
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2017

Real-time Vision-Based Lane Detection with 1D Haar Wavelet Real-time Vision-Based Lane Detection with 1D Haar Wavelet

Transform on Raspberry Pi Transform on Raspberry Pi

Vikas Reddy Sudini
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Sudini, Vikas Reddy, "Real-time Vision-Based Lane Detection with 1D Haar Wavelet Transform on
Raspberry Pi" (2017). All Graduate Theses and Dissertations. 5630.
https://digitalcommons.usu.edu/etd/5630

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/84290179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F5630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.usu.edu%2Fetd%2F5630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.usu.edu%2Fetd%2F5630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/5630?utm_source=digitalcommons.usu.edu%2Fetd%2F5630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

REAL-TIME VISION-BASED LANE DETECTION WITH 1D HAAR WAVELET

TRANSFORM ON RASPBERRY PI

by

Vikas Reddy Sudini

A thesis submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

______________________________ ________________________________

Vladimir Kulyukin, Ph.D. Dan Watson, Ph.D.

Major Professor Committee Member

______________________________ ________________________________

Nicholas Flann, Ph.D. Mark R. McLellan, Ph.D.

Committee Member Vice President for Research and

 Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY

Logan, Utah

2017

ii

Copyright © Vikas Reddy Sudini 2017

All Rights Reserved

iii

ABSTRACT

Real-time Vision-Based Lane Detection with 1D Haar Wavelet Transform

on Raspberry Pi

by

Vikas Reddy Sudini, Master of Science

Utah State University, 2017

Major Professor: Vladimir Kulyukin, Ph.D.

Department: Computer Science

An algorithm is presented for real-time vision-based lane detection on a Raspberry

Pi computer coupled to a Raspberry Pi Camera board. The computer-camera unit is placed

inside a car, next to the windshield, and is powered by a regular 12V-to-5V car charger.

The algorithm is based on the detection of 1D Haar Wavelet spikes in 1D Ordered Haar

Wavelet Transforms of image rows. The algorithm is called GreedyHaarSpiker and is

implemented in Python 2.7.9 with OpenCV 3.0. The performance of the algorithm was

tested in situ on a Raspberry Pi 3 Model B ARMv8 1GB RAM computer on four image

samples, three of which consisted of one thousand, and one consisted of 775 360 x 240

PNG images. The images were captured by a Raspberry Pi Camera Board v2 placed inside

a Jeep Wrangler driven on two different days at a speed of 60 miles per hour on a Northern

Utah highway. On the first sample, the accuracies of detecting both lanes and at least one

lane were 61.90% and 91.20%, respectively; on the second sample, the accuracies of

detecting both lanes and at least one lane were 34.10% and 77.4%, respectively; on the

third sample, the accuracies of detecting both lanes and at least one lane were 16.90% and

64.10% respectively; on the fourth sample, the accuracies of detecting both lanes and at

iv

least one lane were 15.74% and 57.03%, respectively. The current implementation

processes 20 frames per second.

 (42 pages)

v

PUBLIC ABSTRACT

Real-time Vision-Based Lane Detection with 1D Haar Wavelet Transform

on Raspberry Pi

Vikas Reddy Sudini

Rapid progress is being made towards the realization of autonomous cars. Since the

technology is in its early stages, human intervention is still necessary in order to ensure

hazard-free operation of autonomous driving systems. Substantial research efforts are

underway to enhance driver and passenger safety in autonomous cars. Toward that end

GreedyHaarSpiker, a real-time vision-based lane detection algorithm is proposed for road

lane detection in different weather conditions. The algorithm has been implemented in

Python 2.7 with OpenCV 3.0 and tested on a Raspberry Pi 3 Model B ARMv8 1GB RAM

coupled to a Raspberry Pi camera board v2. To test the algorithm’s performance, the

Raspberry Pi and the camera board were mounted inside a Jeep Wrangler. The algorithm

performed better in sunny weather with no snow on the road. The algorithm’s performance

deteriorated at night time or when the road surface was covered with snow.

vi

ACKNOWLEDGMENTS

 I would like to use this opportunity to express my deepest gratitude to my advisor,

Dr. Vladimir Kulyukin, who has supported me throughout my research, encouraged me to

think of possible solutions, supported and guided me during hard times. His experience and

knowledge are secret ingredients to the success of the project.

 I acknowledge my gratitude to my committee members, Dr. Dan Watson and

Dr. Nicholas Flann for continuous support, reading my reports, commenting on my views

and helping me understand difficult concepts.

 Finally, I would like to thank my beloved family and friends for cheering me up

and encouraging me to cross the hurdles and succeed in my academic pursuit.

Vikas Reddy Sudini

vii

CONTENTS

Page

ABSTRACT ... iii

PUBLIC ABSTRACT ...v

ACKNOWLEDGMENTS ... vi

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1. INTRODUCTION ...1

2. RELATED WORK ..3

3. 1D HAAR WAVELET SPIKES ..6

4. GREEDYHAARSPIKER: A LANE DETECTION ALGORITHM11

4.1 Overview ..11

4.2 Hardware ..11

4.3 Pre-Processing Stage ..14

4.4 Detecting road lanes: GreedyHaarSpiker...17

4.5 Line Fitting...18

5. EXPERIMENTS ..20

5.1 Overview ..20

5.2 Experimental Procedure ...20

6. RESULTS ..22

7. CONCLUSIONS AND FUTURE WORK ..26

REFERENCES ..28

APPENDICES ...31

Appendix – Pseudocodes ..32

viii

LIST OF TABLES

Table Page

 5.1 Lane Detection Accuracy ..21

ix

LIST OF FIGURES

Figure Page

3.1 Up-Down Spikes ...7

3.2 Down-Up Spikes ...9

4.1 Raspberry Pi Touchscreen Display ...12

4.2 Raspberry Pi Camera Board, and Raspberry Pi Computer Board12

4.3 GreedyHaarSpiker Output on RPi Touchscreen Display13

4.4 Flow Chart of GreedyHaarSpiker Algorithm ..13

4.5 Sample Input Image ...15

4.6 Cropping Region of Interest from Sample Image ...15

4.7 Grayscaling ..15

4.8 Gaussian Smoothing ..16

4.9 Thresholding ..17

4.10 Scanlines and Spikes Used to Detect Lanes ..17

4.11 Two Lanes Drew in the Original Image Inside the Rectangular ROI19

6.1 Algorithm’s Success and Failure in Various Cases...25

CHAPTER 1

INTRODUCTION

Autonomous cars, i.e., cars capable of navigating various environments without

human input, have featured prominently in many research and commercial projects for

several decades. The Carnegie Mellon University Navigation Laboratory (Navlab) has

built a series of robot cars, sport utility vehicles (SUVs), and buses since 1984. The latest

robotic car, Navlab 11, is a robot Jeep Wrangler equipped with a range of sensors for

obstacle avoidance, path planning and following, and pedestrian detection [1]. The

European Technology Platform on Smart Systems Integration project has reported

significant contributions to collision avoidance, fleet management, autonomous cruise

control, and cooperative driving [2]. Over the past several years the Google and Tesla

corporations have been aggressively commercializing their self-driving platforms [3, 4].

 Proponents of driverless cars argue that the major benefits of driverless cars

include, but are not limited to, less traffic congestion, enhanced mobility of the elderly and

the disabled, significant increases in roadway capacity, and reduction in traffic accidents

[5, 6]. Opponents of driverless cars point out that the widespread adoption of autonomous

vehicles will result not only in major job losses in driving jobs but also will likely lead to

loss of privacy and increased risks of hacking attacks and terrorism [7]. Some researchers

argue that lack of stress during driving and more productive time on the road may create

additional incentives to live further from cities, which will increase the carbon footprint of

motor transportation systems [8].

While we believe that completely autonomous cars may become a reality in the

long term, provided that not only technical failures [9, 10] but also social and legal

2

implications [11] of autonomous car adoption are properly addressed, human drivers are,

and will remain indispensable in the short and medium terms. Consequently, it is important

to seek solutions that enhance their safety. Robust vision-based lane detection is one such

enhancement. Specifically, vision-based lane detection modules will gradually become an

integral part of autopilots in semi-trucks to improve the drivers’ safety on long,

monotonous highway stretches with low or no traffic. Such autopilots will be similar to the

ones already in existence in aircraft and ships and will keep the human in the loop in that

the decision to engage and disengage the autopilot will be under the sole control of the

driver.

In this thesis, an algorithm, called GreedyHaarSpiker, is presented for in situ real-

time vision-based lane detection on a Raspberry Pi computer coupled to a Raspberry Pi

Camera board, the computer-camera unit is placed inside a car, next to the windshield, and

is powered by a regular 12V-to-5V car charger. The algorithm is based on the detection of

1D Haar Wavelet spikes in 1D Ordered Haar Wavelet Transforms of image rows and

polynomial line fitting. The algorithm is implemented in Python 2.7.9 with OpenCV 3.0

[12].

The remainder of this thesis is organized as follows. In Chapter 2, related work is

reviewed. In Chapter 3, the concept of a 1D Haar Wavelet Spike (1D HWS) is formally

developed. Chapter 4 describes our in-situ algorithm and gives its pseudocode. In Chapter

5, the highway experiments are described and analyzed. In Chapter 6, the findings are

summarized and conclusions are presented.

3

CHAPTER 2

RELATED WORK

Vision-based lane detection has been the focus of many research and development

projects in the past two decades. Wang et al. [13] establishes a novel B-Snake based lane

model, which describes the perspective effect of parallel lines for generic lane boundaries.

This approach enabled the detection and tracking model for a range of lane structures. Also,

instead of detecting left side and right side lane markings they detect a single middle lane

of the road. An algorithm, called CHEVP, is developed for providing initial positions for

the B-Snake model. A minimum error method is proposed to determine the control points

of the B-Snake model by the image forces on both sides of a lane. Experimental results

presented in the paper suggest that the algorithm is robust against noise, shadows, and

illumination variations in captured images of marked and unmarked roads.

Kim [14] presents a lane-detection-and-tracking algorithm to detect lane

curvatures, lane changes, and splitting lanes. The algorithm is a RANdom SAmple

Consensus (RANSAC) combined with a particle-filtering-based tracking algorithm by a

probabilistic grouping framework. The detected lane markings are grouped into separate

left and right lane boundary hypotheses to handle merging and splitting lanes. The

hypotheses are evaluated and grouped with a probabilistic, Markov-style process

framework.

Hsiao et al. [15] propose an embedded real-time lane departure warning system

(LDWS) for daytime and nighttime driving. The LDWS features a lane detection algorithm

based on peak finding for feature extraction to detect lane boundaries. 1D Gaussian

4

smoothing and global edge detection are applied to reduce noise in images, the reported

lane detection rates were 99.57% during the day and 98.88% at night on a sample of

highway images.

Erickson and Landberg [16] proposed a lane detection algorithm that uses Hough

lines combined with a parabolic second degree fitting for curvature detection. They also

proposed connected-component labeling algorithm for object detection. As the connected-

component labeling algorithm iterates over the entire image and manipulates large areas in

each image, the execution is relatively slow. On the Raspberry Pi 2 model the algorithm’s

performance was found to be inadequate for high-speed driving. However, when the object

detection is removed from the algorithm the Raspberry Pi 2 model meets the real-time

performance requirements.

Mandlik and Deshmukh [17] have developed a lane departure detection system that

uses the OpenCV library [18] to detect vehicle lane departure on the Raspberry Pi

hardware. The algorithm uses the OpenCV implementations of the Canny Edge Detector

[19] and the Hough Transform [20] to detect straight and curved lanes. The experiments

are conducted using a toy vehicle with a USB camera mounted on top of it that sends

images of white paper lanes on a black floor surface to a Raspberry Pi powered by a laptop.

The algorithm presented in this thesis shares the position advocated in [16] and [17]

that, to be economically viable and broadly shareable, vision-based lane detection

algorithms must be implemented and tested in situ on off-the-shelf hardware platforms

such as the Raspberry Pi. The creation of replicable hardware and open source software

5

solutions will enable citizen science drivers to build, test, and broadly share driver’s safety

enhancements.

6

CHAPTER 3

1D HAAR WAVELET SPIKES

The GreedyHaarSpiker algorithm described in Chapter 4 depends on the concept

of the 1D Haar Wavelet Spike, which we develop in this Chapter. In the 1D Haar Wavelet

Transform (1D HWT), a signal is a vector in 𝑅𝑛, 𝑛 = 2𝑘 , 𝑘 ∈ 𝑁. Following the

formalization in [21], let 𝑊𝑎
(𝑘)

 be a 2𝑘×2𝑘 matrix for computing 𝑘 scales of the 1D HWT.

This matrix can be effectively computed from the 𝑛 canonical base vectors of 𝑅𝑛. If 𝑥 =

(𝑥0, … , 𝑥2𝑘−1) is a signal in 𝑅𝑛, then 𝑦 is the 𝑘-scale 1D HWT of 𝑥 defined in (1).

𝑊𝑎
(𝑘)

. 𝑥𝑇 = 𝑦 (1)

Then,

𝑦𝑇 = (𝑎0
(0)

, 𝑐0
(0)

, 𝑐0
(1)

, 𝑐1
(1)

, … , 𝑐0
(𝑘−1)

, … , 𝑐
2𝑘−1−1

(𝑘−1)
) (2)

In (2), 𝑎0
(0)

= 𝜇(𝑦) and 𝑐𝑖
(𝑗)

 is the coefficient of the 𝑖𝑡ℎ basic Haar Wavelet at

scale 𝑗 [22]. For example, (3) defines the matrix for computing the 1D HWT in 𝑅2.

𝑊𝑎
(2)

= [

0.25 0.25 0.25 0.25
0.25 0.25 −0.25 −0.25
0.50 −0.50 0.00 0.00
0.00 0.00 0.50 −0.50

] (3)

If the input signal 𝑥 = (0, 1, 1, 0), then (4) gives the 1D HWT of 𝑥 computed as

𝑊𝑎
(2)

𝑥𝑇 = 𝑦. The actual values of the transform are 𝑦𝑇 = (0.5, 0, −0.5, 0.5).

[

0.25 0.25 0.25 0.25
0.25 0.25 −0.25 −0.25
0.50 −0.50 0.00 0.00
0.00 0.00 0.50 −0.50

] [

0
1
1
0

] = [

0.50
0.00

−0.50
0.50

] (4)

7

HWTs are used to detect significant changes in signal values [23]. In this thesis, we

claim that some changes can be characterized as signal spikes. Specifically, four types of

spikes are proposed: up-down triangle, up-down trapezoid, down-up triangle, and down-

up trapezoid. The difference between up-down and down-up spikes is the relative positions

of the climb and decline segments. In trapezoid spikes, flat segments are always in between

the climb and decline segments, regardless of their relative positions.

Fig. 3.1 Up-Down Spikes

8

Fig. 3.1 shows up-down triangle and trapezoid spikes; Fig. 3.2 shows down-up

triangle and down-up trapezoid spikes. In both figures, the lower graphs represent the

possible values of the corresponding Haar wavelets at a chosen scale 𝑘. Up-down spikes

describe signals that first increase and then, after an optional flat segment, decrease. Down-

up spikes describe signals that first decrease and then, after an optional flat segment,

increase. Formally, a spike is a nine-element tuple whose elements are real numbers given

in (5).

(𝑢𝑠, 𝑢𝑒 , 𝛼, 𝑓𝑠, 𝑓𝑒 , 𝛾, 𝑑𝑠, 𝑑𝑒 , 𝛽) (5)

Finally, for a trapezoid up-down or down-up spike, the flat segment is characterized

by 𝑓𝑠, 𝑓𝑒 , and 𝛾, where 𝑓𝑠 and 𝑓𝑒 are the abscissae of the beginning and end of the spike’s

flat segment, respectively, over which the wavelet coefficients either remain at the same

ordinate or have minor ordinate fluctuations. If 𝑐𝑓𝑠
(𝑘)

 and 𝑐𝑑𝑒
(𝑘)

 are the 𝑘-th scale wavelet

coefficients corresponding to 𝑓𝑠 and 𝑓𝑒, respectively, the spike’s flatness angles is 𝛾 =

tan−1(𝑓𝑒 − 𝑓𝑠, 𝑐𝑓𝑒
(𝑘)

− 𝑐𝑓𝑠
(𝑘)

). The absolute values of 𝛾 are close to 0.

 The first two elements, 𝑢𝑠 and 𝑢𝑒, are the abscissae of the beginning and end of

the spike’s climb segment, respectively, when the wavelet coefficients of the 1D HWT

increase. If 𝑐𝑢𝑠
(𝑘)

 and 𝑐𝑢𝑒
(𝑘)

 are the 𝑘-th scale wavelet coefficient ordinates at 𝑢𝑠 and 𝑢𝑒,

respectively, then the climb segment of the spike is measured by the angle 𝛼 =

tan−1(𝑢𝑒 − 𝑢𝑠 + 1, 𝑐𝑢𝑒
(𝑘)

− 𝑐𝑢𝑠
(𝑘)

).

9

Fig. 3.2 Down-Up Spikes

10

 Similarly, the decline segment of the spike is characterized by 𝑑𝑠, 𝑑𝑒, and 𝛽, where

𝑑𝑠 and 𝑑𝑒 are the abscissae of the beginning and end of the spike’s decline segment,

respectively, when the wavelet coefficient decrease. If 𝑐𝑑𝑠
(𝑘)

 and 𝑐𝑑𝑒
(𝑘)

 are the 𝑘-th scale

wavelet coefficient ordinates at 𝑑𝑠 and 𝑑𝑒, respectively, then the decline segment of the

spike is measured by the angle 𝛽 = tan−1(𝑑𝑒 − 𝑑𝑠 + 1, 𝑐𝑑𝑒
(𝑘)

− 𝑐𝑑𝑠
(𝑘)

).

11

CHAPTER 4

GREEDYHAARSPIKER: A LANE DETECTION ALGORITHM

4.1 Overview

 In this chapter, we describe our real-time vision-based lane detection algorithm.

The algorithm comprises of three stages: pre-processing, spike detection and line fitting.

During the pre-processing stage, the region of interest (ROI) of the image, where the lanes

are likely to appear is cropped, rendered on grayscale, the edges in the ROI are smoothened

using a Gaussian Blur algorithm, and finally converted to a binary image using the OTSU

threshold operator. We run the GreedyHaarSpiker on each row of the ROI to extract spikes

and further calculate the exact position of each spike in the Spike Detection stage. This

algorithm is applied twice: once to detect the left lane and once to detect the right lane. The

line fitting stage uses the 2D spike positions returned by GreedyHaarSpiker and fits a

straight line through them using standard one-dimensional polynomial line fitting

algorithm.

4.2 Hardware

Fig. 4.1, 4.2 and 4.3 shows the hardware on which our lane detection algorithm

currently runs. In Fig. 4.1, a seven-inch Raspberry Pi (RPi) touchscreen display is shown.

The monitor is attached to a Raspberry Pi 3 model B ARMv8 1GB RAM identified with a

green arrow in Fig. 4.2. The RPi computer is attached to the back of the monitor and

coupled to an RPi Camera Board v2. The camera identified with a red arrow in Fig. 4.2 is

attached to a small cardboard box and taped with a small piece of tape to the windshield

for balance. In the future, more stable structures will be designed and deployed.

12

Fig. 4.1 Raspberry Pi Touchscreen Display: An RPi touchscreen display is attached to an

RPi (behind it) and mounted next to the windshield of a Jeep Wrangler

Fig. 4.2 Raspberry Pi Camera Board, and Raspberry Pi Computer Board: An RPi camera

board v2 (red arrow) attached to small cardboard box for balance and taped to

windshield; RPi computer (green arrow); RPi monitor (blue arrow)

13

Fig. 4.3 GreedyHaarSpiker Output on RPi Touchscreen Display: As GreedyHaarSpiker

runs, lane detection results are graphically displayed in bottom right corner of RPi

monitor; green arrow points to detected left lane; red arrow points to detected right lane

Fig. 4.4 Flow Chart of GreedyHaarSpiker Algorithm

14

In Fig. 4.3, the RPi monitor displays the left and right lanes as they are being detected by

the algorithm in real time as the vehicle is driven. The system requires 10 Watts power

(5V and 2A), and is powered using a standard 12V-to-5V car charger where the USB

power line for the RPi is plugged in.

4.3 Pre-Processing Stage

The pre-processing stage can be divided into four steps. During the first step, the

area of the image where the road lanes are likely to appear, called the region of interest

(ROI), is cropped. The second step involves the rendering of the ROI to grayscale.

Gaussian smoothing is applied in the third step. Finally, the ROI is converted into a binary

image using OTSU thresholding operator. All the steps are shown in Fig. 4.6 – 4.9. We

have used various algorithms implemented as functions in OpenCV 3.0 image processing

library for all the pre-processing steps.

4.3.1 Cropping Image

As the average size of the image being processed is 200 KB with an average

resolution of 360 x 240 pixels, it is time-consuming to perform image operations on the

whole image in situ. Hence, we conducted several in-situ camera calibration experiments

to find the most probable region of the image where the road lanes are likely to present.

The coordinates of the region are set in a configuration file and used in the algorithm to

crop the region of interest. Fig. 4.5 and Fig. 4.6 show the output of this stage. We can use

fixed ROI safely because the camera position also fixed and the perspective view of camera

will not change.

15

Fig. 4.5 Sample Input Image

Fig. 4.6 Cropping Region of Interest from Sample Image

Fig. 4.7 Grayscaling

16

4.3.2 Grayscaling

 The ROI extracted in the above step is rendered to grayscale image as shown in

Fig. 4.7. This was done using cvtColor method in OpenCV. The method converts each

RGB pixel to equivalent grayscale using the equation 6.

𝛾 = 0.299 ∙ 𝑅 + 0.587 ∙ 𝐺 + 0.114 ∙ 𝐵 (6)

 In equation 6, 𝑅, 𝐺, and 𝐵 are red, green and blue components of a pixel

respectively. This will convert the image from three channel image into a single channel

image which can be used to convert into a binary image.

4.3.3 Gaussian Smoothing

 The ROI returned from above step is smoothened using gaussianBlur method in

OpenCV. A Gaussian kernel of size 7x7 is used to that method. This ensures reduction in

noise, edges as shown in Fig. 4.8.

 The Gaussian function [24] used in gaussianBlur method is defined in equation 7.

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2 (7)

4.3.4 Thresholding

 At last, the ROI returned from the previous step is converted to a binary image i.e.

black and white using OTSU thresholding algorithm in OpenCV which finds a threshold

Fig. 4.8 Gaussian Smoothing

17

value which lies in between two peaks such that variances to both classes are minimum.

This is shown in Fig. 4.9.

4.4 Detecting road lanes: GreedyHaarSpiker

 The algorithm takes the ROI image from the pre-processing stage as an input along

with three integer parameters. The first two parameters, 𝑠𝑟 and 𝑒𝑟, specify the start row

and end row respectively in the ROI where the spikes will be detected. The third integer

parameter, 𝑑𝑒𝑙𝑡𝑎, specifies a step value for generating the exact row numbers for spike

detection.

 The algorithm iterates through each row (step) in the ROI from bottom to top. In

other words, lane detection starts from the rows closest to the moving vehicle.

Fig. 4.10 Scanlines (white lines) and Spikes (red and blue lines) Used to Detect Lanes

Two scan lines of 64 pixels are chosen on the left and the right of the ROI in row

𝑟. The left scan line starts from column 0 to 64 and the right scan line starts from 𝑤 − 64

to 𝑤, where 𝑤 is the width of the ROI which is 200 in our case. Then 1D HWT is applied

Fig. 4.9 Thresholding

18

on both left and right scan lines resulting in two HWTs: the left HWT (𝐿𝐻𝑊𝑇) and the

right HWT (𝑅𝐻𝑊𝑇). The spike detection algorithm is applied on both the 𝐿𝐻𝑊𝑇 and

𝑅𝐻𝑊𝑇 to detect left spikes (𝐿𝑆𝑝𝑖𝑘𝑒𝑠) and right spikes (𝑅𝑆𝑝𝑖𝑘𝑒𝑠) respectively.

If the value of 𝐿𝑆𝑝𝑖𝑘𝑒𝑠 is not null i.e., at least one spike has been detected, the

optimum spike position is calculated. A spike position is defined as the center of a spike’s

flat segment (𝑓𝑠 + 𝑓𝑒)/2, and the optimum spike position is defined as the average of all

the spike positions detected in the row. Thus, if multiple spikes are detected, their positions

are reduced to one optimal position. The next left scan line is centered on the optimum

spike position so that the scan line will follow the road lane. The right scan line is also

processed in the same way as 𝐿𝑆𝑝𝑖𝑘𝑒𝑠 except that the spikes detected, if any are saved in

𝑅𝑆𝑝𝑖𝑘𝑒𝑠.

If no spikes are detected on the scan line of seven consecutive rows, then the scan

line is shifted by 7 pixels to the right on the left scan line and by 7 pixels to the left on the

right scan line.

When the GreedyHaarSpiker algorithm finishes running, the lists 𝐿𝑃𝑜𝑖𝑛𝑡𝑠 and

𝑅𝑃𝑜𝑖𝑛𝑡𝑠 contain (x, y) tuples representing the mid points of the flat segments of spikes

detected in the left and right scan lines in each of the selected rows. In this way, all the

spike positions are saved for both left and right lanes for each row in the ROI. Then the

coordinates of the spikes’ positions are scaled back to the original image.

4.5 Line Fitting

 First degree polynomial line fitting is applied on the spike positions obtained from

above stage for both left lane and right lane. This was done using methods poly1d, and

19

polyfit available in SciPy python package [25]. The resulting straight lines are filtered

based on their slope to reduce false positives. The left lane inclination thresholds are from

−60 to −30, and right lane inclination thresholds are from 30 to 60.

The straight lines which pass the stated filter are then drawn on the original image

and shown on the Raspberry Pi touchscreen display. The sample image in which the

detected lanes are drawn is shown in Fig. 4.11. The pseudocode for the implementation of

the proposed algorithm can be found in Appendix Pseudocodes.

Fig. 4.11 Two Lanes Drew in the Original Image Inside the Rectangular ROI

20

CHAPTER 5

EXPERIMENTS

5.1 Overview

 In this chapter, we discuss the experiments that we conducted to evaluate the

accuracy of the proposed lane detection algorithm. The images for the experiments were

captured by the hardware shown in Fig. 4.1, 4.2 and 4.4 installed inside a Jeep Wrangler.

The car was driven on two different days in September (Sample 1) and November 2016

(Sample 2), once during the night on January 6 (Sample 3), and also during the day on

January 7, 2017 (Sample 4) under snowy road conditions at a speed of 60 miles per hour

on Utah State Route 30, a two-lane highway in Northern Utah. Each driving session was

approximately 35 miles long. A sample of around one thousand 360 x 240 PNG images

were selected from the captured video.

5.2 Experimental Procedure

 The evaluation of the algorithm was done manually by two human evaluators. The

evaluators visually compared the lanes drawn in the image by the algorithm and the actual

lanes. The images were placed into one of the three categories: both lanes detected, at least

one lane detected, and no lanes detected. An actual lane was considered detected if the lane

line drawn by the algorithm was exactly aligned with it.

Table 5.1 shows the accuracy of the algorithm for all samples. As shown in Table

5.1, in sample 1, recorded on a sunny day, both lanes were accurately detected in 61.90%

and at least one lane was detected in 91.20% of the images. The accuracy of the algorithm

21

Table 5.1 Lane Detection Accuracy

Sample Num. of Images Both Lanes (%) At least 1 Lane (%) False positives (%)

1 1,000 61.90% 91.20% 1.60%

2 1,000 34.10% 77.40% 2.70%

3 1,000 16.90% 64.10% 8.30%

4 775 15.74% 57.03% 11.48%

on the second sample, taken on a cloudy day, were lower. Both lanes were detected in

34.10% and at least one lane was detected in 77.40% of the images. The third sample’s

accuracy further decreased. Both lanes were detected in 16.90% of the images and at least

one lane was detected in 64.10%. The reduction in accuracy can be explained by the

negative impact of bad weather on the algorithm’s accuracy These images were taken at

night time using a night vision camera. These results were influenced mainly because parts

of the road covered in snow. Finally, in the fourth sample of 775 images, both lanes were

detected in 15.74% of the images and at least one lane in 57.30% of the images. These

images were taken when the road conditions were snowy and only parts of the road lanes

were visible.

22

CHAPTER 6

RESULTS

Here we briefly discuss the existing algorithm implementations in terms of

hardware used, performance and cost.

Wang et al. [13] tested B-snake lane detection on a computer with Pentium 3 (1.4

GHz) processor, 128 MB of RAM. There was no mention of how they captured the image

data. The links in the paper for image data were found to be broken. They also mentioned

that the algoirhm runs only if the pictures were taken in ideal conditions such as roads with

well painted lanes on a sunny day. Further, they did not discuss either the cost or the power

requirements of the equipment.

The algorithm proposed by Kim [14] was tested on a computer with Pentium 4

(3GHz) processor. The link that was provided for the data was found to be broken. There

was no access to the source code or the pseudocode. There were no specific details about

the equipment used to capture the pictures, cost or the power requirements of the

equipment.

The embedded solution proposed by Hsiao [15] was run on a embedded processor

module – ARM7 32bit 66MHz, a reconfigurable field programmable gate array (FPGA)

with 138,000 logic cells. The total power consumption for the system was mentioned to be

1W. They mentioned that they achieved 25 frames per second but they did not provide the

image data that they used to test their approach.

The solution proposed by Eriksson and Landberg [16] for lane departure warning

and object detection was tested on a Raspberry Pi 2 (900 MHz quad-core ARM Cortex-A7

23

CPU and 1 GB RAM). They have captured the image data, GPS data using an android

mobile phone (phone model was not mentioned). The phone was also connected to car’s

on-board diagnostics port (OBD-II) via bluetooth to collect data from car’s built in systems.

Here they did not test their algorithm in real-time instead they have captured different types

of data and then conducted their experiments on Raspberry Pi 2 and a computer (2.53 GHz

64 bit Intel core i5 processor and 4 GB RAM). Then compared the performance in terms

of frames per second between Raspberry Pi 2 and computer. As their system was not tested

in real-time there were no specific details on the power requirements, and cost to implement

this solution in real-time. They did not publish their image data, and though they have

provided pseudo-code of some parts of their solution which uses GPS data to calculate the

anglar velocity, we could not compare their solution with ours.

Mandlik and Deshmukh [17] proposed an algorithm for lane departure detection

system. They have used a Raspberry Pi 2 (900 MHz quad-core ARM Cortex-A7 CPU and

1 GB RAM) connected to an USB camera (Intex IT-305WC webcam) which was mounted

on a toy car. However the results shown in the paper were computed using a computer

(1.80 GHz Intel Core i3 CPU). Also, they have mentioned that the system consumes low

power but they did not mention specific details on both power requirements and cost of

their equipment.

It was difficult to make a valid comparison between the proposed algorithm and

existing algorithms since there was no availability of either source code or data used in

other publications. The proposed algorithm was tested in real-time on a Raspberry Pi 3

Model B ARMv8 1GB RAM computer board that was connected to a Raspberry Pi camera

24

board v2, and to a seven inch Raspberry Pi touch screen display. The whole system was

mounted inside our test vehicle Jeep Wrangler. The system consumes 10W of power and

is powered using a standard 12V-to-5V car charger, and costs less than 150 USD.

Fig. 6.1 shows the ROI for success and failure cases under different conditions for

the proposed lane detection algorithm. The first sample image set which was captured on

a sunny day resulted in an accuracy where in at least one lane was detected in 91.90% of

the sample and with the very low false positive rate of 1.60%.

 The second sample image set was captured on a cloudy day. The accuracy was

found to be significantly lower than first image set, mainly due to poor lighting conditions

which caused the road lanes to appear faded as shown in Fig. 6.1 (b) resulting in an

increased number of true negatives i.e. the algorithm couldn’t recognize the lanes though

they were present in the image.

 The third sample image set was captured on a snowy night with a night vision

camera. In this scenario, we faced many challenges like poor picture quality due to lack of

light, parts of the roads being covered by snow, and glare of the head lights of vehicles

coming in the opposite direction causing a decrease in the accuracy.

 The fourth sample image set was captured on a snowy day. Poor road conditions

due to partially snow covered roads resulted in the increase of false positives, and an

increase in the true negatives had a negative impact on the accuracy of the algorithm.

The above results indicate that the algorithm is sensitive to various conditions such

as shadows, road textures, and weather.

25

(a)

(b)

(c)

(d)

Fig. 6.1 Algorithm’s Success and Failure in Various Cases: During (a) Sunny Day (b)

Cloudy Day (c) Snowy Night (d) Snowy Day conditions

26

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

 An algorithm called GreedyHaarSpiker was presented for in situ real-time vision-

based lane detection on a cost-effective hardware platform – an RPi computer coupled to

an RPi Camera board and connected to an RPi touchscreen display. The system’s hardware

can be placed inside a car, next to the windshield, and can be powered through a regular

12V-to-5V car charger i.e. the power requirement is 10W. Since the algorithm can operate

on low voltage devices with smaller RAMs, it is more suitable for ecologically sustainable

computing. The hardware and software components of the presented algorithm can be

replicated with off-the-shelf hardware components and open source software. The image

data that was used for the experiments in the current thesis can be accessed at

https://www.dropbox.com/sh/yqpq0adt42n54dt/AAA6m5OF4s_C2KYYDLI4kc2ra?dl=0

and the source code of the algorithm, which includes code for capturing the images using

RPi, can be accessed at https://github.com/VKEDCO/PYPL/tree/master/haar_spiker.

 The algorithm is based on the detection of 1D Haar Wavelet spikes in 1D Ordered

Haar Wavelet Transform of image rows. The algorithm is currently implemented in Python

2.7.9 with OpenCV 3.0. The performance of the algorithm was tested in situ on a Raspberry

Pi 3 Model B ARMv8 1GB RAM computer on two image samples, each of which consisted

of one thousand 360 x 240 PNG images. The images were captured by a Raspberry Pi

Camera Board v2 placed inside a Jeep Wrangler driven by the first author on four different

days with varying weather conditions at a speed of 60 miles per hour on a Northern Utah

highway. On the first sample, the accuracies of detecting both lanes and at least one lane

27

were 61.90% and 91.20%, respectively; on the second sample, the accuracies of detecting

both lanes and at least one lane were 34.10% and 77.40%, respectively; on the third sample,

the accuracies of detecting both lanes and at least one lane were 16.90% and 64.10%,

respectively; on the fourth sample, the accuracies of detecting both lanes and at least one

lane were 15.74% and 57.03%, respectively The current implementation processes 20

frames per second.

 As discussed in Chapter 6 Results, the performance of the current implementation

of the algorithm is affected by factors like weather conditions (sunny, cloudy, night, snow,

etc.), shadows and road surface textures (asphalt, concrete, etc.). This can be mainly

attributed to the Pre-processing stage during the conversion of the ROI to Binary Image.

Configuring OTSU to account for the texture of the road surface may provide a better

binary image thus increasing the accuracy of the algorithm. Further, using second degree

polynomial line fitting could enable the algorithm to draw curvatures on lanes as opposed

to straight line fitting that is being performed in the current implementation.

28

REFERENCES

[1] S. Thrun. “Toward robotic cars.” Communications of the ACM, vol. 53, no. 4, pp.

99–106, 2010, doi:10.1145/1721654.1721679.

[2] J. Dokic, B. Müller, G. Meyer. European roadmap smart systems for automated

driving. Berlin, Germany: European Technology Platform on Smart Systems

Integration, 2015.

[3] T. Simonite. “Data shows Google's robot cars are smoother, safer drivers than you or

I.” MIT Technology Review, Oct. 2013.

[4] G. Nelson. “Tesla beams down 'autopilot' mode to Model S.” Automotive News. Oct.

14, 2015.

[5] C. Mui. “Will the google car force a choice between lives and jobs?” Forbes, Dec.

2013.

[6] T. Lassa. “The beginning of the end of driving.” Motor Trend, Jan. 2013.

[7] O. Miller. “Robotic cars and their new crime paradigms.” LinkedIn Pulse, Sept. 3,

2014.

[8] M. Ufberg. “Whoops: The self-driving tesla may make us love urban sprawl again.”

Wired, Oct. 10, 2015.

[9] D. Yadron, D. Tynan. (2016-07-01). “Tesla driver dies in first fatal crash while

using autopilot mode.” The Guardian, Jul. 1, 2016.

[10] V. Mathur. “Google autonomous car experiences another crash.” Government

Technology. 17 Jul. 2015.

29

[11] J. Boeglin. “The costs of self-driving cars: reconciling freedom and privacy with tort

liability in autonomous vehicle regulation.” Yale Journal of Law and Technology,

vol. 17, iss. 1, article 4, 2015.

[12] “OpenCV” [Online]. Available: http://opencv.org/

[13] Y. Wang, E. Teoha, D. Shen. “Lane detection and tracking using B-Snake.” Image

and Vision Computing, vol. 22, pp. 269–280, 2008.

[14] Z. Kim. “Robust lane detection and tracking in challenging scenarios.” IEEE Trans.

on Intelligent Transportation Systems, vol. 9, no. 1, pp. 16 – 26, Mar. 2008.

[15] P. Hsiao, C. Yeh, S. Huang, L. Fu. “A portable vision-based real-time lane

departure warning system: day and night.” IEEE Trans. on Vehicular Technology,

vol. 58, no. 4, pp. 2089 – 2094, May 2009.

[16] J. Eriksson, J. Landberg. Lane departure warning and object detection through

sensor fusion of cellphone data. Master's thesis in Applied Physics and Complex

Adaptive Systems. Department of Applied Mechanics, Chalmers University of

Technology. Göteborg, Sweden 2015.

[17] P. Mandlik, A. Deshmukh. “Raspberry-pi based real time lane departure warning

system using image processing.” International Journal of Engineering Research and

Technology, vol. 5, issue 06, June-2016, pp. 755 – 762.

[18] R. Laganiere. OpenCV 2 Computer Vision Application Programming Cookbook.

Packt Publishing LTD, 2011.

[19] J.F. Canny. “A Computational approach to edge detection.” IEEE Trans. on Pat.

Anal. And Mach. Intel., vol 8, pp. 679-698, 1986.

30

[20] R. O. Duda, P. E. Hart. “Use of the Hough transformation to detect lines and curves

in pictures.” Comm. ACM, vol. 15, pp. 11–15, Jan. 1972.

[21] A. Jensen, A. Cour-Harbo. Ripples in mathematics: the discrete wavelet transform.

New York: Springer, 2001.

[22] Y. Nievergelt. Wavelets made easy. Boston: Birkhäser, 2001.

[23] S. Mallat, W. Hwang. “Singularity detection and processing with wavelets.” IEEE

Trans. on Information Theory, vol. 38, no. 2, Mar. 1992, pp. 617-643.

[24] Gaussian function [online]. Available: https://en.wikipedia.org/wiki/Gaussian_blur

[25] “SciPy” [Online]. Available: https://www.scipy.org/

31

APPENDICES

32

Appendix - Pseudocodes

1. Procedure DetectLanes(Img);

2. ROI = cropROI(Img);

3. convertToGrayScale(ROI);

4. gaussianBlur(ROI);

5. thresholdOTSU(ROI);

6. LPoints, RPoints = GreedyHaarSpiker(ROI);

7. fitLine(Img, LPoints);

8. fitLine(Img, RPoints);

Pseudocode of DetectLanes procedure

 The above pseudocode gives an overview of the algorithm. The ROI of the input

image Img is cropped, converted the ROI into grayscale image, applied Gaussian blur, and

applied OTSU thresholding in lines 2,3,4, and 5 respectively. In line 6 GreedyHaarSpiker

was applied on the pre-processed image and the results LPoints, RPoints (containing the

road lane positions for both left, right lanes) returned. The returned positions for both left

lane, and right lane are fitted on to the original image in lines 7, and 8.

33

Pseudocode of GreedyHaarSpiker

In the above pseudocode, LPoints, RPoints are two lists initialized to hold detected

lane positions for both left, right lanes in lines 1, and 2. In line 5 the procedure

GreedyHaarSpiker is defined, which takes ROI, starting row, ending row, and delta as

arguments. In line 6 the for loop iterates from starting row to ending row in the steps of

delta. In line 7, 8 both left, right scan lines are retrieved for each row from the ROI. Ordered

1DHWT is applied on both the scan lines and the wavelet transformations are stored in

LHWT, and RHWT in lines 9, 10. Spike detection algorithm is applied on the LHWT, and

RHWT and the returned spikes are stored in LSpikes, and RSpikes respectively in lines 11,

12. If there is at least one spike is detected in that row then optimum spike position is

calculated, and stored in the corresponding Spikes’ list in lines 13 to 16. After finishing the

for loop the lists LPoints, and RPoints are returned in line 18.

1. LPoints = [];

2. RPoints = [];

3. LSpikes = NULL

4. RSpikes = NULL

5. Procedure GreedyHaarSpiker(ROI, sr, er, delta)

6. For (r = er, r <= sr, r+=delta)

7. LLine = getLeftScanLine(ROI, r, LSpike)

8. RLine = getRightScanLine(ROI, r, RSpike)

9. LHWT = ordered1DHWT(LLine)

10. RHWT = ordered1DHWT(RLine)

11. LSpikes = DetectSpikes(LHWT);

12. RSpikes = DetectSpikes(RHWT);

13. IF LSpikes != NULL

14. THEN add mid-point of optimum LSpikes’ flat segment to LPoints;

15. IF RSpikes != NULL

16. THEN add mid-point of optimum RSpikes’ flat segment to RPoints

17. ENDFOR

18. RETURN LPoints, RPoints

	Real-time Vision-Based Lane Detection with 1D Haar Wavelet Transform on Raspberry Pi
	Recommended Citation

	Publish-Subscribe System

