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ABSTRACT 

EPIGALLOCATECHIN-3-GALLATE REDUCES FAT ACCUMULATION IN 

CAENORHABDITIS ELEGANS 

DEGREE DATE 

MAY 2017 

JINNING LIU, B.A., SOUTHWEST UNIVERSITY, CHONGQING, CHINA 

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST, MA, USA 

Directed by: Professor Yeonhwa Park 

 

       Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is a 

polyphenol that is most abundant in tea. It has been shown from many studies that 

consumption of EGCG can contribute to weight loss, however, the underlying 

mechanism is not fully understood. To determine how EGCG acts to reduce fat, an 

organism model Caenorhabditis elegans (C. elegans) is introduced, which is a useful 

animal system in exploring crucial biological mechanisms that are readily applicable to 

humans. In this study, different strains were raised for two days on a diet with or without 

100µM and 200µM EGCG treatment: N2 (i.e., wild type) and mutants (i.e., knockdown 

of fat metabolism related genes). EGCG’s effect on fat reduction was characterized by 

triglyceride content, food consumption and physiological behaviors. Our results showed 

that 100 and 200 µM EGCG significantly reduced the triglyceride content of wild type 

worms by 10% and 20%, respectively, without affecting its food intake and physiological 

behaviors. Additionally, EGCG could effectively reduce fat accumulation in C. elegans 

dependent on acs-2 and atgl-1. 
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CHAPTER 1 

 INTRODUCTION 

 

Obesity has become a major public concern causing chronic illnesses among over 

one third of the population in the world. It is well-known that obesity results from 

excessive energy intake and a lack of energy expenditure, such as physical activity. 

Treatment of obesity using drugs and noradrenergic agents is possible, but limited, and 

hard to reverse once obesity is established. By contrast, using food-based bioactive 

components to control and prevent obesity is more favorable. 

Green tea is a popular beverage with a high content of flavonoids (a natural 

polyphenol) and has many desirable health benefits (anti-carcinogen, anti-inflammatory, 

and anti-oxidation). Consumption of green tea is very popular in Turkey, with an annual 

value of 12.54 kg (442 oz), while there is only 1.21 kg (43 oz) green tea consumption in 

the US. According to the database in World Health Organization, 33.9% of adults in the 

US are obese, whereas only 16.1% of adults in Turkey are obese. Epigallocatechin-3-

gallate (EGCG) is a catechin that is most abundant in green tea. It is believed that this 

polyphenolic compound is responsible for those positive physiological bioactivities in 

green tea. EGCG has been reported to have fat reduction effects both in vitro (Moon et al., 

2007) and in vivo (Kim et al., 2013), however, potential mechanism(s) are still unclear. 

As a model system to test the effects of food components on fat content, 

Caenorhabditis elegans (C. elegans) was applied in the current study. C. elegans has 

been used extensively in biological and medical studies due to their short life span of ~20 

days, a reproductive cycle of 3 days, and a large brood size of about 300 eggs by self-
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fertilization (Gonzalez-Moragas et al., 2015). Moreover, it is a nematode that conserves 

65% of genes related to human diseases (Baumeister & Ge, 2002), including those related 

to lipid metabolism, which makes it a great in vivo model for cellular and genetic studies.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1  Overview of obesity 

Obesity is caused by a chronic imbalance between energy intake and energy 

expenditure. For the years 2013-2014, the overall prevalence of obesity was 37.7% in the 

United States (Flegal et al., 2016). According to the National Institutes of Health, obesity 

and being overweight together are the second leading cause of preventable death, close 

behind tobacco use. An estimated 300,000 deaths per year are due to obesity.  

Many research projects, public health campaigns, and population interventions have 

been devoted to this epidemic disease. Four central acting noradrenergic agents: 

phentermine, diethylpropion, phendimetrazine and benzphetamine are currently FDA-

approved for the short-term management of obesity (Yanovski & Yanovski, 2013). 

However, it is difficult to reverse it once obesity is established (Gortmaker et al., 2011). 

Thus, the focus of anti-obesity strategies should be on prevention to obtain long-term 

health gains. Many food and food bioactive components have effective anti-obesity 

functions which are more favorable than medical drugs. However, tests in cells and in 

animal models are required before application to patients. Thus, finding an appropriate 

testing system and model is indispensable. 

 

2.2  Caenorhabditis elegans as a model for obesity research 

       Caenorhabditis elegans (C. elegans) is a nematode that has a short lifespan of 2-3 

weeks, a reproductive cycle of 3 days and a large brood size of about 300 eggs by self-
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fertilization. Moreover, it shares 65% of its genes with humans (Gonzalez-Moragas et al., 

2015). Specifically, studies showed that the core mechanisms of energy homeostasis 

involved regulatory pathways that are largely shared between mammals and nematodes. 

Therefore, all these attractive advantages render C. elegans a popular and favorable 

experimental model for obesity research. 

 

2.2.1   Characteristics of Caenorhabditis elegans 

       C. elegans is a eukaryotic and multi-organ animal, which does not require research 

approval by the Institutional Animal Care and Use Committees. With a small body size 

(1 mm in length in adult), a rapid life cycle, a short lifespan, a rapid reproductive cycle 

and a large brood size, C. elegans has been used as an organism, which can readily be 

cultured in the laboratory with a diet of Escherichia coli (E.coli), typically OP50, a non-

pathogenic strain. These characteristics enable a large-scale production of millions of 

worms in a short time and make it easily observable under a microscope and provide 

convenient application for large experiments carried out in multi-well plates. The 

transparent body enables the fluorescence markers to be easily applied and observed from 

worms (Kaletta & Hengartner, 2006).  

       The genome sequence of C. elegans was first described in 1998 when the gene 

function was discovered and preserved for important physiological variables (Tabara et 

al., 1998). It is the first animal to have its genome completely sequenced and over 65% of 

the human disease genes have a counterpart in worms, including genes involved in lipid 

metabolic pathways. The high level of similarity in gene sequences in C. elegans 

facilitates genetic manipulations and promotes the acquisition of results of mechanistic 

information (Zheng & Greenway, 2012).  
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2.2.2   The insulin signaling pathway in C. elegans 

The linking between nematodes and humans in obesity involved many components 

in the insulin/insulin-like growth factor-1 signaling (IIS) pathway (Ogg et al., 1997). This 

pathway is regulated by insulin-like peptide (ILPs) ligands in the presence of insulin or 

growth factors, which can bind to the insulin/Insulin-like growth factor-1 transmembrane 

receptor (IGFR) ortholog, DAF-2. DAF-2/IGFR activation recruits phosphoinositide 3-

kinase (PI3K) to the cell membrane. PI3K generates phospholipid signals, PIPs: 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) and phosphatidylinositol 4,5-

bisphosphate (PIP2) (Gami & Wolkow, 2006). The DAF-18/PTEN lipid phosphatase 

negatively regulates AGE-1/PI3K signaling. So the inhibition of DAF-18/PTEN increases 

PIP3 levels (Ogg & Ruvkun, 1998). Successively, phosphoinositide-dependent kinase-1 

(PDK-1), AKT serine/threonine kinase-1 (AKT-1), AKT-2 and serum glucocorticoid 

kinase (SGK-1) are activated, contributing to phosphorylation of the Forkhead family of 

transcription factor (DAF-16/FoxO). In turn, the phosphorylation of DAF-16 binds to 

Fourteen-Three-Three family proteins (FTT-2) and PARtitioning of cytoplasm (PAR-5), 

which results in the export of DAF-16 from the nucleus into the cytoplasm. This action of 

DAF-16 into the cytoplasm allows cell proliferation, stress sensitivity, and cell survival 

(Greer & Brunet, 2005). The serine/threonine phosphatase, PPTR-1, a regulatory subunit 

of the PP2A holoenzyme, acts by suppressing AKT-1 phosphorylation and as a result, 

inhibiting activity of DAF-16 (Figure 2.1) (Padmanabhan et al., 2010).  
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Figure 2.1 Summary of the insulin signaling pathway in C. elegans.Abbreviation: ILPs (insulin-like 
peptide); IGFR (insulin/Insulin-like growth factor-1 transmembrane receptor); PI3K (phosphoinositide 
3-kinase); PIPs (phosphatidylinositol phosphates); PDK-1 (phosphoinositide-dependent kinase-1); 
AKT (AKT serine/threonine kinase); SGK-1 (serum glucocorticoid kinase); FTT-2 (Fourteen-Three-
Three family proteins); PAR-5 (PARtitioning of cytoplasm); PPTR-1 (serine/threonine phosphatase).  
 
2.2.3   Lipogenesis in C. elegans 

C. elegans acquires most of its fat from a bacterial diet directly, but is also able to 

synthesize palmitic acid (C16:0) de novo from acetyl-CoA (Watts, 2009). Specifically, 

for wild-type worms, approximately 7% of fat is gained from de novo synthesis, while the 

rest is obtained from diet (Perez & Gilst, 2008). For de novo synthesis (Figure 2.2), all 

enzyme activities that are necessary for the synthesis of palmitic acid (C16:0), are 

encoded by two multifunctional enzymes: acetyl CoA carboxylase (ACC) and fatty acid 

synthase (FAS) (Rappleye et al., 2003). Palmitic acid can further be converted to 

ILPs

DAF(2/IGFR

PI3K PIPs

PDK(1

AKT(2AKT(1 SGK(1
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DAF(16/FoxO
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PAR(5
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polyunsaturated fatty acids (PUFAs) by various desaturases and elongases (Figure 2.2A). 

Seven fatty acid desaturases (FAT-1 through FAT-7), one 3-ketoacyl-CoA reductase 

(LET-767) and two fatty acid elongases (ELO-1 and ELO-2) have been suggested to be 

involved in PUFAs biosynthesis (Brock et al., 2006).  

       The monomethyl branched-chain fatty acids (mmBCFAs) are synthesized initially 

from isobutyryl-CoA, a bacterial degradation product from valine (Zheng & Greenway, 

2012). It can then be elongated by FAS to form 11-methyl dodecanoic acid (C13:iso). 

The generation of 13-methyl tetradecanoic acid (C15:iso) and 15-methyl hexadecanoic 

acid (C17:iso) from C13:iso requires specialized elongases, ELO-5 and ELO-6, as well as 

LET-767 (Figure 2.2B). Enzyme ELO-5 and LET-767 are required for generation of both 

C15:iso and C17:iso, while ELO-6 is required for generation of C17:iso (Watts, 2009). 

 

 

 



8 

 

Figure 2.2 Summary of fatty acid synthesis in C. elegans. (A) Synthesis of polyunsasturated fatty acids. (B) 
Synthesis of monomethyl branched-chain fatty acids. Abbreviation: ACC (acetyl CoA carboxylase); 
FAS (fatty acid synthase); FAT (fatty acid desaturases); LET-767 (3-ketoacyl-CoA reductase); ELO 
(fatty acid elongases); 16:0 (palmitic acid); 18:0 (stearic acid); 18:1n-7 (vaccenic acid); 18:1n-9 (oleic 
acid ); 18:2n-6 (linoleic acid); 18:3n-3 (alpha linolenic acid); 18:3n-6 (gamma linolenic acid); 18:4n-3 
(stearidonic acid); 20:3n-6 (dihomo gamma linolenic acid); 20:4n-3 (eicosatetraenoic acid); 20:4n-6 
(arachidonic acid); 20:5n-3 (eicosapentaenoic acid); C13:iso (11-methyl dodecanoic acid); C15:iso 
(13-methyl tetradecanoic acid); C17:iso (15-methyl hexadecanoic acid). 

 

2.2.4   Lipid metabolism related genes in C. elegans 

2.2.4.1  sbp-1 

       Sterol response element binding protein (SREBP) is a major transcriptional regulator 

of fat and sterol synthesis pathways in mammalian models (Eberlé et al., 2004). One 

ortholog of SREBP in C. elegans is known as SBP-1, which can be expressed in all 

metabolic related tissues and acts as a key regulator of fatty acid synthesis and fat 

homeostasis. Mutations in sbp-1 in C. elegans result in significant reductions in fat level 

and intestinal lipid droplets biogenesis (Ashrafi, 2006). In addition, SBP-1 regulates the 
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expression of ELO-5 and ELO-6, which are two fatty acid elongation enzymes involved 

in branched-chain FA synthesis (Kniazeva et al., 2004). 

 

2.2.4.2  nhr-49 

       Several nuclear hormone receptors (NHRs) in mammals act as essential regulators of 

energy homeostasis (Chawla, 2001). A large amount of NHRs are contained in the C. 

elegans genome, among which the function of NHR-49 is close to mammalian 

peroxisome proliferator-activated receptors (PPARs). In C. elegans, NHR-49 mediates b-

oxidation and genes that are related to dietary intake. Knockout of nhr-49 will cause an 

increased fat deposition and reduced expression of genes involved in mitochondrial b-

oxidation (Gilst et al., 2005). 

 

2.2.4.3  tub-1 

       The TUBBY (TUB-1) is a member of the family of four homologous proteins, 

including TUB-1 and TULPs 1-3. These proteins are found in humans and other 

multicellular organisms, such as C. elegans. TUB-1 acts as a transcription regulator and 

is believed to be involved in the insulin signaling pathway (Santagata et al., 2001). In C. 

elegans, deletion of tub-1 increases fat content (Mukhopadhyay, 2005). 

 

2.2.4.4  cebp-2 

       CCAAT/enhancer-binding proteins (C/EBPs) is a family of a highly conserved basic-

leucine zipper (bZIP) transcription factors. These proteins are found in hepatocytes, 

adipocytes, the spleen, the kidney and many other organs. C/EBP proteins are involved in 
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different cellular responses, such as cellular proliferation, growth, and differentiation in 

metabolism and immunity. CEBP-2 is the ortholog of C/EBPs in C. elegans, which 

regulates body fat content by controlling fatty acid mitochondrial b-oxidation and 

desaturation. Mutations in cebp-2 result in lower fat deposition (Xu et al., 2015).  

 

2.2.4.5  aak-2 

aak-2 encodes one of two C. elegans orthologs of the catalytic alpha subunit of 

AMP-activated protein kinases (AMPKs). AMPK is an enzyme that plays a role in 

cellular energy homeostasis. aak-2 activity is required, in parallel with aak-1 and 

downstream of daf-2, daf-7, and par-4, for negative regulation of germline proliferation 

during dauer development (Narbonne & Roy, 2009). Mutations in aak-2 result in higher 

fat content by inhibiting activation of the AMPK pathway which negatively regulates 

lipogenesis (Srivastava et al., 2012). 

 

2.3  Studying obesity interventions using C. elegans 

Compounds that potentially modulate body fat in C. elegans could be identified as 

active obesity intervention. In other words, C. elegans could be used for screening 

compounds that cause either fat loss or fat gain (Zheng et al., 2010). Some food and food 

bioactive components are already tested in C. elegans for the effect on fat content. 

Dietary fiber containing a high level of resistant starch reduced intestinal fat deposition in 

C. elegans (Zheng et al., 2010); legumes reduced intestinal fat deposition together with a 

decreased rate in food intake in C. elegans (Finley et al., 2013); oats had unique 

beneficial properties of reducing intestinal fat accumulation in C. elegans (Gao et al., 
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2015); hesperidin, a commonly found flavanone glycoside in citrus fruits, exhibited the 

capacity of reducing fat content in C. elegans (Yang, 2016); and cranberry extract 

decreased fat deposition in C. elegans (Sun et al., 2016).   

Compared with rodent models, C. elegans serves as a valuable model by saving the 

time in the laboratory. The results gained from in vitro could be tested in C. elegans, and 

studies conducted in C. elegans could enhance the understanding of the underlying 

mechanism on the effect of compounds and could suggest further study in humans. Thus, 

C. elegans is regarded as a great intermediate whole-animal model between in vitro and 

rodent animal experiments (Zheng & Greenway, 2012). 

 

2.4  Current knowledge of epigallocatechin-3-gallate in obesity studies 

During the last several decades, tea-derived bioactive components have gained 

considerable attention as cardio-protective agents (Lorenz et al., 2009). Tea contains 

large amounts of flavonoids, which are featured as containing two or more aromatic rings, 

each bearing more than one aromatic hydroxyl connected with a carbon bridge. The 

major flavonoids are catechins, which include epicatechin (EC), epigallocatechin (EGC), 

epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG) (Stangl et al., 2007). 

The naturally occurring compound EGCG is the major potent polyphenolic component 

and most abundant (50%-80%) of the total catechin content in green tea (Camellia 

sinensis L. Kuntze) (Khan et al., 2006). It has positive physiological bioactivities, such as 

anti-carcinogen (Morales & Haza, 2012), anti-inflammatory functions (Zhong et al., 

2012), and anti-oxidation (Gao et al., 2016), as well as anti-obesity (Steinmann et al., 

2013). 
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2.4.1   Effects of EGCG on energy balance 

2.4.1.1  Inhibitory effects of EGCG on energy intake 

       Energy, obtained from food, is provided by digestion of carbohydrate, fat and protein. 

Excess energy intake will contribute to fat gain and furthermore, obesity. Kao et al. (2000) 

reported that EGCG could significantly reduce food intake in Sprague Dawley rats and 

obese male Zucker rats when injected intraperitoneally. Tho &Wolfram (2005) found the 

effect of dietary EGCG on obesity development and energy intake in a mouse model of 

diet-induced obesity by reducing nutrient absorption. However, others reported that 

EGCG was not affecting food intake when supplied orally due to its low bioavailability 

(Kao & Hiipakka, 2000). 

 

2.4.1.1.1   Inhibitory effects of EGCG on a–amylase activity 

       a–amylase catalyzes the hydrolytic cleavage of starches in food to maltose and other 

low molecular weight sugars, which are easy to digest and absorb. Green tea has been 

shown to inhibit a–amylase activity in human saliva (Zhang & Kashket, 1998). To 

examine whether EGCG also has the same function, Forester et al. (2012) conducted an 

experiment reporting that EGCG inhibition of pancreatic a–amylase decreased 

postprandial blood glucose. Additionally, Zhan et al. (2016) suggested that EGCG could 

mitigate the risk of being overweight and obesity by suppressing the activity of a–

amylase in vitro.  

However, there are inconsistent reports on the relationship between obesity and a–

amylase activity. Some researchers reported that inhibition of a–amylase activity 

attenuated the development of high-calorie diet-induced obesity (Zhan et al., 2016) and 
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reduced blood glucose levels by inhibiting the ability to digest starch (Forester et al., 

2012). Whereas others reported that people who have high a–amylase activity adapt 

better to ingest starches, individuals with low activity may be at greater risk for insulin 

resistance and diabetes and furthermore obesity (Mandel & Breslin, 2012; Falchi et al., 

2014; Mejía-Benítez et al., 2014). EGCG is confirmed to have an inhibitory effect on the 

activity of a–amylase, even though the association with a–amylase activity, starch 

digestion and obesity is unclear. 

 

2.4.1.1.2   Inhibitory effects of EGCG on lipid digestion and absorption 

       The enzymes in the small intestine are responsible for almost all of the lipid 

digestion. Pancreatic lipase breaks down lipids into digestive products: free fatty acids 

and monoglycerides. Grove et al. (2012) reported that EGCG could inhibit lipid digestion 

by decreasing pancreatic lipase activity in high-fat-fed obese mice. Bose et al. (2008) 

found 16-week dietary EGCG treatment (3.2g/kg diet) could significantly decrease body 

weight and promote fecal lipids in comparison with high-fat-fed control mice, which 

indicated that EGCG could reduce lipid absorption resulting in reduced body weight. 

       Cholesterol, a hormone precursor and one of the components of plasma membranes, 

is primarily synthesized in the endoplasmic reticulum (ER). It is the initial molecule for 

synthesis of all steroid hormones and for several components of bile that assist digesting 

fats and lipids in the intestine. A previous report showed that EGCG inhibited the 

absorption of cholesterol at the level of cholesterol uptake in the intestine, and facilitated 

the excretion of serum cholesterol (Chisaka et al., 1988). Another experiment carried out 

by Raederstorff et al. (2003) further reported that EGCG influences the micellar 
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solubilization of cholesterol in the digestive tract, which then in turn reduced cholesterol 

absorption. 

 

2.4.1.2  Effects of EGCG on stimulation of energy expenditure 

       In a human study, it was reported that acute intake of a green tea extract rich in 

catechin polyphenols increased 24-hour energy expenditure (Dulloo et al., 1999). 

Another human study showed that a mixture of EGCG and caffeine could increase energy 

expenditure in 24h (Bérubé-Parent et al., 2005). A study suggested green tea reduced 

body fat accumulation through b-adrenoceptor activation of thermogenesis in brown 

adipose tissue in rats (Choo, 2003). However, another study failed to observe EGCG’s 

effect on the uncoupling protein 1 (ucp-1) gene expression in brown adipose tissue, 

which indicated that EGCG did not influence brown fat thermogenesis (Tho & Wolfram, 

2005). These inconsistent results may come from other components in green tea, such as 

EGC, ECG and EC. 

 

2.4.2   Effects of EGCG on lipid metabolism 

Lipid metabolism is a complicated process, including lipogenesis and lipolysis. 

Excessive fat turnover and oxidation might cause insulin resistance and, furthermore, 

obesity (Campbell et al., 1994). For example, release of free fatty acid is well regulated in 

normal-weight individuals; however, in upper-body obesity, excess lipolysis is 

commonly observed (Koutsari & Jensen, 2006). Several in vitro and in vivo studies 

reported that EGCG had a function of modulating lipid metabolism, which could 

consequently prevent and ameliorate obesity. 
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2.4.2.1  Inhibitory effects of EGCG on lipogenesis 

        It is found that green tea catechin could inhibit the activity and/or expression of 

lipogenic enzymes, such as ACC, FAS, malic enzyme (ME), glucose-6-phosphate 

dehydrogenase (G6PDH), glycerol-3-phosphate dehydrogenase (G3PDH), and stearoyl-

CoA desaturase-1 (SCD-1) (Lin et al., 1999). Reports on in vivo studies found that tea 

extract could decrease the expression of genes that mediated lipogenesis, such as SREBP-

1c, FAS, and SCD-1 in the liver (Chen et al., 2011) and adipose tissue (Hasegawa et al., 

2003; Park et al., 2011). This finding suggested that tea might be a useful dietary strategy 

to mitigate obesity. Since EGCG is the most abundant catechin in tea, much research has 

been focused on the inhibitory effect on lipogenesis of EGCG. According to in vitro 

studies, EGCG could suppress lipogenesis in adipocytes (Hwang et al., 2005), and in 

hepatocytes (Huang et al., 2009; Kim et al., 2013).  

 

2.4.2.2  Effects of EGCG on lipolysis 

There has been growing evidence that EGCG activated lipid metabolism via 

improvement of lipolytic activities in 3T3-L1 adipocytes (Mochizuki & Hasegawa, 2004; 

Lee et al., 2009; Chen et al., 2015) . However, Söhle et al. (2009) reported that EGCG 

had no contribution on the stimulation effect of white tea extract on lipolysis in vitro. The 

controversial statements, therefore, suggested that EGCG had inconsistent effects on 

lipolysis. 
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2.4.2.3  Effects of EGCG on stimulation of fat oxidation 

Fat oxidation is a process requiring energy to break down lipids. Tho & Wolfram 

(2005) reported that dietary EGCG promoted fat oxidation in mice. Furthermore, a few 

pilot studies in overweight/obese men showed that EGCG alone had the potential to 

promote fat oxidation and might thereby render an anti-obesity effect (Boschmann & 

Thielecke, 2007; Thielecke et al., 2010). According to animal and human studies, EGCG 

could therefore stimulate fat oxidation. To further explore the mechanisms of EGCG 

increasing fat oxidation, reports showed it could be possible through the activation of the 

Liver Kinase B1(LBK1)/AMPK pathway (Murase et al., 2009).  

 

2.4.3   Other potential mechanisms of EGCG in response to obesity 

       Obesity is now considered, partly, an inflammatory condition (Vick et al., 2007). 

Inflammation is a complex process involving various types of cells in the immune system. 

In a study, EGCG resulted in reduced inflammatory related proteins, such as IKB kinase 2 

(IKK-2), tumor necrosis factor (TNF-a), and interleukin 6 (IL-6) in 3T3-L1 adipocytes 

(Bao et al., 2015). Therefore, it is indicated that EGCG might have potential anti-

inflammatory effects. 

Responses to immune and autoimmune systems are regulated by a balance between 

effector T cells (Teff) that actively respond to stimuli, and regulator T cells (Treg) (O'Garra 

& Vieira, 2004) that play a pivotal role in the maintenance of immune tolerance and 

suppression of autoimmunity (Vignali et al., 2008; Feuerer et al., 2009). A report showed 

that EGCG enhanced the number and function of Treg isolated from obese subjects (Yun 

et al., 2010). In addition, Wong et al. (2011) reported that EGCG could induce Foxp3 (a 
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transcription factor of Treg cells) and IL-10 expression in CD4+  Jurkat T cells, at 

physiologically relevant concentrations of EGCG (2~50 µM) in vitro. They further 

showed that EGCG could increase Treg frequencies and numbers in spleen and lymph 

nodes in vivo. These indicated that EGCG might be a promising compound to modulate 

the immune response to obesity.  

 

2.5  Current studies on effects of EGCG in C. elegans 

According to available publications, EGCG has been shown to display antioxidant 

activities (Brown et al., 2006; Mohri-Shiomi & Garsin, 2008), stress preventive effects 

(Zhang et al., 2009; Abbas & Wink, 2010; Bartholome et al., 2010), and significant 

longevity-extending effects (Zhang et al., 2009; Saul et al., 2009; Bartholome et al., 2010; 

Abbas & Wink, 2010) in C. elegans. However, there is no report focusing EGCG on the 

mechanism of anti-obesity effects in the nematode. Therefore, this study was to examine 

whether EGCG could play a role in reducing fat content or preventing obesity in C. 

elegans and to find out the underlying mechanism(s) involved. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Materials, reagents and strains 

All the chemicals used were purchased from Thermo Fisher Scientific (Middletown, 

VA, USA). C. elegans strains and Escherichia coli OP50 used in this study were obtained 

from the Caenorhabditis Genetics Center (CGC, University of Minnesota, Minneapolis, 

MN, USA), including N2, bristal (wildtype); CE541, sbp-1 (ep79) III; RB754, aak-2 

(ok524) X; RB759, akt-1 (ok525) V; GR1307, daf-16 (mgDf50) I; RB1716, nhr-49 

(ok2165) I; BX107, fat-5 (tm420) V; BX106, fat-6 (tm331) IV; BX153, fat-7 (wa36) V; 

OP50 and OP50-GFP E. coli. Household bleach (The Clorox company, Oakland, CA, 

USA) was used for bleaching the worms when synchronizing L1 worms.  

 

3.2 Preparation of EGCG solution and C. elegans culture 

The EGCG extract (purity >99%) was dissolved in sterilized water and filtered 

through a 0.22 µm-diameter membrane to remove potential contaminants. Previously, it 

was reported that 200 µM EGCG had beneficial effects on C. elegans (Abbas & Wink, 

2009), however, it is assumed that with the higher concentration of the treatment, we 

might observe the adverse effect. Thus, we chose 100 µM and 200 µM EGCG as 

treatment groups to study the fat reducing effects in C. elegans. 

M9 buffer, S-complete, and nematode growth media (NGM) agar were used in C. 

elegans culture. After synchronizing, all L1 worms were raised at 25°C in S-complete 

media supplemented with E. coli OP50 and treated with or without EGCG in 12-well 
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plates for 2 days. 

 

3.3 Triglyceride quantification 

At the end of the treatment, C. elegans were collected and washed twice with water 

to remove E. coli and EGCG. C. elegans samples were dissolved in 0.05% Tween 20 

solution. After sonication, the samples were used for the triglyceride (TG) and protein 

measurements. TG assay was conducted with the InfinityTM Triglycerides Reagent and 

protein content was measured with the Coomassie Plus Protein Assay Reagent. TG 

content was then normalized with protein concentrations. 

 

3.4 Measurement of growth rate 

       After the 2-day treatment, nematodes were transferred to new agar plates to measure 

the growth rate. The numbers of worms at different stages were counted under an optical 

microscope (Olympus Corporation, Tokyo, Japan). 

 

3.5 Measurement of pharyngeal pumping, body size, and movement 

After the 2-day treatment, nematodes were transferred to new plates with fresh E. 

coli OP50 for the measurement of pumping rate, body size, and locomotive activity. The 

pumping rate was measured by counting the rate of pharyngeal muscle contractions from 

C. elegans under the optical microscope. For body size and movement, a 30 s video was 

recorded and data for the length, width, and moving speed of worms were then analyzed 

by Wormlab tracking system (WormLab software version 3.1.0, MicroBrightField Inc., 

Williston, Vermont).  
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3.6 Measurement of food intake 

To monitor food intake of the nematodes, age-synchronized N2 nematodes were 

cultivated on E. coli OP50-GFP bacterial lawns on NGM plates with or without EGCG. 

After treatment for 2 days, nematodes were washed twice with water, placed and fixed 

onto slides which were prepared with fresh 5% agar pads, and then visualized under a 

fluorescent microscope. The integrated density was quantified using Image J software by 

determining the average pixel intensity. 

 

3.7 mRNA expression analysis 

Total RNA was extracted from C. elegans using TRIzolÒ reagent under RNase-free 

conditions. Total RNA was reverse transcribed to cDNA using a High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems). Real-time PCR was performed on a 

StepOne Plus real-time PCR system (Applied Biosystems). We used cebp-2 

(Ce02421574_g1), hosl-1 (Ce02494529_m1), atgl-1 (Ce02406733_g1), mdt-15 

(Ce02406575_g1), pod-2 (Ce02427721_g1), and acs-2 (Ce02486193_g1) for TaqMan 

gene expression assays. Threshold values were analyzed using the comparative CT 

method. The RNA polymerase II large subunit ama-1 gene (Ce02462726_m1) was used 

as an internal standard. 

 

3.8 Statistical analysis 

Data are expressed as means ± standard errors. Statistical analysis for all data were 

performed by Statistical Analysis System (SAS version 9.4, SAS Institute, Cary, NC, 

USA). Differences between groups were assessed with one-way or two-way analysis of 
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variance (ANOVA), followed by Tukey’s multiple range test. Significance of differences 

was defined at the P < 0.05 level. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 EGCG reduced fat accumulation in wild type C. elegans 

       Compared with the control, the triglyceride (TG) content decreased with the 

increased concentrations of EGCG (Figure 4.1). The results indicated that the TG content 

was significantly reduced by 10% (100 µM) and 20% (200 µM) in a dose-dependent 

manner. This is consistent with previous reports that EGCG treatments could inhibit 

lipogenesis in vitro (Moon et al., 2007) and in vivo (Wolfram et al., 2006; Richards et al., 

2010). According to previous reports, EGCG might affect fat storage through the 

modulation of food intake, lipid digestion and absorption, lipogenesis, and the stimulation 

of energy expenditure, lipolysis, and fat oxidation. To examine the potential mechanism 

of EGCG in C. elegans, we further tested the effects of EGCG on food intake, energy 

expenditure, lipogenesis etc.  

 
Figure 4.1 Effects of EGCG on triglyceride accumulation in wild type C. elegans. EGCG treatment of 
C. elegans started from L1 stage and the samples were analyzed after a 2-day treatment. Data are 
expressed as means ± S.E. (n=16). Values with * or ** show significant difference when compared 
with the control (P-value < 0.05 or < 0.01, respectively). Data were analyzed by two-way ANOVA. 
 
 
 

*
**

0

10

20

30

control 100µM 200µM

Tr
igl
yc
er
id
e*(
µg

/m
g*p

ro
te
in
)

EGCG*Concentration



23 

4.2 EGCG did not affect food intake in C. elegans 

It is well-known that reducing fat accumulation can be caused by decreasing food 

intake, but it is not clear if EGCG may have an effect on this in C. elegans. We counted 

pumping rate of N2 worms’ pharynx with or without EGCG treatment and found that no 

significant difference was observed (Figure 4.2A). Pumping rate is a mechanical 

movement, which can be fluctuated by many factors, such as time, light and temperature 

(Wang et al., 2016). We conducted another experiment using E. coli OP50-GFP to feed 

the worms, and measured the integrated density as a marker of food intake. The images 

of C. elegans fed with E. coli OP50-GFP were showed in Figure 4.2B. The analysis of 

fluorescent intensity indicated that there was no significant difference between the 

treatment and control groups, which was consistent with the pumping rate. Overall, these 

results suggested that EGCG did not affect food intake in C. elegans. 
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Figure 4.2 Effects of EGCG on food intake in wild type C. elegans. (A) Pumping rate was measured 
by counting the rate of pharyngeal muscle contractions from C. elegans under the optical microscope; 
(B) Images of green fluorescence in C. elegans represented by E. coli OP50-GFP. Data are expressed 
as means ± S.E. (n=48). Data were analyzed by two-way ANOVA. 

 

4.3 EGCG did not affect physical behavior and growth rate in C. elegans 

       EGCG contains a large number of bioactive functions that may have either benefit or 

adverse effects on C. elegans, in terms of growth rate and physical behavior, but these are 

almost unknown. Treatments of EGCG, at 100 µM or 200 µM, showed no significant 

difference on the effect of both growth rate (Figure 4.3A) and physical behavior (Figure 

4.3B, C, &D). Taken collectively, these data indicated that EGCG has no effect on 

growth or physical behavior in C. elegans. 
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Figure 4.3 Effects of EGCG on growth rate and physiological behavior in wild type C. elegans. (A) 
Percentage of worms from L1 to adult between treatment and control groups after the 2-day treatment 
of EGCG. Numbers represented mean values ± S.E. (n=12 plates, each plate had more than 100 
worms); (B) Average body length of N2 worms after the 2-day treatment of EGCG. Numbers 
represent mean values ± S.E. (n>600); (C) Average body width of N2 worms after the 2-day treatment 
of EGCG. Numbers represent mean values ± S.E. (n>600); (D) Average locomotive activity of N2 
worms after the 2-day treatment of EGCG. Numbers represent mean values ± S.E. (n>600). Data were 
analyzed by two-way ANOVA. 
 

4.4 Effects of EGCG on fat accumulation in gene-knockdown mutants  

Genetic factors are also known to affect overall fat accumulation (So et al., 2011). 

Thus, we completed gene-epistasis assays to determine if EGCG influences genes related 

to fat metabolism using various available mutants, including sbp-1, nhr-49, aak-2, fat-5, 

fat-6, and fat-7.  

sbp-1, fat-5, fat-6, and fat-7 are genes that are involved in fat synthesis pathways in 

C. elegans (Eberlé et al., 2004). Deletion of these will result in reduced fat content. 
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Significant differences between the TG level of control and EGCG treatment groups in 

sbp-1, fat-5, fat-6, and fat-7 mutants were detected (Figure 4.4). This suggested that these 

genes might not be involved in EGCG’s effects on reducing fat storage in C. elegans.  

nhr-49 and aak-2 are genes that are involved in energy homeostasis in C. elegans, 

and knockout of these genes may cause increased fat level. Significant decreases of TG in 

EGCG treatment groups were observed in both nhr-49 and aak-2 mutants, when 

compared to the control groups (Figure 4.4). This result indicated that EGCG might not 

act on nhr-49 and aak-2 to mediate fat reduction in C. elegans. 

All the genes tested showed no involvement in EGCG’s fat reduction effect, which 

indicated that EGCG might not act via these genes in C. elegans 

 

Figure 4.4 Effects of EGCG on tested genes. Numbers represent mean values ± S.E. (n=4). Values 
with *, ** or *** show significant difference when compared with control (P-value < 0.05, < 0.01 or 
< 0.001, respectively). aak-2 (5'-AMP-activated protein kinase catalytic subunit alpha-2), sbp-1 (sterol 
regulatory element binding protein), nhr-49 (nuclear hormone receptor family), fat-5 (Δ9-fatty-acid 
desaturase fat-5), fat-6 (Δ9-fatty-acid desaturase fat-6), fat-7 (Δ9-fatty-acid desaturase fat-7). Data 
were analyzed by one-way ANOVA. 
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4.5 Effects of EGCG on the expression of genes involved in lipid metabolism  

Since no mutants provide potential mechanism of EGCG on reducing fat storage, we 

then determined other genes involved in lipogenesis and lipolysis: hosl-1, atgl-1, cebp-2, 

acs-2, mdt-15, and pod-2, as PCR target genes.  

ATGL (adipose triglyceride lipase) and HOSL (a homolog of hormone-sensitive 

lipase) are responsible for more than 90% of triglyceride hydrolysis (Schweiger et al., 

2006). However, ATGL is reported to be also induced during adipogenesis and remains 

highly expressed in mature adipocytes (Kershaw et al., 2007). Our results indicated that 

EGCG did not affect hosl-1 expression but significantly decreased the expression of atgl-

1 by 14%  and 23.7% at 100 and 200 µM compared to the control, respectively (Figure 

4.5).  

CEBP-2 is a homolog of the CCAAT/enhancer-binding protein, which is involved in 

adipocyte differentiation (Xu et al., 2015). acs-2 encodes an acyl-CoA synthetase, which 

catalyzes the conversion of a fatty acid to acyl-CoA for subsequent b-oxidation (Van 

Gilst et al., 2005). mdt-15 encodes a mediator sub-unit ortholog of human MED15, which 

is required for normal fat accumulation and for the expression of fatty acid desaturase 

genes (fat-5, fat-6, and fat-7) (Taubert et al., 2006). POD is a homolog of acetyl-CoA 

carboxylase alpha, which is predicted to catalyze the first step in de novo fatty acid 

biosynthesis (Ding et al., 2015). These genes are all involved in lipogenesis. Our results 

showed no significant difference in cebp-2, mdt-15, and pod-2 (Figure 4.5), while 

showing a significant decrease in acs-2 with a decreased rate of 17.5% and 25% at 100 

and 200 µM in EGCG treatment groups, as compared to the control group, respectively 

(Figure 4.5). 
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This indicated that the fat reduction effect of EGCG in C. elegans might be 

independent of cebp-2, hosl-1, mdt-15, and pod-2, but dependent of acs-2 and atgl-1, 

which are involved in lipogenesis and adipogenesis, respectively. Thus, EGCG might act 

on inhibiting lipogenesis and adipogenesis to reduce fat in C. elegans. 

 
Figure 4.5 Effects of EGCG on the expression of lipid metabolism-related genes in C. elegans. 
Numbers represent mean values ± S.E. (n=3). Values with * or ** show significant difference when 
compared with the control (P-value < 0.05 or < 0.01, respectively). Data were analyzed by one-way 
ANOVA. 
 
4.6 Conclusion 

       In conclusion, the current results suggest that EGCG reduces fat accumulation in C. 

elegans without affecting food intake, physical behavior, and growth rate. This effect was 

independent of sbp-1, nhr-49, aak-2, fat-5, fat-6, fat-7, cebp-2, hosl-1, mdt-15, and pod-2, 

whereas dependent of acs-2 and atgl-1 that are genes related to lipogenesis and 

adipogenesis, respectively. Further investigation would be needed to confirm the 

significance of acs-2 and atgl-1 on EGCG’s effects on fat reduction by conducting gene-

knockdown assays.  
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