according to methods of Lawyer et al. 

(1991) and Modi and Rowton (1999).  Larvae were fed a composted 1:1 mixture of rabbit feces 

and rabbit food (Young et al. 1981; Volf and Volfova 2011).  Adults were provided 30% sucrose-
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water solution daily on saturated cotton balls, and adult female L. longipalpis and P. papatasi 

were blood-fed on anesthetized mice placed inside holding cages twice weekly.   

Insecticides. Ten technical-grade insecticides were used in this study: four pyrethroids 

[cypermethrin (Sigma-Aldrich, St. Louis, MO), deltamethrin (Sigma-Aldrich, St. Louis, MO), 

lambda(λ)-cyhalothrin (Sigma-Aldrich, St. Louis, MO), and permethrin (Chem Service, Inc., 

West Chester, PA)]; three organophosphates [chlorpyrifos (Sigma-Aldrich, St. Louis, MO), 

fenitrothion (Sigma-Aldrich, St. Louis, MO), and malathion (Chem Service, Inc., West Chester, 

PA)]; two carbamates [bendiocarb (Sigma-Aldrich, St. Louis, MO) and propoxur (Sigma-Aldrich, 

St. Louis, MO)]; and the organochlorine DDT (Sigma-Aldrich, St. Louis, MO).  The 

concentrations of each insecticide to which L. longipalpis and P. papatasi were exposed are 

provided in Table 3.1.  The diagnostic doses for Anopheles and Aedes mosquitoes were used as 

starting reference points for initial insecticide exposure (CDC 2010).  Concentrations higher and 

lower than these diagnostic doses were determined to derive the dose-response survival curves for 

the two sand fly species.  All insecticide dilutions were prepared in acetone, stored in glass 

bottles, wrapped in aluminum foil, and refrigerated while not being used (CDC 2010).    

Preparation of Exposure Bottles. On the day prior to exposing the sand flies, 0.5-gallon 

glass bottles (1,892.5 ml) (unknown maker) or 1,000-ml glass bottles (Fisher Scientific, 

Pittsburgh, PA) were prepared by coating them with insecticide.  For both bottle sizes, the 

concentration of insecticide in each bottle was determined to be X µg per bottle (CDC 2010).  For 

a 250-ml bottle, 1 ml of insecticide at 10 µg insecticide/ml acetone gives a concentration of 10 

µg/250 ml bottle.  To maintain an equivalence of 10 µg insecticide/250 ml bottle to compensate 

for the larger bottle sizes, 4.0 ml of 10 µg insecticide/ml acetone is needed to coat the interior of 

the 1,000-ml bottle, and 7.57 ml of 10 µg insecticide/ml acetone is needed to coat the interior of 

the 0.5-gallon bottle.  The bottles were coated with insecticide by swirling the acetone:insecticide 

solution on the bottom, on the sides, and on the lid.  The bottle was then placed on a mechanical 
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Table 3.1. Concentrations of ten insecticides used in the CDC bottle bioassays to expose L. 

longipalpis and P. papatasi sand flies. 

Insecticide Class Insecticide Species Concentration (µg insecticide per bottle) 

Pyrethroid 

Cypermethrin 
L. longipalpis 1, 5, 10, 25, 50, 100, 125, 150 

P. papatasi 0.5, 1, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250 

Deltamethrin 
L. longipalpis 0.01, 0.1, 1, 5, 10, 25, 50, 75 

P. papatasi 5, 10, 25, 50, 100, 125, 150, 200 

λ-Cyhalothrin 
L. longipalpis 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 25, 50, 75 

P. papatasi 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 25, 50 

Permethrin 
L. longipalpis 1, 5, 10, 25, 50, 75, 100 

P. papatasi 5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250 

Organophosphate 

Chlorpyrifos 
L. longipalpis 0.01, 0.05, 0.1, 0.5, 1, 5, 10 

P. papatasi 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 

Fenitrothion 
L. longipalpis 0.1, 0.5, 1, 3, 5, 10, 25, 50 

P. papatasi 0.1, 0.5, 1, 3, 5, 10, 25, 50 

Malathion 
L. longipalpis 5, 8, 10, 12, 15, 25, 50, 100 

P. papatasi 10, 25, 50, 100, 125, 150 

Carbamate 

Bendiocarb 
L. longipalpis 0.01, 0.1, 1, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200 

P. papatasi 0.01, 0.1, 0.5, 1, 5, 10, 25 

Propoxur 
L. longipalpis 0.01, 0.1, 0.5, 1, 5, 10, 25, 50, 75, 100 

P. papatasi 0.01, 0.1, 0.5, 1, 5, 10, 25, 50, 75 

Organochlorine DDT 
L. longipalpis 10, 25, 50, 75, 100, 150, 200, 300, 350, 450 

P. papatasi 5, 10, 25, 50, 75, 100, 150, 200, 300, 350 

 

bottle roller under a chemical hood for 30 minutes to dry.  During this time, the lids were slowly 

loosened to allow the acetone to evaporate.  After 30 minutes, the caps were removed, and the 

bottles were rolled until all of the acetone had evaporated.  The bottles were then left open to dry 

overnight.  For each test replicate, one bottle serving as a control was coated with either 7.57 ml 

or 4.0 ml of acetone depending on its volume.  All bottles were re-used throughout the duration of 

the experiment.  To clean a bottle with residual insecticide, the bottle and lid was first triple-

rinsed with acetone; filled with warm, soapy water; drained; rinsed and filled with cold water; 

drained; and autoclaved for at least 20 minutes.  After being autoclaved, the bottles were left to 

dry for at least one day before being used again (CDC 2010).  Each cleaned bottle also underwent 

testing to determine the presence of residual insecticide.  Ten sand flies were aspirated into each 
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bottle and were left in the bottle for at least 3 h.  If no mortality was observed at the end of the 3 

h, the bottles were cleared and allowed to be re-used.  If mortality was observed, the bottles were 

cleaned again and re-tested until no mortality was observed. 

Insecticide Exposure Tests. Approximately 12 h after the bottles were prepared with 

insecticide, adult sand flies at least 2 d post-eclosion were aspirated from the main colony and 

gently blown into each bottle: 40-50 flies into each 0.5-gallon bottle and 20-30 flies into each 

1,000-ml bottle.  Approximately equal numbers of un-fed female and male flies were used for 

each replicate.  At least three replicates were completed for each concentration of every 

insecticide.   

  Both species were exposed for the same length of time to each insecticide.  In  

 

preliminary tests, exposure time for all 10 insecticides was 60 min, but it was soon discovered  

 

that for some insecticides, 60 min of exposure was either too short or too long because sand fly  

 

survival was nearly 0 or 100% for most of the insecticide concentrations (Brogdon and  

 

McAllister 1998b).  Therefore, the range of exposure times was adjusted to 30 min or to 120 min  

 

depending on unexpected and actual sand fly survival rates (Table 3.2.) (CDC 2010).   

 

The sand flies were captured after insecticide exposure via mechanical aspiration, 

 

 

Table 3.2. Length of exposure of L. longipalpis and P. papatasi to ten insecticides with the 

CDC bottle bioassay. 

Insecticide  

Exposure Time 

(Minutes) 

Cypermethrin 60 

Deltamethrin 60 

λ-cyhalothrin 60 

Permethrin 60 

Chlorpyrifos 60 

Fenitrothion 30 

Malathion 60 

Bendiocarb 30 

Propoxur 30 

DDT 120 
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released into 1-pint cardboard containers with a fine mesh screen top, and kept under the same 

temperature, light, and humidity environment as the main, untreated colonies.  A cotton ball 

saturated with 30% sugar-water was placed on the top of each container as an energy/water 

source.  Using procedures established for mosquitoes, sand flies were held in these containers for 

24 h prior to mortality being recorded (Saavedra-Rodriguez et al. 2008).  Mortality was scored as 

a complete cessation of movement (Perea et al. 2009).  A 24 h holding period was used because 

in some preliminary experiments, many of the sand flies that appeared physically affected, and 

would have been scored as dead at the end of a 30, 60, or 120 min exposure period as described in 

Brogdon and McAllister (1998b), recovered after this 24-h period. 

 If mortality in the control group ranged between 5 and 20%, mortalities in the 

experimental bottles of that test group were corrected using Abbott’s formula (CDC 2010).  

Abbott’s formula was not used to correct experimental mortalities if the control group mortality 

was <5%.  If control group mortalities exceeded 20%, the entire testing replicate was not used 

(Saeidi et al. 2012).    

Survival Curves. Using the QCal software, a dose-response survival curve was created 

for each insecticide (Lozano-Fuentes et al. 2012).  This software can be used for any insect vector 

with data from insecticide bioassays.  The QCal software also uses a logistic regression model to 

generate LC50s, LC90s, and LC95s for each insecticide.  Mortalities corrected with Abbott’s formula 

were rounded to the nearest whole fly.  For example, a cohort of 30 flies had an empirical 

mortality of 80% (24 flies died).  If 80% was Abbott’s-corrected to 78.1% mortality, then 23.43 

flies died.  In QCal, a mortality of 23 flies of 30 was recorded.   
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Results 

Physical Observations. Both L. longipalpis and P. papatasi sand fly species shed their 

legs when exposed to cypermethrin, deltamethrin, lambda-cyhalothrin, and permethrin during and 

after exposure.  This   was observed predominantly at the higher concentrations of each 

insecticide.  Neither species shed its legs when exposed to organophosphates, carbamates, or 

DDT.  In addition, for the pyrethroids, both L. longipalpis and P. papatasi experienced the 

“knockdown effect,” evident by involuntary movements and muscle spasms, during insecticide 

exposure and during the initial recovery time in the holding containers (Martins et al. 2009).  At 

lower concentrations of the four pyrethroids, many sand flies were able to recover from the 

knockdown (no convulsions or erratic movements) by the completion of the 24-h holding period.  

At higher pyrethroid concentrations, sand flies succumbed to muscle spasms, convulsions, and 

paralysis. 

It was also observed that the time required for the carbamates, organophosphates, and 

organochlorine (DDT) to cause mortality differed.  The carbamates were lethal very quickly, 

causing death only a few minutes after the sand flies were aspirated into the bottles.  This quick 

lethality necessitated a reduction in the exposure time of both sand fly species to the carbamates 

(Table 3.2.).  On the other hand, the three organophosphates and DDT caused delayed mortality.  

Many sand flies appeared physically healthy after exposure to these insecticides, but died during 

the 24-h holding period.   

Survival Curves. A dose-response survival regression analysis was performed for L. 

longipalpis and P. papatasi to estimate LC50, LC90, and LC95 for all 10 insecticides.  Figure 3.1. 

shows each species’ survival curve for cypermethrin (pyrethroid), chlorpyrifos 

(organophosphate), propoxur (carbamate), and DDT (organochlorine).  These graphs were 

produced in GraphPad Prism (version 6.0, GraphPad Software Inc., San Diego, CA).  Table 3.3 
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shows the QCal logistic regression parameters and the extrapolated LC50, LC90, and LC95 values 

for each insecticide for both species.  For many insecticides, the LC95 was substantially greater 

than the LC90 (e.g., P. papatasi’s LC90 for cypermethrin was 73.279 µg cypermethrin per bottle, 

while its LC95 for cypermethrin was 150.010 µg cypermethrin per bottle), which may be 

attributed to the sigmoidal shape of the logistic curve, where it takes much higher doses to reach a 

smaller percentage change in mortality (i.e., LC90 to LC95) nearing the 100% mortality asymptote.   

Pyrethroids. Lutzomyia longipalpis and P. papatasi have very similar LC50’s for  

 

cypermethrin, roughly 9.0 µg cypermethrin per bottle; however, P. papatasi has an LC95 more  

 

 

Table 3.3. QCal logistic regression parameters and lethal concentration (LC) values causing 

50, 90, and 100% mortality in L. longipalpis and P. papatasi exposure to ten insecticides with 

the CDC bottle bioassay. 

Insecticide Species 
LC50 (µg insecticide 

per bottle) [LL, UL]* 

LC90 (µg insecticide per 

bottle) [LL, UL]* 

LC95 (µg insecticide per 

bottle) [LL, UL]* 

Cypermethrin 
L. longipalpis 8.955 [7.888, 10.167] 41.851 [35.499, 49.338] 70.704 [57.530, 86.886] 

P. papatasi 8.897 [7.499, 10.556] 73.279 [61.313, 87.584] 150.010 [120.265, 187.354] 

Deltamethrin 
L. longipalpis 0.922 [0.637, 1.334] 28.707 [18.291, 45.056] 92.434 [51.594, 165.571] 

P. papatasi 9.907 [8.165, 12.020] 90.244 [67.938, 119.869] 191.290 [130.804, 279.779] 

λ-Cyhalothrin 
L. longipalpis 0.232 [0.189, 0.284] 5.001 [3.627, 6.895] 14.215 [9.487, 21.298] 

P. papatasi 0.269 [0.217, 0.334] 3.654 [2.625, 5.087] 8.873 [5.863, 13.430] 

Permethrin 
L. longipalpis 17.069 [14.889, 19.570] 82.402 [65.957, 102.946] 140.752 [105.890, 187.073] 

P. papatasi 41.344 [37.233, 45.906] 188.579 [162.796, 218, 438] 315.955 [261.648, 381.572] 

Chlorpyrifos 
L. longipalpis 0.458 [ 0.377, 0.557] 5.734 [4.058, 8.099] 13.538 [11.695, 29.020] 

P. papatasi 0.327 [0.256, 0.419] 6.417 [4.102, 10.037] 17.653 [10.135, 30.774] 

Fenitrothion 
L. longipalpis 0.347 [0.277, 0.434] 2.655 [1.933, 3.647] 5.306 [3.549, 7.934] 

P. papatasi 1.368 [1.173, 1.595] 7.334 [5.684, 9.489] 13.007 [9.478, 17.850] 

Malathion 
L. longipalpis 8.432 [8.004, 8.883] 13.815 [12.914, 14.779] 16.340 [14.957, 17.852] 

P. papatasi 20.011 [17.277, 23.176] 77.008 [63.459, 93.447] 121.778 [94.869, 156.319] 

Bendiocarb 
L. longipalpis 0.986 [0.737, 1.318] 38.961 [29.312, 52.159] 136.047 [94.292, 196.311] 

P. papatasi 0.289 [0.232, 0.359] 2.507 [1.875, 3.353] 5.229 [3.632, 7.529] 

Propoxur 
L. longipalpis 3.837 [2.860, 5.148] 75.446 [46.150, 123.347] 207.763 [112.101, 385.060] 

P. papatasi 5.502 [4.524, 6.692] 39.135 [28.126, 54.451] 76.264 [50.729, 114.652] 

DDT 
L. longipalpis 28.364 [23.173, 34.716] 218.581 [166.052, 287.724] 437.685 [303.506, 631.249] 

P. papatasi 15.047 [11.321, 19.997] 295.979 [196.684, 445.412] 815.173 [463.219, 1434.541] 

*LL = lower 95% confidence limit; UL = upper 95% confidence limit 
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Fig. 3.1. L. longipalpis and P. papatasi dose-response survival curves to cypermethrin 

(pyrethroid), chlorpyrifos (organophosphate), propoxur (carbamate), and DDT 

(organochlorine).   

 

 

than twice as large as L. longipalpis (Table 3.3.).  For deltamethrin, L. longipalpis has a 10-fold  

 

lower LC50 than P. papatasi (Fig. 3.2A.) and a much lower LC90 and LC95 than P. papatasi (Fig. 

 

3.2B.; Table 3.3.).  Lutzomyia longipalpis and P. papatasi have very similar lethal concentration  

 

values for lambda-cyhalothrin, and both species are very susceptible as their LC50, LC90, and LC95  

 

values are <20.0 µg lambda-cyhalothrin per bottle, which are the lowest LC95 values for of the  

 

four pyrethroid insecticides (Table 3.3.).  For permethrin, P. papatasi has a LC50, LC90, and LC95  

 

that are at least twice as large compared with those same LC values of L. longipalpis.  
 

Organophosphates. Both sand fly species are highly susceptible to chlorpyrifos and  

 

fenitrothion.  The LC95’s for both L. longipalpis and P. papatasi are <20.0 µg per bottle.  Besides  

 

P. papatasi’s LC95 for bendiocarb and both species LC95’s for lambda-cyhalothrin, these are the  

 

lowest LC95’s for all 10 insecticides (Table 3.3.).  In addition, the LC50’s for both species to 
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B. 

 
Fig. 3.2. Bar graphs of L. longipalpis and P. papatasi lethal concentrations causing 50% 

mortality (LC50) (2A) and 90% mortality (LC90) (2B) for 10 insecticides.  Error bars represent 

the lower and upper 95% confidence intervals as determined by QCal.  Letters in parentheses 

below each insecticide represent the insecticide class: P = pyrethroid; OP = organophosphate; C = 

carbamate; OC = organochlorine. 

 
 

chlorpyrifos are <0.5 µg chlorpyrifos per bottle.  Like chlorpyrifos, both L. longipalpis and P. 

papatasi are highly susceptible to fenitrothion (Table 3.3.) even with exposure times of 30 

minutes.  P. papatasi has a LC95 malathion that is approximately eight times larger than L. 

longipalpis’ LC95 for malathion.  

Carbamates. Lutzomyia longipalpis has a smaller LC95 than P. papatasi to all of the 

pyrethroids and to all of the organophosphates except lambda-cyhalothrin.  For the carbamates, P. 

papatasi is more susceptible than L. longipalpis to bendiocarb and propoxur.  The exposure time 

for both species is 30 minutes.  In preliminary tests for the carbamates, ~ 100% mortality was 

observed for all of the insecticide doses with a 60-min exposure time.  Therefore, the duration of 
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exposure was reduced to 30 min, which was a sufficient amount of time to obtain 50, 90, and 

95% mortality (Table 3.3.).  P. papatasi has a LC95 for bendiocarb that is 26 times lower than L. 

longipalpis’ bendiocarb LC95 (Table 3.3), and P. papatasi has a LC90 of bendiocarb that is ~15 

times lower than L. longipalpis’ bendiocarb LC90 (Fig. 3.2B.).  Both species have a LC50 <1.0 µg 

bendiocarb per bottle (Fig. 3.2A.).  P. papatasi has a much lower LC95 for propoxur (LC95 = 

76.264 µg propoxur per bottle) than L. longipalpis (LC95 = 207.763 µg propoxur per bottle).  

However, P. papatasi does have a greater LC50 to propoxur than does L. longipalpis (Fig. 3.2A.). 

Organochlorine. In preliminary tests with DDT, 60 minutes was insufficient to quantify 

50, 90, and 95% mortality with all of the insecticide doses.  Therefore, the duration of exposure 

was increased to 120 minutes to allow sufficient time to obtain these values for both L. 

Longipalpis and P. papatasi.  Even with this extended exposure period, both species have very 

high LC95’s (437.729 µg DDT per bottle and 815.173 µg DDT per bottle for L. longipalpis and P. 

papatasi, respectively). These are the highest LC95’s for any of the 10 insecticides evaluated in 

this study (Table 3.2.).   

Discussion 

 The objective of this study was to quantify insecticide susceptibility in laboratory L. 

longipalpis and P. papatasi to 10 insecticides comprising four chemical classes using a modified 

version of the CDC bottle bioassay.  It was demonstrated that this modified CDC bottle bioassay 

is an effective tool for measuring the susceptibility of these two sand fly species to pyrethroid, 

organophosphate, carbamate, and organochlorine insecticides.   

One important observation of this study was that different insecticide classes have 

different LTs.  Organophosphate insecticides caused delayed mortality, while carbamate 

insecticides caused mortality extremely quickly, although both insecticide classes have similar 

modes of action: inhibiting the acetylcholinesterase enzyme from hydrolyzing acetylcholine 

(Fukuto 1990).  Despite the differences in kill rates for carbamates and organophosphates, L. 
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longipalpis and P. papatasi are most susceptible to the carbamates bendiocarb and propoxur and 

to the organophosphate fenitrothion.  A 30-minute exposure to these insecticides is sufficient to 

cause 100% mortality in these sand fly species.  Aedes and Anopheles mosquitoes both have 

diagnostic LTs of 30 min for bendiocarb and fenitrothion using the CDC bottle bioassay (CDC 

2010).  For vector control programs aimed at targeting sand flies with synthetic insecticides, 

bendiocarb, propoxur, and fenitrothion deserve attention for their efficacy. 

Conversely, of the 10 insecticides tested, both L. longipalpis and P. papatasi are least 

susceptible to DDT.  Even with an exposure time of 120 min, the longest exposure time of the 10 

insecticides, both species’ LC95’s are very large: at least 400 µg DDT per bottle.  Unlike 

pyrethroids, which inhibit the sodium channels involved in action potential propagation in the 

central nervous system and in the peripheral nervous system, DDT only blocks the sodium 

channels in the peripheral nervous system (Davies et al. 2007).  Only affecting the peripheral 

nervous system requires more time and higher doses to cause excitatory paralysis that leads to 

death (Davies et al. 2007).  Similar results have been found in insecticide-susceptible Italian P. 

perniciosus and P. papatasi, where the LT50’s and LT90’s for DDT were longer compared with 

permethrin and lambda-cyhalothrin (Maroli et al. 2002).  Also, Saeidi et al. (2012) found both 

insecticide-susceptible male and female P. papatasi to have much longer LT50’s and LT90’s to 

DDT than to permethrin, deltamethrin, cyfluthrin, and lambda-cyhalothrin.   

For many years, DDT has been used worldwide to control sand flies by direct 

intervention or inadvertently as a collateral benefit of anti-malaria campaigns (Kaul et al. 1994, 

Alexander and Maroli 2003, Surendran et al. 2005, Kishore et al. 2006, Dinesh et al. 2010, Afshar 

et al. 2011, Faraj et al. 2012, Saeidi et al. 2012).  Our results suggest that laboratory colonies of 

insecticide-susceptible sand flies are not very susceptible to DDT.  Despite reports of sand fly 

tolerance and resistance to DDT in India, Iran, Nepal, and Turkey (WHO 1986, Kaul et al. 1994, 

Yaghoobi-Ershadi and Javadian 1995, Dinesh et al. 2010, Afshar et al. 2011), DDT’s use for 
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indoor residual spraying is still permitted (WHO 2007).  The data from this study suggest that 

large doses of DDT are required, which may produce strong selection pressure for resistance if it 

not applied correctly or at appropriate times (Maharaj 2011).  Compounded with years of DDT 

use, and the potential for underlying low levels of tolerance and resistance, field populations of 

sand flies may be able to develop resistance to DDT more quickly than to other insecticides.  

The shedding of legs in response to exposure to the four pyrethroids used in this study 

was evident for both L. longipalpis and P. papatasi.  A similar phenomenon was observed in L. 

longipalpis from Brazil when exposed to permethrin, deltamethrin, and lambda-cyhalothrin 

(Alexander et al. 2009).  It is suggested that sand flies lacking one or more legs will be unable to 

blood-feed effectively, which could subsequently reduce the potential to vector Leishmania 

parasites (Alexander et al. 2009).  However, we have consistently observed that laboratory L. 

longipalpis and P. papatasi exposed to pyrethroids that have shed one or more legs are still 

capable of blood-feeding on anesthetized mice (unpublished data).  Female sand flies with shed 

legs, and with a mature Leishmania infection, which probe the skin of a vertebrate host have also 

been shown to transmit Leishmania parasites without a complete blood-meal.  During probing, 

Leishmania metacyclic promastigotes are regurgitated in attempt of the female sand fly to clear 

her alimentary canal of the Leishmania-secreted promastigote secretory gel (PSG) (“blocked-fly 

hypothesis”) (Bates 2007).   

One future study could quantify and evaluate the ability of surviving sand flies with shed 

legs that have been routinely exposed to pyrethroids or DDT with the persistence of probing 

vertebrate hosts.  Rogers and Bates (2007) demonstrated that female sand flies infected with 

Leishmania metacyclic promastigotes are manipulated by the Leishmania to increase their biting 

persistence, leading to an increase in the number of parasites transmitted to the vertebrate host.  

We have observed that a loss of legs is a potential physical challenge for the female sand fly.  

When other sand flies are in the vicinity of the female with shed legs during a blood feeding 
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event, the female with shed legs would often lose her balance and would need to relocate to find a 

suitable position to probe and blood-feed.  Increased probing because of a physical challenge, in 

combination with Leishmania manipulation could theoretically increase probing and the number 

of parasites vectored to a host.  These hypothetical scenarios apply to pyrethroid and DDT 

insecticides.  Future studies with organophosphate and carbamate insecticides, which do not 

cause sand flies to shed their legs, and their effect on surviving flies’ ability to probe and transmit 

Leishmania warrant investigation as well. 

Another observation of this study is the difference between the LC values of the Type I 

and Type II pyrethroid insecticides.  Type I pyrethroids, including permethrin, have been 

described to cause sodium channel modifications that can last up to tens of milliseconds and are 

better at causing knockdown in insects.  Whereas Type II pyrethroids, including cypermethrin, 

deltamethrin, and lambda-cyhalothrin, cause sodium channel modifications that can last for many 

seconds and are better at causing mortality in insects (Davies et al. 2007).  In this study, 

permethrin LC50’s for both L. longipalpis and P. papatasi were greater than cypermethrin, 

deltamethrin, and lambda-cyhalothrin LC50’s (Fig 2A; Table 3).  These findings at the LC50 

support previous research and are consistent with the physiological differences between the two 

types of pyrethroids in that it takes a higher concentrations of permethrin (Type I pyrethroid) to 

cause 50% mortality than it does cypermethrin, deltamethrin, or lambda-cyhalothrin (Type II 

pyrethroids) (Fletcher and Axtell 1993, Jirakanjanakit et al. 2007). 

One potential limitation of this study is that we used well-established, laboratory-adapted 

strains of L. longipalpis and P. papatasi.  All the female sand flies used in this experiment were 

nulliparous.  Comparisons of the efficacy of the 10 insecticides between parous and nulliparous 

females would be extremely difficult.  Through several years of laboratory observation, the 

percent survival of gravid females after oviposition is extremely low.  This low survivorship 

presents a challenge to replicate this experiment in parous females.  In addition, lethal 
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concentrations and lethal times from insecticide-susceptible laboratory and field-collected sand 

flies may differ.  This is why determining LCs and LTs for susceptible laboratory strains are 

imperative for using a bioassay on field populations.  Due to the highly variable conditions in 

nature, wild sand flies may exhibit different development times, body sizes, longevity, behaviors, 

and physiologies that make them more or less susceptible to insecticides (Rivero et al. 2010).    

In the initial development of the bottle bioassay by Brogdon and McAllister (1998b), 

250-ml Wheaton bottles were used.  These sized glass bottles are now recommended for all bottle 

assays (CDC 2010), although Alexander et al. (2009) used 200-ml Wheaton glass bottles.  

Another potential limitation of this study is that owing to availability, 0.5-gallon and 1,000-ml 

glass bottles were used.  For both L. longipalpis and P. papatasi, the deltamethrin, fenitrothion, 

chlorpyrifos, propoxur, and DDT exposure trials were completed using both the 0.5-gallon and 

the 1,000-ml bottles.  In these situations, when the bottles of one size were temporarily 

unavailable (e.g., being cleaned for re-use), the other-size bottles were used.  Therefore, the 

survival curves for these insecticides were generated by combining the mortalities from the 0.5-

gallon and from the 1,000-ml bottles.  Comparatively, the mortalities between the bottle sizes 

were similar, but often the percent mortality was higher in the smaller 1,000-ml bottles than in the 

0.5-gallon bottles.  Despite an equal concentration of insecticide and the even coating of 

insecticide, an unequal density of sand flies exposed, 20-30 and 40-50 in the 1,000-ml and 0.5-

gallon bottles, respectively, or potential differences in air volume to bottle surface area may 

explain the differing mortalities.  

Using a modified bioassay that combines aspects of the CDC bottle bioassay and the 

WHO exposure kit bioassay allowed us to manipulate insecticide concentrations to collect dose-

response survival curve data and to determine LCs and LTs.  In our experiments, to determine 

LCs and LTs, a 24-h holding period was incorporated for all ten insecticides after insecticide 

exposure (Saavedra-Rodriguez et al. 2008, Norris and Norris 2011).  A 24-h holding period was 
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used because many of the sand flies that scored as dead following the insecticide exposure were 

able to completely recover.  We suggest that the additional 24 h of recovery time provided more 

precise susceptibility data than seen immediately at the end of the insecticide exposure period.  

Using the data from this study, a future direction could still be to determine diagnostic doses and 

diagnostic times for L. longipalpis and P. papatasi using the CDC bottle bioassay for these same 

10 insecticides.  With these future data, researchers and public health administrators will have 

diagnostic doses and diagnostic times comparable with what is available for Aedes and Anopheles 

mosquitoes (CDC 2010).  Having diagnostic doses and diagnostic times for phlebotomine sand 

flies will enable field researchers to assess the insecticide susceptibility status of sand fly 

populations in the wild using the CDC bottle bioassay. 

The CDC recommends determining diagnostic concentrations and diagnostic times from 

time-response mortality curves (CDC 2010).  To assess an insect populations’ insecticide 

susceptibility status, diagnostic concentrations and diagnostic times are used (CDC 2010).  A 

diagnostic dose is the dose of an insecticide that kills 100% of susceptible insects within a given 

time, the diagnostic time.  Because we used our assays to produce dose-response survival curves, 

we were insufficiently able to determine diagnostic doses and diagnostic times, even though 

doses causing 100% mortality were discovered.  QCal cannot determine LC100 values (diagnostic 

doses) because an insecticide concentration causing empirical 100% mortality cannot be 

determined with a logistic regression because 100% mortality is the upper asymptote.  When put 

into the model, doses causing 100% mortality empirically are adjusted to causes mortality 

<100%.  In time-response mortality curves, mortality from an insecticide dose is measured at 

distinct time intervals during the exposure test.  Percent mortality is then plotted at each time 

interval (Brogdon and McAllister 1998b).  A time-response diagnostic dose is the lowest 

concentration of insecticide that causes 100% mortality in a specified exposure time period, 

between 30 and 60 min (CDC 2010).  A diagnostic dose and diagnostic time can both serve as 
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reference points to understand the insecticide susceptibility of a population of insects (WHO 

1998).   

The baseline LCs and LTs for each insecticide were determined for laboratory L. 

longipalpis and P. papatasi and can now be incorporated as comparative reference points in field 

assays measuring the insecticide susceptibility of sand flies.  The CDC recommends determining 

diagnostic doses and diagnostic times for an insecticide for each vector species in a specific 

geographic region (CDC 2010).  Similarly, the LCs and LTs from this experiment should not be 

considered universal for L. longipalpis or P. papatasi.  The data from this study should be used 

only as a reference point for future determinations of diagnostic doses and diagnostic times for 

different populations of Phlebotomus and Lutzomyia around the world. 

Insecticide resistance management requires control programs to monitor for resistance 

(Surendran et al. 2005; Badolo et al. 2012).  Insecticide resistance resulting from poor timing of 

insecticide application or from incorrect dosage applications can lead to ineffective vector control 

programs.  Where insecticides are used, resistance monitoring will ensure that appropriate 

insecticides and dosages are applied at times when they will most effectively control the target 

vectors (Maharaj 2011).  This modified version of the CDC bottle bioassay and the WHO 

exposure kit assay can help to inform researchers and epidemiologists of sand fly populations that 

are resistant to specific insecticides or to entire insecticide classes.  It is vital to continue to 

further develop integrated public health management programs that include effective vector 

surveillance and control. 
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CHAPTER 4 

DIAGNOSTIC DOSES AND TIMES FOR PHLEBOTOMUS PAPATASI AND LUTZOMYIA 

LONGIPALPIS SAND FLIES (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) USING 

THE CDC BOTTLE BIOASSAY TO ASSESS INSECTICIDE RESISTANCE3 

 

Abstract 

Background: Insecticide resistance to synthetic chemical insecticides is becoming a 

worldwide concern in phlebotomine sand flies (Diptera: Psychodidae), the vectors of Leishmania 

spp. parasites.  The CDC bottle bioassay assesses resistance by testing populations against 

verified diagnostic doses and diagnostic times for an insecticide, but the assay has been used 

limitedly with sand flies.  The objective of this study was to determine diagnostic doses and 

diagnostic times for laboratory Lutzomyia longipalpis (Lutz and Neiva) and Phlebotomus 

papatasi (Scopoli) to ten insecticides, including pyrethroids, organophosphates, carbamates, and 

DDT, that are used worldwide to control vectors. 

Methods:  Bioassays were conducted in 1,000-ml glass bottles each containing 10-25 

sand flies from laboratory colonies of L. longipalpis or P. papatasi. Four pyrethroids, three 

organophosphates, two carbamates, and one organochlorine, were evaluated.  A series of 

concentrations were tested for each insecticide, and four replicates were conducted for each 

concentration.  Diagnostic doses were determined only during the exposure bioassay for the 

organophosphates and carbamates.  For the pyrethroids and DDT, diagnostic doses were 

determined for both the exposure bioassay and after a 24-hour recovery period.   

                                                           
3 Coauthored by David S. Denlinger, Joseph A. Creswell, Joseph L. Anderson, Conor K. Reese, 

and Scott A. Bernhardt. Reprinted from Parasites & Vectors. Vol. 9. Pages 212. 
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Results: Both species are highly susceptible to the carbamates as their diagnostic doses 

are under 7.0 µg/ml.  Both species are also highly susceptible to DDT during the exposure assay 

as their diagnostic doses are 7.5 µg/ml, yet their diagnostic doses for the 24-h recovery period are 

650.0 µg/ml for L. longipalpis and 470.0 µg/ml for P. papatasi.  

Conclusions: Diagnostic doses and diagnostic times can now be incorporated into vector 

management programs that use the CDC bottle bioassay to assess insecticide resistance in wild 

populations of L. longipalpis and P. papatasi.  These findings provide initial starting points for 

determining diagnostic doses and diagnostic times for other sand fly vector species and wild 

populations using the CDC bottle bioassay. 

Background 

Insecticide resistance continues to be a threat to the success of insect vector control 

programs that incorporate synthetic chemical insecticides [1].  Insecticide resistance is a heritable 

phenotype that allows arthropods to survive an exposure to an insecticide that would normally kill 

a susceptible population [2-4].  Today, insecticide resistance to all classes of synthetic 

insecticides has been found in the major insect vectors [1, 5].  Managing insecticide resistance 

requires timely, accurate data through resistance monitoring and insecticide evaluation to assess a 

vector species’ susceptibility to insecticides.  These aspects can be used to develop effective 

strategies at managing vector populations [6].  The primary way to assess insecticide resistance is 

to use insecticide susceptibility bioassays. 

The Centers for Disease Control and Prevention (CDC) bottle bioassay is one technique 

used to measure a vector species’ susceptibility to insecticides [7, 8].  This bioassay is an 

economical and portable alternative to the World Health Organization’s (WHO) exposure kit 

bioassay, especially in geographic regions where the WHO bioassay cannot be implemented [9-

11].  Another benefit of the CDC bottle bioassay is that the materials, including the glass bottles, 

can be locally acquired and prepared on site [12].   
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Sand flies (Diptera: Psychodidae: Phlebotominae) require resistance monitoring because 

they have been, and continue to be, actively targeted with insecticides [13-16].  Fewer than 

seventy species of sand flies, including Lutzomyia longipalpis (Lutz and Neiva) and Phlebotomus 

papatasi Scopoli, are capable of vectoring Leishmania parasites, infection with which causes 

leishmaniasis, a world-wide disease currently infecting millions of people [17, 18].  Sand fly 

populations around the world have been exposed to the four main classes of insecticides: 

organochlorines, organophosphates, carbamates and pyrethroids.  Insecticide exposure has been 

both intentional in directed vector control efforts and inadvertent as part of vector control efforts 

targeted against other insects [6, 13, 17, 19-24].  Populations of sand flies have been found to be 

tolerant or resistant, using the WHO exposure kit bioassay and diagnostic doses derived for 

mosquitoes, to the insecticides used worldwide [6, 19-30].  Despite these examples, there is a gap 

in understanding the prevalence of insecticide resistance in sand fly populations throughout the 

world.  This has been attributed to challenges in collecting the necessary number of live flies for 

the bioassays and because there is a lack of a standardized sand fly bioassay [31].  

To test an insect vector species’ susceptibility status to an insecticide using the CDC 

bottle bioassay, a diagnostic dose and diagnostic time are needed for that insecticide [8].  A 

diagnostic dose is the lowest dose of an insecticide that causes 100% mortality in a susceptible 

population between 30 and 60 minutes, the diagnostic time [8].  There have been few published 

studies that have determined diagnostic doses for phlebotomine sand flies using the CDC bottle 

bioassay.  In Colombia, Santamaría et al. [32] determined the diagnostic dose of lambda(λ)-

cyhalothrin to be 10.0 µg/ml for Lu. longipalpis.  One concern of this finding is that Santamaría 

et al. [32] only tested three concentrations of lambdacyhalothrin (10.0, 50.0, and 100.0 µg/ml), 

which makes it difficult to identify a precise diagnostic dose and diagnostic time because of the 

large differences between the doses tested [33].  Also working with Lu. longipalpis, Marceló et 

al. [33] determined the diagnostic doses and diagnostic times for malathion, deltamethrin, and 
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lambdacyhalothrin to be 75.0 µg/ml in 25 minutes, 10.0 µg/ml in 35 minutes and 15.0 µg/ml in 

30 minutes, respectively.  Diagnostic doses and diagnostic times for field-collected Lu. evansi, an 

important vector of Le. infantum in the Americas, have been previously described as 7.0 µg/ml in 

10 minutes for deltamethrin and 3.5 µg/ml for in 10 minutes for lambda(λ)-cyhalothrin [20].   

Dose-response survival curves to determine lethal concentrations causing 50 %, 90 %, 

and 95 % mortality for laboratory colonies of Lu. longipalpis and P. papatasi to ten insecticides 

were previously determined using a modified version of the CDC bottle bioassay and the WHO 

exposure kit [34].  These concentrations can serve as starting points for determining diagnostic 

doses and diagnostic times from time-response survival curves for a susceptible population of any 

sand fly species.  Recently, Li et al. [31] also describes a bottle bioassay using 20 ml glass 

scintillation vials to determine lethal times causing 50 % mortality for P. papatasi and P. 

duboscqi exposed to ten pyrethroid and organophosphate insecticides. While not diagnostic 

doses, these data can be used for comparative purposes for future insecticide resistance studies for 

P. papatasi and P. duboscqi, two important Old World Leishmania vectors.   

The objective of this study is to define and establish diagnostic doses and diagnostic 

times using the CDC bottle bioassay for Lu. longipalpis and P. papatasi to ten insecticides.  No 

standardized diagnostic doses exist for insecticides using the CDC bottle bioassay.  These 

diagnostic doses and diagnostic times determined in this study can now be incorporated into 

future studies assessing insecticide resistance from field-collected sand fly populations. 

Methods 

 Sand Flies. Laboratory strains of insecticide-susceptible Lu. longipalpis and P. papatasi 

sand flies at Utah State University were derived from 30-year established colonies maintained at 

the Walter Reed Army Institute of Research (WRAIR) (Silver Spring, MD).  The original 

colonies from Walter Reed have never been exposed to insecticides.  All life stages were reared 

and maintained at USU [34-38].  
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Insecticides. Ten technical-grade insecticides were used in this study: four pyrethroids 

[cypermethrin (Sigma-Aldrich, St. Louis, MO), deltamethrin (Sigma-Aldrich, St. Louis, MO), 

lambda(λ)-cyhalothrin (Sigma-Aldrich, St. Louis, MO), and permethrin (Chem Service, Inc., 

West Chester, PA)]; three organophosphates [chlorpyrifos (Sigma-Aldrich, St. Louis, MO), 

fenitrothion (Sigma-Aldrich, St. Louis, MO), and malathion (Chem Service, Inc., West Chester, 

PA)]; two carbamates [bendiocarb (Sigma-Aldrich, St. Louis, MO) and propoxur (Sigma-Aldrich, 

St. Louis, MO)]; and the organochlorine dichlorodiphenyltrichloroethane (DDT) (Sigma-Aldrich, 

St. Louis, MO).  All insecticide dilutions were prepared in acetone, stored in glass bottles, 

wrapped in aluminum foil, and kept at 4°C while not being used [8].  The concentrations of each 

insecticide used in these experiments are listed in (Table 4.1.).  Whole-value lethal concentrations 

causing 50 % and 90 % mortality for each insecticide and for each sand fly species from 

Denlinger et al. [34] were used as initial concentrations tested for determining diagnostic doses.   

 Preparation of Exposure Bottles. The day before exposing the sand flies, four 1,000-ml 

glass bottles (Fisher Scientific, Pittsburgh, PA) were prepared by coating them with insecticide, 

as described in Denlinger et al. [34].  Following Brogdon & Chan [8], for a 250-ml bottle, 1.0 ml 

of insecticide at 10.0 µg insecticide/ ml acetone gives a concentration of 10.0 µg/ 250-ml bottle.   

To compensate for these larger bottle sizes, and to maintain an equivalence of X µg insecticide / 

250-ml bottle [8], 4.0 ml of X µg insecticide was used to coat the interior of the 1,000-ml bottle 

[34].  The bottles were coated with insecticide by swirling the acetone:insecticide solution on the 

bottom, on the sides, and on the lid.  The bottle was then placed on a mechanical bottle roller for 

30 minutes to dry and reduce the potential for bubble formation.  During this time, the lids were 

slowly loosened to allow the acetone to evaporate.  After 30 minutes, the caps were removed, and 

the bottles were rolled until all of the acetone had evaporated.  The bottles were then left open to 

dry overnight in the dark to prevent photodegradation of the insecticides.   
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Table 4.1. Concentrations of ten insecticides used to expose L. longipalpis and P. papatasi 

sand flies. 
Insecticide 

(Insecticide Classa) 
Species Concentration (µg insecticide/bottle) 

Cypermethrin (PYR) 

Lu. longipalpis 5.0, 10.0, 15.0, 20.0 

P. papatasi 
20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 55.0, 60.0, 65.0, 

70.0, 75.0, 90.0, 95.0 

Deltamethrin (PYR) 

Lu. longipalpis 
5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 

75.0, 100.0 

P. papatasi 
5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 50.0, 75.0, 

100.0 

λ-Cyhalothrin (PYR) 
Lu. longipalpis 1.0, 2.0, 3.0, 4.0, 10.0, 20.0, 30.0, 40.0 

P. papatasi 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 10.0, 20.0, 30.0, 40.0 

Permethrin (PYR) 
Lu. longipalpis 5.0, 10.0, 12.5, 15.0, 20.0 

P. papatasi 10.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0 

Chlorpyrifos (OP) 
Lu. longipalpis 5.0, 10.0, 15.0, 20.0, 25.0, 30.0 

P. papatasi 20.0, 25.0, 30.0, 35.0, 40.0, 45.0 

Fenitrothion (OP) 
Lu. longipalpis 

2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 

24.0, 26.0, 28.0, 30.0, 32.0 

P. papatasi 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0 

Malathion (OP) 
Lu. longipalpis 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0 

P. papatasi 50.0, 75.0, 100.0, 125.0, 130.0, 135.0, 140.0, 145.0 

Bendiocarb (CX) 
Lu. longipalpis 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 

P. papatasi 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 

Propoxur (CX) 
Lu. longipalpis 1.0, 2.0, 3.0, 4.0, 10.0 

P. papatasi 1.0, 2.0, 3.0, 7.0, 15.0 

DDT (OC) 

Lu. longipalpis 

2.5, 5.0, 7.5, 10.0, 15.0, 20.0, 50.0, 100.0, 150.0, 200.0, 

250.0, 300.0, 350.0, 400.0, 450.0, 500.0, 550.0, 600.0, 

630.0, 635.0, 640.0, 645.0, 650.0, 700.0 

P. papatasi 

2.5, 5.0, 7.5, 10.0, 50.0, 100.0, 150.0, 200.0, 350.0, 

400.0, 450.0, 455.0, 460.0, 465.0, 470.0, 480.0, 490.0, 

500.0, 550.0 
aPYR = pyrethroid, OP = organophosphate, CX = carbamate, OC = organochlorine 

 

For each test replicate, one bottle serving as a control was coated with 4.0 ml of acetone 

depending on its volume [8].  All bottles were re-used throughout the duration of the experiment.  

To clean a bottle with residual insecticide, the bottle and lid was first triple-rinsed with acetone; 

filled with warm, soapy water; drained; rinsed and filled with cold water; drained; and autoclaved 

for at least 20 minutes.  After being autoclaved, the bottles were left to dry for at least one day 

before being used again [34].  

Insecticide Exposure Tests. Approximately 12 hours after the bottles were prepared 

with insecticide, 10-25 adult sand flies at least two days post-eclosion were aspirated from the 
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main colony and gently blown into each bottle [8].  Approximately equal numbers of un-fed 

female and male flies were used for each insecticide-coated bottle, while only females were used 

in the control bottle [8].  Sand flies were aspirated into the control bottle first followed by the four 

insecticide-coated bottles.  Once sand flies had been aspirated into all five bottles, the timer was 

initiated and recorded as time zero.  At time zero, the total number of flies in each bottle was 

recorded.  The number of alive or dead sand flies was recorded at each time point, depending on 

which was easier to visually determine [8].  All bottles were held horizontally for the duration of 

the experiment.  During initial replicates with the largest doses of DDT, the authors infrequently 

observed that the legs of some sand flies would become stuck to the interior surface of the bottles 

during the 60-minute exposure.  These flies were unable to be removed from the bottles via 

aspiration.  These replicates were not used.  To remedy this issue at these high concentrations, the 

bottles were rotated every few minutes to promote limited hopping and movement of the sand 

flies.  This movement reduced extended surface contact in one place and eliminated the issue of 

sand flies becoming fixed on the insecticide surface. 

  The percent mortality at each time point was the average of the percent mortalities of 

the four replicates.  The percent mortality at a time point in the insecticide-treated bottles was 

corrected with Abbott’s formula if mortality in the control bottle ranged between 5% and 20%.  

Abbott’s formula was not used to correct experimental mortalities if the control group mortality 

was less than 5 %.  If control group mortalities exceeded 20 %, the entire testing replicate was not 

used [24].    

Organophosphates and Carbamates. Mortality was recorded at 0, 15, 30, 35, 40, 45, 60, 

75, 90, 105, and 120 minutes by gently rotating the bottle (time-to-knockdown) [8].  Sand flies 

were scored as “dead” if they had difficulty flying, could not fly altogether, or had trouble 

righting themselves [8].  If all sand flies were scored as dead before 120 minutes, the flies were 

kept in the bottles and continued to be observed until 120 minutes was reached. 
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Pyrethroids and DDT. Mortality was scored during the exposure test (time-to-

knockdown) to create survival curves as well after 24-hours of recovery time (24-h mortality) [8].  

During the exposure test, mortality was recorded at 0, 15, 30, 35, 40, 45, and 60 minutes by 

gently rotating the bottle.  Scoring mortality was equivalent to the criteria used for the carbamate 

and organophosphate insecticides.  If all sand flies were scored as dead before 60 minutes, the 

flies were kept in the bottles until 60 minutes was reached.  At the end of the 60 minutes, the sand 

flies were captured via mechanical aspiration, released into 1-pint cardboard containers with a 

fine mesh screen top, and kept under the same temperature, light, and humidity environment as 

the main, untreated colonies.  A cotton ball saturated with 30% sugar-water was placed on the top 

of each container.  Sand flies were held in these containers for 24-hours prior to mortality being 

recorded.  Mortality was corrected with Abbott’s formula using the same criteria described above 

for both the time-to-knockdown and 24-h mortality.   

Survival Curves. Time-response survival curves were made for each insecticide for each 

sand fly species by plotting time on the X-axis against percent mortality on the Y-axis [8].  For 

each insecticide dose, the percent mortality at each time point is the average mortality between all 

four insecticide-treated bottles.  A diagnostic dose was determined to be the lowest dose tested 

that caused 100 % mortality between 30 and 60 minutes, the diagnostic time [8].  

Results 

Survival Curves. A time-response survival curve for each of the ten insecticides for both 

Lu. longipalpis and P. papatasi was created following Brogdon & Chan [8].  For all the time-to-

knockdown survival curves, the time to reach 100% mortality decreased with increasing 

insecticide concentrations.  Diagnostic doses and diagnostic times for the organophosphates and 

carbamates are presented in (Table 4.2.). Diagnostic doses and diagnostic times for time-to-

knockdown and for 24-h mortality for the pyrethroids and DDT are presented in (Table 4.3.).  

Representative survival curves for bendiocarb, fenitrothion, permethrin, and DDT are presented 
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in (Figs. 4.1 and 4.2).  For some insecticides, multiple diagnostic doses and diagnostic times were 

observed.  Whereas for other insecticides, only one diagnostic dose and diagnostic time were 

observed because all of the other doses that were tested for that specific insecticide either did not 

cause 100 % mortality between 30 minutes and 60 minutes or they were saturated doses.   

Organophosphates. Two diagnostic doses for Lu. longipalpis have been determined for 

chlorpyrifos: 20.0 µg/ml at 45 minutes and 25.0 µg/ml at 30 minutes.  Only one diagnostic dose 

was determined for P. papatasi to chlorpyrifos: 30.0 µg/ml at 60 minutes.  Both Lu. longipalpis 

and P. papatasi have identical diagnostic doses and diagnostic times for fenitrothion: 30.0 µg/ml 

at 60 minutes.  Lutzomyia longipalpis has an additional diagnostic dose for fenitrothion of 32.0 

µg/ml at 45 minutes.  For malathion, however, the diagnostic doses between species are markedly 

different.  Lutzomyia longipalpis’ diagnostic dose is 40.0 µg/ml at 60 minutes, and P. papatasi’s 

diagnostic dose is 130.0 µg/ml at 60 minutes.   

Carbamates. Similar to the small LC values from Denlinger et al. [31], both Lu. 

 

Table 4.2. Diagnostic Doses and Diagnostic Times for organophosphate and carbamate 

insecticides at the time-to-knockdown. 

Insecticide (Insecticide 

Classa) 

Species Diagnostic Dose and Diagnostic Time           

(for time-to-knockdown) 

Chlorpyrifos (OP) Lu. longipalpis 25.0 µg/ml (30 min) 

20.0 µg/ml (45 min)  

P. papatasi 30.0 µg/ml (60 min)  

Fenitrothion (OP) Lu. longipalpis 32.0 µg/ml (45 min)  

30.0 µg/ml (60 min) 

P. papatasi 30.0 µg/ml (60 min) 

Malathion (OP) Lu. longipalpis 40.0 µg/ml (60 min) 

P. papatasi 130.0 µg/ml (60 min) 

Bendiocarb (CX) Lu. longipalpis 6.0 µg/ml (40 min)  

5.0 µg/ml (60 min) 

P. papatasi 2.0 µg/ml (30 min)  

1.0 µg/ml (40 min) 

Propoxur (CX) Lu. longipalpis 3.0 µg/ml (30 min)  

2.0 µg/ml (40 min) 

P. papatasi 3.0 µg/ml (30 min)  

2.0 µg/ml (35 min) 
aOP = organophosphate, CX = carbamate 
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Table 4.3. Diagnostic Doses and Diagnostic Times for pyrethroid and DDT insecticides at 

time-to-knockdown and after 24-hours. 

Insecticide 

(Insecticide Classa) 
Species 

Diagnostic Dose and 

Diagnostic Time (for 

time-to-knockdown) 

Diagnostic Dose after 

24 hours for 

mortality 

Cypermethrin (PYR) 

Lu. longipalpis 
20.0 µg/ml (40 min) 

10.0 µg/ml (60 min) 
20.0 µg/ml 

P. papatasi 
95.0 µg/ml (45 min) 

65.0 µg/ml (60 min) 
60.0 µg/ml 

Deltamethrin (PYR) 

Lu. longipalpis 

45.0 µg/ml (35 min) 

15.0 µg/ml (40 min) 

5.0 µg/ml (60 min) 

30.0 µg/ml 

P. papatasi 

45.0 µg/ml (35 min) 

25.0 µg/ml (40 min)  

15.0 µg/ml (45 min)  

5.0 µg/ml (60 min)  

25.0 µg/ml 

λ-Cyhalothrin (PYR) 

Lu. longipalpis 

4.0 µg/ml (40 min) 

3.0 µg/ml (45 min)  

1.0 µg/ml (60 min)  

1.0 µg/ml 

P. papatasi 
4.0 µg/ml (40 min) 

2.0 µg/ml (60 min)  
6.0 µg/ml 

Permethrin (PYR) 

Lu. longipalpis 15.0 µg/ml (30 min) 15.0 µg/ml 

P. papatasi 
60.0 µg/ml (40 min) 

50.0 µg/ml (60 min) 
55.0 µg/ml 

DDT (OC) 
Lu. longipalpis 7.5 µg/ml (30 min) 650.0 µg/ml 

P. papatasi 7.5 µg/ml (30 min) 470.0 µg/ml 
aPYR = pyrethroid, OC = organochlorine 

 

 

longipalpis and P. papatasi have very small diagnostic doses.  Lutzomyia longipalpis has a 

diagnostic dose and diagnostic time for bendiocarb of 6.0 µg/ml at 40 minutes or 5.0 µg/ml at 60 

minutes.  For propoxur, the diagnostic dose and diagnostic time is 3.0 µg/ml at 30 minutes or 2.0 

µg/ml at 40 minutes.  Phlebotomus papatasi has smaller diagnostic doses and diagnostic times for 

bendiocarb than Lu. longipalpis: 2.0 µg/ml at 30 minutes or 1.0 µg/ml at 40 minutes.  For 

propoxur, the diagnostic dose is 3.0 µg/ml at 30 minutes or 2.0 µg/ml at 35 minutes, which is 

almost identical to the diagnostic dose and diagnostic time for Lu. longipalpis. 

Pyrethroids. Phlebotomus papatasi has a larger time-to-knockdown and 24-h mortality 

for cypermethrin than Lu. longipalpis. Phlebotomus papatasi has two time-to-knockdown 

diagnostic doses of 65.0 µg/ml at 60 minutes and 95 µg/ml at 45 minutes, and its 24-h mortality 
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Fig. 4.1. Time-to-knockdown survival curves for Lu. longipalpis to bendiocarb (A) and 

fenitrothion (B) and P. papatasi to bendiocarb (C) and fenitrothion (D).  For each graph, 

bolded lines represent the time-response for doses that are considered diagnostic doses.  At each 

time point of the bolded lines the error bars show the standard error, of the mean percent 

mortality, across the four bottle replicates.  Error bars are only displayed on the diagnostic dose 

lines for visual clarity.  The shaded region of each graph designates a window of time (30, 35, 40, 

45, or 60 minutes) that can be considered diagnostic times for diagnostic doses. 
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Fig. 4.2. Time-to-knockdown survival curves for Lu. longipalpis to permethrin (A) and DDT 

(B) and P. papatasi to permethrin (C) and DDT (D).  For each graph, bolded lines represent the 

time-response for doses that are considered diagnostic doses.  At each time point of the bolded 

lines the error bars show the standard error, of the mean percent mortality, across the four bottle 

replicates.  Error bars are only displayed on the diagnostic dose lines for visual clarity.  The 

shaded region of each graph designates a window of time (30, 35, 40, 45, or 60 minutes) that can 

be considered diagnostic times for diagnostic doses. 

 



112 

 

 

 

diagnostic dose is 60.0 µg/ml.  Comparatively, Lu. longipalpis’ time-to-knockdown diagnostic 

doses are 10.0 µg/ml at 60 minutes and 20.0 µg/ml at 40 minutes, and its 24-h mortality 

diagnostic dose is 20.0 µg/ml.  Lutzomyia longipalpis and P. papatasi have the same time-to-

knockdown diagnostic doses of 5.0 µg/ml at 60 minutes and 45.0 µg/ml at 35 minutes.  

Lutzomyia longipalpis has an additional diagnostic dose of 15.0 µg/ml at 40 minutes, and P. 

papatasi has two additional diagnostic doses of 15.0 µg/ml at 45 minutes and 25.0 µg/ml at 40 

minutes.  Both species have almost equivalent 24-h mortality diagnostic doses to deltamethrin.  

Lutzomyia longipalpis requires 30.0 µg/ml and P. papatasi requires 25.0 µg/ml.  Besides the 

carbamates, the time-to-knockdown diagnostic doses for lambdacyhalothrin are the lowest for all 

ten insecticides.  Both Lu. longipalpis and P. papatasi have a diagnostic dose of 4.0 µg/ml at 40 

minutes.  Lutzomyia longipalpis has two additional diagnostic doses of 1.0 µg/ml at 60 minutes 

and 3.0 µg/ml at 45 minutes.  Phlebotomus papatasi has one additional diagnostic dose of 2.0 

µg/ml at 60 minutes.  Noticeably, P. papatasi has a lambda-cyhalothrin 24-h mortality diagnostic 

dose of 6.0 µg/ml, while it only required 1.0 µg/ml to cause 100% mortality after 24 hours for Lu. 

longipalpis.  For permethrin, P. papatasi’s time-to-knockdown diagnostic doses are 50.0 µg/ml at 

60 minutes and 60.0 µg/ml at 40 minutes, and Lu. longipalpis has a diagnostic dose of 15.0 µg/ml 

in 30 minutes.  There is a large difference between the two sand fly species permethrin 24-h 

mortality diagnostic doses: 55.0 µg/ml and 15.0 µg/ml for P. papatasi and Lu. longipalpis, 

respectively. 

Organochlorine. Both Lu. longipalpis and P. papatasi have small time-to-knockdown 

diagnostic doses of 7.5 µg/ml at 30 minutes when exposed to DDT.  However, both species 

required very large 24-h mortality diagnostic doses: 650.0 µg/ml of DDT was needed for Lu. 

longipalpis and 470.0 µg/ml of DDT for P. papatasi. 
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Discussion 

The objective of this study was to develop baseline data of ten insecticide diagnostic 

doses and diagnostic times for laboratory Lu. longipalpis and P. papatasi using the CDC bottle 

bioassay.  We have demonstrated that the CDC bioassay can be used to determine diagnostic 

doses for phlebotomine sand flies to pyrethroid, organophosphate, carbamate, and organochlorine 

insecticides.  This work strengthens the collection of diagnostic doses and diagnostic times that 

are available for sand flies using the CDC bottle bioassay by presenting for the first time 

concentrations and times for Phlebotomus spp. [20, 32, 33].  The present study provides precise 

time-to-knockdown diagnostic doses for all ten insecticides for both sand fly species.  In addition, 

for the first time, diagnostic doses for the 24-h recovery period are presented for sand flies to four 

pyrethroids and DDT. 

There have been few studies that have determined diagnostic doses and diagnostic times 

for Lu. longipalpis using the CDC bottle bioassay.  With the results presented in this study, 

comparisons can now be made for the insecticides malathion, deltamethrin, and lambda-

cyhalothrin.  For our Lu. longipalpis colony, a dose of malathion of 40.0 µg/ml caused 100 % 

mortality in 60 minutes, while for the Lu. longipalpis tested by Marceló et al. [33], 75.0 µg/ml 

caused 100 % mortality in 25 minutes.  Against our colony of Lu. longipalpis, 45.0 µg/ml 

deltamethrin was needed to cause 100 % mortality in 35 minutes compared to 10.0 µg/ml in 35 

minutes [33].  All currently published studies for lambda(λ)-cyhalothrin have found Lu. 

longipalpis to have low diagnostic doses.  In the present study, a dose of 4.0 µg/ml was sufficient 

to cause 100 % mortality in 40 minutes.  A dose of 15.0 µg/ml caused 100 % mortality in 30 

minutes [33], and Santamaría et al. [32] found 10.0 µg/ml to cause 100 % mortality in 

approximately 60 minutes, although only three doses were tested and no precise diagnostic time 

was provided.   
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The only direct comparison that can be made for Lu. longipalpis is for deltamethrin as 

both colonies (present work and [33]) had equal diagnostic times of 35 minutes.  Our colony 

needed 45.0 µg/ml to cause 100 % mortality, and the Lu. longipalpis from [33] only needed 10.0 

µg/ml.  The CDC bottle bioassay protocol designates that a diagnostic dose needs to cause 100 % 

mortality in the 30 minute – 60 minute window of exposure (specifically at 30, 35, 40, 45, and 60 

minutes) [8].  Some of the diagnostic times determined from Henriquez et al. [20] and Marceló et 

al. [33] for Lu. evansi and Lu. longipalpis do not fall into this window, and we are therefore not 

able to make direct comparisons.  Future studies using the CDC bottle bioassay need to have 

comparable diagnostic times to be able to compare diagnostic doses between different 

populations of a sand fly species.  In addition, the CDC bottle bioassay protocol could potentially 

be amended to include a larger time window (e.g. 10 minutes and 25 minutes) of potential 

diagnostic times. 

In accordance with the recommendations provided by Brogdon & Chan [8], as small as 5 

µg/ml dose increments were used initially when determining diagnostic doses.  It was necessary 

for lambda-cyhalothrin, fenitrothion, bendiocarb, propoxur, and DDT to work in increments as 

small as 1.0 µg/ml, 2.0 µg/ml, or 2.5 µg/ml because increments of 5.0 µg/ml were too large to 

effectively determine appropriate diagnostic doses.  For insecticides requiring larger doses, initial 

testing used increments larger than 5.0 µg/ml and then adjusted down to 5.0 µg/ml increments as 

we approached the diagnostic dose.  The small dose increments ensure that diagnostic doses are 

precise.  An inaccurate diagnostic dose that is too low in concentration has the potential of 

displaying false-positives of resistance because individuals will survive during the bioassay.  An 

inaccurate diagnostic dose that is too high will potentially display false-negatives of resistance 

because resistant individuals will be killed even if they are demonstrating a quantifiable level of 

resistance [8].  
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One potential limitation of this study was the use of 1,000-ml bottles, not the standard 

250-ml bottles [7, 8], although non-standard volume bottles have been used to assess insecticide 

susceptibility and determine diagnostic doses and diagnostic times with the CDC bottle bioassay 

[12, 31].  The 1000-ml bottles are the same bottles used in Denlinger et al. [34].  We were unable 

to use a larger quantity of flies in each bottle (> 10-25 of the required number of flies per 250-ml 

bottle [8]) to account for the larger bottle size because the sand fly demand throughout the 

entirety of the experiment would have exhausted our main colonies.  The use of the same number 

of required flies (10-25) in the larger sized bottles potentially may have influenced the diagnostic 

doses that we observed.  Despite an equivalent concentration of insecticide, a smaller density of 

sand flies exposed per bottle volume (10-25 flies/ 1,000-ml bottle compared to 10-25 flies / 250-

ml bottle) and/or potential differences in air volume to bottle surface area may be a factor in the 

determination of our calculated diagnostic doses and diagnostic times.  However, the ten 

insecticides used are contact insecticides, and the sand flies were regularly observed to be in 

contact with the interior surface of bottle due to them being poor fliers.  The authors suggest that 

the diagnostic concentrations and times would be very similar for sand flies, regardless of these 

limited volume differences.  

    Diagnostic doses and diagnostic times of insecticides for susceptible populations of 

vector species are fundamentally required when assessing resistance in test field populations [39-

43].  Accordingly, the diagnostic doses and diagnostic times presented for Lu. longipalpis and P. 

papatasi in this study should be used as an initial reference point for determining diagnostic doses 

and diagnostic times for other insecticide-susceptible populations.   The criteria differ between 

the WHO exposure kit bioassay and the CDC bottle bioassay.  The most recent criterion for 

resistance for mosquito vectors by the WHO [11] states that resistance is present if there is less 

than 90 % mortality, while the criterion for resistance by the CDC states that resistance is present 

if there is less than 100 % mortality [8].  Using the CDC bottle bioassay to test mosquito 
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populations for resistance, there are examples of employing both the WHO’s criterion for 

resistance [40, 44-47] and the CDC’s criterion for resistance [48, 49].  Recommendations from 

Saeidi et al. [24] suggest tailoring the WHO’s resistance criterion for sand flies because of the 

physiological, behavioral, and size differences between mosquitoes and sand flies.  We suggest 

that if the CDC bottle bioassay is used to assess the insecticide susceptibility status of a sand fly 

population, established diagnostic dose and times specific to sand flies and the CDC’s criterion 

for resistance should be used. 

One important aspect of the CDC bottle bioassay is the 24-h holding period used for 

pyrethroids and DDT to allow insects to recover from “knockdown” [39, 41, 44, 50-52]. 

An imperative question with the CDC bottle bioassay is to determine which mortality endpoint to 

use when assessing resistance: at the time-to-knockdown or at the of the 24-h mortality [53, 54].  

Both the knockdown endpoint and the 24-h mortality endpoint communicate different resistance 

mechanisms: knockdown resistance (kdr) via target-site insensitivity or metabolic detoxification.  

Kdr will cause knockdown to be lower than mortality, but metabolic detoxification resistance can 

cause mortality to be lower than knockdown [53].  Without the 24-h recovery period, the CDC 

bioassay could miss evidence of metabolic resistance because the lack of a 24-h recovery period 

does not allow resistant insects to recover; they may be scored as dead during the time-to-

knockdown but would have recovered if allowed the 24-h recovery period [53].  In our 

experiments, the importance of the 24-hour recovery period as part of the CDC bottle bioassay 

protocol is evident for DDT.  The time-to-mortality diagnostic doses were 63-87 fold greater than 

the time-to-knockdown diagnostic doses for P. papatasi and Lu. longipalpis, respectively (Table 

3).  This demonstrates that while sand flies, even from laboratory colonies, may have small time-

to-knockdown diagnostic doses, large concentrations are need to cause 100 % mortality after 24 

hours.   
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The CDC bottle bioassay and WHO exposure kit bioassay are mutually used to detect 

insecticide resistance.  However, a literature search of other studies conducted by [53] found 

differences in agreement between the two assays in detecting resistance in mosquitoes at both the 

time-to-knockdown and after 24 hours both at the 90 % and 98 % mortality cutoffs.  Several 

studies have utilized the WHO exposure kit bioassay to assess insecticide resistance in sand flies 

[19, 21-27].  If future monitoring of insecticide resistance in sand fly populations is to utilize the 

CDC bottle bioassay, there will need to be a calibration of both the WHO exposure kit bioassay 

and CDC bottle bioassay.  A synchronization of the diagnostic doses and diagnostic times for 

both assays will need to use the same population of sand flies, such that the same level of 

mortality can be derived from each assay [53]. 

The CDC bottle bioassay has been used for many years to track the spread of insecticide 

resistance in mosquitoes; however, this assay does not assess the intensity of insecticide 

resistance [54].  The CDC bottle bioassay intensity rapid diagnostic tests (I-RDT’s), developed by 

Bagi et al. [54], follows the CDC bottle bioassay protocol but measures insecticide concentrations 

1x, 2x, 5x and 10x the known diagnostic doses.  The intended goal is not so much with 

understanding the prevalence of insecticide resistance but to quantify the intensity of resistance 

[54].  For sand flies, I-RDT’s are not yet necessary because the prevalence of resistance is low 

and baseline data from field collections are limited.  Resistance prevalence for sand flies may be 

initially low because it has not been assessed very frequently or because it may not be very 

prevalent [13, 31, 55].   Regardless, knowing the speed with which resistance has developed and 

spread in mosquito populations demonstrates the need to continue to assess insecticide resistance 

prevalence in wild sand fly populations and to prepare I-RDT’s in areas where resistance is 

already present.  The diagnostic doses and diagnostic times presented in this study provides 

necessary baseline data for developing CDC bottle bioassay I-RDT’s for sand flies.  
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Conclusions 

Evidence of insecticide resistance in worldwide populations of phlebotomine sand flies is 

a threat to the success of control programs that aim to mitigate the spread of leishmaniasis.  It is 

crucial to have timely insecticide susceptibility data for different sand fly populations.   The CDC 

bottle bioassay is one method to assess insecticide resistance, but it has been used infrequently 

with sand flies.  With the diagnostic doses and diagnostic times presented here, the CDC bottle 

bioassay has great potential to be assimilated into sand fly control programs where other 

resistance-assessing methods are not feasible.  The data presented in this study can serve as 

starting points for determining the susceptibility of field-collected and laboratory-reared L. 

longipalpis and P. papatasi, and for determining diagnostic doses and diagnostic times for other 

sand fly species of public health concern.  Knowing if a population of sand flies is resistant to an 

insecticide or insecticide class is critical because it allows control strategies to be effectively 

implemented while not exacerbating the prevalence of insecticide resistance.   
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CHAPTER 5 

EVALUATING TARGET-SITE INSENSITIVITY AND METABOLIC DETOXIFICATION 

INSECTICIDE RESISTANCE MECHANISMS IN LABORATORY POPULATIONS OF 

SAND FLIES (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) UNDER ARTIFICIAL 

SELECTION TO PYRETHROIDS AND ORGANOPHOSPHATES 

 

Abstract 

 Synthetic insecticides are used to kill insect vectors to reduce disease transmission, and 

since the middle of the twentieth century vectors have been forced to adapt to incredible selection 

pressures imposed by these insecticides.  Resistance is now a worldwide pandemic threatening 

the utility of insecticides as tools to lessen the burden of disease.  Phlebotomine sand flies 

(Diptera: Psychodidae) transmit the protozoans that cause leishmaniasis to humans, causing tens 

of thousands of deaths each year.  Despite evidence of resistance in sand fly populations, there is 

little knowledge about their genetic and molecular mechanisms of resistance.  We hypothesized 

that resistance in laboratory populations of Phlebotomus papatasi and Lutzomyia longipalpis sand 

flies would be convergent to the mechanisms found in other insects.  Over the course of several 

years (~ 20 generations), two populations from each species were exposed to sublethal doses of 

permethrin or malathion.  We looked for evidence of target-site insensitivity and metabolic 

detoxification, two well-studied mechanisms of insecticide resistance, in several generations of 

each population.  No evidence of target-site insensitivity in the paralytic or acetylcholinesterase 

genes was found in any resistance-selected colony.  Additionally, except for a few cases, all four 

colonies had decreased activities of enzymes associated with metabolic detoxification, which 

would be expected to increase in resistant individuals.  The evolutionary reasons and implications 

for a lack of evidence of target-site insensitivity and metabolic detoxification, and ideas for other 

mechanisms, are discussed. 
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Leishmaniasis is a lethal and disfiguring worldwide neglected tropical disease [World 

Health Organization (WHO) 2010].  Endemic transmission of leishmaniasis is found in almost 

one hundred countries spanning five continents, and there is an annual incidence of 1.3 million 

new cases and 20,000-40,000 deaths (Alvar et al. 2012, WHO 2013).  Leishmaniasis is endemic 

where there is poor housing and sanitation.  In addition, there are incredible social, cultural, 

familial, and economic stigmas associated with this disease (Hotez 2008, Kassi et al. 2008, WHO 

2013, Hotez 2016).   

Leishmaniasis is caused by infection with Leishmania protozoans (Trypanosomatida: 

Trypanosomatidae).  Leishmania are dixenous parasites of mammals, including humans, and 

phlebotomine sand flies (Maslov et al. 2013).  At least twenty species of Leishmania are known 

to be pathogenic to humans (Bañuls et al. 2007, Antinori et al. 2012).  Only females in the genera 

Phlebotomus and Lutzomyia are the competent, putative vectors of these parasites (Akhoundi et 

al. 2016).   

In the Old World, the peridomestic species P. papatasi (Scopoli) is the incriminated 

vector for transmitting Leishmania major, the agent causing zoonotic cutaneous leishmaniasis 

(ZCL), from gerbil rodents to humans (Reithinger et al. 2007, Gramiccia and Gradoni 2005, 

Ready 2013). This disease is found in humans in xeric and arid regions of northern Africa, the 

Middle East, the Caucasus, and central Asia (Maroli et al. 2013).  Despite being non-fatal, the 

disfiguring effects of this disease incapacitates people in terms of social and economic status.  

ZCL has resurged recently in northern Africa and in the Middle East because of the recent 

political instability and refugee movement (Al-Salem et al. 2016, Du et al. 2016, Mondragon-

Shem and Acosta-Serrano 2016). 

In the Americas, the peridomestic Lu. longipalpis species-complex (Lutz and Neiva) is 

the most important vector of American visceral leishmaniasis (AVL).  AVL is caused by 

infection with Leishmania infantum chagasi (Lutz and Neiva 1912, Soares and Turco 2003, 
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Jochim et al. 2008).  Pathologically, AVL presentation ranges from asymptomatic to severely 

viscerotropic and is lethal if untreated (Maingon et al. 2008).  AVL in the Americas ranges from 

Mexico to northern Argentina.  Its burden remains largely unknown and is probably under-

recognized because of the lack of public health disease surveillance infrastructure (Arrivillaga et 

al. 2002, Bern et al. 2008, Romero and Boelaert 2010, Belo et al. 2013). 

A vaccine for ZCL or AVL does not currently exist (Gillespie et al. 2016), and therefore, 

public health authorities focus on integrated vector management solutions.  Vector control for 

leishmaniasis has historically relied on the use of synthetic insecticides including pyrethroids, 

organophosphates, carbamates, and organochlorines either directly or inadvertently as part of 

anti-malarial campaigns (Alexander and Maroli 2003, Kishore et al. 2006, Sharma and Singh 

2008, Amóra et al. 2009).  Often, though, sand flies live and breed in sylvatic or arid 

microhabitats that prove challenging to deliver insecticides to, and the effects of initially 

successful treatments are often transient, making frequent re-applications necessary (Alexander 

and Maroli 2003, Coleman et al. 2011, Mascari et al. 2011).   

Through continued application of insecticides on a multitude of species, tremendous 

selective pressures for resistance have been exerted.  Today, resistant sand fly populations have 

been documented in the Middle East, southern Asia, and South America (Yaghoobi-Ershadi and 

Javadian 1995, Singh et al. 2001, Surendran et al. 2005, Alexander et al. 2009, Dinesh et al. 2010, 

Afshar et al. 2011, Faraj et al. 2012, Hassan et al. 2012, Saeidi et al. 2012, Singh et al. 2012, 

Coleman et al. 2015, Hassan et al. 2015, Khan et al. 2015, Kumar et al. 2015, Singh and Kumar 

2015).   

Despite the recent findings of widespread insecticide resistance in sand fly populations 

around the world, there is little information about the genetic and molecular mechanisms of 

resistance in these populations.  Insecticide resistance to synthetic insecticides has been found in 

many insect vectors (Hemingway and Ranson 2000, Rivero et al. 2010).  Target-site insensitivity 
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and metabolic detoxification are the most geographically- and entomologically-widespread 

mechanisms that have been found and studied (Ffrench-Constant et al. 2004, Hemingway et al. 

2004, Nauen 2007).   

 Target-site insensitivity (TSI) results from single nucleotide variant (SNV) 

nonsynonymous mutations that substitute amino acids in a protein, which causes a 

conformational change that alters the proteins’ structure such that the insecticide can no longer 

perform its function (Hemingway et al. 2004).  TSI-conferring resistance is found in many genes 

depending on the class of insecticide (Bloomquist 1996, Soderlund and Knipple 2003, Weill et al. 

2003, Hemingway et al. 2004).  For pyrethroids/DDT and organophosphates/carbamates, TSI is 

found in the paralytic (para) and acetylcholinesterase-1 (ace-1) genes, respectively.  Para 

encodes the α-subunits of voltage-gated sodium ion channel proteins that surround axons, which 

are targeted by pyrethroids and DDT.  Ace-1 encodes the acetylcholinesterase enzyme, which 

clears saturated synapses of acetylcholine following synaptic transmission (Toutant 1989).  

Organophosphate and carbamate insecticides target the acetylcholinesterase enzyme (Fukuto 

1990). 

Metabolic detoxification (MD) resistance involves changes in the expression of specific 

enzymes [carboxylesterases (EST), cytochrome P450s (MFO), and glutathione S-transferases 

(GST)] that are capable of binding, sequestering, and metabolizing insecticides (Hemingway 

2000, Hemingway and Ranson 2000, Ffrench-Constant et al. 2004).  Increasing the numbers of 

these enzymes is achieved through gene amplification or through changes in gene expression 

(Rivero et al. 2010).  It is also common for enzyme classes correlated with metabolic resistance to 

detoxify multiple insecticide classes: ESTs can detoxify organophosphates, carbamates, and 

pyrethroids; MFOs can detoxify all insecticide classes; and GSTs can detoxify organophosphates, 

organochlorines, and pyrethroids (Hemingway and Karunaratne 1998, Hemingway 2000, Corbel 

et al. 2007, Perera et al. 2008, Che-Mendoza et al. 2009, David et al. 2013). 
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 The hypothesis of this research is that laboratory colonies of P. papatasi and Lu. 

longipalpis would evolve resistance over multiple, successive generations of exposure to 

sublethal doses of pyrethroids and organophosphates.  We predicted that sand flies would adapt to 

surviving insecticide exposure via TSI or MD mechanisms. Specifically, we looked for evidence 

of convergent evolution of TSI or MD resistance that have been found in other arthropods. 

Materials and Methods 

Sand Fly Colonies. Laboratory colonies of insecticide-susceptible P. papatasi and Lu. 

longipalpis was maintained at Utah State University (Logan, UT).  These colonies were obtained 

in 2012 from 30-year established colonies maintained at the Walter Reed Army Institute of 

Research (WRAIR) (Silver Spring, MD) that had been originally collected from Jordan and 

Jacobina, Brazil.  All life stages were maintained and reared following established protocols and 

novel blood-feeding techniques (Denlinger et al. 2015, Denlinger et al. 2016a, and Denlinger et 

al. 2016b). 

Development of Insecticide-Resistant Colonies. Approximately 500 adult P. papatasi 

and Lu. longipalpis (generation P) each, including both females and males, were exposed to a 

sub-lethal dose of either permethrin or malathion to initiate laboratory-bred permethrin-resistant 

and malathion-resistant colonies.  This was done using lethal concentrations (LC) that caused X% 

mortality of permethrin or malathion in a modified CDC bottle bioassay protocol (Denlinger et al. 

2015).  Fifty μg/ml permethrin and twenty-five μg/ml malathion served as the LC51 and LC57, 

respectively, for P. papatasi, and twenty-five μg/ml permethrin and ten μg/ml malathion served 

as the LC63 and LC68 respectively, for Lu. longipalpis.  Twenty-four hours after insecticide 

exposure, the surviving females were blood-fed and allowed to oviposit.  This process was 

repeated at successive generations (F1-Fn).  The resistant-selected colonies were housed in the 

same environmental growth chamber and reared under the same conditions as the main 

insecticide-susceptible colony.   
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Assessing Target-Site Insensitivity (TSI). DNA from ten P. papatasi that had survived 

insecticide exposure from the F3, F4, F6, F11, and F12 generations of permethrin-resistant-selected 

colony, and DNA from ten P. papatasi from the F3, F7, and F8 generations of the malathion-

resistant-selected colony were stored at -80°C.  DNA from ten Lu. longipalpis that had survived 

insecticide exposure from the F1-F4, F6, F7, and F9 generations of the permethrin-resistant-selected 

colony, and DNA from ten Lu. longipalpis from the F1, F3, F4, and F6 generations from the 

malathion-resistant-selected colony were stored at -80°C.  Among the four colonies, individuals 

from disparate generations were saved for assessing TSI because of challenges in also sacrificing 

flies for use in the biochemical assays and in maintaining the propagation of the colony. 

Additionally, DNA from ten insecticide-susceptible P. arabicus (Israel), P. argentipes 

(India), P. duboscqi (Mali), P. longicuspis (Tunisia), P. perfiliewi (Tunisia), P. perniciosus 

(Tunisia), P. sergenti (Israel), P. sergenti (South Sinai, Egypt), and Lu. longipalpis from Cavunji, 

Brazil was also extracted.  Individuals from all species were provided by (WRAIR).  Prior to 

initiating the resistant-selected colonies, DNA was also extracted from ten P. papatasi and Lu. 

longipalpis of our insecticide-susceptible colonies.   

Total DNA was extracted from individual sand flies using the Qiagen DNeasy Blood & 

Tissue Kit (Qiagen, Valencia, CA).  Each sand fly was initially macerated in 180μl PBS with 

three solid glass beads (Fisher Scientific) at 25Hz for five minutes using at Retsch® MM 400 

(Retsch, Haan, Germany). 

TSI was assessed in the para gene for the permethrin-selected P. papatasi and Lu. 

longipalpis colonies, and TSI was assessed in the ace-1 gene for the malathion-selected P. 

papatasi and Lu. longipalpis colonies.  Para and ace-1 gene fragments were amplified in all 

susceptible species, and in the above-mentioned generations of the P. papatasi and Lu. 

longipalpis selected colonies, using PCR.  For both genes, the primers and primer sequences used 
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for each Phlebotomus and Lutzomyia species, thermal cycler protocols, and thermal cycler 

conditions for each primer set pair are provided in Tables 5.1., 5.2., 5.3., and 5.4.  

All PCR fragments were visually analyzed using gel electrophoresis with 1% TAE gels 

and purified using Qiagen’s QIAquick PCR Purification Kit.  Bi-directional sequencing reactions 

were prepared at Utah State University in 20 µl reactions in a Bio-Rad T100TM thermal cycler.  

Samples were then sent out for automated Sanger sequencing.  DNA sequences were quality 

trimmed, analyzed, and aligned using DNASTAR Lasergene® version 10.0.1 SeqMan ProTM 

(DNASTAR, Madison, WI).  For all species, and each generation of the resistant-selected 

colonies, the DNA sequences from the ten individuals were aligned in Clustal Omega (Sievers et 

al. 2011) to form a consensus sequence. 

The para and ace-1 primers used for all species were derived from para and ace-1 cDNA  

 

sequence and primers from the sand fly Lutzomyia longipalpis (Coutinho-Abreu et al. 2007, Lins  

 

et al. 2008- accession numbers DQ898276 and DQ914434, respectively).  Initial para and ace-1 

 

 

Table 5.1. Para gene primer pairs, thermal cycler protocol name, number of protocol cycles, 

and annealing temperature during the cycles. 
Sand Fly 

Species* Primer Pairs 

Thermal Cycler 

Protocol 

Number of Thermal 

Cycler Cycles 

Annealing 

Temperature (°C) 

PAIN Para Nested SFPARAN 40 60 

PAIS Para Nested-2 SFAGRADN 35 50 

PDMA Para Nested-2 SFAGRADN 35 50 

PFTN Para Nested-2 SFAGRADN 35 50 

PLTN Para Nested-2 SFAGRADN 35 50 

PPJO Para Nested-2 SFAGRADN 35 50 

PRTN Para Nested-2 SFAGRADN 35 50 

PSIS Para Nested-2 SFAGRADN 35 50 

PSSS Para Nested SFPARAN 35 60 

LLJB Para Nested-2 SFAGRADN 35 50 

LLCV Para Nested-2 SFAGRADN 35 50 

*PAIN = P. argentipes, India; PAIS = P. arabicus, Israel; PDMA = P. dubosqui, Mali; PFTN 

= P. perfiliewi, Tunisia; PLTN = P. longicuspis, Tunisia; PPJO = P. papatasi, Jordan; PRTN 

= P. perniciosus, Tunisia; PSIS = P. sergenti Israel; PSSS = P. sergenti, South Sinai; LLJB = 

Lu. longipalpis, Jacobina, Brazil; LLCV = Lu. longipalpis, Cavunji, Brazil 
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Table 5.2. Ace-1 gene primer pairs, thermal cycler protocol name, number of protocol 

cycles, and annealing temperature during the cycles. 
Sand Fly 

Species* Primer Pairs 

Thermal Cycler 

Protocol 

Number of Thermal 

Cycler Cycles 

Annealing Temperature 

(°C) 

PAIN DegF-NestR SFAGRADN 35 50 

F12-R8 SFAGRADN 35 50 

PAIS F14-R8 SFAGRADN 35 50 

F18-R18 SFAGRADN 35 52 

PDMA F12-R8 SFAGRADN 35 52 

F6-R6 SFAGRADN 35 52 

PFTN F12-R8 SFAGRADN 35 50 

F6-NestR SFAGRADN 40 52 

PLTN F12-R8 SFAGRADN 35 50 

F6-NestR SFAGRADN 35 52 

PPJO F12-R8 SFAGRADN 35 52 

F6-R6 SFAGRADN 35 52 

PRTN DegF-NestR SFAGRADN 35 56.5 

F12-R8 SFAGRADN 35 50 

PSIS F14-R8 SFAGRADN 35 50 

F6-R6 SFAGRADN 35 50 

PSSS F14-R8 SFAGRADN 35 50 

F6-R6 SFAGRADN 35 50 

LLJB NewF-NestR SFAGRADN 35 50 

F14-R8 SFAGRADN 35 56.5 

LLCV NewF-NestR SFAGRADN 35 50 

F14-R8 SFAGRADN 35 56.5 

*PAIN = P. argentipes, India; PAIS = P. arabicus, Israel; PDMA = P. dubosqui, Mali; PFTN 

= P. perfiliewi, Tunisia; PLTN = P. longicuspis, Tunisia; PPJO = P. papatasi, Jordan; PRTN 

= P. perniciosus, Tunisia; PSIS = P. sergenti Israel; PSSS = P. sergenti, South Sinai; LLJB = 

Lu. longipalpis, Jacobina, Brazil; LLCV = Lu. longipalpis, Cavunji, Brazil 

 
 
sequence underwent BLAST analysis in VectorBase (VectorBase.org) with the annotated P.  
 

papatasi and Lu. longipalpis genomes.  This allowed us to troubleshoot, develop our own primers  

 

for para and ace-1, and expand our ace-1 coverage by using the cDNA sequence provided in  

 

Temeyer et al. (2013).  For each species, at least two primer sets were used that sequenced  

 

overlapping fragments of the para and ace-1 genes, and the fragments were overlaid and  

 

combined to produce one sequence using Clustal Omega (Sievers et al. 2011).  The para and  
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Table 5.3. Thermal cycler protocols to amplify the para and ace-1 gene fragments. The “X” 

cycles and “X°C” annealing temperature match the number of thermal cycler cycles and 

annealing temperatures found for each sand fly species in Tables 5.1. and 5.2. 

Gene Thermal Cycler Protocol Thermal Cycler Protocol Conditions 

Para SFPARAN 

95°C - 180 seconds 

X cycles of  

95°C - 30 seconds 

X°C - 30 seconds 

72°C - 30 seconds 

72°C - 300 seconds 

   

Para/Ace-1 SFAGRADN 

95°C - 120 seconds 

X cycles of 

95°C - 30 seconds 

X°C - 30 seconds 

72°C - 60 seconds 

72°C - 300 seconds 

 

Table 5.4. Primer names and sequences used to amplify para and ace-1 gene fragments.  The 

primer names are associated with the primer pairs listed in Tables 5.1. and 5.2. 

Gene Primer Sequence 5' - 3' 

Para 

Para Nested - Forward ACGGACTTCATGCATTCATTC 

Para Nested - Reverse TGGTGCTGATSSSCTTGACG 

Para Nested-2 - Forward GTRTTCCGTGTGYTGTGC 

Para Nested-2 - Reverse ATCCGAAATTGCTCAAAA 
 

  

Ace-1 

DegF GCSACYATGTGGAAYCCSAA 

NestR GTCCAGTCTGTGTACTCGAA 

F6 GGTATCKATGCAGTATCG 

R6 AATTCCTTCTCTTCGTCC 

F12 CAACGGATAAGGGGAAGG 

R8 AAACCTGTGATCGTACAC 

F14 GAAGGTGAGAGGTGTTAC 

F18 ATGTTTAGGACCTTGGTG 

R18 CGAACAGCCTTTGGAATA 

 NewF TGTCGCAGTACCACATCCGC 

 

 

ace-1 DNA sequences from the insecticide-susceptible P. papatasi and Lu. longipalpis served as  

 

a baseline to be able to identify TSI-conferring SNVs in the P. papatasi and Lu. longipalpis  
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resistant-selected colonies.   

Assessing Metabolic Detoxification (MD). Forty non-blood-fed females each from the 

F6 and F11 generations of the P. papatasi permethrin-resistant-selected colony, F3 and F7 

generations of the P. papatasi malathion-resistant-selected colony, F2-F7 generations of the Lu. 

longipalpis permethrin-resistant-selected colony, and F3 and F4 generations of the Lu. longipalpis 

malathion-resistant-selected colony were flash-frozen and stored at -80ºC for assessing metabolic 

detoxification.  Disparate generations were used because of the availability for flies to be 

sacrificed for assessing TSI and for maintaining the propagation of the colony.   

The established biochemical assay procedures from Valle et al. (2006) were used to 

assess protein activity and MD in this experiment.  These procedures are similar to the procedures 

used to assess MD in sand flies (Surendran et al. 2005, Alexander et al. 2009, Hassan et al. 2012).   

Each adult sand fly was individually homogenized in 300 μl of Milli-Q water in 1.5 ml 

Eppendorf® tubes.  Mixed functional oxidases (MFO), acetylcholinesterase (ACE), alpha-

esterase (ALPHA), beta-esterase (BETA), ρ-nitrophenyl acetate (PNPA), and glutathione-S-

transferase (GST) expression were measured.  The total protein assay provided the necessary 

foundation for the other enzymatic assays. Enzyme levels were analyzed using a Bio-Rad XMark 

micro plate absorbance reader (Hercules, CA). A standard curve for total proteins, MFO, 

ALPHA, and BETA were used to convert the optical density for each sample to a protein 

concentration.   

Statistical analyses. For each protein, differences among generations in protein activity 

were assessed using a one-way ANOVA.  Because variances often were unequal among treatment 

generations, we specified heterogenous variances; the number and composition of generations 

with unique variance estimates were selected using AICc as a measure of model fit.  Pairwise 

mean comparisons among all generations were adjusted for inflated Type I error using the Tukey 

method.  A significance level of α = 0.05 was used for all analyses.  Statistical analyses were 
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performed using SAS/STAT 14.1 in the SAS System for Windows 9.4 TS1M3 using the 

GLIMMIX procedure (SAS Institute 2001). 

Results 

Colony Survival.   

Phlebotomus papatasi. The percent survival of the permethrin-selected and malathion-

selected are provided in Table 5.5.  The permethrin-selected colony reached the F21 generation, 

and it had 50.2% survival, which is an increase in percent survival from the 14.7% survival of the 

initial insecticide-susceptible generation (P).  The malathion-selected colony reached the F18 

generation, and it had 42.5% survival, which is an increase from the 14.6% survival of the initial 

insecticide-susceptible generation (P).  Between some generations, there were swings in percent 

survival (e.g. 79.6% survival in the F10 generation to 37.1% survival in the F11 generation back to 

71.9% survival in the F12 generation).  For some generations of each resistant-selected colony, we 

did not expose the population to insecticide in order to boost the population size.  This was done 

because either the population had a low number of individuals or because at multiple times over 

the duration of this research project we had a mite infestation that forced us to cull larval pots.   

Lutzomyia longipalpis. The percent survival of the permethrin-selected and malathion-

selected are provided in Table 5.5.  The permethrin-selected colony reached the F18 generation, 

and it had 58.7% survival, which is a decrease in percent survival from the 71.4% survival of the 

initial insecticide-susceptible generation (P).  The malathion-selected colony reached the F14 

generation, and it had 22.8% survival, which is a decrease from the 32.9% survival of the initial 

insecticide-susceptible generation (P).  Similar to the P. papatasi colonies, there were swings in 

percent survival (e.g. 28.7% survival in the F1 generation to 9.8% survival in the F2 generation 

back to 53.5% survival in the F3 generation in the malathion-resistant-selected colony).  For the 

same reasons as the P. papatasi colonies, some generations of each resistant-selected colony were 

not exposed to insecticide.   
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Table 5.5. Percent survival and the number of P. papatasi and Lu. longipalpis exposed for 

each generation of the permethrin-selected and malathion-selected colonies.  For generations 

with “no exposure” the colony was not exposed to insecticide but still allowed to propagate. 
 Percent (%) Survival (Number of Flies Exposed) 

 Phlebotomus papatasi Lutzomyia longipalpis 

Generation 
Permethrin-Selected 

Colony 

Malathion-Selected 

Colony 

Permethrin-Selected 

Colony 

Malathion-Selected 

Colony 

P 14.7 (468) 14.6 (522) 71.4 (836) 32.9 (2575) 

F1 68.8 (125) 37.0 (446) 63.3 (2456) 28.7 (2512) 

F2 79.7 (171) 5.3 (946) 57.5 (3651) 9.8 (1791) 

F3 94.8 (524) 64.0 (164) 63.6 (1471) 53.5 (1560) 

F4 65.2 (682) 42.9 (163) 39.6 (2095) 45.2 (3006) 

F5 63.3 (1456) No exposure 44.7 (1161) 58.7 (702) 

F6 56.7 (1252) No exposure 48.8 (3309) 43.3 (3160) 

F7 44.7 (805) 87.8 (2011) 61.3 (1862) 7.3 (3559)) 

F8 No exposure 51.2 (1164) 82.5 (1632) 11.1 (1716) 

F9 No exposure 54.9 (1401) 77.1 (3693) 40.0 (6621) 

F10 43.2 (3096) 79.6 (765) 60.7 (7399) 6.2 (2386) 

F11 83.6 (2051) 37.1 (998) 60.8 (4636) No exposure  

F12 77.1 (2008) 71. 9 (1141) 60.3 (8776) 3.0 (1870) 

F13 51.2 (1855) No exposure 50.9 (6794) No exposure 

F14 47.0 (1331) 24.5 (261) No exposure  22.8 (1617) 

F15 75.2 (1761) No exposure 56.2 (3384)   

F16 79.6 (1609) No exposure No exposure   

F17 No exposure No exposure No exposure   

F18 77.1 (813) 42.5 (2018) 58.7 (3050)   

F19 No exposure       

F20 No exposure       

F21 50.2 (1766)       

 

 

Target-Site Insensitivity (TSI).  

Paralytic Gene (para). In all the insecticide-susceptible Phlebotomus species and Lu. 

longipalpis populations, we successfully amplified portions of the para gene surrounding three 

codons of interest that have been associated with TSI in other insect species.  One intron was 

identified that spanned the 1,016th codon (Table 5.6.).  We amplified a fragment that ranged from 

344-437bp, before intron removal, (143-206bp after intron removal) that spanned the 1,011th, 

1,014th, and 1,016th codons.  All species have an ATT at the 1,011th codon (isoleucine), TTA at 
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the 1,014th codon (leucine), and a GTT or GTC at the 1,016th codon (valine) (Table 5.6.).  All ten 

P. papatasi and ten Lu. longipalpis individuals of each permethrin-selected generation had no 

change in these codons, demonstrating no evidence of TSI at these loci. 

Acetylcholinesterase-1 gene (ace-1). We amplified a fragment of the ace-1 gene 

surrounding the 119th codon, which has been associated with TSI in other insect species, in all the 

insecticide-susceptible Phlebotomus species and Lu. longipalpis populations.  A fragment that 

ranged from 911-1,254bp before intron removal was sequenced (911-1,188bp after intron 

removal).  All Phlebotomus species genotyped to a GGA at the 119th codon (glycine), and both 

Lu. longipalpis populations have a GGC (glycine) (Table 5.7.).  All ten P. papatasi and ten Lu. 

longipalpis individuals of each malathion-selected generation had no change in these codons, 

demonstrating no evidence of TSI at these loci. 

 

Table 5.6. Intron-removed fragments of para sequence of different insecticide-susceptible 

Phlebotomus and Lutzomyia species and populations.  The 1,011, 1,014, and 1,016 codons are 

bolded and underlined. 
Sand Fly 

Species* 

Para DNA sequence containing 1,011, 1,014, and 1,016th codons  

(bolded and underlined)** 

Fragment Size 

(bp) 

PAIN ...AGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTTTTCTT… 203 

PAIS ...AGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTCTTCTT...                     147 

PDMA ...AGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTTTTCTT… 157 

PFTN ...TGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTCTTCTT… 154 

PLTN ...AGTAGTAATTGGGAATTTAGTCG^TCCTCAATCTCTTCTT… 154 

PPJO ...AGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTTTTCTT… 154 

PRTN ...TGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTCTTCTT… 158 

PSIS ...AGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTTTTCTT… 153 

PSSS ...AGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTTTTCTT… 206 

LLJB ...AGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTTTTCTT… 143 

LLCV ...AGTAGTAATTGGGAATTTAGTCG^TTCTCAATCTTTTCTT… 150 

*PAIN = P. argentipes, India; PAIS = P. arabicus, Israel; PDMA = P. dubosqui, Mali; PFTN 

= P. perfiliewi, Tunisia; PLTN = P. longicuspis, Tunisia; PPJO = P. papatasi, Jordan; PRTN 

= P. perniciosus, Tunisia; PSIS = P. sergenti Israel; PSSS = P. sergenti, South Sinai; LLJB = 

Lu. longipalpis, Jacobina, Brazil; LLCV = Lu. longipalpis, Cavunji, Brazil 

**The “^” represents where an intron was identified, and it has been removed for this 

table. 
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Table 5.7. Fragments of ace-1 sequence from insecticide-susceptible Phlebotomus and 

Lutzomyia species and populations.  The 119th codon is bolded and underlined. 
Sand Fly 

Species* 

Ace-1 DNA sequence containing 119th codon  

(bolded and underlined) Fragment Size (bp) 

PAIN …TCTTCGGTGGTGGATTCTACTCAGGAACATCCACAC... 1052 

PAIS …TCTTCGGTGGTGGATTCTACTCAGGAACATCCACAC... 1013 

PDMA …TCTTCGGTGGTGGATTCTACTCAGGAACATCCACAC… 1156 

PFTN …TCTTCGGTGGTGGATTTTACTCAGGGACGTCCACAC… 911 

PLTN …TCTTCGGTGGTGGATTTTACTCAGGGACGTCCACGC... 960 

PPJO …TCTTCGGTGGTGGATTCTACTCAGGAACATCCACAC... 1111 

PRTN …TCTTCGGTGGTGGATTTTACTCAGGGACGTCCACAC… 1061 

PSIS …TCTTCGGTGGTGGATTCTACTCAGGAACATCCACAC… 1188 

PSSS …TCTTCGGTGGTGGATTCTACTCAGGAACATCCACAC… 1146 

LLJB …TCTTTGGTGGTGGCTTTTACTCAGGAACATCCACAC... 1081 

LLCV …TCTTTGGTGGTGGCTTTTACTCAGGAACATCCACAC... 1017 

*PAIN = P. argentipes, India; PAIS = P. arabicus, Israel; PDMA = P. dubosqui, Mali; PFTN 

= P. perfiliewi, Tunisia; PLTN = P. longicuspis, Tunisia; PPJO = P. papatasi, Jordan; PRTN 

= P. perniciosus, Tunisia; PSIS = P. sergenti Israel; PSSS = P. sergenti, South Sinai; LLJB = 

Lu. longipalpis, Jacobina, Brazil; LLCV = Lu. longipalpis, Cavunji, Brazil 

 

Metabolic Detoxification (MD).  

P. papatasi Permethrin-Exposed Colony. Mean enzyme activity with standard deviations 

for the six enzymes are reported in Table 5.8.  For ACE, permethrin susceptible sand flies had an 

85.903% inhibition, which was not significantly different from the F6 generation (85.677% 

inhibition); however, by the F11 generation, there was significantly less ACE inhibition 

(80.364%).  For ALPA, there was a significant increase in enzyme activity from the susceptible 

population (19.453 nmol α-naphthol consumed/mg sand fly protein/min) to both the F6 generation 

(44.512 nmol α-naphthol consumed/mg sand fly protein/min) and F11 generation (24.186 nmol α-

naphthol consumed/mg sand fly protein/min).  Opposite results from ALPHA were observed for 

BETA: the susceptible population (31.614 nmol β-naphthol consumed/mg sand fly protein/min) 

had significantly more enzyme activity than the F6 generation (23.492 nmol β-naphthol 

consumed/mg sand fly protein/min) and the F11 generation (13.457 nmol β-naphthol 

consumed/mg sand fly protein/min).  GST enzyme activity results were similar to BETA results.  
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The susceptible population (2.915 mmol reaction product/mg sand fly protein/min) had 

significantly more GST activity than the F6 generation (0.678 mmol reaction product/mg sand fly 

protein/min) and the F11 generation (0.702 mmol reaction product/mg sand fly protein/min).  For 

MFO enzyme activity, the susceptible population (5.126 μg cytochrome C) did not have 

significantly different enzyme activity than the F6 generation (5.496 μg cytochrome C), but both 

the susceptible population and F6 generation had significantly more MFO activity than the F11 

generation (2.238 μg cytochrome C).  Last, there was no significant change in PNPA activity 

between the susceptible population (2.912 Δ absorbance/min), the F6 generation (0.274 Δ 

absorbance/min), and the F11 generation (-0.66 Δ absorbance/min). 

P. papatasi Malathion-Exposed Colony. Mean enzyme activity with standard deviations  

 

for the six enzymes are reported in Table 5.9.  For ACE, both the susceptible population and F7 

 

 

Table 5.8. P. papatasi mean enzyme activity (± standard deviation) for the susceptible 

generation, F6 permethrin-resistant-selected generation, and F11 permethrin-resistant-

selected generation for the acetylcholinesterase (ACE), alpha-esterase (ALPHA), beta-

esterase (BETA), glutathione-S-transferase (GST), mixed functional oxidases (MFO), and ρ-

nitrophenyl acetate (PNPA).  The mean enzyme activity for the susceptible population, F6 

generation, and F11 generation for each enzyme are statistically different from other generations if 

they have different [boxed letters] at α = 0.05. 

 Generation 

Enzyme Susceptible F6 F11 

ACE 

(% Inhibition) 

85.903 (7.202) 

[A] 

85.677 (2.126) 

[A] 

80.364 (6.671) 

[B] 

ALPHA 

(nmol α-naphthol consumed/mg sand fly 

protein/min) 

19.453 (9.396) 

[A] 

44.512 (17.037) 

[B] 

24.186 (5.373) 

[C] 

BETA 

(nmol β-naphthol consumed/mg sand fly 

protein/min) 

31.614 (16.588) 

[A] 

23.492 (8.056) 

[B] 

13.457 (3.042) 

[C] 

GST 

(mmol reaction product/mg sand fly 

protein/min) 

2.915 (1.684) 

[A] 

0.678 (0.547) 

[B] 

0.702 (0.566) 

[B] 

MFO 

(μg cytochrome C) 

5.126 (3.334) 

[A] 

5.496 (3.042) 

[A] 

2.238 (0.715) 

[B] 

PNPA 

(Δ absorbance/min) 

2.912 (1.876) 

[A] 

0.274 (32.553) 

[A] 

-0.66 (9.169) 

[A] 
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generation had statistically similar enzyme inhibition, 85.903% and 82.363%, 

respectively.  In the F3 generation there had been a spike in inhibition to 95.957%.  For the 

ALPHA enzyme, there was a decrease in activity from 19.453 nmol α-naphthol consumed/mg 

sand fly protein/min in the susceptible population to 16.909 nmol α-naphthol consumed/mg sand 

fly protein/min in the F3 generation to 13.168 nmol α-naphthol consumed/mg sand fly 

protein/min in the F7 generation.  The change from the susceptible population to the F3 generation 

was not significant, but both the susceptible population and F3 generation had significantly more 

ALPHA enzyme activity than in the F7 generation.  BETA enzyme activity also saw a statistically 

significant drop off from the susceptible population (31.614 nmol β-naphthol consumed/mg sand 

fly protein/min) to the F3 generation (11.543 nmol β-naphthol consumed/mg sand fly protein/min) 

and to the F7 generation (13.037 nmol β-naphthol consumed/mg sand fly protein/min).  Similarly, 

there was a statistically significant decrease in GST activity from the susceptible population 

(2.915 mmol reaction product/mg sand fly protein/min) to the F3 generation (0.814 mmol reaction 

product/mg sand fly protein/min) and to the F7 generation (0.973 mmol reaction product/mg sand 

fly protein/min).  Likewise, the same trend was observed for MFO activity where we observed 

approximately half of MFO activity in the F3 generation (2.854 μg cytochrome C) and F7 

generation (2.555 μg cytochrome C) compared to the susceptible population (5.126 μg 

cytochrome C).  Lastly, similar to the PNPA activity of the permethrin-selected colony, there 

were no statistically significant differences in PNPA activity among the susceptible population 

(2.912 Δ absorbance/min) and the F3 generation (0.295 Δ absorbance/min) and the F7 generation 

(1.894 Δ absorbance/min), although there was a decrease in both selected generations from the 

susceptible population. 

Lu. longipalpis Permethrin-Exposed Colony. Mean enzyme activity with standard  

 

deviations for the six enzymes are reported in Table 5.10.  For ACE, permethrin susceptible sand 

 

flies had an 92.077% inhibition, which was not significantly different from the F7 generation 
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Table 5.9. P. papatasi mean enzyme activity (± standard deviation) for the susceptible 

generation, F3 malathion-resistant-selected generation, and F7 malathion-resistant-selected 

generation for the acetylcholinesterase (ACE), alpha-esterase (ALPHA), beta-esterase 

(BETA), glutathione-S-transferase (GST), mixed functional oxidases (MFO), and ρ-

nitrophenyl acetate (PNPA).  The mean enzyme activity for the susceptible population, F3 

generation, and F7 generation for each enzyme are statistically different from other generations if 

they have different [boxed letters] at α = 0.05.  

 Generation 

Enzyme Susceptible F3 F7 

ACE 

(% Inhibition) 

85.903 (7.202) 

[A] 

95.957 (2.075) 

[B] 

82.363 (7.813) 

[A] 

ALPHA 

(nmol α-naphthol consumed/mg sand fly 

protein/min) 

19.453 (9.396) 

[A] 

16.909 (7.28) 

[A] 

13.168 (5.298) 

[B] 

BETA 

(nmol β-naphthol consumed/mg sand fly 

protein/min) 

31.614 (16.588) 

[A] 

11.543 (12.016) 

[B] 

13.037 (3.882) 

[B] 

GST 

(mmol reaction product/mg sand fly 

protein/min) 

2.915 (1.684) 

[A] 

0.814 (0.697) 

[B] 

0.973 (0.525) 

[B] 

MFO 

(μg cytochrome C) 

5.126 (3.334) 

[A] 

2.854 (3.456) 

[B] 

2.555 (0.615) 

[B] 

PNPA 

(Δ absorbance/min) 

2.912 (1.876) 

[A] 

0.295 (2.335) 

[A] 

1.894 (9.577) 

[A] 

 

 (90.467% inhibition); but there was significantly less ACE inhibition in the F2, F5, and F6 

generations.  For ALPHA, there was a significant decrease in enzyme activity from the 

susceptible population (31.366 nmol α-naphthol consumed/mg sand fly protein/min) to the F2 

generation (23.437 nmol α-naphthol consumed/mg sand fly protein/min) through the F7 

generation (19.890 nmol α-naphthol consumed/mg sand fly protein/min).  There was no 

significant difference in BETA enzyme activity from the susceptible population (18.656 nmol β-

naphthol consumed/mg sand fly protein/min) and the F7 generation (19.942 nmol β-naphthol 

consumed/mg sand fly protein/min), although the F2, F4, F5, and F6 generations had a significant 

decrease in activity.  GST enzyme activity was not significantly different from the susceptible 

population (0.409 mmol reaction product/mg sand fly protein/min) and the F7 generation (0.283 

mmol reaction product/mg sand fly protein/min), and the only increase in GST enzyme activity 
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was during the F3 generation (1.247 mmol reaction product/mg sand fly protein/min).  MFO 

enzyme activity saw a significant decrease from the susceptible population (4.047 μg cytochrome 

C) in the F3 (2.329 μg cytochrome C), F4 (2.598 μg cytochrome C), F5 (1.717 μg cytochrome C), 

and F6 (2.630 μg cytochrome C) generations; although the F7 generation had a not significant 

difference in MFO enzyme activity (3.880 μg cytochrome C). Last, the F2-F4 and F6 generations 

all had a significant decrease in PNPA enzyme activity from the susceptible population (2.2 Δ 

absorbance/min), although no significant decrease in PNPA enzyme activity was found in the F7 

generation (0.710 Δ absorbance/min). 

Lu. longipalpis Malathion-Exposed Colony. Mean enzyme activity with standard  

 

deviations for the six enzymes are reported in Table 5.11.  For ACE, there was a significant  

 

decrease in inhibition from the susceptible population (92.077%) to the F3 generation and F4  

 

generation, 85.690% and 82.114% inhibition, respectively, but there was not a statistical  

 

difference between the F3 and F4 inhibitions.  A similar observation was seen for the ALPHA and  

 

BETA enzymes.  The susceptible population had an activity of 31.366 nmol α-naphthol  

 

consumed/mg sand fly protein/min and 18.656 nmol β-naphthol consumed/mg sand fly  

 

protein/min.  There was a significant decrease in the F3 generation, which had 17.947 nmol α- 

 

naphthol consumed/mg sand fly protein/min and 11.000 nmol β-naphthol consumed/mg sand fly  

 

protein/min.  The F4 generation activities were also significantly different from the susceptible  

 

generation: 17.461 nmol α-naphthol consumed/mg sand fly protein/min and 9.507 nmol β- 

 

naphthol consumed/mg sand fly protein/min.  For GST activity, there was no significant  

 

difference between the susceptible population (0.409 mmol reaction product/mg sand fly  

 

protein/min) and the F3 generation (0.402 mmol reaction product/mg sand fly protein/min), 

 

but the F4 generation had a significant decrease in activity from both the susceptible population 

 

and the F3 generation (0.174 mmol reaction product/mg sand fly protein/min).  MFO activity saw  

 

a significant decrease from the susceptible population (4.047 μg cytochrome C) to the F3 
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Table 5.10. Lu. longipalpis mean enzyme activity (± standard deviation) for the susceptible 

generation and F2-F7 permethrin-resistant-selected generations for the acetylcholinesterase 

(ACE), alpha-esterase (ALPHA), beta-esterase (BETA), glutathione-S-transferase (GST), 

mixed functional oxidases (MFO), and ρ-nitrophenyl acetate (PNPA).  The mean enzyme 

activity for the susceptible population and F2-F7 generations are statistically different from other 

generations if they have different [boxed letters] at α = 0.05.  Some multiple comparison tests 

were unable to be made with the “lines” statement in GLIMMIX because the variances between 

the differences were unequal, in which case, the comparison is conservative and pairs of means 

are inferred to be significantly different by the test (SAS Institute 2001). 
 Generation 

Enzyme Susceptible F2 F3 F4 F5 F6 F7 

ACE 

(% Inhibition) 

92.077 

(2.633) [A] 

85.915 

(6.472) 

[C] 

93.099 

(6.424) 

[A] 

92.481 

(3.427) 

[A] 

86.163 

(4.037) 

[C] 

87.963 

(2.643) 

[BC] 

90.467 

(6.316) 

[AB] 

ALPHA 

(nmol α-naphthol 

consumed/mg sand 

fly protein/min) 

31.366 

(11.549) [A] 

23.437 

(8.216) 

[B] 

22.616 

(6.525) 

[B] 

20.314 

(3.867) 

[B] 

15.294 

(2.398) 

[C] 

22.765 

(3.849) 

[B]* 

19.890 

(4.291) 

[B] 

BETA 

(nmol β-naphthol 

consumed/mg sand 

fly protein/min) 

18.656 

(6.235) [A] 

13.480 

(4.309) 

[B] 

19.741 

(8.860) 

[A] 

13.489 

(3.260) 

[B] 

10.494 

(2.175) 

[C] 

11.236 

(3.629) 

[BC] 

19.942 

(4.670) 

[A] 

GST 

(mmol reaction 

product/mg sand fly 

protein/min) 

0.409 

(0.201) [B] 

0.257 

(0.185) 

[B] 

1.247 

(0.289) 

[A] 

0.239 

(0.166)  

[B]** 

0.214 

(0.196) 

[B] 

0.542 

(0.999) 

[AB] 

0.283 

(0.165) 

[B] 

MFO 

(μg cytochrome C) 

4.047 

(1.704) [A] 

3.179 

(0.997) 

[A] 

2.329 

(0.477) 

[B] 

2.598 

(0.615) 

[B] 

1.717 

(0.291) 

[C] 

2.630 

(0.573) 

[B] 

3.880 

(1.401) 

[A] 

PNPA 

(Δ absorbance/min) 

2.200 

(1.695) [A] 

-0.407 

(1.748) 

[BC] 

-0.175 

(1.804) 

[B] 

-1.325 

(1.320) 

[C] 

0.695 

(2.270) 

[AB] 

-1.008 

(6.270) 

[BC] 

0.710 

(3.372) 

[AB] 

* F6 and F7 are inferred to be significantly different  

** F4 and Susceptible are inferred to be significantly different 

 

 

generation (2.667 μg cytochrome C) and F4 generation (2.731 μg cytochrome C), both the latter 

two not having a significant difference in activity.  Lastly, like GST activity, PNPA activity was 

not significantly different between the susceptible population (2.200 Δ absorbance/min) and the  

F3 generation (1.704 Δ absorbance/min), but the F4 generation had a significant decrease in  

 

activity (-1.345 Δ absorbance/min) from both the susceptible population and F3 generation. 
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Table 5.11. Lu. longipalpis mean enzyme activity (± standard deviation) for the susceptible 

generation, F3 malathion-resistant-selected generation, and F4 malathion-resistant-selected 

generation for the acetylcholinesterase (ACE), alpha-esterase (ALPHA), beta-esterase 

(BETA), glutathione-S-transferase (GST), mixed functional oxidases (MFO), and ρ-

nitrophenyl acetate (PNPA).  The mean enzyme activity for the susceptible population, F3 

generation, and F4 generation for each enzyme are statistically different from other generations if 

they have different [boxed letters] at α = 0.05.  

 Generation 

Enzyme Susceptible F3 F4 

ACE 

(% Inhibition) 
92.077 (2.633) [A] 

85.690 (10.809) 

[B] 

82.114 (12.455) 

[B] 

ALPHA 

(nmol α-naphthol consumed/mg sand 

fly protein/min) 

31.366 (11.549) [A] 
17.947 (6.207) 

[B] 

17.461 (6.553) 

[B] 

BETA 

(nmol β-naphthol consumed/mg sand 

fly protein/min) 

18.656 (6.235) [A] 
11.000 (3.466) 

[B] 

9.507 (3.329) 

[B] 

GST 

(mmol reaction product/mg sand fly 

protein/min) 

0.409 (0.201) [A] 
0.402 (0.227) 

[A] 

0.174 (0.186) 

[B] 

MFO 

(μg cytochrome C) 
4.047 (1.704) [A] 

2.667 (0.606) 

[B] 

2.731 (0.960) 

[B] 

PNPA 

(Δ absorbance/min) 
2.200 (1.695) [A] 

1.704 (2.909) 

[A] 

-1.345 (2.278) 

[B] 

 

 

Discussion 

Target-Site Insensitivity.   

Para. Pyrethroid and DDT insecticides target the α-subunits of voltage-gated sodium ion 

channels proteins, which are encoded by the para gene.  Pyrethroids and DDT kill insects by 

causing knockdown.  Knockdown is a physiological response where the voltage-gated sodium ion 

channels’ inactivation is blocked, which causes action potential spasms, involuntary movements, 

and muscle spasms (Martins et al. 2009).  TSI in para is known as knockdown resistance (kdr).  

Kdr decreases channels’ sensitivity to insecticides by decreasing ligand affinity and/or altering 

the kinetics of channels by favoring the closed-state and accelerating deactivation (Bloomquist 

and Miller 1986, Davies et al. 2007, Burton et al. 2011, Dong et al. 2014).  The protein encoded 

by the para gene has four domains, each of which has six transmembrane helices.  Parallel 

convergent evolution of kdr in the sixth transmembrane helix of the second domain, especially at 
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the 1,011th, 1,014th, and 1,016th amino acids, have been discovered in many insects, which was 

our reasoning for examining these three codons in our permethrin-resistant-selected colonies of P. 

papatasi and Lu. longipalpis (Soderlund and Knipple 2003, Dong et al. 2014).   

 At the 1,011th codon, all insecticide-susceptible sand flies genotyped in this study had an 

ATT genotype (isoleucine).  Insecticide-susceptible Aedes aegypti mosquitoes also have an 

isoleucine (ATA) at this locus that is substituted for a methionine (ATG) or valine (GTA) in kdr 

individuals (Brengues et al 2003, Saavedra-Rodriguez et al. 2007).  The most parsimonious route 

to kdr for Phlebotomus species or Lu. longipalpis at the 1,011th codon requires one step: a 

transition of the terminal T to become a G (methionine).  The isoleucine becoming a valine 

requires at least two steps: The initial A to become a G, and the terminal T to become an A. 

At the 1,016th codon, all insecticide-susceptible sand flies we genotyped in this study had 

a valine (GTT or GTC (only in P. longicuspis)).  Kdr A. aegypti mosquitoes have either a glycine 

(GGA) or isoleucine (ATA).  For all the sand flies genotyped, at least two steps would be needed 

to develop kdr similar to A. aegypti at the 1,016th locus (Brengues et al. 2003, Saavedra-

Rodriguez et al. 2007, Rajatileka et al. 2008, Marcombe et al. 2012). 

There is a high frequency of kdr convergence at the 1,014th codon.  The native leucine in 

many insects of agricultural and public health importance has been substituted for a 

phenylalanine, serine, histidine, cysteine, or tryptophan in kdr individuals (Dong et al. 2014).  

This demonstrates the biochemical importance of the leucine’s interaction with pyrethroids or 

DDT (Martinez-Torres et al. 1997, Martinez-Torres et al. 1998).  All the insecticide-susceptible 

Phlebotomus species and the two Lu. longipalpis populations genotyped in this study had a 

leucine at the 1,014th codon (TTA).  In many insecticide-susceptible insect vector species that 

also have a TTA at the 1,014th codon, kdr arises from two routes using single substitutions.  First, 

in insecticide-resistant mosquitoes and triatomines the terminal A is substituted for a T 

(phenylalanine) (Martinez-Torres et al. 1998, Martinez-Torres et al. 1999, Ranson et al. 2000, 
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Lüleyap et al. 2002, Enayati et al. 2003, Karunaratne et al. 2007, Liu et al. 2009, Chen et al. 2010, 

Singh et al. 2010, Xu et al. 2011, Fabro et al. 2012).  Second, in some mosquitoes, the middle T is 

substituted for a C (serine) (Ranson et al. 2000, Lüleyap et al. 2002, Chen et al. 2010, Singh et al. 

2010, Verhaeghen et al. 2010).  Both kdr routes described above require only one base change 

from the TTA genotype in the insecticide-susceptible sand flies we genotyped to substitute the 

leucine for a phenylalanine or serine.  To substitute a histidine, cysteine, or tryptophan amino acid 

for the native leucine, two mutations need to occur. 

Ace-1. In nematoceran flies, including sand flies, one gene, ace-1, encodes the 

acetylcholinesterase enzyme (Weill et al. 2002), which is targeted by organophosphate and 

carbamate insecticides.  These insecticides inhibit acetylcholinesterase by 

phosphorylating/carbamylating the catalytic serine hydroxyl group of the enzyme’s oxyanion hole 

(Fukuto 1990).  At the 119th codon of ace-1, there have been several examples of convergent TSI 

evolution in several important mosquito vectors (Weill et al. 2003, Weill et al. 2004, Liu et al. 

2005, Cui et al. 2006, Djogbénou et al. 2008).  At this locus, the native glycine is substituted for a 

serine (GGC to AGC).  The sterically bulkier serine, because it is in the oxyanion hole, turns over 

insecticides quicker or blocks the insecticide from performing its function (Weill et al. 2004). 

To date, there has been no conclusive evidence of TSI in any sand fly species, although 

Surendran et al. (2005) found insensitive acetylcholinesterase in P. argentipes from Delft Island 

in Sri Lanka, and Hassan et al. (2012) found insensitive acetylcholinesterase in P. papatasi in 

Surogia village in Sudan.  Both examples may be attributed to a TSI mutation in ace-1, but they 

were not genotyped.  Insecticide-susceptible mosquitoes have a GGC codon at amino acid 119 

(glycine), and resistant individuals have substituted the initial G for an A (serine).  The 

Phlebotomus species we genotyped had a GGA genotype at amino acid 119.  These species need 

two mutations to occur (terminal A to C and initial G to A) to become resistant following the 

route of mosquitoes.  Both susceptible Lu. longipalpis populations have a GGC genotype and 
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would only need the initial G to become and A to become resistant, identical to the route of 

mosquitoes (Coutinho-Abreu et al. 2007).   

Implications. Despite evidence of TSI in other vector species, there is no evidence of TSI 

in our four artificially-selected colonies in any of the generations we genotyped.  Similarly, 

Fawaz et al. (2016) found no evidence of kdr after 16 generations of permethrin selection in a 

laboratory population derived from a field population of Egyptian P. papatasi.  There are several 

reasons for why TSI have not yet been found in sand fly populations.  First, these mutations may 

exist in field populations, but they have not been discovered.  There is a gap in the understanding 

of the prevalence and mechanisms of resistance in sand fly populations around the world because 

of challenges in collecting flies and because of a lack of standardized sand fly bioassays (Li et al. 

2015). Resistance cannot be detected and understood if the tools to test for it are lacking. 

Second, the fitness costs of TSI mutations may be too great.  Fitness costs of insecticide 

resistance are well-documented in vectors (Shi et al. 2004, Berticat et al. 2008).  TSI mutations 

account for large percentages of the resistant phenotype (Saavedra-Rodriguez et al. 2008) but can 

impose large fitness costs (Berticat et al. 2008).  The para and ace-1 proteins are functionally 

important, and the exonic sequence between sand fly species and other nematoceran vectors is 

conserved (Coutinho-Abreu et al. 2007).  Mosquito TSI mutations in para and ace-1 proteins 

cause sluggish and hyperactive nervous systems, respectively, which significantly decrease 

fitness (Berticat et al. 2008).   

Conventional synthetic insecticides pose incredible selection pressures for resistance by 

killing young adult female vectors.  Despite the strong negative physiological changes TSI 

mutations impose by decreasing fitness, the benefits of resistance (survival) outweigh these costs 

and help resistance spread in a population.  However, if the benefits of resistance could be 

lessened, the increased costs of resistance would make resistance less likely to spread in a 

population, as is seen in late-life-acting insecticides to control malaria control (Read et al. 2009).   
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One way that insects reduce costs is by having further genetic changes that alleviate the strong 

deleterious effects caused by the initial adaptation, and refine it to minimize fitness costs (Kliot 

and Ghanim 2012).  Mosquitoes with simultaneous TSI in both para and ace-1 had fewer fitness 

costs than mosquitoes with only TSI in one gene because the two TSI mutations were 

compensatory for each other (Berticat et al. 2008). 

TSI mutations reduce the activity of their target proteins.  It is logical to propose that the 

loci of these mutations occur at insecticide-binding sites (Dong et al. 2014), which could be why 

there are only a few loci where TSI occurs (Ffrench-Constant et al. 1998) and why parallel 

convergence is common in these genes across many insect orders (Chevin et al. 2010, Dong et al. 

2014).  This makes identifying TSI sites predictable because they have direct interactions with the 

insecticide (Stern and Orgogozo 2009, Stern 2013).  We hypothesized that TSI resistance in our 

sand fly colonies, if found, would be convergent at loci where TSI has been found in other 

vectors (i.e. the 1,011th, 1,014th, and 1,016th codons of para and the 119th codon of ace-1)?  

However, TSI loci do not always follow a lock-and-key binding interaction; amino acids can have 

epistatic interactions with other amino acids that together confer TSI resistance (Ffrench-Constant 

et al. 1998, Dong et al. 2014).  While genotyping the known loci for evidence of TSI, it is prudent 

to examine the entire gene for novel TSI mutations.   

Lastly, it has been observed that substituted amino acids having varying effects on 

resistance.  For example, the mutated leucine at the 1,014th codon of para has been shown to 

substitute for a phenylalanine, serine, histidine, cysteine, or tryptophan.  These amino acids all 

provide varying levels of resistance to different pyrethroid insecticides and have varying fitness 

costs.  Knowledge of the mutated amino acid can be useful for vector control officials when 

determining insecticide rotations and insecticide intensity (Rinkevich et al. 2006; Burton et al. 

2011; Dong et al. 2014). 
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Metabolic Detoxification. Unlike TSI resistance, there are few examples of MD 

resistance in the literature.  First, in Montes Claros, Brazil, a region that had used pyrethroids to 

control sand flies since 1986, Alexander et al. (2009) found a population of Lu. longipalpis to 

have elevated esterases and decreased MFO and GST activity.  The Lu. longipalpis permethrin-

resistant-selected colony demonstrated a decreased ALPHA esterase activity and no change in 

BETA, GST, or MFO activity.  The permethrin-resistant-selected P. papatasi colony had very 

similar results to the Montes Claros population: elevated ALPHA esterase activity and decreased 

MFO and GST activity.  Second, a population of P. argentipes on Delft Island, Sri Lanka had 

elevated esterase.  Delft Island is known to have been heavily treated with malathion during anti-

malarial campaigns (Surendran et al. 2005).  Unlike this P. argentipes population, the malathion-

resistant-selected P. papatasi and Lu. longipalpis laboratory colonies both had decreased ALPHA 

and BETA esterase activity.  Third, Hassan et al. (2015) found 60% of DDT-resistant P. 

argentipes, collected from three villages in the Bihar state, to have elevated GST activity.  The P. 

papatasi permethrin-resistant-selected colony had decreased GST activity, and the Lu. longipalpis 

permethrin-resistant-selected colony had no change in GST activity.  Fourth, in Surogia village, 

Sudan, Hassan et al. (2012) found P. papatasi to have elevated esterases and GSTs.  This region 

of Sudan has historically used malathion and propoxur as part of control programs targeting 

Anopheles mosquitoes.  Opposite of this field population, our malathion-resistant-selected P. 

papatasi and Lu. longipalpis colonies both had decreased esterases and decreased GSTs.   

Lastly, in a laboratory population of P. papatasi from Egypt under permethrin selection, 

Fawaz et al. (2016) observed, from the control generation to the F16 generation, no significant 

differences in GST activity and a decrease in ACE inhibition.  Interestingly, MFO and esterase 

activity increased significantly in the early generations of exposure but returned to approximate 

control generation levels by the F13 and F16 generations.  Our permethrin-resistant selected P. 

papatasi colony also had a significant decrease in ACE inhibition, but it had significant decreases 
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in GST and MFO activity.  Like the Fawaz et al. (2016) P. papatasi colony’s esterase activity, 

our P. papatasi colony had a very significant increase in ALPHA activity in the F6 generation and 

it decreased from the F6 generation to the F11 generation (although still significantly greater 

activity than the susceptible population).  Our permethrin-resistant selected Lu. longipalpis 

colony had no significant decrease in ACE inhibition, GST activity, and MFO activity.  Unlike 

Fawaz et al. (2016) P. papatasi colony’s esterase activity, our Lu. longipalpis ALPHA and BETA 

activity had significant decreases in the early generations, but was increasing towards the latter 

generations, although it was not significant different from the susceptible population.  

The disparity between enzyme activities involved in MD documented from sand fly 

populations around the world can provide important insights about these enzymes.  Similar results 

between populations of which enzymes contribute to MD should not always be expected because 

it is common for enzyme classes to detoxify multiple insecticide classes. (Hemingway and 

Karunaratne 1998, Hemingway 2000, Corbel et al. 2007, Perera et al. 2008, Che-Mendoza et al. 

2009, David et al. 2013).  Additionally, despite strong evidence for MD resistance being 

conferred by enzyme upregulation, decreased enzyme can also infer resistance.  Decreased 

enzyme activity conferring MD has been best described for MFOs and esterases.  MFOs function 

by first enzymatically activating insecticides, which they later detoxify; resistance can develop by 

having fewer MFOs that bioactivate fewer insecticides (Scott 1999).  Additionally, the “Ali-

esterase hypothesis” posits that there is functional redundancy with overlapping substrate 

specificity between enzymes of the same family (e.g. carboxylesterases).  Mutations in some of 

these enzyme family members makes them unable to hydrolyze typical substrates, which would 

present as decreased activity of that enzyme family.  For example, in organophosphate-resistant 

house flies and blow flies, esterase activity was found to be low because mutations had caused 

them to be unable to hydrolyze esterases, but in doing so, some of the esterases had gained 

enhanced ability to hydrolyze organophosphates (Newcomb et al. 1997, Ffrench-Constant et al. 
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2004).  Many of the enzymes that we measured for our four resistant-selected colonies also had 

reduced activity (Tables 8-11), and the possibility for a similar mechanism as the ali-esterase 

hypothesis should be investigated further as a mechanism of metabolic detoxification resistance. 

The detoxifying enzymes which contribute to the resistance phenotype may depend on 

fitness costs.  Like TSI resistance, the fitness costs of MD resistance may have been too large for 

all the colonies to upregulate the activity of these enzymes.  For the insect vector, resistance has 

costs correlated with pleiotropic changes in its biology, physiology, and behavior.  Resources are 

allocated to traits affecting metabolic processes at the cost of other traits (Chevillon et al. 1997), 

and the allocation for resources to possibly produce more detoxifying enzymes was too great.  

Perhaps the energy resources for survival were allocated elsewhere that had fewer fitness costs.  

The re-allocation of resources to/from metabolic detoxification enzymes affects a vector’s 

longevity, immune response, and ability to transmit pathogens (Rivero et al. 2010). 

For a vector’s longevity, MD resistance can require the overproduction of detoxifying 

enzymes, often at the expense of survival and the ability to combat oxidative stress (Rivero et al. 

2010).  There is added oxidative stress from normal metabolism and respiration when hemoglobin 

is digested in the blood-meals of blood-feeding insects (Graça-Souza et al. 2006, (Diaz-Albiter et 

al. 2012).  MFOs and esterases increase oxidative stress by producing reactive oxygen species 

(ROS) during oxidative respiration, which cause internal damage and decrease a vector’s 

longevity; GSTs protect against oxidative stress by solubilizing and excreting ROSs to increase 

longevity (McCarroll and Hemingway 2002, Vontas et al. 2002, Enayati 2003, Che-Mendoza et 

al. 2009, David et al. 2005, Rivero et al. 2010). 

MD resistance also alters a vector’s immune response.  MD-associated enzymes are 

pleiotropic in their ability to recognize of foreign parasites, to affect the transduction of immune 

signaling, and to affect the pathogen targeting mechanisms (Rivero et al. 2010).  GSTs, because 

of their ability to neutralize ROSs in response to pathogen invasion, may increase the 
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susceptibility of a vector to the parasite by limiting the ability of ROSs to activate the apoptotic 

cycle in the pathogens (Kumar et al. 2003, MacLeod et al. 2007).  Esterases and MFOs, in 

contrast, make vectors more refractory to pathogen infection by increasing parasite melanotic 

encapsulation through increased ROS production (Kumar et al. 2003).  Lastly, overproduced 

enzymes can favor parasite development by depleting resource pools, which limits the vector’s 

ability to mount an immune response.  However, if the resources are directed away from the 

parasite’s ability to consume them, then the parasite’s development may be limited (Rivero et al. 

2010, Vézilier et al. 2010). 

MD resistance can also affect a vector’s ability to transmit pathogens by altering the 

vector microenvironment where parasites develop.  When the insect host becomes resistant to 

insecticides, this environment can be modified that may be advantageous or disadvantageous to 

the parasite.  For example, the physiological changes resulting from MD resistance may make the 

vector toxic for parasites.  McCarroll et al. (2000) and McCarroll and Hemingway (2002) showed 

that insecticide resistant Culex quinquefasciatus mosquitoes that overproduced ESTs were more 

refractory to Wuchereria bancrofti filariae than susceptible C. quinquefasciatus.  The larval 

worms died when the redox potential changed in the tissues where they were living because of 

overproduced ESTs.  This connection between ESTs and ROS production could extend to other 

parasites that are susceptible to oxidative stress.  A future aim could be to examine how 

Leishmania survive in sand flies with MD resistance. 

 Conclusions. In this experiment, the artificial selection for insecticide resistance in 

laboratory populations of P. papatasi and Lu. longipalpis failed to demonstrate convergent 

mechanisms found in other vectors.  However, we did observe colony survival in successive 

generations over the course of several years, which does suggest that resistance is a heritable 

phenotypic trait with a genetic mechanism, but a mechanism that we did not find in this 

experiment.  In future investigations, we plan to examine the genetic variation of our susceptible 
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populations of P. papatasi and Lu. longipalpis to make inferences about other possible 

mechanisms of insecticide resistance. 

Acknowledgments 

We thank the many undergraduate research students in the Bernhardt lab for their 

assistance with maintaining and rearing the sand fly colonies.  We are grateful for Dr. William C. 

Black IV at Colorado State University for opening his lab to allow DSD to learn the procedures 

for performing biochemical assays.  The maintenance of SKH1 hairless mice (Charles River, 

Wilmington, MA) and the experimental protocol was approved by Utah State University’s 

Institutional Care and Use Committee. 

References Cited 

Afshar, A. A., Y. Rassi, I. Sharifi, M. R. Abai, M. A. Oshaghi, M. R. Yaghoobi-Ershadi,  

  

 and H. Vatandoost. 2011. Susceptibility status of Phlebotomus papatasi and P. sergenti  

  

 (Diptera: Psychodidae) to DDT and deltamethrin in a focus of cutaneous leishmaniasis  

  

 after earthquake strike in Bam, Iran. Iran J. Arthropod-Borne Dis. 5: 32-41. 

 

Akhoundi, M., K. Kuhls, A. Cannet, J. Votýpka, P. Marty, P. Delaunay, and D. Sereno.  

 

2016. A historical overview of the classification, evolution, and dispersion of Leishmania  

 

parasites in sandflies. PLoS Negl. Trop. Dis. 10: e0004349. 

 

Alexander, B., V. C. Barros, S. F. de Souza, S. S. Barros, L. P. Teodoro, Z. R. Soares, N. F.  

 

Gontijo, and R. Reithinger. 2009. Susceptibility to chemical insecticides of two  

 

Brazilian populations of the visceral leishmaniasis vector Lutzomyia longipalpis (Diptera:  

 

Psychodidae). Trop. Med. Int. Health. 14: 1272-1277. 

 

Alexander, B., and M. Maroli. 2003. Control of phlebotomine sandflies. Med. Vet. Entomol.  

 

17: 1-18. 

 

Al-Salem, W. S., D. M. Pigott, K. Subramaniam, L. R. Haines, L. Kelly-Hope, D. H.  

 

Molyneux, S. I. Hay, and A. Acosta-Serrano. 2016. Cutaneous leishmaniasis and  



156 

 

 

 

conflict in Syria. Emerg. Infect. Dis. 22: 931-933. 

 

Alvar, J., I. D. Vélez, C. Bern, M. Herrero, P. Desjeux, J. Cano, J. Jannin, M. den Boer,  

 

and WHO Leishmaniasis Control Team. 2012. Leishmaniasis worldwide and global  

 

estimates of its incidence. PLoS One. 7: e35671. 

 

Amóra, S. S. A., C. M. L. Bevilagua, F. M. C. Feijó, N. D. Alves, and M. D. V. Maciel. 2009.  

 

Control of phlebotomine (Diptera: Psychodidae) leishmaniasis vectors. Neotrop.  

 

Entomol. 38: 303-310. 

 

Antinori, S., L. Schifanella, and M. Corbellino. 2012. Leishmaniasis: new insights from an old  

 

and neglected diseases. Eur. J. Clin. Microbiol. Infect Dis. 31: 109-118. 

 

Arrivillaga, J. C., D. E. Norris, M. D. Feliciangeli, and G. C. Lanzaro. 2002. Phylogeography  

 

of the neotropical sand fly Lutzomyia longipalpis inferred from mitochondrial DNA  

 

sequences. Infect. Genet. Evol. 2: 83-95. 

 

Bañuls, A. L., M. Hide, and F. Prugnolle. 2007. Leishmania and the leishmaniases: a parasite  

 

genetic update and advances in taxonomy, epidemiology and pathogenicity in humans.  

 

Adv. Parasitol. 64: 1-109. 

 

Belo, V. S., G. L. Werneck, D. S. Barbosa, T. C. Simões, B. W. L. Nascimento, E. S. da  

 

Silva, and C. J. Struchiner. 2013. Factors associated with visceral leishmaniasis in the  

 

Americas: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 7: e2182. 

 

Bern, C., J. H. Maguire, and J. Alvar. 2008. Complexities of assessing the disease burden  

 

attributable to leishmaniasis. PLoS Negl. Trop. Dis. 2: e313. 

 

Berticat, C., J. Bonnet, S. Duchon, P. Agnew, M. Weill, and V. Corbel. 2008. Costs and  

 

benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes.  

 

BMC Evol. Biol. 8: 104. 

 

Bloomquist, J. R., and T. A. Miller. 1986. Sodium channel neurotoxins as probes of the  

 



157 

 

 

knockdown resistance mechanism. Neurotoxicology. 7: 217-224. 

 

Bloomquist, J. R. 1996. Ion channels as targets for insecticides. Annu. Rev. Entomol. 41: 163- 

 

190. 

 

Brengues, C., N. J. Hawkes, F. Chandre, L. McCarroll, S. Duchon, P. Guillet, S. Manguin,  

 

J. C. Morgan, and J. Hemingway. 2003. Pyrethroid and DDT cross-resistance in Aedes  
 

aegypti is correlated with novel mutations in the voltage-gated sodium channel gene.  

 

Med. Vet. Entomol 17: 87–94. 

 

Burton, M. J., I. R. Mellor, I. R. Duce, T. G. Emyr Davies, L. M. Field, and M. S.  

 

Williamson. 2011. Differential resistance of insect sodium channels with kdr mutations  

 

to deltamethrin, permethrin and DDT. Insect Biochem. Mol. Biol. 41: 723-732. 

 

Che-Mendoza, A., R. P. Penilla, and D. A. Rodríguez. 2009. Insecticide resistance and  

 

glutathione S-transfereases in mosquitoes: a review. Afr. J. Biotechnol. 8: 1386-1397. 

 

Chen, L., D. Zhong, D. Zhang, L. Shi, G. Zhou, M. Gong, H. Zhou, Y. Sun, L. Ma, J. He, S.  

 

Hong, D. Zhou, C. Xiong, C. Chen, P. Zou, C. Zhu, and G. Yan. 2010. Molecular  

 

ecology of pyrethroid knockdown resistance in Culex pipiens pallens mosquitoes. PLoS  

 

One 5: e11681. 

 

Chevillon, C., D. Bourguet, F. Rousset, N. Pasteur, and M. Raymond. 1997. Pleiotropy of  

 

adaptive changes in populations: comparisons among insecticide resistance genes in  

 

Culex pipiens. Genet. Res. 70: 195-204. 

 

Chevin, L. M., G. Martin, and T. Lenormand. 2010. Fisher’s model and the genomics of  

 

adaptation: restricted pleiotropy, heterogenous mutation, and parallel evolution.  

 

Evolution. 64: 3213-3231. 

 

Coleman, R. E., D. A. Burkett, V. Sherwood, J. Caci, J. A. Dennett, B. T. Jennings, R.  

 

Cushing, J. Ploch, G. Hopkins, and J. L. Putnam. 2011. Impact of phlebotomine sand  

 

flies on the United States military operations at Tallil Air Base, Iraq: 6. Evaluation of  



158 

 

 

 

insecticides for the control of sand flies. J. Med. Entomol. 48: 584-599. 

 

Coleman, M., G. M. Foster, R. Deb, R. P. Singh, H. M. Ismail, P. Shivam, A. K. Ghosh, S.  

 

Dunkley, V. Kumar, M. Coleman, J. Hemingway, M. J. Paine, and P. Das. 2015.  

 

DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in  

 

India. Proc. Natl. Acad. Sci. USA. 112: 8573-8578. 

 

Corbel, V., R. N’Guessan, C. Brengues, F. Chandre, L. Djogbénou, T. Martin, M.  

 

Akogbéto, J. M. Hougard, and M. Rowland. 2007. Multiple insecticide resistance  

 

mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa.  

 

Acta Trop. 101: 207-216. 

 

Coutinho-Abreu, I. V., V. Q. Balbino, J. G. Valenzuela, I. V. Sonoda, and J. M. Ramalho- 

 

Ortigão. 2007. Structural characterization of acetylcholinesterase 1 from the sand fly  

 

Lutzomyia longipalpis (Diptera: Psychodidae). J. Med. Entomol. 44: 639-650. 

 

Cui, F., M. Raymond, A. Berthomieu, H. Alout, M. Weill, and C. L. Qiao. 2006. Recent  

 

emergence of insensitive acetylcholinesterase in Chinese populations of the mosquito  

 

Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 43: 878-883. 

 

David, J. P., H. M. Ismail, A. Chandor-Proust, and M. J. Paine. 2013. Role of cytochrome  

 

P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use  

 

of insecticides on Earth. Philos. Trans. R. Soc. London B. Biol. Sci. 368: 20120429. 

 

David, J. P., C. Strode, J. Vontas, D. Nikou, A. Vaughan, P. M. Pignatelli, C. Louis, J.  

 

Hemingway, and H. Ranson. 2005. The Anopheles gambiae detoxification chip: a  

 

highly specific microarray to study metabolic-based insecticide resistance in malaria  

 

vectors. Proc. Natl. Acad. Sci. USA. 102: 4080-4084. 

 

Davies, T. G. E., L. M. Field, P. N. R. Usherwood, and M. S. Williamson. 2007. DDT,  

 

pyrethrins, pyrethroids, and insect sodium channels. IUBMB Life. 59: 151-162. 

 



159 

 

 

Denlinger, D. S., J. A. Creswell, J. L. Anderson, C. K. Reese, and S. A. Bernhardt. 2016a.  

 

Diagnostic doses and times for Phlebotomus papatasi and Lutzomyia  

 
longipalpis sand flies (Diptera: Psychodidae: Phlebotominae) using the CDC bottle  

 

bioassay to assess insecticide resistance. Parasit. Vectors. 9: 212. 

 

Denlinger, D. S., A. Y. Li, S. L. Durham, P. G. Lawyer, J. L. Anderson, and S. A.  

 

Bernhardt. 2016b. Comparison of in vivo and in vitro methods for blood feeding of  

 

Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J. Med. Entomol. 53:  

 

1112-1116. 

 

Denlinger, D. S., S. Lozano-Fuentes, P. G. Lawyer, W. C. Black IV, and S. A. Bernhardt.  

 

2015. Assessing insecticide susceptibility of laboratory Lutzomyia longipalpis and  

 

Phlebotomus papatasi sand flies (Diptera: Psychodidae: Phlebotominae). J. Med.  

 

Entomol. 52: 1003-1012.  

 

Diaz-Albiter, H., M. R. V. Sant’Anna, F. A. Genta, and R. J. Dillon. 2012. Reactive oxygen  

 

species-mediated immunity against Leishmania mexicana and Serratia marcescens in the  

 

phlebotomine sand fly Lutzomyia longipalpis. J. Biol. Chem. 287: 23995-24003. 

 

Dinesh, D. S., M. L. Das, A. Picado, L. Roy, S. Rijal, S. P. Singh, P. Das, M. Boelaert, and  

 

M. Coosemans. 2010. Insecticide susceptibility of Phlebotomus argentipes in visceral  

 

leishmaniasis endemic districts in India and Nepal. PLoS Negl. Trop. Dis. 4: e859. 

 

Djogbénou, L., R. Dabiré, A. Diabaté, P. Kengue, M. Akogbéto, J. M. Hougard, and F.  

 

Chandre. 2008. Identification and geographic distribution of the ACE-1R mutation in the  

 

malaria vector Anopheles gambiae in south-western Burkina Faso, West Africa. Am. J.  

 

Trop. Med. Hyg. 78: 298-302. 

 

Dong, K., Y. Du, F. Rinkevich, Y. Nomura, P. Xu, L. Wang, K. Silver, and B. S. Zhorov.  

 

2014. Molecular biology of insect sodium channels and pyrethroid resistance. Insect  

 

Biochem. Mol. Biol. 50: 1-17. 



160 

 

 

 

Du, R., P. J. Hotez, W. S. Al-Salem, and A. Acosta-Serrano. 2016. Old World cutaneous  

 

leishmaniasis and refugee crises in the Middle East and North Africa. PLoS Negl. Trop.  

 

Dis. 10: e0004545. 

 

Enayati, A. A., H. Vatandoost, H. Ladonni, H. Townson, and J. Hemingway. 2003.  

 

Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector  

 

mosquito Anopheles stephensi. Med. Vet. Entomol. 17: 138-144. 

 

Fabro, J., M. Sterkel, N. Capriotti, G. Mougabure-Cueto, M. Germano, R. Rivera-Pomar,  

 

and S. Ons. 2012. Identification of a point mutation associated with pyrethroid resistance  

 

in the para-type sodium channel of Triatoma infestans, a vector of Chagas' disease.  

 

Infect. Genet. Evol. 12: 487-491. 

 

Faraj, C., S. Ouahabi, E. B. Adlaoui, M. E. Elkohli, L. Lakraa, M. E. Rhazi, and B. Ameur.  

2012. Insecticide susceptibility status of Phlebotomus (Paraphlebotomus) sergenti and  

Phlebotomus (Phlebotomus) papatasi in endemic foci of cutaneous leishmaniasis in  

Morocco. Parasit. Vectors. 5: 51. 

Fawaz, E. Y., A. B. Zayed, N. T. Fahmy, J. T. Villinski, D. F. Hoel, and J. W. Diclaro II.  

 

2016. Pyrethroid insecticide resistance mechanisms in the adult Phlebotomus papatasi  

 

(Diptera: Psychodidae). J. Med. Entomol. 53: 620-628. 

 

Ffrench-Constant, R. H., P. J. Daborn, and G. Le Goff. 2004. The genetics and genomics of  

 

insecticide resistance. Trends Genet. 20: 163-170. 

 

Ffrench-Constant, R. H., B. Pittendrigh, A. Vaughan, and N. Anthony. 1998. Why are there  

 

so few resistance-associated mutations in insecticide target genes? Philos. Trans. R. Soc.  

 

Lond. B. Biol. Sci. 353: 1685-1693. 

 

Fukuto, T. R. 1990. Mechanism of action of organophosphorus and carbamate insecticides.  

 

Environ. Health Perspect. 87: 245-254. 

 



161 

 

 

Graça-Souza, A. V., C. Maya-Monteiro, G. O. Paiva-Silva, G. R. C. Braz, M. C. Paes, M. H.  

 

F. Sorgine, M. F. Oliveira, and P. L. Oliveira. 2006. Adaptations against heme toxicity  

 

in blood-feeding arthropods. Insect Biochem. Mol. Biol. 36: 322-335. 

 

Gramiccia, M., and L. Gradoni. 2005. The current status of zoonotic leishmaniases and  

 

approaches to disease control. Int. J. Parasitol. 35: 1169-1180. 

 

Hassan, F., D. S. Dinesh, B. Purkait, S. Kumari, V. Kumar, and P. Das. 2015. Bio-chemical  

 

characterization of detoxifying enzymes in DDT resistant field isolates of Phlebotomus  

 

argentipes in Bihar, India. Int. J. Med. Pharm. Sci. (IJMPS). 5: 23-32. 

 

Hassan, M. M., S. O. Widaa, O. M. Osman, M. S. M. Numiary, M. A. Ibrahim, and H. M.  

 

Abushama. 2012. Insecticide resistance in the sand fly, Phlebotomus papatasi from  

 

Khartoum State, Sudan. Parasit. Vectors. 5: 46. 

 

Hemingway, J. 2000. The molecular basis of two contrasting metabolic mechanisms of  

 

insecticide resistance. Insect Biochem. Mol. Biol. 30: 1009-1015. 

 

Hemingway, J., N. J. Hawkes, L. McCarroll, and H. Ranson. 2004. The molecular basis of  

 

insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34: 653-665. 

 

Hemingway, J., and S. H. Karunaratne. 1998. Mosquito carboxylesterases: a review of the  

 

molecular biology and biochemistry of a major insecticide resistance mechanism. Med.  

 

Vet. Entomol. 12: 1-12. 

 

Hemingway, J., and H. Ranson. 2000. Insecticide resistance in insect vectors of human disease.  

 

Annu. Rev. Entomol. 45: 371-391. 

 

Hotez, P. J. 2008. Stigma: the stealth weapon of the NTD. PLoS Negl. Trop. Dis. 2: e230. 

 

Hotez, P. J. 2016. Neglected tropical diseases in the Anthropocene: the cases of zika, ebola, and  

 

other infections. PLoS Negl. Trop. Dis. 10: e0004648. 

 

Jochim, R. C., C. R. Teixeira, A. Laughinghouse, J. Mu, F. Oliveira, R. B. Gomes, D. E.  

 

Elnaiem, and J. G. Valenzuela JG. 2008. The midgut transcriptome of Lutzomyia  



162 

 

 

 

longipalpis comparative analysis of cDNA libraries from sugar-fed, blood-fed, post- 

 

digested and Leishmania infantum chagasi-infected sand flies. BMC Genomics. 9: 15. 

 

Karunaratne, S., N. J. Hawkes, M. D. B. Perera, H. Ranson, and J. Hemingway. 2007.  

 

Mutated sodium channel genes and elevated monooxygenases are found in pyrethroid  

 

resistant populations of Sri Lankan malaria vectors. Pestic. Biochem. Physiol. 88: 108- 

 

113. 

 

Kassi, M., M. Kassi, A. K. Afghan, R. Rehman, and P. M. Kasi. 2008. Marring leishmaniasis:  

 

the stigmatization and the impact of cutaneous leishmaniasis in Pakistan and Afghanistan.  

 

PLoS Negl. Trop. Dis. 2: e259. 

 

Khan, S. A., A. Aqueel, R. Q. Saleem, N. Zahoor, K. Arooj, M. Raza, S. Abbas, Afzal, A.  

 

Haider, M. Ahmad, M. Idris, R. M. Bilal, and A. Shahid. 2015. Insecticide resistance  

 

in sand flies (Phlebotomus papatasi) against bifenthrin and cypermethrin in Chakwal,  

 

Pakistan. Eur. Acad. Res. 3: 5349-5363. 

 

Kishore, K., V. Kumar, S. Kesari, D. S. Dinesh, A. J. Kumar, P. Das, and S. K.  

 

Bhattacharya. 2006. Vector control in leishmaniasis. Indian J. Med. Res. 123: 467-472. 

 

Kliot, A., and M. Ghanim. 2012. Fitness costs associated with insecticide resistance. Pest  

 

Manag. Sci. 68: 1431-1437. 

 

Kumar, S., G. K. Christophides, R. Cantera, B. Charles, Y. S. Han, S. Meister, G.  

 

Dimopoulos, F. C. Kafatos, and C. Barillas-Mury. 2003. The role of reactive oxygen  

 

species of Plasmodium melanotic encapsulation in Anopheles gambiae. Proc. Natl. Acad.  

 

Sci. USA. 100: 14139-14144. 

 

Kumar, V., L. Shankar, S. Kesari, G. S. Bhunia, D. S. Dinesh, R. Mandal, and P. Das. 2015.  

 

Insecticide susceptibility of Phlebotomus argentipes & assessment of vector control in  

 

two districts of West Bengal, India. Indian J. Med. Res. 142: 211-215. 

 



163 

 

 

Li, A. Y., A. A. Pérez de León, K. J. Linthicum, S. C. Britch, J. D. Bast, and M. Debboun.  

 

2015. Baseline susceptibility to pyrethroid and organophosphate insecticides in two Old  

 

World sand fly species (Diptera: Psychodidae). US Army Med. Dep. J. 2015; Jul-Sep:3- 

 

9. 

 

Lins, R. M. M. A., N. A. Souza, and A. A. Peixoto. 2008. Genetic divergence between two  

 

sympatric species of the Lutzomyia longipalpis complex in the paralytic gene, a locus  

 

associated with insecticide resistance and lovesong production. Mem. Inst. Oswaldo  

 

Cruz. 103: 736-740.  

 

Liu, N., Q. Xu, T. Li, L. He, and L. Zhang. 2009. Permethrin resistance and target site  

 

insensitivity in the mosquito Culex quinquefasciatus in Alabama. J. Med. Entomol. 46:  

 

1424-1429. 

 

Liu, H., Q. Xu, L. Zhang, and N. Liu. 2005. Chlorpyrifos resistance in mosquito Culex  

 
quinquefasciatus. J. Med. Entomol. 42: 815-820. 

 

Lüleyap, H. U., D. Alptekin, H. Kasap, and M. Kasap. 2002. Detection of knockdown  

 

resistance mutations in Anopheles sacharovi (Diptera: Culicidae) and genetic distance  

 

with Anopheles gambiae (Diptera: Culicidae) using cDNA sequencing of the voltage- 

 

gated sodium channel gene. J. Med. Entomol. 39: 870-874. 

 

Lutz, A., and A. Neiva. 1912. Contribuição para o conhecimento das espécies do gênero  

 

Phlebotomus existentes no Brasil. Mem. Inst. Oswaldo Cruz. 4: 84-95. 

 

MacLeod, E. T., I. Maudlin, A. C. Darby, and S. C. Welburn. 2007. Antioxidants promote  

 

establishment of trypanosome infections in tsetse. Parasitology. 134: 827-831. 

Maingon, R. D., R. D. Ward, J. G. Hamilton, L. G. Bauzer, and A. A. Peixoto. 2008. The  

 
Lutzomyia longipalpis species complex: does population sub-structure matter to  

 

Leishmania transmission? Trends Parasitol. 24: 12-17. 

 

Marcombe, S., R. B. Mathieu, N. Pocquet, M. A. Riaz, R. Poupardin, S. Sélior, F. Darriet,  



164 

 

 

 

S. Reynaud, A. Yébakima, V. Corbel, J. P. David, and F. Chandre. 2012. Insecticide  

 

resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms  

 

and relations with environmental factors. PLoS One. 7: e30989. 

 

Maroli, M., M. D. Feliciangeli, L. Bichaud, R. N. Charrel, and L. Gradoni. 2013.  

 

Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public  

 

health concern. Med. Vet. Entomol. 27: 123-147. 

 

Martinez-Torres, D., F. Chandre, M. S. Williamson, F. Darriet, J. B. Bergé, A. L.  

 

Devonshire, P. Guillet, N. Pasteur, and D. Pauron. 1998. Molecular characterization of  

 

pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae  

 

s.s. Insect Mol. Biol. 7: 179-184. 

 

Martinez-Torres, D., C. Chevillon, A. Brun-Barale, J. B. Bergé, N. Pasteur, and D. Pauron.  

 

1999. Voltage-dependent Na+ channels in pyrethroid resistant Culex pipiens L  

 

mosquitoes. Pestic. Sci. 55: 1012-1020. 

 

Martinez-Torres, D., A. L. Devonshire, and M. S. Williamson. 1997. Molecular studies of  

 

knockdown resistance to pyrethroids: cloning of domain II sodium channel gene  

 

sequences from insects. Pestic. Sci. 51: 265-270. 

 

Martins, A. J., R. M. M. A. Lins, J. G. B. Linss, A. A. Peixoto, and D. Valle. 2009. Voltage- 

 

gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant  

 

Aedes aegypti from Brazil. Am. J. Trop. Med. Hyg. 81: 108-115. 

 

Maslov, D. A., J. Votýpka, V. Yurchenko, and J. Lukeš. 2013. Diversity and phylogeny of  

 

insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 29: 43-52. 

 

McCarroll, L., and J. Hemingway. 2002. Can insecticide resistance status affect parasite  

 

transmission in mosquitoes? Insect Biochem. Mol. Biol. 32: 1345-1351. 

 

McCarroll, L., M. G. Paton, S. H. Karunaratne, H. T. Javasurvia, K. S. Kalpage, and J.  

 



165 

 

 

Hemingway. 2000. Insecticides and mosquito-borne disease. Nature. 407: 961-962. 

 

Mondragon-Shem, K., and A. Acosta-Serrano. 2016. Cutaneous leishmaniasis: the truth about  

 

the ‘flesh-eating disease’ in Syria. Trends Parasitol. 32: 432-435. 

 

Nauen, R. 2007. Insecticide resistance in disease vectors of public health importance. Pest  

 

Manag. Sci. 63: 628-633. 

 

Newcomb, R. D., P. M. Campbell, D. L. Ollis, E. Cheah, R. J. Russell, and J. G. Oakeshott.  

 

1997. A single amino acid substitution converts a carboxylesterase to an  

 

organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc. Natl.  

 

Acad. Sci. USA. 94: 7464-7468. 

 

Perea EZ, León RB, Salcedo MP, Brogdon WG, Devine GJ. 2009. Adaptation and evaluation  

 

of the bottle assay for monitoring insecticide resistance in disease vector mosquitoes in  

 

the Peruvian Amazon. Malar. J. 8: 208. 

 

Perera, M. D. B., J. Hemingway, and S. H. P. P. Karunaratne. 2008. Multiple insecticide  

 

resistance mechanisms involving metabolic changes and insensitive target sites selected  

 

in anopheline vectors of malaria in Sri Lanka. Malar. J. 7: 168. 

 

Rajatileka, S., W. C. Black IV, K. Saavedra-Rodriguez, Y. Trongtokit, C. Apiwathnasorn,  

 

P. J. McCall, and H. Ranson. 2008. Development and application of a simple  

 

colorimetric assay reveals widespread distribution of sodium channel mutations in Thai  

 

populations of Aedes aegypti. Acta Trop. 108: 54-57. 

 

Ranson, H., B. Jensen, J. M. Vulule, X. Wang, J. Hemingway, and F. H. Collins. 2000.  

 

Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan  

 

Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol. Biol.  

 

9: 491-497. 

 

Read, A. F., P. A. Lynch, and M. B. Thomas. 2009. How to make evolution-proof insecticides  

 

for malaria control. PLoS Biol. 7: e1000058. 



166 

 

 

 

Reithinger, R., J. C. Duiardin, H. Louzir, C. Pirmez, B. Alexander, and S. Brooker. 2007.  

 

Cutaneous leishmaniasis. Lancet Infect. Dis. 7: 581-596. 

 

Rinkevich, F. D., L. Zhang, R. L. Hamm, S. G. Brady, B. P. Lazzaro, and J. G. Scott. 2006.  

 

Frequencies of the pyrethroid resistance alleles of Vssc1 and CYP6D1 in house flies from  

 

the eastern United States. Insect Mol. Biol. 15: 157-167. 

 

Rivero, A., J. Vézilier, M. Weill, A. F. Read, and S. Gandon. 2010. Insecticide control of  

 

vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog. 6:  

 

e1001000. 

 

Romero, G. A. S., and M. Boelaert. 2010. Control of visceral leishmaniasis in Latin America- a  

 

systematic review. PLoS Negl. Trop. Dis. 4: e584. 

 

Saavedra-Rodriguez, K., C. Strode, A. Flores Suarez, I. Fernandez Salas, H. Ranson, J.  

 

Hemingway, and W. C. Black IV. 2008. Quantitative trait loci mapping of genome  

 

regions controlling permethrin resistance in the mosquito Aedes aegypti. Genetics. 180:  

 

1137-1152. 

 

Saavedra-Rodriguez, K., L. Urdaneta-Marquez, S. Rajatileka, M. Moulton, A. E. Flores, I.  

 

Fernandez-Salas, J. Bisset, M. Rodriguez, P. J. McCall, M. J. Donnelly, H. Ranson,  

 

J. Hemingway, and W. C. Black IV. 2007. A mutation in the voltage-gated sodium  

 

channel gene associated with pyrethroid resistance in Latin American Aedes aegypti.  
 

Insect Mol. Biol. 16: 785–798. 

 

Saeidi, Z., H. Vatandoost, A. A. Akhavan, M. R. Yaghoobi-Ershadi, Y. Rassi, M. Sheikh,  

 

M. H. Arandian, R. Jafari, and A. R. Sanei Dehkordi. 2012. Baseline susceptibility of  

 

a wild strain of Phlebotomus papatasi (Diptera: Psychodidae) to DDT and pyrethroids in  

 

an endemic focus of zoonotic cutaneous leishmaniasis in Iran. Pest Manag. Sci. 68: 669- 

 

675. 

 



167 

 

 

SAS Institute. 2001. SAS System for Windows. SAS Institute, Cary, NC. 

 

Sharma, U., and S. Singh. 2008. Insect vectors of Leishmania: distribution, physiology and  

 

their control. J. Vector Borne Dis. 45: 255-272. 

 

Shi, M. A., A. Lougarre, C. Alies, I. Frémaux, Z. H. Tang, J. Stoian, and D. Fournier. 2004.  

 

Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide  

 

resistance. BMC Evol. Biol. 4: 5. 

 

Singh, R., R. K. Das, and S. K. Sharma. 2001. Resistance of sandflies to DDT in kala-azar  

 

endemic districts of Bihar, India. Bull. World Health Organ. 79: 793. 

 

Singh, O. P., C. L. Dykes, M. K. Das, S. Pradhan, R. M. Bhatt, O. P. Agrawal, and T. Adak.  

 

2010. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel  

 

mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from  

 

Orissa, India. Malar. J. 9: 146. 

 

Singh, R., and P. Kumar. 2015. Susceptibility of the sandfly Phlebotomus argentipes  

 

Annandale and Brunetti (Diptera: Psychodidae) to insecticides in endemic areas of  

 

visceral leishmaniasis in Bihar, India. Jpn. J. Infect. Dis. 68: 33-37.  

 

Singh, R. K., P. K. Mittal, and R. C. Dhiman. 2012. Insecticide susceptibility status of  

 

Phlebotomus argentipes, a vector of visceral leishmaniasis in different foci in three states  

 

of India. J. Vector Borne Dis. 49: 254-257. 

 

Soares, R. P., and S. J. Turco. 2003. Lutzomyia longipalpis (Diptera: Psychodidae:  

 

Phlebotominae): a review. An. Acad. Bras. Cienc. 75: 301-330. 

 

Soderlund, D. M., and D. C. Knipple. 2003. The molecular biology of knockdown resistance to  

 

pyrethroid insecticides. Insect Biochem. Mol. Biol. 33: 563-577. 

 

Stern, D. L. 2013. The genetic causes of convergent evolution. Nat. Rev. Genet. 14: 751-764. 

 

Stern, D. L., and V. Orgogozo. 2009. Is genetic evolution predictable? Science. 323: 746-751. 

 

Surendran, S., S. H. P. P. Karunaratne, Z. Adams, J. Hemingway, and N. J. Hawkes. 2005.  



168 

 

 

  

 Molecular and biochemical characterization of a sand fly population from Sri Lanka:  

  

 evidence for insecticide resistance due to altered esterases and insensitive  

  

 acetylcholinesterase. Bull. Entomol. Res. 95: 371-380. 

 

Temeyer, K. B., D. K. Brake, A. P. Tuckow, A. Y. Li, and A. A. Pérez de Léon. 2013.  

 

Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): cDNA sequence,  

 

baculovirus expression, and biochemical properties. Parasit. Vectors. 6: 31. 

 

Toutant, J. P. 1989. Insect acetylcholinesterase: catalytic properties, tissue distribution and  

 

molecular forms. Prog. Neurobiol. 32: 423-446. 

 

Valle, D., I. R. Montella, R. A. Ribeiro, P. F. V. Medeiros, A. J. Martins, and J. B. P. Lima.  

 

2006. Quantification methodology for enzyme activity related to insecticide resistance in  

 

Aedes aegypti. Ministério da Saúde, Rio de Janeiro and Distrito Federal. 

 

Verhaeghen, K., W. Van Bortel, H. Trung, T. Sochantha, K. Keokenchanh, and M.  

 

Coosemans. 2010. Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae  

 

and An. peditaeniatus populations of the Mekong region. Parasit. Vectors. 3: 59. 

 

Vézilier, J., A. Nicot, S. Gandon, and A. Rivero. 2010. Insecticide resistance and malaria  

 

transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with  

 

Plasmodium relictum. Malar. J. 9: 379. 

 

Vontas, J. G., G. J. Small, D. C. Nikou, H. Ranson, and J. Hemingway. 2002. Purification,  

 

molecular cloning, and heterologous expression of a glutathione S-transferase involved in  

 

insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem. J.  

 

362: 329-337. 

 

Weill, M., P. Fort, A. Berthomieu, M. P. Dubois, N. Pasteur, and M. Raymond. 2002. A  

 

novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non- 

 

homologous to the ace gene in Drosophila. Proc. R. Soc. Lond. B. 269: 2007-2016. 

 



169 

 

 

Weill, M., G. Lutfalla, K. Mogensen, F. Chandre, A. Berthomieu, C. Berticat, N. Pasteur,  

 

A. Philips, P. Fort, and M. Raymond. 2003. Insecticide resistance in mosquito vectors.  

 

Nature. 423: 136-137. 

 

Weill, M., C. Malcolm, F. Chandre, K. Mogensen, A. Berthomieu, M. Marquine, and M.  

 

Raymond. 2004. The unique mutation in ace-1 giving high insecticide resistance is  

 

easily detectable in mosquito vectors. Insect Mol. Biol. 13: 1-7. 

 

(WHO)World Health Organization. 2010. Control of the leishmaniases. Report of a Meeting  

 

of the WHO Expert Committee on the Control of Leishmaniases, 22–26 March 2010,  

 

WHO Technical Report Series. WHO, Geneva, Switzerland. 

 

(WHO)World Health Organization. 2013. Second WHO report on neglected tropical diseases.  

 

WHO, Geneva, Switzerland.  <http://www.who.int/leishmaniasis/en/>. 

 

Xu, Q., L. Tian, L. Zhang, and N. Liu. 2011. Sodium channel genes and their differential  

 

genotypes at the L-to-F kdr locus in the mosquito Culex quinquefasciatus. Biochem.  

 

Biophys. Res. Commun. 407: 645-649. 

 

Yaghoobi-Ershadi, M. R., and E. Javadian. 1995. Susceptibility status of Phlebotomus  
 

papatasi to DDT in the most important focus of zoonotic cutaneous leishmaniasis,  

 

Isfahan Province, Iran. Iranian J. Publ. Health. 24:11-20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



170 

 

 

CHAPTER 6 

STANDING GENETIC VARIATION IN LABORATORY POPULATIONS OF INSECTICIDE-

SUSCEPTIBLE PHLEBOTOMUS PAPATASI AND LUTZOMYIA LONGIPALPIS (DIPTERA: 

PSYCHODIDAE: PHLEBOTOMINAE) FOR THE EVOLUTION OF RESISTANCE 

 

Abstract 

Genome-wide associations can locate and characterize alleles that underlie traits that are 

associated with a phenotype of interest.  Alleles allow for adaptation to increased fitness when 

encountering novel selective pressures.  Insecticides are selective pressures that have forced 

populations of phlebotomine sand flies (Diptera: Psychodidae), vectors of Leishmania parasites, 

to develop resistance around the world.  However, there is little information about the genetic 

mechanisms of their adaptation to insecticide exposure.  Using genotype-by-sequencing, we 

created DNA libraries of insecticide-susceptible Phlebotomus papatasi and Lutzomyia longipalpis 

that survived or died from a sub-lethal exposure to either permethrin or malathion.  A genome-

wide efficient mixed model association was used to examine the standing genetic variation in 

these populations and to associate alleles with adaptive survival to insecticide.  For each 

treatment, we estimated the proportion of the phenotypic variance explained by the genetic data 

(i.e. heritability), the proportion of the genetics with measurable effect sizes, and the number of 

single nucleotide variants with measurable effects.  For all treatments, survival to an insecticide 

exposure is a heritable trait with modest genetic architecture and polygenic mechanisms.  Both P. 

papatasi and L. longipalpis had alleles for survival that associated with many genes throughout 

their genomes.  The implications of polygenic resistance are discussed for previous work that has 

not found evidence of monogenic resistance in P. papatasi and L. longipalpis colonies having 

been exposed to permethrin and/or malathion for several years.  Inferences are made about the 
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utility of laboratory association studies compared to field observations in terms of insecticide 

resistance. 

 

The ability to understand, characterize, and analyze the alleles that underlie traits has 

always interested biologists (Nielsen 2005).  These traits give rise to the incredible phenotypic 

diversity observed in organisms.  All organisms are under the control of the fundamental forces of 

evolution: mutation, selection, recombination, and drift (Feyereisen et al. 2015).  Natural 

selection is the driving force of evolution; it is opportunistic if new variants are available (Nei 

2007, Brakefield 2011).  Variants from standing genetic variation or from new mutations allow 

populations to adapt to new selective pressures (Barrett and Schluter 2008).  These responses 

allow populations to achieve fitness optima, and novel selective pressures force adaptation to a 

new optimum (Orr 2002).  Adaptation is necessary for a population when exposed to a new 

selection pressure in order to increase its fitness.     

 Synthetic insecticides are a great example of a selection pressure, and they have forced 

insects to adapt for survival since the 1940s (Hemingway and Ranson 2000, Alexander and 

Maroli 2003).  Insecticides have been extremely useful because they kill vectors to reduce disease 

transmission, but there are many examples of insecticide resistance in the most important vector 

populations around the world (Hemingway and Ranson 2000, Rivero et al. 2010).  Phlebotomine 

sand flies (Diptera: Psychodidae) are vectors that transmit Leishmania protozoans that cause 

leishmaniasis to humans, a disfiguring, stigmatizing, and lethal disease causing tens of thousands 

of deaths each year worldwide (Hotez 2008, World Health Organization (WHO) 2010, Alvar et 

al. 2012, WHO 2013).   

The continued application of insecticides has been a tremendous selective pressure for 

resistance in sand fly populations.  Today, resistant sand fly populations have been documented in 

the Middle East, southern Asia, and South America (Surendran et al. 2005, Alexander et al. 2009, 
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Dinesh et al. 2010, Faraj et al. 2012, Hassan et al. 2012, Saeidi et al. 2012, Hassan et al. 2015, 

Khan et al. 2015).  Despite the recent findings of widespread resistance in sand fly populations 

around the world, there is little information about the genetic and molecular mechanisms of 

resistance in these populations.   

Populations adapt to new selective pressures in two ways: from standing genetic variation 

or from new mutations, which result in monogenic or polygenic responses, often depending on 

the strength of selection (Barrett and Schluter 2008).  In previous research, we did not find 

examples of monogenic resistance via target-site insensitivity (TSI) or metabolic detoxification 

(MD) in Phlebotomus papatasi and Lutzomyia longipalpis colonies under artificial selection for 

resistance over the course of several years (Denlinger et al. in review).  Resistance is known to be 

more complicated than TSI or MD; many genes with different mechanisms can collectively 

contribute to the resistance phenotype (David et al. 2005, Vontas et al. 2005, Vontas et al. 2007).  

More robust methods are now needed to scan the entire sand fly genome for markers associated 

with insecticide exposure survival.   

Genotype-by-sequencing (GBS) is a new method for exploring thousands of single 

nucleotide variants (SNVs) throughout a genome to identify associations between loci and the 

phenotype involved in adaptation as well as the strength of each locus’ contribution to adaptive 

evolution, either directly or through linkage disequilibrium (Hirschhorn and Daly 2005, Romay et 

al. 2013, Comeault et al. 2014, Comeault et al. 2015).  GBS do not describe causation between 

SNVs and the phenotype, only statistical associations with a degree of uncertainty (Guan and 

Stephens 2011, Comeault et al. 2014).  It is a first step by providing large coverage across the 

entire genome to identify many candidate SNVs that could be involved in a trait’s complex 

architecture (Comeault et al. 2014).   

The goal of this research was to understand if insecticide exposure in laboratory 

populations of insecticide-susceptible Phlebotomus papatasi and Lutzomyia longipalpis is pre-
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adaptive by using GBS to examine their standing genetic variation, and if it is pre-adaptive, to 

identify and to map the genetic variants that confer the survival phenotype.  That is, we wanted to 

know if the standing variation in these populations was sufficient for selection to drive insecticide 

resistance into a population.  We hypothesized that there would be little standing genetic variation 

in our laboratory populations, and therefore, the ability to survive an insecticide exposure would 

be polygenic and rely upon many genes with small effect sizes that would cumulatively allow for 

survival.  To our knowledge, this is the first experiment to incorporate GBS with genome-wide 

association mapping to understand the mechanisms of insecticide resistance in any vector species.  

GBS is potentially a valuable tool for identifying and mapping important genetic variants 

associated with insecticide resistance adaptation beyond which mechanisms are currently 

assessed in insecticide resistance studies. 

Materials and Methods 

Sand Fly Colonies. Laboratory colonies of insecticide-susceptible P. papatasi and L. 

longipalpis were maintained at Utah State University (Logan, UT).  Both species were derived 

from 30-year established colonies maintained at the Walter Reed Army Institute of Research 

(WRAIR) (Silver Spring, MD) that had been originally collected from Jordan and Jacobina, 

Brazil.  All life stages were maintained and reared following Denlinger et al. (2015), Denlinger et 

al. (2016a), and Denlinger et al. (2016b). 

Insecticide exposure. One hundred ninety-two adult P. papatasi and L. longipalpis, both 

males and un-blood-fed females, were exposed to a sub-lethal dose of either permethrin or 

malathion.  This was done using lethal concentrations (LC) that caused X% mortality of 

permethrin or malathion in a modified CDC bottle bioassay protocol (Denlinger et al. 2015).  

Phlebotomus papatasi were exposed to 50 μg/ml permethrin and 25 μg/ml malathion, the LC51 

and LC57 respectively.  Lutzomyia longipalpis were exposed to 25 μg/ml permethrin and 10 μg/ml 
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malathion served as the LC63 and LC68.  These LCs were the same LC values used to initiate 

resistant-selected colonies in Denlinger et al. (in review). 

 Following insecticide exposure, all sand flies were captured via mechanical aspiration 

and released into 1-pint cardboard containers with a mesh top onto which a cotton ball saturated 

with 30% sugar-water was placed and served as an energy/water source.  The containers were 

kept in the same growth chamber as the insecticide-susceptible colonies.  Sand flies were held in 

these containers for 24 h when mortality was scored as a complete cessation of movement (Perea 

et al. 2009, Denlinger et al. 2015).  The insecticide exposure phenotype was scored as binary: 

survived exposure or died from exposure. 

Genotype-by-Sequencing.  

DNA Extraction and Library Preparation. Libraries were prepared separately for the 

permethrin- and malathion-exposed 192 P. papatasi or L. longipalpis (four libraries in total).  For 

each library, total DNA was extracted from all 192 sand flies individually using Qiagen’s DNeasy 

96 Blood & Tissue Kit (Qiagen Inc., Valencia, CA, USA).  Barcoded restriction-site associated 

DNA libraries were generated (Nosil et al. 2012, Parchman et al. 2012, Gompert et al. 2014, 

Comeault et al. 2015).  For each library, genomic DNA of each sand fly was digested with the 

restriction enzymes EcoRI and MseI (NEB, Inc. Ipswich, MA, USA), and then EcoRI and MseI 

adaptor oligonucleotides were ligated onto the digested DNA fragments.  All 192 sand flies 

received the same universal MseI adaptor, which contained an Illumina adaptor and 

complementary MseI restriction site nucleotides; unique EcoRI adaptors allowed for individual 

sand fly recognition and contained an Illumina adaptor, a 10-bp individual barcode, and an 

addition nucleotide to complement the restriction site.  Next, DNA from each sand fly was 

amplified through two rounds of PCR, all 192 individual PCR reactions were pooled together, 

and the pooled library was size-selected between 200-300bp using the Blue Pippin at the USU 

Center for Integrated Biosystems.  The size-selected DNA libraries were sequenced at the 
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University of Texas Genomic Sequencing and Analysis Facility (Austin, TX, USA) on lanes of 

the Illumina HiSeq 2500 or HiSeq 4000 platforms (one library per lane). 

Sequence Assembly and Data Analysis. All bioinformatics were conducted through a 

Linux terminal running the bash shell.  Custom Perl scripts were first used to remove the Mse1 

and EcoR1 barcodes (Nosil et al. 2012).  A Burrows-Wheeler Transformation was used to index 

the P. papatasi and L. longipalpis reference genomes provided in VectorBase.org (Giraldo-

Calderón et al. 2015).  Single-end reads of each sand fly were aligned to their respective reference 

genome using Burrows-Wheeler Alignment Tool (Li and Durbin 2009).  The following criteria 

were established for alignment: a maximum of 4-bp differences, a seed length of 20-bp, two 

mismatches in the seed, a gap between mismatch penalties and their current values, and a quality 

threshold for read trimming set to 10.  Only reads with a single best match were aligned.  

Alignment files were converted to binary format, which were then sorted and indexed.   

SAMtools mpileup was used to implement a Bayesian model that distinguished between 

variable nucleotides and errors.  Here, the probability of the observed sequence data was 

calculated as a product across all individual reads, given the base quality scores and the 

assumption that all individuals were homozygous for the reference allele.  Based on the standard 

neutral model given a specified value of θ = 4Neμ, the prior probability that the nucleotide was 

invariant was calculated.  By combining the prior probability with the likelihood to produce the 

posterior probability, a nucleotide position was assumed to be variable when a low probability 

resulted.  Variants were called by combining the treatment groups of each sand fly species 

because of the supposed inbred homogeneity among the susceptible population from which all of 

the flies were taken.  In bcftools, the standard neutral model was applied for the prior probability 

distribution with the per nucleotide value of θ set to 0.001, variants at loci where sequence data 

for no less than 80% of all sand flies were used, and variants where the posterior probability of 

having an invariant allele given the sequence data and quality scores under a null model was less 
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than 0.01 (Li 2011).  Genotype posterior probabilities were derived, for each population 

separately, from a product of genotype likelihoods at each locus and a Hardy-Weinberg prior 

distribution based on the minor allele frequencies (MAF).  Posterior probability means were 

calculated to provide predictive probability of a particular genotype for an individual.  For each 

treatment, the total population MAF combined for the two populations (population that survived 

insecticide exposure, population that succumbed to insecticide exposure) were calculated using 

twenty iterations of the Expectation-Maximization algorithm (Li 2011, Gompert et al. 2014), 

which maximizes the model likelihood with respect to the genotype likelihoods (Gompert et al. 

2014). 

Genome-wide Association Mapping. Associating the insecticide exposure survival 

phenotype with genotypes was completed using Bayesian sparse linear mixed models (BSLMMs) 

with the software Genome-wide Efficient Mixed Model Association (gemma) (Zhou et al. 2013).  

BSLMMs in gemma estimate the proportion of phenotypic variation that can be explained by u, 

which captures SNVs with infinitesimal effect sizes, or β, which captures SNVs with measurable 

effect sizes.  Such results were derived through Bayesian parameters: the proportion of the 

phenotypic variance explained (PVE) by the genetic data (β and u), the proportion of PVE 

explained by genetic variants (PGE) with measurable effect sizes only (β), and the number of 

large effect SNVs explaining the phenotypic variance (n-γ).  Thirty independent Markov-chain 

Monte Carlo (MCMC) chains on a binary BSLMM were run for insecticide susceptibility. 

MCMC chains had 100,000 burn in steps, chain lengths of 1,000,000, a thinning interval of 10, 

and all other parameters set to default values.  Based on a Gelman-Rubin diagnostic test in the R 

package (CODA), optimal convergence was established with 30 MCMC chains.   

In addition to estimating the three parameters, gemma provides posterior inclusion 

probabilities (PIP) in the BSLMMs that quantify the probability of each SNV contribution to 

insecticide susceptibility, given the data.  Model average point estimates (MAPE) were derived 
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from PIPs for estimating SNVs that had non-zero measurable effects on insecticide susceptibility 

variation (Zhou et al. 2013).  Posterior inclusion probabilities and model average point estimates 

for genetic architecture parameters (PVE, PGE, and n-γ) were summarized based on the posterior 

median and the 95% highest posterior density interval using the R package (CODA). 

In VectorBase, we examined SNVs with aberrantly higher absolute-value MAPE scores 

using the Variant Effect Predictor (VEP) tool, which describes the genetic consequence of each 

SNV in relation to the genome (Giraldo-Calderón et al. 2015).  If a SNV had a consequence 

associated with a gene, VEP provides access to the name of the gene and its function, if 

annotated.  

Cross-Validation. A cross-validation was performed using gemma to predict phenotypes 

from a test data set containing missing phenotypic values.  Here, the same phenotype and 

genotype files were used for both fitting BSLMM and obtaining predicted values, whereby 

individuals in the test data set were labeled with either true phenotype values or as missing (e.g. 

“NA”).  Only predicted values were obtained for individuals with missing phenotypes (20% of 

the individuals in the test set).  Receiver operator characteristic (ROC) curves were constructed to 

determine the predictive power in correctly classifying surviving and perished sand flies, using 

the R package (rocr).  Here, we provide insight into the genetic interpretation of the area under 

the curve (AUC) when the test classifier is a predictor of insecticide survival. 

Results 

 

Insecticide Exposure.  In the sub-lethal insecticide exposure tests on the susceptible 

populations, 128/192 (66.7%) P. papatasi survived exposure to permethrin, and 45/192 (23.4%) 

survived exposure to malathion.  From the L. longipalpis colony, 130/192 (67.8%) survived 

exposure to permethrin, and 96/192 (50%) survived exposure to malathion. 
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Summary Statistics.  

Phlebotomus papatasi. One hundred eighty-seven out of 192 permethrin-exposed 

individuals yielded sufficient reads for analysis.  A total of 80,516,505 DNA sequences were 

processed, and 51,290,933 (64%) successfully aligned to the reference genome.  The average 

number of reads per individual was 430,570, and the average length of a read was 46-bp.  All 192 

malathion-exposed individuals yielded sufficient reads for analysis.  A total of 221,625,299 DNA 

sequences processed, and 111,682,651 (50.4%) successfully aligned to the reference genome.  

The average number of reads per individual was 1,154,304, and the average length of each read 

was 48-bp.  Across each individual alignment, there was an average of 6 reads covering each 

position in the genome, ranging from 0 - 8004 reads with no observable pattern with respect to 

scaffold number.  There was a total of 38,657 variant SNPs called from permethrin- and 

malathion-exposed P. papatasi. 

Lutzomyia longipalpis. One hundred eighty-two out of 192 individuals exposed to 

permethrin yielded sufficient reads for analysis.  A total of 207,072,345 DNA sequences were 

processed, and 78,155,513 (37.7%) successfully aligned to the reference genome.  The mean 

number of reads per individual was 1,134,460, and the average length of each read was 47-bp.  

One hundred fifty-three out of 192 individuals exposed to malathion yielded sufficient reads for 

analysis.  A total of 75,785,403 DNA sequences were processed, and 34,016,329 reads (45%) 

successfully aligned to the reference genome.  The mean number of reads per individual was 

495,329, and the average length of each read was 47-bp.  Across individual alignments, the 

average depth of coverage at each position in the genome was 16 reads with 0 – 4678 reads with 

no observable pattern in terms of scaffold number.  There was a total of 18,856 variant SNPs 

called from permethrin- and malathion-exposed L. longipalpis. 

Minor Allele Frequencies. There is a strong positive correlation among the estimated 

minor allele frequencies between the perished and surviving P. papatasi exposed to permethrin  
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Fig. 6.1. Correlations between minor allele frequencies between the sand flies that survived 

and perished in the P. papatasi permethrin treatment (A), P. papatasi malathion treatment 

(B), L. longipalpis permethrin treatment (C), and L. longipalpis malathion treatment (D). 

 

 

exposure (r = 0.985, Fig. 6.1A.) and exposed to malathion (r = 0.987, Fig. 6.1B.).  Similarly, the 

correlations were strong for the L. longipalpis exposed to permethrin (r = 0.981, Fig. 6.1C.) and 

exposed to malathion (r = 0.968, Fig. 6.1D.). 
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Genome-wide Association Mapping.   

Phlebotomus papatasi.  For survival to permethrin, 62% of the total phenotypic variation 

is explained by genetic data (CI for PVE = 26.7% - 99.9%).  Approximately 69.7% of the genetic 

data (CI for PGE = 31% - 100%) is due to loci with measurable effects on resistance, including an 

average of 7 SNVs (CI for n-γ = 0 – 60).  For survival to malathion, the genotypic data can 

explain 14.7% of total phenotypic variation (CI for PVE = .0001% - 53.6%).  Approximately 

36.4% of the genetic data (CI for PGE = 0% - 93%) is based on loci with measurable effects for 

resistance, including an average of 15 SNVs (CI for n-γ = 0 – 217).  

Lutzomyia longipalpis. For survival to permethrin, the genotypic data can explain 35.6% 

of the total phenotypic variation (CI for PVE = .001% - 76.1%).  Of this explained variation, 

39.5% (CI for PGE = 0% - 93.5%) can be explained by 28 SNVs (CI for n-γ = 0 – 243) with 

measurable effects.  For survival to malathion, our genotypic data can explain 90.1% of total 

phenotypic variation (CI for PVE = 40.7% - 99.9%).  Of this explained variation, 29.8% (CI for 

PGE = 0% - 91.6%) can be explained by 58 SNVs (CI for n-γ = 0 – 258) with measurable effects.  

We found each P. papatasi treatment group to have few SNVs with large MAPE scores 

(Fig. 6.2A., B.).  Across L. longipalpis treatment groups, there were relatively more SNVs 

associated with large MAPE scores (Fig. 6.2C., D.).  Top ranking MAPE scores in the permethrin 

treatment groups across species exhibited higher posterior inclusion probabilities than those in the 

malathion treatment groups (Table 6.1-4.).  For each treatment, at least one SNV was associated 

directly with a gene, whether with a known function or not, according to the VEP tool in 

VectorBase.  The two highest MAPE score SNVs in the L. longipalpis treatment group exposed 

to malathion had associations with four genes (Table 6.4.).  For each species, the genes associated 

with the highest MAPE score SNVs was different (Table 6.1-4.).  Although, for both malathion 

treatment groups, a SNV associated with zinc fingers was found (Table 6.2., 6.4).   
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Table 6.1. Association mapping of SNVs with the largest model-average point estimates from the 

Phlebotomus papatasi exposed to permethrin treatment. 

 
Scaffold:Position Model-Average 

Point Estimate 

Posterior 

Inclusion 

Probability 

Genetic Consequence Gene Function 

 

 

1601:26833 2.7265 0.412 Intergenic variant   

3565:10014 1.0922 0.467 Downstream variant PPAI005735 Unknown 

99828:233 0.3957 0.091 Intergenic variant   

67723:636 0.1885 0.177 Intergenic variant   

53775:723 0.1167 0.089 Intergenic variant   

 

 

Table 6.2. Association mapping of SNVs with the largest model-average point estimates from the 

Phlebotomus papatasi exposed to malathion treatment. 

 
Scaffold:Position Model-Average 

Point Estimate 

Posterior 

Inclusion 

Probability 

Genetic Consequence Gene Function 

661:31493 0.0228 0.009 Synonymous variant PPAI009906 Serine protease 

2202:3597 0.009 0.012 Intergenic variant 
  

48932:4971 0.0059 0.005 Downstream variant PPAI008313 Mitochondrial 

substrate/solute 

carrier 

5205:7108 0.0055 0.005 Upstream variant PPAI008803 Zinc finger 

29:84808 0.0043 0.006 Intergenic variant   

 

 

Table 6.3. Association mapping of SNVs with the largest model-average point estimates from the 

Lutzomyia longipalpis exposed to permethrin treatment. 

 
Scaffold:Position Model-Average 

Point Estimate 

Posterior 

Inclusion 

Probability 

Genetic Consequence Gene Function 

9743:508 0.0195 0.0394 Intergenic variant 
  

136:192398 0.0167 0.0283 Downstream variant LLOJ001674 Unknown 

2068:4242 0.016 0.0201 Intergenic variant 
  

35:185239 0.0144 0.0197 Intron variant LLOJ005493 Orange 

domain-like 

113:53407 0.0142 0.0135 Intron variant LLOJ000771 Isoprenoid 

synthase 
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Scaffold:Position Model-Average 

Point Estimate 

Posterior 

Inclusion 

Probability 

Genetic Consequence Gene Function 

31:237972 0.5558 0.0159 1. Downstream variant 

2. 5' UTR 

3. Downstream variant 

 

4. Upstream variant 

1. LLOJ005038 

2. LLOJ005039 

3. LLOJ005040 

 

4. LLOJ005041 

1. Protein disulfide isomerase 

2. PDCD5-related 

3. Nuclear envelope phosphatase 

-regulatory-like 

4. Microtubule-associated protein  

RP/EB       

8:211637 0.3679 0.0267 1. Synonymous variant 

2. 5' UTR 

3. Upstream variant 

 

4. Downstream variant 

1. LLOJ009054 

2. LLOJ009053 

3. LLOJ009055 

 

4. LLOJ009056 

1. Zinc finger 

2. Zing finger 

3. Transmembrane Fragile-X-F 

-associated protein 

4. Intra-flagellar transport protein       

25:59200 0.2606 0.0086 Synonymous variant LLOJ004221 Transcription factor CP2 

1643:2211 0.1591 0.0084 Intergenic variant 
  

1282:13137 0.1256 0.0159 Downstream variant LLOJ001414 Glycosyltransferase 

 

Table 6.4. Association mapping of SNVs with the largest model-average point estimates from the 

Lutzomyia longipalpis exposed to malathion treatment. 

 

 

 

 

 

 

 

 

 

 

Cross-Validation.  For P. papatasi, the area under the ROC curve (AUC = .68) suggests 

standing genetic variation to be a robust predictor for permethrin resistance (Fig. 6.3A.), whereas 

standing genetic variation in P. papatasi is not a sufficient predictor for malathion resistance 

(AUC = .36; Fig. 6.3B.).  In L. longipalpis, standing genetic variation is a variable predictor for 

permethrin resistance (AUC = .53; Fig. 6.3C.), and malathion resistance (AUC = .59, Fig. 6.3D.).  

Discussion 

We found evidence that laboratory colonies of insecticide-susceptible P. papatasi and L. 

longipalpis had sufficient variation for survival to sub-lethal doses of insecticides.  Survival to an 

insecticide exposure is a heritable trait with a modest genetic architecture.  We found some 

support for this hypothesis.  The heritability from the standing genetic variation in our 

populations for survival to an insecticide exposure is greater than we anticipated.  Because of this 

stronger heritability, the genetic architecture is polygenic, but there is evidence that several SNVs 

in each treatment are strongly associated with this phenotype.  The lack of support for a 

monogenic mechanism for survival in this experiment supports the lack of convincing evidence 

of TSI or MD monogenic resistance in previous experiments (Denlinger et al. in review).  These 
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Fig. 6.2. Model-averaged point estimates for the effects of individual SNVs, or the functional 

variants they are potentially in LD with, across the scaffolds for the P. papatasi permethrin 

treatment (A), P. papatasi malathion treatment (B), L. longipalpis permethrin treatment (C), 

and the L. longipalpis malathion treatment (D). 

 

loci have not been detected with TSI or MD methods that are used to currently assess insecticide 

resistance. 

Minor Allele Frequencies. For the susceptible P. papatasi and L. longipalpis treatment  

 

groups, there were no major differences in MAFs for most SNVs, but few SNVs display notable 

 

discrepancies. As such, there are some SNVs with slightly higher allele frequencies in the 
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Fig. 6.3. Potential to predict survival phenotype with area under the receiver operating 

characteristic curve measuring the genomic profile of the P. papatasi permethrin treatment 

(A), the P. papatasi malathion treatment (B), the L. longipalpis permethrin treatment (C), 

and the L. longipalpis malathion treatment (D). 

 

perished group and lower allele frequencies in the surviving treatment, and vice versa.  Outliers 

between these groups indicate potential SNVs associated with insecticide exposure survival and 

susceptibility.  This suggestion is further supported through genetic architecture analyses. 

Genetic Architecture/Predictive Strength. The genetic architecture of survival ability 

to insecticide exposure was estimated using polygenic Bayesian mapping models across the 
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genome.  Such models entail not only quantitative estimates of PVE, PGE, and n-γ, but they also 

account for uncertainty in the identification of candidate SNVs underpinning the phenotype for 

insecticide survival (Guan and Stephens 2011).  The level of confidence to estimate these 

parameters varied for each species.  The credible intervals spanned a large portion of the range 

when estimating PVE, PGE, and n-γ, which indicates that there is not robust support for 

inferences.  In turn, the interpretations below include considerations for the uncertainty reported.  

Phlebotomus papatasi. Survival to a sub-lethal dose of permethrin is heritable, and most 

of that heritability comes from SNVs that have measurable effects for survival.  There is 

statistical confidence that these SNVs are adaptive for this phenotype given their high model 

average point estimates that are associated with high posterior inclusion probabilities.  This 

confidence translates to power for predicting whether an insecticide-susceptible P. papatasi will 

survive or die from an exposure to a sub-lethal dose of permethrin given their phenotypes.  

 Interestingly, survival to a sub-lethal dose of malathion is almost a fifth as heritable as 

survival to a sub-lethal dose of permethrin.  Perhaps the susceptible population of P. papatasi did 

not already have the genetic variation to survive malathion’s different mode of action from 

permethrin.  Only one third of the heritability for malathion-exposure can be explained by SNVs 

with measurable effects, which is about half from the permethrin-exposed treatment.  There is 

less confidence that these SNVs are associated with the survival phenotype, and the association 

scores for the highest ranking SNVs are much lower than the scores for the highest ranking SNVs 

in the permethrin-exposed treatment.  Not surprisingly, our power to predict survival to exposure 

to malathion is not as strong as the power to predict survival to permethrin given their 

phenotypes.   

These results follow the percent survival of the resistance selection from Denlinger et al. 

(in review).  The permethrin-resistant-selected population had less variance in survival from 

generation to generation compared with the malathion-resistant-selected population.  The 
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malathion selected population was never able to maintain consistent, high percentage survival 

like the permethrin selected population was for several generations.  This suggests that a greater 

level of standing genetic variation and higher levels of heritability can allow for greater survival 

in response to insecticide exposure. 

Lutzomyia longipalpis. Phenotypic variation for survival ability in permethrin-exposed L. 

longipalpis is only moderately heritable.  To some extent, the genetic underpinnings for such 

variation can be explained by a small number of causal variants with measurable effects for 

survival.  Regardless, given the genotypes of insecticide-susceptible L. longipalpis, there is little 

predictive power whether survival or death will result from a sub-lethal exposure to permethrin 

given their genotypes.  This lack of predictive strength is probably due to only moderate levels of 

heritability for causal variants associated with survival.  We thus have little confidence these 

measurable-effect SNVs contribute to the survival phenotype, given the relatively low model 

average point estimates that are associated with low posterior inclusion probabilities, across the 

genome.   

Conversely, L. longipalpis survival ability when exposed to a sub-lethal dose of 

malathion is very heritable, but much of the genetic basis is owed to SNVs with infinitesimal 

effects.  Granted there are a few candidate variants with large model average point estimates, but 

their posterior inclusion probabilities are not supportive for survival ability to mainly be due to 

measurable effects.  This finding is reflected by the relatively low model average point estimates 

and posterior inclusion probabilities associated with candidate SNVs, as well as the lack of 

predictive power for the survival phenotype.  Given the genotypes of insecticide-susceptible L. 

longipalpis, and despite the significant heritability, there is only moderate predictive power 

whether survival or death will result from a sub-lethal exposure to malathion.  Such predictive 

strength is may be derived from a low percentage of SNVs with measurable effects.  



187 

 

 

Gene Associations. Intergenic variants and variants associated with genes were among 

the top five highest ranking SNVs in all four treatment groups.   The variants associated with 

genes were found in genes or upstream or downstream of them.  Some genes do not yet have an 

annotated function in the sand fly genomes.  The genes that are annotated have a diverse range of 

metabolic and biochemical functions: serine proteases, mitochondrial substrate/solute carriers, 

zinc fingers, orange domain-like functions, isoprenoid synthase, protein disulfide isomerase, 

PDCD5-related function, nuclear envelope phosphates regulatory function, microtubule 

associated protein RP/EB function, transmembrane X-F-associated function, intra-flagellar 

transport, transcription factor CP2, and glycosyltransferase.  We must be cautious in correlating 

SNVs with resistance.  GBS does not identify causal variants; it only statistically associates SNVs 

with a trait (Comeault et al. 2014).  However, some of these genes have been associated with 

insecticide resistance in other vectors and agricultural pests.  Even the intergenic variants could 

serve important biochemical functions as gene expression regulators (Elshire et al. 2011). 

Serine proteases (P. papatasi malathion exposure), like acetylcholinesterases, are 

inhibited by organophosphates, like malathion.  They are up- or down-regulated in resistant 

insects (Chambers and Oppenheimer 2004, Vontas et al. 2007) and are important for synthesis 

and conformation of detoxifying enzymes in the presence of organophosphates (Ahmed et al. 

1998).  Zinc fingers (malathion exposure in both sand fly species) are transcriptional repressors 

(Kasai and Scott 2001).  In Musca domestica, mixed functional oxidase (MFO) promoters bind 

transcription repressor genes that contain zinc finger moieties.  The MFO promoters in 

pyrethroid-resistant M. domestica bind the repressor genes less than in susceptible individuals 

because of polymorphisms in the repressor gene, which causes increased transcription of MFOs 

(Gao and Scott 2006).  MFOs detoxify pyrethroids (Perera et al. 2008).  But, in our P. papatasi 

and L. longipalpis malathion-resistant-selected colonies, we found decreased MFO activity 

(Denlinger et al. n review).  This could be from decreased MFO transcription, the opposite of the 
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findings in Gao and Scott (2006).  MFOs can also detoxify organophosphates (Perera et al. 2008).  

It is possible that the upstream variant of the zinc finger encoding gene contributes to MFO 

repression.  Decreased MFOs can confer resistance because they first must enzymatically activate 

insecticide, which they later detoxify.  With fewer MFOs, there are fewer bioactivated 

insecticides (Scott 1999).  Perhaps variants near or within zinc fingers contribute to increased or 

decreased MFO expression, both of which can lead to insecticide resistance.   

 Several SNVs were found that associated with a protein in the L. longipalpis treatment 

exposed to malathion.  A SNV was found associated with a protein containing a disulfide 

isomerase function.  GSTs in insects are known to alter isomerase activity (Sheehan et al. 2001).  

In the same treatment, microtubule associated protein RP/EB were upregulated found in lambda-

cyhalothrin resistant Aphis glycines.  Microtubule associated proteins interact with postsynaptic 

proteins in the nervous system.  They could help stabilize dendrites to normalize nerve function 

when malathion disrupts synaptic transmission by inhibiting acetylcholinesterase (Lepicard et al. 

2014).  Intra-flagellar transport proteins were less abundant in imidacloprid-resistant Myzus 

persicae (Meng et al. 2014).  Glycosyltransferases are detoxification enzymes, and 

overexpression of some uridine diphosphate-glycosyltransferases has been shown to confer 

resistance in lepidopteran agricultural pests (Li et al. 2016). 

Standing Genetic Variation. Variable levels of standing genetic variation have been 

found in laboratory colonies of sand flies (Mukhopadhyay et al. 1997, Lanzaro et al. 1998, 

Mukhopadhyay et al. 1998, Mukhopadhyay et al. 2001).  Despite more homogenous laboratory 

populations, insecticide exposure survival is a known heritable trait and can lead to resistance 

(Feyereisen 1995, Hemingway et al. 2002, Rivero et al. 2010).  In theory, alleles for survival will 

increase in frequency towards fixation with continued selection, disseminate throughout the 

population, and result in greater population survival over the course of continued exposure (Xu et 

al. 2012).    
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In our controlled artificial selection over several years, we did not observe the percent 

survival increase that we expected, and survival from generation to generation was variable 

(Denlinger et al. in review).  Noticeable, sustained survival in our populations could take many 

generations over many years, similar to what has been found in other artificial selection 

experiments (Shepanski et al. 1977, Goldman et al. 1986, Gore and Adamczyk Jr. 2004, Wirth et 

al. 2004).  Adaptation is not always quick, regular, and linear, as expected in Fisher’s geometric 

model; a trajectory towards optimum insecticide exposure survival can be convoluted and 

undulating because beneficial alleles can have negative pleiotropic effects, and subsequent 

mutations move towards this optimum by both contributing towards optimal phenotype and 

ameliorating previous mutation’s negative effects (Lande 1983, Otto 2004, Labbé et al. 2007).   

The rate of evolution in a population depends on multiple factors, including the initial 

allele frequency (Roush and McKenzie 1987).  The insecticide-susceptible colonies used in this 

experiment were derived from 30-year inbred populations that were most likely homozygous for 

many traits, with the emergence of pre-adaptive alleles being removed through purifying 

selection and/or through stabilizing selection because of fitness costs.  Despite evidence of 

sufficient standing genetic variation for selection to act upon, this variation could have been very 

little.  Therefore, fixation of resistance alleles in these laboratory populations could take a very 

long time.  We aim to re-assess the later generations of our artificial-selected colonies using GBS 

to examine if the genetic contributors of resistance-selection at later generations are similar as to 

what we observed this experiment’s single generation of exposure. 

Polygenic Adaptation. Polygenic insecticide resistance under laboratory conditions has 

been studied theoretically and empirically (McKenzie et al. 1992, Ffrench-Constant et al. 2004, 

Ffrench-Constant 2013).  Selection for resistance in a laboratory population falls within the 

phenotypic distribution of the susceptible population, often below the LC100 for an insecticide 

(Roush and McKenzie 1987, Ffrench-Constant et al. 2004, Oakeshott et al. 2013).  This selection 
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process is conducted to allow survivors for subsequent generations.  In doing so, existing, 

common variation is selected for, which produces polygenic resistance.  Because of the 

homogeneity of laboratory populations, very low initial frequency of resistance alleles (as low as 

10-13), the high fitness costs of those resistance alleles, and the weakness of the selection process, 

the evolution of resistance from major-effect alleles is very unlikely (Lande 1983, McKenzie et 

al. 1992).  Even a LC90 of an insecticide has the potential to produce polygenic resistance 

(McKenzie and Batterham 1994).  Our lineages were exposed to an approximate LC50 of 

permethrin and malathion, so it is certainly expected to find evidence of polygenic resistance and 

is possibly a reason why monogenic resistance was not found in Denlinger et al. (in review).  

Monogenic resistance can be successfully selected for in the laboratory if selection concentration 

is set above the LC100 of an insecticide (McKenzie and Batterham 1998).  With diagnostic doses 

for many insecticides for sand flies recently described (Denlinger et al. 2016a), selection for 

major-effect alleles is possible in the future. 

Monogenic adaptation. Resistance selection in field populations is much greater (above 

the LC100 for an insecticide) and can be outside of the phenotypic range of insecticide tolerance.  

This can result in the rapid selection of rare, major-effect mutations that can lead to monogenic or 

oligogenic TSI, MD, or both epistatically (Whitten et al. 1980, McKenzie and Batterham 1998, 

Ffrench-Constant et al. 2004, Saavedra-Rodriguez et al. 2008, Hardstone et al. 2009, Edi et al. 

2014).  Here, large population sizes of field populations act as a great source of rare mutations, 

whereas the small population sizes of inbred individuals in a laboratory population only lead to an 

accumulation of small effect-size mutations (McKenzie et al. 1992, Ffrench-Constant 2013).  It is 

the heterogeneity of field populations that allows for rare variants to exist (Groeters and 

Tabashnik 2000).  Interestingly, rare variants may precede the selection for resistance.  For 

example, In Australia, mutations for organophosphate resistance in Lucilia blow flies predated the 

use of malathion.  Examples of standing genetic variation of resistance alleles in field 
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populations, prior to insecticide use, demonstrate that these alleles are under balancing selection 

and do not carry a high enough fitness cost (Ffrench-Constant 2007).  Standing alleles in 

populations are known to quickly increase in frequency from human induced evolution (Messer et 

al. 2016).  This may be why resistance has evolved very rapidly when insecticides are first 

introduced as a control method (Hemingway and Ranson 2000).   

Laboratory strains initiated from field populations with monogenic resistance may not 

always evolve monogenic resistance because of the factors associated with polygenic resistance 

selection (Groeters and Tabashnik 2000, Zhu et al. 2013, Kasai et al. 2014).  This may be why 

Fawaz et al. (2016) did not find TSI mutations in their laboratory colony of initiated from 

Egyptian P. papatasi.  Even so, resistance in the field may be more polygenic than initially 

perceived, and this could be due to fitness costs and pleiotropy from major-effect mutations.  

Microarrays have found many genes with various functions involved in resistance, more than 

could be found by simply testing for TSI or MD (Pedra et al. 2004, David et al. 2005, Vontas et 

al. 2005, Vontas et al. 2007, Djouaka et al. 2008).  These findings demonstrate that insecticide 

resistance, in both the field and laboratory, is a complicated phenotype that combines major-

effect changes (TSI or MD) and many other alleles that are beginning to be discovered and 

understood.  

Resistance Control Implications. Despite the theoretical work of understanding 

insecticide resistance in laboratory populations, it behooves insect vector management programs 

to be cautious about proposing management strategies based only on what has been observed in 

artificial-selection experiments, as these results do not always empirically verify what is observed 

in the field (Ffrench-Constant 2013).  Even within different laboratory colonies of the same 

species or population, polygenic resistance can be different (Dapkus and Merrell 1997, Daborn et 

al. 2002, Ffrench-Constant 2013).  Nevertheless, the importance of artificially selecting for 
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resistance should not be underestimated because of the ability to predict variants of resistance 

mechanisms for new insecticides to be used in the field (McKenzie and Batterham 1998). 

In the 1950’s laboratory colonies of DDT-resistant D. melanogaster were found to have 

cross-resistance to other classes of insecticides, which suggested that MD was responsible for 

resistance.  This turned out to be accurate and was important in providing useful information 

about the mechanisms of resistance in the absence of the underlying genetics (Ffrench-Constant 

2013).  The utility of artificial selection has also been shown for important agricultural pests for 

resistance to Bacillus thuringiensis (Bt) transgenic crops.  Prior to its use, resistance to Bt was 

theoretically unlikely.  Artificial selection for Bt resistance demonstrated that resistance was 

possible and the modes of action were elucidated.  Together, resistant laboratory strains of insects 

have been useful for estimating levels of resistance, the fitness costs of resistance, and the 

heritability of resistance in field populations.  These findings have helped establish effective 

resistance management strategies (Devos et al. 2013, Ffrench-Constant 2013). 

We found that selecting for and developing insecticide resistant laboratory colonies of 

sand flies is possible, but challenging.  There is sufficient standing genetic variation in our 

laboratory colonies for polygenic resistance mechanisms, and we probably had low levels of 

tolerance/resistance in our permethrin-resistant-selected or malathion-resistant-selected colonies.  

Polygenic resistance is not frequently found in field populations of insects because of greater 

selection pressure and larger pools of genetic diversity, but it is possible (Raymond and Marquine 

1994, Groeters and Tabashnik 2000).  Polygenic insecticide resistance is found in nature and is 

maintained by low mutation rates and minimal migration, both of which are a source of new 

alleles for monogenic resistance (Raymond and Marquine 1994, Zhu et al. 2013).  A question that 

remains is whether polygenic resistance likely in field populations of sand flies?  Sand flies are 

weak fliers, distribute poorly, and are vagile, which together can lead to small, genetically 

structured populations (Doha et al. 1991, Morrison et al. 1993, Hamarsheh et al. 2007, Belen et 
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al. 2011, Khalid et al. 2012, Orshan et al. 2016).  The weaker effect of selection in smaller 

populations, and the stronger effect of drift, could dilute resistant alleles should they arise through 

mutation (Lanfear et al. 2014).  Compound these factors with little gene flow from poor 

migration, or with gene flow from susceptible sand flies that were unexposed to insecticide due to 

inadequate insecticide coverage in the environment, and susceptible alleles could remain 

commonplace in a population. 

 For our laboratory populations, predictions, not assumptions and conclusions, should be 

made about the mechanisms of insecticide resistance in field populations (Mukhopadhyay et al. 

1997).  Our laboratory colonies should serve as a model, not a standard or representative of sand 

flies in the field.  For the results of our experiment to be more heuristic, future laboratory 

experiments should investigate resistance using much higher doses of insecticide.  More research 

of TSI, MD, and other resistance mechanisms using GBS need to be investigated in natural 

populations.  If so, these predictions from our artificially-selected strains can enable proactive 

approaches for developing effective integrated vector management programs.  Aspects of 

insecticide use, refuge populations to allow for gene flow especially when insecticide coverage 

for vectors is uneven, understanding heritability and dominance levels of resistance, 

understanding fitness costs, and the dynamics of polygenic resistance becoming monogenic 

resistance can be further studied (Mallet 1989, McKenzie et al. 1992, Tabashnik et al. 2003, Neve 

et al. 2009).   
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CHAPTER 7 

SUMMARY & CONCLUSIONS: AN EVOLUTIONARY COMPARISON BETWEEN THE 

INSECTICIDE- AND ANTIMICROBIAL-RESISTANCE PANDEMICS 

Summary 

The goal of my dissertation research was to further our collective understanding of 

insecticide susceptibility and resistance mechanisms in phlebotomine sand flies, an understudied 

group of vectors that transmit the neglected tropical disease leishmaniasis.  My research took 

many forms and incorporated both applied research and basic research.  Public health is about 

preventing disease and promoting health by making informed decisions that consider medical, 

economic, anthropologic, and societal inputs.  Hopefully, the work presented in this dissertation 

will positively impact leishmaniasis-focused public health around the world. 

I began by comparing known and novel techniques of blood-feeding an important 

leishmaniasis vector species (Chapter 2).  Our ability to move the insecticide resistance and 

vector biology fields forward requires the ability to raise large-sized colonies for use in research.  

From there, my research took an applied approach to determine the susceptibility status of two 

leishmaniasis vectors to ten different insecticides (Chapter 3, 4).  I first determined lethal 

concentrations of these ten insecticides using a combined modified version of two worldwide-

used bioassays for determining susceptibility (Chapter 3).  This dose-response assay will become 

more important when time-response assays for assessing insecticide-susceptibility are no longer 

feasible.  Our lethal concentrations from Chapter 3 were critical for artificially selecting for 

resistance in our laboratory populations (Chapters 5, 6).  Working from lethal concentrations, we 

next determined diagnostic doses and diagnostic times for the same ten insecticides (Chapter 4).  

These diagnostics represent the largest repository of diagnostics for any sand fly species using the 

CDC bottle bioassay, an under-utilized approach for assessing insecticide resistance.  We have 
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now provided research with new avenues for assessing resistance that can be used to determine 

diagnostics for sand fly species in leishmaniasis foci around the world.   

I concluded by examining the mechanisms of resistance in laboratory colonies of 

Lutzomyia longipalpis and Phlebotomus papatasi under artificial selection (Chapter 5) and 

retroactively looked at the standing genetic variation of our insecticide-susceptible colonies 

(Chapter 6).  I did not find conclusive examples of convergent resistance mechanisms that are 

seen in other insect vectors, through target-site insensitivity or metabolic detoxification, but I 

found moderate levels of genetic variation in my laboratory colonies (Chapters 5).  Moderate 

levels of genetic diversity in these populations implies that there is sufficient variation for 

resistance selection to act upon throughout the genome to facilitate resistance development in a 

population.  How similar are these results to those for field populations of sand flies?  That 

remains to be determined, and disparities between field populations and laboratory populations 

can make direct comparisons of genetic diversity and mechanisms of resistance difficult, but 

these laboratory results should serve as a starting point for understanding the intricacies of 

resistance and how mechanisms can be exploited for vector control efforts. 

An Evolutionary Comparison Between the Insecticide- and Antimicrobial Resistance 

Pandemics 

The paradigm that insecticide resistance undermines the successful control of vector-

borne diseases by causing disease resurgences is well-founded (Rivero et al. 2010, Cohen et al. 

2012).  This may not always be true (McCarroll and Hemingway 2002), but often resurgences are 

attributed to an increase of pathogens’ basic reproductive number (R0) which results from some 

intrinsic change in the vectors’ or pathogens’ biology or phenology (Hemingway and Ranson 

2000, Rivero et al. 2010, Thomas and Read 2016).  How resistance affects R0 for each vector in 

different geographic regions needs to be examined in the epidemiological context of a disease 

focus for better resistance management (Rivero et al. 2010). 
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Successful disease eradication, by reducing R0, whether vector-borne or other infectious 

disease, requires a multifaceted approach.  Elimination of rinderpest and smallpox, and diseases 

on the verge of elimination, dracunculiasis and polio which remain endemic in very few 

countries, relied upon the understanding of a confluence of epidemiological factors (Fenner 1982, 

Barry 2007, Morens et al. 2011, Cochi et al. 2016).  However, for vector-borne diseases, disease 

control can rely entirely on using insecticides (Hemingway et al. 2016).  While a critical 

component, insecticides should not be the only approach to controlling vectors and therefore 

disease transmission: the global threat of resistance is real, lethal, and should be a sobering 

impetus for considering how we use insecticides.  Vector resistance to insecticides is not new, but 

there is a salient, conspicuous idea that needs to be addressed: what happens if the insecticides 

that we have relied upon fail? 

The cognizance of widespread insecticide failure is becoming more pronounced (WHO 

2012, Hemingway et al. 2016). Proactive approaches are needed to develop rational strategies 

into ensure the success of other integrated vector management practices, and these approaches 

need data, financial support, and resources to train those involved in managing this crisis.  

Concerning insecticides, there are often few options for insecticide rotations, inconsistent 

resistance monitoring, an unwillingness to share resistance data, and a lack of infrastructure to 

manage these data.  These responsibilities fall on both the disease-endemic countries and global 

public health partners (Chanda et al. 2016).  Funding is a crucial component of public health 

programs focusing on vector control, but it has waned because of recent successes due to the “out 

of sight, out of mind” paradox: past success and reduced disease burden make diseases less 

“visible,” so the urgency for more financial support lessens.  Complacent thinking often leads to 

new disease outbreaks, such as with recent outbreaks of measles, rubella, pertussis, and 

diphtheria, that can be more financially expensive than had there been sustained support (Cohen 

et al. 2012).   
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I see many parallels between the global threats of insecticide resistance and antimicrobial 

resistance.  Instead of vectors, there are microorganisms; instead of insecticides, there are 

antimicrobials.  The efforts for control, too, can be synonymized for antimicrobial resistance and 

insecticide resistance.  Comparable to worldwide insecticide resistance, worldwide antimicrobial 

resistance may be the most significant challenge facing the worldwide health care infrastructure 

this century (Engelhardt and Wright 2016).  The CDC’s director Tom Frieden has brought much 

attention to the public, calling these resistant microbes “superbugs” and “nightmare bacteria,” 

which has gained traction in the media (McKenna 2013).  The situation has become so dire that 

President Obama acted by declaring his National Action Plan for Combating Antibiotic-Resistant 

Bacteria (Nizet 2015). 

 Like any organism, microbes are under the control of the fundamental forces of 

evolution: mutation, selection, recombination, and drift (Feyereisen et al. 2015).  Unlike insects, 

microbes have been under these influences for a much longer time: the fossil evidence shows they 

have existed for at least 3.5 billion years, and they have filled an incredible diversity of niches 

(Khan and Aziz 2016).  These microbes have been in evolutionary combat for billions of years 

for survival, so it is not surprising that antimicrobial genes are found in natural populations; they 

already had the genetic variation needed for adaptation prior to human antimicrobial use (Davies 

and Davies 2010, Pawlowski et al. 2016).  Unfortunately, these alleles have shown to have few 

fitness costs and are maintained in populations, either for resistance or other biochemical 

functions (Nordmann et al. 2007, Davies and Davies 2010).  The speed at which resistance has 

developed to novel antimicrobials and antimicrobial classes is striking, both in the laboratory and 

in the field.  Laboratory experiments at Roy Kishony’s lab at Harvard University have shown that 

bacteria can evolve resistance to concentrations of antibiotics orders of magnitudes higher than 

initial exposure concentrations in under two weeks (Baym et al. 2016).  Like insects, bacteria 

must navigate a fitness landscape with their resistance mechanisms to reach a fitness optimum 
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with while minimizing the effects of negative mutations (Palmer and Kishony 2013).  

Antimicrobial resistance was inevitable, and the public health infrastructure was not ready 

(Davies and Davies 2010). 

 There was a warning for the threat of antimicrobial resistance.  Alexander Fleming, the 

serendipitous microbiologist, had the evolutionary foresight to be wary of his “magic bullet” 

penicillin and how the missuse of antimicrobials could hasten the global resistance pandemic we 

find ourselves entrenched in today. 

 

 “The time may come when penicillin can be bought by anyone in the shops. Then there is  

the danger that the ignorant man may easily under dose himself and by exposing his  

microbes to non-lethal quantities of the drug make them resistant.” (Barriere 2015) 

 

“But I would like to sound one note of warning…. It is not difficult to make microbes  

resistant to penicillin in the laboratory by exposing them to concentrations not sufficient  

to kill them, and the same thing has occasionally happened in the body.” (Khan and Aziz  

2016) 

  

Fleming’s dire understandings of antimicrobial resistance have come to fruition toady.  In 

the United States alone, the CDC estimates that antimicrobial resistant microbes kill 23,000 

people a year and sicken more than 2 million.  The healthcare costs of these individuals are 

staggering: $20 billion in costs and $35 billion in lost productivity (Nizet 2015).  Many microbes 

are culpable.  Acinetobacter baumannii (“Iraqibacter”), Burkholderia pseudomallei (melioidosis), 

Campylobacter spp., Candida albicans (candidiasis), Clostridium difficile (“CDiff”), 

Enterobacter spp., Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, 

Mycobacterium tuberculosis (MDR and XDR tuberculosis), Neisseria gonorrhoeae (gonorrhea), 
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Plasmodium falciparum (malaria), Pseudomonas aeruginosa, Staphylococcus aureus (MRSA, 

VRSA, and LRSA), Trichimonas vaginalis (trichimoniasis), and Vibrio cholerae (cholera), have 

been found to be resistant, all of which cause serious human disease (Plough 1945, Dunne et al. 

2003, Davies and Davies 2010, Buono et al. 2015, Egan 2015, Sanguinetti et al. 2015). 

 These resistant microbes are global, and they, like vector-borne diseases, have been 

opportunistic from antimicrobial use in health care facilities, civil unrest, famine, and natural 

disasters (Davies and Davies 2010).  As a species, we have exacerbated the problem immensely 

by applying evolutionary selective pressures through antimicrobial use in health care and 

agriculture settings (Alanis 2005, Barriere 2015).  I think the same is true for insecticides.  

Microbes have surged to cause lethal infections from three areas: nosocomial infections, 

community-acquired infections, and livestock-acquired infections (Davies and Davies 2010). 

 What has been done, and how can we forward in our effort to curb the damaging health 

care and economic repercussions of antimicrobial resistance?  It is critical to have a strong global 

collaboration and funding for industry, academia, and governments (Alanis 2005).  First, to apply 

new selective pressure, there needs to be a robust pipeline for new antimicrobials, which is drying 

up (Alanis 2005).  It is obvious that we are losing our last-resort antimicrobials at an alarming 

rate, but the pharmaceutical companies we have relied on, are halting their R&D efforts because 

of economic incentives and repressing regulations (Nizet 2015, Engelhardt and Wright 2016).  

The Food and Drug Administration (FDA) has been forced to reboot its approach to new 

antimicrobial development.  Janet Woodcock, the FDA’s director of the Center for Drug 

Evaluation and Research, has recognized the need to change clinical trial designs and the 

importance of opening new pathways for drug development (Shlaes et al. 2013).  Antimicrobials 

have saved our lives; we need to save their lives too.  They, like insecticides, should be treated as 

nonrenewable resources.  There needs to be energy and momentum for innovation in the markets. 

New antimicrobials, like Teixobactin, offer hope, but Ling et al. (2015)’s claims of resistance 
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development being unlikely should be met with met with hesitancy and watchfulness.  Microbes 

are fickle, and we have seen how quickly resistance can develop to other antimicrobials (Plough 

1945).  For the antimicrobials that we still have available, there needs to be tremendous 

stewardship: limiting drug misuse and overuse; requiring accurate prescriptions; not using 

antibiotics to treat viral infections; continued education for physicians, veterinarians, farmers, and 

the public; decreasing patients’ hospital stays; using narrow-spectrum antimicrobials as much as 

possible; (Nordmann et al. 2007, Perry and Hall 2009, Davies and Davies 2010, Barriere 2015, 

Engelhardt and Wright 2016, Khan and Aziz 2016).   

Second there needs to be continued vigilance for resistance, especially in hospital settings 

where antimicrobial resistant infections are devastating, and for new technologies (Alanis 2005, 

Barriere 2015, Engelhardt and Wright 2016).  There needs to be better infection prevention in all 

environments, especially where people are very susceptible, and if infections arise, diagnostics to 

quickly distinguish patients with resistance is imperative.  Simultaneously, understanding 

patients’ pre-existing conditions and proclivities for acquiring resistant infections will save time 

and money by developing proactive approaches for managing resistant infections.  Initially 

testing new patients for colonization by antimicrobial-resistant microbes can allow for swift 

action and isolation to prevent further infection of other health care workers and other patients.  

New technologies, including advances in genome technologies, could give rise to new 

antimicrobial adjuvants, prebiotics, probiotics, and bacteriophage products.  Lastly, while it may 

seem obvious, proper hygiene in health care facilities is crucial for preventing antimicrobial-

resistant infections (Trick et al. 2007). 

 Third, there should be a motivation for non-traditional therapies that are not always 

initially considered.  For gastrointestinal infections, such as Cdiff, the use of fecal transplants is 

gaining favor despite the offensive perception that it carries.  Fecal transplants work by taking the 

gut microbiota, in the form of stool, from a healthy individual and transplanting that material into 



213 

 

 

a Cdiff-infected person in the hopes that the transplanted microbiota will be a form of biological 

control to fight against the Cdiff bacteria.  This approach is more cost-effective than antibiotics, 

and it is approaching a 90% cure rate (Simonson 2016).  For cutaneous antimicrobial-resistant 

infections, medicinal maggot debridement therapy is making a comeback.  First introduced to 

Western medicine by Dr. William Baer, who observed the healing effects of maggots in wounded 

soldiers during WWI (Baer 1931), the saliva of blow fly maggots has been shown to be effective 

against resistant microbes; like fecal transplant, maggots should remain a viable option when 

traditional pharmaceuticals fail (Sherman et al. 2000).  Lastly, the rise in cases of infections with 

antimicrobial resistant pathogens may, of course, be linked to increasing resistance, but perhaps it 

could also linked to the health of our immune systems?  Are we, as a people, becoming too clean?  

Dr. Martin Blaser has been at the forefront of this thinking: how do changes in our own 

microbiome have lasting effects on our health as we age (Blaser 2014).  The systemic health of 

our bodies intrinsically relies on the health of our microbiota, and people need to take better care 

of the microbes that call our bodies home.  Our microbiome provides us physical protection, 

helps regulate our metabolism, and aids in the development of our immune system.  Blaser’s team 

argues that the overuse of antibiotics, along with Cesarean delivery, at young ages lead to 

microbiota immaturity, which present, later in life, as malnutrition, obesity, diabetes, 

inflammatory bowel disease, asthma, allergies, attention deficit hyperactivity disorder, celiac 

disease (Blaser 2014, Blaser 2016, Bokulich et al. 2016).  Let alone selecting for resistance, too 

many antibiotics and obsessive cleanliness deplete our own microbiomes, which makes us more 

susceptible to infection by resistant microbes, and it requires us to use more of the same 

antibiotics.  The biologic costs of using antibiotics on people from pregnancy to post natal ages 

needs continued research to see the effects on a person’s ability to innately fight infection.  

 Is there hope in the antimicrobial resistance and insecticide resistance fields?  I certainly 

think so.  We are currently battling the same evolutionary selection pressures in the forms of 
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resistant microbes and resistant insects.  Resistance in both fields is dynamic and fluid.  We must 

be the same to overcome these challenges.  I fear, with antimicrobials and insecticides, that we 

are competing against the Red Queen: we develop an antimicrobial/insecticide, the microbe/insect 

evolves resistance, and then we develop a new antimicrobial/insecticide and the microbes/insects 

keep pace by evolving new mechanisms of resistance, and so on (Robson 2005).  Therefore, it 

will take our collective intellect, ingenuity, creativity, and observation to make strides in 

overcoming these evolutionary challenges.  Could we develop antimicrobials/insecticides that are 

evolutionary proof? (Read et al. 2009).  Might we be able to use CRISPR-Cas9 to make gene 

drive systems to permanently disrupt microbe or insect vector populations? (Hammond et al. 

2016).  We need an integrated, multifaceted, and interdisciplinary approach to combat these 

challenges, and it requires the global effort from individuals, communities, government, 

businesses, academia, the media, NGOs, and people everywhere (WHO 2012). 

As a personal conclusion, we are in a unique transition era that is seeing the inchoate 

impact that science communication is having in both the insecticide resistance and antimicrobial 

resistance fields (or any field).  Hollywood has, probably for good, propagated awareness of 

infectious diseases through movies such as Outbreak and Contagion, and newspapers, magazines, 

books, and the internet inundate people with stories.  But, social media has reinforced and 

educated people like never before (Brossard 2013, Jarreau and Porter 2017).  Millennials, 

including the next generation of scientists, are proficient at using social media to communicate 

and learn.  Social media to communicate science should be embraced, not ignored, because of its 

potential to be utilized by so many more people around the world than any other form of 

communication.  I have found bloggers and Twitter users to be very informative, and I believe 

that science writers, such as Maryn McKenna, Carl Zimmer, Ed Young, and so many other 

“scicomm” people, can publicize these issues much better and efficiently than scientists do.  

Personally, while writing scientifically about science is important and needed to communicate 
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with other scientists, I think it can often be dry and unmotivating.  Many non-scientists may not 

care about what is written in a science journal article, but the ability to precisely articulate main 

points in a blog, Tweet, post, hashtag, is very effective, motivating, and sincerely needed.  Flashy 

and simple headlines, descriptive writing, and attention-grabbing photos are attractive.  It is 

crucial to have people who can move between hard science and social media; they need to be a 

hybrid, both knowledgeable of the scientific process but also creative enough to communicate it 

to the non-scientist.  Social media is beginning to be embraced by scientists, big science 

organizations, journals, and societies because I think everyone is beginning to understand the 

effectiveness and utility of social media for the future.  I think there will be a shift in the science 

field in the coming years to use social media as the main form of communication.  Hopefully 

scicomm can be very effective in reaching everyone around the world about the perils that we 

face with insecticide resistance, antimicrobial resistance, and the resurgence of diseases once 

thought to be defeated.  As a graduate student in the public health field, our research has the end 

goal of tangibly helping people, and no matter what field of science we work in, we owe it to 

communicate with other scientists and the public.  Frankly, the public pays for most of our 

research, and we should make our results visible to give them a return on their investment.  

Communication needs to be embraced, and we as scientists should be excited to share science 

with others so that we can motivate the next generation by fostering a love and curiosity for the 

world we share. 
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