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ABSTRACT 

Measurement of Soil Water Potential by Adsorption Conductivity 

by 

V. Philip Rasmussen, Jr. 

Utah State University, 1974 

Major Professor: Dr. R. John Hanks 
Department: Soil Science and Biometeorology 

v 

Current methods of measuring soil water potential are reviewed, and 

the limitations of each are noted. The need for a transducer that will 

measure soil water potential over a wide moisture range for long periods 

of time is delineated. The concept of utilizing an adsorptive surface 

that resembles the soil in its water holding capacity as a transducer is 

discussed. Various designs and materials are tested for such a trans-

ducer. 

All designs tested did not fulfill the requirements needed for a 

truly useful transducer. However, experimental results show that modifi-

cation of the adsorptive surface should allow construction of a unit 

that will be useful in soil water research. 

(50 pages) 



INTRODUCTION 

The ability to measure the available water in the soil, soil water 

potential, simply and accurately has been sought after by scientists and 

agri-businessmen alike for many years. Proper management of soil water 

has long been known as a key to maximum production of food. Measurement 

of the soil water status provides a means whereby irrigation and produc­

t ion can be more carefully managed in a world where food is becoming 

increasingly more scarce and expensive. An inexpensive and simple tool 

that would allow the farmer and the scientist to detect small changes 

in the water status of the soil is needed today, perhaps more than ever 

before. 

In June, 1972, this investigator undertook a project suggested by 

Dr. R. J. Hanks to develop such a tool. Utilizing a method and concept 

tested at Utah State University, the author investigated methods of 

measuring small changes of water adsorbed onto a porous surface. The 

results of this investigation form the basis of this thesis. As with 

most scientific undertakings, the results seem incomplete to the 

investigator. Much more investigation is needed in this area. However, 

some important results were observed and are noted herein. It is hoped 

that this will aid future investigators who concern themselves with the 

problems of agricultural irrigation management and research. 
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REVIEW OF LITERATURE 

Soil water potential 

The nature of water in the soil has been the source of much discus-

sion in agricultural scientific circles for a number of years. Agrono-

mists, soil scientists, plant physiologists, and climatologists alike 

are all concerned with water relations in the soil-plant-atmosphere 

continuum. In defining the status of water of a given soil, all have 

agreed that stating the moisture percentage is not enough (Taylor, Evans, 

and Kemper, 1961). Different soils with the same moisture percentage 

retain water with different degrees of tenacity, due to the colloidal 

nature of the soil-water interface and the large difference in particle 

sizes of different soils. To overcome the problems thus associated with 

water content measurements, a thermodynamic description is used. This 

system of measurement defines water in the soil system in terms of 

potential energy units. R. J. Hanks relates the reasons for a thermo-

dynamic approach in terms of an analogy: 

The heat content (analogous to water content) of a soil is 
a property of a material that is useful for many purposes but it 
will not tell us directly whether heat will flow unless we can 
deduce a different property--the temperature. We need a soil water 
property analogous to temperature. This property is called the 
water potential. (Hanks, 1972, p. 51) 

Thus, by using this system of measurement, a soil with a given water 

potential will possess the same degree of water availability as any 

other soil with the same water potential (Taylor, Evans, and Kemper, 

1961). 

This system of measurement is not without fault (Tci.ylor and Slayter, 

1962). For some time many different units, both positive and negative, 
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have been associated with water potentials of the same potential energy. 

There are two general approaches used, each correct, that lead to these 

ambiguous values for water potential. Both systems relate to the energy 

required to remove water from the system under study. However, one 

system relates the potential energy of removal to the water itself 

(giving a negative value), and one relates this energy to the system 

removing water (giving a positive value) as shown by Taylor, Evans, and 

Kemper (1961). This sign difference often leads to much confusion by 

both schooled and unschooled persons. However, by stating the system 

of measurement used in the proper context, the confusion can usually 

be eliminated (Salisbury and Ross, 1969; Wiebe et al., 1971). 

The basis of both of these thermodynamic approaches to soil water 

is the Gibbs Free Energy of the system. In defining water potential, 

Salisbury and Ross (1969) state the Gibbs Free Energy Equation thusly: 

G E + PV - TS 

where E is internal energy of the system, PV is the pressure-volume 

product as in the Ideal Gas law, T is temperature in degrees Kelvin, and 

S is the entropy (degree of disorganization) of the system. This 

equation is extended by Salisbury (1969) through Roault's law to: 

and then to: 



where RH is the relative humidity in the atmosphere of the system and ~ 

is the water potential. Through this equation, water potential of a 

given soil can be directly calculated if the relative humidity of the 

atmosphere of the soil is known. 

By using the classical approach shown above, the measurements of 
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the water potential (of ten ref erred to by chemists as the chemical 

potential of a water solution) are taken to be negative and are measured 

in energy units or in negative atmospheres (suction of the system for pure 

free water). The approach of Taylor and Slayter (1962) and others 

recently has been to express these units of suction for pure free water 

(water potential) as positive values. To do this, Taylor, Evans, and 

Kemper (1961, p. 8) define water potential as: " ... the minimum additional 

work required to remove water from the soil system in excess of the work 

required to remove pure free water from the same location in space." 

This approach and definition will be used by the author throughout this 

text. 

Water potential is thus a measurement of the energy relations of 

the soil-water system. It allows us to define the amount of tenacity 

with which the soil holds water. This allows us to describe the water 

in the soil as the growing plant senses it--the amount of energy required 

to remove water from the soil. In viewing water relations in this way, 

we are able to measure and manage water in the soil from the standpoint 

of the plant and the atmosphere that expend energy to remove water from 

the soil. Thus, the total system can be accurately described mathemati­

cally and managed more fully for the benefit of man. 



Instruments to measure water potential 

There are many instruments currently available to measure directly 

and indirectly the water status of the soil. However, all have certain 

limitations (Taylor, Evans, and Kemper, 1961). 
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Taylor, Evans, and Kemper (1961) and Buckman and Brady (1969) 

describe an instrument that has gained wide acceptance for use with crops 

of high water consumption. The tensiometer, as the instrument is called, 

is an instrument consisting of a long plastic tube that extends down 

into the soil and is fitted at the end with a porous clay cup. The tube 

is filled with water, is sealed at the top, and a mercury manometer or 

vacuum guage is attached at the surface to monitor the vacuum created as 

water is sucked through the clay cup by the soil. This unit measures 

soil water matric potential only as high as one bar. Taylor, Evans, and 

Kemper (1961) also described problems with accuracy and temperature 

stability. 

The gypsum resistance block (Taylor, Evans, and Kemper, 1961) has 

been fabricated in many designs, but all rely on the electrical conduc­

tivity changes of a block of gypsum placed into the soil. Within this 

block are two metal electrodes attached to wires that lead to the surf ace 

of the soil. At the soil surface the wires can be connected to a suit­

able a.c. resistance bridge for measurement. As the porous gypsum 

(Caso
4

·2H20) equilibrates with the water in the soil, its hygroscopic 

nature allows it to compete with the soil for the available water. As 

water is absorbed into the block, the salts of gypsum go into solution, 

and thus they are able to conduct electricity between the electrodes. 

The resistance between the electrodes, then, is a function of the water 

in the soil, and this resistance can be measured with the bridge 
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previously mentioned. Salts in the soil that are in large concentrations 

when compared to the gypsum salts can change the calibration of these 

blocks (Taylor, Evans, and Kemper, 1961). Each block must be calibrated 

separately; gypsum is gradually dispersed in the soil. Thus, gypsum 

blocks have inherent problems as a transducer also. 

Freezing point depression and ceramic porosity have also been used 

to measure water potential in the soil. Their use, however, is limited 

to laboratory situations at the present time. Their accuracy also has 

been questioned (Taylor, Evans, and Kemper, 1961; Wiebe et al., 1972). 

Thermocouple psychrometers (Taylor, Evans, and Kemper, 1961; Wiebe 

et al., 1971) have been continuously perfected in the past ten years. 

They operate by a reverse current flow condensing water on a double 

thermocouple junction (Peltier effect), and then the differential 

temperature is monitored as this water evaporates. The psychrometer, 

then, works as a wet-dry thermometer pair and measures the relative 

humidity of the soil atmosphere. This measurement can be related to 

water potential by the previously noted equation: 

There are limitations with this method, however. The thermocouple 

junction is contaminated very easily. Also, the condensation is 

virtually impossible as the soil gets very dry. 

Thus, we can see that there are basic problems with any of the pre-

sently available techniques. This is the same problem of most scientific 

measurements--the instrumentation leaves much to be desired. However, 

a few improvements could add dramatically to the available information 

about soil water. If a transducer could be developed that would be 

able to measure water potential over a wide range and would be 



inexpensive enough for large scale application, tremendous advances in 

agricultural management could be realized. 

Measurement of soil water potential 

by adsorptive phenomena 

7 

A method proposed by Gardner (1937) and perfected by McQueen and 

Miller (1968) was studied by Al-Khafaf and Hanks (1972). This procedure 

involves measuring the water absorbed by a bacteriostatically treated 

filter paper disc when placed in a closed atmosphere with a sample of 

soil. Water vapor in the soil equilibrates with the filter paper. 

Sinc e the filter paper has a large range of particle size distribution, 

like the soil, its adsorptive curve closely resembles that of the soil. 

Thus, the filter paper can be removed from the closed system (a small 

metal soil sample can) and weighed. The water content can be deter­

mined by the difference in the wet and dry weight divided by the dry 

weight. This water content than can be calibrated to the water 

potential of the system. The filter paper is used because the porosity 

of the filter paper is similar from one sample to the next and is 

commercially available with well-defined properties. This method has 

an added advantage in that the soil water matric potential can be 

measured merely by letting the paper come in direct contact with the 

soil, rather than only equilibrating with the atmosphere above the soil. 

This method is suitable and accurate over a wider range than any 

method previously mentioned. However, it is time-consuming and must be 

done in a laboratory equipped with an analytical balance and a humidor 

to facilitate precise weighing without loss of water from the filter 

paper. 
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DELINEATION OF SPECIFIC PROBLEM 

Areas where knowledge is lacking 

As presented in the Literature Review, the author has found signif­

icant problems with each of the methods of measurement mentioned. It 

is felt that to obtain optimum measurements of soil water potential, the 

following requirements should be met by a transducer: 

1. It should be small and easily installed in the soil. 

2. It should be semi-permanent in its durability, and thus it 

could be left installed for at least two seasons of use. 

3. Constant interrogation of the state of available water near 

the transducer should be possible. 

4. It should not be dangerous to use or destructive to the 

soil (e.g., radioactive). 

5. It should resemble the soil in its ability to hold and compete 

for available water, thus having a wide measurement range. 

6. It should have uniform calibration characteristics. 

7. It should be inexpensive enough for large-scale application. 

None of the present methods fulfill all of these requirements. The 

study undertaken by the author uncovered some methods that hold promise 

for solving the problems associated with methods at the present time. 

Specific objectives 

The objectives of thus study were to (1) construct and develop 

adsorptive transducers that accurately measure soil water potential over 

a wide range, and (2) develop from this technique, inexpensive trans­

ducer designs for use by agriculturists. The method of Al-Khafaf and 
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Hanks (1972) was chosen to expand upon because of its ability to measure 

moisture over a wide range. By capitalizing on this method and adapting 

it to a continuous transducer, the six requirements previously noted can 

best be fulfilled. 

The basic theory of operation of such transducers involves utilizing 

the change in electrical resistive properties of an adsorptive medium as 

water is adsorbed to indicate the amount of water contained therein. The 

experimentation thus entailed testing and evaluation of transducers 

designed with this theory in mind. Different materials were tested, and 

an optimum unit was tested in a soil environment. 
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PROCEDURE AND RESULTS 

The bulk of this study was concerned with the design and evaluation 

of a variety of transducers. The author prefers to give an account of 

each investigation, in the order that they were performed. This allows 

the reader to follow the reasoning that preceeded each change in design. 

Thus, this section will deal with the design of each transducer and 

enumerate briefly the results that led to each subsequent design. 

Instrumentation 

Prior to the start of the experimentation, instrumentation was 

obtained to monitor the state of the transducers. Instrumentation was 

limited almost entirely to resistance and temperature apparatus because 

of the nature of the study. A resistance meter was needed that could 

measure very large and very small resistances accurately. Noise 

isolation and stability were desirable assets to the system also . 

Temperature measurements were needed within ±0.01 C, to properly monitor 

the constant temperature environment. 

A Barnstead Conductivity Bridge, Model PM 70CB, was chosen as a 

resistance indicator. It had an a.c. oscillator circuit that prevented 

polarization of the transducers. It could measure resistances as high 

as one hundred million ohms with a constant accuracy throughout its 

range of one percent. It was portable and battery operated. This 

prevented noise contamination through an a.c. power supply. 

The wires of all transducers were composed of double-shielded Belden 

#8640 instrumentation wire o~, in later variations, Belden heavy-duty 
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coaxial cable, to prevent noise contamination of the electrical signals. 

A shielded rotary switch was used in multiple transducer investigations 

to facilitate measurement without disturbing the transducer test chamber. 

Temperature measurements were made with an S-B Systems Thermocouple 

Reference Junction (0 C) with copper-constantan thermocouples. By 

bucking a 20 C equivalent voltage against the signal voltage with a 

Leeds and Northrup K-3 Potentiometer, a very small change from 20.0 C could 

be measured. Amplification of this extremely small signal was accomplished 

with a Leeds and Northrup D.C. Null Detector-Amplifier. This amplified 

signal was directed to a Heathkit IR-18 pen recorder. Changes as small 

as 0.01 C could easily be distinguished. 

Filter paper transducers 

The initial design of transducers utilized filter paper as the 

adsorptive surface. The design (see Figure 1) consisted of 0.3175 cm 

thick plexiglass cut into a 1 cm by 3 cm rectangular piece. Two small 

holes were drilled at each end. Two #6/32 machine screws and nuts with 

brass washers held the paper against the plexiglass support frame. Two 

lead wires (Belden #8640) were attached to the paper with the screws. 

Two transducers of this type were constructed and placed in 500 ml 

filter flasks which were then sealed (see Figure 2). One flask contained 

distilled water (a 0.0 bar water potential equivalent) and one contained 

KCl solution (a 22.4 bar water potential equivalent). The flasks were 

placed in a polyfoam "picnic cooler" for thermal isolation. All test 

experiments were conducted in a 20 C constant-temperature room. 

Readings were taken with the Barnstead bridge over a period of 

several days. This data is summarized in Figure 3. It can be seen 

that equilibrium was reached within one day. However, instability was 
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Figure 1. Basic filter paper transducer design. 
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Figure 3. Initial tests of filter paper transducers over test solutions. 



" 

120 K 

110 K 

100 K 

90 K 

80 K 

70 K 

60 K 

50 K 

Ill 
El ..:: 
0 

c ..... 40 K 
Q) 
(,) 
c 
!l 
al ..... 
al )0 K CD 

ix; 

20 K 

10 K 

26 June 27 June 

~ over distilled water 

_........_ over 22. 4 l:ar KCl solution 

28 June 29 June )0 June 

16 

. -. 



17 

noted after two days. Severe corrosion of the machine screws and the 

washers was seen--especially in the KCl test environment. Readings were 

instable due to this and also the constant swelling and contraction of 

the paper. 

As water was adsorbed onto the paper particles, swelling immediately 

took place. Although the resistance of the paper matrix to electrical 

current was reduced by the water carrying electrical current, the 

swelling of the paper changed the distance of current travel--thus 

continually altering the resistance observed. A more stable adsorptive 

media was needed. 

Lithium chloride transducers 

Due to the problems encountered with the filter paper method, 

another adsorptive media was tested. Lithium chloride, a hygroscopic 

salt, has been used by climatologists as an adsorptive media for relative 

humidity measurements for many years (Wexler, 1965; Monteith, 1972). 

It was thought that these might be utilized for use in the soil. 

Limitations had been noted by Wexler (1965) for these transducers and 

others used in weather analysis such as the carbon and hair hygrometers. 

However, no experimentation with high humidities such as encountered in 

soils (an extremely dry soil would equilibrate with a microatmosphere 

to a humidity of 98 percent) could be found. 

A Varian lithium chloride humidity sensor was placed in the flask 

arrangement shown in Figure 2. A very fast equilibration time was noted 

and this is shown in Figure 4. No differentiation of readings in the 

98 to 100 percent relative humidity range could be observed, however. 

This transducer design was thus abandoned. 
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Figure 4. Lithium chloride humidity transducer over distilled water. 
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Gypsum block transducers 

A gypsum soil moisture block was placed into the test flask and 

tested over distilled water and 22.4 bar KCl solution. Figure 5 shows 

the extremely long equilibration time noted for this type of media. 

This media was abandoned temporarily at this time in favor of a faster 

response media. 

Coors porcelain transducers 

20 

At this point several transducers had been constructed and none were 

feasable for further consideration. An adsorptive media that resembled 

the soil in its moisture holding characteristics was still needed. Coors 

porcelain was suggested as a porous material that might be stable and 

usable as an adsorptive surface. If inherent ionic concentrations were 

low, salts could be "doped" into the porcelain to allow electrical 

resistance to decrease as water is adsorbed. 

A transducer was constructed as shown in Figure 6. Two sheets of 

0.3175 cm thick plexiglass were cut into two 36 nnn by 17 mm rectangles 

and small holes were drilled at each end. The two sheets were fastened 

on each side of a 17 mm by 13 mm (6 mm thick) porcelain block with two 

#6/32 stainless steel bolts and nylon nuts (to control corrosion). Lead 

wires were connected on the top side (Belden #8640). 

An initial test was made of an unwashed P-10-C (pore size notation 

of the Coors Porcelain Company) block over distilled water. This data 

is shown graphically in Figure 7. It was noted that a fast equilibration 

time was exhibited, and stability was much better than with the previous 

transducers. 

A second generation design of porcelain transducers was then 

constructed (see Figure 8) with the lead wires at opposite ends of the 
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Figure 5. Gypsum block transducer over distilled water then over 22.4 
bar KCl solution. 
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Figure 7. Initial ceramic transducer constructed from unwashed P-10-C 
porcelain. 
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porous block, to obtain a more representative reading of the resistance 

throughout the media. Transducers were constructed of different 

porosities from the coarse P-100-C, medium P-16-C, and fine P-20-C 

porcelain. 

A washed and unwashed block was assembled into a transducer for 

each of the three types. An extra washed P-10-C transducer was 

constructed as a check for consistency. To monitor flask temperature, 

a copper-constantan thermocouple was placed inside the extra P-10-C 

transducer test flask. The flasks were all filled with distilled water 

test solution. 

A test experiment was carried out with these seven transducers. 

The data are shown in Figures 9a and 9b. Temperature was also plotted 

for reference. The P-100-C data is not shown because the resistances 

never came within range of the measurement apparatus. It was seen 

that the most finely divided porcelain was the best suited for further 

test due to its low resistance. It was also seen that the unwashed 

porcelain did not contain enough salts to provide adequate resistance 

values for measurement. 

A third generation of transducers was constructed as shown in 

Figure 8. These were all constructed out of the most finely divided 

porcelain available, the P-3-C type. All of these porcelain blocks were 

washed in boiling distilled water and detergents and then treated with 

varying concentrations of KCl solution. 

The transducers thus constructed were placed into the test flasks 

and then into the insulated test chamber. A P-10-C transducer with a 

thermocouple temperature monitor was used in this experiment. 
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Figure 9a. Second generation ceramic element transducer test runs . 
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Figure 9b. Second generation ceramic element transducer test runs. 
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These transducers were tested for a longer period of time than any 

previous experiments. Data is plotted in Figure 10. It can be seen that 

these transducers worked well and in a desirable resistance range. How­

ever the KCl caused severe corrosion of the lead wires after considerable 

time. Vertical lines at the measurement points on the graph note the 

instability caused by this corrosion. Temperature had some effect on the 

readings. It would be of little significance, however, if the trans­

ducers were placed deep into the soil where temperature is constant. 

Revised gypsum block transducers 

At this time, problems had been encountered with every transducer. 

The most recent problem being the recurrent corrosion of the contact 

wires after a week of testing. The Coors porcelain was a poor adsorptive 

surface because it is manufactured with the intent to create a very 

uniform particle size. Thus, it did not fulfill the intent of the 

research--to develop a transducer that had a wide range of particle 

sizes. The gypsum block seemed the best of the adsorptive surfaces yet 

encountered. 

A transducer was constructed so that the gypsum block was completely 

isolated from touching any area of the soil environment. This was 

accomplished by sawing open a tensiometer cup (high pressure porous clay) 

and inserting the small gypsum block (see Figure 11). The cup was then 

sealed and the block firmly attached with epoxy resin. 

A test apparatus was constructed that more closely typified the 

field conditions that a transducer would be installed in. A cardboard 

ice-cream container was filled with a weighed amount of soil. Two 

transducers were placed in this soil along with two tensiometers that 

would measure soil matric potential. The soil was then saturated to 
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Figure 10. Third generation ceramic element transducers (treated with 
KCl solutions) with temperature plotted also. 
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near field capacity with a known amount of water. A small amount of 

coarse sand (2 cm in depth) was placed on the soil surface. The sand 

and the cardboard container minimize border effects by allowing the 

soil to dry out uniformly from all directions (see Figure 12). 
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By knowing the amount of soil and the amount of water and also the 

weight of all components added, the water content of the soil could be 

constantly monitored by merely weighing the container. Matric potential 

could be monitored throughout the experiment by the tensiometers. An 

extra tensiometer and extra transducer were added in case the main units 

failed. 

The test unit was checked at regular intervals for over one month 

as the soil dried slowly. Resistance values of the transducers, soil 

matric potential, and water content were all recorded daily throughout 

this period. The data are summarized in Figures 13 and 14. Figure 13 

has the transducer values plotted against time with the water content of 

the system superimposed. Figure 14 has the transducer values plotted 

against time with the matric potential of the system (numerically equal 

to the water potential under most conditions) superimposed. Note how 

the response times of the transducers are so slow that the values 

continue to go down during the complete period while the matric potential 

is rising. Also note that water is continually being adsorbed, while 

the water content of the soil is dropping to its minimum value. The 

values of the transducer dramatically increase when the soil reaches 

this minimum value (air dry). This is caused by the hygroscopicity of 

the calcium sulfate--which allows it to continually draw water from the 

soil atmosphere until it reaches a critical point. At this point (near 

air dry) the block suddenly looses the retained moisture to the soil 
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Figure 12. Test arrangement for evaluating gypsum block 
transducers in a soil environment. 
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Figure 13. Test run with optimized gypsum block transducers plotted with 
graviametric water content of the test soil. 
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Figure 14. Test run with optimized gypsum block transducers plotted with 
matric potential of the test soil. 
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atmosphere, because the soil has reached a water potential that is 

higher than that of the salty block solution. 
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It can easily be seen that the gypsum block is not a suitable 

adsorptive medium, due to the extremely long equilibration time and its 

inherent hygroscopicity. 
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DISCUSSION AND CONCLUSIONS 

None of the transducers tested fulfilled the criteria that were 

established. However, several significant conclusions can be made. The 

adsorptive media transducer would be in a workable form once the media 

was found that could resemble the soil in its properties and yet not 

expand or cause other interfering effects. It is proposed that a baked 

clay media would offer these advantages and could be doped with KCl salt 

to lower its inherent resistance. The only transducer that did not 

suffer from severe corrosion was the gypsum block transducer. It is 

proposed that if stainless steel screens were used in the clay trans­

ducer, as they are in the gypsum block, that this problem would be 

eliminated. 

Therefore, the author suggests further experimentation with adsorp­

tive media transducers. It is felt that if a clay can be found that has 

suitable characteristics, a transducer much like the final design would 

prove effective, reliable, and inexpensive. 
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