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ABSTRACT

Multifunctional Reconfigurable Antennas and Arrays Operating at 60 GHz band

by

Abdurazag Mohamed Khalat, Doctor of Philosophy

Utah State University, 2017

Major Professor: Bedri A. Cetiner, Ph.D.
Department: Electrical and Computer Engineering

To meet the ever increasing demand of high data rate, millimeter-wave (mm-wave)

wireless communication has become an area of intense research due to the capability of

offering very broad bandwidth. However, the propagation losses increase as a function

of operation frequency. Therefore, there is need for antenna systems with high gain and

beam-steering capability at elevated frequencies, which comes at the expense of high cost

and increased complexity. This dissertation demonstrates the design, micro-fabrication, and

characterization of two different antennas and two different antenna arrays. A broadband

patch antenna operating within (57 − 66) GHz band, which works as a building block to

create a multifunctional reconfigurable antenna (MRA) that is capable of beam steering in

three directions pertaining to θ ∈ {−300, 00, 300}; φ = 900. These standalone antennas were

then put in a linear formation to create a 2×8 planar array and a 4×1 multifunctional recon-

figurable antenna array (MRAA) to increase the gain further and to offer wider bandwidth.

The proposed novel MRA and MRAA possess variable element factors, which potentially

can feature as the main building blocks of mm-wave reconfigurable wireless communication

systems with reduced cost and complexity.

(71 pages)
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PUBLIC ABSTRACT

Multifunctional Reconfigurable Antennas and Arrays Operating at 60 GHz band

Abdurazag Mohamed Khalat

In this digital era, the demand for faster, reliable, and adaptive wireless communication

systems is increasing. Various factors can affect the signal propagation in the wireless

medium, such as weather, broadcast environment, physical obstructions, etc. This study

aims to improve the antenna performance by means of dynamically altering its properties so

that it can adapt to different environments and communication scenarios. This study is not

resorting in a traditional antenna design, but rather explores an alternative approach known

as the multifunctional reconfigurable antennas (MRAs). Unlike its predecessor, i.e., legacy

antennas, MRAs can dynamically change its operation frequency, radiation pattern, and

polarization, which makes it an alternative technology toolbox for next-generation wireless

communication systems. Design, micro-fabrication, and characterization of two standalone

antennas and two antenna arrays are presented in this dissertation. These antennas are

capable of operating within the entire IEEE 802.11ad (WiGig) band. The first design is

a broadband patch antenna operating at (57 − 66) GHz. The second design is an MRA

which provides three distinct beam directions pertaining to: θ ∈ {−300, 00, 300}; φ = 900.

The third design is a 2 × 8 patch multifunctional reconfigurable antenna array (MRAA)

which operates within the frequency band of (57- 66) GHz an extension of the first design.

Last, the fourth design is an MRAA with three parasitic layers; an extension of the second

design. Finally, this dissertation concludes with plans for future work, which proposes the

development of MRAs and MRAAs with dual-frequency operation.
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CHAPTER 1

INTRODUCTION

The demand of high data rate has been increasing exponentially in recent years due

to the expansion of smart hand-held devices, device to device communication and cloud-

based applications. New concepts like Internet of Things (IoT), Vehicular Ad-Hoc Network

(VANET), Machine to Machine Communication (M2M) are adding more overhead to the

already expanding demand. However, the capacity of wireless communication depends on

its spectral efficiency and bandwidth. At present, the physical technologies are already op-

erating at the boundary of Shannon capacity. It is the communication channel bandwidth

that remains largely unexploited. Currently almost all the wireless communication systems

use the “beachfront spectrum” [1], i.e., 300 MHz to 3 GHz frequency band. The future 5G

network is expected to have a paradigm shift to mm-wave band ranging from 3 GHz to 300

GHz [2] because of the availability of an extremely large unutilized bandwidth at this spec-

trum. Recently the Federal Communications Commission (FCC) has opened the spectrum

between 59-64 GHz for unlicensed wireless communication. In response, the development

of wireless communication systems operating at higher frequencies (WiGig, 60 GHz) has

become a popular research area of interest for both academy and industry [3–7]. Addition-

ally, the future wireless systems are envisaged to enable wireless connectivity for everybody.

The requirements for these systems are reduced weight/size, cost, and longer battery life.

These requirements are, however, in conflict with the desired performance characteristics of

higher data rate, increased capacity, multifunctionality and improved robustness.

Mm-wave frequency range provides an increase in capacity by offering a very broad

bandwidth (BW) and high data rates. However, the associated propagation losses at mm-

wave become too severe to ignore. Propagation loss is a strong function of frequency, i.e.,

as the frequency goes up so does the propagation loss. Moreover, the Oxygen Absorption

Band (57-64 GHz) coincides with the unlicensed band of 59-64 GHz, which adds severe
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absorption loss. Because of these problems, the development of antenna systems with

high gain and beam-steering capability to achieve reliability is required. Phased array

antennas with excellent beam-steering capability and high gain can provide the desired

antenna properties [8–11]. This solution, however, comes with extremely high cost and

increased system complexity, which may be prohibitive for practical and commercial wireless

communication applications.

The multifunctional reconfigurable antenna (MRA) with beam-steering capability pre-

sented in this dissertation has the potential to be the main building block of a new class

of mm-wave antenna array with low-cost and reduced complexity [12]. The main novelty

of such a multifunctional reconfigurable antenna array (MRAA) lies in its variable element

factor which is fixed for legacy phased array antennas. Recently, substrates such as SU-8

(εr = 3.1, tan δ = 0.021) which provides some advantages in terms of micro-fabrication

have been used [13–15] in developing mm-wave antennas, however, SU-8 does not have op-

timal material properties (very high RF losses) for RF/antenna applications. On the other

hand, SU-8 can be easily processed to form air cavities within, thereby taking advantage of

the excellent material properties of air [16]. A micro-fabricated SU-8-based patch antenna

structure exploiting air cavities was recently reported to achieve 57-66 GHz bandwidth and

a maximum realized gain of 6.4 dBi [17].

This work targets accomplishing the design, manufacturing, and initial characterization

of novel single element MRA and 2×8 planar MRAA prototypes. The design strategy aims

to combine the advantages of multiple approaches of previous works [18, 19], as well as

introducing a new approach. The design makes use of coplanar waveguide (CPW) loop

feeding mechanism on quartz substrate to provide a broad BW. It uses low cost pyrex

material where air cavities are easily formed by a single process step which does not only

reduce cost but also take advantage of good RF properties of air. It is worth noting that this

approach is simpler and less costly in terms of micro-fabrication as compared to forming

air cavities in SU-8 which requires highly optimized multiple process steps. The MRA

structure takes advantage of a low-cost and micro-fabrication process compatible pyrex
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substrate material, which is used to fabricate reconfigurable parasitic layer. Considering a

typical link-budget requirement at 60 GHz gigabit link [20], a maximum antenna gain of at

least 15 dBi is needed. Therefore, it becomes proper to use array structure with at least 16

elements [21]. In this work, a 2 × 8 patch antenna array is presented. This array achieves

19.3 dBi maximum realized gain and ∼ 17% impedance BW (57-65 GHz). The realized gain

over the impedance bandwidth remains relatively flat changing from 17 - 19.3 dBi. This

work targets establishing a 2× 8 planar MRAA operating within the same band.

The parasitic layer based MRA presented in this dissertation consists of CPW-fed

legacy patch antenna with a reconfigurable parasitic layer placed above it. The surface of

parasitic layer has a grid of 3× 3 electrically-small rectangular shaped metallic pixels. The

adjacent connection/disconnection of the pixels gives the MRA variable element factor which

results in reconfigurability in radiation properties. One of the challenges associated with

using parasitic layer based MRA design is the interconnections of the metallic pixels. The

operational characteristics of RF transistors and switches in lower frequencies (≤ 15 GHz)

are well-studied, but still under investigation for mm-wave spectrum. Another challenging

issue associated with high frequency RF switches is the use and integration of components

with exceedingly small dimensions. This makes the micro-fabrication and integration of the

switches in mm-wave quite demanding. In [22], the authors have proposed Radio Frequency

Microelectromechanical Systems (RF-MEMS) switches for mm-wave applications. However,

stiction is a major concern for DC-contact switches with metal-to-metal contact [23], partic-

ularly in higher frequencies where the state changes occur more frequently. To this end, we

investigate various switching technologies, such as RF transistors, p-i-n diodes, and smart

material based switching designed to operate at 60 GHz.

The rest of the dissertation is organized in the following way: In Chapter 2, the disser-

tation objectives and research flow for each of the objectives have explained. From Chapter

3 to Chapter 7, the five dissertation objectives have been carried out with detailed simula-

tions, design methodologies and characterizations. Finally, the dissertation is concluded in

Chapter 8 with future research directions.
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CHAPTER 2

DISSERTATION OBJECTIVES

The objectives of this dissertation are as follows:

1. Design, fabrication, and characterization of a standalone 60 GHz antenna.

2. Design, fabrication, and characterization of a parasitic layer based MRA with beam

steering capability operating over 57− 64 GHz band.

3. Design, fabrication, and characterization of broadband high-gain 60 GHz 2×8 planar

antenna array.

4. Design of 4× 1 linear MRAA operating at 60 GHz Band.

5. Investigation and simulations of various switch technologies for MRA integration.

2.1 Research Flow for Objective 1

The first objective of this dissertation is to design, fabricate, and characterize single

element antenna with a resonance frequency of 60 GHz. The motivation that leads to this

objective is the necessity to build a legacy single element antenna that is simple enough to

use as the reference device which will be modified to more sophisticated designs of MRAs,

legacy arrays, and MRAAs. As the basic building block, this reference antenna will feature

decent radiation properties. The designed broadband patch antenna is capable of cover-

ing the entire IEEE 802.11ad (WiGig) frequency band 57-66 GHz. Coplanar waveguides

(CPWs) are capable of providing extremely high frequency response 100 GHz or more [24];

since the dispersion is very low and there is no need for via holes, which reduces undesirable

parasitic inductance. Therefore, CPW is chosen as the appropriate feed mechanism in this

design. The CPW-fed loop slot couples the energy efficiently to the patch antenna, resulting

in a broad bandwidth. The patch metal is deposited on top of the pyrex substrate. The
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main role of the pyrex material is to provide a reliable mechanical support for the patch

metal, with an air cavity underneath, thus resulting in cumulative antenna substrate with

very low loss, which leads to improved antenna performance. The simulated and measured

impedance characteristics agree well, showing ∼ 15% bandwidth. The simulated radiation

pattern gains over the entire WiGig band 57-66 GHz demonstrate the integrity of radiation

patterns with good gain values (average ∼ 8.5 dB). Chapter 3 of this dissertation provides

a detail discussion on the design method for this single element antenna.

2.2 Research Flow for Objective 2

In communication systems it is always desirable to have LOS propagation; at high

frequencies this is ever more critical as the non-line of sight (NLOS) propagation losses are

quite severe. Beam-steering is one of the most essential property desirable for LOS com-

munication. After designing the single element legacy patch antenna, the next objective of

this work is the design, micro-fabrication, and characterization of a multifunctional recon-

figurable antenna with beam steering capability operating at 60 GHz band 59-66 GHz. The

MRA provides three beam directions pertaining to: θ ∈ {−300, 00, 300}; φ = 900, based

on reconfigurable parasitic layer approach. The structure consists of three layers, namely,

feed, driven antenna, and reconfigurable parasitic layers. The feed mechanism is being kept

the same as the single element antenna. The first two layers use RF and micro-fabrication

process compatible quartz (εr = 3.9, tan δ = 0.0002) substrate while the parasitic layer

is formed on a low-cost pyrex (εr = 4.9, tan δ = 0.01) material with air cavities formed

underneath. The upper surface of pyrex has 3× 3 rectangular shaped metallic pixels; four

of them are interconnected by RF switch component. This choice minimizes the number

of switch interconnections on the reconfigurable pixel parasitic while enhancing the beam

diversity. By judiciously controlling the switch status the beam-steering is accomplished.

The simulated impedance and gain characteristics show ∼ 15% bandwidth over which the

maximum realized gain remains relatively flat around ∼ 7.2 dB for all modes of operation.

Further detailed discussion of this design is provided in Chapter 4 of this dissertation.
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2.3 Research Flow for Objective 3

Before designing the MRAA, the next objective is to design a legacy patch antenna

array which will act as a reference design for the MRAA prototype. Compared to single

element patch antenna, an antenna array inherently provides higher broadside gain. In

Chapter 5, the design techniques, fabrication procedures, and characterization of a 2 ×

8 patch antenna array operating in the IEEE 802.11ad frequency band (57-66 GHz) is

presented. The design is based on two-layer structures, where the radiating patches placed

on top substrate are fed by conductor backed coplanar waveguide (CPW)-fed loop slots,

which are placed on the bottom substrate. The top layer is formed by using a low-cost pyrex

(εr = 4.9, tan δ = 0.01) substrate of 500 µm thickness. The pyrex is then etched down to a

thickness of 100 µm using HF-based chemical wet-etch process where 400 µm of air volume

is formed underneath. This approach does not only benefit from the low-cost feature of

pyrex but also exploits the low-loss nature of air. The thin layer of pyrex is solely used for

mechanical support for the radiating patches while the air provides good RF environment

for the array. The bottom substrate housing the CPW feed network is an RF-compatible

quartz (εr = 3.9, tan δ = 0.0002) of 525 µm thickness. The simulations indicate a good gain

performance of 19.3 dBi maximum realized gain. The variation of the realized gain over

∼ 17% of impedance bandwidth 57-65 GHz is relatively constant changing from 17-19.3

dBi.

2.4 Research Flow for Objective 4

The fourth objective is to design, fabricate, and characterize an MRAA with a reso-

nance frequency of 60 GHz. MRA presented in Chapter 4 acts as a building block for this

MRAA and is designed by creating a linear array of four identical MRAs. The distances

between the antenna elements are optimized to increase the broadside gain. The designed

corporate feed network ensures that the elements are fed with equal phase. The feed net-

work and driven patch antennas are placed on two separate layer of quartz (εr = 3.9, tan

δ = 0.0002) substrate with thickness of 525 µm and 260 µm respectively. On top of this

driven antenna structure the parasitic layer was formed with rectangular grid of metallic
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pixels that lay on a 500 µm thick pyrex (εr = 4.9, tan δ = 0.01) substrate. Height of

the parasitic layer and inter pixel distance is optimized to maximize the antenna perfor-

mance. The MRAA has three different beam directions (modes of operation) pertaining to:

θ ∈ {−300, 00, 300}; φ = 900. The simulated impedance and gain characteristics show wide

bandwidth over which the maximum realized gain remains relatively flat around ∼ 13.5

dB for all modes of operation. To increase the beam-steering capability, another MRAA

is designed which is capable of operating in three different beam directions pertaining to:

θ ∈ {−500, 00, 500}; φ = 900. This design has been optimized to improve beam steering

performance using a simpler pixel layer geometry and as a result has less pixels and pixel

interconnections when compared to the original design. The trade-off comes from the real-

ized gain; the simulated gain characteristics show that the maximum realized gain is around

∼ 12 dB. The detailed design procedure of these two MRAAs structure are presented in

Chapter 6.

2.5 Research Flow for Objective 5

One of the aspects that needs to be considered while designing MRAs/MRAAs is the

RF-switching technology. There are many competing switch technologies that can be used

for the MRAs/MRAAs designed thus far. Among others, micro-fabrication compatibility,

cost, RF performance and monolithic integration are the main factors to consider in adapt-

ing the most suitable technology. To this end, we will investigate rather mature switching

technologies like p-i-n diodes, RF transistors, as well as new emerging material technolo-

gies, e.g., smart material based switching via metal-insulator transition compounds such

as vanadium oxide (V O2). V O2 is a phase change (chalcogenide) material, which changes

its resistivity when exposed to heat, thus, essentially working as switch with low ON state

resistance (at high temperature) and high OFF state resistance (at low temperature). In

Chapter 7 of this dissertation, all these switching technologies are presented. Through

simulations and measurements, pros and cons of each switching technology is determined.

Simulation results for smart material, i.e., V O2 and p-i-n diodes are presented.
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CHAPTER 3

SINGLE PATCH ANTENNA ELEMENT BASED ON QUARTZ AND PYREX

MATERIALS

3.1 Introduction

The fundamental problem in wireless network is to provide ever-increasing total wireless

throughput reliably and uniformly throughout a designated area. In the near future, because

of the explosion in data traffic, demands that need to be addressed are increased capacity,

improved data rate, decreased latency, and better quality of service. To meet these demands,

drastic improvements need to be made in the existing wireless network architecture. As

the current physical layer technologies are already operating at the boundary of Shannon

capacity, the solutions seem to be the exploitation of mm-wave spectrum and increase of

access points covering smaller area, i.e., small cells. Exploitation of mm-wave spectrum

not only increases the available bandwidth but also provides an excellent choice for smaller

cells [25]. As the front end of any wireless communication systems, mm-wave antenna

design, optimized over directional gains, cost, and complexity is crucial and has attracted

a lot of attention from the research community [26].

Antennas operating at mm-wave frequencies have thus far mainly been fabricated using

low temperature co-fired ceramic (LTCC) [27–29], polymer substrates [30] and SU-8 material

[17]. Although LTCC can create mechanically robust and hermetically sealed packages with

high yield, it might create unwanted surface waves due to the high dielectric constant of

substrate [31]. Recently, planar antennas have also been realized on benzocyclobutene

(BCB) polymers at mm-waves [30]. BCB (ε = 2.65, tan δ = 0.0008), due to its electrical

properties, is a good alternative substrate material for improved antenna performances.

However, it is quite difficult to achieve the desired thickness with BCB that is needed

for obtaining a reasonable operational bandwidth at high frequencies. Moreover, very short
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shelf-life time under room temperature is another disadvantage [31]. Taking all these factors

into account, quartz appears as a highly RF-compatible material which is commercially

available in standard wafer sizes. Quartz is a micro-fabrication compatible substrate that

has a suitable dielectric constant and very low loss tangent (εr = 3.9, tan δ = 0.0002 at 60

GHz). This chapter of the dissertation presents a patch antenna that is micro-fabricated

on such quartz substrates. The antenna presented here is designed to have a broadband

radiation and aims to cover the entire IEEE 802.11ad (WiGig) frequency band (57-66 GHz).

3.2 Antenna Design

The antenna (as shown in Fig. 3.1 and 3.2), is a coplanar wave guide (CPW) fed

broadband patch antenna micro-fabricated on an RF compatible quartz substrate. The

feed metallization, which consists of a 50 Ω conductor backed CPW, along with the loop,

is formed on a 525 µm thick quartz substrate. The CPW structure in Fig. 3.3 consists of a

center strip with two parallel ground planes placed equidistant from it on either side. All

three conductors in the CPW are located on the same side of the substrate surface. The

dimensions of the center strip, the gap, the thickness, and permittivity of the dielectric

substrate determined the effective dielectric constant, characteristic impedance and the

attenuation of the line. The gap in the CPW is usually very small and supports electric

fields primarily concentrated in the dielectric. With little fringing field in the air space, the

CPW exhibits low dispersion [32].

The pyrex substrate (εr = 4.9, tan δ = 0.01 at 60 GHz) is located on top of the

quartz layer. The patch antenna metallization is finally formed on this substrate. Pyrex

material which is thinned down to 100 µm by using standard chemical wet-etch process is

incorporated to decrease the dielectric loss which would in turn enhance the performance

of the antenna. The height of the air pocket(At) formed under the thinned pyrex, has an

effect on the impedance BW and realized gain of the antenna [19, 33–35]. To enhance the

BW of patch antenna a conductor backed CPW-fed rectangular loop slot (with dimensions

Ll, Lw, and Lt) shown in Fig. 3.4 couples the energy to the patch antenna. The resonant

length of the loop is calculated as:



10

L1 +
Lw
2
≈ λg

2
(3.1)

where λg is the guide wavelength in quartz substrate at the resonant frequency (fs). The

substrate thickness of conductor backed CPW fed loop slot plays an important role in broad-

ening the radiation BW of the antenna. One of the main contributions of this dissertation

is not only to improve the antenna performance in the WiGig band but also to make the

antenna design compatible with micro-fabrication processes, resulting in efficient, reliable

and mass-production compatible economic fabrication. The patch antenna dimensions are

then calculated accordingly by using the following [36]:

Pl ≈
c

2fp
√
εr

(3.2)

Pl < Pw < 2Pl (3.3)

where Pl and Pw represent the patch length and width (see Fig. 3.1), c is the speed of

light in vacuum, and fp is the patch design frequency, and εr is the relative permittivity

of the material. The optimized design parameters of the patch element, CPW-fed loop,

and the pyrex substrate were obtained from full-wave simulations are provided in Table 3.1.

This design methodology minimizes the dielectric loss of pyrex through air pockets resulted

in better performances. Secondly, the patch metallization on top of the pyrex substrate

focuses the EM energy resulting in a narrower beamwidth, which is otherwise broader for

a standard CPW-fed loop.

3.3 Simulation Results and Characterizations

The simulated magnitudes of the reflection coefficient (S11 parameter ) for a frequency

range from 55 to 67 GHz is plotted in Fig. 3.5. The reflection coefficient shows that the

antenna has a 2:1 VSWR BW of greater than 9 GHz (∼ 15% of fractional BW), which

covers the entire frequency range of the IEEE 802.11ad (57 - 66 GHz). The simulated
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Fig. 3.1: Schematic depicting 3-D drawing of the antenna (For the sake of illustration, the
pyrex layers is suspended on top of the CPW metallization).

Fig. 3.2: Schematic showing cross-sectional drawing of the single-element two-layers an-
tenna.

Fig. 3.3: Coplanar wave guide design. The width of the central conductor (W), the gap
from the ground planes (S), the substrate thickness (h), the conductor thickness (t).
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Table 3.1: The critical design parameters of the WiGig antenna (all dimensions are in mm).

W 7 Pw 1.5 Ll 1 CG 0.02

L 7 Pl 1.3 Lw 1.2 Cw 0.191

Lt 0.02 St 0.1 At 0.4

Fig. 3.4: Top view of CPW layer (Loop is centralized w.r.t. CPW layer).

radiation patterns of the linearly polarized antenna in y-z plane at 60 GHz are shown in

Fig 3.6. The realized maximum gain of the antenna stays relatively constant and is in the

range of 8.4−8.7 dB over the entire BW as shown in Fig. 3.7. The antenna design has been

recently fabricated. Second phase of the design for fine tuning the antenna performance

will be determined after the measurement results are available.

3.4 Micro-Fabrication

3.4.1 Quartz Substrates

Prior to fabrication, RF-compatible and low-loss quartz substrates (εr = 3.9, tan

δ = 0.0002 at 60 GHz) were cleaned using standard acid/solvent cleaning, distilled water

(DI)-water rinsing, nitrogen-blow drying, and de-hydration baking on a 1200 C hot-plate.

The quartz wafer was primed by spraying with MCC primer (20% hexamethyldisilazane



13

Fig. 3.5: Simulated reflection coefficient (S11 parameter) of the single element antenna for
frequency range of 55 to 67 GHz.

Fig. 3.6: Simulated realized gain plot (dB) of the single element antenna in y-z plane at 60
GHz.
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Fig. 3.7: Simulated realized gain (dB) in the broadside direction of the single element
antenna with respect to frequency.

(HMDS)) and (80% propylene glycol monomethyl ether (PM) acetate on a spin coater

which was run at 2000 revolution per minute (rpm) for 20 seconds. Then the wafer was

baked at 1100 C for 90 seconds. After spin coating, the wafer was sprayed with photo-resist

(PR) (AZ4562) and spin dried for 45 seconds at 3000 rpm. Afterwards, the wafer was pre-

baked for 20 minutes at room temperature and baked for 50 seconds at 1100 C. The wafer

was exposed to ultraviolet(UV) light to pattern CPW, loop, and bonding alignment marks.

After exposure, the wafer was developed by introducing the wafer into AZ400K solution.

Oxygen (O2) plasma was then applied for 15 seconds to remove possible photo-resist residue

and to clean the wafer surface. The wafer was coated with Chromium (25 nm)/Copper (1

µm)/Gold (50 nm) (Cr/Cu/Au) and then lift-off was done by dipping the coated wafer into

acetone. In addition, blank Copper deposition was carried out to form the ground layer at

the backside of the wafer. The micro-fabricated CPW and ground on this quartz is shown

in Fig. 3.8. Finally, quartz wafer was diced to achieve the final sample structure.
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Fig. 3.8: Micro-fabricated CPW and ground layer with standard deposition and liftoff
process.

3.4.2 Pyrex Substrates

The pyrex wafer was spin-coated with PR (AZ4562) and spin dried for 45 seconds at

3000 rpm. Then the wafer was prebaked for 20 minute at room temperature and baked

for 50 seconds at 1100 C. After coating the wafer with PR, it was exposed to UV light

to pattern patch and bonding alignment marks as shown in Fig. 3.9. After exposure, the

wafer was developed in AZ400K developer solution. To remove possible PR residue and

clean the sample surface, O2 plasma was applied for 15 seconds. The wafer was coated with

30/400/100 nanometer (nm) thick Cr/Cu/Au by using e-beam evaporator and then metal

lift off was done by dipping the wafer into acetone. To obtain a uniform surface, deposition

rate and rotation of the sample are important parameters. We used ∼ 0.3 − 0.4 nm/sec

deposition rate for each metal. The backside of the wafer is coated with PR (AZ4562) and

baked for 90 seconds at 1100 C. After coating the wafer with PR, it was exposed to UV light

to pattern patch and bonding alignment marks. After exposure, the wafer was developed

similarly in AZ400K solution.

The micro-fabricated patch antenna metallization on this pyrex is shown in Fig. 3.10.

Finally, pyrex wafer was diced to achieve the final sample structure of the single-element

two-layers antenna. The backside of the wafer was then etched with a special grinder-blade

by using dicing-saw to create the air space. The fabricated antenna prototype is shown in

Fig 3.11.
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Fig. 3.9: Patterned wafer with patch and alignment marks.

Fig. 3.10: Micro-fabricated patch antenna metallization on the pyrex.

Fig. 3.11: Prototype of single element 60 GHz antenna.
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3.5 Conclusion

The design, micro-fabrication, and characterization of a CPW-fed broadband patch

antenna compatible with IEEE 802.11ad standard (WiGig) has been successfully demon-

strated. The simulated impedance characteristics show ∼ 15% bandwidth. Also, the sim-

ulated radiation pattern results demonstrate the integrity of radiation pattern with decent

gain values (∼ 8.5 dB) in the broadside direction over the entire WiGig band (57−66 GHz).

This result confirms the success of our design in using low dielectric-loss medium. The pyrex

micro-fabrication processes developed for this antenna structure provides an important ad-

vantage for custom-made reconfigurable antennas that might also be highly useful in WiGig

applications.
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CHAPTER 4

DESIGN, FABRICATION, AND CHARACTERIZATION OF A PARASITIC LAYER

BASED MRA WITH BEAM STEERING CAPABILITY OPERATING OVER 57-64

GHZ BAND

4.1 Introduction

Due to the scarcity of spectrum at the lower end and the possibility of high data rate

communication, 60 GHz band has attracted a lot of interest in recent years. While this

mm-wave frequency range is excellent in offering very broad bandwidth (BW) and high

data rates, the associated propagation losses are too severe to ignore. Wireless network-

ing among multiple devices at gigabits per second (Gb/s) data rates which is an order

of magnitude faster than Wi-Fi is the goal that standardization activities have set for 60

GHz technology [37]. One of the intriguing challenge for an antenna engineer is to design

high performance antennas suitable for such high frequencies. The 60 GHz carrier fre-

quency results in substantial propagation loss at a given range (e.g., 82 dB at 5 m [38]),

combined with increased shadowing, makes NLOS communication very challenging. A de-

sired communication path must be found to avoid signal blockage by common objects for

LOS communication. This makes the development of antenna systems with high gain and

beam-steering capability a necessary engineering task.

Phased array antennas with excellent beam-steering capability and high gain can pro-

vide a desired antenna properties [8,39–41]. Since the phase shift usually is obtained through

the introduction of additional path length, one of the problems that arises with a phased

array is insufficient bandwidth. Particularly, at this range where the desirable bandwidth

can be as high as 7 GHz (57-64 GHz), this can cause a severe problem [42]. High cost

and complex array architecture, excess RF losses in the corporate feed networks, problems

associated with high density device integration and need for heat removal makes the choice
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of active phase array antennas unattractive for multi-beam communications. The MRA

with beam-steering capability presented in this dissertation has the potential to function

as the main building block of a new class of mm-wave antenna array with low-cost, low-

size and reduced complexity [12]. The main novelty of such a reconfigurable antenna array

is its variable element factor which is fixed for legacy phased array antennas. This work

presents the design, manufacturing, and initial characterization of a single element MRA.

This MRA structure takes advantage of low-cost and micro-fabrication process compatible

pyrex substrate, which is used to create innovative reconfigurable parasitic layer.

4.2 MRA Structure and Working Mechanism

The MRA structure as shown in Fig. 4.1 and Fig. 4.2, is designed to reconfigure the

main beam direction of the radiation pattern into three different directions pertaining to:

θ ∈ {−300, 00, 300}; φ = 900 over 59 − 66 GHz band. The antenna structure consists of

three layers namely, the feed, the driven antenna, and the reconfigurable parasitic layer

with respective thicknesses of 525 µm, 260 µm, and 500 µm. The bottom and middle layers

which house the CPW-fed loop and driven patch antenna, respectively, are formed on quartz

substrates which provide good RF properties and micro-fabrication process compatibility.

The CPW-fed loop couples the EM energy to the patch antenna, which results in a broad

BW. The formation of copper metalization for both layers are implemented by basic micro-

fabrication processes of thin layer metal deposition via electron-beam evaporation and lift-off

techniques. The top layer is made out of low cost pyrex material which is thinned down

to 100 µm by using standard chemical wet-etch process. The upper surface of this layer

has 3×3 metallic rectangular shaped pixels, which are connected or disconnected by means

of switching. As the initial step and for the sake of simplicity, these interconnections are

employed as perfect short and open circuits (i.e., ideal ON/OFF switch conditions) in this

work. Among the total of twelve interconnections between adjacent pixels only four needed

to be controlled to accomplish the targeted three different beam-steering directions [27,43].

This layer is solely used for mechanical support for reconfigurable pixel surface and the

air cavity formed underneath with a thickness of 400 µm serves as low dielectric constant
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and low loss medium. The design parameters are jointly optimized to simultaneously yield

broad impedance BW, high gain and desired beam steering capability. The optimized

design parameters of the patch element, CPW-fed loop, and the reconfigurable parasitic

layer which are obtained by full-wave EM simulations are provided in Table 4.1.

Fig. 4.1: 3-D Schematic of the designed MRA (for illustration purpose the layers are sus-
pended on top of each other), 1, 2, 3, 4 denote switch’s location.

Fig. 4.2: A-A′ cross section view of the radiation pattern reconfigurable antenna.
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Table 4.1: The critical design parameters of the mm-wave MRA (all dimensions are in mm).
Pil 0.8 Piw 0.8 Gl 0.4 Gw 0.4

Pw 1 Ll 0.7 CG 0.02 Cw 0.191

Pl 1 Lw 0.8 Lt 0.02 St 0.1

4.3 Simulation Results and Characterization

The top view of the MRA showing switch locations is depicted in Fig. 4.1. A multi-

objective genetic algorithm optimization [44] in conjunction with full-wave analysis is used

to design the reconfigurable parasitic surface. Results indicate that only four out of twelve

interconnections need to be controlled in order to achieve the targeted three beam steer-

ing directions pertaining to: θ ∈ {−300, 00, 300}; φ = 900over 59 − 66 GHz band. The

corresponding optimized switch configurations are given in Table 4.2.

The simulated reflection coefficients for all the three modes of operation are given in

Fig. 4.3. The intersection of three individual reflection coefficients indicate a common BW

of ∼ 6 GHz covering 59 − 65 GHz band. The total realized gain patterns in y-z plane

corresponding to each mode of operation at 60 GHz are shown in Fig. 4.4. The maximum

realized gain values in the steered beam directions are all above ∼ 7 dBi. The realized

gain values for all modes of operation over the entire 59 − 64 GHz band are in the range

∼ 6.5− 7.9 dB as shown in Fig. 4.5.

The fabrication of this MRA is already under progress and measurement of the fab-

ricated antenna will be performed as soon as the fabrication is completed. Based on the

measured performances, there might be a second run for the design aspect as some of the

design parameters may need fine tuning.

4.4 Micro-Fabrication

4.4.1 Quartz Substrates

The fabrication technique used for quartz remains same as mentioned in Section 3.4.1.

However, it is worth mentioning that, MRA design presented in this chapter has two quartz

layers, namely feed layer and driven antenna layer (Fig. 4.1). As mentioned earlier, the 260
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Fig. 4.3: Simulated reflection coefficient of the MRA.

Fig. 4.4: Simulated total realized gain plots of the MRA in φ = 900 (y − z) plane.
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Table 4.2: The switch status corresponding to three beam steering directions (0=OFF,
1=ON).

Switch Number 1 2 3 4

φ = 900, θ = 00 0 0 0 0

φ = 900, θ = −300 1 1 0 0

φ = 900, θ = 300 0 0 1 1

Fig. 4.5: Simulated realized gain values over 59-64 GHz band for three beam-steering di-
rections θ ∈ {−300, 00, 300}; φ = 900 (Y − Z) plane.

µm thick driven antenna layer sits on top of the feed layer which is 525 µm thick feed layer.

4.4.2 Pyrex Substrates

To create the reconfigurable parasitic later on a 500 µm thick pyrex substrate from

which 400 µm was etched away, the fabrication technique mentioned in Section 3.4.2 in this

dissertation was used.

4.5 Conclusion

A CPW-fed broadband MRA IEEE 802.11ad standard (WiGig) is designed, micro-

fabricated, and characterized. The simulated radiation patterns shows reasonably constant

gain of ∼ 7 dBi in all modes of operations over the entire bandwidth. This micro-fabrication

friendly and low cost MRA can be useful for small cell mm-wave applications.
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CHAPTER 5

DESIGN, FABRICATION AND CHARACTERIZATION OF BROADBAND

HIGH-GAIN 60 GHZ 2× 8 PLANAR ANTENNA ARRAY

5.1 Introduction

Availability of unlicensed frequency band and possibility of high speed communication

in short range have been attracting great interest for wireless communication systems op-

erating at around 60 GHz commonly known as mm-wave or WiGig band [5]. However, the

propagation losses associated with this band are severe, thus limiting the wireless commu-

nication coverage to short distances. Therefore, antennas with high gain are needed. The

losses associated with conductors, dielectrics, and surface waves make designing an antenna

with a high gain over a broad bandwidth quite challenging. Recently, substrates such as SU-

8 (εr = 3.1, tan δ = 0.021) which provides some advantages in terms of micro-fabrication

have been used. Although, SU-8 does not have good material properties (very high RF

losses) for RF/antenna applications, it can be processed to form air cavities within, thereby

taking advantage of good material properties of air [16]. A micro-fabricated SU-8-based

patch antenna structure exploiting air cavities was recently reported to achieve 57 − 66

GHz bandwidth and a maximum realized gain of 7 dBi [17].

Patch antennas inherently have small operational bandwidth (BW) [45], which can be

improved by using different techniques such as employing a thick substrate with a low di-

electric constant [46] or using stacked patch structure [47]. Also, a CPW-fed slot coupled

patch approach can be used to enhance the BW of patch antennas [48]. Low temperature

co-fired ceramic (LTCC) [49] has been utilized for implementing antennas operating at mm-

wave frequencies. In [33], a 4 × 4 planar array operating at 60 GHz band, comprised of

aperture coupled patch antennas built on multi-layer LTCC substrate was implemented.

This array achieved 9.5% impedance BW and 18.2 dBi maximum gain. Despite mechan-
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ical robustness and ease of packaging, LTCC creates unwanted surface waves due to high

dielectric constant.

This work attempts to develop a low cost and high performance (broad impedance

BW with high realized gain) antenna array working at 60 GHz. To this end, two-layer

antenna structure using the combination of RF compatible quartz substrate and low-cost

pyrex substrate is adopted. The design strategy is to combine the advantages of multiple

approaches of previous works [18,19]. The design makes use of CPW loop feeding mechanism

on quartz substrate to provide broad BW. It uses low cost pyrex material where air cavities

are easily formed by a single process step which does not only reduce cost but also take

advantage of very good RF properties of the air. It is worth noting that this approach is

much simpler and cheaper in terms of micro-fabrication as compared to forming air cavities

in SU-8 which requires highly optimized multi-step processes. Considering the link-budget

requirement at 60 GHz gigabit link [20], a maximum antenna gain of at least 15 dBi is

needed. Therefore, it becomes proper to use at least 16 element array designs. In this work,

a 2×8 patch antenna array is presented. The inter-element distance of the array is optimized

providing low mutual coupling and air bridges used in the feed network helps reduce RF

losses by enabling continuous electric field across the T-junctions used. This array achieves

a 19.3 dBi maximum realized gain and ∼ 17% impedance BW (57− 65 GHz). The realized

gain over the impedance bandwidth remains relatively flat from 17− 9.3 dBi.

5.2 Antenna Array Design

The antenna structure as shown in Fig. 5.1 consists of two layers. The bottom layer uses

quartz substrate which has good RF properties and is compatible with micro-fabrication

processes. The feed metallization consisting of 50 Ω conductor backed (CB) CPW and

the CPW-loop is formed on this layer. A pyrex substrate with a thickness of 500 µm was

chemically etched to a thickness of 100 µm, which is used as support layer for the radiating

patch elements. This thin pyrex layer is placed on top of the bottom layer. The volume of

the air layer with a thickness of 400 µm under pyrex provides overall low dielectric constant

along with low loss, which improves the impedance bandwidth and gain. The role of thin
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pyrex layer is to provide mechanical support for radiating patches. The CB CPW-fed loop,

patch size and element spacing are jointly optimized to get a broader BW and maximum

realized gain, where the numerical values are given in Table 5.1. Corporate feeding network

with power dividers has been utilized to excite each array element with equal power and

phase. Necessary characteristic impedance transformations using quarter wave transformer

have also been performed in the T-junction dividers.

Fig. 5.1: (a) Schematic of 3-D structure of the antenna array, (b) Enlarged A-A′, (c)
Enlarged B-B′.
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Table 5.1: Design parameters (dimensions are in mm).
Px 1.5 Lx 1.24 Le 0.7λ0
Py 1.3 Ly 1.04

5.3 Simulation Results and Characterization

Fig. 5.2 shows simulated reflection coefficient of the antenna, where a bandwidth of 10

GHz from 55−65 GHz covering the frequency range of the IEEE 802.11ad is obtained. The

simulated radiation pattern of the array in y-z plane at 59 GHz is shown in Fig. 5.3 The

realized maximum gain of the array is relatively constant over the entire bandwidth which

is in the range of 17− 19.3 dB, which is shown in Fig. 5.4.

Fig. 5.2: Simulated reflection coefficient of the antenna array.

The micro-fabrication of this array is already under progress and measurement of the

fabricated antenna will be performed as soon as the fabrication is completed. Fig. 5.5 shows

the photo-mask layers designed for micro-fabrication of the antenna array. Based on the

measured performances, there might be a need for a second run for the design aspect as

some of design parameters may need fine tuning.
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Fig. 5.3: Simulated radiation pattern of the linearly polarized antenna in x − y and y − z
plane at 59 GHz.

Fig. 5.4: Simulated realized gain values of the 2 × 8 Planar Antenna Array over 57 − 65
GHz band.
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Fig. 5.5: Photo-mask designs for the micro-fabrication of the antenna array.

5.4 Conclusion

A CPW-fed patch antenna array compatible with IEEE 802.11ad standard has been

designed. The simulation results indicate relatively constant gain values (17−19.3 dB) over

57 − 65 GHz band, which makes the designed array a strong candidate for multi-gigabit

applications. The micro-fabrication and characterization of the antenna is ongoing.
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CHAPTER 6

DESIGN OF 4× 1 LINEAR MRAA OPERATING AT 60 GHZ BAND

6.1 Introduction

An antenna array with beam steering capability is very advantageous to avoid noisy

environments, maneuver away from electronic jamming, improve system gain, security and

saving energy by directing signals only towards the intended directions. While phased array

[50–52] can perform these tasks, its increased size, complexity and high cost is prohibitive

for widespread commercial applications. Multifunctional reconfigurable antenna (MRA),

with its capability to dynamically change antenna properties (e.g., frequency, radiation

pattern and polarization) by adjusting its electrical properties has gained a lot of interest

for future wireless networks. A multifunctional reconfigurable antenna array (MRAA) has

been designed in [12] by creating a linear array of four identical MRA. This MRAA provides

some benefits compared to traditional phased array by alleviating the inherent scan loss in

standard antenna array and eliminating the need of expensive phase shifter circuitry and

RF-chains for beam steering in certain plane. While a traditional phased array is constrained

to steer its main beam only in the plane which contains the line on which the centers of the

array elements lie, the MRAA presented in this dissertation is capable of steering its beam

in both the steering plane of phased array and in the plane perpendicular to it. Moreover,

it potentially provides higher gain and is capable of polarization configurability. However,

this MRAA has a limited beam steering capability. The steering angle of the main beam is

limited to the steering angle of the individual antennas.

In this chapter, two different MRAA designs are presented: i) MRAA with identical

elements and ii) Generic MRAA. The first MRAA is designed solely by creating linear array

of four identical MRA units presented in Chapter 4. The second MRAA presented in this

dissertation, comprises of a 4×1 linear patch antenna array of four equally spaced identical
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elements and a reconfigurable parasitic surface, a grid of rectangular metallic pixels, placed

above. The pixels are distributed evenly on the parasitic surface. Adjacent pixels are

connected to each other by means of p-i-n diode switches which can be turned ON/OFF to

reconfigure the geometry of the pixels surface in order to change the current distribution

which enables the reconfigurablity of the radiation pattern. These MRAAs overcome the

constraint of steering angle by optimizing the pixels size and inter-pixel distance to get good

steering performance in the linear array.

6.2 Antenna Design and Simulation Results

The design of MRAAs presented is based on the MRA and broadband high gain antenna

array designs presented in Chapters 4 and 5, respectively. The main novelty of this MRAA is

its variable element factor, which is fixed for legacy antenna arrays, similar to phased array

antennas. The design efforts is carried out by full-wave EM simulation tool, ANSYS HFSS.

The interconnections between parasitic pixel elements are assumed initially as perfect short

and perfect open. The main goal of this design effort is to start laying the foundation of a

new class of antenna array, i.e., MRAA.

6.2.1 Design of MRAA with identical elements

A 4 × 1 linear array structure as shown in Fig. 6.1 is designed to reconfigure the

main beam direction of the radiation pattern into three different directions pertaining to:

θ ∈ {−300, 00, 300}; φ = 900 over 59 − 66 GHz band. The antenna structure consists

of three layers namely, the feed, driven antenna, and reconfigurable parasitic layers with

substrate thicknesses of 525 µm, 260 µm and 500 µm, respectively. The bottom and middle

layers which house the CPW-fed loop and driven patch antenna, respectively, are formed

on quartz substrates (εr = 3.9, tan δ = 0.0002 at 60 GHz). The CPW-fed loop couples the

EM energy to the patch antenna, which results in a broad BW. The top layer is made out

of low cost pyrex material (εr = 4.9, tan δ = 0.01 at 60 GHz) which is thinned down to 100

µm using standard clean room wet-chemical etch process. The upper surface of this layer

has 3× 3 metallic rectangular shaped pixels for each antenna element of 800 µm × 800 µm
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size. The adjacent pixel surfaces are connected by p-i-n diodes. Inter-pixel distance 400

µm of the rectangular pixel grid on the parasitic surface is optimized to get better steering

of the main beam. The four elements formed by placing identical patch antenna at inter

element spacing of 0.7λ where λ is measured in free-space. The inter element distance of

the individual element is optimized to reduce mutual coupling and get highest possible gain

in broadside direction. The antenna array is fed by corporate feed network to ensure the

elements are fed with equal phase. The optimized design parameters of the patch element,

CPW-fed loop, and the reconfigurable parasitic layer which are obtained by full-wave EM

simulations are provided in Table 6.1.

Fig. 6.1: Schematic of 3-D structure of 4 × 1 MRAA, (a) Enlarged A-A′, (b) Enlarged
B-B′(c) Enlarged C-C′.
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Table 6.1: Design parameters(dimensions are in mm).
Pil 0.8 Pl 1 Ll 0.7 Le 0.7λ0
Piw 0.8 Pw 1 Lw 0.8

6.2.2 Simulation Results and Characterization of MRAA with identical ele-

ments

The top view of the MRAA showing switch locations are depicted in Fig. 6.2. A multi-

objective genetic algorithm optimization [44] in conjunction with full-wave analysis is used

to design the reconfigurable parasitic surface. Results indicate that only sixteen out of

forty eight interconnections need to be controlled in order to achieve targeted three beam

steering directions pertaining to: θ ∈ {−300, 00, 300}; φ = 900 over 59− 66 GHz band. The

corresponding optimized switch configurations are given in Table 6.2.

Fig. 6.2: Top view MRAA with identical antennas.

The simulated reflection coefficients for all the three modes of operation θ ∈ {−300, 00, 300};

φ = 900 are given in Fig. 6.3. The intersection of three individual reflection coefficients indi-

cate a common BW of 10 GHz covering 57−67 GHz band. The total realized gain patterns

in φ = 900 (y − z) plane corresponding to each mode of operation at 60 GHz are shown in

Fig. 6.4. The maximum realized gain values in the steered beam directions are all above

∼ 13 dBi. The realized gain values for all three directions in φ = 900 of operation over the

entire 57− 64 GHz band are in the range ∼ 13− 13.7 dB as shown in Fig. 6.5.
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Fig. 6.3: The simulated reflection coefficient of the MRAA in φ = 900 (y − z) plane.

Fig. 6.4: Simulated total realized gain plots of the MRAA in φ = 900 (y − z) plane.
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Table 6.2: The switch status corresponding to three beam steering directions of the 60 GHz
MRAA obtained from GA’s result(0 and 1 correspond to OFF and ON states, respectively).

Switch Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

φ = 900, θ = 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

φ = 900, θ = −300 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

φ = 900, θ = 300 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Fig. 6.5: Simulated realized gain values over 59 − 64 GHz band for three beam-steering
directions θ ∈ {−300, 00, 300}; φ = 900 (y − z) plane.

6.2.3 Design of Generic MRAA

A generic 4 × 1 linear array structure is formed by placing identical patch antenna

at inter element spacing of 0.7λ. The inter element distance of the individual element is

optimized to reduce mutual coupling and get highest possible gain in broadside direction.

The antenna array is fed by corporate feed network to ensure the elements are fed with equal

phase. The feed network and coplanar waveguide (CPW) loop are placed on a quartz layer

of 525 µm thickness. The driven patches are placed on a separate quartz layer of 260 µm

thickness which is located on top of the feed structure. A parasitic layer formed with pyrex

of 500 µm thickness is used to support a 3 × 11 grid of rectangular metallic pixels of size

800 µm × 800 µm. The adjacent pixel surfaces are connected by p-i-n diodes. Inter pixel

distance 500 µm of the rectangular pixel grid on the parasitic surface is optimized to get

better steering of the main beam. This MRAA is generic in the sense of pixel layer geometry
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and interconnections. This generic MRAA essentially has the same active antenna and feed

network layer (Fig. 6.1). Generic MRAA differs from MRAA with identical elements only

in terms of parasitic layer geometry. The geometry of the parasitic layer of this MRAA is

shown in Fig. 6.6 and discussed in detail in the section subsection.

6.2.4 Simulation Results and Characterization of Generic MRAA

The top view of the generic MRAA showing switch locations are depicted in Fig. 6.6.

A multi-objective genetic algorithm optimization [44] in conjunction with full-wave analysis

is used to design the reconfigurable parasitic surface. Results indicate that only sixteen out

of fifty-two interconnections need to be controlled to control the tilt angle. This design is

capable of tilting the beam into θ ∈ {−500, 00, 500}; φ = 900 over 59− 66 GHz band. The

corresponding optimized switch configurations are given in Table 6.3.

Fig. 6.6: Top view of generic MRAA. 1,2...16 denote switches location.

The simulated reflection coefficients for all the three modes of operation θ ∈ {−500, 00, 500};

φ = 900 are given in Fig. 6.7. The intersection of three individual reflection coefficients indi-

cate a common BW of 10 GHz covering 57−67 GHz band. The total realized gain patterns

in φ = 900 (y − z) plane corresponding to each mode of operation at 60 GHz are shown in

Fig. 6.8. The maximum realized gain values in the steered beam directions are all above

∼ 13 dBi. The realized gain values for all three directions in φ = 900 of operation over the

entire 59− 66 GHz band are in the range ∼ 11.7− 12.7 dB as shown in Fig. 6.9.
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Fig. 6.7: The simulated reflection coefficient of the MRAA in φ = 900 (y − z) plane.

Fig. 6.8: The simulated total realized gain plots of the MRAA in φ = 900 (y − z) plane.
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Table 6.3: The switch status corresponding to three beam steering directions of the 60 GHz
MRAA obtained from GA’s result(0 and 1 correspond to OFF and ON states, respectively).

Switch Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

φ = 900, θ = 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

φ = 900, θ = −500 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

φ = 900, θ = 500 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Fig. 6.9: The simulated realized gain values over 59− 66 GHz band for three beam-steering
directions θ ∈ {−500, 00, 500}; φ = 900 (y − z) plane.

6.3 Working Mechanism

In a typical antenna array, identical antenna elements are used which can be individ-

ually controlled in phase and magnitude. Far field radiation pattern of a typical linear

antenna array, F (θ, φ), can be found by using the principle of pattern multiplication, which

is given in [50],

F (θ, φ) = Ea(θ, φ)× Fa(θ, φ). (6.1)

Here, Ea(θ, φ) is the normalized pattern of the individual antenna, also known as element

factor and Fa(θ, φ) is normalized array factor. For a uniform amplitude excitation, it can
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be expressed as

Fa(θ, φ) =
sin[Nπdλ0

× (sin θ − sin θ0)]

N sin[πdλ0 × (sin θ − sin θ0)]
. (6.2)

Here, N is the total number of array elements and θ = θ0 is the beam steering direction in

y− z plane. Beam steering in a phased array is achieved by feeding antenna array elements

with complex excitation with uniform amplitude of a0 and progressive phase shift from

element to element, k0dsinθ0. The complex excitations are given by

an = a0e
(−jk0nd sin θ0) (6.3)

where n = 0, 1, 2, 3, .... and k0 = 2π
λ0

is the free space wave number at center frequency. It is

apparent from the above equations that radiation pattern of a traditional phased array is

mainly controlled by the array factor. Since element factor is fixed by initial design, it does

not play any role in beam steering. In the MRAA proposed in this dissertation, individual

elements will not have identical radiation pattern as the pixel surface is not identical for

every element. For a linear antenna array with non-identical element patterns, the antenna

array pattern can be written as

Fa(θ, φ) = E1(θ, φ) + E2(θ, φ)ejψ + E3(θ, φ)ej2ψ + .....+ EN−1(θ, φ)e(j(N−1)ψ) (6.4)

where ψ = kdcosθ + β and E1, E2....EN−1 are individual element factors. The parasitic

surface geometry of the MRAA is reconfigured by connecting or disconnecting the adjacent

pixels of this surface. Change of parasitic surface geometry results in different reactive

loading for individual elements. According to the theory of reactively controlled directive

array by R.F. Harrington [53], the main beam direction of the driven antenna can be

directed into a desired direction by reactive loading of the parasitic elements. Hence, the

reactive loading of the driven individual elements produces non-identical radiation patterns

which add up according to above Equation (6.4) to form a desired radiation pattern of the

antenna array. In summary, the individual radiation patterns of the non-identical elements

are changed in such a way that they form a desired array pattern when they add up.
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6.4 Comparison of MRAA with Identical Elements and Generic MRAA

This section presents the comparison of beam steering angle of MRAA with identical

element and generic MRAA for two different modes. Mode-1 refers to the MRAA mode

with tilt angle in positive theta direction (+θ) and mode-2 refers to the MRAA mode with

tilt angle in negative theta direction (−θ). The radiation patterns for MRAA with identical

elements and generic MRAA for mode-1 and mode-2 are given in Fig. 6.10 and Fig. 6.11

respectively. The results shows that, the generic MRAA has maximum gain in y − z plane

for θ = ±500 whereas MRAA with identical element has maximum gain in y − z plane for

θ = ±300. It becomes evident from the comparison that the generic MRAA has more tilt

compared to MRAA with identical elements which indicates that non-identical elements

patterns are adding up according to Equation (6.4), resulting in an array pattern that

overcomes the beam steering limitation of the MRAA with identical elements.

Fig. 6.10: The simulated maximum beam tilt direction of generic MRAA and MRAA with
identical elements in φ = 900 (y − z) plane for mode-1 .
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Fig. 6.11: The simulated maximum beam tilt direction of generic MRAA and MRAA with
identical elements in φ = 900 (y − z) plane for mode-2.

6.5 Conclusion

In this chapter initial efforts towards developing a new class of antenna array called

MRAA that is capable of working at mm-wave have been presented. The main goal was

to facilitate beam steering at mm-wave communication for future wireless networks with

a reduction in complexity from legacy phase antenna array. Simulation results show that

the generic MRAA structure can provide greater beam steering compared to MRAA with

identical elements. This novel generic MRAA is promising to have great benefits which

needs to be exploited. The performance of the generic MRAA can be improved by further

optimization of the pixel layer geometry and pixel number, which is left as a future work.
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CHAPTER 7

INVESTIGATION AND SIMULATIONS OF VARIOUS SWITCH TECHNOLOGIES

FOR MRA INTEGRATION

7.1 Introduction

The designs and ongoing micro-fabrication efforts consider initially perfect short and

perfect open for interconnections between adjacent pixels. However, for a real life dy-

namic prototype, a proper switching technology should be used. There are various com-

peting switch technologies that can be used for the MRAs designed. Among others, micro-

fabrication compatibility, cost, RF performance and monolithic integration are the main

factors to consider in adapting the most proper technology. To this end, we will investigate

p-i-n diodes, RF transistors and smart material based switches such as vanadium oxide

(V O2). Although we have plenty of experiences with p-i-n diodes and RF transistors at

lower frequencies (≤ 15 GHz), at frequencies above 30 GHz the switching characteristics

of p-i-n diodes and RF transistors are not well known. Degraded RF performances and

integration challenges due to exceedingly small dimensions are the main issues to tackle at

high frequencies. Recently, we started exploring V O2 smart material of which conductivity

can be varied (from good conductor to weak conductor) in response to an applied thermal

energy. This material is also advantageous in terms of micro-fabrication compatibility which

enables its monolithic integration with parasitic pixel segments. We intend to investigate

all these switching technologies through simulation and measurements, with the goal of

determining pros and cons of each switching technologies; which will ultimately enable us

to choose the most optimum one.

7.2 RF Transistors

Field-effect transistor (FET) is a semiconductor device which depends on an electric
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field to control the conductivity of a channel in the semiconductor material. The current

between source and drain connections is controlled by a voltage applied between the gate

and source. FET switches are stable and reliable due to good control of the drain-to-source

channel resistance and high ON/OFF current ratios. The application of a reverse-biasing

voltage between gate and source causes the depletion region at that junction to expand,

thereby, “pinching-off” the channel between source and drain through which the controlled

current travels. In the OFF state, the conduction channel is depleted (pinched-off), which

causes the FET to exhibit very high resistance, mechanism which provides good isolation

at low frequencies. The isolation of FET switches degrades at higher frequencies due to the

effect of drain-to source capacitance (CDS). For example a GaAs FET has the reactance

XC of the CDS at 10 GHz about 320 Ω which can give an equivalent of about 10 dB drain-

to-source isolation, which is not sufficient to satisfy the isolation performance. There is

generally a trade off between insertion loss and isolation in the FET geometry and profile.

The allowable geometry and profile are determined by the performance requirements of the

switch. However, when the frequency becomes higher, typically above 10 GHz, the FET off

state capacitance increases resulting in a lower impedance, and this degrades the isolation

of the switch [54]. This means that the switch cannot have both low loss and high isolation

in the high frequency region. Resonance is often used to obtain high isolation between the

FET drain and source [55, 56]. Blackwell et al. also had an approach in which they used

specific device fabrication techniques to reduce the off-state capacitance [57].

7.3 P-I-N Diodes

The geometry of the parasitic surface can also be configured by p-i-n diode switches.

In this case, the components in the gaps between adjacent pixels on the upper face of

parasitic layer consist of: the interconnecting p-i-n diodes, DC-block capacitors, and RF

choke inductors in parallel to the p-i-n diodes. Four different kinds of lumped components

are used on the parasitic layer as shown in Fig. 7.1. 1) P-I-N diode switches are used in

between pixels. Metallic pixels are connected/disconnected by switching ON/OFF the p-i-n

diode switches to dynamically change the geometry of the parasitic surface, which in turn
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change the current distribution, and thus antenna characteristics. 2) Inductors are placed

along the DC bias lines as RF chokes. The RF choke is a circuit element designed to present

high impedance to RF energy while offering minimal resistance to direct current. Usually

the choke reactance shall be greater than 500 Ω at working frequency. The choke reactance

is given by:

XL = 2πFL (7.1)

The self resonant frequency (SRF) of the RF choke is chosen such that RF chokes would

appear as high impedance in 802.11ad band to minimize the current on the bias lines,

thereby minimizing the mutual coupling effects of the bias lines on the antenna performance.

3) Inductors are also placed in between all pixels. In this manner, all the pixels can be DC

grounded together to provide ground for DC biasing purpose. The SRF of these inductors

was chosen to be the same value as RF chokes to keep the high RF impedance between

pixels. 4) DC block capacitors are used to properly bias the p-i-n diode switches [58]. In

general DC blocking capacitor shall behave like a short at working frequency. Calculating

the reluctance in ohms of DC blocking capacitor for minimum value at working frequency

is done as:

XC =
1

2πFC
(7.2)

The DC biasing scheme of the p-i-n switch is shown in Fig. 7.2. It can be seen that

lumped components mentioned above are required to properly bias the p-i-n diode. Typ-

ically, 1 V DC power supply on the p-i-n diode would be sufficient to turn on the switch,

while 0 V will keep the switch in OFF status. The equivalent circuit models of these lumped

components are obtained by using their scattering parameters provided by the manufac-

turers. These equivalent circuit models are used in the design of the MRAs by full-wave

HFSS analyses. The theory behind the working mechanism of a parasitic pixel layer based

pattern reconfigurable antenna is explained by Yuan et al [27].
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Fig. 7.1: P-I-N diode switch and integrated lumped components on the parasitic layer of
a MRA prototype.

Fig. 7.2: DC biasing scheme of a p-i-n diode switch.
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The DC block capacitor is modeled as a series LC resonant circuit in HFSS using

SRF =
1

2π
√
LC

(7.3)

where L represents the lead inductance of the SMD, C is the value of the capacitance chosen,

and SRF is the self-resonant frequency obtained from datasheet. From Equation (7.3) L is

calculated and it is verified that this series resonance provides sufficiently low impedance

to RF path between pixels in the frequency band of interest. The RF choke inductor,

delimits the bias line metallization to avoid deleterious coupling effects on targeted antenna

performances. This inductor is modeled as a parallel LC resonant circuit using Equation

(7.3) with its C calculated from given in the datasheet. Here, C accounts for the parasitic

capacitance between the terminals of inductor.

7.4 Smart Material

Smart materials can be used in electrical switches, in addition to their use in non-

volatile memory [59, 60] and optical storage [61, 62]. One advantage of using phase change

materials is that they do not require energy to maintain either the ON (crystalline state)

or OFF (amorphous state) state thus reducing power consumption in any application. This

work emphasizes the development of smart materials for switches with low resistance in the

ON state. One of the applications for switches with low ON state resistance is in radio

frequency (RF) circuits. Vanadium dioxide (V O2) is currently considered as one of the

most promising materials for oxide electronics [63]. V O2 phase change materials have been

identified in this work as materials with which it is possible to achieve a low ON state

resistance and large dynamic range and that could be suitable for RF circuit applications.

V O2 has a constant and stable metal to insulator transitions temperature at 680C, and a

resistivity superior ratio (three to four order of magnitude) between metallic and insulator

phases compared with the other forms of vanadium oxides [62,64]. The resistance of V O2 has

been measured in different kinds of experiments. First, the resistance of V O2 was measured

at hydrostatic pressures up to 2 GPa and room temperature using electric-field-induced
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resistance switching of V O2 planar-type junctions [65]. Second, the V O2 was fabricated in

number of parallel strip patterns in the varistor, and the resistance of the V O2 flake has

been measured [66]. Third, the resistance of the V O2 was measured by V O2 flake-based

RF shunt resonator, and the V O2 flake was deposited as shunt resistance in this device [67].

An important parameter for such two terminal switches is the switching speed between

the insulating and metallic state, which could provide information on both application

potential and the transition mechanism. It was reported that switching speed of V O2 devices

is limited to several nanoseconds either due to the test structure or measurement setup

limitations . The demonstrated fastest switching speed (from electrical measurements) is ∼

5 ns for planar devices, and ∼ 170 ns for out-of-plane devices. Although out-of-plane metal-

V O2-metal structures are desirable for memory devices, direct growth on semiconducting

substrates such as silicon limits the switching speed measurements due to the additional

series resistance [68]. V O2 flake was designed to connect adjacent pixels. The V O2 flake

acts like an insulator making the device OFF (resistivity 5× 10−2Ω−m). At temperatures

above 680C, the V O2 flake becomes a conductor (resistivity 2.5 × 10−6Ω − m), allowing

current signal to go through. Smart material switches can be used on the antenna parasitic

layer as shown in Fig. 7.3.

Fig. 7.3: Smart materiel switch.
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7.5 Comparison of Simulation Results

To compare the switching characteristics of smart material V O2 with a traditional p-i-n

diode (MA4AGBL912), a simple transmission line with an interconnection is designed in

HFSS. Fig. 7.4 shows the transmission line used to compare the switching performances.

The result for the transmission line at ON state have presented in Fig. 7.5. Comparing the

simulated results, it is clear that smart material has less insertion loss compared to p-i-n

diode across broad frequency band at ON state. The isolation for p-i-n diode and smart

material switch is given in Fig. 7.6 shows that smart material has very good isolation (< 23

dB) compared to p-i-n diode (> 23 dB) in OFF state.

Fig. 7.4: The simulated p-i-n switch.
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Fig. 7.5: Simulated transmission line p-i-n and V O2 switch at ON state.

Fig. 7.6: Simulated transmission line p-i-n and V O2 switch at OFF state.
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7.6 Conclusion

In this chapter, performance comparison of p-i-n diode and smart material based

switches have been presented. Insertion loss and isolation comparison shows that smart

material, e.g., V O2 has less insertion loss and better isolation compared to a typical p-i-n

diode. Hence, smart material with its ease of integration and better performance has a great

potential to be a candidate for MRA and MRAA switching. Specially, due to its ability to

perform across a broad BW, even at mm-wave, V O2 can be an excellent choice for dynamic

configuration of pixel layer. Smart materials are still under investigation and have been

receiving a lot of attention recently. So, the state-of-the-art of this switching technology

still has a lot of research opportunities. The results presented here show a lot of promise.

However, this simulation results have to be verified by fabrication and measurements which

is left as a future work.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation presents multiple antennas operating at 60 GHz band. The design

and micro-fabrication of a legacy patch antenna operating at 57− 66 GHz band have been

presented in Chapter 3. The simulated impedance characteristics and radiation pattern

show ∼ 15% bandwidth with a realized gain value of ∼ 8.5 dB in the broadside direction

over the entire band. An MRA with beam steering capability based on the principle of

parasitic tuning is presented in Chapter 4. The simulation results for different operational

modes indicates a reasonable realized gain around 7 dBi covering 59-64 GHz band. This

MRA prototype capable of dynamic beam steering was later used as a building block to

design MRAA. A 2×8 patch antenna planar array operating in the IEEE 802.11ad frequency

band (57-66 GHz) is presented in Chapter 5. Simulation results indicate relatively constant

gain values (17−19.3 dB) over 57−65 GHz band, which makes the designed array a strong

candidate for multi-gigabit applications. In Chapter 6, two different 4 × 1 MRAA designs

are presented: MRAA with identical elements and generic MRAA. The main goal was to

facilitate beam steering at mm-wave communication for future wireless networks with a

reduction in complexity from legacy phase antenna array. Simulation results show that

the generic MRAA structure can provide greater beam steering compared to MRAA with

identical elements. This novel generic MRAA is promising to have great benefits which can

be exploited further to make this design a strong candidate to be an integral part of the air

interface in 5G and beyond wireless network. Finally, at Chapter 7, switching characteristics

of p-i-n diode and smart material based switches have been investigated. Comparison of

insertion loss and isolation demonstrates that smart material, e.g., V O2 based switching can

be superior to legacy p-i-n diodes, thus showing a great promise to be a strong candidate

for switching technologies of MRA and MRAA.

The measurements of the antennas which are presented in this dissertation is already
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underway. Generic MRAA prototype suffers from some gain degradation which can be

thought as the cost of greater beam tilt and smaller number of pixel interconnection. How-

ever, there is room to improve the performance of generic MRAA by optimizing the pixel

layer geometry. This joint optimization problem is left as a future work. In addition,

smart material based switching technique for MRA and MRAA can be further investigated

through micro-fabrication, measurement and characterization. In addition, possible use of

other materials for MRA and MRAA smart material based switching at high frequencies

can be a promising future research direction.
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