
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2007 

Phenotypic and Genotypic Analysis of Amino Acid Metabolism in Phenotypic and Genotypic Analysis of Amino Acid Metabolism in 

Lactobacillus helveticus  CNRZ 32 CNRZ 32 

Jason K. Christiansen 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Cell Anatomy Commons, and the Human and Clinical Nutrition Commons 

Recommended Citation Recommended Citation 
Christiansen, Jason K., "Phenotypic and Genotypic Analysis of Amino Acid Metabolism in Lactobacillus 
helveticus CNRZ 32" (2007). All Graduate Theses and Dissertations. 5539. 
https://digitalcommons.usu.edu/etd/5539 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F5539&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/9?utm_source=digitalcommons.usu.edu%2Fetd%2F5539&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/97?utm_source=digitalcommons.usu.edu%2Fetd%2F5539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/5539?utm_source=digitalcommons.usu.edu%2Fetd%2F5539&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


PHENOTYPIC AND GENOTYPIC ANALYSIS OF AMINO ACID METABOLISM IN 

Approved: 

LACTOBACILLUS HELVETICUS CNRZ 32 

by 

Jason K. Christiansen 

A thesis submitted in partial fulfillment 
of the requirements for the degree 

of 

MASTER OF SCIENCE 

m 

Nutrition and Food Sciences 

UTAH STATE UNIVERSITY 
Logan, Utah 

2007 



Copyright© Jason K. Christiansen 2007 

All Rights Reserved 

11 



ABSTRACT 

Phenotypic and Genotypic Analysis of Amino Acid Metabolism in 

Lactobacillus helveticus CNRZ 32 

by 

Jason K. Christiansen, Master of Science 

Utah State University, 2007 

Major Professor: Dr. Jeff Broadbent 
Department: Nutrition and Food Sciences 

This study investigated genetic predictions for amino acid biosynthesis and 

catabolism by Lactobacillus helveticus CNRZ 32, a commercial cheese flavor adjunct 

that reduces bitterness and intensifies flavor notes. Conversion of amino acids into 

volatile and nonvolatile flavor compounds by L. helveticus and other lactic acid bacteria 

in cheese is thought to represent the rate-limiting step in the development of mature 

cheese flavor and aroma. One of the primary mechanisms for amino acid breakdown by 

these microbes involves the reversible action of enzymes involved in biosynthetic 

pathways, so our group investigated the genetics of amino acid biosynthesis in L. 

helveticus CNRZ 32. Most lactic acid bacteria are auxotrophic for several amino acids, 

and phenotypic characterization of L. helveticus CNRZ 32 has shown this bacterium 

requires 14 amino acids. Reconstruction of amino acid biosynthetic pathways from a 

Ill 

draft-quality (incomplete) genome sequence for L. helveticus CNRZ 32 showed generally 



IV 

good agreement between gene content and phenotypic amino acid requirements. One 

exception involved the requirement ofCNRZ 32 for Asp (or Asn) for growth, where 

predictions derived from the genome sequence suggested this strain may be able to 

synthesize Asp from citrate. This prediction was confirmed as Asp auxotrophy in L. 

helveticus CNRZ 32 could be alleviated by the addition of citrate to a chemically defined 

medium that lacked Asp and Asn. Genome analysis also predicted that L. helveticus 

CNRZ 32 possessed ornithine decarboxylase activity, and would therefore catalyze the 

conversion of ornithine to putrescine, a volatile biogenic amine. Putrescine production in 

cheese would be undesirable because this compound may impart a rotting flesh flavor 

and can also have adverse effects on human health. Experiments to confirm ornithine 

decarboxylase activity in L. helveticus CNRZ 32 using a special growth medium, thin 

layer chromatography, high performance liquid chromatograph, or 13C nuclear magnetic 

resonance were unsuccessful, however, which indicated this bacterium does not 

contribute to putrescine production in cheese. 

(44 pages) 
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INTRODUCTION 

Lactobacillus helveticus is a homofermentative, thermo- and acid-tolerant 

microorganism that is commonly used in the dairy industry (2, 32). L. helveticus CNRZ 

32 is a commercial cheese adjunct used to intensify flavor and reduce bitterness in several 

varieties of cheese (8). L. helveticus, as a species, requires more amino acids for growth 

than other LAB (18). L. helveticus CNRZ 32 has been shown to require 14 amino acids; 

Arg, Glu, His, lie, Leu, Lys, Met, Phe, Pro, Thr, Trp, Tyr, Val, and either Asp or Asn (9). 

Reconstruction of amino acid biosynthesis pathways from a 4X draft genome 

allowed us to identify many of the enzymes in L. helveticus CNRZ 32 thought to be 

involved in these processes (Table I). Overall, there was good agreement between the 

presence of functional genes and proto trophy. One exception was Asp (or Asn), whose 

pathway was predicted to be functional yet was experimentally determined to be required 

for growth in a chemically defined medium (CDM) (9). 

Analysis of the L. helveticus CNRZ 32 genome sequence suggested that 

auxotrophy for Asp resulted from insertional inactivation by an insertion element, /SL2, 

of the gene that codes for phosphoenolpyruvate carboxylase (ppc) which produces 

oxaloacetate from phosphoenolpyruvate and C02 (8). However, it also was predicted that 

L. helveticus CNRZ 32 has citrate lyase, so in theory could produce the oxaloacetate 

intermediate from citrate and circumvent the need of a functional Ppc enzyme (27). 



TABLE 1. Genetics and predicted enzymology of amino acid biosynthesis in 
Lactobacillus helveticus CNRZ 32. 

Amino acid 
Ala 

Arg 

Asn, Asp 

Glu 

Gin 

Cys 

Genes Present 1 

araT 
beaT 
ataA-C 

argF'-4 

aree"'4 

areA4 

earAb 
earBb 
ode/ 
odiC 

asnA 
asnB 
ans 
aspC 
asd' 
ppe4 

ginA 
aspC 

ginA 

cysK" 
ebl" 
cysE" 

Predicted Product CEC number) 
aromatic aminotransferase (2.6.1 .57) 
branched-chain aminotransferase (2 .6.1.42) 
aminotransferase (2.6.1.-) 

ornithine carbamoyltransferase (2.1 .3.3 
carbamate kinase (2 . 7 .2.2) 
arginine deiminase (3.5.3 .6) 
carbamoyl-phosphate synthase A ( 6.3 .4.16) 
carbamoyl-phosphate synthase B (6.3.4.16) 
ornithine decarboxylase ( 4 .1.1.17) 
ornithine decarboxylase ( 4 .1.1.17) 

Pathway Essential?2 

complete3 no 

incomplete yes 

aspartate-ammonia ligase (6.3 . 1.1) incomplete Asn or Asp 
asparagine synthase (6.3.5.4) 
asparaginase (3 .5 .1. 1) 
aspartic aminotransferase (2 .6.1.1) 
aspartate-semialdehyde dehydrogenase ( 1.2. 1.11) 
phosphoenolpyruvate carboxylase ( 4.1 .1.31) 

glutamate-ammonia ligase (6.3.1 .2) 
aspartic aminotransferase (2.6.1.1) 

glutamate-ammonia ligase (6 .3 .1.2) 

0-acetylserine (thiol) lyase (2 .5.1.4 7) 
cystathionine-~-lyase ( 4.4.1.8) 
serine acetyl-transferase (2.3.1.30) 

incomplete yes 

from Glu no 

complete no 

Met metA" homoserine-0-succinyl transferase (2 .3 .1.46) incomplete yes 
cysK2"·4 0-acetylserine (thiol) lyase (2 .5.1.47) 
metE 5-methy ltetrahydropteroyi(G Ju3)-homocysteine 
methyltransferase (2 .1.1.14) 
pat~ cystathionine-y-lyase ( 4.4 . 1.1) 

Lys lysA' diaminopimelate decarboxylase (4.1.1 .20) complete3 yes 
dapD" 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate 
N-succinyltransferase (2 .3. 1.117) 

dapE" succinyl-diaminopimelate desuccinylase (3 .5.1.18) 
dapA' dihydrodipicolinate synthase (4.2.1.52) 
dapB" dihydrodipicolinate reductase ( 1.3 .1.26) 
aspC aspartic aminotransferase (2.6. 1.1) 
asd' aspartate-semia ldehyde dehydrogenase ( 1.2. 1.1 I) 
lyse!' aspartate kinase (2 .7.2.4) 
dapP diaminopimelate epimerase (5 .1.1. 7) 
ataA-C aminotransferase (2.6.1.-) 

lie, Leu, Val beaT branched-chain aminotransferase (2.6.1.42) incomplete yes 
ilvB3 acetolactate synthase (2.2 .1.6) 

Phe, Tyr, Pro a raT aromatic aminotransferase (2.6.1.57) incomplete yes 
aspC aspartic aminotransferase (2.6.1.1) 

His none incomplete yes 

Pro none incomplete yes 

2 



TABLE 1. Genetics and predicted enzymology of amino acid biosynthesis in 
Lactobacillus helveticus CNRZ 32 (continued) 

Amino acid Genes Present 1 

Ser glyA 
glyK 
serC 
serA' 
yes£ 
sdaBb 
sdaAb 

Gly glyA 

Predicted Product (EC number) Pathway 
glycine hydroxymethyltransferase (2.1.2.1) complete 
glycerate kinase (2. 7 .1.31) 
phosphoserine transaminase (2.6.1.52) 
phosphoglycerate dehydrogenase ( 1.1.1 . 95) 
phosphoserine phosphatase (3.1.3.3) 
L-serine ammonia-lyase B (4.3.1.17) 
L-serine ammonia-lyase A (4.3.1.17) 

glycine hydroxymethyltransferase (2.1.2.1) from Ser 

Essential?2 

no 

no 

Thr none incomplete yes 
1Genes for a common amino acid with the same superscript letter are organized in an 
operon-like structure and are listed in sequential order of transcription. 

2 As determined by Christensen and Steele (9). 
3Pathway completion assumes activity for one or more transamination reactions is 
provided by the aromatic- (araT), aspartic- (aspC), or branched-chain aminotransferase 
(beaT), or by one of 3 other predicted amino acid aminotransferases (ataA-C) whose 
genes were found in the L. helveticus CNRZ 32 genome. 

4Probable pseudogene; product is predicted to lack biological activity. 

A recent report that showed Lactobacillus helveticus A TCC 15807 catabolized 

citrate to succinate indicates this species can have citrate transport capabilities (32). 

Consequently, genome predictions (such the presence of citrate lyase) suggest L. 

helveticus CNRZ 32 might be able to utilize citrate to overcome auxotrophy for Asp and 

Asn. 

Another interesting observation was the presence of two genes, odcl and odiC, in 

L. helveticus CNRZ 32 (Table 1), as well as one copy of the potABCD operon. The odcl 

and odiC genes are predicted to encode ornithine decarboxylase, which catalyzes the 

conversion of ornithine to putrescine (1, 4-diaminobutane or butanediamine ), while 

potABCD is predicted to code for an ornithine ABC transporter (34 ). Conversion of 

ornithine to putrescine, by L. helveticus CNRZ 32 has not been shown, and this reaction 

3 



4 
would be undesirable in cheese because putrescine is a biogenic amine characterized by 

the smell of rotting flesh. 

Knowledge of whether L. helveticus CNRZ 32 can produce putrescine from 

ornithine may be important in the industrial use of this bacterium, since other cultures 

added to cheese with L. helveticus CNRZ 32 (such as Lactococcus lactis) can produce 

ornithine from arginine, and theoretically lead to putrescine production by L. helveticus 

CNRZ 32. Also putrescine can be a health concern as a precursor for carcinogenic 

nitrosamine formation (1, 20). It is also involved in hypertensive crises in patients treated 

with monoamine oxidase inhibitors (MAO I), and a potentiator that enhances the toxicity 

of histamine (6, 29). The purpose of this study was to determine the validity of genome 

prediction regarding the ability of L. helveticus CNRZ 32 to utilize citrate in place of 

phosphoenolpyruvate to synthesize Asp, and to investigate ornithine decarboxylase 

activity in this bacterium. 



PREVIOUS WORK-LITERATURE REVIEW 

Flavor Development in Cheese 

Flavor development in cheese is a very active and intricate process. The 

compounds thought to be responsible for cheese flavors are formed by enzymes (rennet, 

native milk enzymes and bacterial), chemical reactions (principally involving 

modification of products of enzymatic and biological reactions), and living 

microorganisms (12). The lactic acid bacteria (LAB) that contribute to these processes 

include deliberately added bacteria (starter and adjunct) as well as nonstarter lactic acid 

bacteria (NSLAB). The NSLAB enter the cheese through the processing environment 

and/or the milk (8) . Together these organisms change bland cheese curd into flavorful 

cheese through mechanisms that include lactose fermentation, citrate metabolism, 

lipolysis/esterification, and proteolysis ( 6, 12). 

Many of the above mentioned reactions in LAB are now moderately well 

understood, proteolysis in particular (14, 31 ). These reactions dictate cheese flavor by 

producing cheese flavor compounds (24). A compiled list of volatile and non-volatile 

flavor compounds may include over 200 molecules (12, 33). Many of these compounds 

influence cheese flavor even though they are present at very low concentrations (11). 

Some flavor compounds of interest are aldehydes, alcohols, acids, hydrogen sulfide, 

phenol, indole, and cresol (17). 

The cooperation between Lactococcus lactis and adjunct strains likely contributes 

to the formation of aroma and flavor compounds in cheese (23). However, our 

5 



knowledge concerning the specifics of these interactions remains limited due to the 

complexity ofthe microbial population found in cheese. 

Proteolysis and Cheese Maturation 

Proteolysis is the most complex and, possibly, the most important event during 

cheese maturation ( 12). Proteolysis of milk proteins, such as caseins, into peptides and 

amino acids is performed by proteinases and peptidases. Casein is the major protein 

involved in proteolysis, and its open, random structure makes it more susceptible than 

whey proteins to catabolism ( 11 ). The casein proteins are first broken down by 

proteinases into peptides and oligopeptides for cell transport (11 ). Then, within the cell, 

peptidases further degrade peptides into amino acids (2). In L. helveticus, all the 

identified peptidases are believed to be intracellular so the acquisition of amino acids is 

largely dependent on the activity of extracellular proteinase activity and the transport of 

peptides into the cell (9). 

6 

Once free amino acids are liberated from peptides, their direct impact on flavor is 

believed to be limited. This is because they seem to act as precursors of other flavor 

compounds (24). Amino acids are catabolized primarily by the reactions of 

decarboxylation, transamination, deamination, and desulfuration (17). These secondary 

reactions of proteolysis are thought to be important in flavor and aroma development of 

cheese (16, 23, 24). 

Amino Acid Biosynthesis 

LAB have adapted to nutritionally rich environments and, as a result, are very 

fastidious. Besides a fermentable sugar, they require nucleobases, vitamins, cations, and 



amino acids (22). These complex nutritional requirements are considered to be the 

result of an evolutionary process in which a microbial ancestor with an array of 

biochemical abilities progressively lost expendable genes following acclimation to a 

nutrition-rich environment like milk (2, 7, 25). 

7 

In LAB, several genes and gene clusters have been implicated in amino acid 

biosynthesis (35). Minor genetic lesions of these genes have been reported to be the 

cause of auxotrophy for ten amino acids in Lactobacillus helveticus A TCC 15009, 

because auxotrophy could be reversed by mutagenesis (26). However, work done by Van 

der Kaaij et al. (35) shows that auxotrophy for L-alanine in Lactobacillus johnsonii is due 

to whole gene loss. Reconstruction of amino acid biosynthetic pathways for L. helveticus 

CNRZ 32 from a 4X draft genome sequence reveals that auxotrophy was primarily due to 

whole gene loss rather than point mutations or minor genetic lesions (8) . These findings 

appear to contradict the findings of Morishita et al. (26). This is especially interesting 

because L. helveticus A TCC 15009 and CNRZ 32 have been reported to have almost 

identical amino acid requirements (9, 26). One explanation for this observation is that the 

predominant mechanisms for gene inactivation may differ in L. helveticus A TCC 15009 

and CNRZ 32 (e.g., point mutations versus deletion), and their similarities in amino acid 

auxotrophies are a reflection of both strains' adaptation to a milk environment. 

Biogenic Amines 

Biogenic amines (BAs) are low molecular weight organic bases with biological 

activity, such as histamine, putrescine, cadaverine, and tyramine. They are heat stable 

metabolites of amino acid catabolism, usually formed by decarboxylation reactions. BAs 



occur in a wide variety of foods, such as fish products, meat, cheese, wine, and other 

fermented foods (1 ). 
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Putrescine, cadaverine, and other BAs are very pungent and considered 

undesirable flavor compounds in cheese. It is also known that ingestion of biogenic 

amines may cause hypertensive crises in patients treated with monoamine oxidase 

inhibitor drugs (MAOI) (6). Some are used as indicators of spoilage (28). It has been 

shown that secondary amines (metabolites of putrescine), when in the presence of nitrites, 

can be converted to carcinogenic nitrosamines (1, 20). 

Histamine has been described as a potentially hazardous amine because it can 

cause scombroid poisoning, histaminic toxicity, and headaches ( 19). Putrescine and other 

amines such as cadaverine and tyramine are potentiators that enhance the toxicity of 

histamine; specifically they are believed to inhibit the metabolizing enzymes diamine 

oxidase and hydroxymethyl transferase, which are responsible for histamine breakdown 

(6, 29). 

Citrate Catabolism in Cheese 

Milk contains 0.15 to 0.2% citric acid. Citrate can be transported into the cells of 

some LAB by a citrate permease, termed CitP (2). It has been well established that 

Leuconostoc sp. and Lactoccocus lactis may collect extra pyruvate for diacetyl 

production through means of citrate catabolism by citrate lyase (2). Citrate lyase 

converts citrate into oxaloacetate (OAA), which is then converted to pyruvate by 

oxaloacetate decarboxylase. Pyruvate can then be converted into diacetyl, which is 65 



known to be a major contributor of a "buttery" aroma in cultured milk and 

cheeses such as Gouda, Edam, and Harvarti (21 ). 

Along with glutamate and pyruvate, citrate is one ofthree components found in 

milk that can be catabolized to form a- ketoglutarate (a-KG) (30). It was shown that 

addition of a-KG to St. Paulin or Cheddar cheese favorably enhances their aromas (3 ). 

This aroma development is presumably a result of a-KG's ability to act as the amino 

group acceptor during enzyme (aminotransferase) catalyzed transaminations, in which 

amino acids are converted to keto acids (27). The keto acids produced as a result of 

transamination can be degraded enzymatically to form aldehydes or carboxylic acids or 

they can undergo spontaneous degradation (3 7). Aldehydes and carboxylic acids are 

recognized as key flavor compounds in many cheeses ( 4, 5). 

A specific example concerning a-KG 's role in flavor development can be 

illustrated when considering the production of methanethiol. The formation of 

methanethiol from methionine is believed to play a significant role in cheddar cheese 

flavor. This formation has been shown to proceed via a transamination reaction. 

Interestingly, these studies suggest that a-KG was necessary for the formation of an 

intermediate for methanethiol production, 2-hydroxyl-4-(methylthio) butyric acid 

(HMBA), in four of the five Iactococcal strains examined. Therefore, a-KG is a key 

component in methanethiol synthesis by lactococci ( 13 ). 

9 
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MATERIALS AND METHODS 

Microorganisms 

Lactobacillus helveticus CNRZ 32 was obtained from Dr. Jeff Broadbent's 

laboratory strain collections (Utah State University, Logan, UT), and the putrescine-

producing strain Lactobacillus sp. ATCC 33222 (designated as Lactobacillus sp. 30a by 

Garcia-Moruno et al.; 15) was purchased from American Type Culture Collection 

(Manassas, VA). Stocks of each culture were stored in sterile non-fat milk with 11% 

(wt/vol) glycerol at -80°C, and working cultures were prepared from frozen stocks by two 

sequential transfers (1% inoculation) in Man Rogosa and Sharpe medium (MRS) (Difco 

Laboratories, Sparks, MD) propagated anaerobically for16 h at 3 7° C. 

Asp and Asn Auxotrophy in 
L. helveticus CNRZ 32 

Chemically defined medium (Table 2) was prepared according to the method 

described by Christensen and Steele (9), with the following modifications: One sample 

lacked citrate, Asp, or Asn (CDM); a second contained 2 g per L sodium citrate but 

lacked Asp or Arg (CDM-Cit); and a third, which served as the positive control, lacked 

citrate but contained 200 mg per L of L-aspartic acid and 400 mg per L of L-asparagine 

(CDM-Asp/Asn). Medium ingredients were all obtained from Sigma-Aldrich, Inc. (St. 

Louis, MO), except that sodium acetate (trihydrate), manganese sulfate (monohydrate), 

sodium chloride, and glucose were obtained from Mallinckrodt, Inc, (Hazelwood, MO); 

potassium phosphate (dibasic) was obtained from Fisher Scientific, Inc. (Pittsburgh, PA); 



TABLE 2. Chemically defined medium for analysis of Asp and Asn 
auxotrophy in Lactobacillus helveticus CNRZ 32. 

Component 
Salts: 

Sodium acetate (trihydrate) 
Potassium phosphate (monobasic) 
Potassium phosphate (dibasic) 
Sodium chloride 
Calcium chloride (dihydrate) 
Magnesium sulfate 
Magnesium sulfate (monohydrate) 

Components dissolved in 5 ml of I M HCL: 
L-Glutamic acid 
L-Tryptophan 

Carbohydrate: 
0-(+)-Glucose (anhydrous) 

Components dissolved in 6 ml of I M NaOH 
L-Phenylalanine 
L-Tyrosine 
Adenine, guanine, uracil, xanthine 

Other amino acids added 
L-Aianine 
L-Arginine 
L-Cysteine 
L-Glutamine 
Glycine 
L-Histidine 
L-Jsoleucine 
L-Leucine 
L-Lysine 
DL-Methionine 
L-Proline 
DL-Serine 
DL-Threonine 
L-V aline 

Other ingredients 
Tween 80 (polyoxyethylenesorbitan monooleate) 
Tween 20 (polyoxyethylenesorbitan monolaurate) 
Glycerol 
DL-Mevalonic acid lactone 
Pyridoxal HCL 
RPMI 1640 vitamin solution (I OOx) 

Addition per liter 

Sg 
I g 
I g 
200 mg 
200 mg 
200 mg 
50 mg 

400 mg 
25 mg 

20 g 

20 mg 
70 mg 
25 mg each 

400 mg 
200 mg 
80 mg 
400 mg 
400 mg 
200 mg 
80 mg 
80 mg 
400 mg 
80 mg 
800 mg 
400 mg 
400 mg 
400 mg 

lml 
I ml 
I ml 
10 Jll 
10 mg 
20ml 

11 



12 
and potassium phosphate (monobasic) was obtained from MP Biomedical, Inc. (Salon, 

OH). All components except the RPMI 1640 vitamin solution were dissolved in the 

order listed in Table 2 to maintain relatively moderate pH. After adding and solubilizing 

all ingredients except the vitamin solution, the medium was adjusted to pH 6.50 and 

autoclaved at 121° C for 10 min. The vitamin solution was sterilized by passage through 

a 0.2 jlm cellulose acetate membrane (VWR International, West Chester, PA) and 

aspetically added to the cooled medium immediately prior to inoculation. 

To eliminate carryover of any essential nutrients (18), 1 0-ml working cultures of 

L. helveticus CNRZ 32 were harvested by centrifugation (5 ,500 rpm for 15 min) and 

washed twice in 10 ml of sterile sodium phosphate (50 mM, pH 7.0). Cell samples were 

split into three equal parts and each washed in one of the variations of CDM. Then, a 1% 

dilution of the cells was made in a fresh 10 ml tube of the corresponding CDM. Growth 

in each medium was determined by measuring optical density spectrophotometrically at 

660 nm (A66o) after 0, 19, 24, and 48 h of incubation. 

Screening for Ornithine Decarboxylase 
Activity 

Several methods were employed to detect putrescine production by L. helveticus 

CNRZ 32. The first technique involved an improved decarboxylase medium described 

by Bover-Cid and Holzapfel (6), which is reported to have a limit of detection for 

biogenic amine production of 350 mg per liter. Next, thin layer chromatography (TLC) 

and high performance liquid chromatography (HPLC) were used to obtain greater 

sensitivity in assays to detect putrescine production from ornithine. TLC was performed 

as described by Garcia-Moruno et al. (15), and HPLC was done as outlined by 
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Hernandez-lover et al. ( 19). Both procedures required a dansyl-chloride derivitization 

step with L. helveticus CNRZ 32 supernatant, which was collected after 3 and 7 d 

incubation at 30°C in MRS supplemented with 3 mM L-ornithine. 

Finally, 13C-nuclear magnetic resonance (NMR) analysis of L. helveticus CNRZ 

32 supernatant was performed to gain greater assay sensitivity without the need for 

sample derivitization. Prior to NMR, a 300 mM concentration of [U- 13C5] L-ornithine 

(Cambridge Isotope Laboratories Inc., Andover, MA) and 2 mM pyridoxal 5-phosphate 

(PPL) (Sigma-Aldrich) was prepared in sterile double distilled H20 and filter sterilized 

through a 0.2 f!m cellulose acetate membrane (VWR International). The 13C ornithine 

solution was stored in the dark at 4 oc until needed. 

In an effort to promote induction of ornithine decarboxylase activity before NMR 

(6), L. helveticus CNRZ 32 and Lactobacillus sp. A TCC 33222 were subcultured twice in 

MRS containing 0.1% L-ornithine monohydrochloride, and 0.005% pyridoxal-5-

phosphate (PPL). Cell samples were prepared in three 1.5 ml, sterile, centrifuge tubes. 

One served as the positive control, and contained 1 ml MRS, 1% inoculation of 

Lactobacillus sp. A TCC 33222, and 100 f!l [U- 13C5] L-ornithine solution. The cell free 

negative control contained 1 ml MRS and 100 f!l [U- 13C5] L-ornithine solution. The test 

sample consisted of 1 ml MRS, 1% L. helveticus CNRZ 32, and 100 f!l [U- 13C5] L

ornithine solution. The tubes were incubated 3 d at 37°C, or 7 d at 30°C, then 

centrifuged at 12,000 rpm for 5 min, and 0.6 ml of sample supernatant was transferred to 

5-mm high-pressure NMR tubes (Wilmad-Labglass, Buena, NJ). To address the 

possibility that ornithine decarboxylase activity might be induced at low pH, similar 
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experiments were performed using cells suspended in MRS buffered to a pH of 5. 1 or 

6.0 (1 0). 

All NMR spectra were collected on a Bruker DMX400 NMR spectrometer 

(Bruker Analytik GmbH, Ettlingen, Germany) operated at a carbon frequency of 100.6 

MHz. The probe temperature was between 13 and 3 7°C. NMR spectra were referenced 

for carbon by a capillary insert tube that contained chloroform-d (Sigma Chemical 

Company, St. Louis, MO). Five thousand scans were recorded for each sample. In 

addition, 50,000 scans were run on L. helveticus CNRZ 32 samples to increase sensitivity 

for putrescine detection. 13C chemical shifts for ornithine and putrescine were identified 

by NMR analysis of unlabeled standards. 



RESULTS 

Alleviation of Asp Auxotrophy 

L. helveticus CNRZ 32 cells incubated in CDM did not show any significant 

growth (Fig. 1). This observation was expected because the gene encoding 

phosphoenolpyruvate carboxylase was interrupted by an insertion element, /SL2 (Table 

1 ), and the absence of citrate and Asn eliminated each of the remaining pathways 

predicted for Asp formation in L. helveticus CNRZ 32 (Fig. 2). In contrast, cells 

incubated in CDM-Cit grew to an OD66o of 1.0 ± 0.1 within 48 h, while cells inoculated 

into CDM-Asp/Asn grew to a slightly higher final cell density (OD660 = 1.4 ± 0.2) (Fig. 

1 ). This outcome supported our hypothesis that auxotrophy for Asp in L. helveticus 

CNRZ 32 can 
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FIG. 1. Growth of Lactobacillus helveticus CNRZ 32 in chemically defined 
medium supplemented with Asp and Asn (e ), or citrate(. ), or that lacked Asp, Asn, 
and citrate (.A.). Values represent the mean(± SE) from triplicate experiments. 
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FIG. 2. Predicted pathways for Asp and Asn biosynthesis in Lactobacillus 
helveticus CNRZ 32. Enzymes involved in these conversions include citrate lyase (1 ), 
aspartate aminotransferase (2), phosphoenolpyruvate carboxylase (3), and asparaginase 
( 4) . Reversible reactions are indicated by a double-headed arrow. 

be alleviated by citrate because citrate permease and citrate lyase activities generate the 

oxaloacetate intermediate required for de novo Asp biosynthesis (Fig. 2). Interestingly, 

growth curves for L. helveticus CNRZ 32 in CDM-Cit showed an extended lag phase as 
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compared to cells incubated in CDM-Asp/ Asn (Fig. I). The basis for this observation is 

unknown, but it could reflect delayed induction of genes for citrate utilization, or a low 

level of in vivo activity for one or more ofthose enzymes. 

Screening for Ornithine Decarboxylase 
Activity in Lactobacilli 

The formation of putrescine has been shown by Arena and Manca de Nadra (1) to 

proceed in other organisms through three potential pathways (Fig. 3). Protein homology 

searches against the translated protein database for the L. helveticus CNRZ 32 genome 
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FIG. 3. Potential pathways for putrescine synthesis by lactobacilli. Enzymes that 
may be involved in these conversions include arginine deiminase (1 ), ornithine 
transcarbamylase (2), arginine decarboxylase (3), agmatine deiminase (4), agmatinase 
(5), N-carbarnoylputrescine hydrolase (6), and ornithine decarboxylase (7). Reversible 
reactions are indicated by a double-headed arrow. Adapted from Arena and Manca de 
Nadra (Ref. 1 ). 

sequence did not detect any orthologs to arginine decarboxylase, agmatine deiminase, 

agmatinase, or N-carbamoylputrescine hydrolase. Moreover, arginine deiminase and 

ornithine transcarbarnylase are pseudogenes in L. helveticus CNRZ 32. Therefore, we 

predict this bacterium cannot produce putrescine from Arg, but the presence of two genes 

encoding paralogs to ornithine decarboxylase in the L. helveticus CNRZ 32 genome 

(Table I) suggested the bacterium may be able to produce putrescine from exogenously 

supplied ornithine (Fig. 3). To test this hypothesis, we assayed L. helveticus CNRZ 32 

for the ability to convert ornithine into putrescine using several different techniques . 

Lactobacillus sp. A TCC 33222, a bacterium originally isolated from horse 

stomach, has been shown to rapidly convert ornithine into putrescine (15) and was used 

as a positive control for this activity. As expected, colonies from this strain gave a faint 
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purple color indicative of ornithine decarboxylase activity when streaked on improved 

decarboxylase medium (6). However, colonies of L. helveticus CNRZ 32 did not produce 

any purple color on this medium. 

Efforts to detect ornithine decarboxylase activity in L. helveticus CNRZ 32 by 

TLC or HPLC also proved unsuccessful. As was the case for observations from the 

improved decarboxylase medium, which is reported to have a limit of detection for 

biogenic amine production of 350 mg per liter (6), TLC and HPLC results were deemed 

inconclusive because they might be attributed to inadequate assay sensitivity. The limit 

of detection for biogenic amines by TLC and HPLC is reported to be 10 mg and 3 mg per 

liter, respectively (19, 28), but both techniques require a derivitization ( dansyl chloride) 

step that theoretically can reduces assay sensitivity. 

To overcome the need for sample derivitization, experiments to detect putrescine 

production from ornithine were also performed using 13C-NMR. The limit of detection 

for putrescine by this method was determined experimentally to be.08 mM or 7.6 mg per 

liter. Moreover, putrescine can readily distinguished from ornithine on 13C-NMR spectra 

by the presence of a peak at 24 ppm (parts per million) (Fig. 4). As shown in Fig. 5, 13C

NMR scans for the positive control, Lactobacillus sp. ATCC 33222, showed two major 

peaks; one was a chemical shift at 24 ppm (putrescine), and the other was at 39 ppm (Fig. 

5). The cell-free [U- 13C5] L-ornithine solution (negative control) showed five major 

peaks at 23, 27, 39, 54, and a carbonyl signal at 174 ppm (Fig. 6). Spectra from 13C

NMR scans of unlabeled ornithine (Fig. 7) and from L. helveticus CNRZ 32 supernatant 

(Fig. 8) were identical to that obtained for the negative control. Similar overall results 

were obtained with samples were incubated at 30° C for 7 d (Figs. 9, 10, and 11 ). 
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FIG. 4. 13C-nuclear magnetic resonance scans of 8.7 mM putrescine in MRS 
broth. Putrescine was unlabeled so natural 13C is shown, which results in higher 
background noise. The peaks show the resonating 13C atoms within a compound in parts 
per million (ppm). Carbon reference d-chloroform was added by capillary insert and is 
indicated by the peak at 77 ppm. 
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FIG. 5. Putrescine production by Lactobacillus sp. ATCC 33222 incubated at 
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3 7°C for three days in MRS with [U- 13C5] L-ornithine. Peaks show resonating 13C atoms 
within a compound in parts per million (ppm) after 5,000 NMR scans at room 
temperature. Carbon reference ( d-chloroforrn) is shown at 77 ppm. 
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FIG. 6. 13C-nuclear magnetic resonance scans of cell free control incubated at 
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3 7°C for three days in MRS witli [U- 13C5] L-omithine. Smaller peaks from about 60-100 
ppm are probably due to residual alcohol from cleaning. 
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FIG. 7. 13C-nuclear magnetic resonance scans of 870 mM ornithine in MRS 
broth. Ornithine was unlabeled so detection is based on naturally-occurring 13C in the 
sample. Since the minimum level of detection for ornithine by NMR was not of interest 
to this study, a high concentration of this compound was included in the assay for clarity 
(less noise). Carbon reference (d-chloroforrn) is shown at 77 ppm 
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FIG. 8. Assay for putrescine production by Lactobacillus helveticus CNRZ 32 
after incubation at 37° C for three days in MRS with [U- 13C5] L-omithine. Peaks show 
the resonating 13C atoms within a compound in parts per million (ppm) after 5,000 NMR 
scans at room temperature. 
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FIG. 9. Putrescine production by Lactobacillus sp. ATCC 33222 incubated at 
30°C for seven days in MRS with [U- 13C5] L-ornithine. Peaks show the resonating 13C 
atoms within a compound in parts per million (ppm) after 5,000 NMR scans at room 
temperature. 
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FIG. I 0. 13C-nuclear magnetic resonance scans of a cell free control incubated at 
30°C for seven days in MRS with [U- 13C5] L-omithine. Peaks show the resonating 13C 
atoms within a compound in parts per million (ppm) after 5,000 NMR scans at room 
temperature. 
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FIG. 11 . Assay for putrescine production by Lactobacillus helveticus CNRZ 32 
after incubation at 30°C for seven days in MRS with [U- 13C5] L-omithine. Peaks show 
the resonating 13C atoms within a compound in parts per million (ppm) after 50,000 
NMR scans at room temperature. 

26 



27 

DISCUSSION 

Experiments outlined in this thesis were designed to test genome predictions that 

auxotrophy for Asp in L. helveticus CNRZ 32 could be alleviated by the addition of 

citrate, and that this organism could convert ornithine to putrescine. As is shown in Fig. 

1, the inability of L. helveticus CNRZ 32 grow in CDM was restored in COM-Cit. These 

results, and the observation that growth is supported in CDM-Asp/Asn, confirmed that L. 

helveticus CNRZ 32 is dependant on Asp or Asn for growth, and that citrate can alleviate 

Asp/ Asn auxotrophy in L. helveticus CNRZ 32. These findings underscore the usefulness 

of genotypic analysis as a tool for discovery and support our hypothesis that L. helveticus 

CNRZ 32 has citrate permease and citrate lyase activities which convert citrate into the 

oxaloacetate (OAA) needed for Asp biosynthesis (Fig. 2). 

Production of Asp from oxaloacetate results in the fonnation of a-ketoglutarate (a 

-KG), a compound known to favorably enhance aroma development in cheese (3). This 

contribution results from use of a-KG as the amino group acceptor by aminotransferases, 

which carry out the first step of many amino acid catabolic reactions in lactic acid 

bacteria (27). The contribution of citrate catabolism and Asp biosynthesis to a-KG 

production and aroma development by L. helveticus CNRZ 32 in cheese is unknown and 

would require future analysis ofthe mechanisms for regulation of the genes encoding all 

ofthe enzymes involved in these conversions. Nonetheless, results from COM growth 

studies indicated L. helveticus CNRZ 32 does possess at least one mechanism for a -KG 

production. 
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In contrast to data for citrate use, experiments to confirm ornithine 

decarboxylase activity in L. helveticus CNRZ 32 were unsuccessful. After initial 

experiments using chromogenic agar gave negative results, the cells were assayed using 

TLC and HPLC methods, but again no evidence for biogenic amine formation was noted. 

Both chromatogenic procedures provide substantially greater sensitivity than is available 

with the improved decarboxylase medium. The limit of detection for the agar was 

reported to be 350 mg per liter, while that of TLC is about 0.1 mM (- 10 mg per liter) 

and while the HPLC method that is about 3X more sensitive than TLC (6, 15, 19, 28). 

However a derivitization step is required for the TLC and HPLC methods, so the absence 

of detectible putrescine may theoretically result from inefficient derivitization, rather than 

a lack of putrescine biosynthesis by L. helveticus CNRZ 32. 

In an effort to resolve this question, we turned to 13C-NMR which is more 

sensitive than TLC and not as invasive as HPLC. Visual examination of the chemical 

shifts of the putrescine standard (Fig. 4) showed that the peak which most clearly 

separates putrescine from L-omithine occurs at 24 ppm. This peak is caused by the 

second and third carbons of putrescine and is clearly present in samples that contained the 

Lactobacillus sp. A TCC 33222 positive control (Figs. 5 and 9), even though the carbon

carbon splitting is dividing the signal. The five chemical shifts that describe L-omithine 

(Figs. 6, 7, and 1 0) are entirely missing in Figs. 5 and 9, except for the peak at 39 ppm, 

suggesting that Lactobacillus sp. ATCC 33222 converted most of this substrate into 

putrescine. As expected, the negative controls (Figs. 6 and 1 0) simply showed the 

presence of labeled ornithine, thereby ruling out the possibility of false positives. 
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Unexpectedly, 13C-NMR spectra from L. helveticus CNRZ 32 (Figs. 8 and 11) 

samples looked very similar to those from the negative control and the ornithine standard 

(Figs. 6, 7 and 1 0). The limit of detection with unlabeled putrescine for our instrument 

and conditions is approximately 0.087 mM (based on the detection of 8. 7 mM unlabeled 

putrescine, and considering the natural abundance of 13C is 1 %). Moreover, increasing 

the number of scans to 50,000 lowers the limit of detection (Fig. 11). In water, putrescine 

has an odor threshold of 0.1 mM and 0.5 mM in a food matrix (2 % soybean flour 

solution; 36). Based on these values, one can conclude that ornithine decarboxylase 

activity in L. helveticus CNRZ 32 is either absent or so low it will not affect the odor or 

flavor of cheese products containing this bacterium. 

Though it remains possible that L. helveticus CNRZ 32 is able to generate 

putrescine at a concentration below the limit of detection for 13C-NMR, a more plausible 

conclusion is that L. helveticus CNRZ 32 does not possess ornithine decarboxylase 

activity and that odiC and odcl encode alternate and as yet unknown enzyme function(s). 

The finding that annotations for odiC and odcl are likely incorrect was somewhat 

surprising because the L. helveticus CNRZ 32 genome also contains the potABCD 

operon, which is predicted to code for an ornithine ABC transporter. Recent discovery of 

potABCD, two ornithine decarboxylases, and an atypical potBCAD operon in the genome 

sequence of Lactobacillus delbrueckii subsp. bulgaricus A TCC was interpreted to reflect 

a physiological need for polyamines in this species (34). Our finding that a closely

related bacterium (L. helveticus CNRZ 32) with similar gene content does not convert 

ornithine to putrescine indicates this hypothesis requires further exploration. 
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In summary, this study provided examples ofboth the value and pitfalls 

associated with phenotypic predictions from genome sequence information for bacteria. 

First, we confirmed a genome sequence prediction that citrate can alleviate Asp/ Asn 

auxotrophy in L. helveticus CNRZ 32 grown in CDM, and propose that this metabolic 

pathway may provides a mechanism for a-KG production by L. helveticus CNRZ 32 in 

cheese. However, our inability to substantiate putrescine synthesis from ornithine by this 

bacterium also underscored the need to experimentally confirm genome sequence 

predictions. Future studies to determine factors that regulate the expression of L. 

helveticus CNRZ 32 genes under the environmental conditions associated with cheese 

maturation would provide valuable insight into the contribution of citrate catabolism to 

a - KG production, and may also provide new hints on the physiological role of odiC, 

odcl, and potABCD. 
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