University of Massachusetts Amherst ScholarWorks@UMass Amherst

Masters Theses

Dissertations and Theses

July 2017

Accounting For Biotic Variability In Streams With Low Levels of Impervious Cover: The Role of Reach- and Watershed-Scale Factors

Catherine Bentsen University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Recommended Citation

Bentsen, Catherine, "Accounting For Biotic Variability In Streams With Low Levels of Impervious Cover: The Role of Reach- and Watershed-Scale Factors" (2017). *Masters Theses*. 490. https://scholarworks.umass.edu/masters_theses_2/490

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Accounting For Biotic Variability In Streams With Low Levels of Impervious Cover: The Role of Reach- and Watershed-Scale Factors

A Thesis Presented

by

CATHERINE NICOLAISEN BENTSEN

Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2017

Environmental Conservation

Accounting For Biotic Variability In Streams With Low Levels of Impervious Cover: The Role of Reach- and Watershed-Scale Factors

A Thesis Presented

by

CATHERINE NICOLAISEN BENTSEN

Approved as to style and content by:

Allison H. Roy, Chair

Rachel A. Katz, Member

Christine E. Hatch, Member

Curt R. Griffin, Department Head Department of Environmental Conservation

DEDICATION

For my Dad:

although you are no longer here in person, you are always with me in spirit

ACKNOWLEDGMENTS

This work would not have been possible without the tremendous support and guidance provided by my advisor, Allison Roy. Allison has been invaluable in navigating the challenges of research and honing a large swath of information into a coherent storyline. Her countless hours spent providing timely and critical feedback have successively improved my work, which I hope is adequately reflected in this thesis. My committee members, Rachel Katz and Christine Hatch, provided valuable insights throughout the process, particularly related to analyses, framing, and perspective.

This thesis is one component of a larger project, for which I am indebted to the other project team members. Dave Armstrong at USGS New England Water Science Center in particular guided the project through its various stages, organizing multiple team members for regular meetings and conference calls, and wrangling a large dataset that I have been fortunate to use in my own work. Dave was also a huge help in the field, providing guidance on field methodology as well as helping me get up to speed on surveying with the electronic total station. Lance Ostiguy and Sara Levin at USGS were important contributors to this dataset, as was Matt Baker at University of Maryland Baltimore County.

Massachusetts Department of Environmental Protection (MDEP) and Massachusetts Division of Fisheries and Wildlife (MDFW) were vital state partners. MDEP provided funding for this project, and both MDEP and MDFW contributed the rich biotic datasets on which this project was built. Bob Nuzzo at MDEP served as invaluable macroinvertebrate expert, who generously lent expertise on the extensive macroinvertebrate data collected by MDEP and their numerous staff and technicians who

iv

collected, sorted, and identified hundreds of bug samples over the years. Cole Ecological, Inc., under leadership from Michael Cole, provided timely and accurate macroinvertebrate identification for additional bug samples I collected. Similarly, staff at MDFW, especially Todd Richards, Jason Stolarski, and Leanda Fontaine Gagnon provided expertise, data sharing, and additional field sampling along with their regional fish sampling crews. Todd, also a member of the Roy lab group, asked key questions regarding data collection, analysis, and interpretation.

At University of Massachusetts Amherst, the Roy lab served as my intellectual home for all things aquatic. Bob Smith, a member of the Roy lab and project partner, contributed significant time to discuss analytical methods, give feedback on presentations, and hash out ideas about theoretical and applied ecology. Expert GIS guidance from Bob allowed me to dive directly into site selection shortly after starting grad school. Lab group meetings provided commentary to improve and interpret analyses, posters, and presentations. Lab get-togethers off campus were equally important in providing work-life balance during the grad school process. Many members of the Roy group have been part of the lab for the entire or partial duration of my tenure at UMass Amherst, including postdocs Bob Smith, Rachel Katz, and Sean Sterrett; fellow grad students Emily Argo, Meghna Marjadi, Julianne Rosset, Todd Richards, Jason Carmignani, Matt Devine, Peter Zaidel, and Steven Mattocks; and honors undergraduates Allyson Yarra and Chris Smith.

My fieldwork would not have been possible without the dedication and long hours undertaken by undergraduate technicians. Chris Smith and Ben Knicely were my main technicians during summers of 2014 and 2015, respectively, although numerous other

v

graduate and undergraduate students spent time in the field helping me survey, measure discharge, and collect water quality samples. The Massachusetts Cooperative Fish and Wildlife Research Unit has incredible administrative support through Deb Wright. The Coop Unit generously provided vehicles for fieldwork, on which I put thousands of miles traveling around the state, hauling truckloads of gear to my sites. I thank all of the towns and private landowners who granted me access through their land to sample stream sites over the course of my thesis.

I would be remiss not to mention the constant support and encouragement of my family and friends to get me through the hurdle of grad school. I am looking forward to having more time to spend with all of you once this chapter—pun intended—is complete.

ABSTRACT

ACCOUNTING FOR BIOTIC VARIABILITY IN STREAMS WITH LOW LEVELS OF IMPERVIOUS COVER: THE ROLE OF REACH- AND WATERSHED-SCALE FACTORS

MAY 2017

CATHERINE N. BENTSEN, B.S. CORNELL UNIVERSITY M.S. UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Allison H. Roy

As landscapes become increasingly urbanized, there is an associated increase in impervious cover. Impervious surfaces, such as roads, rooftops, and parking lots contribute to the physical, hydrological, chemical, and biological alteration of stream systems. Biotic assemblages consistently degrade with increased watershed impervious cover; however, at low levels of impervious cover, these assemblages exhibit wide variability in biotic integrity. This study investigated which reach- and watershed-scale factors explained biotic condition (i.e., richness, flow traits, thermal traits, and tolerance for macroinvertebrates and fishes) at similar levels of low imperviousness. The primary objective was to identify factors that confer resistance for biota, such that they retain high biotic integrity at low levels of impervious cover, and, conversely, to determine which factors make biota more vulnerable to urban disturbance, such that they have low biotic integrity despite low levels of impervious cover. Forty sites were selected across Massachusetts within two narrow bands of impervious cover: 1-4% (n = 20) and 7-10%(n = 20). Models with reach-scale variables (reflecting habitat heterogeneity, flow, temperature, or water quality) or watershed-scale variables (representing natural

vii

characteristics, land use, flow alterations, and other measures of urbanization or impervious) explained additional variance compared to models with impervious cover alone. Reach-scale factors tended to explain more variance than watershed-scale factors for all biotic responses except fluvial fishes, with overall more variance explained for fish than macroinvertebrate assemblages. At the reach scale, colder water temperatures, higher dissolved oxygen, and more large wood were related to higher proportions of fluvial, coldwater, and intolerant fishes. For macroinvertebrates, warmer water temperature, smaller sediment size, and higher nitrate were related to higher macroinvertebrate richness and tolerance. At the watershed scale, air temperature emerged as an important predictor for both taxonomic groups and across response metrics; air temperature was highly correlated with high-elevation watersheds. Other important watershed-scale predictors were open water and dams, flow alteration, and other urban measures such as housing density, impervious in a 120-m buffer, and road crossings. Restoration should focus on strategies to reduce impacts that would degrade in-stream conditions that allow for higher biotic integrity, such as habitat heterogeneity, more large wood, and colder water temperatures. Similarly, watersheds should be prioritized for protection with those characteristics potentially more resistant to urban disturbance, such as high-elevation regions that retained high biotic integrity despite higher dam density, more road crossings, and more flow alteration.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iv
ABSTRACT	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
CHAPTER	
1. INTRODUCTION	1
1.1 Urbanization patterns and processes	1
1.2 Urban stream syndrome: abiotic responses	2
1.3 Urban stream syndrome: biotic responses	4
1.4 Biotic variability at low levels of impervious cover	6
2. PHYSICOCHEMICAL CHARACTERISTICS EXPLAIN DIFFERENCES IN BIOTIC RESPONSES TO URBANIZATION	10
2.1 Introduction	10
2.2 Methods	
2.2.1 Study area	17
2.2.2 Site selection	
2.2.3 Data collection	
2.2.5 Data concerton	20
2.2.3.1 Reach delineation	21
2.2.3.2 Longitudinal profiles and cross sections	22
2.2.3.3 Habitat assessment	22
2.2.3.4 Temperature and water quality	24
2.2.3.5 Macroinvertebrates	25
2.2.3.6 Fishes	26
2.2.4 Statistical analyses	28
2.3 Results	31
2.3.1 Site characteristics	31
2.3.2 Biotic responses	31
2.3.3 Reach-scale predictors	
2.3.4 Predictor-response relationships	

2.3.4.1 Taxonomic group	36
2.3.4.2 Biotic response metric	
2.3.4.3 Impervious band	
2.4 Discussion	38
2.4.1 Reach-scale variables explain differences in biotic condition	38
2.4.2 Fish and macroinvertebrate responses differ	
2.4.3 Responses vary based on the biotic metric used	
2.4.4 Reponses vary based on impervious cover band	
2.4.5 Conclusion	
3. WATERSHED-SCALE FACTORS EXPLAIN ADDITIONAL VARIANCE IN BIOTIC ASSEMBLAGES OF URBAN STREAMS	63
	05
3.1 Introduction	63
3.2 Methods	67
3.2.1 Study area	67
3.2.2 Site selection	69
3.2.3 Biotic assemblages	70
3.2.4 Watershed variables	71
3.2.5 Statistical analyses	74
3.3 Results	76
3.3.1 Site characteristics	76
3.3.2 Biotic responses	76
3.3.3 Watershed-scale predictors	78
3.3.4 Predictor-response relationships	79
3.3.4.1 Taxonomic group	80
3.3.4.2 Biotic response metric	
3.3.4.3 Impervious band	
3.4 Discussion	82
3.4.1 Watershed-scale variables explain differences in biotic	_
condition	
3.4.2 Fish and macroinvertebrate responses differ	
3.4.3 Responses vary based on the biotic metric used	
3.4.4 Reponses vary based on impervious cover band	
3.4.5 Conclusion	91

4. DISCUSSION AND CONCLUSIONS	103
4.1 Resistance and resilience: urbanization in context	103
4.2 Scale matters	
4.3 Metrics matter	
4.4 Compounding pressures from climate change	
4.5 Further research directions	
4.6 Conclusion	
APPENDICIES	113
A. SAMPLING SITES AND CODES	114
B. RAW BIOTIC DATA MATRICES	116
C. BIOTIC TAXA CLASSIFICATIONS	134
D. BIOTIC RESPONSE METRICS CALCULATED FROM RAW	
DATA	145
E. BIOTIC RESPONSE SPIDER PLOTS	147
F. REACH-SCALE VARIABLES AND CODES	150
G. PAIRWISE SPEARMAN RANK CORRELATION ANALYSIS FOR	
REACH-SCALE VARIABLES	156
H. SINGLE-VARIABLE MODEL COMPARISON FOR REACH-	
SCALE PREDICTORS	161
I. EQUALLY PLAUSIBLE MODELS FROM ALL-SUBSETS GLMS	
AND GLMMS WITH REACH-SCALE PREDICTORS	170
J. LAND COVER CLASSIFICATIONS	174
K. REACH-SCALE VARIABLES AND CODES	178
L. PAIRWISE SPEARMAN RANK CORRELATION ANALYSIS FOR	
WATERSHED-SCALE PREDICTORS	184
M. SINGLE-VARIABLE MODEL COMPARISON FOR WATERSHED-	
SCALE PREDICTORS	
N. EQUALLY PLAUSIBLE MODELS FROM ALL-SUBSETS GLMS	
AND GLMMS WITH WATERSHED-SCALE PREDICTORS	198
BIBLIOGRAPHY	202

LIST OF TABLES

Table Page
2.1. Specifications for generalized linear models (GLMs) and generalized linear mixed models (GLMMs) with associated family and link functions and fixed and random effects for each biotic response variable
 2.2. Summary statistics (minimum, maximum, mean, standard deviation, and coefficient of variation) for predictor variables within each group by impervious cover band (very low = 1–4%, low = 7–10%) at 40 sites across Massachusetts, sampled during 2014–2016
2.3. Predictors with the lowest AICc from model selection within each reach-scale predictor category (Appendix H) are shown with the directionality (estimate) and variance explained (\mathbb{R}^2) for impervious (IC) and the additional predictor (pred) in each biotic response model. Models were run for: both bands ($n = 40$), very-low band (1–4%, $n = 20$), and low band (7–10%, $n = 20$)
2.4. Variable importance was determined through all-subsets GLMs and GLMMs for each biotic response metric. The all-subsets approach ran models for every variable combination of impervious cover and the top-performing predictor from each predictor category of habitat, flow, temperature, and water quality. Model weights (<i>w</i>) were calculated based on corrected Aikaike Information Criterion (AICc) values across all 31 models run. Variable importance was calculated for equally plausible models (< 2 Δ AICc); Σw represents the sum of model weights for each model in which the variable appeared. Higher Σw values indicate more important variables. Impervious cover is highlighted in gray
3.1. Watershed-scale variables for each of the predictor categories representing natural characteristics, land cover, flow alteration, and other urban measures. Descriptions of each variable are given, as well as the relevant units, data resolution (i.e., pixel size), and the relevant years from which data were acquired
 3.2. Summary statistics (minimum, maximum, mean, standard deviation, and coefficient of variation) for biotic response variables, grouped by response variable category and impervious cover band (very low = 1–4%, low = 7–10%) at 40 sites across Massachusetts, sampled during 2005–201594
 3.3. Summary statistics (minimum, maximum, mean, standard deviation, and coefficient of variation) for variables within each predictor category, by impervious cover band (very low = 1–4%, low = 7–10%) at 40 sites across Massachusetts

LIST OF FIGURES

Figure	Page
1.1. Conceptual diagram of the generalized relationship between impervious cover and biotic condition: as watershed imperviousness increases, biotic condition degrades. Biotic assemblages exhibit wide variability at low levels of impervious cover, however, likely due to variation in reach- and watershed-scale factors. Diagram modified from Schueler et al. (2009)	9
2.1. Forty sites sampled across Massachusetts within two bands of impervious cover: $1-4\%$ ($n = 20$; pink) and $7-10\%$ ($n = 20$; red) during 2014–2016. Major waterbodies (large rivers, lakes; blue) and town boundaries are also shown	56
2.2. Overlap among fish species with fluvial, coldwater, and intolerant traits. Species that do not possess any of these traits, and thus were not included in the suite of flow, thermal, and tolerance response variables, are listed as "other"	57
2.3. Scatterplots of the relationship between impervious cover and biotic response variables: macroinvertebrate taxa richness (A), fish species richness (B), macroinvertebrate flow traits (C), fluvial fishes (D), coldwater macroinvertebrates (E), coldwater fishes (F), macroinvertebrate tolerance index (G), and intolerant fishes (H).	58
2.4. Spider plots displaying biotic response variables at four selected sites: East Branch Housatonic (A), Kinderhook (B), Fall (C), and Westminster (D). Counterclockwise from top center around each plot, the response variables are macroinvertebrate richness, fish richness, macroinvertebrate flow traits, fish flow traits, macroinvertebrate thermal traits (coldwater), fish thermal traits (coldwater), macroinvertebrate tolerance index, and fish intolerant. Black dots show the relative value for each response variable. Dots closer to the center of the plot indicate low values; dots further away from the center and near the outer ring indicate high values. All plots are scaled such that the center represents the minimum value found across all 40 sites, while the outer ring represents the maximum value found across all 40 sites	59
2.5. Histograms of macroinvertebrate taxa richness (black) and relative abundance (gray) along the tolerance gradient from intolerant (0) to tolerant (10)	60
2.6. Additional variance explained by reach-scale predictors within predictor categories of habitat, flow, temperature, and water quality, for (A) very-low (1–4%) and (B) low (7–10%) impervious bands	61

2.7. Box plots for variance explained by equally plausible models within the very- low band (A) and low band (B). Equally plausible models (< 2 AICc) are available in Appendix I	62
 3.1. Forty sites sampled across Massachusetts within two bands of impervious cover: 1–4% (n = 20; pink) and 7–10% (n = 20; red) during 2014–2016. Major waterbodies (large rivers, lakes; blue) and town boundaries are also shown. 	99
3.2. Scatterplots of biotic responses comparing similar metrics for each taxonomic group. Macroinvertebrates are shown on the x-axis and fishes are displayed on the y-axis. The metrics compared include richness (A), fluvial traits (B), thermal traits (C), and tolerance (D). Dotted lines divide each graph into four quadrants based on better or worse condition. Good condition for both macroinvertebrates and fishes at the same site is represented within the upper right quadrant for richness, fluvial traits, and thermal traits, and within the upper left quadrant for tolerance.	.100
3.3. Additional variance explained by watershed-scale predictors within predictor categories of natural characteristics, land cover, flow alteration, and other urban measures, for (A) very-low (1–4%) and (B) low (7–10%) impervious bands	.101
3.4. Box plots for variance explained by equally plausible models within the very- low band (A) and low band (B). Equally plausible models (< 2 AICc) are available in Appendix N	.102
4.1. Variance explained by equally plausible models for both reach- and watershed-scale factors, for both bands analyzed together. Each box represents the range of \mathbb{R}^2 , pseudo- \mathbb{R}^2 , or conditional- \mathbb{R}^2 for sets of equally plausible models (< 2 Δ AICc; Appendix I, Appendix N) for each biotic response metric of richness, fluvial traits, thermal traits, and tolerance. Models with reach-scale variables tended to explained more variance in biotic assemblage metrics than models with watershed-scale variables, except in the case of fluvial fishes and coldwater macroinvertebrates. Bands refer to very low = 1–4% and low = 7–10% impervious cover	.112

CHAPTER 1

INTRODUCTION

1.1 Urbanization patterns and processes

In 2014, more than half (54%) of the global population lived in urban compared to rural areas (United Nations 2015). Urbanization is projected to increase globally, with 66% of the population expected to live in urban areas by 2050 (United Nations 2015). In the United States, as of 2012 81% of the populace lived within urban areas (towns/cities with more than 50,000 people), an increase from 79% in 2000 (U.S. Census Bureau 2012) and 72% in 1950 (Brown et al. 2005). The Northeast is one of the mostly highly urbanized regions of the United States (U.S. Census Bureau 2012), reflected in the highly urbanized corridor connecting the major metropolitan areas spanning from Washington, DC to Boston, MA.

As the urban population has increased, so has the amount of developed land. In 1950, 1% of the conterminous United States was classified as higher-density urban land (>1 housing unit per 0.4 ha) and 5% as lower-density exurban land (1 unit per 0.4–16.2 ha), with the remaining classified as rural (<1 unit per 16.2 ha). By 2000, urban land had increased to 2% land area and exurban land jumped to 25% as the population shifted from cities to suburbs (Brown et al. 2005).

Urban areas exert a disproportionate effect on the landscape, despite occupying a relatively small amount of total land (Allan 2004). Urbanization fragments the mosaic of land cover, increasing edges and patch sizes (Grimm et al. 2008). Cities alter climatic and biogeochemical cycles by creating greenhouse gases, elevating air and surface temperatures (i.e., urban heat island effect), inputting air and water pollutants, creating

waste, and altering decomposition (Grimm et al. 2008). The urban heat island effect, or the difference between urban and rural temperatures, is most pronounced during nighttime and is influenced by vegetation, building materials and pavement, human energy use, city size, and population density, with subsequent implications for vegetation phenology and soil temperature and moisture (Pickett et al. 2011). Natural vegetation in urban areas is replaced with lawn, ornamental, and horticultural vegetation that also changes soil organic matter and moisture (Groffman et al. 2014), as well as evapotranspiration in the hydrological cycle. The combination of altered microclimate, biogeochemical cycles, and natural vegetation, as well as human preferences based on socioeconomics and lifestyle, creates conditions such that cities are more similar to one another than to their natural context in terms of ecosystem structure and function (Groffman et al. 2014).

1.2 Urban stream syndrome: abiotic responses

Stream systems integrate the conditions of the landscapes through which they flow (Hynes 1975, Allan 2004). Urbanization impacts on lotic systems have been well documented (see syntheses: Paul and Meyer 2001, Walsh et al. 2005, Wenger et al. 2009) and collectively termed the 'urban stream syndrome' (Meyer et al. 2005, Walsh et al. 2005). Total impervious surface area is one metric commonly used to quantify the extent of urbanization in a watershed (Schueler 1994, Arnold and Gibbons 1996), as it is more significantly related to stream condition than measures of overall urban land (Wang et al. 2001, Brabec et al. 2002). Impervious surfaces are those areas of the landscape that prevent infiltration of water into the soil, such as roads, rooftops, parking lots, and

compacted soil (Arnold and Gibbons 1996). Reduced infiltration leads to higher volume and velocity of surface runoff that is delivered more rapidly to the stream channel after precipitation events, corresponding to flashier stream hydrographs in catchments with higher impervious cover (Leopold 1968, Graf 1977, Klein 1979, Booth and Jackson 1997, Paul and Meyer 2001, Roy et al. 2005, Poff et al. 2006a). These higher peak flows typically alter stream geomorphology by scouring stream banks, widening and incising the streambed, and transporting and depositing higher sediment loads (Booth and Jackson 1997, Hession et al. 2003, Chin 2006, Hawley et al. 2013). Stream channels are directly modified through straightening, channelizing, or burying streams in pipes and culverts (Elmore and Kaushal 2008).

Urbanization also affects water quality. Chemical contaminants enter streams via stormwater runoff (Paul and Meyer 2001, Brabec et al. 2002, Kaushal et al. 2005) and leaky wastewater infrastructure and septic systems (Kaushal and Belt 2012). Concentrations of nitrogen, phosphorus, chloride, heavy metals, organic contaminants, and bioavailable organic carbon and nitrogen are elevated in urban streams compared to their forested counterparts (Pickett et al. 2011). The interaction of altered hydrology and incised stream channels affects nutrient processing, uptake, and longitudinal transport (Pickett et al. 2011). Water that runs off impervious surfaces bypasses infiltration to groundwater and the subsequent biogeochemical reactions (e.g., denitrification) that typically occur within the upper soil layers in riparian zones (Groffman et al. 2002).

Removal of riparian vegetation in conjunction with urban development decreases canopy cover as well as the amount of large wood in the channel (Finkenbine et al. 2000). Reduced canopy shading, compounded by the urban heat island effect, results in higher

stream temperatures in urban compared to forested streams, particularly during base flow (Paul and Meyer 2001, Pickett et al. 2011) but also during storm flows (Somers et al. 2013).

The convergent effects of urbanization are found in both terrestrial and aquatic systems. For instance, surface waters across the United States have become more similar to one another compared to the surrounding landscape due to hydrographic alteration (Groffman et al. 2014, Steele et al. 2014). Waterbody size has converged, waterbody shorelines have simplified, and the number and area of waterbodies intersecting rivers have decreased (Steele and Heffernan 2014).

1.3 Urban stream syndrome: biotic responses

The physical, hydrological, and chemical alteration of streams and their watersheds resulting from increased development and impervious cover subsequently influences the biological assemblages found in urban streams. As the spatial extent of impervious surfaces increases in a watershed, biotic communities often degrade. Benthic macroinvertebrate assemblages have lower richness and diversity in urban streams compared to either forested streams (Klein 1979, Roy et al. 2003) or agricultural streams (Moore and Palmer 2005, Smith and Lamp 2008). As a result of urbanization, the presence of sensitive macroinvertebrates declines, often measured by EPT (Ephemeroptera, Plecoptera, Trichoptera) richness (Cuffney et al. 2010) or multimetric indices of biotic integrity (Morley and Karr 2002). Other metrics of macroinvertebrate sensitivity, such as presence of predators or long-lived taxa, also decline in response to watershed urbanization (Morley and Karr 2002). These macroinvertebrate responses are

potentially attributable to urban-induced hydrological flashiness (Morley and Karr 2002), flow fluctuations (Konrad and Booth 2005), substrate roughness (Morley and Karr 2002), sedimentation (Roy et al. 2003), chemical contamination (Morgan et al. 2007), or thermal stress (Somers et al. 2013).

Fish communities also respond detrimentally to increased urbanization and impervious cover. Fish assemblages generally have lower diversity (Klein 1979), lower community health and indices of biotic integrity (Wang et al. 1997, Snyder et al. 2003), fewer sensitive and more tolerant fish species (Morgan and Cushman 2005, Roy et al. 2005), fewer endemic species (Meador et al. 2005), and fewer fluvial specialists (Meador et al. 2005, Armstrong et al. 2011). Species assemblages also tend to shift from those associated with riffle habitats and coarse substrate to those associated with slow-water habitats and no substrate preference (Brown et al. 2009). Although fish species richness typically declines in relation to urbanization, some regions may experience increased fish richness due to more tolerant native species as well as introduction of invasive species (Meador et al. 2005). Armstrong et al. (2011) found that impervious cover, flow alteration, and alteration of August median flow from groundwater withdrawals were related to lower species richness as well as abundance of fish fluvial specialists in Massachusetts streams.

Most urban studies demonstrate that biotic communities degrade along a gradient of increasing urbanization or impervious cover (Carter et al. 2009). Schueler et al. (2009) conceptualized this response as a cone that progressively narrows as impervious cover increases in a watershed (Figure 1.1). While biotic communities are commonly degraded at higher levels of impervious cover, biotic integrity still varies widely at lower levels of

impervious cover. According to this model, streams with the same, low level of impervious cover exhibit different responses: some sites have high biotic condition (e.g., high richness or diversity, more sensitive species), while other sites have degraded biotic condition (e.g., low richness or diversity, more tolerant species). Few studies have examined evidence for different mechanisms driving this high variability in low-level urban streams.

1.4 Biotic variability at low levels of impervious cover

This thesis seeks to determine factors that explain differences in biotic condition observed across sites with similar levels of low impervious cover. The overarching aims of this study are to assess which reach-scale physicochemical and habitat factors (Chapter 2) and watershed-scale landscape factors (Chapter 3) best explain macroinvertebrate and fish assemblages across sites with similar levels of watershed impervious cover.

The impetus for this research builds on a body of work conducted on water resources and biotic communities in Massachusetts. In 2010, the Massachusetts Executive Office of Energy and Environmental Affairs initiated the Sustainable Water Management Initiative (SWMI) with the intention of managing water allocations and permitting withdrawals, as mandated by the Water Management Act of 1987 (MA EOEEA 2012). Water allocations are to be made with regard to both safe yield and streamflow criteria. Safe yield refers to the amount of water available to be withdrawn during drought conditions and traditionally refers to a single annual value. For permitting water withdrawals in Massachusetts, safe yield is approximated by sustainable yield, a time-varying value determined with the Sustainable Yield Estimator (SYE), a tool

developed for simulating streamflows for ungaged stream sites in Massachusetts by Archfield et al. (2010). The SYE output is the monthly 'sustainable yield' volume, which is the maximum volume of water that can be withdrawn without depleting a steam lower than a user-specified value (i.e., the target streamflow value). Streamflow criteria incorporate the magnitude and timing components of the natural flow regime.

As part of SWMI, a collaborative effort among the U.S. Geological Survey (USGS), Massachusetts Department of Conservation and Recreation (MDCR), Massachusetts Department of Environmental Protection (MDEP), and the Massachusetts Division of Fisheries and Wildlife (MDFW) was established to elucidate factors affecting fluvial fish assemblages in Massachusetts (Armstrong et al. 2011). Armstrong et al. (2011) found that increases in alteration of August median flow from groundwater withdrawals, increases in flow alteration indicators, and increases in impervious cover were related to decreases in fluvial specialist abundance and species richness (Armstrong et al. 2011). Statistical models developed to explain fluvial fish species richness and abundance and brook trout relative abundance all included impervious cover, among other variables. The significant finding of alteration of August median flows was incorporated into streamflow criteria for SWMI. Groundwater control levels and biological categories related to tiers of fluvial fish condition were also developed based on findings in the report (MA EOEEA 2012). The significant finding of the relationship between impervious cover and fish assemblages in Massachusetts provided the basis for a new, collaborative effort among MDEP, MDFW, USGS New England Water Science Center, and Massachusetts Cooperative Fish and Wildlife Research Unit at the University of Massachusetts Amherst. This project built on previous work while leveraging the

extensive monitoring datasets collected by MDEP and MDFW for macroinvertebrates and fishes across the state. The wealth of information available in these biotic databases was used to explore questions about the relationship between watershed variables and aquatic biota along a gradient approach of impervious cover.

My thesis differed from the larger project in two main ways. First, I used a subset of sites from the biotic databases to limit the range of impervious cover to two narrow bands. By constraining the level of impervious, this allowed me to focus on other factors that drive variability in addition to total impervious cover. Second, I conducted an intensive study of variables manifested at the reach scale; data that are often correlated with aquatic assemblages, but are not necessarily collected during large-scale, long-term monitoring efforts. The results of this study contribute to a greater understanding of the urban stream syndrome and its nuances at lower levels of impervious cover, where variation in natural and anthropogenic factors play a potentially important role in determining which biotic assemblages are present. The implications of these results for management decisions made across the state and region are discussed in Chapter 4.

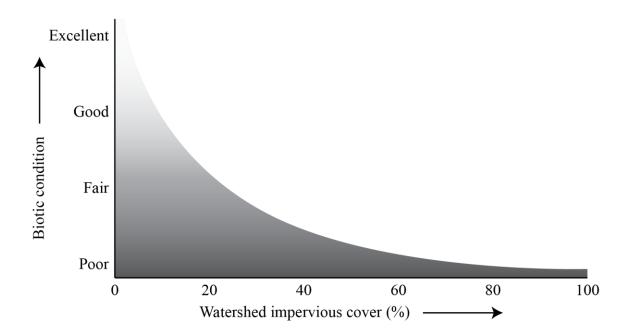


Figure 1.1. Conceptual diagram of the generalized relationship between impervious cover and biotic condition: as watershed imperviousness increases, biotic condition degrades. Biotic assemblages exhibit wide variability at low levels of impervious cover, however, likely due to variation in reach- and watershed-scale factors. Diagram modified from Schueler et al. (2009).

CHAPTER 2

PHYSICOCHEMICAL CHARACTERISTICS EXPLAIN DIFFERENCES IN BIOTIC RESPONSES TO URBANIZATION

2.1 Introduction

The United States is highly urbanized: 81% of the population lives in urban areas of more than 50,000 people (U.S. Census Bureau 2012), and the percent urban land is projected to continue to rise. The presence and extent of urbanization on the landscape, as typically characterized by total percent impervious cover in the catchment (Arnold and Gibbons 1996), subsequently influences aquatic resources. Watersheds with higher levels of impervious cover have flashier hydrology (Leopold 1968, Graf 1977, Klein 1979, Booth and Jackson 1997, Paul and Meyer 2001, Roy et al. 2005, Poff et al. 2006a), altered channel geomorphology (Booth and Jackson 1997, Hession et al. 2003, Chin 2006, Hawley et al. 2013), and higher chemical contaminant loads (Paul and Meyer 2001, Brabec et al. 2002, Kaushal et al. 2005, Kaushal and Belt 2012) compared to their non-urbanized counterparts. In turn, macroinvertebrate and fish assemblages generally show lower richness, lower diversity, fewer sensitive taxa, and more tolerant taxa as watershed impervious cover increases (Paul and Meyer 2001, Morley and Karr 2002, Roy et al. 2003, Morgan and Cushman 2005, Walsh et al. 2005).

Despite the generally consistent declines in biotic integrity with increasing urbanization, biotic condition is highly variable across sites, particularly at low levels of impervious cover. In a Maryland study, for example, macroinvertebrate benthic index of biotic integrity (B-IBI) and Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa richness exhibited the greatest ranges at the lowest levels of impervious surface area (<5

or 10%) in each of the Coastal Plain, Piedmont, and Highlands physiographic regions (Goetz and Fiske 2008). Although Collier and Clements (2011) found a declining trend for four macroinvertebrate metrics (i.e., taxa richness, EPT taxa, an Urban Community Index, and quantitative UCI derived from tolerance values) along a gradient of impervious area, the authors noted considerable scatter among sites for each metric, particularly at low levels of impervious surface. For fishes, index of biotic integrity values ranged widely in both Coastal Plain and Piedmont physiographic regions of Maryland, especially when catchment urbanization was less than 25% (Morgan and Cushman 2005). In Massachusetts, Armstrong et al. (2011) showed how impervious cover limited fish richness and fluvial fish abundance, with the most variance occurring at the lowest levels of impervious cover.

A synthesis of numerous studies that showed similar patterns of biotic degradation with urbanization led to the development of the impervious cover model by Schueler (1994), which was later refined with additional studies in Schueler et al. (2009). The impervious cover model depicts a cone or wedge that progressively narrows as total impervious cover increases in the watershed, with stream quality subsequently degrading. While stream quality, including biotic condition is consistently degraded at high levels of impervious cover, stream condition ranges from poor to excellent at sites with low levels of impervious cover. Schueler et al. (2009) suggested that other factors in addition to impervious cover are likely useful for explaining the variability found in watersheds with low impervious cover.

The concept of variability is not new to stream ecology: several decades of theoretical and experimental work (reviewed by Winemiller et al. 2010) have

demonstrated that ecosystems vary across space and time due to the complex interplay of disturbance history, abiotic environmental characteristics, and biotic interactions (Townsend 1989, Poff and Ward 1990, Palmer and Poff 1997, Fraterrigo and Rusak 2008, Stanley et al. 2010). As the extent of urbanization or impervious cover increases in a watershed, the combined effects from increased frequency, magnitude, and intensity of urban-induced disturbances (e.g., altered hydrology, contaminant pulses) likely suppress the physical, chemical, and biological variability that might otherwise occur naturally in the system. As such, the nature and magnitude of effects induced by watershed urbanization manifest differently based on local and regional variation (Booth et al. 2016), including variation of the underlying environmental template. The physical habitat template proposed by Poff and Ward (1990) examines substratum-geomorphologic characteristics, streamflow, and thermal characteristics, to which we add water chemistry as another factor of the template. These four categories of in-stream variables—habitat, hydrology, temperature, and chemistry—were also conceptualized as varying by ecological setting and thereby influencing biota assemblages by Cuffney et al. (2010), and were subsequently applied in the USGS National Water Quality Assessment of the impacts of urbanization on stream biota.

Habitat and geomorphology affect biotic responses to impervious cover, and may explain the variable fish and macroinvertebrate assemblages (Montgomery 1999). In streams with low levels of urbanization, channel geomorphology and riparian vegetation strongly influence other aspects of in-stream habitat, such as sediment storage, pool spacing, and presence and quantity of large wood (Segura and Booth 2010), which provide habitat for biota. Utz and Hilderbrand (2011) explored how geomorphic

characteristics affected biotic response to urbanization. Benthic particle size, sediment movement, and sediment deposition were significantly different between the Coastal Plain and Piedmont physiographic regions in Maryland. Subsequently, urban streams in the Coastal Plain with finer, more mobile sediment had greater macroinvertebrate recolonization than urban sites in the Piedmont with larger, more stable bed materials. These findings led the authors to infer that low-gradient streams with fine bed materials were more resistant to urban-induced geomorphic change than steep-gradient streams with coarse materials (Utz and Hilderbrand 2011).

Geomorphology also interacts with hydrology to create flow conditions that differentially affect biota (Montgomery 1999). Hawley et al. (2016) demonstrated that streambed mobilization via flow exceedances (represented by $Q_{critical}$) was sufficient to degrade macroinvertebrate biotic integrity, despite high habitat and water quality conditions. Stream slope influences physical conditions within the stream channel (e.g., via bed mobility), as well as across the floodplain. Snyder et al. (2003) found that fish communities were more negatively affected by urbanization in streams with higher gradient compared to those urban streams in lower gradient catchments, potentially because high-gradient streams withstand more frequent flow disturbances, whereas lower gradient streams have more contact time with floodplains that potentially mitigate the effects of higher runoff.

Stream temperature, which is tightly linked to riparian forest cover, may also explain differences in biotic responses to urbanization (Caissie 2006). Poole and Berman (2001) suggested that physical characteristics of streams, such as stream order, channel morphology, and forestation, affect the relative sensitivity of streams to temperature

changes from anthropogenic disturbances, with urbanization representing one such disturbance. In-stream thermal metrics vary across physiographic regions with different topography and geology: in urban streams in Maryland, thermal responses (e.g., mean and maximum temperature increases; duration of temperature surges) were more pronounced in the Piedmont, even though mean and maximum temperatures were higher overall in Coastal Plain streams (Utz et al. 2011). Although baseflow temperatures differed between urban and forested streams in North Carolina due to development and road density, differences in canopy closure and stream width also contributed to observed temperature differences (Somers et al. 2013). While forest cover across the watershed is important, it is particularly beneficial for stream quality when located along riparian corridors. An intact riparian zone has been shown to mitigate the effects of higher urbanization or impervious cover on macroinvertebrate communities (May et al. 1997, Miltner et al. 2004, Moore and Palmer 2005), perhaps because riparian vegetation plays a strong role in shaping channel geometry—regardless of the level of urbanization (Hession et al. 2003, Cianfrani et al. 2006)—as well as providing shade and inputs of leaf litter and wood (Cappiella et al. 2012). The beneficial role of riparian vegetation might be more important in watersheds with lower levels of urbanization (e.g., <15% urban land cover) than highly urbanized watersheds, at least for fish assemblages (Roy et al. 2007).

Lastly, water chemistry influences macroinvertebrates and fishes, and may explain differences in biotic responses to urbanization. Across metropolitan areas spanning climatic and physiographic regions, Bryant and Carlisle (2012) found that chemical parameters, including chloride, temperature, and hydrophobic organic contaminants, ranged several orders of magnitude within each metropolitan area.

Furthermore, the parameters that best explained biotic variability differed for each metropolitan area, indicating the potential importance of local characteristics to influence both physicochemical and biotic conditions.

Biotic responses to urban disturbance vary between taxonomic groups based on their life histories and sensitivities. Macroinvertebrates and fishes are two of the most commonly assessed taxonomic groups in monitoring programs (Barbour et al. 1999), and provide unique and complementary information about the status of the ecosystem. Each taxonomic group ranges in their diversity, morphology, mobility, behavior, life history (e.g., reproduction, generation time), and other traits (Resh 2008). For instance, macroinvertebrates are abundant, diverse, and have both terrestrial and aquatic life stages, despite relatively limited mobility within the stream channel; fishes have longer lifespans and can be highly mobile, but are confined to the stream network (Resh 2008). These differences can translate to different responses to urbanization (Carlisle et al. 2008, Walters et al. 2009), making it critical to use multiple taxonomic groups to best understand mechanisms of response to disturbance.

Biotic responses to urbanization also depend on the metrics used within each taxonomic group (i.e., macroinvertebrates or fishes), and may explain variation in responses at low levels of urbanization. Walsh et al. (2005) noted some inconsistencies in biotic responses to urbanization: while sensitive macroinvertebrates and sensitive fishes consistently decline and tolerant macroinvertebrates consistently increase, tolerant fishes do not respond consistently to increasing watershed urbanization. Assessments of stream condition have increasingly incorporated trait-based approaches, or a combination of taxonomic and functional measures to accurately represent the status of the system

(Heino et al. 2007). Traits and functional measures confer several advantages over taxonomic measures: they allow comparability across regions with different species pools (Verberk et al. 2013), provide a consistent framework to assess responses over different spatial scales (Viera et al. 2006), and reflect the adaptations of organisms to local environmental conditions (Richards et al.1997, Townsend et al. 1997a,b), independent of specific species' distributions influenced by climate, historical legacy, or dispersal (Hoeinghaus et al. 2007). Moreover, traits have been proposed as a metric to mechanistically link environmental stressors with biotic responses (Culp et al. 2011, Menezes et al. 2010). Ecological traits, including rheophily and thermal preference, are more evolutionarily labile than life-history traits (Poff et al. 2006b). Since traits that are more labile change based on environmental conditions, this serves as an advantage when used mechanistically in biological assessment. As such, flow and thermal traits were used to assess biotic condition in this study, in addition to the more commonly applied metrics of richness and tolerance.

This study examines which reach-scale factors explain variation in macroinvertebrate and fish assemblages when the total impervious cover is similar across catchments and whether responses vary among taxonomic groups and metrics. I focused on two low levels of impervious cover (1–4% and 7–10%), which are below reported thresholds of impervious cover (above which biota are consistently degraded; Booth and Jackson 1997, Horner et al. 1997, May et al. 1997, Wang et al. 2001, Walsh et al. 2007, King et al. 2011), yet may represent different conditions and biotic responses. Specifically, this study addresses the following research questions:

- Which reach-scale predictors—representing habitat, flow, temperature, and water quality conditions—best explain biotic condition at sites with similar levels of impervious cover?
- 2. How do reach-scale predictors act in combination to explain biotic condition at sites with similar levels of impervious cover?
- 3. For both questions related to individual (1) and combinations of variables (2), how do the reach-scale predictors that best explain biotic condition differ by:
 - a. Taxonomic group (macroinvertebrates or fishes)?
 - b. Biotic response metric (richness, flow traits, thermal traits, tolerance)?
 - c. Impervious band (very low 1–4%, low 7–10%)?

Results can help identify which physical and chemical characteristics of the system might act as constraints, thereby limiting or capping the attainment of higher-quality biotic condition, and conversely, which characteristics might act as buffers, allowing high biotic condition despite the stressors and disturbances imposed by increased impervious cover in the watershed.

2.2 Methods

2.2.1 Study area

This study was conducted at 40 stream sites across Massachusetts, in the northeastern United States. Massachusetts spans two main US EPA Level III ecoregions: the Northeastern Highlands in the western and north-central parts of the state, and the Northeastern Coastal Zone in the eastern part of the state (Hall et al. 2002, Griffith et al. 2009). Air temperatures are cooler and precipitation is slightly higher in the higher

elevation Northeastern Highlands (7.3°C annual mean, 119 cm annual mean, 60–1014 m, respectively), compared to the Northeastern Coastal Zone (9.4°C annual mean, 117 cm annual mean, 0–364 m, respectively; Hall et al. 2002). Cape Cod and the Islands (Martha's Vineyard and Nantucket) in southeastern Massachusetts were not included in this study since simulated stream flows were not available for these areas at the time of study design, which led to their omission from other studies characterizing flow and fish communities in Massachusetts (Armstrong et al. 2011).

2.2.2 Site selection

The 40 stream sites were selected based on existing biotic data from the Massachusetts Department of Environmental Protection (MDEP) and Massachusetts Division of Fisheries and Wildlife (MDFW). Sites were screened from database containing samples from 823 macroinvertebrate sites and 5010 fish sites. For this study, sites had both macroinvertebrate and fish assemblage data collected within the past 11 years (2005–2015) from the same 200-m stream segment. Sites also met criteria for impervious level, agricultural use, and drainage area, described in the methods below.

The watersheds draining to each of the sampling sites were delineated in ArcGIS (Version 10.3, ESRI, Redlands, CA) with Massachusetts ArcHydro output. To reduce the influence of non-independence among sites, sites were selected from non-nested watersheds; sites with overlapping drainage areas were omitted. Watershed land cover and impervious cover were calculated using the 2011 National Land Cover Dataset (NLCD) land cover and impervious layers, respectively (Jin et al. 2013, Xian et al. 2011).

Twenty sites were selected within each of two narrow ranges of watershed impervious cover (hereafter referred to as bands): very low 1–4% (n = 20) and low 7– 10% (n = 20) (Figure 2.1). Bands were chosen based on previously documented thresholds of biotic assemblage responses, such as 0.5–2% (macroinvertebrates, range attributed to physiographic region; King et al. 2011), 3.6% (fishes; Booth and Jackson 1997), and 4% (sensitive macroinvertebrates; Walsh et al. 2007) for the very-low band, and 8% (macroinvertebrates and fishes; Horner et al. 1997), 10% (May et al. 1997), 8– 12% (range attributed to unconnected or connected impervious; Wang et al. 2001), and 12–15% watershed impervious cover (range attributed to fishes or macroinvertebrates; Klein 1979) for the low band. The threshold indicates a change point in the biotic condition, where the assemblage transitions from overall good condition to overall poor condition. Sites below the commonly cited 10% impervious threshold (Schueler et al. 2009) would therefore retain greater variability in biotic condition.

Sites also met criteria regarding watershed land use and drainage area to isolate the effects of reach-scale factors at sites with low impervious cover from other factors driving macroinvertebrate and fish assemblages. To minimize the confounding effects of agriculture, we only included watersheds with less than 20% agricultural land cover per the 2011 NLCD. Sites were restricted to small, wadeable streams with watersheds 5–80 km². The lower limit of 5 km² was used to develop the impervious cover model (Schueler et al. 2009); it also corresponds to the minimum drainage area used for calculation of stream flows at ungaged sites with the Sustainable Yield Estimator (SYE) tool (Archfield et al. 2010). The upper limit of 80 km² seeks to minimize potential outliers due to large drainage areas, while still being wadeable for sampling.

Seventeen sites met the site-selection criteria and had both macroinvertebrate and fish data collected in the same year; these sites were from the 2010–2014 MDEP probabilistic random sampling scheme. In cases where both macroinvertebrates and fishes were not collected by the same agency during the same year, sites were paired from each database. Closest facility analysis in ArcGIS 10.3 was used to match each MDEP macroinvertebrate site with the nearest MDFW fish site, based on the distance along National Hydrography Dataset streamlines. Sites located within 200-m on the same stream without confluences or road crossings between them were retained, which yielded an additional four sites. When sites met watershed criteria (i.e., impervious level, agricultural use, drainage area) but did not have both macroinvertebrate and fish samples, additional biotic sampling was conducted in 2014 and 2015 by MDFW and University of Massachusetts Amherst such that each study site had both macroinvertebrate and fish assemblage data. Ten sites were sampled for macroinvertebrates and ten sites were sampled for fishes. An additional two sites were sampled for both macroinvertebrates and fishes, since they met site-selection criteria but were not part of the existing databases.

2.2.3 Data collection

2.2.3.1 Reach delineation

Stream habitat and physicochemical data were collected at the 40 selected sites during 2014–2016. Stream sampling reaches were established based on the geographic positioning system (GPS) coordinates from biotic sampling conducted by MDEP and MDFW. Reach length was determined by estimating bankfull width on-site, then binning average bankfull width into reach length categories: 120-m reach for less than 6-m

average bankfull width, 160-m reach for 6–8 m average bankfull width, and 200-m reach for greater than 8-m average bankfull width.

2.2.3.2 Longitudinal profiles and cross sections

I used longitudinal profiles to generate data for calculating stream slope, proportions of habitat areas, and transitions between habitat units. An electronic total station (Leica TS06 Plus ®, Leica Geosystems, Heerbrugg, Switzerland) was used to capture elevations for longitudinal profiles and cross sections based on similar survey protocols developed by Harrelson et al. (1994) and Bouwes et al. (2011). Three longitudinal profiles included water surface elevations at the left and right banks and thalweg. Water surface elevations were used to calculate local reach slope over stream channel length. The thalweg profile, in conjunction with left and right edges of water, was used to calculate habitat unit areas. The beginning and end of each habitat unit was marked along the thalweg (Lazorchak et al. 1998). Where one habitat unit ended and a different habitat unit began was classified as a habitat unit transition (Violin et al. 2011); the number of transitions was totaled for each reach. Habitat units of riffles, runs, and pools were distinguished in the field by considering a combination of water depth, velocity, turbulence, bed topography, water surface slope, and other hydrodynamicallyinfluential factors, such as boulders and large wood (Frissell et al. 1986, Hawkins et al. 1993, Arend 1999). In order to standardize across sites of different stream sizes, the proportions of riffle, run, and pool habitat were calculated for each site. For the purpose of this study, only riffle and pool habitat were used in subsequent analyses, due to their importance as macroinvertebrate and fish habitat.

Bankfull characteristics and entrenchment were calculated from cross-sectional surveys. Elevations were also surveyed along five cross sections at each site, spaced equidistantly throughout the reach (i.e., 0, 25, 50, 75, 100% of reach length). Bankfull width, bankfull area, width-to-depth ratio, and entrenchment were calculated from the cross-section data with 3D Spatial Analyst in ArcGIS 10.3. Measurements from the five cross sections at each site were averaged and the coefficients of variation of each metric were calculated. A proxy measure of unit stream power was calculated using drainage area, discharge, slope, and bankfull width (Gartner et al. 2016).

2.2.3.3 Habitat assessment

Measurements of bed texture, sediment heterogeneity, and embeddedness were calculated from habitat surveys at transects. Twenty-one transects were established to subdivide each reach into 20 equidistant sections for sampling habitat variables. Streambed texture (i.e., substrate) was quantified using the toe method (Wolman 1954) in which five particles were sampled at 10, 30, 50, 70, and 90% of the wetted width along each transect within the main channel, as well as within any side channels if present (Heitke et al. 2011). The intermediate ('B') axis of each particle was measured. The bed texture measurements from each site were used to calculate a suite of particle size and distribution metrics, including D_{16} , D_{50} , D_{84} , heterogeneity, sorting, and gradation coefficient (Gordon et al. 2004, Laub et al. 2012). Sediment D_{16} , D_{50} , D_{84} refer to the 16th largest, 50th largest (median), and 84th largest particle in the rank-ordered particle distribution. Sediment heterogeneity, sorting, and gradation coefficient quantify different aspects of the particle spread and distribution, by using different calculations with D_{16} ,

 D_{50} , and D_{84} . Along each transect, 5–10 coarse particles were visually inspected to estimate percent embeddedness, a measure of how much a coarse particle is surrounded by sand or finer sediments (Sylte and Fischenich 2002). Estimates at each transect were averaged for percent embeddedness at each site.

Stream banks were characterized based on two visual estimates: percent of the bank vegetated by perennial plants and roots; and percent of the bank with signs of erosion, indicated by the presence of crumbling banks, slumps, fractures, or exposed tree roots or soil (Bauer and Burton 1993). Presence of undercut banks was noted at each transect. Depositional features (i.e., lateral, mid, or point bars) were also recorded, with a visual estimate of areal percentage (Giddings et al. 2009). Visual estimates were aggregated to provide values of percent vegetated banks, percent eroded banks, percent undercut banks, and percent depositional features for each site.

Canopy cover was measured with a concave spherical densiometer, using a modified method such that vegetation is accounted for when it overlaps with the 17 visible intersections on the densiometer (Platts et al. 1987, Fitzpatrick et al. 1998, Lazorchak et al. 1998). Four canopy-cover measurements were taken from mid-channel at each transect: facing upstream and downstream, and towards the left and right banks (Lazorchak et al. 1998). Canopy-cover measurements at each transect were aggregated to calculate percent canopy cover for each site.

Riparian vegetation was sampled within 10×10 m plots on both banks of the stream channel at each of the five cross sections, for a total of 10 plots (0.1 ha total) at each site. Trees >3 cm diameter at breast height (DBH) were measured, from which basal area was calculated per site.

Large wood was quantified for the entire reach. Logs were tallied based on diameter and length classes (0.1–0.3, 0.3–0.6, 0.6–0.8, >0.8 m diameter; 1.5–5, 5–15, >15 m length) (Lazorchak et al. 1998). Wood was categorized as either within the bankfull channel or spanning above the bankfull channel (Lazorchak et al. 1998, Heitke et al. 2011). Wood volume was calculated based on the diameter and length classes (Kaufmann et al. 1999), and aggregated wood both within and spanning above the bankfull channel.

2.2.3.4 Temperature and water quality

Water temperature loggers (HOBO ® Pro v2 U22-001, Onset ®, Bourne, MA, USA) were deployed in the deepest section of each reach and recorded temperature at 15min intervals. Initial deployment dates ranged from July 2014 to August 2015, with data downloaded from all sites in August 2016. Temperature logger data were used to calculate summer (June 1–August 30; or the available duration thereof) daily mean, maximum, minimum, and range, as well as maximum of summer daily means.

Water quality was sampled with a multi-probe meter (YSI Pro Plus ®, Yellow Springs, OH, USA) for dissolved oxygen, specific conductance, and nitrate. Water quality was measured seasonally in spring, summer, and fall, starting in summer 2014 through summer 2016; winter measurements were not taken due to safety considerations. Summary statistics (mean and coefficient of variation) were calculated for each water quality parameter across all sampling points. Since low dissolved oxygen, high specific conductance, and high nitrate are associated with water quality degradation, the minimum dissolved oxygen, maximum specific conductance, and maximum nitrate were calculated.

2.2.3.5 Macroinvertebrates

Macroinvertebrates were sampled with a rectangular-frame kick net in 10 riffles, which were aggregated into one sample for each site. At sites where no riffles were present, other habitats (e.g., submerged vegetation, leaf litter) were sampled in the proportions they were present. Samples collected from 2005–2011 were sorted, subsampled to 100 individuals, and identified by MDEP; samples from 2012–2015 were sorted, subsampled to 300 individuals, and identified by Cole Ecological, Inc. Macroinvertebrates were identified to the lowest feasible level, often genus or species.

Macroinvertebrate metrics were calculated for taxa richness, relative abundance of taxa with flow-adapted traits, relative abundance of taxa with coldwater thermal traits, and tolerance. Macroinvertebrate richness was rarefied to 100 individuals using the vegan package in R (Oksanen et al. 2016) to account for different subsample sizes (Gotelli and Colwell 2001). Flow-adapted traits were assessed using a combination of rheophily (erosional, erosional or depositional, depositional), shape (streamlined, not streamlined), swimming ability (none, weak, strong), and attachment (none, some, both) categories from the appendices in Poff et al. (2006b) and trait databases created by the U.S. Geological Survey (Vieira et al. 2006) and U.S. Environmental Protection Agency (US EPA 2012, 2016). Traits considered adapted to higher flows were: erosional rheophily, streamlined shape, strong swimming ability, and some attachment. Taxa with three of four flow-adapted traits were considered high-flow adapted, taxa with two traits were considered some-flow adapted, and taxa with one or no traits were considered low- or noflow adapted (Appendix C.2). Since relatively few taxa were categorized as high-flow adapted based on trait aggregation, the relative abundance of macroinvertebrates with

flow-adapted traits was considered as the aggregation of those species in the high- and some-flow adapted categories.

Thermal traits were also assessed using appendices from Poff et al. (2006b) and trait databases created by the U.S. Geological Survey (Vieira et al. 2006) and U.S. Environmental Protection Agency (US EPA 2012, 2016). The thermal categories used in these macroinvertebrate sources were cold stenothermal/cool eurythermal, cool/warm eurythermal, and warm eurythermal. Stenothermal refers to a narrow range of temperature tolerated by an organism, whereas eurythermal refers to a wide range of temperatures tolerated. The relative abundance of macroinvertebrate taxa in the cold stenothermal/cool eurythermal category was used as the thermal trait metric.

Each macroinvertebrate taxon in the MDEP database was assigned a tolerance score from 0–10, with 0 representing the least tolerant and 10 the most tolerant. A tolerance index score for the macroinvertebrate assemblage at each site was calculated according to the methods established by Hilsenhoff (1998).

2.2.3.6 Fishes

Fishes were sampled by MDFW, MDEP, and University of Massachusetts Amherst using single-pass electrofishing with one or two backpacks (Smith-Root LR-20B Electrofisher ®, Vancouver, WA, USA), depending on stream size. Dip nets were used to capture shocked fish. Electrofishing occurred over a minimum 100-m sampling reach, with reach lengths for larger streams (target length = 20 times wetted width). Fishes were identified to species level, enumerated, and then released.

Fish metrics were calculated for species richness, relative abundance of fluvial species, relative abundance of coldwater species, and relative abundance of intolerant species. Fish species were classified as fluvial specialists if they require lotic habitat throughout their life cycle; fluvial dependents if they require lotic habitat during part of their life cycle (e.g., for spawning); or macrohabitat generalist if their life cycle can be completed in either lotic or lentic habitats (Armstrong et al. 2011). For this study, fluvial dependents and fluvial specialists were combined into one category of fluvial fishes, for which the relative abundance was calculated. Coldwater and intolerant species were determined based on MDFW classifications for thermal preference (coldwater, coolwater, warmwater) and tolerance level (intolerant, intermediate, tolerant). Flow, thermal, and tolerance classifications for each fish species can be found in Appendix C.3.

Macroinvertebrate and fish response metrics for richness, flow traits, thermal traits, and tolerance were compared both with scatterplots and spider plots. Scatterplots compared biotic responses in relation to impervious cover, with each response metric displayed individually. Spider plots allow multiple metrics at the same site to be visualized and compared simultaneously. The "web" is scaled such that the center represented the lowest value across sites and the outer edge represents the highest value across sites. Each "spoke" of the web has a point for the value of the response metric; eight spokes for eight response metrics. When the points are connected on the web, the resultant shape can then be compared to other sites with similar or divergent condition based on multiple metrics. Spider plots were generated in R with the fmsb package (Nakazawa 2015).

2.2.4 Statistical analyses

Generalized linear models (GLMs) with a model section approach were used to evaluate the relative influence of reach-scale factors for explaining variance in macroinvertebrate and fish assemblage metrics within very-low (1–4%) and low (7–10%) bands of impervious cover. Several steps were used to select the model type, impervious cover variable, and predictor variables used in the final models, as described below.

Generalized linear models were developed for each biotic response metric (Table 2.1; Zuur et al. 2012) using the stats package in R (R Core Team 2016). GLM distributions were chosen based on the characteristics of the response metric: macroinvertebrate richness and macroinvertebrate tolerance used a Gaussian (i.e., normal) distribution; fish richness used a Poisson distribution appropriate for zerobounded count data; and relative abundances of macroinvertebrate and fish flow traits, coldwater macroinvertebrates and fishes, and intolerant fishes used a binomial distribution with logit link function appropriate for proportional data. The Shapiro-Wilk test was used to assess normality in the distributions of response variables. Macroinvertebrate richness and macroinvertebrate tolerance were normally distributed; the other response variables had non-normal distributions. Log transformations did not improve normality of the remaining response variables and thus were not used. Binomial GLMs had extreme overdispersion (ratio of residual deviance to degrees of freedom, for which a value greater than 1 indicates overdispersion; Warton and Hui 2011); thus, generalized linear mixed models (GLMMs) with a random effect for sampling site were

run for all proportional response variables using the lme4 package in R (Bates et al. 2015).

To appropriately account for impervious cover in models explaining biotic assemblages, four different measures of impervious cover were tested for use in subsequent analyses. The four measures differed based on the source (NLCD or MassGIS), which varied based on year (2011 or 2005, respectively) and resolution (30-m or 1-m, respectively), and whether it was represented as a continuous or categorical (i.e., by band) variable. The four impervious cover measures were: (1) NLCD 2011 impervious cover as a continuous variable (30-m resolution with each pixel assigned a value of 0–100% impervious); (2) NLCD 2011 impervious cover binned as a categorical variable as belonging to either the very-low (1-4%) or low (7-10%) band; (3) an interaction between NLCD 2011 continuous value (1) and categorical band (2), since the slopes of the regression lines were presumed to differ for each band; and (4) MassGIS 2005 impervious cover (1-m resolution with each pixel assigned a 0 or 1 for absence or presence of impervious cover, respectively) as a continuous variable. Four models were developed for each biotic response metric (n = 40), one for each of the aforementioned conditions (1)–(4). Models that included NLCD 2011 impervious cover as a continuous variable usually had lower Akaike Information Criterion (AICc) values; therefore, NLCD 2011 as a continuous variable was used to represent impervious cover in all subsequent models that included reach-scale factors.

Predictor variables were organized into four categories of non-redundant variables representing habitat, flow, temperature, and water quality conditions (hereafter 'predictor categories'), with hypothesized power for explaining biotic variation independent of impervious cover. Collinearity was evaluated using Spearman rank correlations between

pairs of variables within each category (Appendix G). If variables were highly collinear (r $\geq |0.7|$), one variable was retained for further analyses.

In order to select the variable that best represented each predictor category, I created a candidate set of alternative models to evaluate the relative importance of reachscale factors for each biotic response metric. All alternative GLMs included two predictor variables: impervious cover (NLCD 2011 as a continuous variable) and one reach-scale predictor variable representing habitat, flow, temperature, or water quality conditions. GLMMs also contained a random effect on site. In order to account for variables collected on different scales (i.e., ranging different values), z-score standardization (mean = 0, standard deviation = 1) was applied to predictor variables using the biostats package in R (McGarigal unpublished). Model selection with Akaike Information Criterion (AIC), corrected for small sample size (AICc; Burnham et al. 2011) was used to compare alterative models within the candidate set. Models with lower AICc values represent more plausible models compared to other models in the candidate set. For the model with the lowest AICc within each predictor category, the variance explained was calculated, including the additional variance explained compared to models with impervious as the single predictor.

Finally, I determined how combinations of variables might better explain biotic condition than individual predictors. The predictor variable that occurred in the best-supported model (lowest AICc value) within each predictor category was retained for use in global GLMs and GLMMs for each biotic response metric. All subsets of GLMs and GLMMs were run with every combination of impervious cover and the four variables selected from each predictor category, for a total of 31 models. Models within 2 AICc

values of the most plausible model are considered similarly plausible. Akaike weights (*w*) were calculated based on the relative likelihood values, to assess the weight of evidence for the best-supported model (Burnham et al. 2011). Variable importance was calculated for each variable included in equally plausible models, by summing the model weight for each model in which that variable occurred. Variable importance was used to assess the relative importance of impervious cover, habitat, flow, temperature, or water quality predictors for explaining biotic condition.

2.3 Results

2.3.1 Site characteristics

For the 40 sites that were included in this study, the 20 sites in the very-low impervious band ranged from 1.1-3.7% watershed impervious cover, whereas the 20 sites in the low band ranged from 6.7-10.0% watershed impervious cover, according to the 2011 NLCD. The low band included one site that was <7% total impervious area due to a miscalculation during site selection. Drainage areas ranged from 5.8-72.1 km² in the very-low band and 5.3-66.3 km² in the low band. Agriculture ranged from 0.3-15.8% of total land cover in the very-low band and 0.0-20.4% in the low band.

2.3.2 Biotic responses

Across the 40 sites, 318 macroinvertebrate taxa were sampled (Appendix B.1). The most cosmopolitan macroinvertebrate taxa were the caddisfly larvae *Cheumatopsyche* sp., which occurred at 34 of 40 sites, black fly larvae *Simulium* sp. at 29 sites, and caddisfly larvae *Hydropsyche betteni* at 26 sites. Thirty-eight taxa occurred at >10 (25%) sites, 119 taxa occurred at >4 (10%) sites, and 113 taxa were only sampled at one site. Two macroinvertebrate taxa (0.6%) were not classified for flow traits and 46 taxa (14.5%) were not classified for thermal traits due to lack of information in existing trait databases. Of the remaining macroinvertebrate taxa, 115 taxa (36.2%) were classified as having flow-adapted traits and 88 taxa (27.7%) were coldwater. Macroinvertebrate tolerance indices for the aggregate assemblage at each site ranged from 3.4–7.7, based on a scale ranging from intolerant (0) to tolerant (10).

Thirty fish species were sampled across the 40 sites (Appendix B.2). The most cosmopolitan species were white sucker (*Catostomus commersoni*) at 26 sites, pumpkinseed (*Lepomis gibbosus*) at 19 sites, and blacknose dace (*Rhinichthys atratulus*) and fallfish (*Semotilus corporalis*), each at 15 sites. Twelve of the 30 total species were considered fluvial (fluvial dependent or fluvial specialist), four species were coldwater, and five species were intolerant (Figure 2.2). Three fish species—slimy sculpin (*Cottus cognatus*), brown trout (*Salmo trutta*), and brook trout (*Salvelinus fontinalis*), which occurred at one, four, and 13 sites, respectively—overlapped in all three classifications of fluvial, coldwater, and intolerant fishes.

Macroinvertebrate and fish responses were highly variable within each band of impervious cover (Figure 2.3), as predicted by the impervious cover model (Schueler et al. 2009). However, all response metrics—except macroinvertebrate tolerance for which the index was scaled from intolerant to tolerant—had greater variation within the low band than the very-low band. Across each response group of richness, flow traits, thermal traits, and tolerance, fish response values were more dispersed than macroinvertebrate responses, as indicated by higher coefficients of variation.

Several patterns emerged from the macroinvertebrate and fish responses, as demonstrated by spider plots for selected sites (Figure 2.4; see Appendix E for spider plots from all 40 sites). Taxonomic groups did not necessarily respond similarly, even within the same site. For example, at East Branch Housatonic River (Figure 2.4A), flow trait occurrence was low for macroinvertebrates yet high for fishes; coldwater trait occurrence was high for macroinvertebrates yet low for fishes; and macroinvertebrates overall comprised an intolerant assemblage while there were few intolerant fishes. Within taxonomic groups, response variables were not necessarily concordant. At the Kinderhook River (Figure 2.4B), although fish richness was about average across sites within this study, the relative abundances of fluvial fishes, coldwater fishes, and intolerant fishes were very high compared to other sites in this study. Since biotic condition demonstrated considerable scatter (Figure 2.3), some sites with low impervious cover had overall poor biotic condition, whereas other sites with relatively high impervious cover had overall good biotic condition. Fall Brook (Figure 2.4C), with 2.6% watershed impervious cover, had low macroinvertebrate and fish richness, few macroinvertebrates and fishes with fluvial or coldwater traits, an overall tolerant macroinvertebrate assemblage, and few intolerant fishes. On the other hand, the Westminster site (Figure 2.4D) had 10.0% watershed impervious cover, yet hosted many fluvial fishes, many coldwater macroinvertebrates, and an overall intolerant macroinvertebrate assemblage.

2.3.3 Reach-scale predictors

Habitat metrics covered aspects of channel geometry, habitat units, sediment, stream banks, and large wood. Mean bankfull width, riffle habitat, and three sediment measures (D₅₀, D₈₄, and gradation coefficient) were eliminated due to collinearity with other bankfull, habitat, and sediment measures, respectively, leaving 14 candidate variables. Mean bankfull area had a wider range within the very-low band to the low band, but coefficients of variation in bankfull area and width were similar across bands (Table 2.2). Sites in the very-low band had higher average pool habitat and more transitions between habitat units compared to sites in the low band: 18.8% and 14.8% pool habitat and 6.7 and 6.1 transitions, respectively. Sediment D_{16} was smaller on average in the low band, with more sediment heterogeneity and sediment sorting in the very-low band. Although average embeddedness was higher on average in the low band, there was a wider range within the very-low band. Stream banks tended to be less vegetated, less eroded, and more undercut in the very-low band compared to the low band. Although there were sites in both bands that did not have any large wood present, very-low-band sites overall had much higher volumes of large wood than low-band sites (Table 2.2).

Flow conditions were characterized by proxy measures of channel geometry and stream power. Slope and stream power were highly correlated (r = 0.95), and thus, stream power, which integrates aspects of drainage area, discharge, slope, and bankfull width, was retained as a proxy for flow conditions in the absence of direct measurements at each site. Channel dimensions of width:depth ratio (mean, coefficient of variation [cv]) and entrenchment (mean, cv) did not differ by band (Table 2.2). Stream power differed

considerably by band: sites in the very-low band had a much higher average and wider range of stream power than sites in the low band (Table 2.2).

Temperature was represented by two proxy measures—canopy cover and riparian vegetation—and five direct measures of water temperature derived from in-stream temperature loggers: mean summer daily mean, maximum summer daily mean, mean summery daily minimum, mean summer daily maximum, and mean summer daily range. Since the in-stream temperature metrics, except daily range, were highly collinear with one another ($r \ge 0.82$), only mean summer daily maximum and mean summer daily range were retained in subsequent analyses. Canopy cover and riparian vegetation generally exhibited the same patterns between bands, although the very-low band had a higher minimum canopy cover (Table 2.2). Water temperatures were on average warmer in low-band sites (22.3°C) than very-low-band sites (20.7°C), with greater mean diel fluctuation (3.1°C and 2.8°C, respectively).

Dissolved oxygen mean and coefficient of variation were similar across bands, as was specific conductance coefficient of variation (Table 2.2). In contrast, mean specific conductance (i.e., averaged across each seasonal sampling visit) was much higher in the low band: conductance ranged from 59.5–590.5 μ s/cm in the very-low band and 205.1–974.5 μ s/cm in the low band, with means of 224.0 and 387.5 μ s/cm, respectively. Mean nitrate exhibited the opposite pattern, with wider range and higher mean in the very-low band (range 0.2–27.2 mg/L; mean 6.3 mg/L) compared to the low band (range 0.8–14.0 mg/L; mean 3.7 mg/L) (Table 2.2). Minimum dissolved oxygen, maximum specific conductance, and maximum and coefficient of variation nitrate were eliminated due to high collinearities with other water quality variables.

2.3.4 Predictor-response relationships

The best-supported variables (i.e., $\Delta AICc = 0$) within each predictor category of habitat, flow, temperature, and water quality differed across taxonomic groups, biotic response metrics, and by impervious band (Table 2.3, Figure 2.6, Appendix H). In general, water temperature predictors, particularly mean summer daily maximum temperature, tended to explain the most additional biotic variance after accounting for impervious cover. Habitat (most often represented by aspects of bed texture) and water quality (e.g., nitrate, dissolved oxygen) also explained a substantial amount of variance for some of the biotic metrics and impervious bands. In contrast, flow-related variables did not explain much variance. Combinations of predictor variables determined through all-subsets modeling and variable importance similarly showed differences across taxa, metric, and band (Table 2.4, Figure 2.7, Appendix I).

2.3.4.1 Taxonomic group

Between the two taxonomic groups, reach-scale variables tended to explain more variance in fish assemblages than macroinvertebrate assemblages (Table 2.3). Habitat and temperature predictors added more explanation of variance for fish assemblages, whereas habitat and water quality predictors explained more variance in macroinvertebrate assemblages. Habitat measures were most often represented by characteristics of the channel substrate (e.g., sediment D_{16} , embeddedness, sediment heterogeneity, depositional features), as well as large wood, and sometimes by channel dimensions (e.g., bankfull area or bankfull width). Mean nitrate commonly occurred as the water quality

predictor that added more explanation of variance for macroinvertebrate assemblages. For fishes, a wider variety of predictors explained more variance, including temperature (e.g., mean summer daily maximum), habitat (e.g., large wood, bank vegetation), and sometimes flow measures (e.g., entrenchment). Variable importance from all-subsets (Table 2.4) showed similar patterns: habitat and water quality were most important for macroinvertebrates, while habitat and temperature were more important for fishes. Impervious cover was a more important variable in macroinvertebrate models than fish models.

2.3.4.2 Biotic response metric

Individual predictors and the amount of additional variance they explained differed considerably across the four types of biotic response metrics (Table 2.3). For macroinvertebrates, reach-scale predictors explained the most variance for richness and tolerance. None of the tested reach-scale predictors explained much variance for either macroinvertebrate flow traits or coldwater thermal traits: conditional- R^2 was <0.10 for most models, with the exception of habitat and temperature predictors in the high band. Fish metrics were less differentiated: reach-scale predictors explained similar amount of variance across richness, flow traits, and coldwater traits. For intolerant fishes, however, temperature (represented by mean summer daily maximum) had conditional- R^2 much higher than habitat, flow, or water quality predictors, regardless of the band tested: additional $R^2 = 0.41$ for very-low band, additional $R^2 = 0.62$ for low band in addition to the variance explained by total impervious cover. The total variance explained when

multiple variables were used with all-subsets modeling also tended to be higher for fish assemblages than macroinvertebrates, across all metrics except tolerance (Appendix I).

2.3.4.3 Impervious band

Reach-scale predictors tended to explain more variance for biotic responses in the low band compared to the very-low band (Table 2.3). Impervious cover also contributed greater variance explained in the low band, particularly for macroinvertebrate richness and tolerance, and fish richness and coldwater relative abundance. In contrast, impervious cover explained more variance for both tolerance metrics in the very-low band, but was relatively minor compared to the variance explained by selected reach-scale predictors for other very-low band response metrics. The predictors that explained the most additional variance were similar across bands, except for richness. In the very-low band, macroinvertebrate richness was best explained by water quality (mean nitrate; additional $R^2 = 0.25$) and temperature (canopy cover; additional $R^2 = 0.17$), but in the low band, was best explained by habitat (sediment D_{16} ; additional $R^2 = 0.35$) and temperature (mean summer daily maximum; additional $R^2 = 0.22$). When the very-low and low band were analyzed separately, flow predictors were ranked as more important variables, and total impervious was less important than when both bands were analyzed together (Table 2.4).

2.4 Discussion

2.4.1 Reach-scale variables explain differences in biotic condition

Habitat measures, particularly sediment (i.e., heterogeneity, embeddedness) and large wood, were the most important variables for coldwater fishes and macroinvertebrate

tolerance. While several studies documented higher macroinvertebrate diversity with higher substrate complexity and roughness, substrate heterogeneity, median particle size, substrate type or area, habitat type, and shading, other studies did not find any effect of the same or similar metrics on diversity (Vinson and Hawkins 1998). In this study, habitat metrics did not strongly explain variation in richness, although higher percentage of vegetated banks were related to higher fish richness in the very-low band. Vinson and Hawkins (1998) added the caveat that some of the inconsistency in relationships between biotic diversity and habitat heterogeneity might be attributable to how heterogeneity is measured, and the range of conditions quantified for each variable. Since means can obscure important differences between sites (Palmer et al. 1997, Fraterrigo and Rusak 2008), the coefficients of variation were used in addition to means as predictors for channel geometry and water quality variables. Although means were represented in the top models more often than coefficients of variation for the same variable (e.g., mean and coefficient of variation calculated for width:depth ratio from five cross sections), in a few cases (e.g., bankfull area) the coefficients of variation predictors performed better than mean predictors. In addition, several measures of streambed particle distribution and dispersion were used to represent habitat diversity. Of the three measures of sediment dispersion, only sediment heterogeneity was found in top models; sediment sorting and gradation coefficient did not perform well in comparison. Although sediment dispersion predictors did explain much additional variance, other aspects of bed texture (e.g., sediment D_{16} , embeddedness, depositional features) were often ranked as important variables, potentially indicating the role of fine sediment and sedimentation in low-level urban streams.

The suite of predictors developed to quantify flow conditions did not explain macroinvertebrate or fish flow traits better than variables in the other predictor categories of habitat, temperature, or water quality. Flow variables were not important across most biotic response metrics, not just for fluvial traits. While flow variables rarely explained the most additional variance, when used in combination with other habitat, temperature, or water quality variables, sometimes were ranked as important (Table 2.4). Since only five flow predictors were tested, they appeared with relatively similar frequently for variable importance. The flow predictors used in this study were proxies, in the absence of discharge data to directly quantify flow conditions. Slope and stream power were highly correlated for sites in this study (r = 0.95). Although slope is often an important predictor of biotic assemblages (regardless of urbanization or anthropogenic degradation), stream power did not emerge as a strong predictor of additional variance or importance. Where stream power did occur, it often explained <0.25 additional variance; the strongest was in explaining coldwater fishes.

Although the suite of temperature predictors tested did not better explain thermal traits for either assemblage, it was overall one of the most important predictors for reach-scale variables. Temperature predictors attempted to both directly (via water temperature measurement) and indirectly (via vegetative shading) explain thermal traits, but were outperformed by habitat and flow predictors for coldwater response metrics. Although water temperature has been linked more strongly to local influences such as canopy cover than watershed influences such as total development (Hester and Doyle 2011, Booth et al. 2014), canopy cover and riparian vegetation were not strongly correlated with any of the water temperature metrics calculated in this study (r < 0.30). Temperature predictors,

particularly average summer daily maximum temperature, were important more often for fish metrics (especially intolerant fishes) than macroinvertebrates. Hester and Doyle (2011) found that not only are fishes are more sensitive to temperature change than macroinvertebrates, but organisms are more sensitive above their thermal maxima, a finding that appears to be corroborated by this study.

Higher mean nitrate and higher mean dissolved oxygen were particularly important for explaining higher macroinvertebrate richness and more fluvial fishes, respectively. While the latter finding is expected—that fluvial fishes live in welloxygenated waters, such as riffle habitat—the former finding is counter to that expected. However, since greater macroinvertebrate richness exists with higher macroinvertebrate tolerance, greater eutrophication (as indicated by higher nitrate) could elevate richness while still degrading overall stream quality. Specific conductance usually did not explain the most additional variance, but was an important variable for macroinvertebrate richness, tolerance, and coldwater taxa. Specific conductance was often more important in the low band compared to the very-low band, which might be attributed to the higher maxima and coefficients of variation in this predictor for sites in the low band. While instream habitat, represented by sediment D_{16} , was the most important variable in low-band macroinvertebrate richness models, mean nitrate was the most important variable in verylow band models. Although Roy et al. (2003) also found that water quality parameters were important predictors of macroinvertebrate richness, this pertained to lower specific conductance with higher richness.

2.4.2 Fish and macroinvertebrate responses differ

Overall, fish assemblages were better explained by reach-scale variables than macroinvertebrate assemblages. Several studies in urbanizing streams also found that fish assemblages were strongly correlated with reach-scale metrics. For instance, Wang et al. (2003) found strong evidence for water temperature and baseflow as important predictors of fish assemblage metrics (i.e., richness, biotic integrity, coldwater fishes, intolerant fishes) at low levels of impervious cover.

Few studies of urban streams have investigated both biotic assemblages concurrently in order to sufficiently compare assemblage responses. The USGS NAWQA study is one exception, in that it compared multiple biotic assemblages (algae, macroinvertebrates, fishes) in relation to numerous physicochemical and landscape parameters, across multiple metropolitan areas nationwide (Cuffney et al. 2010). Results from the NAWQA assessments in urban streams found macroinvertebrates were better related with urban metrics than fishes. Bryant and Carlisle (2012) found that macroinvertebrates were more strongly related to physicochemical factors in urban streams than fish assemblages, though the specific physiochemical parameters varied in importance by metropolitan area. Walters et al. (2009) investigated a broader suite of land cover, geomorphological, and water quality variables to compare both macroinvertebrates and fishes in urbanizing streams. As with this study, Walters et al. (2009) found that macroinvertebrates and fishes were explained by different variables. Of the reach-scale variables investigated, conductivity, fine sediment, and local topological relief were better predictors for macroinvertebrates, while embeddedness, turbidity, and slope were better predictors for fishes. Compared to this study, measures of bed texture

were also important for macroinvertebrate assemblages, while less important for fishes, and nitrate was a more important variable than specific conductance.

2.4.3 Responses vary based on the biotic metric used

The assessment of condition at each site differed based on the specific choice of biotic response metric. For instance, if macroinvertebrate or fish richness were the sole or principal response variable, then the Kinderhook River site (Figure 2.4B) would be considered average condition relative to other sites in this study. However, the Kinderhook River site had high relative abundance of fluvial fishes, coldwater fishes, and intolerant fishes, indicating that the site had high biotic integrity—at least, for fishes—as it had one of the highest levels of integrity across all study sites. This case indicates one of the issues with using richness as a measure of biotic integrity. High-gradient coldwater sites have a more limited species pool in Massachusetts, while lower gradient warmwater sites tend to have more diverse fish assemblages (Kashiwagi and Richards 2009). Invasive species can also contribute to higher species richness (Meador et al. 2005), although such species are often considered detrimental to the biotic community and ecosystem functioning. In streams subjected to increasing urbanization, Helms et al. (2005) observed that while fish health, biotic integrity, and sensitive breeding guilds declined, fish richness and diversity did not, nor did tolerant species become more prevalent.

The lack of differentiation among flow, thermal, and tolerance response metrics for fish assemblages in this study might be attributable to the overlap in species classifications (Figure 2.2). Of the 30 fish species collected across the 40 sampling sites,

13 species were included in analyses due to their classification as fluvial, coldwater, and/or intolerant, while a greater diversity of fishes—representing 17 species—were omitted from trait and tolerance metrics (Figure 2.2). No fish species were strictly coldwater without also being fluvial and/or intolerant; only one species (swamp darter; *Etheostoma fusiforme*) was intolerant without also being fluvial and/or coldwater.

Although classification of fish species into categories of cold, cool, and warmwater thermal regimes is common in fisheries management (Magnuson et al. 1979, Lyons et al. 1996, Beauchene et al. 2014), it is also fraught with complications (Wehrly et al. 2003). Classification into discrete thermal categories does not allow for plasticity in fish traits (Frimpong and Angermeier 2010), nor do classes use consistent temperature ranges to quantify categories across regions (Lyons et al. 2009, Beauchene et al. 2014). Furthermore, current and historical ecological degradation affects the ability to accurately delineate thermal regimes (Kanno et al. 2010). Additional information about whether fish species are stenothermal or eurythermal—tolerant of a narrow or wide range of temperatures, respectively—would aid in interpretation of fish response to thermal gradients and thermal stress. Wehrly et al. (2003) suggested three categories of extreme, moderate, and stable temperature fluctuation in additional to traditional cold, cool, and warm mean temperature classes; this finer accounting for regional variability in stream temperature contributed to more accurate assessments of fish biotic integrity in Michigan streams. Beauchene et al. (2014) used indicator species analysis for fish species in Connecticut to determine specific temperature ranges for coldwater and warmwater classes, with a coolwater transitional class between the two. Massachusetts and Connecticut share many of the same ecoregions (Griffith et al. 2009) and fish species

pools, which allow comparability between assessments across the two southern New England states. Several important differences emerged between Beauchene et al. (2014) and this study: while Beauchene et al. (2014) classified six fish species as indicative of cold-cool or cool-warm transitional communities, this study used distinct categories of cold, cool, or warmwater. Brown trout (Salmo trutta) was indicative of cold-cool transitional in Connecticut, but coldwater in Massachusetts; this difference likely did not influence analyses in this study. However, fallfish (Semotilus corporalis) was classified as coldwater in Massachusetts (likely due to an error in classification; T. Richards, pers. comm.) but classified as coolwater according to Kanno and Vokoun (2010) and indicative of cool-warm transitional communities by Beauchene et al. (2014) in Connecticut. This constitutes an important distinction that likely affected analyses of coldwater fish assemblages in this study, particularly since fallfish often occur in large numbers that can skew relative abundances at certain sites (T. Richards, pers. comm.). Across the 40 sites in this study, fallfish were sampled at 15 sites. Fallfish were the only fish classified as coldwater at 9 of these 15 sites, while at an additional 4 sites fallfish comprised > 50%relative abundance of coldwater taxa. The other species classified as coldwater in Massachusetts are brown trout, brook trout, and slimy sculpin (Figure 2.2, Appendix C.3). Slimy sculpin, commonly an indicator of cold, flowing waters, was only sampled at one site, the Kinderhook River, and comprised 65.5% relative abundance of the coldwater assemblage at that site. Had the coldwater assemblage been reassessed based on differences in classification (in the case of fallfish) and sufficiency (in the case of slimy sculpin), the coldwater assemblage would be comprised of brown trout and brook trout, with the latter being the predominant species in terms of cosmopolitan distribution

across sites and relative abundance within those sites. The coldwater and intolerant fish response metrics would therefore likely be explained by similar suites of predictor variables, given that each assemblage composition would be dominated by brook trout.

Choice of metric is also relevant for an accurate assessment of condition in terms of macroinvertebrate assemblages. As with fish assemblages, higher richness does not necessarily indicate a higher-quality macroinvertebrate assemblage. Of the macroinvertebrate taxa collected across the sites in this study, the majority of taxa based on either taxa richness or relative abundance—are classified with an intermediate tolerance value (e.g., 4–6, on a scale of 0–10; Figure 2.5). Relatively few macroinvertebrate taxa were classified as intolerant (e.g., score of 0–3). Of the metrics used to quantify macroinvertebrate assemblages, the tolerance index was overall better explained by reach-scale factors than other response metrics. The tolerance index (based on Hilsenhoff et al. 1998) is well established and commonly used in assessment and monitoring programs (Barbour et al. 1999). Furthermore, the tolerance index for a site represents an aggregate score derived from the relative abundances of all taxa observed at a site. Meador and Carlisle (2007) found that the differences between tolerant and intolerant fish classifications were driven more by differences in suspended sediment, specific conductance, chloride, and total phosphorus.

By contrast, macroinvertebrate fluvial traits had very low variance explained by reach-scale factors or impervious, either individually or in combination (conditional- R^2 <0.10). Several studies have demonstrated empirical relationships between flow conditions and macroinvertebrate traits: Townsend et al. (1997b) found higher relative abundances of taxa with high adult mobility and streamlined/flattened shape with more

disturbances related to streambed movement (albeit not discharge variation); Lamouroux et al. (2004) found that invertebrates that were small, streamlined, and with shorter lifespans were more common in reaches with higher stream stress and Froude number; Dolédec et al. (2006) and Carlisle and Hawkins (2008) found streamlined shape and attachment were related with flow disturbance or channel instability; and Horrigan and Baird (2008) suggested low crawling rate, common in drift, short lifespan, erosional rheophily, and medium size as potential flow-indicator traits based on observed relationships of macroinvertebrate assemblages with flow fluctuations. While this study incorporated physiological traits of shape, swimming ability, and attachment, perhaps physiological traits representing reproduction, life span, life history, and drift would have been better explained by reach-scale factors, particularly those related to flow.

In contrast to physiological traits, ecological traits such as rheophily or thermal preference are ultimately more applicable to biological assessments, due to their plasticity to change with changing environmental conditions (Poff et al. 2006b, Vieira et al. 2006). In this study, the flow-trait aggregation metric included rheophily as one of the traits, but further work might be better suited to utilize rheophily individually, not in aggregation with physiological traits. Another option would be to assess macroinvertebrates via a metric of EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa richness or relative abundance. EPT is commonly used in ecological assessments (Barbour et al. 1999) and shows more consistent declines along gradients of urbanization (Roy et al. 2003, Wang and Kanehl 2003, Coles et al. 2010). Indeed, for the sites in this study, erosional rheophily was strongly correlated with relative abundance EPT (r = 0.96; data not

shown), indicating that not only is EPT a good measure of macroinvertebrate sensitivity overall, but of fluvial conditions specifically.

Macroinvertebrate thermal traits were also poorly explained by impervious and reach-scale factors. This study used a direct ecological measure of thermal preference (i.e., cold stenothermal/cool eurythermal, cool/warm eurythermal, and warm eurythermal), rather than a suite of physiological traits to assess change along a thermal gradient. One issue with the use of thermal traits for this study is that 46 taxa (14.5%)were not classified for thermal traits due to lack of information in existing trait databases. These unclassified taxa comprised 0.0-41.0% of the assemblage across the 40 sites; the majority of sites had <10% unclassified taxa, but 7 sites had 10.0-41.0% unclassified taxa by relative abundance. Furthermore, the thermal trait data were sourced from nationwide databases (Poff et al. 2006b, Vieira et al. 2006, US EPA 2012, 2016), not necessarily Northeast regional or Massachusetts-specific thermal classifications. Although data on macroinvertebrate thermal tolerances are limited, increased data availability might increase the power of reach-scale variable to explain this metric. Alternately, a measure such as EPT can be applied. As with flow traits, EPT taxa comprise a relatively intolerant assemblage that prefers cold, flowing water with high oxygen and low sedimentation. EPT could be used as a surrogate for coldwater taxa, as they could also be effectively employed to measure flow conditions.

Although there is much ecological theory underpinning the use of macroinvertebrate traits for diagnostic assessments (Townsend and Hildrew 1994, Townsend et al. 1997a,b), the practical applicability for mechanistic determination of stressors (Menezes et al. 2010, Statzner and Bêche 2010, Culp et al. 2011, Verberk et al.

2013), particularly in urban streams with myriad stressors, falls short in empirical studies (e.g., Zuellig and Schmidt 2012), including this one. Rather than expanding trait analyses for which there are limited data, we suggest using existing data for well-established metrics, such as EPT richness or relative abundance, that are correlated with high-quality stream condition.

2.4.4 Reponses vary based on impervious cover band

The predictor variables that were most important, as well as the amount of variance explained, in biotic response models differed based on very-low or low impervious band. The most important variables in the low band (Table 2.4) were often aspects of channel geometry (classified as either habitat or flow predictors), including entrenchment, bankfull area, width:depth ratio. By contrast, the most important variables in the very-low band often related to habitat (vegetated banks, large wood, embeddedness) and temperature. Impervious also appeared as a more highly ranked important variable in the low band. This could indicate that the effects of urbanization are already manifesting, such as by changing channel width, depth, and shape (Booth and Henshaw 2001).

2.4.5 Conclusion

Reach-scale factors, representing habitat, flow, temperature, and water quality conditions, explained additional variance in macroinvertebrate and fish assemblages in streams with similar levels of low impervious cover. Colder water temperatures, higher dissolved oxygen, and more large wood were related to higher proportions of fluvial,

coldwater, and intolerant fishes. For macroinvertebrates, warmer water temperature, smaller sediment size, and higher nitrate were related to higher macroinvertebrate richness and tolerance. Based on the reach-scale variables that contributed to higher biotic integrity, efforts should be taken to minimize impacts that would degrade these conditions.

Table 2.1. Specifications for generalized linear models (GLMs) and generalized linear mixed models (GLMMs) with associated family and link functions and fixed and random effects for each biotic response variable.

Response	Model	Family	Link	Fixed effects	Random effects	Variance explained
Richness						
Macroinvertebrate taxa richness	GLM	Gaussian		IC + [predictor]		R2
Fish species richness	GLM	Poisson		IC + [predictor]		pseudo-R2
Flow traits						
Macroinvertebrate flow traits, rel abund (%)	GLMM	binomial	logit	IC + [predictor]	1 UniqueID	conditional-R2
Fish, fluvial rel abund (%)	GLMM	binomial	logit	IC + [predictor]	1 UniqueID	conditional-R2
Thermal traits						
Macroinvertebrates, coldwater rel abund (%)	GLMM	binomial	logit	IC + [predictor]	1 UniqueID	conditional-R2
Fish, coldwater rel abund (%)	GLMM	binomial	logit	IC + [predictor]	1 UniqueID	conditional-R2
Tolerance						
Macroinvertebrate tolerance index	GLM	Gaussian		IC + [predictor]		R2
Fish, intolerant rel abund (%)	GLMM	binomial	logit	IC + [predictor]	1 UniqueID	conditional-R2

Table 2.2. Summary statistics (minimum, maximum, mean, standard deviation, and coefficient of variation) for predictor variables within each group by impervious cover band (very low = 1-4%, low = 7-10%) at 40 sites across Massachusetts, sampled during 2014–2016.

				Ver	y-low ba	nd	Low band						
Category	Predictor variable	Units	Min	Max	Mean	SD	CV	Min	Max	Mean	SD	CV	
Habitat													
	Bankfull area, mean	m2	0.9	9.5	3.9	2.34	0.60	1.4	7.5	3.4	1.74	0.51	
	Bankfull area, cv	unitless	0.1	0.6	0.3	0.14	0.46	0.1	0.7	0.3	0.16	0.51	
	Bankfull width, cv	unitless	0.0	0.4	0.2	0.10	0.43	0.1	0.5	0.2	0.12	0.50	
	Pool habitat	% of reach	0.0	70.7	18.8	23.60	1.25	0.0	57.0	14.8	18.32	1.24	
	Habitat unit transitions	no. of trans.	0.0	14.0	6.7	4.36	0.66	0.0	11.0	6.1	3.49	0.57	
	Sediment, D16	mm	1.0	56.3	7.9	13.56	1.72	1.0	42.0	5.0	9.03	1.79	
	Sediment, heterogeneity	unitless	1.0	31.4	4.5	6.58	1.46	1.0	8.5	2.9	1.72	0.59	
	Sediment, sorting (stnd dev)	unitless	0.0	3.7	1.8	1.01	0.56	0.0	2.8	1.6	0.90	0.55	
	Embeddedness	%	0.0	54.0	12.8	14.43	1.13	0.7	31.0	17.2	10.22	0.60	
	Banks, vegetated	% of reach	17.0	82.5	52.8	16.80	0.32	38.8	93.1	56.1	13.29	0.24	
	Banks, eroded	% of reach	16.8	83.8	44.8	21.49	0.48	7.8	79.5	46.1	19.13	0.41	
	Banks, undercut	%	0.0	87.5	35.7	29.08	0.81	0.0	80.0	26.3	18.94	0.72	
	Depositional features	% of reach	0.0	67.3	18.7	17.44	0.94	0.0	55.3	16.2	17.07	1.06	
	Large wood, volume		0.0	49.8	7.2	13.04	1.80	0.0	8.2	1.6	2.14	1.30	
Flow													
	Width:depth ratio, mean	unitless	8.2	29.3	17.7	5.69	0.32	8.0	27.3	16.6	5.71	0.34	
	Width:depth ratio, cv	unitless	0.2	0.6	0.3	0.14	0.40	0.1	0.6	0.3	0.15	0.47	
	Entrenchment, mean	unitless	1.7	5.6	2.8	1.02	0.36	1.3	4.9	2.9	0.92	0.31	
	Entrenchment, cv	unitless	0.1	0.6	0.3	0.11	0.38	0.1	0.6	0.3	0.18	0.60	
	Stream power		2.8	421.8	91.9	107.13	1.17	1.0	200.1	53.7	54.86	1.02	
Tempera	ture												
	Canopy cover	%	15.5	94.3	65.7	29.77	0.45	0.4	91.6	67.2	23.51	0.35	
	Riparian vegetation		0.7	60.8	29.0	17.62	0.61	0.7	61.3	25.4	14.07	0.56	
	Mean summer daily max temp	°C	13.8	25.1	20.7	2.55	0.12	19.6	26.5	22.3	1.91	0.09	
	Mean summer daily temp range	°C	1.2	4.0	2.8	0.75	0.27	2.1	6.6	3.1	1.07	0.34	
Water qu	ality												
-	Dissolved oxygen, mean	mg/L	5.3	10.4	8.4	1.42	0.17	5.7	11.6	8.3	1.52	0.18	
	Dissolved oxygen, cv	unitless	0.1	0.6	0.3	0.12	0.41	0.1	0.6	0.3	0.11	0.40	
	Specific conductance, mean	μS/cm	59.5	590.5	224.0	121.33	0.54	205.1	974.5	387.5	175.82	0.45	
	Specific conductance, cv	unitless	0.1	0.6	0.2	0.11	0.47	0.1	0.6	0.3	0.17	0.66	
	Nitrate, mean	mg/L	0.2	27.2	6.3	7.83	1.25	0.8	14.0	3.7	3.32	0.90	

Table 2.3 Predictors with the lowest AICc from model selection within each reach-scale predictor category (Appendix H) are shown with the directionality (estimate) and variance explained (\mathbb{R}^2) for impervious (IC) and the additional predictor (pred) in each biotic response model. Models were run for: both bands (n = 40), very-low band (1–4%, n = 20), and low band (7–10%, n = 20).

Response group					Very-lov	w ban	d			Low band						
Response metric		Est	imate	;			Es	stimate					timate			
Predictor category Pre	redictor	IC	Pred R2	2	Add R2	Predictor	IC	Pred	R2	Add R2	Predictor	IC	Pred	R2	Add R2	
Richness																
Macroinvertebrate taxa richt	ness															
Im	npervious	-		0.10		Impervious	-		0.02		Impervious	-		0.12		
Habitat Se	ediment, D16	-	-	0.20	0.11	Depositional features	-	-	0.18	0.16	Sediment, D16	-	-	0.47	0.35	
Flow En	ntrenchment, mean	-	+	0.13	0.03	Entrenchment, mean	-	+	0.13	0.11	Stream power	-	-	0.22	0.10	
Temperature Me	ean summer daily max temp	-	-	0.16	0.06	Canopy cover	-	-	0.19	0.17	Mean summer daily max temp	-	-	0.34	0.22	
Water quality Ni	itrate, mean	-	+	0.22	0.13	Nitrate, mean	+	+	0.27	0.25	Specific conductance, mean	-	-	0.20	0.09	
Fish species richness																
Im	npervious	-		0.13		Impervious	-		0.00		Impervious	-		0.18		
Habitat De	epositional features	-	+	0.18	0.05	Banks, vegetated	+	+	0.40	0.39	Depositional features	-	-	0.37	0.19	
Flow Er	ntrenchment, cv	-	+	0.27	0.14	Width:depth ratio, mean	-	+	0.10	0.09	Entrenchment, cv	-	-	0.48	0.30	
Temperature Me	ean summer daily temp range	-	+	0.14	0.01	Mean summer daily temp range	-	+	0.12	0.12	Mean summer daily temp range	-	+	0.19	0.00	
Water quality Di	issolved oxygen, mean	-	+).24	0.11	Dissolved oxygen, mean	-	+	0.26	0.25	Specific conductance, mean	-	+	0.36	0.17	
Flow traits																
Macroinvertebrate flow trait	ts, rel abund (%)															
Im	npervious	+		0.00		Impervious	+		0.01		Impervious	+		0.02		
Habitat Ba	ankfull area, cv	+	+	0.04	0.04	Depositional features	+	+	0.05	0.04	Bankfull area, cv	+	+	0.22	0.20	
Flow En	ntrenchment, mean	+	-	0.01	0.01	Entrenchment, mean	+	-	0.03	0.02	Stream power	+	+	0.08	0.05	
Temperature M	lean summer daily max temp	-	+	0.05	0.04	Mean summer daily max temp	+	+	0.02	0.01	Mean summer daily max temp	+	+	0.14	0.12	
Water quality Ni	itrate, mean	-	-	0.03	0.03	Nitrate, mean	+	-	0.05	0.04	Dissolved oxygen, cv	+	-	0.08	0.06	
Fish, fluvial rel abund (%)																
Im	npervious	-		0.16		Impervious	-		0.00		Impervious	-		0.01		
Habitat Ha	abitat transitions	-	+	0.22	0.06	Sediment, D16	-	+	0.13	0.13	Banks, vegetated	-	-	0.16	0.15	
Flow Str	ream power	-	+	0.25	0.09	Stream power	-	+	0.12	0.11	Width:depth ratio, cv	-	+	0.39	0.37	
Temperature Ri	iparian vegetation	-	+	0.21	0.05	Riparian vegetation	-	+	0.05	0.04	Riparian vegetation	+	+	0.13	0.11	
Water quality Di	issolved oxygen, mean	-	+	0.33	0.17	Specific conductance, mean	-	+	0.11	0.11	Dissolved oxygen, mean	-	+	0.46	0.45	

Table 2.3, continued

Response group Both bands			Very-low	Low band											
Response metric		Estimate						Estimate					Estimate		
Predictor category	Predictor	IC	Pred	R2	Add R2	Predictor	IC	Pred	R2	Add R2	Predictor	IC	Pred	R2	Add R
Thermal traits															
Macroinvertebrates, cold	lwater rel abund (%)														
	Impervious	-		0.03		Impervious	-		0.03		Impervious	-		0.00	
Habitat	Sediment, D16	-	-	0.06	0.03	Bankfull width, cv	-	+	0.06	0.03	Large wood, volume	-	-	0.11	0.1
Flow	Width:depth ratio, mean	-	-	0.05	0.02	Stream power	-	-	0.06	0.03	Width:depth ratio, mean	-	-	0.10	0.1
Temperature	Riparian vegetation	-	-	0.04	0.02	Riparian vegetation	-	-	0.04	0.01	Riparian vegetation	-	-	0.04	0.04
Water quality	Specific conductance, mean	-	+	0.04	0.02	Specific conductance, cv	-	-	0.06	0.02	Specific conductance, mean	-	+	0.08	0.0
Fish, coldwater rel abund	1(%)														
	Impervious	-		0.14		Impervious	+		0.00		Impervious	-		0.12	
Habitat	Large wood, volume	-	+	0.23	0.08	Large wood, volume	+	+	0.24	0.24	Sediment, heterogeneity	-	-	0.49	0.3
Flow	Entrenchment, mean	-	-	0.20	0.05	Entrenchment, mean	+	-	0.08	0.07	Stream power	-	+	0.34	0.22
Temperature	Riparian vegetation	-	+	0.22	0.07	Mean summer daily temp range	+	-	0.10	0.09	Riparian vegetation	-	+	0.20	0.0
Water quality	Dissolved oxygen, mean	-	+	0.21	0.07	Nitrate, mean	+	+	0.07	0.06	Dissolved oxygen, mean	-	+	0.28	0.17
Tolerance															
Macroinvertebrate tolera	nce index														
	Impervious	+		0.06		Impervious	+		0.15		Impervious	+		0.08	
Habitat	Embeddedness	+	-	0.34	0.28	Embeddedness	+	-	0.53	0.39	Embeddedness	+	-	0.47	0.3
Flow	Entrenchment, mean	+	+	0.16	0.10	Width:depth ratio, mean	+	-	0.20	0.05	Entrenchment, mean	+	+	0.34	0.20
Temperature	Riparian vegetation	+	-	0.15	0.09	Riparian vegetation	+	-	0.26	0.12	Mean summer daily temp range	+	+	0.48	0.4
Water quality	Nitrate, mean	+	-	0.23	0.17	Dissolved oxygen, mean	+	-	0.38	0.23	Specific conductance, mean	+	+	0.36	0.2
Fish, intolerant rel abund	1(%)										1				
	Impervious	-		0.05		Impervious	-		0.14		Impervious	-		0.01	
Habitat	Large wood, volume	-	+	0.10	0.05	Habitat transitions	-	-	0.29	0.15	Sediment, heterogeneity	-	-	0.10	0.0
Flow	Entrenchment, cv	-	+	0.09	0.04	Width:depth ratio, mean	-	-	0.18	0.04	Stream power	_	+	0.06	
Temperature	Mean summer daily max temp	+	-	0.47	0.42	Mean summer daily max temp	-	-	0.56	0.41	Mean summer daily max temp	-	-	0.63	0.6
Water quality	Nitrate, mean	-	+	0.10	0.05	Nitrate, mean	-	+	0.22	0.07	Dissolved oxygen, mean	_	+	0.10	

Note: Variables with the highest R^2 for each biotic response metric in each band are highlighted in bold.

Table 2.4. Variable importance was determined through all-subsets GLMs and GLMMs for each biotic response metric. The all-subsets approach ran models for every variable combination of impervious cover and the top-performing predictor from each predictor category of habitat, flow, temperature, and water quality. Model weights (*w*) were calculated based on corrected Aikaike Information Criterion (AICc) values across all 31 models run. Variable importance was calculated for equally plausible models (< 2 Δ AICc); Σw represents the sum of model weights for each model in which the variable appeared. Higher Σw values indicate more important variables. Impervious cover is highlighted in gray.

	Both bands		Very-low band	Low band			
Response	Predictor	Σw	Predictor	Σw	Predictor	Σw	
Richness							
Mac	roinvertebrate taxa richness						
	Nitrate, mean	0.53	Nitrate, mean	0.45	Sediment, D16	0.6	
	Sediment, D16	0.35	Canopy cover	0.20	Impervious	0.5	
	Impervious	0.27	Depositional features	0.14	Mean summer daily max temp	0.4	
	Mean summer daily max temp	0.26	Entrenchment, mean	0.08	Specific conductance, mean	0.4	
Fish	species richness				•		
	Impervious	0.50	Banks, vegetated	0.43	Entrenchment, cv	0.4	
	Entrenchment, cv	0.46	Dissolved oxygen, mean	0.22	Depositional features	0.2	
	Dissolved oxygen, mean	0.40	Width:depth ratio, mean	0.10	Specific conductance, mean	0.1	
	Depositional features	0.25					
Flow traits	-						
Mac	roinvertebrate flow traits, rel abune	d (%)					
	Mean summer daily max temp	0.51	Depositional features	0.32	Bankfull area, cv	0.5	
	Bankfull area, cv	0.47	Nitrate, mean	0.31	Mean summer daily max temp	0.5	
	Entrenchment, mean	0.25	Mean summer daily max temp	0.08	Stream power	0.3	
	Nitrate, mean	0.20	5 1		I I		
Fish	, fluvial rel abund (%)						
	Impervious	0.76	Stream power	0.24	Width:depth ratio, cv	0.3	
	Dissolved oxygen, mean	0.76	Specific conductance, mean	0.22	Dissolved oxygen, mean	0.3	
	Habitat transitions	0.34	Sediment, D16	0.19			
	Riparian vegetation	0.22	,				
	Stream power	0.13					
Thermal tr	*						
Mac	roinvertebrates, coldwater rel abun	d (%)					
	Impervious	0.58	Impervious	0.44	Width:depth ratio, mean	0.4	
	Sediment, D16	0.45	Bankfull width, cv	0.44	Large wood, volume	0.2	
	Width:depth ratio, mean	0.32	Stream power	0.44	Specific conductance, mean	0.2	
	Specific conductance, mean	0.30	Specific conductance, cv	0.44	Impervious	0.1	
Fish	, coldwater rel abund (%)		1		1		
	Large wood, volume	0.62	Large wood, volume	0.49	Sediment, heterogeneity	0.4	
	Riparian vegetation	0.45	Mean summer daily temp range	0.13	Stream power	0.4	
	Impervious	0.36	Impervious	0.12	Impervious	0.1	
	Dissolved oxygen, mean	0.32	1		1		
Tolerance	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Mac	roinvertebrate tolerance index						
	Embeddedness	0.89	Impervious	0.63	Embeddedness	0.7	
	Nitrate, mean	0.89	Embeddedness	0.63	Specific conductance, mean	0.6	
	Riparian vegetation	0.57	Dissolved oxygen, mean	0.37	Impervious	0.4	
	Impervious	0.48	Dissolved on gen, mean	0.07	Mean summer daily temp range	0.3	
	Entrenchment, mean	0.42			Weak summer any temp range	0.2	
Fich	intolerant rel abund (%)	0.12					
1 1311	Mean summer daily max temp	0.54	Mean summer daily max temp	0.54	Mean summer daily max temp	0.5	
	Entrenchment, cv	0.14	Impervious	0.34	Dissolved oxygen, mean	0.3	
	Nitrate, mean	0.14	impervious	0.54	Dissorved oxygen, mean	0.5	
	man, mean	0.13					

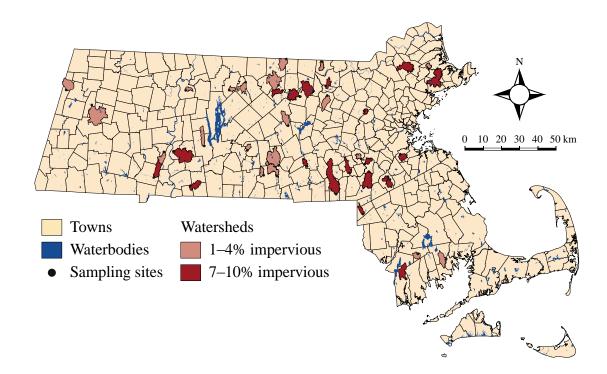


Figure 2.1. Forty sites sampled across Massachusetts within two bands of impervious cover: 1-4% (n = 20; pink) and 7-10% (n = 20; red) during 2014–2016. Major waterbodies (large rivers, lakes; blue) and town boundaries are also shown.

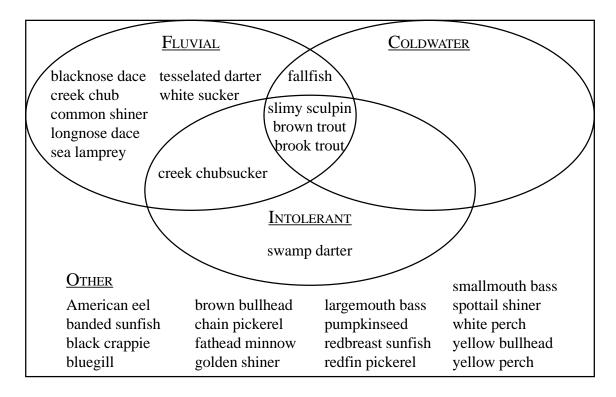


Figure 2.2. Overlap among fish species with fluvial, coldwater, and intolerant traits. Species that do not possess any of these traits, and thus were not included in the suite of flow, thermal, and tolerance response variables, are listed as "other".

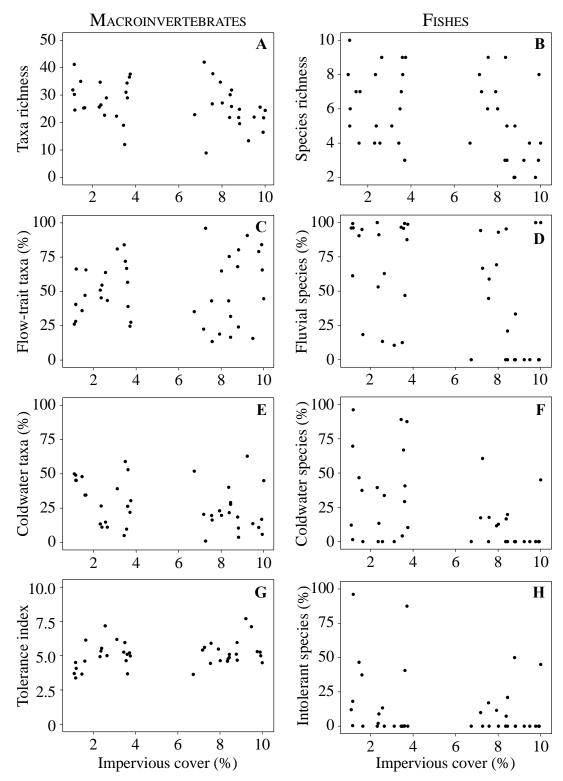


Figure 2.3. Scatterplots of the relationship between impervious cover and biotic response variables: macroinvertebrate taxa richness (A), fish species richness (B), macroinvertebrate flow traits (C), fluvial fishes (D), coldwater macroinvertebrates (E), coldwater fishes (F), macroinvertebrate tolerance index (G), and intolerant fishes (H).

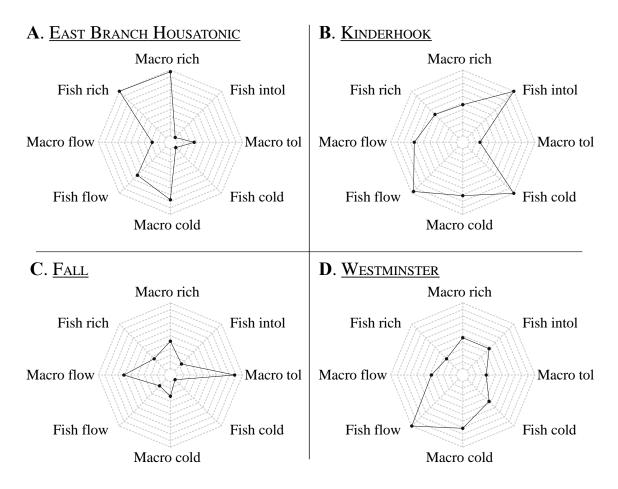


Figure 2.4. Spider plots displaying biotic response variables at four selected sites: East Branch Housatonic (A), Kinderhook (B), Fall (C), and Westminster (D). Counterclockwise from top center around each plot, the response variables are macroinvertebrate richness, fish richness, macroinvertebrate flow traits, fish flow traits, macroinvertebrate thermal traits (coldwater), fish thermal traits (coldwater), macroinvertebrate tolerance index, and fish intolerant. Black dots show the relative value for each response variable. Dots closer to the center of the plot indicate low values; dots further away from the center and near the outer ring indicate high values. All plots are scaled such that the center represents the minimum value found across all 40 sites, while the outer ring represents the maximum value found across all 40 sites.

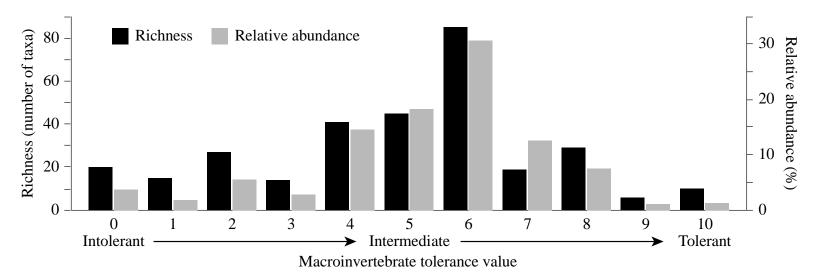


Figure 2.5. Histograms of macroinvertebrate taxa richness (black) and relative abundance (gray) along the tolerance gradient from intolerant (0) to tolerant (10).

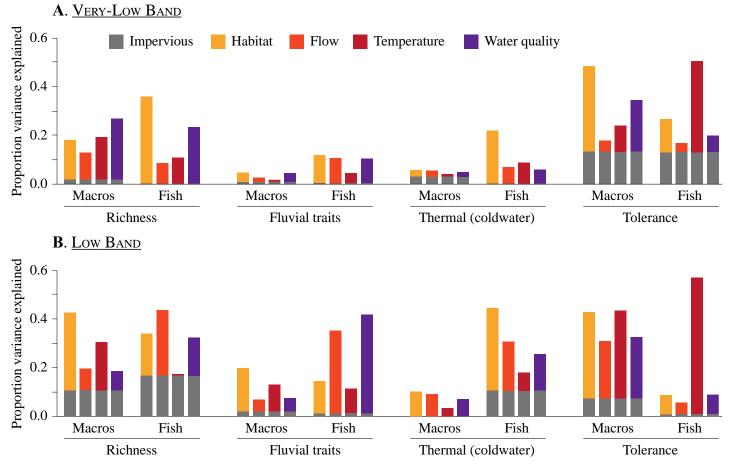


Figure 2.6. Additional variance explained by reach-scale predictors within predictor categories of habitat, flow, temperature, and water quality, for (A) very-low (1-4%) and (B) low (7-10%) impervious bands.

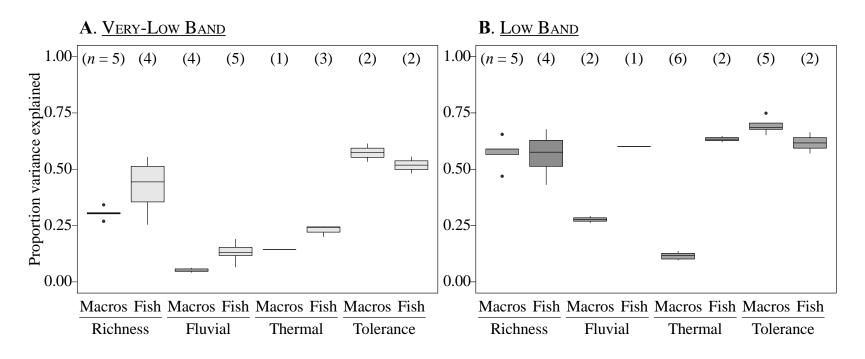


Figure 2.7 Box plots for variance explained by equally plausible models within the very-low band (A) and low band (B). Equally plausible models (< 2 AICc) are available in Appendix I.

CHAPTER 3

WATERSHED-SCALE FACTORS EXPLAIN ADDITIONAL VARIANCE IN BIOTIC ASSEMBLAGES OF URBAN STREAMS

3.1 Introduction

As urbanization increases in a watershed, the integrity of stream biotic assemblages declines (see reviews in Walsh et al. 2005, Wenger et al. 2009). This relationship was depicted by Schueler et al. (2009) as a wedge-shaped curve, for which biotic condition is consistently degraded at higher levels of watershed impervious cover, while biotic condition ranges from poor to excellent at lower levels of watershed impervious cover. In order to appropriately manage the effects of urban development on water resources, it is necessary to understand the factors that drive this biotic variability at low levels of impervious cover. While watershed impervious cover is recognized as an important stressor to fish and macroinvertebrate assemblages (Brabec et al. 2002), other watershed-scale factors—reflecting both natural characteristics and anthropogenic disturbance—may affect whether biotic assemblages reflect good or poor condition.

Natural characteristics related to the drainage area, climate, and geology create an environmental template that affects stream biotic assemblages, and may explain variation in biotic condition observed at low levels of impervious cover. Climate—both temperature and precipitation—affects components of the hydrological cycle, including base flow, flow permanence, runoff, flashiness, snowmelt, and evapotranspiration (Hale et al. 2016), which in turn influences fishes (Poff and Zimmerman 2010) and macroinvertebrates (Konrad et al. 2008). Regional geology modifies these hydrological responses and the interaction between surface waters and groundwater, and can also

dictate reach-scale slope, bed texture, and other geomorphic factors that directly influence stream biota (Montgomery 1999).

Catchment land uses, such as open water, wetland, and forest, provide ecosystem functions that affect biotic assemblages. Wetland cover is often associated with higher biotic condition potentially due to its role in slowing flows, storing water in floodplains, filtering contaminants, and acting as sites of nutrient transformation, including denitrification (Groffman et al. 2002). The extent of forest cover in the watershed is also associated with higher biotic condition (Allan 2004). Forest cover modifies hydrological responses, including evapotranspiration, that influence stream flows (Gordon et al. 2004). When located along riparian corridors, forest cover shades the channel, contributes wood and leaf litter, and stabilizes stream banks (Hession et al. 2003).

Historical land use may also influence biotic condition at low levels of impervious cover, due to the impact of legacy effects (Harding et al. 1998). Forest or agricultural land uses in the watershed prior to urban development are significant predictors of biotic responses (Brown et al. 2009, Cuffney et al. 2011). Cappiella et al. (2012) noted that biota appeared to be more degraded when urbanization occurred on forested land than agricultural land, since sensitive species were already lost due to agriculture prior to development. Utz et al. (2009) also found that macroinvertebrates did not respond as severely to agriculture as to urbanization, potentially for the same reason: that sensitive species had already been lost after decades or centuries of agricultural use, while the remaining taxa had adapted to such alteration. Prior land use history can potentially confer resistance for biotic communities, particularly when urban infrastructure

effectively limits or reduces nutrient inputs relative to current or past conditions (Utz et al. 2016).

Dams and water withdrawals alter flow and thermal regimes independent of impervious cover, although their presence and magnitude potentially also interact with existing impervious cover to influence biotic condition. Water withdrawals and wastewater discharge can also lead to different hydrological responses (Bhaskar et al. 2016). Groundwater pumping, such as for water supply or to protect urban infrastructure (e.g., subway tunnels), can result in lower water tables in urban areas. Wastewater treatment plant inputs provide higher flows downstream of discharge points, which may mask or interact with water withdrawals; this may create heterogeneous base flow conditions on smaller scales even if base flow in the watershed overall remains unchanged (Brandes et al. 2005, Weiskel et al. 2007). Water infrastructure can contribute to either increased or decreased base flow based on leakages from or into sewer systems, and import or export of water outside the watershed (Bhaskar et al. 2016). In some cases, as in Baltimore, Maryland, groundwater leakage into sanitary sewers had greater influence on base flow than impervious cover (Bhaskar and Welty 2012, Bhaskar et al. 2016), which might account for the variability in base flows measured there (Schwartz and Smith 2014). Water infrastructure can also contribute to nutrient loading in urban systems, such as through leaky wastewater sewers or combined sewer overflows (Hale et al. 2016).

Metrics that decompose total impervious area into finer categories can potentially lead to better understanding of mechanisms of impairment, as well as explain variability in ecological responses. One such measure is effective impervious surface, or direct

hydraulic connection of impervious surfaces to streams via pipe networks, which has emerged as a strong predictor of stream degradation due to its role in driving hydrological alteration (Alley and Veenhuis 1983, Booth and Jackson 1997, Wang et al. 2001, Brabec et al. 2002, Walsh et al. 2005, Roy and Shuster 2009, Vietz et al. 2014). Where water that falls on impervious surfaces is routed directly to the stream channel, it by passes interaction with landscape features such as geology, soils, or riparian vegetation that would potentially lead to different responses based on the regional and physicochemical template (Utz et al. 2011). The relative proportion of effective impervious cover may be more important at low levels of impervious cover, since most impervious cover is connected at the high end of the urban gradient (Alberti et al. 2007). Specific types of impervious cover may also explain variability in responses. For example, Alberti (2005) and Alberti et al. (2007) found that road density and road crossings were significant predictors of benthic index of biotic integrity (B-IBI) in the Puget Sound, Washington. Roads can also serve as barriers for fish, such as when culverts at road-stream crossings are undersized, perched, devoid of sediment, or lack stream flow (Trombulak and Frissell 2000). Sediment loading from roads has been shown to favor silt-tolerant macroinvertebrate and fish species (Angermeir et al. 2004). Lastly, the location and spatial arrangement of impervious surfaces also affects stream impairment. Landscape position of urban development can differentially affect baseflow conditions, particularly when urban development is located in areas of high groundwater recharge (Bhaskar et al. 2016).

These natural and anthropogenic watershed characteristics formed the basis of my hypotheses of factors that may explain differences in biotic condition in watersheds with similar levels of low impervious cover. Specifically, I asked:

- 1. Which watershed-scale predictors—representing natural characteristics, land cover, flow alteration, and other measures of urbanization—best explain biotic condition at sites with similar levels of impervious cover?
- 2. How do watershed-scale predictors act in combination to explain biotic condition at sites with similar levels of impervious cover?

These questions were asked for two taxonomic groups (macroinvertebrates and fishes) and several biotic response metrics (richness, flow traits, thermal traits, tolerance), allowing me to compare responses across taxa and metrics. Finally, the streams studied had very low (1–4%) or low (7–10%) impervious cover, levels where biotic condition was not expected to be consistently degraded. These two impervious cover levels allowed me to test whether factors explaining variability differed based on total impervious cover. Ultimately, this study aimed to provide insights as to what watershed characteristics, in combination with impervious cover, are likely to lead to more degraded biotic conditions, and which characteristics confer biotic resistance to urbanization, thus guiding management decisions prioritizing areas for protection or restoration.

3.2 Methods

3.2.1 Study area

This study was conducted in Massachusetts, which spans three main ecoregions: the Northeastern Highlands in the western and north-central parts of the state, the

Northeastern Coastal Zone in the eastern part of the state, and Cape Cod and the Islands along the coast (Hall et al. 2002). The Northeastern Highlands are higher elevation (60– 1014 m) mountains, whereas the Northeastern Coastal Zone primarily consists of lower elevation (0–364 m) lowlands and rolling hills. Climatic conditions—characterized by warm summers and cold snowy winters- are generally similar across the state, with slight variations by ecoregion: the average annual temperature is 7.3°C in the Northeastern Highlands compared to 9.4°C in the Northeastern Coastal Zone, and the average annual precipitation is 119 cm in the Northeastern Highlands compared to 117 cm in the Northeastern Coastal Zone (Hall et al. 2002). Cape Cod and the Islands (Martha's Vineyard and Nantucket were not included in this study since simulated stream flows were not available for these areas at the time of study design, which led to their omission from other studies characterizing flow and fish communities in Massachusetts (Armstrong et al. 2011). Geology across the state is mostly comprised of granitic and metamorphic bedrock, with some calcareous or moderately calcareous bedrock in the west. Surficial geology is typically dominated by glacial till, with higher amounts of sand and gravel in the east. Soils are acidic and nutrient-poor (Hall et al. 2002).

The Massachusetts landscape has a long history of human alteration from agriculture, dams and water withdrawals, industrial use, and urban development. Agricultural development peaked in the nineteenth century, when about half of the state land area was used for pasture, hay, or cultivated crops; this was associated with a decline in forested land area (Hall et al. 2002). Concurrent with agricultural development in the nineteenth century was rapid industrial development in New England. Rivers and streams were dammed to provide power for mills; as a result, New England has the highest

density of dams in the country (0.015 dams km⁻²) (Graf 1999), with more than 14,000 dams throughout the region (Magilligan et al. 2016). After reaching its height in the nineteenth century, subsequent declines in agricultural land use led to increases in forested land cover through the mid-twentieth century, after which forested land continued to increase in the Northeastern Highlands, but decreased in the Northeastern Coastal Zone as more land was developed for residential and commercial purposes (Hall et al. 2002).

Current land use patterns reflect both historical uses and the influence of geology, topography, and water features. The population of Massachusetts is approximately 6.8 million statewide, 667,000 of which are concentrated Boston, located on the coast in eastern Massachusetts (U.S. Census Bureau 2015). Urban sprawl radiates from the city center into the surrounding land, which is becoming increasingly developed. Agriculture is concentrated in the fertile floodplains of the Connecticut River Valley. The Berkshires in western Massachusetts remain the least developed region with the most forest cover in the state.

3.2.2 Site selection

Forty stream sites throughout Massachusetts were chosen for this study (Figure 3.1). Contributing areas were delineated for each sampling site using ArcGIS 10.3. Watersheds met several criteria: (1) independent, without overlapping basins; (2) between 5–80 km² area; (3) either 1–4% (n = 20) or 7–10% (n = 20) impervious cover, as calculated based on the 2011 National Land Cover Dataset (NLCD); and (4) less than

20% agricultural land use per the 2011 NLCD. Additional information regarding the calculations and rationale for each criterion are provided in Chapter 2, Section 2.2.2.

All sites had both macroinvertebrate and fish assemblage data collected within the past 11 years (2005–2015). Assemblage data were accessed from existing databases created by the Massachusetts Department of Environmental Protection (MDEP) and Massachusetts Division of Fisheries and Wildlife (MDFW). For 17 sites, data for both macroinvertebrates and fishes were collected by MDEP during the same sampling season. For 4 sites, data were collected at the same site, but by different agencies during different sampling years. For the remaining 19 sites, data were available from one agency and additional macroinvertebrate or fish sampling was conducted by MDFW and University of Massachusetts Amherst in 2014–2015 following agency protocols such that each site ultimately had both macroinvertebrate and fish data.

3.2.3 Biotic assemblages

Macroinvertebrates were collected with a rectangular-frame kick net in 10 riffles, which were aggregated into one sample for each site. Samples were sorted and identified to the lowest feasible level (often genus or species) in the lab by MDEP or Cole Ecological, Inc. Macroinvertebrate samples collected 2005–2011 were subsampled to 100 individuals, whereas samples collected 2012–2015 were subsampled to 300 individuals. Subsamples that were 300-count were rarefied using the vegan package in R (Oksanen et al. 2016) to standardize with 100-counts subsamples (Gotelli and Colwell 2001).

Several macroinvertebrate metrics were calculated, including: taxa richness, relative abundance of taxa with flow-adapted traits, relative abundance of coldwater taxa,

and a tolerance index. Flow-adapted traits were assessed using a combination of rheophily (erosional, erosional or depositional, depositional), shape (streamlined, not streamlined), swimming ability (none, weak, strong), and attachment (none, some, both) categories available in the appendices of Poff et al. (2006b) and trait databases created by the U.S. Geological Survey (Vieira et al. 2006), and U.S. Environmental Protection Agency (US EPA 2012, 2016). Multiple traits were aggregated into a single flow-trait metric based on presence of 2 of 4 of the following traits: erosional rheophily, streamlined shape, strong swimming ability, and some attachment (Appendix C.2). Macroinvertebrates were also categorized into thermal traits (cold stenothermal/cool eurythermal, cool/warm eurythermal, and warm eurythermal) using the same sources as flow traits. The relative abundance of macroinvertebrate taxa classified as cold stenothermal/cool eurythermal was calculated. The tolerance index was calculated based on the methods established in Hilsenhoff (1998), for which each taxon is assigned a tolerance value of 0–10 from least to most tolerant, and an aggregate score is calculated for the assemblage present.

Fishes were sampled by MDFW, MDEP, and University of Massachusetts Amherst using single-pass electrofishing and identified to species level. Fish metrics were calculated for species richness and relative abundances of fluvial fishes, coldwater fishes, and intolerant fishes. Fish were classified based on MDFW categories; classifications for each species can be found in Appendix C.3.

3.2.4 Watershed variables

Watershed characteristics were assessed with ArcGIS 10.3, using data layers available through National Land Cover Database (NLCD) and MassGIS (Table 3.1). Variables were classified into four predictor categories: natural characteristics, land cover, flow alteration, and other urban and impervious measures. Natural characteristics of each site included drainage area, elevation, precipitation, air temperature, and surficial geology. Drainage area was delineated for each unique sampling site with National Hydrography Dataset (NHD) flowlines; basin and site elevation were calculated from Digital Elevation Models (DEMs). Precipitation and air temperature were calculated from PRISM (Parameter-elevation Relationships on Independent Slopes Model) models developed by Oregon State University (Daly et al. 2008). Surficial geology was represented by the percent sand and gravel in the basin, as this variable is thought to reflect groundwater contributions to the basin (Armstrong et al. 2011).

Current and historical land use for forest, wetland, open water, and agriculture was assessed at watershed and riparian buffer scales. Current land use in the watershed was calculated with 2011 and 2006 NLCD, to match the biotic sampling window of 2005–2015. Current land use in the buffer was calculated with 2011 NLCD; buffers were 120-m wide, for the entire stream network upstream of the sampling site. Historical agricultural use was represented by 1992 NLCD data: across the four years of historical land use data available for Massachusetts (1992 from NLCD; 1971, 1985, and 1999 from MassGIS), agricultural use peaked at all 40 sites during 1992 (Appendix J.2); hence that year was used to represent the greatest historical coverage. Since the land cover classification schemes differ between NLCD and MassGIS and across years, land uses

were aggregated into categories comparable to the 2011 NLCD classification scheme (Appendix J.1).

The flow alteration category includes metrics related to dams and water withdrawals. Several metrics assessed the role of dams on the landscape: dam density per watershed area, dam density per stream length in the watershed, longest undammed flow path distance (both upstream and downstream, encompassing the site), and distance from sampling location to nearest upstream dam. Dam data were accessed from MassGIS, which derived their data from the Massachusetts Office of Dam Safety. Flow alterations were assessed using data simulations based on the Sustainable Yield Estimator (Archfield et al. 2010). The SYE output is the monthly 'sustainable yield' volume, which is the maximum volume of water that can be withdrawn without depleting a steam lower than a user-specified value (i.e., the target streamflow value). Since Armstrong et al. (2011) found summer flows to be most important for fish assemblages in Massachusetts, the June–September unaltered, altered, and percent difference between unaltered and altered flows were used, as well as the mean annual percent difference between unaltered and altered flows.

Different aspects of urbanization and impervious cover were quantified in addition to total watershed impervious cover. Impervious cover within a 120-m buffer was calculated from 2011 NLCD as well as a 10-m aggregation between 2011 NLCD (30-m resolution) and 2005 MassGIS (1-m resolution). Recent change in watershed impervious cover was calculated as the difference in impervious cover between 2006 and 2011 NLCD. Population and housing density were assessed for each watershed. Roads were assessed as road density per watershed area, as well as the number and density of

road-stream crossings in the watershed. An algorithm was developed by Matt Baker (University of Maryland Baltimore County) and Lance Ostiguy (USGS New England Water Science Center) to quantify flow- and distance-weighted impervious cover. Since most flow- and distance-weighting metrics were highly correlated, one distance metric and one flow metric were used for this analysis: relative flow length distance to the sampling station (FL) and gradient-to-length ratio (GLR), which relates the flow gradient with the flow length distribution as a topographic estimate of water residence time (M. Baker, *pers comm.*). Four weights were used for FL and GLR: 0.5, 1.0, 1.5, and 2.0, for which larger values have greater emphasis on proximate locations. Distances use weights as a negative power, while flow weights use weights as a positive power (*sensu* King et al. 2005).

3.2.5 Statistical analyses

A series of modeling steps were performed to determine the watershed-scale variables that best explained each biotic response variable. Generalized linear models were developed for each biotic response metric (Zuur et al. 2012) using the stats package in R (R Core Team 2016). GLM distributions were chosen based on the characteristics of the response metric: macroinvertebrate richness and macroinvertebrate tolerance used a Gaussian (i.e., normal) distribution; fish richness used a Poisson distribution appropriate for zero-bounded count data; and relative abundances of macroinvertebrate and fish flow traits, coldwater macroinvertebrates and fishes, and intolerant fishes used a binomial distribution with logit link function appropriate for proportional data. The Shapiro-Wilk test was used to assess normality in the distributions of response variables.

Macroinvertebrate richness and macroinvertebrate tolerance were normally distributed; the other response variables had non-normal distributions. Log transformations did not improve normality of the remaining response variables and thus were not used. Binomial GLMs had extreme overdispersion (ratio of residual deviance to degrees of freedom, for which a value greater than 1 indicates overdispersion; Warton and Hui 2011); thus, generalized linear mixed models (GLMMs) with a random effect for sampling site were run for all proportional response variables using the lme4 package in R (Bates et al. 2015).

In order to reduce the number of predictor variables for models based on the limited sample size (n = 20 for each band), variable selection occurred in several steps. First, predictor variables within each predictor category (natural characteristics, land cover, flow alteration, and other urban or impervious measures) were tested for collinearity based on pairwise Spearman rank correlation analysis. When pairs of variables were highly collinear (r \geq |0.7|), one variable was selected for subsequent analysis.

From this reduced list of predictors, GLMs and GLMMs were run with impervious cover plus each individual predictor in turn. These single-variable models were compared using Akaike's Information Criterion (AIC; Burnham et al. 2011), corrected for small sample size and penalized for the number of parameters. The predictor variable with the lowest AICc within each predictor category was retained for further analysis. This resulted in one predictor per predictor category, for a total of four predictors used in subsequent analyses.

A global model was compiled of impervious cover with the four selected predictor variables. All combinations of the five variables were run, for a total of 31 models for each biotic response variable. AICc was used for model selection among these 31 models. Model weights were calculated based on the total number of models run; model weight represents the likelihood that the chosen model is the correct model. Models within 2 Δ AICc units were considered equally plausible, competing models. Variable importance was calculated to compare amongst predictors retained within the equally plausible models. The amount of variance (i.e., R², pseudo-R², or conditional-R², based on the model distribution) explained in equally plausible models was used to compare models across taxonomic groups, biotic response metrics, and impervious bands.

3.3 Results

3.3.1 Site characteristics

For the 40 sites that were included in this study, the 20 sites in the very-low impervious band ranged from 1.1-3.7% watershed impervious cover, whereas the 20 sites in the low band ranged from 6.7-10.0% watershed impervious cover, according to the 2011 NLCD. One site was <7% impervious due to an error in calculations during site selection, but was still included in the low band. Drainage areas ranged from 5.8-72.1 km² in the very-low band and 5.3-66.3 km² in the low band. Agriculture ranged from 0.3-15.8% of total land cover in the very-low band and 0.0-20.4% in the low band.

3.3.2 Biotic responses

Across the 40 sites, 318 macroinvertebrate taxa and 30 fish species were sampled (Appendix B). Two macroinvertebrate taxa (0.6%) were not classified for flow traits and 46 taxa (14.5%) were not classified for thermal traits due to lack of information in existing trait databases. Of the remaining macroinvertebrate taxa, 115 taxa (36.2%) were classified as having flow-adapted traits and 88 taxa (27.7%) were coldwater. Macroinvertebrate tolerance indices for the aggregate assemblage at each site ranged from 3.4–7.7, based on a scale ranging from intolerant (0) to tolerant (10). Twelve of the 30 fish species collected were considered fluvial (fluvial dependent or fluvial specialist), four species were coldwater, and five species were intolerant.

Macroinvertebrate and fish responses were highly variable within each band of impervious cover (Table 3.2), as predicted by the impervious cover model (Schueler et al. 2009). However, all response variables—except macroinvertebrate tolerance for which the index is scaled from intolerant to tolerant—had greater variation within the low band than the very-low band. Across each response group of richness, flow traits, thermal traits, and tolerance, fish responses were more dispersed than macroinvertebrate responses, as indicated by higher coefficients of variation (Table 3.2).

Biotic metrics were not necessarily concordant between macroinvertebrate and fish taxonomic groups (Figure 3.2). Macroinvertebrate and fish richness tended to show similar assessment of condition: sites that had high macroinvertebrate richness also had high fish richness. There was general agreement between fish and macroinvertebrate metrics of coldwater taxa, albeit most taxa that were sampled were not classified as coldwater for either macroinvertebrates or fishes. Similarly, few fishes were classified as intolerant, and the macroinvertebrate tolerance index did not demonstrate much scatter

across sites. In contrast, flow traits demonstrated a notable lack of concordance between taxonomic groups: sites either had high relative abundance of flow-adapted macroinvertebrate taxa or high relative abundance of fluvial fishes, but rarely both.

3.3.3 Watershed-scale predictors

Air temperatures were slightly cooler at very-low-band sites compared to lowband sites, with ranges of -0.2–5.2°C (mean 2.0°C) and 1.2–5.6°C (mean 3.1°C), respectively (Table 3.3). Precipitation was comparable between bands. Percent sand and gravel, as a measure of surficial geology and groundwater potential, was higher on average in the low band (39.8%) compared to the very-low band (26.4%). Forest cover was higher in the very-low band compared to the low band, with higher minimum, maximum, and mean values (45.9–83.1% with mean 64.8% compared to 29.5–63.8% with mean 43.8%, respectively; Table 3.3). Historical agriculture (1992) ranged from 1.9–31.6% across all 40 sites, compared to current agriculture (2011) that ranged from 0.0–20.4% across all sites. Open water and wetland both had higher average coverage in the watershed for sites in the low band compared to the very-low band (Table 3.3).

Dam density was comparable between very-low and low bands (Table 3.3). Longest undammed flow path had a higher maximum and higher mean value in the low band compared to very-low band, although the minimum lengths were comparable across bands. While the August altered flows ranged comparable values between each band, the ranges differed greatly between very-low and low bands for August percent difference (Table 3.3). In the very-low band, percent difference ranged from -100–18.0%, while in the low band the range was -95.6–579.3%. Negative values occur at depleted sites where

unaltered flows are greater than altered flows; positive values occur at surcharged sites where altered flows are greater than unaltered flows. Altered flows were greater than unaltered flows at 5 sites in the very-low band compared to 10 sites in the low band. The value of 579.3% flow alteration represents an outlier at Monoosnuc Brook in Leominster, with much more water withdrawn relative to unaltered flows than at other sites. Monoosnuc Brook was also an outlier for August altered flows, as was the East Branch Housatonic River in Dalton.

Average road density was higher in the low band: 3.6 km/km² compared to 2.3 km/km² in the very-low band (Table 3.3). Although the total number of road-stream crossings in the watershed ranged considerably from 2–91 crossings (average 24 crossings in very-low band, 34 crossings in low band), once crossings were standardized to drainage area, the densities spanned similar ranges with similar means across very-low and low bands. Both flow length and gradient:length ratio exhibited higher minima, maxima, and means in the very-low band compared to the low band. One outlier was present for each metric: at Fall Brook in Freetown (very-low band) for gradient:length ratio and Monoosnuc Brook in Leominster (low band) for flow length.

3.3.4 Predictor-response relationships

The best-supported variables (i.e., $\Delta AICc = 0$) within each predictor category of natural characteristics, land cover, flow alteration, and other urban measures differed across taxonomic groups, biotic response metrics, and by impervious band (Table 3.4, Figure 3.3, Appendix M). Combinations of predictor variables determined through all subsets modeling and variable importance similarly showed differences across taxa,

metric, and band (Table 3.5, Figure 3.4, Appendix N). Minimum annual monthly minimum air temperature and open water were the predominant watershed-scale variables that both explained the most variance in biotic condition and were ranked highest for variable importance in multi-variable models of biotic responses. For example, minimum annual monthly minimum temperatures explained additional variance for both macroinvertebrates and fishes, particularly for in the very-low band for coldwater fishes (additional $R^2 = 0.42$) and macroinvertebrate tolerance (additional $R^2 = 0.40$).

3.3.4.1 Taxonomic group

Overall, fish assemblages were better explained by watershed-scale predictors than were macroinvertebrate assemblages. For macroinvertebrates, natural characteristics, other urban measures, and land cover contributed the most additional variance explained, after accounting for impervious cover. Fish assemblages were additionally explained by land cover and other urban measures, but also by flow alteration. The variables within each category also differed by taxonomic group. For land cover predictors, for instance, more historical agriculture was related to higher macroinvertebrate richness (additional $R^2 = 0.27$ in very-low band), while more watershed forest cover was related with more intolerant fishes (additional $R^2 = 0.40$ in very-low band). Housing density and impervious within the buffer most often explained the most biotic variance for the other urban predictor category: higher housing density was related to higher macroinvertebrate richness (additional $R^2 = 0.23$ in the low band) and more intolerant fishes (additional R^2 = 0.20 in the low band), while higher buffer impervious was related with greater fish

richness (additional $R^2 = 0.12$ in low band) and more coldwater fishes (additional $R^2 = 0.18$ in low band). Flow alteration predictors (represented by dam density, August altered flows, and percent difference between August altered and unaltered flows) were more important for fish assemblages than macroinvertebrate assemblages.

3.3.4.2 Biotic response metric

Biotic response metrics differed in the amount of variance explained by watershed-scale predictors. For macroinvertebrates, tolerance and richness were best explained. By contrast, fluvial and thermal trait metrics for macroinvertebrates were not well explained: none of the watershed-scale predictors tested contributed $R^2 > 0.10$. For fish assemblages, the amount of variance explained also depended on which response metric was considered Watershed-scale factors explained the most additional variation for fluvial fishes (additional $R^2 = 0.22$ for both bands) and lesser amounts of variation for richness, coldwater, and tolerant fishes. Coldwater and intolerant fishes had similar amounts of variance explained, albeit by different watershed-scale predictors. Coldwater fishes were better explained by minimum annual monthly mean air temperature and impervious within the buffer, whereas intolerant fishes were better explained by open water, forest cover, and housing density.

3.3.4.3 Impervious band

The amount of variance explained, and which factors were most important, differed considerably based on which band—very low or low—was analyzed. In the very-low band, higher minimum annual monthly minimum air temperature was related

with higher macroinvertebrate tolerance index (additional $R^2 = 0.46$), while in the low band, less precipitation was associated with higher tolerance (additional $R^2 = 0.20$). More historical agriculture contributed the most variance explained in addition to impervious in the very-low band (additional $R^2 = 0.27$) for macroinvertebrate richness, while higher housing density contributed additional $R^2 = 0.23$ in the low band. Overall, watershedscale predictors explained more variance in the very-low band compared to the low band. Relative abundance of fluvial fishes was a notable exception, however: individual predictors from any predictor category added R^2 ranging 0.16–0.22 in the very-low band, whereas single predictors added R^2 ranging 0.15–0.81 in the low band. The predictor used in the flow alteration category-percent difference between August altered and unaltered flows—contributed $R^2 = 0.81$, in addition to the 0.02 explained by total impervious in the low band. The factors that contributed this additional variance differed by band, however: higher dam density for both bands, lower minimum annual monthly minimum air temperature in the very-low band, and higher August flow alteration in the low band.

3.4 Discussion

3.4.1 Watershed-scale variables explain differences in biotic condition

The importance of temperature in driving biotic assemblage structure was reinforced by this study. Minimum annual monthly minimum air temperature was the most frequently occurring watershed-scale predictor in equally plausible models and was often ranked as the most important variable among predictors in equally plausible models. However, air temperature was not strongly correlated with the suite of water

temperature metrics calculated from direct measurement at the 40 stream sites in this study, a finding that has been documented in other studies (e.g., Booth et al. 2014), suggesting that something else related to air temperature may explain the responses. Minimum air temperatures were strongly correlated with land use measures (e.g., percent wetland) and elevation of both the watershed and the sampling site. This suggests that high-elevation streams are potentially more resistant to impacts of urbanization and have higher biotic integrity relative to lower elevation streams—particularly when integrity is measured by assemblages sensitive to flow, thermal, or water quality degradation. Other factors influence surface water temperatures in urban streams, however, such as riparian vegetation. For instance, urban sites that were shaded had cooler stream temperatures with less variance than urban sites exposed to open sun (Booth et al. 2014). Streams with steeper gradients and more catchment forest cover also had lower thermal sensitivity, which might allow greater stream ecosystem resilience to modest changes in land use (Hilderbrand et al. 2014).

Forest cover explained a substantial amount of variation in fish richness. Across the 40 study sites, total forest cover in the watershed and forest within the 120-m buffer upstream of the sampling site were highly correlated (r = 0.95); hence the use of forest in the watershed but not within the buffer as a predictor variable in biotic models. The importance of forest cover for maintaining high-quality fish assemblages has been demonstrated in numerous studies (Allan 2004, Lammert and Allan 1999). The beneficial role of riparian vegetation might be more important in watersheds with lower levels of urbanization (e.g., <15% urban land cover) than highly urbanized watersheds, at least for fish assemblages (Roy et al. 2007).

Macroinvertebrate richness was more highly explained by legacy agriculture cover in addition to impervious cover, rather than by forest or other current land cover types. Where urbanization occurs in historically agricultural watersheds, biota appear relatively unimpacted by urbanization, presumably because they have already experienced loss of sensitive species prior to urbanization (Cappiella et al. 2012), in contrast to urbanization in forested watersheds. Although current agricultural extent as of 2011 ranged from 0.0–20.4% for the 40 study watersheds, legacy agriculture based on a peak in 1992 ranged from 1.9–31.6%. As agricultural use declines in Massachusetts (Hall et al. 2002), formerly agricultural lands are often converted either to forest land or developed land (Hall et al. 2002), which often limits or reduces nutrient inputs in relation to past conditions (Utz et al. 2016). Thus, if macroinvertebrates become adapted to disturbance under agricultural conditions, they may be most able to resist future disturbances. This relates to other hypotheses about specific factors that might confer resistance to urbanization: that biota already adapted to naturally high conductivity and pH (Utz et al. 2016) or to naturally warmer stream temperatures (Hale et al. 2016) might be already adapted to cope with the types of thermal and water quality impairment associated with urbanization.

Open water was an important variable in models of macroinvertebrate richness, flow traits, and thermal traits, as well as intolerant fishes (Table 3.4). While open water was included in the land cover category, it was correlated with dam density (r = 0.67), which was used in the flow alteration predictor category. In several instances, both open water and dam density were represented as the best predictors from their respective predictor categories. When used in flow-trait models, however, the tested predictor–

response relationships ran counter to expectations. In particular, higher relative abundance of fluvial fishes was explained in equally plausible models by higher dam density (both bands, very-low band). The positive relationship between dam density and fluvial fishes is potentially an artifact of more dams being located in high-gradient watersheds where more riffle habitat already exists conducive to fluvial fish abundance. Although elevation, reach slope, and dam density were not highly correlated (r < 0.50) in this study, watershed slope was not tested and might be a better predictor of dam siting than local reach slope.

Where they do exist on the landscape, dams and impoundments affect flow, temperature, and sediment regimes, with subsequent effects on stream geomorphology and physical habitat features (Ligon et al. 1995); these effects may occur prior or concomitant with impervious cover development. Dams are prevalent in the Northeast, with many current and historical dams covering many Massachusetts waterways. Although water retained in dams and impoundments alters the hydrological regime, the increased water storage might mitigate impervious-induced hydrological changes, particularly with regard to flashiness. Indeed, one characteristic of streams potentially better suited to resist the effects of urbanization is greater water storage capacity (Utz et al. 2016) such as provided by wetlands or impoundments (Hopkins et al. 2015). Hence, the relationship between open water and dams, as well as their implications for biota, in the context of urbanization requires further investigation.

Higher relative abundance of fluvial fishes was also explained by higher flow alteration. The August flow alteration metric (percent difference between altered and unaltered flows) incorporates both withdrawals (negative values) and return flows

(positive values) from a variety of sources: withdrawals from groundwater, surface water, direct river intake, and domestic wells, and return flows from groundwater, surface water, and domestic septic. Two sites in particular had highly positive flow alteration values, both in the low band, which potentially drove the relationship observed in the low band but not in the very-low band. Armstrong et al. (2011) found fewer fluvial fishes with more August flow alterations, although this only included depleted sites, not surcharged sites receiving wastewater discharges. Kanno and Vokoun (2010) also demonstrated that higher water withdrawal rates were related to proportionally fewer fluvial dependents.

Contrary to other studies demonstrating the influence of directly connected impervious, road networks, or spatial arrangement of impervious cover (Walsh et al. 2005), this study did not provide strong evidence for other measures of urbanization or impervious that explained biotic assemblages better than total impervious cover. Of the eight predictors within the "other urban measures" predictor category, all appeared at least once as the best predictor of the category. However, other urban measures only contributed additional variance (albeit, additional $R^2 < 0.25$) more than predictors in other categories in a few instances: in the very-low band, more road crossings best explained coldwater macroinvertebrates, while in the low band, higher housing density best explained macroinvertebrate richness and intolerant fishes, and higher impervious in the buffer best explained fish richness and coldwater fishes. The more frequent occurrence and greater additional variance explained for other urban measures in the low band might indicate that those streams have already been subjected to the detrimental effects of impervious cover, while the very-low band is still influenced more by other factors in the watershed.

Part of why other measures of impervious did not emerge as more important might be attributed to imperfect methods of assessment. While road density has been shown to be an important metric to quantify the effects of the transportation network on ecology, finer-tuned measures of the road network might contribute additional explanation of variance, such as road width, type, traffic density, road connectivity, and network structure (Forman and Alexander 1998, Jones et al. 2000). For example, roads with curbs often have stormwater drains connecting directly to streams, providing a higher impact of storm flows and contaminants on streams compared to roads with vegetated swales. The importance of impervious within a 120-m buffer of the stream channel requires further investigation, as impervious located within proximity to stream channels is often part of the road network, particularly in more mountainous areas (Forman and Alexander 1998) where roads and streams parallel but do not necessarily intersect, as would be detected by the road-stream crossings metric. In Massachusetts, Forman and Deblinger (2000) estimated that ecological effects from roads, including stream channelization, wetland drainage, and road salt, extended at least 100 m but also beyond 1 km from the road.

Furthermore, total road crossings were more important and explained more variance than road-crossing density. Total road crossings exhibited more variability (i.e., coefficient of variation) in very-low and low bands than road-crossing density (Table 3.3). Use of total road crossings potentially indicates cumulative effects within a stream network, particularly since the location of crossings may be where most runoff enters stream channels. The directionality of the relationship was contrary to expectations, however: higher abundance of fluvial fishes was related to more road crossings. This

could be indicative of several issues, with potentially different mechanisms: while fluvial fishes require flowing water for most or all of their life cycle, some fluvial fishes (e.g., slimy sculpin) are highly sensitive to thermal and water quality conditions, whereas other fluvial fishes (e.g., white sucker) are more tolerant of degraded conditions such as warmer water or lower dissolved oxygen. Road crossings can also act as barriers that fragment the aquatic connectivity and isolate biotic populations, which is often related to the type of crossing. Although specific characteristics of road crossings were not assessed in this study, biota are differentially affected by the type of crossing: bridges typically allow better passage of materials (e.g. flows, debris), including stream biota, than do culverts, particularly when culverts are undersized or perched (Forman and Alexander 1998, MA DER 2012). Fluvial fishes vary in their movement within streams: some are more confined to localized riffle habitats, whereas others exhibit greater movement within the stream network.

3.4.2 Fish and macroinvertebrate responses differ

Across the four types of biotic response metrics—richness, flow traits, thermal traits, and tolerance—fish assemblages were overall better explained by watershed-scale factors than were macroinvertebrate assemblages. Brown et al. (2009) attributed the generally weak correlations of fish assemblages to urbanization to historical land use, especially agricultural use, instigating fish community changes prior to urbanization. In contrast, results from the NAWQA assessments in urban streams found that macroinvertebrates were better related to urban landscape metrics (e.g., housing density, percent developed land, road density) than fishes. Walters et al. (2009) also found that

macroinvertebrates were more sensitive than fishes to environmental changes at low levels of urbanization. Some of the lowest biotic thresholds to impervious cover have been documented for sensitive macroinvertebrates, which have been shown to decline at very low (0.5–2.0%) levels of watershed impervious cover (King et al. 2011). The urban stream syndrome tends to show more consistent declines for macroinvertebrates than fishes (Walsh et al. 2005). These documented declines in macroinvertebrates are based on studies along a gradient of increasing urbanization or impervious cover. At the low levels of impervious cover at which this study focused, it is possible that macroinvertebrates were already degraded and therefore the range of variability was already suppressed, more so than for fishes, which still retained sufficient variability to be explained by the watershed-scale factors tested.

3.4.3 Responses vary based on the biotic metric used

Tolerance and richness were best explained for macroinvertebrates. Macroinvertebrate richness was associated with higher historical agriculture and higher housing density, likely because more taxa have intermediate tolerance levels than are intolerant. Tolerance, however, was determined mainly by temperature metrics, reflecting thermal pollution as a stronger stressor than other stressors manifested at the watershed scale (e.g., dams, flow alteration). By contrast, fluvial and thermal trait metrics for macroinvertebrates were not well explained. The same issues that plagued macroinvertebrate flow and thermal trait metrics for reach-scale variables also apply for watershed-scale variables.

For fish assemblages, the amount of variance explained also depended on which response metric was considered. Watershed-scale factors explained the most additional variation for fluvial fishes and lesser amounts of variation for richness, coldwater, and tolerant fishes. Fluvial fish richness and relative abundance were also highly correlated and explained by watershed-scale factors in Armstrong et al. (2011). Coldwater fish relative abundance was predominated by fallfish and brook trout, however, fallfish should likely be classified as cool-warmwater instead, which affected the variables that best explained this metric: although more coldwater fishes were related with colder minimum annual monthly mean air temperature, they were also related with more impervious within the buffer. Intolerant fishes, predominantly comprised of brook trout, were better explained by measures of land cover (e.g., open water, forest cover) and housing density. Given the sensitivity of brook trout to thermal alteration (Eaton et al. 1995, Taniguchi et al. 1998, Wehrly et al. 2003), it is surprisingly that temperature metrics did not contribute more additional variance in relation to the other types of predictors tested (i.e., land use, flow alteration, other urban measures).

3.4.4 Reponses vary based on impervious cover band

The differences in responses to predictors between very-low and low bands potentially demonstrate how impacts of urbanization are manifested at low levels of urbanization. This is particularly evident for fishes, where watershed-scale factors explain much more additional variance for fluvial fishes in the low band compared to the verylow band. Because the low band spans a range (6.7–10.0%) in impervious that is near where we would expect considerable decline in biotic integrity, it is possible that the high

explanatory power is linked to imperious-induced flow alteration. The striking difference for fluvial fishes between bands highlights the role of August flow alteration and modeled flow length (weight 2.0) for sites in the low band. In contrast to fluvial fishes, more additional variance for coldwater and intolerant fishes was explained in the verylow band compared to the low band, suggesting that these fishes are sensitive to watershed-scale disturbances even at very low levels of impervious cover. The amount of variance explained for fish richness is similar across bands, but in the very-low band this is mostly accounted for by watershed-scale factors, whereas in the low band most variance is explained by total impervious.

3.4.5 Conclusion

Biotic assemblages showed wide variability in streams with low-levels of urbanization (<10% impervious cover) in this study. Watershed-scale factors, encompassing natural characteristics, land cover, flow alteration, and other measures of urbanization, accounted for additional variance in explaining biotic condition than total impervious cover alone. In particular, sites with lower minimum air temperature, which was highly correlated with high-elevation areas, retained high biotic integrity as measured by higher relative abundances of fluvial, coldwater, and intolerant taxa. Furthermore, these higher quality biotic conditions were present in high-elevation areas despite other stressors, such as dams, flow alteration, and road crossings. As such, we suggest prioritizing watersheds in these high-elevation cold regions for protection while working to reduce existing stressors (e.g., dams, road crossings).

Table 3.1. Watershed-scale variables for each of the predictor categories representing natural characteristics, land cover, flow alteration, and other urban measures. Descriptions of each variable are given, as well as the relevant units, data resolution (i.e., pixel size), and the relevant years from which data were acquired. NLCD = National Land Cover Database; PRISM = Parameter-elevation Relationships on Independent Slopes Model

1	Predictor	Units	Resolution	Years	Description	Data source(s)
Natural	characteristics					
	Drainage area	km2			Contributing area draining to sampling site	
	Elevation, basin	m			Mean elevation of drainage area	
	Elevation, site	m			Elevation of sampling site	
	Sand and gravel	%			Sand and gravel in the drainage area	
	Precipitation, mean	mm		1971-2000	Mean precipitation	PRISM
	Max annual monthly max temp	°C		1971-2000	Maximum of monthly annual maximum air	PRISM
	wax amaar monting max temp	C		1771 2000	temperature	1 Kibini
	Mean annual monthly max temp	°C		1971-2000	Mean of monthly annual maximum air temperature	DDISM
		°C			Minimum of monthly annual minimum air	PRISM
	Min annual monthly min temp	·U		1971-2000	temperature	PRISM
	Mean annual monthly min temp	°C		1971-2000	Mean of monthly annual minimum air temperature	PRISM
Land co	over					
	Open Water, 2011; Open Water,	%	30-m	2011, 2006	Areas of open water, generally with less than 25%	NLCD
	2006				cover of vegetation or soil; percent of contributing	
					area	
	Developed, 2011; Developed,	%	30-m	2011, 2006	Aggregation of Open Space Developed, Low	NLCD
	2006				Intensity Developed, Medium Intensity Developed,	
					and High Intensity Developed classifications;	
					percent of contributing area	
	Forest, 2011; Forest, 2006	%	30-m	2011, 2006	Aggregation of Deciduous Forest, Evergreen	NLCD
	101030, 2011, 101030, 2000	70	50 11	2011, 2000	Forest, and Mixed Forest classifications; percent of	HEED
					contributing area	
	A	0/	20	2011 2006		NI CD
	Agriculture, 2011; Agriculture,	%	30-m	2011, 2006	Aggregation of Pasture/Hay and Cultivated Crops	NLCD
	2006		20	2011 2005	classifications; percent of contributing area	
	Wetland, 2011; Wetland, 2006	%	30-m	2011, 2006	Aggregation of Woody Wetlands and Emergent	NLCD
					Herbaceous Wetlands classifications; percent of	
					contributing area	
	Open Water, buffer, 2011	%	30-m	2011	Areas of open water, generally with less than 25%	NLCD
					cover of vegetation or soil; percent of 120-m width	
					buffer upstream of sampling site	
	Developed, buffer, 2011	%	30-m	2011	Aggregation of Open Space Developed, Low	NLCD
					Intensity Developed, Medium Intensity Developed,	
					and High Intensity Developed classifications;	
					percent of 120-m width buffer upstream of	
					sampling site	
	Forest, buffer, 2011	%	30-m	2011	Aggregation of Deciduous Forest, Evergreen	NLCD
	, 541101, 2011				Forest, and Mixed Forest classifications; percent of	
					120-m width buffer upstream of sampling site	
	Agriculture, buffer, 2011	%	30-m	2011	Aggregation of Pasture/Hay and Cultivated Crops	NLCD
	Agriculture, burlet, 2011	70	50-m	2011		nice)
					classifications; percent of 120-m width buffer	
			20	2011	upstream of sampling site	
	Wetland, buffer, 2011	%	30-m	2011	Aggregation of Woody Wetlands and Emergent	NLCD
					Herbaceous Wetlands classifications; percent of	
					120-m width buffer upstream of sampling site	
	Agriculture, 1992	%	30-m	1992	Aggregation of Pasture/Hay, Row Crops, Small	NLCD
					Grains, and Fallow classifications; percent of	
					contributing area	

Table 3.1, continued

Group	Predictor	Units	Resolution	Years	Description	Data source(s)
low a	lteration					
	Dams, total	dams			Number of dams in contributing area	MassGIS; Massachusetts
	Dams, per drainage area	dams/km2			Number of dams per contributing area	Office of Dam Safety
	Dams, per stream length	dams/km2			Number of dams per stream length in contributing	
					area	
	Longest undammed flow path				Length of undammed stream channel along longest	
					flow path both upstream and downstream of	
					sampling site	
	Dams, upstream YN				Presence or absence of dams in contributing area	
	Flow unaltered, Jun	m3/s		2010-2014	Median monthly unaltered streamflow, June	Sustainable Yield Estimator;
	Flow unaltered, Jul	m3/s		2010-2014	Median monthly unaltered streamflow, July	Archfield et al. 2010
	Flow unaltered, Aug	m3/s		2010-2014	Median monthly unaltered streamflow, August	
	Flow unaltered, Sep	m3/s		2010-2014	Median monthly unaltered streamflow, September	
	Flow altered, Jun	m3/s		2010-2014	Median monthly altered streamflow, June	
	Flow altered, Jul	m3/s		2010-2014	Median monthly altered streamflow, July	
	Flow altered, Aug	m3/s		2010-2014	Median monthly altered streamflow, August	
	Flow altered, Sep	m3/s		2010-2014	Median monthly altered streamflow, September	
	Flow percent dif, Jun	%		2010-2014	Percent difference between median monthly altered	
	F				and unaltered streamflows, June	
	Flow percent dif, Jul	%		2010-2014	Percent difference between median monthly altered	
	riow percent any bar	70		2010 2011	and unaltered streamflows, July	
	Flow percent dif, Aug	%		2010-2014	Percent difference between median monthly altered	
	riow percent un, riug	<i>,</i> 0		2010 2011	and unaltered streamflows, August	
	Flow percent dif, Sep	%		2010-2014	Percent difference between median monthly altered	
	r low percent un, sep	70		2010 2014	and unaltered streamflows, September	
	Flow percent dif, mean	%		2010-2014	Percent difference between median monthly altered	
	r low percent un, mean	70		2010 2014	and unaltered streamflows, annual mean	
ther i	ırban					
	Impervious, 2006 NLCD	%	30-m	2006	Percent impervious cover in the contributing area;	NLCD 2006
					each pixel assigned value 0-100	
	Impervious, 2006 to 2011 dif	%	30-m	2011, 2006	Difference between 2011 and 2006 percent	NLCD 2011, NLCD 2006
	impervious, 2000 to 2011 un	70	50 m	2011, 2000	impervous cover in the contributing area	11202 2011, 11202 2000
	Impervious, 2005 MassGIS	%	1-m	2005	Percent impervious cover in the contributing area;	MassGIS
	impervious, 2000 intestorio	<i>,</i> ,,		2000	each pixel assigned binary 0 or 1	in absolution
	Impervious, buffer, 10m	%	10-m		caen pixer assigned officing 0 of 1	NLCD 2011, MassGIS
	Impervious, buffer, 2011 NLCD	%	30-m	2011		NLCD 2011
	Population density	people/km2	50 m	2011	Number of people per contributing area	HEED 2011
	Housing density	houses/km2			Number of houses per contributing area	
	Road density	km/km2			Road length per contributing area	
	Road crossings, total	crossings			Number of road-stream crossings in contributing	
	Road crossings, totai	crossings			area	
	Road crossings, density	crossings/km2			Number of road-stream crossings per contributing	
	Road crossings, defisity	crossings/kin2			area	
	Flow length, wgt 0.5				area Relative flow length distance along surface	Matt Baker (UMBC) and
	Flow length, wgt 1.0				pathway to sampling site; higher weights place	· · · · · ·
						Lance Ostiguy (USGS)
	Flow length, wgt 1.5				greater emphasis on proximate locations	
	Flow length, wgt 2.0				Deletion of flow and direct to flow long/	Matt Dalars (UMDC) 1
	Gradient:length ratio, wgt 0.5				Relation of flow gradient to flow length; used as a	Matt Baker (UMBC) and
	Gradient:length ratio, wgt 1.0				topographic estimate of water residence time;	Lance Ostiguy (USGS)
	Gradient:length ratio, wgt 1.5				higher weights place greater emphasis on	
	Gradient:length ratio, wgt 2.0				proximate locations	

Table 3.2. Summary statistics (minimum, maximum, mean, standard deviation, and coefficient of variation) for biotic response variables, grouped by response variable category and impervious cover band (very low = 1-4%, low = 7-10%) at 40 sites across Massachusetts, sampled during 2005–2015.

Response group		Ver	y-low b	and			L	.ow ban	d	
Response variable	Min	Max	Mean	SD	CV	Min	Max	Mean	SD	CV
Richness										
Macroinvertebrate taxa richness	12.0	41.2	28.7	6.99	0.24	8.9	42.0	25.0	7.86	0.31
Fish species richness	3.0	10.0	6.4	2.09	0.33	2.0	9.0	5.0	2.36	0.47
Flow traits										
Macroinvertebrate flow traits, rel abund (%)	24.7	84.0	51.0	18.21	0.36	13.5	96.1	50.7	27.94	0.55
Fish, fluvial rel abund (%)	10.5	100.0	71.2	33.72	0.47	0.0	100.0	38.8	41.50	1.07
Thermal traits										
Macroinvertebrates, coldwater rel abund (%)	5.0	59.0	31.4	16.79	0.53	1.0	62.9	22.9	16.13	0.70
Fish, coldwater rel abund (%)	0.0	96.1	33.9	32.77	0.97	0.0	60.6	10.1	16.62	1.65
Tolerance										
Macroinvertebrate tolerance index	3.4	7.2	5.0	0.98	0.20	3.6	7.7	5.3	0.92	0.18
Fish, intolerant rel abund (%)	0.0	96.1	18.2	29.25	1.61	0.0	50.0	8.1	14.92	1.85

Table 3.3. Summary statistics (minimum, maximum, mean, standard deviation, and coefficient of variation) for variables within each predictor category, by impervious cover band (very low = 1-4%, low = 7-10%) at 40 sites across Massachusetts.

			Vei	y-low ba	nd]	Low band	1	
Category Predictor variable	Units	Min	Max	Mean	SD	CV	Min	Max	Mean	SD	CV
Natural characteristics											
Drainage area	km2	5.8	72.1	21.3	17.44	0.82	5.3	66.3	23.4	17.40	0.74
Sand and gravel	%	0.0	73.0	26.4	19.59	0.74	5.0	79.8	39.8	24.39	0.61
Precipitation, mean	mm	1174.7	1296.1	1230.5	32.69	0.03	1173.4	1253.3	1222.0	23.49	0.02
Max annual monthly max temp	°C	12.9	15.6	14.4	0.86	0.06	14.2	15.9	15.3	0.41	0.03
Min annual monthly min temp	°C	-0.2	5.2	2.0	1.47	0.74	1.2	5.6	3.1	1.05	0.33
Land cover											
Open Water, 2011	%	0.0	6.7	1.8	1.96	1.07	0.0	13.8	2.4	3.27	1.38
Forest, 2011	%	45.9	83.1	64.8	9.42	0.15	29.5	63.8	43.8	8.49	0.19
Agriculture, 2011	%	0.3	15.8	6.6	4.49	0.68	0.0	20.4	6.3	5.53	0.88
Wetland, 2011	%	1.3	39.4	13.7	8.60	0.63	5.8	28.9	16.5	5.70	0.35
Agriculture, 1992	%	2.2	21.8	9.8	5.35	0.55	1.9	31.6	11.2	7.86	0.70
Flow alteration											
Dams, per drainage area	dams/km2	0.0	3.1	0.9	0.82	0.90	0.0	3.2	1.0	0.89	0.92
Longest undammed flow path	km	1.1	32.8	11.1	7.86	0.71	1.3	38.9	13.6	9.37	0.69
Flow altered, Aug	m3/s	0.00	0.25	0.05	0.06	1.27	0.00	0.50	0.08	0.11	1.43
Flow percent dif, Aug		-100.0	18.0	-21.8	35.33	-1.62	-95.6	579.3	20.8	137.40	6.62
Other urban											
Impervious, 2006 to 2011 dif	%	0.0	0.4	0.1	0.10	1.22	0.0	1.7	0.5	0.44	0.87
Impervious, buffer, 10m-res	%	1.9	8.1	4.3	1.30	0.30	4.5	9.9	7.4	1.56	0.21
Housing density	houses/km2	9.2	148.8	49.1	30.24	0.62	40.1	125.6	64.9	21.45	0.33
Road density	km/km2	1.1	3.6	2.3	0.76	0.33	2.7	4.5	3.6	0.48	0.13
Road crossings, total	crossings	2.0	86.0	23.9	21.66	0.91	8.0	91.0	33.5	23.67	0.71
Road crossings, density	crossings/km2	0.3	3.2	1.2	0.69	0.59	0.8	3.0	1.5	0.53	0.35
Flow length, wgt 2.0		0.9	15.8	5.5	4.20	0.77	3.1	61.2	13.3	12.98	0.97
Gradient:length ratio, wgt 2.0		0.0	58.4	5.6	12.96	2.32	0.0	81.0	14.6	25.86	1.77

Table 3.4 Predictors with the lowest AICc from model selection within each watershed-scale predictor category (Appendix M) are shown with the directionality (estimate) and variance explained (\mathbb{R}^2) for impervious (IC) and the additional predictor (pred) in each biotic response model. Models were run for: both bands (n = 40), very-low band (1-4%, n = 20), and low band (7-10%, n = 20).

Response group	Both					Very-lov					Low				
Response metric		Es	timate				Es	stimate				Es	stimate		
Predictor category	Predictor	IC	Pred	R2	Add R2	Predictor	IC	Pred	R2	Add R2	Predictor	IC	Pred	R2	Add R2
Richness															
Macroinvertebrate taxa rich	ness														
	Impervious	-		0.10		Impervious	-		0.02		Impervious	-		0.12	
Natural characteristics	s Sand and gravel	-	-	0.14	0.05	Sand and gravel	-	-	0.18	0.16	Sand and gravel	-	-	0.14	0.02
Land cover	Agriculture, 1992	-	+	0.18	0.08	Agriculture, 1992	-	+	0.29	0.27	Open Water, 2011	-	-	0.22	0.10
Flow alteration	Flow altered, Aug	-	+	0.14	0.04	Flow altered, Aug	+	+	0.16	0.14	Flow altered, Aug	-	+	0.16	0.04
Other urban	Impervious, buffer, 10m-res	-	+	0.17	0.08	Housing density	-	-	0.25	0.23	Housing density	-	+	0.35	0.23
Fish species richness															
	Impervious	-		0.13		Impervious	-		0.00		Impervious	-		0.18	
Natural characteristics	s Drainage area	-	+	0.22	0.10	Max annual monthly max temp	+	-	0.17	0.16	Min annual monthly min temp	-	-	0.29	0.10
Land cover	Forest, 2011	-	-	0.20	0.07	Agriculture, 2011	-	+	0.11	0.10	Forest, 2011	-	-	0.26	0.07
Flow alteration	Longest undammed flow path	-	-	0.14	0.02	Flow altered, Aug	+	+	0.24	0.24	Longest undammed flow path	-	-	0.23	0.05
Other urban	Road crossings, total	-	+	0.18	0.05	Gradient:length ratio, wgt 2.0	-	-	0.08	0.08	Impervious, buffer, 10m-res	-	+	0.31	0.12
Flow traits															
Macroinvertebrate flow trai	ts, rel abund (%)														
	Impervious	+		0.00		Impervious	+		0.01		Impervious	+		0.02	
Natural characteristics	s Sand and gravel	+	+	0.01	0.00	Min annual monthly min temp	+	+	0.04	0.03	Min annual monthly min temp	+	-	0.07	0.04
Land cover	Open Water, 2011	+	+	0.05	0.04	Wetland, 2011	+	+	0.03	0.02	Open Water, 2011	+	+	0.11	0.08
Flow alteration	Dams, per drainage area	+	+	0.03	0.03	Dams, per drainage area	+	+	0.01	0.00	Dams, per drainage area	+	+	0.08	0.06
Other urban	Impervious, 2006 to 2011 dif	-	+	0.02	0.01	Housing density	+	+	0.02	0.01	Housing density	+	-	0.07	0.05
Fish, fluvial rel abund (%)															
	Impervious	-		0.16		Impervious	-		0.00		Impervious	-		0.01	
Natural characteristics	s Min annual monthly min temp	-	-	0.35	0.19	Min annual monthly min temp	+	-	0.22	0.22	Min annual monthly min temp	-	-	0.36	0.35
Land cover	Wetland, 2011	-	-	0.26	0.10	Wetland, 2011	+	-	0.18	0.17	Wetland, 2011	-	-	0.16	0.15
Flow alteration	Dams, per drainage area	-	+	0.38	0.22	Dams, per drainage area	-	+	0.17	0.16	Flow percent dif, Aug	-	+	0.82	0.81
Other urban	Flow length, wgt 2.0	-	+	0.36	0.20	Road crossings, density	-	+	0.16	0.15	Flow length, wgt 2.0	-	+	0.47	0.45

Table 3.4, continued

Response group	Both b	ands				Very-low	v band	1			Low	band			
Response metric		Es	timate				Es	stimate				Es	stimate		
Predictor category	Predictor	IC	Pred	R2	Add R2	Predictor	IC	Pred	R2	Add R2	Predictor	IC	Pred	R2	Add R2
Thermal traits															
Macroinvertebrates, coldw	ater rel abund (%)														
	Impervious	-		0.03		Impervious	-		0.03		Impervious	-		0.00	
Natural characteristic	cs Drainage area	-	-	0.05	0.02	Sand and gravel	-	+	0.08	0.05	Drainage area	-	-	0.03	0.03
Land cover	Open Water, 2011	-	-	0.09	0.07	Open Water, 2011	-	-	0.08	0.05	Open Water, 2011	+	-	0.10	0.09
Flow alteration	Dams, per drainage area	-	-	0.07	0.04	Dams, per drainage area	-	-	0.07	0.03	Dams, per drainage area	+	-	0.03	0.03
Other urban	Road crossings, total	-	-	0.07	0.04	Road crossings, total	-	-	0.09	0.06	Road density	-	+	0.03	0.03
Fish, coldwater rel abund ((%)														
	Impervious	-		0.14		Impervious	+		0.00		Impervious	-		0.12	
Natural characteristic	cs Min annual monthly min temp	-	-	0.30	0.15	Min annual monthly min temp	+	-	0.42	0.42	Min annual monthly min temp	-	-	0.22	0.11
Land cover	Wetland, 2011	-	-	0.19	0.05	Forest, 2011	+	+	0.37	0.36	Agriculture, 1992	-	+	0.20	0.08
Flow alteration	Dams, per drainage area	-	+	0.19	0.04	Flow percent dif, Aug	+	-	0.14	0.13	Longest undammed flow path	-	-	0.20	0.08
Other urban	Impervious, buffer, 10m-res	-	+	0.22	0.08	Gradient:length ratio, wgt 2.0	+	-	0.30	0.29	Impervious, buffer, 10m-res	-	+	0.30	0.18
Tolerance	•										• • •				
Macroinvertebrate tolerand	ce index														
	Impervious	+		0.06		Impervious	+		0.15		Impervious	+		0.08	
Natural characteristic	cs Min annual monthly min temp	+	+	0.26	0.19	Min annual monthly min temp	+	+	0.61	0.46	Precipitation, mean	+	-	0.28	0.20
Land cover	Forest, 2011	-	-	0.19	0.12	Wetland, 2011	+	+	0.29	0.14	Forest, 2011	+	-	0.22	0.14
Flow alteration	Longest undammed flow path	+	+	0.09	0.03	Flow percent dif, Aug	+	+	0.19	0.04	Longest undammed flow path	+	+	0.11	0.03
Other urban	Impervious, buffer, 10m-res	+	-	0.11	0.04	Gradient:length ratio, wgt 2.0	+	+	0.44	0.30	Impervious, buffer, 10m-res	+	-	0.19	0.11
Fish, intolerant rel abund (%)										• • •				
	Impervious	-		0.05		Impervious	-		0.14		Impervious	-		0.01	
Natural characteristic	cs Min annual monthly min temp	-	-	0.12	0.07	Precipitation, mean	-	-	0.28	0.14	Max annual monthly max temp	-	-	0.16	0.15
Land cover	Open Water, 2011	-	-	0.20	0.15	Forest, 2011	+	+	0.55	0.40	Wetland, 2011	-	+	0.09	0.08
Flow alteration	Dams, per drainage area	-	-	0.13		Dams, per drainage area	-	-	0.28	0.14	Flow altered, Aug	-	-	0.20	0.19
Other urban	Road crossings, total	-	-	0.18		Flow length, wgt 2.0	-	-	0.33	0.19	Housing density	+	+	0.21	0.20

Note: Variables with the highest R^2 for each biotic response metric in each band are highlighted in bold.

Table 3.5. Variable importance was determined through all-subsets GLMs and GLMMs for each biotic response metric. The all-subsets approach ran models for every variable combination of impervious cover and the top-performing predictor from each predictor category of natural characteristics, land cover, flow alteration, and other urban measures. Model weights (*w*) were calculated based on corrected Aikaike Information Criterion (AICc) values across all 31 models run. Variable importance was calculated for equally plausible models (< 2 Δ AICc); Σw represents the sum of model weights for each model in which the variable appeared. Higher Σw values indicate more important variables. Impervious cover is highlighted in gray.

	Both bands		Very-low band		Low band	
Response	Predictor	Σw	Predictor	Σw	Predictor	Σw
Richness						
Mac	roinvertebrate taxa richness					
	Impervious	0.59	Impervious	0.34	Sand and gravel	0.21
	Agriculture, 1992	0.46	Agriculture, 1992	0.23	Open Water, 2011	0.09
	Impervious, buffer, 10m-res	0.36				
	Flow altered, Aug	0.16				
	Sand and gravel	0.15				
Fish	species richness					
	Impervious	0.47	Flow altered, Aug	0.31	Impervious	0.45
	Drainage area	0.26	Agriculture, 2011	0.15	Impervious, buffer, 10m-res	0.25
	Forest, 2011	0.20	Gradient:length ratio, wgt 2.0	0.12	Longest undammed flow path	0.20
	Road crossings, total	0.06	Max annual monthly max temp	0.10	Min annual monthly min temp Forest, 2011	0.12
Flow traits	6					
Mac	roinvertebrate flow traits, rel abune	d (%)				
	Open Water, 2011	0.47	Min annual monthly min temp	0.26	Open Water, 2011	0.46
	Impervious, 2006 to 2011 dif	0.35	· · ·		Housing density	0.28
	Impervious	0.09			Min annual monthly min temp	0.21
	Dams, per drainage area	0.07			Dams, per drainage area	0.12
Fish	, fluvial rel abund (%)					
	Impervious	0.62	Min annual monthly min temp	0.53	Min annual monthly min temp	0.52
	Min annual monthly min temp	0.62	Dams, per drainage area	0.35	Flow percent dif, Aug	0.52
	Dams, per drainage area	0.62	Road crossings, density	0.29	Impervious	0.22
	Flow length, wgt 2.0	0.62				
	Wetland, 2011	0.21				
Thermal ti						
Mac	roinvertebrates, coldwater rel abun	· · ·				
	Open Water, 2011	0.48	Impervious	0.37	Open Water, 2011	0.60
	Road crossings, total	0.48	Road crossings, total	0.33	Road density	0.60
	Impervious	0.19	Dams, per drainage area	0.27	Drainage area	0.19
	Drainage area	0.12				
Fish	, coldwater rel abund (%)					
	Min annual monthly min temp	0.42	Impervious	0.40	Impervious, buffer, 10m-res	0.39
	Impervious	0.13	Forest, 2011	0.31	Longest undammed flow path	0.34
			Gradient:length ratio, wgt 2.0	0.31	Impervious	0.30
			Min annual monthly min temp	0.19	Agriculture, 1992	0.19
			Flow percent dif, Aug	0.18	Min annual monthly min temp	0.15
Tolerance						
Mac	roinvertebrate tolerance index					
	Min annual monthly min temp	0.48	Min annual monthly min temp	0.64	Precipitation, mean	0.23
	Longest undammed flow path	0.27	Gradient:length ratio, wgt 2.0	0.29	Impervious	0.23
	Forest, 2011	0.16	Impervious	0.26	Forest, 2011	0.17
					Impervious, buffer, 10m-res	0.12
					Longest undammed flow path	0.11
Fish	, intolerant rel abund (%)					
	Min annual monthly min temp	0.67	Forest, 2011	0.45	Housing density	0.42
	Road crossings, total	0.42	Flow length, wgt 2.0	0.45	Max annual monthly max temp	0.11
	Dams, per drainage area	0.33	Dams, per drainage area	0.16	Flow altered, Aug	0.09
	Open Water, 2011	0.33				

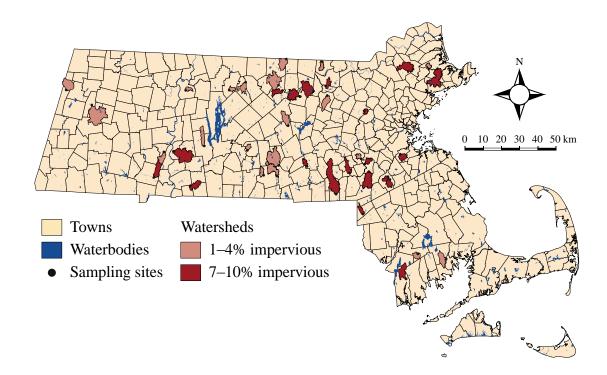


Figure 3.1. Forty sites sampled across Massachusetts within two bands of impervious cover: 1-4% (n = 20; pink) and 7-10% (n = 20; red) during 2014–2016. Major waterbodies (large rivers, lakes; blue) and town boundaries are also shown.

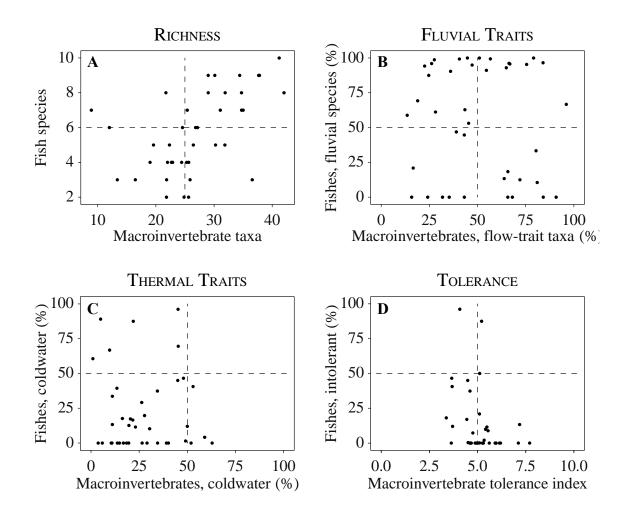


Figure 3.2. Scatterplots of biotic responses comparing similar metrics for each taxonomic group. Macroinvertebrates are shown on the x-axis and fishes are displayed on the y-axis. The metrics compared include richness (A), fluvial traits (B), thermal traits (C), and tolerance (D). Dotted lines divide each graph into four quadrants based on better or worse condition. Good condition for both macroinvertebrates and fishes at the same site is represented within the upper right quadrant for richness, fluvial traits, and thermal traits, and within the upper left quadrant for tolerance.

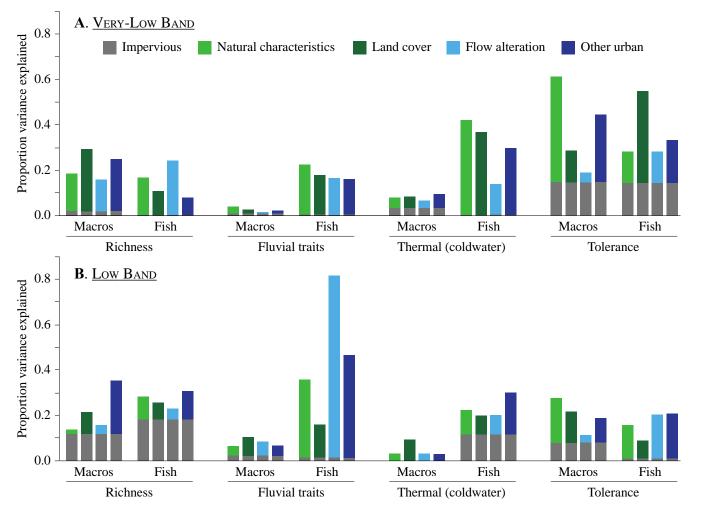


Figure 3.3. Additional variance explained by watershed-scale predictors within predictor categories of natural characteristics, land cover, flow alteration, and other urban measures, for (A) very-low (1-4%) and (B) low (7-10%) impervious bands.

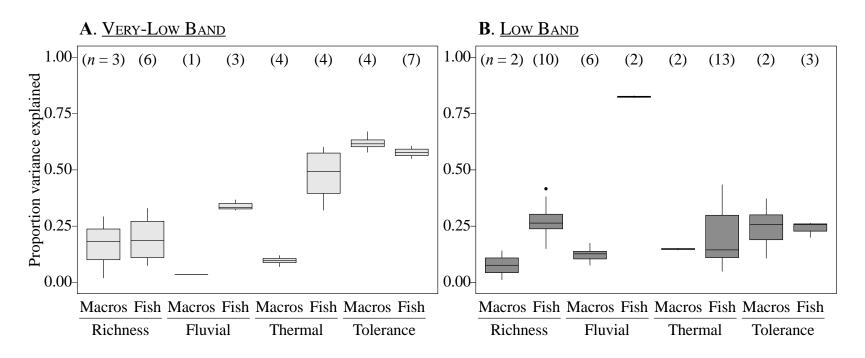


Figure 3.4 Box plots for variance explained by equally plausible models within the very-low band (A) and low band (B). Equally plausible models (< 2 AICc) are available in Appendix N.

CHAPTER 4

DISCUSSION AND CONCLUSIONS

4.1 Resistance and resilience: urbanization in context

Sites used in this study ranged from better to worse condition within a narrow range of impervious cover. While total impervious cover was an important variable for explaining many metrics of biotic condition, other variables at both reach and watershed scales explained additional variability, and in several instances were more important than impervious cover for explaining biotic condition. Predictors that were related to higher biotic integrity potentially indicate conditions that allow streams to resist the impacts of increasing watershed urbanization. At the reach-scale, higher biotic integrity was related such factors as habitat heterogeneity, more large wood, and colder water temperatures. Restoration should focus on strategies to reduce impacts that would degrade these instream conditions. Similarly, watersheds should be prioritized for protection with those characteristics potentially more resistant to urban disturbance, such as high-elevation regions that retain high biotic integrity despite higher dam density, more road crossings, and more flow alteration.

Since urbanization impacts are observed at all levels, including at the low end of the gradient, land use planning and zoning in undeveloped watersheds is essential for protecting stream ecosystems. Some of the options for land conservation include land acquisition, conservation easements, and regulations for natural resource protection (Cappiella et al. 2012). Undisturbed areas, such as heavily forested watersheds, particularly in high-elevation coldwater areas, can serve as refuge for aquatic biota during urban disturbances, as well as a source to repopulate an area post-disturbance. These

areas should be prioritized for protection. Fitzgerald et al. (2012) found that in Vermont, high-gradient streams were more vulnerable to physical and biotic degradation due to the interaction of urbanization with natural watershed characteristics; this reinforces the notion of protecting high-elevation (often high-gradient headwaters). Protection strategies also manifest differently for macroinvertebrates and fishes. Since many macroinvertebrates have both aquatic and terrestrial life stages, protecting terrestrial habitat adjacent to streams is critical for dispersal and recolonization (Smith et al. 2009). Since fishes are constrained to the stream network, aquatic connectivity is vital to allow resilience of fish populations in response to urban disturbances such as increased flood frequency and thermal pollution.

4.2 Scale matters

This study parses potential predictor variables by whether they were collected at the reach scale or the watershed scale. The role of scale, such as at the reach, buffer, catchment, or regional level, has long been recognized to be important for investigating biotic responses to natural conditions or anthropogenic stressors (Allan 2004). In this study, selected watershed-scale predictors explained more variance than reach-scale predictors, but reach-scale predictors more frequently explained more variance in biotic assemblages (Table 4.1, Figure 4.1). Whether reach- or watershed-scale variables better explained biotic responses tended to be reinforced by lower AICc values for the models that explained more variance.

Many studies have compared biotic responses to urbanization at different scales, with sometimes conflicting results. For instance, Roy et al. (2003) found that reach-scale

variables (e.g., sediment size, total suspended solids, specific conductance, turbidity) better explained macroinvertebrate indices than watershed-scale variables (e.g., land cover classification). When both macroinvertebrate and fish communities were used in the same region, however, Walters et al. (2009) found that overall, macroinvertebrates were better explained by land cover (i.e., watershed-scale) variables and fish better explained by geomorphology (i.e., reach-scale) variables. Furthermore, biotic responses were better explained when land cover, geomorphology, and water quality variables were combined, rather than when tested as three separate sets of predictors (Walters et al. 2009), indicating the interaction of environmental characteristics across scales.

Ecosystems are hierarchically structured, with patterns and processes operating on different scales (Frissell et al. 1986, Alberti 2005, Lowe et al. 2006, Parsons and Thoms 2007). While this study compares two scales, it does not combine predictors across scales to evaluate their combined power to explain biotic response. Relatively strong correlations ($|r \ge 0.50|$) were found between reach-scale and watershed-scale predictors in this study, including: higher elevation with more forest cover, higher slope, more riffle habitat, greater stream power, and coarse sediment; warmer air temperatures with less forest, less riffle and more run habitat, and smaller sediment; higher road density and higher mean and maximum specific conductance; and more dams with more open water and higher summer water temperatures. These indicate suites of factors that work in tandem, with potentially similar mechanisms influencing biotic assemblages in low-level urban streams.

It is important to match the scale of the disturbance with the scale relevant to biota (Townsend et al. 1997a, Parsons and Thoms 2007). Both macroinvertebrates and

fishes were sampled in the field at a scale that matched the sections of stream where reach-scale variables were measured. Although both groups exhibit movement beyond the reach (macroinvertebrates via drift and emergence; fishes through greater mobility and migration), the scale at which both response and predictor variables were measured was better matched than those variables calculated at the watershed scale.

4.3 Metrics matter

The assessment of biotic condition in response to degradation requires careful consideration of metrics, in terms of which response metrics most accurately reflect the biotic assemblages of interest. Although fishes were better explained by additional variables at both the reach and watershed scale when impervious was constrained to low levels in this study, researchers that have assessed biotic responses along the gradient of urbanization have found that macroinvertebrates respond more predictably than fishes to a gradient of increasing urbanization (Walsh et al. 2005, Brown et al. 2009). Since taxonomic groups yielded differing information about which reach- and watershed-scale factors explained the most variance, we suggest both taxa be studied to allow for a more comprehensive understanding of urban impacts and how to mitigate them.

This study also provided support for measuring certain biotic metrics, such as macroinvertebrate tolerance, and suggested additional metrics that would improve understanding of predictor–response relationships. For instance, EPT richness or relative abundance is a more established metric that has been widely applied to detect sensitivity of macroinvertebrates to changing stream conditions, including urbanization. Since the macroinvertebrate flow and thermal trait metrics were not explained well by total

impervious cover, nor the suite of reach or watershed factors tested, EPT would likely serve as a better metric of macroinvertebrate condition. Similarly, for fishes, fluvial fishes were explained well by the predictors tested, but low species richness and a high level overlap between coldwater and intolerant fishes did not render these useful metrics. Due to the limited species pool in the Northeast, including Massachusetts, specific species, such as brook trout, *Salvelinus fontinalis* that predominated in coldwater and intolerant fish relative abundance, would potentially serve as better indicators of biotic condition.

4.4 Compounding pressures from climate change

The hydrological and thermal impacts from urbanization on stream systems are compounded by climate change. Historical records show long-term increased stream water temperature warming—usually correlated with air temperature warming—and with the most rapid rates of increase in urbanized areas (Kaushal et al. 2010). Under climate change scenarios, air temperatures are projected to increase in the Northeast (Hayhoe et al. 2007), with more precipitation occurring during winter months as rainfall instead of snow (Guilbert et al. 2015). Minimum (i.e., colder) air temperature was an important variable in numerous biotic response models at the watershed scale, including fluvial, coldwater, and intolerant fishes, and macroinvertebrate flow traits and tolerance. As Herb et al. (2008) showed, the effects of thermal pollution are worse when air temperatures exceed stream temperatures (as in groundwater-fed streams), and as watershed impervious surface increases. Small streams with low flow are more susceptible to warming from stormwater since storm flows comprise the majority of discharge (Herb et al. 2008). Groundwater inputs provide important thermal refugia for coldwater species during summer months, and will be increasingly important refuge under increased warming scenarios (Snyder et al. 2015). Hilderbrand et al. (2014) found that streams with less thermal sensitivity, including those with groundwater inputs, would be more resilient to land use changes and climate change. Prioritizing protection of streams in cold, high-elevation areas, including those streams receiving high groundwater inputs, will be critical to maintaining biotic integrity under projected future conditions that compound the effects of urbanization and climate change.

4.5 Further research directions

The results of this study offer a starting point from which to further explore relationships between urbanization and aquatic biota. Several potential directions, including modifications to the study design and additional hypotheses, are discussed below. The study design could be modified is several ways to hone in on difference aspects of the impervious cover model (Schueler et al. 1994, 2009). This study used two bands of impervious cover in the effort to examine other variables that vary when the level of impervious is held constant. The bands in this study, however, spanned several percentage points, and were not separated by many percentage points. Even though the bands were relatively narrow, thresholds have been documented at numerous levels ranging 0.5–12% watershed impervious. Additional research could further constrain the level of impervious, with additional sites for greater explanatory power. For instance, the very-low band could be narrowed from 1–4% to 1–2% impervious, or the low band at 7–10% could concentrate on more sites at the 10% level. The difficulty in finding sites that

met these criteria for this study could potentially be alleviated by (1) expanding biotic collections, such that sites not currently in the MDEP or MDFW databases are sampled, or (2) expanding the geographical scope beyond Massachusetts.

While this study focused on sites with a similar level of impervious cover, future studies could focus on sites with similar levels of biotic condition across the impervious gradient. Existing databases, such as the MDEP and MDFW datasets used in this study, are ripe for investigation into such questions. Two potential approaches would be to (1) select sites with better biotic condition despite higher imperious cover (e.g., >10% watershed impervious), or (2) select sites with worse biotic condition despite lower levels of impervious cover (e.g., <4% watershed impervious). By focusing on sites with similar biotic condition, this would allow better ability to test which factors act as buffers to resist higher levels of urbanization, or conversely, which factors act as constraints that limit higher attainment of biotic condition or make a stream more vulnerable to the effects of urbanization.

This study found tentative support for some factors that might confer resistance to biota in streams subjected urbanization, such as higher habitat heterogeneity, more dissolved oxygen, more large wood, and colder temperature (both air and water temperatures). These factors could be further investigated to see if the same variables apply to other regions or a broader suite of suites. Other researchers have also postulated factors that might confer resistance in urbanizing streams that were not tested in this study. Such additional factors include: high water table depth, less groundwater contribution to base flow, and low groundwater recharge areas (Bhaskar et al. 2016); already hydrologically flashy systems (Hale et al. 2016); snow-dominated systems (Hale

et al. 2016); permeable soils (Hopkins et al. 2015, Bhaskar et al. 2016), including those soils that are shallow and dense (Poff et al. 2006a); naturally high pH and conductivity (Utz et al. 2016); and naturally warmer stream temperatures that would induce less thermal stress (Hale et al. 2016).

The modeling used in this study employed generalized linear models and generalized linear mixed models, with additive effects. Non-linear and interactive effects have been shown to explain biotic condition across the gradient of urbanization (King et al. 2011, Fitzgerald et al. 2012), and might also be useful when describing condition at low levels of impervious cover. Furthermore, cumulative effects, such as those integrated across the watershed, have potential for further exploration.

4.6 Conclusion

Urbanization is increasing nationwide, including in the Northeast region. The dramatic rise in exurban, low-density development in formerly rural areas (Brown et al. 2005, Hansen et al. 2005) means that many streams are—or will be—subject to the impacts from low levels of urbanization and impervious cover (Theobald et al. 2009). Understanding what factors drive the variability in low-level urban streams can help determine which characteristics make streams more susceptible to urban effects. This can also lead to an understanding of which factors confer resistance to urbanization, thereby helping prioritize such area for protection. Prioritizing areas that facilitate resistance and resilience will allow biota to recover from anthropogenic disturbances in an increasingly urbanized world.

Table 4.1 Comparison of whether reach- or watershed (WS)-scale predictors explained more variance for each biotic response metric, based on the mean R^2 for equally plausible models (Appendix I, Appendix N). Reach- and watershed- scale predictors were compared for both bands analyzed together (n = 20) as well as bands analyzed separately (very low = 1–4%, low = 7–10%). Shading in gray denotes when single-band results differed from both-band results.

Response group	Both	bands	Very-lo	ow band	Low	band
Response variable	Reach > WS	WS > Reach	Reach > WS	WS > Reach	Reach > WS	WS > Reach
Richness						
Macroinvertebrate taxa richness	Х		Х		Х	
Fish species richness	Х		Х		Х	
Flow traits						
Macroinvertebrate flow traits, rel abund (%)	Х		Х		Х	
Fish, fluvial rel abund (%)		Х		Х		Х
Thermal traits						
Macroinvertebrates, coldwater rel abund (%)		Х	Х			Х
Fish, coldwater rel abund (%)		Х		Х	Х	
Tolerance						
Macroinvertebrate tolerance index	Х			Х	Х	
Fish, intolerant rel abund (%)	Х			Х	Х	

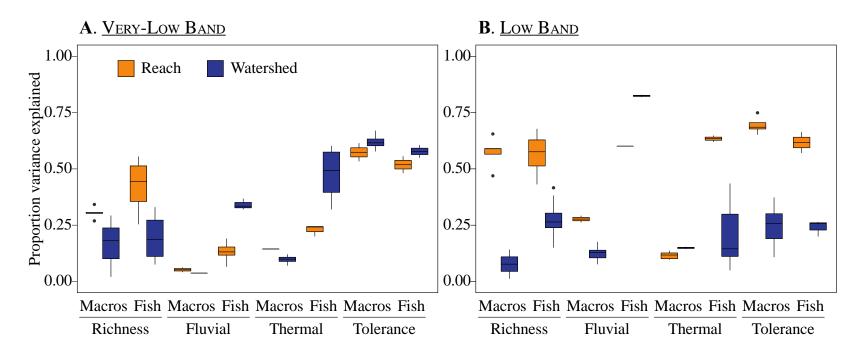


Figure 4.1. Variance explained by equally plausible models for both reach- and watershed-scale factors, for both bands analyzed together. Each box represents the range of R^2 , pseudo- R^2 , or conditional- R^2 for sets of equally plausible models (< 2 Δ AICc; Appendix I, Appendix N) for each biotic response metric of richness, fluvial traits, thermal traits, and tolerance. Models with reach-scale variables tended to explained more variance in biotic assemblage metrics than models with watershed-scale variables, except in the case of fluvial fishes and coldwater macroinvertebrates. Bands refer to very low = 1–4% and low = 7–10% impervious cover.

APPENDICES

APPENDIX A:

SAMPLING SITES AND CODES

Appendix A. Sampling identifiers for the 40 stream sites used in this study. Sites were sourced from existing biotic databases from Massachusetts Department of Environmental Protection (MDEP) and Massachusetts Division of Fisheries and Wildlife (MDFW). Additional sites were sampled during 2015–2016 such that each site had both macroinvertebrates and fishes. Codes in bold represent the UniqueIDs that are used in subsequent tables to identify each site; sites are alphabetically by bolded code.

		Coord	linates			MDEP	codes		MDFW	codes		Sampli	ng date
Stream name	Town name	Latitude	Longitude	Unique ID (B) Uni	que ID (W)	SiteID	BenSampID	ProjectCode	SampleID	SARIS	New sites (K)	Macros	Fish
Sevenmile	North Attleborough	41.9516	-71.3419	B0052		SM00	2007051	Ten Mile 2007	SID5460	5233675		9/20/07	6/17/15
Stop	Medfield	42.1590	-71.3030	B0067		SR03	2007020.A	Charles 2007		7239925		7/20/07	10/7/15
Beaver	Sharon	42.1345	-71.1762	B0139		BB01	2009019	Boston Harbor/Neponset 2009	SID2527	7341400		7/13/09	8/25/08
Massapoag	Sharon	42.1205	-71.1643	B0143		9BOB	2009047	Boston Harbor/Neponset 2009	SID4786	7341375		9/18/09	8/7/13
Fish	Boxford	42.6601	-71.0076	B0157		FB00	2005077	Ipswich 2005	SID5464	9253850		8/12/05	7/14/15
Miles	Ipswich	42.6610	-70.8450	B0439		MR01	2005051.1	Ipswich 2005		9253650		7/25/05	10/6/15
Gravelly	Ipswich	42.6610	-70.9040	B0440		GB01	2005052	Ipswich 2005		9253725		7/25/05	10/6/15
Beaver	Templeton	42.5951	-72.1216	B0450		BB01	2005088.1	Millers 2005	SID4952	3523600		9/13/05	8/12/13
Pond	Westfield	42.1248	-72.7220	B0575		PNDB00.1	2006094	Westfield 2006	SID5465	3208600		9/5/06	8/12/15
North	Medfield	42.1972	-71.3284	B0612		W1586	2007015	Charles 2007	SID5463	7239875		7/18/07	7/16/15
Jabish	Belchertown	42.2822	-72.3919	B0650		JB00	2008052	Chicopee 2008	SID1956	3626550		9/10/08	
South Branch Mill	East Longmeadow	42.0863	-72.4803						SID5466		K0001	9/14/14	8/12/15
Stony	South Hadley	42.2535	-72.5917								K0002	9/21/14	10/8/15
Sucker	Pepperell	42.6968	-71.6102	B0318					SID2171			8/10/15	10/2/15
Mill	Concord	42.4575	-71.3329						SID2507			7/9/15	2008
Mill	Blackstone	42.0489	-71.5203						SID2630	5131200			8/19/08
French	Oxford	42.1892	-71.8984						SID3026				9/23/09
Little	Charlton	42.1386	-71.9118						SID3029			7/24/15	9/17/09
unnamed	Westminster	42.5563	-71.8749						SID3054	8145040		9/6/14	8/6/09
James	Ayer	42.5794	-71.5884						SID4016	8143925		8/26/14	7/17/12
Cronin	Grafton	42.1849	-71.7120						SID4928	5132625		8/25/14	6/27/13
Bread and Cheese	Westport	41.6327	-71.0604	B0827		RSN-BCB01	2014014.A	RSN 2014		9560150		7/14/14	9/5/13
Chicken	Medway	42.1506	-71.4289	B0690	W2152	MA09A-164	2010030	MA09A 2010	SID4546			8/2/10	8/10/11
Sewall	Sherborn	42.2222	-71.3544		W2154	MA09A-106			SID5462	7239750		7/30/15	7/16/15
South Branch Souhegan	Ashby	42.7098	-71.8517	B0671	W2158	MA09A-101	2010017	MA09A 2010	SID4553	8451850			8/13/10
Coys	North Brookfield	42.2622	-72.1066	B0897	W2166	MAP2-523	2014025	MAP2 2014				7/22/14	8/26/14
Monoosnoc	Leominster	42.5266	-71.7569	B0703	W2180	MAP2-007	2011014	MAP2 2011	SID4581			7/6/11	2011
Catacoonamug	Shirley	42.5531	-71.6695	B0708	W2186	MAP2-023	2011019	MAP2 2011	SID4582	8144525		7/11/11	
Whitman	Westminster	42.5821	-71.9026	B0716	W2194	MAP2-035	2011011	MAP2 2011	SID4614	8145075		7/5/11	8/9/11
Ellinwood	Athol	42.5562	-72.2310		W2199	MAP2-045	2011016	MAP2 2011	SID4595	3522850		7/7/11	8/26/11
Bowers	Harvard	42.5319	-71.5791	B0725	W2205	MAP2-055	2011018	MAP2 2011	SID4583	8144400		7/11/11	8/12/11
unnamed	Charlton	42.1401	-71.9985		W2217	MAP2-079			SID5461	4100000		7/30/15	7/14/15
Broad	Easthampton	42.2502	-72.6589		W2219	MAP2-526	2014024	MAP2 2014					9/18/14
Trout	Holden	42.3838	-71.8378	B0743	W2226	RSN-TR01	2014007	RSN 2014	SID4584	8145350		7/7/14	8/18/11
Kinderhook	Hancock	42.5450	-73.3128	B0793	W2256	MAP2-182	2012043	MAP2 2012		1202150		7/25/12	8/22/12
East Branch Housatonic		42.4739	-73.1412		W2258	MAP2-186	2012032	MAP2 2012		2105275			9/25/12
Doggett	Rochester	41.7279	-70.7981		W2374	MAP2-328	2013003	MAP2 2013		9559050		7/2/13	8/22/13
Fall	Freetown	41.7557	-70.9831		W2382	MAP2-360	2013010	MAP2 2013		6236475		7/9/13	8/30/13
Pine Tree	Milton	42.2434	-71.0944		W2385	MAP2-366	2013038	MAP2 2013		7341075		7/25/13	9/10/13
Pond	Montague	42.5529	-72.5195	B0887	W2453	MAP2-534	2014041	MAP2 2014				7/30/14	6/18/14

APPENDIX B:

RAW BIOTIC DATA MATRICES

Appendix B.1. Macroinvertebrate taxa abundances collected at each sampling site. Sites are arranged alphabetically by code from left to right. FinalID refers to the lowest level to which a taxon was identified. FinalIDs are arranged alphabetically from top to bottom. Taxa classifications for phylum, class, order, family, subfamily, tribe, genus, and final ID are found in Appendix C.1. All taxa are listed for 20 sites, then the taxa list repeats for the remaining 20 sites.

FinalId	B0052	B0067	B0139	B0143	B0157	B0439	B0440	B0450	B0575	B0612	B0650	K0001	K0002 SIE	02171 SID	2507 SID2	2630 SID	3026 SID	3029 SIE	03054 SID	4016
Ablabesmyia sp.												1	8							
Acentrella parvula												3								
Acentrella turbida																				
Acerpenna macdunnoughi														3						
Acerpenna sp.																				
Acroneuria abnormis									2								3	1	3	
Acroneuria sp.					7						1									
Aeschnidae																				
Amnicola sp.																				
Anchytarsus bicolor																				
Ancylidae																				
Ancyronyx variegata													4							
Antocha sp.				1				1				1		4		4			1	
Apatania sp.																3				
Atherix sp.																				
Aulodrilus pigueti																				
Aulodrilus pluriseta																				
Aulodrilus sp.		1																		
Baetidae																	2			
Baetis flavistriga				9					2					2		1				
Baetis flavistriga/intercalaris																				
Baetis intercalaris									2				2							
Baetis pluto																13				
Baetis sp.									6	1						18	7	1	10	
Baetis tricaudatus									1										1	
Bezzia/Palpomyia sp.			1																	
Boyeria sp.																				
Boyeria vinosa									1				2	2						2
Brachycentrus americanus																				
Brachycentrus appalachia																				
Brachycentrus numerosus												5		2						
Brillia sp.												1	3			1				
Brundiniella sp.																				
Caecidotea communis																				
Caecidotea sp.						1	1					1	3		66			1		
Caenis sp.																				
Calopterygidae											1			3	1					
Calopteryx sp.												1	1							
Cambaridae												1								
Cardiocladius obscurus																				

FinalId	B0052	B0067	B0139	B0143	B0157	B0439	B0440	B0450	B0575	B0612	B0650	K0001	K0002 SI	D2171 SII	D2507 SI	D2630 SI	D3026 SII	D3029 SII	D3054 SI	D4016
Centroptilum sp.																				
Ceraclea sp.														1			2			
Ceratopogon sp.															1					
Ceratopogonidae	1																			
Ceratopogoninae												1	2							
Chaetocladius sp.																				
Chauliodes rastricornis																				
Chelifera sp.																				
Cheumatopsyche sp.	5	37	4	7			1	5	8	6	7	5	8	15	5	10	74	13	32	49
Chimarra aterrima	14		6		2			2	24	15		1		9		37	4	11	12	98
Chimarra obscura		1		13												29	22	3		
Chimarra sp.																				
Chironominae													2							
Chironomini												6	3			1		1		
Chironomus sp.						15							1							
Cladotanytarsus sp.												2								
Clinocera sp.									1											
Coenagrionidae	1													3	1					
Conchapelopia sp.					7		1	7												
Coptotomus sp.																				
Corbicula fluminea												1								
Cordulegaster sp.										1				1						
Corduliidae																				
Corixidae																				
Corydalus cornutus																	1			
Corynoneura sp.							1	2		1	2	1	9	4			1			
Crangonyx sp.												2								17
Cricotopus bicinctus		1		1					1			2	6	10					12	
Cricotopus sp.												1	1	1					1	
Cricotopus sylvestris																				
Cricotopus trifascia									1											
Cricotopus/Orthocladius sp.												2	2	3					4	
Cryptochironomus sp.		1											1		3					
Cryptotendipes sp.													4		5					
Culicidae																				
Dannella simplex																				
Demicryptochironomus sp.																				
Dero nivea/obtusa						2														
Diamesa sp.	1					2			6											
Dicranota sp.	1				4				0		7			2						2
Dietanota sp.					4						/			4						4

Appendix B.1 continued

Appendix B.1 continued

FinalId	B0052	B0067	B0139	B0143	B0157	B0439	B0440	B0450	B0575	B0612	B0650	K0001	K0002 S	ID2171 SI	D2507 SID	2630 SID	3026 SID	03029 SI	D3054 SI	D4016
Dicrotendipes sp.						1						1	1							
Dineutus sp.																				
Diphetor hageni																				
Diplectrona modesta			4						1											
Diplectrona sp.																				
Diplocladius cultriger																			16	7
Diplocladius sp.														2				8		
Dixella sp.																				
Dolophilodes distinctus																				
Dolophilodes sp.											7									
Drunella cornutella																				
Dubiraphia sp.												13	10							
Dytiscidae																				
Ectopria nervosa	2										1									
Elmidae	7										2			11		3	2	1		4
Empididae			1								1									
Enchytraeidae																				
Epeorus sp.																	1			
Ephemerella sp.											1						1		30	
Ephemerella subvaria											3									
Erpobdella punctata																	1			
Erpobdella sp.																				
Eukiefferiella brehmi gr.																			1	
Eukiefferiella devonica gr.																1				
Eukiefferiella pseudomontana gr.																				
Eukiefferiella sp.			3															5		
Eurylophella funeralis																				
Eurylophella sp.	2							1						6						
Ferrissia sp.												6					5			
Gammarus sp.		16	6		2	8	51								20					
Glossosoma sp.			1	1						2				3		1	5	1	9	
Goera sp.																				
Gomphidae								1						1						
Gyraulus parvus							1													
Gyrinus sp.																				
Helobdella sp.																				
Helobdella stagnalis															2					
Helophorus sp.																				
Hemerodromia sp.	1			2	1				1			15		4						
Heptageniidae												1								
1.0																				

FinalId	B0052	B0067	B0139	B0143	B0157	B0439	B0440	B0450	B0575	B0612	B0650	K0001	K0002 SI	D2171 SI	D2507 SI	D2630 SI	03026 SI	D3029 SI	D3054 SI	D4016
Hexatoma sp.												1				2				
Hyalella sp.															183					
Hydrobaenus sp.																				
Hydrobiidae						1									3		2			
Hydropsyche betteni	3	16		12	9		17	4	10	7		1		68		26	9	68	52	49
Hydropsyche morosa																				
Hydropsyche morosa gr.									2										22	
Hydropsyche sp.					21			2	4							1				
Hydropsyche sparna			3								1					33	13	16	8	
Hydropsyche ventura																				
Hydropsychidae														11			1	8		
Hydroptila sp.									2					2						
Hygrobates sp.		1										5			1					
Isonychia bicolor																5	7	7		
Isonychia sp.																				
Isoperla sp.																				
Kiefferulus sp.						2														
Labiobaetis frondale												5	1	5						
Labrundinia sp.													3							
Lebertia sp.	1											3		1						
Lepidostoma sp.											1									
Leptoceridae												3								
Leptophlebiidae								2								1				
Leuctra sp.			9		4						2									
Leuctridae/Capniidae														4			1			
Limnephilidae																				
Limnophyes sp.											1									
Lumbricina																			1	
Lumbriculidae		1		2	1		3			1	6			3						
Lymnaeidae																				
Lype diversa												4	2	3						
Maccaffertium modestum		6									3							2		
Maccaffertium sp.			1	7				12		3	6		8				6	2		
Macronychus glabratus												1	6	3			5			
Macrostemum sp.																	7			
Macrostemum zebratum																3				
Menetus dilatatus																	2			
Micrasema sp.	2							5	1							7	2		3	
Microcylloepus pusillus			11	5									1				15		6	
Micropsectra sp.			2		1			13			9									7

Appendix B.1	continued
--------------	-----------

FinalId	B0052	B0067	B0139	B0143	B0157	B0439	B0440	B0450	B0575	B0612	B0650	K0001	K0002 SI	D2171 SID25	07 SID2630 SID	3026 SII	03029 SID3	054 SID	4016
Micropsectra/Tanytarsus sp.	1																		
Microtendipes pedellus gr.						1					1	3		10	3				
Microtendipes rydalensis gr.			1		9								8				2		
Microtendipes sp.																			
Microvelia sp.																			
Molanna sp.																			
Mystacides sepulchralis											1	9							
Naidinae																			
Nais behningi						1													
Nais communis/variabilis	1					8													
Nais elinguis						2													
Nais sp.																			
Nanocladius sp.													1						
Natarsia sp.												3							
Nemata												5							
Neophylax oligius																			
Neoplasta sp.																	1		
Neoporus sp.																			
Nigronia serricornis					2		3	2		1	3			2		4	6		3
Nigronia sp.																			
Nilotanypus sp.																1	1		
Nilothauma sp.																			
Notonecta sp.																			
Nyctiophylax sp.																			
Odontomesa sp.																			
Oecetis persimilis																			
Oecetis sp.												1	4			1			
Ophiogomphus sp.														1					
Optioservus ovalis											1			3		1			
Optioservus sp.			2		3									13	16	2			8
Optioservus trivittatus															1				
Oribatida																			
Orthocladiinae												5	10				1		
Orthocladiinae Sp C																			
Orthocladius (Symposiocladius) lignicola																			
Orthocladius carlatus									1										
Orthocladius dubitatus																			
Orthocladius sp.									1										
Ostracoda												1							
Oulimnius latiusculus	13		6		1			1	5	11	3			11	18	1		3	9
			-		-			-							-			-	

FinalId	B0052	B0067	B0139	B0143	B0157	B0439	B0440	B0450	B0575	B0612	B0650	K0001	K0002 SIE	02171 SIE	02507 SIE	02630 SII	D3026 SII	D3029 SII	D3054 SI	D4016
Oxyethira sp.																				
Pagastia sp.																				
Parachaetocladius sp.											1									
Paracladopelma sp.													1							
Paracricotopus sp.	2																			
Paragnetina media									7								5	14		
Paragnetina sp.																				
Parakiefferiella sp.												10	4				15	1		
Paralauterborniella sp.													2							
Paraleptophlebia sp.	1										1									
Paramerina sp.												1								
Parametriocnemus sp.	5				4	1		2	1	4		5	1			3		4	1	14
Paraphaenocladius sp.																				
Paratanytarsus sp.						10						2	1							
Paratendipes sp.												7								1
Perlesta placida																				
Perlidae																		2		
Perlodidae																				
Phaenopsectra sp.												8	2		1					
Philopotamidae				2																
Phylocentropus sp.																				
Physa sp.																				
Physidae	1																			2
Pisidiidae	6	2		1			2	20		1		12	6	4	13		23	20		5
Pisidium sp.																	2			
Planorbella sp.																				
Planorbidae																				
Platycentropus sp.																				
Plauditus sp.		8									2			1						
Polycentropus sp.													6							
Polypedilum aviceps			4		2				1	4	9								6	5
Polypedilum fallax gr.												1								
Polypedilum flavum				5		3		1					6			7		1		3
Polypedilum halterale gr.								-				8	8					-		
Polypedilum illinoense gr.					1					1			2							3
Polypedilum laetum					-					-			_							
Polypedilum scalaenum																				
Polypedilum scalaenum gr.															1					
Polypedilum sp.	1											1	19				1			
Polypedilum tritum	1					2						1	17		1					
i orgeomuni untuni						2						1			1					

Appendix B.1 continued

FinalId	B0052	B0067	B0139	B0143	B0157	B0439	B0440	B0450	B0575	B0612	B0650	K0001	K0002 SI	D2171 SII	02507 SII	D2630 SIE	03026 SI	D3029 SI	D3054 SII	D4016
Potthastia longimana gr.																		4		
Pristina aequiseta						1														
Pristinella osborni	1																			
Probezzia sp.												3								
Procladius sp.															1					
Prodiamesa sp.																				
Promoresia sp.					1															
Promoresia tardella			14					3	1	4	5			4		16	1	3	49	
Psephenus herricki					1						2					13			1	
Pseudolimnophila sp.																			1	
Psilotreta frontalis																				
Psychomyia flavida																				
Psychomyiidae																				
Pteronarcys biloba									1											
Pycnopsyche guttifera														1						
Pycnopsyche lepida gr.														1						
Pycnopsyche sp.																				
Ranatra sp.																				
Rheocricotopus robacki						2		1												
Rheocricotopus sp.	4											8	8			1	2			
Rheotanytarsus exiguus gr.				3		15	12	1	2			7	58		2		31	62	8	1
Rheotanytarsus pellucidus		2			2			1				8	22		1		1	5	1	3
Rheotanytarsus sp.													2				3	18	1	
Rhyacophila carolina																				
Rhyacophila fuscula																1	1			
Rhyacophila minor											1			1						
Rhyacophila sp.			1													2				
Ripistes parasita																				
Serratella serrata																				
Serratella serratoides																				
Serratella sp.									1											
Sialis sp.																				
Simulium sp.		4	6	10	2	5		1	7	11	2	4		33		7	6	2	5	6
Simulium verecundum cplx.			5	4													1	1		
Slavina appendiculata																				
Sperchon sp.																2		2	1	
Sperchonopsis sp.										1				1						
Sphaerium sp.				1											2					
Sphaeromias sp.															1					
Staphylinidae																				
Supily initiate																				

FinalId	B0052	B0067	B0139	B0143	B0157	B0439	B0440	B0450	B0575	B0612	B0650	K0001	K0002 SIE	02171 SII	02507 SI	D2630 SI	D3026 SI	D3029 SI	D3054 SI	D4016
Stempellina sp.					1															
Stempellinella sp.												35	1							1
Stenacron interpunctatum																1				
Stenelmis crenata	23									8	2					1			1	2
Stenelmis sp.		8	6		1	2		5					1	4	1	19		7		10
Stenochironomus sp.													1				1			
Stictochironomus sp.												1								
Stylaria lacustris																				
Sublettea coffmani																				
Synorthocladius sp.																				
Tabanidae												1								
Tallaperla maria																				
Tanypodinae												2	1							
Tanytarsini												1		1				1		
Tanytarsus sp.					2	10		6		3		8	16		3			1		11
Teloganopsis deficiens																			13	
Thienemanniella sp.											1	3	5	5		1			1	
Thienemannimyia gr.	1	1								2		5	8	1	1	1		1		4
Tipula sp.													1	1			1			
Tipulidae	7															1				
Torrenticola sp.																		1	4	
Tribelos sp.													7							
Trichoptera																				
Trissopelopia sp.																				
Trombidiformes														1			1			
Tropisternus sp.																				
Tubificinae IWB						2														
Tubificinae IWH																				
Tubificinae w capilliform setae												2	2		1					1
Tubificinae wo capilliform setae												24	10		11					
Tvetenia paucunca	3		5	1	3		7	3	2	14	3	1		9		10		5	10	7
Tvetenia sp.																				1
Tvetenia vitracies		1														1	2		3	
Vejdovskyella comata																				
Xenochironomus xenolabis																	2			
Xylotopus par													1							
Zavrelimyia sp.																				
Zygoptera					8															

Appendix B.1. Macroinvertebrate taxa abundances collected at each sampling site. Sites are arranged alphabetically by code from left to right. FinalID refers to the lowest level to which a taxon was identified. FinalIDs are arranged alphabetically from top to bottom. Taxa classifications for phylum, class, order, family, subfamily, tribe, genus, and final ID are found in Appendix C.1. All taxa are listed for 20 sites, then the taxa list repeats for the remaining 20 sites. The following eight tables are the second half of the sites.

FinalId	SID4928	W0344	W2152	W2154	W2158	W2166	W2180	W2186	W2194	W2199	W2205	W2217	W2219	W2226	W2256	W2258	W2374	W2382	W2385	W2453
Ablabesmyia sp.						9											1		1	
Acentrella parvula																				
Acentrella turbida												2			3	2				
Acerpenna macdunnoughi														1						
Acerpenna sp.	3		1																	1
Acroneuria abnormis					6					2				1						
Acroneuria sp.		3												9						
Aeschnidae						3												1		
Amnicola sp.	1																1			
Anchytarsus bicolor											1									
Ancylidae																		41		
Ancyronyx variegata																			6	
Antocha sp.							1					8				6				
Apatania sp.																				
Atherix sp.															1					
Aulodrilus pigueti																		10		
Aulodrilus pluriseta																	3			
Aulodrilus sp.																				
Baetidae											1				4					
Baetis flavistriga							5		1			2		3		1				
Baetis flavistriga/intercalaris												7								
Baetis intercalaris							4					1				5				
Baetis pluto							1													
Baetis sp.					1		2					1	36	1						
Baetis tricaudatus										2					14					
Bezzia/Palpomyia sp.				2																
Boyeria sp.												1								
Boyeria vinosa					1							1								
Brachycentrus americanus															17					
Brachycentrus appalachia														8						
Brachycentrus numerosus					1					1			10							
Brillia sp.													2							
Brundiniella sp.													2							
Caecidotea communis																			2	
Caecidotea sp.	2	1		52													2	34	28	
Caenis sp.	_	-				2											_	5		
Calopterygidae	6					-												2		11
Calopteryx sp.	Ŭ												1					-		4
Cambaridae													-							
Cardiocladius obscurus							1									1				
																•				

FinalId	SID4928	W0344	W2152	W2154	W2158	W2166	W2180	W2186	W2194	W2199	W2205	W2217	W2219	W2226	W2256	W2258	W2374	W2382	W2385	W2453
Centroptilum sp.						45														
Ceraclea sp.																				
Ceratopogon sp.																				
Ceratopogonidae																			1	
Ceratopogoninae						3							2				1			
Chaetocladius sp.								1												
Chauliodes rastricornis																		2		
Chelifera sp.						1							3							
Cheumatopsyche sp.	6	2	12	22			5	16	3	12	22	21	2	7			6	10	10	4
Chimarra aterrima	5	3	9		2		22		2		11	7		2						25
Chimarra obscura							6													
Chimarra sp.							1													
Chironominae																				
Chironomini	1			2		2							2						2	
Chironomus sp.			1																	
Cladotanytarsus sp.	1																			
Clinocera sp.																				
Coenagrionidae						4												68		
Conchapelopia sp.																				
Coptotomus sp.																		1		
Corbicula fluminea																				
Cordulegaster sp.	3			2	1															
Corduliidae																		1		
Corixidae						5											1	1		
Corydalus cornutus																				
Corynoneura sp.	2	1		2		1			1	1			2	1					2	1
Crangonyx sp.																		1		
Cricotopus bicinctus						3						14				1				
Cricotopus sp.						4						6								
Cricotopus sylvestris																		6		
Cricotopus trifascia																				
Cricotopus/Orthocladius sp.				1		1						5	1	2	7	11				
Cryptochironomus sp.				1									2							
Cryptotendipes sp.						2														
Culicidae						6														
Dannella simplex						3							1							
Demicryptochironomus sp.						1														
Dero nivea/obtusa																				
Diamesa sp.							5													
Dicranota sp.	7	2	1		7					1	1		1	6	1					2

FinalId	SID4928	W0344	W2152	W2154	W2158	W2166	W2180	W2186	W2194	W2199	W2205	W2217	W2219	W2226	W2256	W2258	W2374	W2382	W2385	W2453
Dicrotendipes sp.																				
Dineutus sp.						1														
Diphetor hageni															2					
Diplectrona modesta										1										
Diplectrona sp.													1	3						
Diplocladius cultriger																				
Diplocladius sp.												5							4	1
Dixella sp.						2														
Dolophilodes distinctus														18						16
Dolophilodes sp.					3															
Drunella cornutella															1					
Dubiraphia sp.						4														
Dytiscidae													1							
Ectopria nervosa												1								
Elmidae	5	11																		
Empididae		1		1										1						
Enchytraeidae	1																			
Epeorus sp.																				
Ephemerella sp.															2	7				
Ephemerella subvaria																				
Erpobdella punctata																				
Erpobdella sp.		1																		
Eukiefferiella brehmi gr.														4						
Eukiefferiella devonica gr.																1				
Eukiefferiella pseudomontana gr.																3				
Eukiefferiella sp.		4																		
Eurylophella funeralis						1														1
Eurylophella sp.												3								
Ferrissia sp.																	11	2		
Gammarus sp.		3		114													73		12	
Glossosoma sp.		2					1					7		4						
Goera sp.																1				
Gomphidae	1	1																		
Gyraulus parvus																				
Gyrinus sp.													1							
Helobdella sp.		8		1																
Helobdella stagnalis																				
Helophorus sp.												1								
Hemerodromia sp.		1	1								1	2				1				2
Heptageniidae					1								2	1						

FinalId	SID4928	W0344	W2152	W2154	W2158	W2166	W2180	W2186	W2194	W2199	W2205	W2217	W2219	W2226	W2256	W2258	W2374	W2382	W2385	W2453
Hexatoma sp.					1															
Hyalella sp.						11											26	34		
Hydrobaenus sp.																			1	
Hydrobiidae	1																10			
Hydropsyche betteni	1	1	14	26	1		30	59			28	10		1						77
Hydropsyche morosa																3				
Hydropsyche morosa gr.		1			8				7											
Hydropsyche sp.			23		3			10		2				8						16
Hydropsyche sparna		12			4		3		25	6		3		3	2	1				
Hydropsyche ventura										1				1						
Hydropsychidae			6		8							7	2							
Hydroptila sp.						1														
Hygrobates sp.			1																	
Isonychia bicolor																				
Isonychia sp.					1							1				6				
Isoperla sp.										1										
Kiefferulus sp.																				
Labiobaetis frondale				3		59														
Labrundinia sp.						1											2			
Lebertia sp.																			1	
Lepidostoma sp.										1			2	2						
Leptoceridae																	2			
Leptophlebiidae	2					8							3			2				
Leuctra sp.		14			11	1			1	8			7	27	8					3
Leuctridae/Capniidae												1								
Limnephilidae	4												4							
Limnophyes sp.	1												4							
Lumbricina																				
Lumbriculidae	7	10		3				1		1	1		1	2			1			2
Lymnaeidae	1					2											8	1		
Lype diversa													3						9	
Maccaffertium modestum							1	12					4				2			1
Maccaffertium sp.	1		1			2			1		7	1	1	1			3			19
Macronychus glabratus	3			1		-						7	-				5			
Macrostemum sp.	5																			
Macrostemum zebratum																				
Menetus dilatatus				2													49			
Micrasema sp.				2						2				9						
Microcylloepus pusillus		1								2										
Micropsectra sp.	7	15			3	5			9	4			22	44	3	2		2	18	7
meropseena sp.	1	15			5	5			,	4			22		5	2		2	10	/

FinalId	SID4928	W0344	W2152	W2154	W2158	W2166	W2180	W2186	W2194	W2199	W2205	W2217	W2219	W2226	W2256	W2258	W2374	W2382	W2385	W2453
Micropsectra/Tanytarsus sp.		63																		
Microtendipes pedellus gr.	1	1	2	3		3			1			23	2	1		3				
Microtendipes rydalensis gr.						1			1	1		1	6	14		3				
Microtendipes sp.						1														
Microvelia sp.						3														5
Molanna sp.				1																
Mystacides sepulchralis	1																			
Naidinae																		4		
Nais behningi																				
Nais communis/variabilis							1	1												
Nais elinguis																				
Nais sp.		5												2						1
Nanocladius sp.																1	1			
Natarsia sp.																				
Nemata																				
Neophylax oligius		1																		
Neoplasta sp.														2	1					
Neoporus sp.																		1		
Nigronia serricornis		3			2			1	3	1	2	1		4		2				16
Nigronia sp.													1							
Nilotanypus sp.	1		1									1								
Nilothauma sp.									2											1
Notonecta sp.						1														
Nyctiophylax sp.	1																			
Odontomesa sp.													1							
Oecetis persimilis																	1			
Oecetis sp.				1													1		1	
Ophiogomphus sp.																				
Optioservus ovalis	2	34																		2
Optioservus sp.			1									3								
Optioservus trivittatus																				
Oribatida	1																			
Orthocladiinae		6										2		2		1			4	
Orthocladiinae Sp C				1																
Orthocladius (Symposiocladius) lignicola	ı												1				1			
Orthocladius carlatus																				
Orthocladius dubitatus															3	2				
Orthocladius sp.																				
Ostracoda																				
Oulimnius latiusculus	8	32	1		2				1	3					1	1				13

Appendix B.1 conti	nued
--------------------	------

FinalId	SID4928	W0344	W2152	W2154	W2158	W2166	W2180	W2186	W2194	W2199	W2205	W2217	W2219	W2226	W2256	W2258	W2374	W2382	W2385	W2453
Oxyethira sp.				1														7		
Pagastia sp.													5			1				
Parachaetocladius sp.	1	3			1					2										
Paracladopelma sp.																				
Paracricotopus sp.																				
Paragnetina media																				
Paragnetina sp.																3				
Parakiefferiella sp.												8	8							
Paralauterborniella sp.						4							8							
Paraleptophlebia sp.															2				5	
Paramerina sp.						4														
Parametriocnemus sp.	35	1		2	3	2					1		3	2		2				8
Paraphaenocladius sp.																	1			
Paratanytarsus sp.	1					10						1	1					31	4	
Paratendipes sp.				1		10							5				1		28	
Perlesta placida		2							1											
Perlidae					1															
Perlodidae											1									
Phaenopsectra sp.	1					2								1					10	
Philopotamidae	3																			4
Phylocentropus sp.				3									1							
Physa sp.				2																
Physidae						3							2				1		1	
Pisidiidae	16	3		33	2			1				1		4			52			
Pisidium sp.				8													9			
Planorbella sp.				1																
Planorbidae						2														
Platycentropus sp.				1																
Plauditus sp.																4				
Polycentropus sp.						1								2						
Polypedilum aviceps	13			3			3		1	1		1	18			9				76
Polypedilum fallax gr.	1											1	6							
Polypedilum flavum			6				4													
Polypedilum halterale gr.	5						-												1	
Polypedilum illinoense gr.	12	1	1			31	1						16				3	14	26	8
Polypedilum laetum	1																			
Polypedilum scalaenum																	1			
Polypedilum scalaenum gr.				1									2							
Polypedilum sp.		4										1	-	1	1					
Polypedilum tritum												-	2		•			5		

FinalId	SID4928	W0344	W2152	W2154	W2158	W2166	W2180	W2186	W2194	W2199	W2205	W2217	W2219	W2226	W2256	W2258	W2374	W2382	W2385	W2453
Potthastia longimana gr.																	1	1		
Pristina aequiseta																				
Pristinella osborni																				
Probezzia sp.	2																			
Procladius sp.				1		3												1		
Prodiamesa sp.													1							
Promoresia sp.																				
Promoresia tardella		7			15				5	12			2	37						
Psephenus herricki		3									1	6				1				
Pseudolimnophila sp.																				
Psilotreta frontalis				2																
Psychomyia flavida			1									1								
Psychomyiidae												2								
Pteronarcys biloba																				
Pycnopsyche guttifera		1		1								1								
Pycnopsyche lepida gr.																				
Pycnopsyche sp.													1						1	
Ranatra sp.						1														
Rheocricotopus robacki																				
Rheocricotopus sp.							1										8			
Rheotanytarsus exiguus gr.	5	6			3				3		5	42	7			2	8		2	13
Rheotanytarsus pellucidus	25						1					13	15	2		2	13		11	11
Rheotanytarsus sp.		1										3	1	2						
Rhyacophila carolina		1								1										
Rhyacophila fuscula									1			1		1						
Rhyacophila minor												5								2
Rhyacophila sp.																				
Ripistes parasita																	3	10		
Serratella serrata																3				
Serratella serratoides									3											
Serratella sp.																				
Sialis sp.																		1		
Simulium sp.	5	3		1			6		1	8	10	3		6	24	1	1			12
Simulium verecundum cplx.							1		1	1	2				1	1				1
Slavina appendiculata																	1		4	
Sperchon sp.	1		1		1							3								
Sperchonopsis sp.	1																			
Sphaerium sp.				1													3			
Sphaeromias sp.																				
Staphylinidae		1																		

FinalId	SID4928	W0344	W2152	W2154	W2158	W2166	W2180	W2186	W2194	W2199	W2205	W2217	W2219	W2226	W2256	W2258	W2374	W2382	W2385	W2453
Stempellina sp.																			1	
Stempellinella sp.	1	1				9			3			2		2			1		4	1
Stenacron interpunctatum																				
Stenelmis crenata	1									3	1									14
Stenelmis sp.	17	3	16	15	1				2			14		2					5	
Stenochironomus sp.												1							1	
Stictochironomus sp.	1																			
Stylaria lacustris																		3		
Sublettea coffmani																4				
Synorthocladius sp.						1							1			1				
Tabanidae	4			1													1			
Tallaperla maria										4										
Tanypodinae		1				6						4	3					2		
Tanytarsini						1											1		1	
Tanytarsus sp.	34			5	1	20	1		11	1		1	27	10		1	3	5	57	
Teloganopsis deficiens									2					9						
Thienemanniella sp.						2						7		2		3	1			
Thienemannimyia gr.	21	1		5	7	6	1		5			3	23	6	2	2	1	3	19	9
Tipula sp.				1																
Tipulidae	1																			
Torrenticola sp.																				
Tribelos sp.		1														1				1
Trichoptera				1																
Trissopelopia sp.															1					
Trombidiformes																1				
Tropisternus sp.						1														
Tubificinae IWB											1		1				1	6	2	
Tubificinae IWH						1											2		1	
Tubificinae w capilliform setae																				
Tubificinae wo capilliform setae	15																			
Tvetenia paucunca	2	4	1	1	4		1		1	16	3	8		46						18
Tvetenia sp.												8			1					
Tvetenia vitracies		3					1		1			15					1			
Vejdovskyella comata																		2		
Xenochironomus xenolabis																				
Xylotopus par																				
Zavrelimyia sp.						2							1							
Zygoptera																				

UniqueID	AE B	1	BB	BC	В	ND B	S B	T	CCS	CP	CRC	CS	EBT	F I	FM	GS I	LMB 1	LND I	> F	RBS	RP S	SC S	SD S	LS	SMB S	S T	ГD	WP	WS	YB Y	YP	Total
B0052		1		-						-						1			2													4
B0067			1														1													2		4
B0139	1																3		4		7											15
B0143		1	2														2								1				3			9
B0157	8						3		2										9				6						19			47
B0439	12															9			4		17											42
B0440	16						1							1							4			1					1			24
B0450						16								13				1											3			33
B0575	7					88		8			4	5	3	14				11											11			151
B0612							11										4				6											21
B0650						25				4			34					4	3								2		1			73
K0001						14				1		6	12	9							6						9		64			121
K0002	2				1					1				3			1		2					1			4		2			17
SID2171						58	1					489	1	232		1	2		1										14			799
SID2507							1														5										7	13
SID2630										2				9			3	29									26		2			71
SID3026	2		6			40						25		187															16	4		280
SID3029						24		4						2															11	4		45
SID3054						3							9					5											3			20
SID4016																							1							1		2
SID4928		3				2						2	3														2		9	5		26
W0344	53								1				17								10										5	86
W2152		4	12		1												8		1	29	4									5		64
W2154			1														6				9								2	1		19
W2158												13	25	71															28	1		138
W2166			1			14			3							52			14								3		57	1		145
W2180						67																							50			117
W2186										1		1		20					1									1	1	8		33
W2194		3				5								38			1	4	12										24	6	20	113
W2199					1					1			13				1		1		1								2		12	32
W2205										1				130					4										11			146
W2217						360				1		43		57			4	36	1										52		1	555
W2219										1			49													6						56
W2226		1				65				1		3	15					20	3										17			125
W2256		3			1			48					12						3			114										181
W2258						69		1			29	13		3	17			38	1							86			11			268
W2374	25									2							1		10		2			2			7					49
W2382							3		2							1			9													15
W2385	4																				34											38
W2453		1											37													4			57			99
Total	130	17	23		4	850	20	61	8	16	33	600	230	789	17	64	37	148	85	29	105	114	7	4	1	96	53	1	471	38	45	4096

Appendix B.2. Fish species abundances collected at each sampling site. Fish species codes are referenced from Appendix C.3.

APPENDIX C:

BIOTIC TAXA CLASSIFICATIONS

Appendix C.1. Macroinvertebrate taxa with flow, thermal, and tolerance classifications. Taxa are ordered alphabetically by phylum, then class, order, family, subfamily, tribe, genus, and final ID. The final ID represents the lowest level to which each taxon was identified. Four traits of rheophily (Rheo), shape (Shp), swimming ability (Swim), and attachment (Atch) were aggregated into a flow-trait metric. Codes correspond: to Rheo1 (depositional), Rheo2 (depositional or erosional), Rheo3 (erosional); Shp1 (streamlined), Shp2 (not streamlined); Swim1 (none), Swim2 (weak), Swim3 (strong); Atch1 (none), Atch2 (some), Atch3 (both); for a flow-metric of Flow1 (no or low flow adaptation), Flow2 (some flow adaptation), Flow3 (high flow adaptation) (see Appendix C.2). Thermal codes correspond to: Ther1 (cold stenothermal or cool eurythermal), Ther2 (cool/warm eurythermal), and Ther3 (warm eurythermal). Tolerance values range 0–10 from intolerant to tolerant based on classifications developed by Massachusetts Department of Environmental Protection.

Phylum	Class	Order	Family	Subfamily	Tribe	Genus	FinalId	Rheo	Shpe	Swim	Atch	Flow	Ther	Tol
Annelida	Hirudinea	Pharyngobdellida	Erpobdellidae			Erpobdella	Erpobdella punctata	2	1	3	1	2	2	8
Annelida	Hirudinea	Pharyngobdellida	Erpobdellidae			Erpobdella	Erpobdella sp.	2	1	3	1	2	2	8
Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae			Helobdella	Helobdella sp.	2	1	2	1	2	3	8
Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae			Helobdella	Helobdella stagnalis	2	1	2	1	2	3	8
Annelida	Oligochaeta	Lumbricina					Lumbricina		2	2	1	1		8
Annelida	Oligochaeta	Lumbriculida	Lumbriculidae				Lumbriculidae	2	2	2	1	1		7
Annelida	Oligochaeta	Tubificida	Enchytraeidae				Enchytraeidae	1	2	2	1	1	1	10
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Dero	Dero nivea/obtusa	1	2	2	1	1		10
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae			Naidinae	1	2	2	1	1		9
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Nais	Nais behningi	1	2	2	1	1		6
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Nais	Nais communis/variabilis	1	2	2	1	1		8
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Nais	Nais elinguis	1	2	2	1	1		10
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Nais	Nais sp.	1	2	2	1	1		8
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Pristina	Pristina aequiseta	1	2	3	1	1		8
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Pristinella	Pristinella osborni	1	2	3	1	1		10
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Ripistes	Ripistes parasita	1	2	2	1	1		8
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Slavina	Slavina appendiculata	1	2	2	1	1		6
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Stylaria	Stylaria lacustris	1	2	3	1	1		8
Annelida	Oligochaeta	Tubificida	Naididae	Naidinae		Vejdovskyella	Vejdovskyella comata	1	2	2	1	1		4
Annelida	Oligochaeta	Tubificida	Naididae	Tubificinae		Aulodrilus	Aulodrilus pigueti	1	2	2	1	1		7
Annelida	Oligochaeta	Tubificida	Naididae	Tubificinae		Aulodrilus	Aulodrilus pluriseta	1	2	2	1	1		7
Annelida	Oligochaeta	Tubificida	Naididae	Tubificinae		Aulodrilus	Aulodrilus sp.	1	2	2	1	1		7
Annelida	Oligochaeta	Tubificida	Naididae	Tubificinae			Tubificinae IWB	1	2	2	1	1		10
Annelida	Oligochaeta	Tubificida	Naididae	Tubificinae			Tubificinae IWH	1	2	2	1	1		10
Annelida	Oligochaeta	Tubificida	Naididae	Tubificinae			Tubificinae w capilliform setae	1	2	2	1	1		10
Annelida	Oligochaeta	Tubificida	Naididae	Tubificinae			Tubificinae wo capilliform setae	1	2	2	1	1		10

ArthropodaCrustaceaAmphipodaGammaridaeGammarusGammarusSp.2121ArthropodaCrustaceaAmphipodaHyalellidaeHyalellaHyalellaHyalella sp.212121ArthropodaCrustaceaIsopodaAsellidaeCaccidoteaCaccidoteaCaccidotea communis2111ArthropodaCrustaceaIsopodaAsellidaeCaccidoteaCaccidotea communis22211ArthropodaCrustaceaIsopodaAsellidaeCaccidoteaCaccidotea communis222211ArthropodaCrustaceaOstracodaCatecidoteaCaccidotea communis222211ArthropodaInsectaColeopteraDytiscidaeCoptotomusCoptotomus sp.1131ArthropodaInsectaColeopteraDytiscidaeNeoporusNeoporus sp.1131ArthropodaInsectaColeopteraElmidaeAncyronyxAncyronyx variegata22111ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus22111ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus22111ArthropodaInsectaColeopteraElmidaeOptioser	
ArthropodaArachnidaTrombidiformesLebertiiaeLebertiaLebertia sp.22221ArthropodaArachnidaTormbidiformesSperchonidaeSperchonopsisSperchonopsisSperchonopsisSperchonopsis2221ArthropodaArachnidaTrombidiformesSperchonopsisSperchonopsisSperchonopsis22221ArthropodaArachnidaTrombidiformesTorrenticolaaeTorrenticolaTorrenticola sp.22221ArthropodaArachnidaTormbidiformesCrangonyxcitaeCrangonyx sp.22121ArthropodaCrustaceaAmphipodaGammaridaeGammarusGammarus sp.21211ArthropodaCrustaceaAmphipodaHalellidaeHyalellaHyalella sp.2211	
ArthropodaArachnidaTrombidiformesSperchonidaeSperchonopsisSperchonopsisSperchonopsis sp.22221ArthropodaArachnidTrombidiformesTorrenticolidaeTorrenticola sp.Torrenticola sp.22221ArthropodaArachnidTormbidiformesTorrenticolidaeTorrenticola sp.22221ArthropodaArachnidTormbidiformesTorrenticolidaeCrangonyx forments21221211ArthropodaCrustaceAmphipodaGammaridaeGammarus sp.2121211 <t< td=""><td>1</td></t<>	1
ArthropodaArachnidaTrombidiformesSperchonoidaeSperchonopsisSperchonopsi	. 1
ArthropodaArachnidaTrombidiformesTorrenticoliaTorrenticolaTorrenticolaTorrenticolaTorrenticolaTorrenticola22221ArthropodaArachnidaTrombidiformesCangonyx citaceAmphipodaCrangonyx citaceCrangonyx sp.21212111 <td>1</td>	1
ArthropodaArachnidaTrombidiformes2221ArthropodaCrustaceaAmphipodaCrangonyctidaeCrangonyxCrangonyx sp.2121ArthropodaCrustaceaAmphipodaGammaridaeGammarusGammarus sp.2121ArthropodaCrustaceaAmphipodaHyalellidaeHyalellaHyalella sp.212121ArthropodaCrustaceaDecapodaCambaridaeCaecidoteaCaecidotea communis2111	1
ArthropodaCrustaceaAmphipodaCrangonyctidaeCrangonyxCrangonyx sp.212121ArthropodaCrustaceaAmphipodaGammaridaeGammarusGammarus sp.212121ArthropodaCrustaceaAmphipodaHyalellidaeHyalellaHyalella sp.2121211ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea communis2111<	1
ArthropodaCrustacaAmplipodaGammaridaGammarusGammarusGammarus sp.212121ArthropodaCrustaceaAmphipodaHyalellidaeHyalellaHyalella sp. Cambaridae2121ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea communis2111ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea sp.22211ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea sp.22221ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea sp.22211ArthropodaInsectaColeopteraDytiscidaeCoptoromus sp.1131ArthropodaInsectaColeopteraDytiscidaeNeoporusNeoporus sp.12231ArthropodaInsectaColeopteraElmidaeAncyronyxAncyronyx variegata22111ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus22111ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus22111ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus	1
ArthropodaCrustaceAmplipodaHyalellidaeHyalellidaHyalellidaeCCIZIZIIArthropodaCrustaceaDecapodaCambaridaeCambaridaeCambaridaeCambaridae2IIIIArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea communis2IIIIArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea opunis2II	2 1
ArthropodaCrustaceaDecapodaCambaridaeCambaridae21211ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidoteaCaecidotea communis2111ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea sp.2111ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea sp.22211ArthropodaInsectaColeopteraDytiscidaeCoptotomusCoptotomus sp.11231ArthropodaInsectaColeopteraDytiscidaeNeoporusNeoporus sp.12211ArthropodaInsectaColeopteraElmidaeAncyronyxAncyronyx variegata22211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus22111ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus22111ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus varis22111ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus22111ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus varis2<	2 1
ArthropodaCrustaceIsopodaAsellidaeCaecidoteaCaecidotea communis2111ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea sp.22111ArthropodaCrustaceaOstracoda222211131ArthropodaInsectaColeopteraDytiscidaeCoptotomusCoptotomus sp.11131ArthropodaInsectaColeopteraDytiscidaeCoptomusNeoporus sp.1231ArthropodaInsectaColeopteraElmidaeAncyronyxNeoporus sp.1231ArthropodaInsectaColeopteraElmidaeAncyronyxAncyronyx variegata22211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus22111ArthropodaInsectaColeopteraElmidaeMacronychusMicrocylloepus pusillus2211111ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus2211111111111111111111111111111111111	2 1
ArthropodaCrustaceaIsopodaAsellidaeCaecidoteaCaecidotea sp.2111ArthropodaCrustaceaOstracoda2221131ArthropodaInsectaColeopteraDytiscidaeCoptomusCoptomus sp.1131ArthropodaInsectaColeopteraDytiscidaeNeoporusNeoporus sp.1231ArthropodaInsectaColeopteraDytiscidaeNeoporusNeoporus sp.1231ArthropodaInsectaColeopteraElmidaeAncyronyxAncyronyx variegata22111ArthropodaInsectaColeopteraElmidaeDubiraphiaDubiraphia sp.22111ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus22111ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus22111ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.22111ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus22111ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.22111Arthropoda	2 2
ArthropodaCrustaceaOstracodaOstracoda2221131ArthropodaInsectaColeopteraDytiscidaeCoptotmusCoptotmus sp.1131ArthropodaInsectaColeopteraDytiscidaeNeoporusDytiscidae2131ArthropodaInsectaColeopteraDytiscidaeNeoporusNeoporus sp.1231ArthropodaInsectaColeopteraElmidaeAncyronyxAncyronyx variegata2211ArthropodaInsectaColeopteraElmidaeDubiraphiaDubiraphia sp.2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptiose	2 3
ArthropodaInsectaColeopteraDytiscidaeCoptotomusCoptotomus sp.1131ArthropodaInsectaColeopteraDytiscidaeDytiscidaeDytiscidae2131ArthropodaInsectaColeopteraDytiscidaeNeoporusNeoporus sp.1231ArthropodaInsectaColeopteraElmidaeAncyronyxAncyronyx variegata2211ArthropodaInsectaColeopteraElmidaeDubiraphiaDubiraphia sp.2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidae<	2 3
ArthropodaInsectaColeopteraDytiscidae	2
ArthropodaInsectaColeopteraDytiscidaeNeoporusNeoporus sp.1231ArthropodaInsectaColeopteraElmidaeAncyronyxAncyronyx variegata2211ArthropodaInsectaColeopteraElmidaeDubiraphiaDubiraphia sp.2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus valis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsec	2
ArthropodaInsectaColeopteraDytiscidaeNeoporusNeoporus sp.1231ArthropodaInsectaColeopteraElmidaeAncyronyxAncyronyx variegata2211ArthropodaInsectaColeopteraElmidaeDubiraphiaDubiraphia sp. Elmidae2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus soulis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus soulis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus soulis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus soulis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211Arthropoda<	2 2
ArthropodaInsectaColeopteraElmidaeDubiraphiaDubiraphia sp.2211ArthropodaInsectaColeopteraElmidaeElmidae2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus ovalis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOulimniusOulimnius latiusculus2211	
ArthropodaInsectaColeopteraElmidaeDubiraphiaDubiraphia sp.2211ArthropodaInsectaColeopteraElmidaeElmidae2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus ovalis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus ppisilus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus ppisitus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOulimniusOulimnius latiusculus2211	2
ArthropodaInsectaColeopteraElmidaeElmidae2211ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus ovalis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivitatus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus2211ArthropodaInsectaColeopteraElmidaeOulimniusOulimnius latiusculus2211	2
ArthropodaInsectaColeopteraElmidaeMacronychusMacronychus glabratus2211ArthropodaInsectaColeopteraElmidaeMicrocylloepusMicrocylloepus pusillus2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus ovalis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivittatus2211ArthropodaInsectaColeopteraElmidaeOulimniusOulimnius latiusculus2211	2
ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus ovalis2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus sp.2211ArthropodaInsectaColeopteraElmidaeOptioservusOptioservus trivittatus2211ArthropodaInsectaColeopteraElmidaeOulimniusOulimnius latiusculus2211	2
Arthropoda InsectaColeopteraElmidaeOptioservusOptioservus ovalis2211Arthropoda InsectaColeopteraElmidaeOptioservusOptioservus sp.2211Arthropoda InsectaColeopteraElmidaeOptioservusOptioservus sp.2211Arthropoda InsectaColeopteraElmidaeOptioservusOptioservus trivittatus2211Arthropoda InsectaColeopteraElmidaeOulimniusOulimnius latiusculus2211	2
Arthropoda InsectaColeopteraElmidaeOptioservusOptioservus sp.2211Arthropoda InsectaColeopteraElmidaeOptioservusOptioservus trivittatus2211Arthropoda InsectaColeopteraElmidaeOulimniusOulimnius latiusculus2211	2
Arthropoda InsectaColeopteraElmidaeOptioservusOptioservus trivittatus2211Arthropoda InsectaColeopteraElmidaeOulimniusOulimnius latiusculus2211	2
Arthropoda Insecta Coleoptera Elmidae Oulimnius Oulimnius latiusculus 2 2 1 1	2
	1
Arthropoda Insecta Coleoptera Elmidae Promoresia Promoresia sp. 2 2 1 1	2
Arthropoda Insecta Coleoptera Elmidae Promoresia Promoresia 2 2 1 1	1
Arthropoda Insecta Coleoptera Elmidae Stenelmis Stenelmis crenata 2 2 1 1	3
Arthropoda Insecta Coleoptera Elmidae Stenelmis Stenelmis sp. 2 2 1 1	3
Arthropoda Insecta Coleoptera Gyrinidae Dineutus Dineutus sp. 2 3 1	
Arthropoda Insecta Coleoptera Gyrinidae Gyrinus Gyrinus p. 1 2 3 1	
Arthropoda Insecta Coleoptera Hydrophilidae Helophorus Helophorus sp. 1 2 2 1	
Arthropoda Insecta Coleoptera Hydrophilidae Tropisternus Tropisternus sp. 1 2 2 1	
Arthropoda Insecta Coleoptera Psephenidae Ectopria Ectopria a 3 1 2	3 2
Arthropoda Insecta Coleoptera Psephenidae Psephenus Psephenus herricki 3 1 1 2	3 2
Arthropoda Insecta Coleoptera Ptilodactylidae Anchytarsus Anchytarsus bicolor 3 1 1 2	3 2
Arthropoda Insecta Coloptera Staphylinidae 1 2 1	-
Arthropoda Insecta Diptera Athericidae Atherix Atherix sp. 2 1	2
Arthropoda Insecta Diptera Ceratopogonidae Ceratopogoninae Ceratopogoninae 2 2 1	2
Arthropoda Insecta Diptera Ceratopogonidae Ceratopogonidae Probezzia Probezzia sp. 2 2 1	2
Arthropoda Insecta Diptera Ceratopogonidae Ceratopogonidae Sphaeromias Sphaeromias sp. 2 2 1 1	2
Arthropoda Insecta Diptera Ceratopogonidae Ceratopogonidae Spiracionitas Spiracionitas Spiracionitas sp. 2 2 1 Arthropoda Insecta Diptera Ceratopogonidae Bezzia Bezzia/Palpomyia sp. 2 2 1 1	2
Arthropoda InsectaDipteraCeratopogonidaeDezziaDezziaDezziaDezziaArthropoda InsectaDipteraCeratopogonidaeCeratopogonCeratopogon sp.221	2
	2
Arthropoda Insecta Diptera Ceratopogonidae Ceratopogonidae 2 2 1 1	2

Appendix	C.1	continued
----------	-----	-----------

Phylum	Class	Order	Family	Subfamily	Tribe	Genus	FinalId	Rheo	Shpe Swim	Atch	Flow	Ther	Tol
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini		Chironomini	1	2 1	1	1	2	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	Chironomus sp.	1	2 1	1	1	2	10
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Cryptochironomus	Cryptochironomus sp.	1	2 1	1	1	2	8
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Cryptotendipes	Cryptotendipes sp.	1	2 1	1	1	2	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Demicryptochironomus	Demicryptochironomus sp.	1	2 1	1	1	2	2
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Dicrotendipes	Dicrotendipes sp.	1	2 1	1	1	3	8
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Kiefferulus	Kiefferulus sp.	1	2 1	1	1	2	10
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Microtendipes	Microtendipes pedellus gr.	1	2 1	1	1	2	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Microtendipes	Microtendipes rydalensis gr.	1	2 1	1	1	2	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Microtendipes	Microtendipes sp.	1	2 1	1	1	2	5
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Nilothauma	Nilothauma sp.	1	2 1	1	1	3	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Paracladopelma	Paracladopelma sp.	1	2 1	1	1	2	7
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Paralauterborniella	Paralauterborniella sp.	1	2 1	1	1	2	8
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Paratendipes	Paratendipes sp.	1	2 1	1	1	2	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Phaenopsectra	Phaenopsectra sp.	1	2 1	1	1	2	7
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum aviceps	1	2 1	1	1	1	4
Arthropoda		Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum fallax gr.	1	2 1	1	1	2	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum flavum	1	2 1	1	1	3	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum halterale gr.	1	2 1	1	1	2	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae		Polypedilum	Polypedilum illinoense gr.	1	2 1	1	1	2	6
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae		Polypedilum	Polypedilum laetum	1	2 1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Chironominae		Polypedilum	Polypedilum scalaenum	1	2 1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum scalaenum gr.	1	2 1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Chironominae		Polypedilum	Polypedilum sp.	1	2 1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Chironominae		Polypedilum	Polypedilum tritum	1	2 1	1	1	1	6
Arthropoda		Diptera	Chironomidae	Chironominae		Stenochironomus	Stenochironomus sp.	1	2 1	1	1	3	5
Arthropoda		Diptera	Chironomidae	Chironominae		Stictochironomus	Stictochironomus sp.	1	2 1	1	1	2	9
Arthropoda		Diptera	Chironomidae	Chironominae	Chironomini		Tribelos sp.	1	2 1	1	1	2	7
Arthropoda		Diptera	Chironomidae	Chironominae		Xenochironomus	Xenochironomus xenolabis	1	2 1	1	1	2	0
Arthropoda		Diptera	Chironomidae	Chironominae		Cladotanytarsus	Cladotanytarsus sp.	1	2 1	1	1	2	5
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Micropsectra	Micropsectra sp.	1	2 1	1	1	2	7
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Micropsectra/Tanytarsus	Micropsectra/Tanytarsus sp.	1	2 1	1	1	2	7
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus	Paratanytarsus sp.	1	2 1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Rheotanytarsus	Rheotanytarsus exiguus gr.	1	2 1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Rheotanytarsus	Rheotanytarsus pellucidus	1	2 1	1	1	2	5
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Rheotanytarsus	Rheotanytarsus sp.	1	2 1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Stempellina	Stempellina sp.	1	2 1	1	1	2	2
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Stempellinella	Stempellinella sp.	1	2 1	1	1	2	2
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Subletta	Sublettea coffmani	1	2 1	1	1	2	4
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini		Tanytarsini	1	2 1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus	Tanytarsus sp.	1	2 1	1	1	3	6
Arthropoda		Diptera	Chironomidae	Chironominae	rany tar shift		Chironominae	1	2 1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Diamesinae		Diamesa	Diamesa sp.	2	2 1	1	1	1	5
Arthropoda		Diptera	Chironomidae	Diamesinae		Pagastia	Pagastia sp.	2	2 1	1	1	1	1
Arthropoda		Diptera	Chironomidae	Diamesinae		Potthastia	Potthastia longimana gr.	2	2 1	1	1	1	2
Anniopoda	insecta	Dipiera	Chirononnuae	Diamesinae		rounastia	r otmastra tongimana gr.	2	2 I	1	1	1	2

Phylum	Class	Order	Family	Subfamily	Tribe	Genus	FinalId	Rheo	Shpe	Swim	Atch	Flow	Ther	Tol
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Brillia	Brillia sp.	2	2	1	1	1	1	5
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Cardiocladius	Cardiocladius obscurus	2	2	1	1	1	2	5
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Chaetocladius	Chaetocladius sp.	2	2	1	1	1	1	6
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Corynoneura	Corynoneura sp.	2	2	1	1	1	1	4
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus bicinctus	2	2	1	1	1	1	7
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus sp.	2	2	1	1	1	1	7
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus sylvestris	2	2	1	1	1	1	7
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus trifascia	2	2	1	1	1	1	6
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Cricotopus/Orthocladius	Cricotopus/Orthocladius sp.	2	2	1	1	1	1	7
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Diplocladius	Diplocladius cultriger	2	2	1	1	1	1	8
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Diplocladius	Diplocladius sp.	2	2	1	1	1	1	8
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Eukiefferiella	Eukiefferiella brehmi gr.	2	2	1	1	1	1	4
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Eukiefferiella	Eukiefferiella devonica gr.	2	2	1	1	1	1	4
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Eukiefferiella	Eukiefferiella pseudomontana gr.	2	2	1	1	1	1	8
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Eukiefferiella	Eukiefferiella sp.	2	2	1	1	1	1	6
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Hydrobaenus	Hydrobaenus sp.	2	2	1	1	1	1	8
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Limnophyes	Limnophyes sp.	2	2	1	1	1	1	8
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Nanocladius	Nanocladius sp.	2	2	1	1	1	1	7
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Tunocialitas	Orthocladiinae	2	2	1	1	1	1	5
Arthropoda		Diptera	Chironomidae	Orthocladiinae			Orthocladiinae Sp C	2	2	1	1	1	1	5
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Orthocladius (Symposiocladius)	-	2	2	1	1	1	1	5
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Orthocladius	Orthocladius carlatus	2	2	1	1	1	1	6
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Orthocladius	Orthocladius dubitatus	2	2	1	1	1	1	6
Arthropoda		1	Chironomidae	Orthocladiinae		Orthocladius	Orthocladius sp.	2	2	1	1	1	1	6
1		Diptera					1	2	2	1	1	1	1	2
Arthropoda		Diptera	Chironomidae Chironomidae	Orthocladiinae Orthocladiinae		Parachaetocladius	Parachaetocladius sp.	2	2	1	1	1	1	4
Arthropoda		Diptera				Paracricotopus	Paracricotopus sp.	-	2	1	1	1	1	
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Parakiefferiella	Parakiefferiella sp.	2	2	1	1	1	1	4
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Parametriocnemus	Parametriocnemus sp.	2	-	1	1	1	1	5
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Paraphaenocladius	Paraphaenocladius sp.	2	2	1	1	1	1	4
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Rheocricotopus	Rheocricotopus robacki	2	2	1	1	1	1	5
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Rheocricotopus	Rheocricotopus sp.	2	2	1	1	1	1	6
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Synorthocladius	Synorthocladius sp.	2	2	1	1	1	1	6
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Thienemanniella	Thienemanniella sp.	2	2	1	1	1	1	6
Arthropoda		Diptera	Chironomidae	Orthocladiinae		Tvetenia	Tvetenia paucunca	2	2	1	1	1	1	5
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Tvetenia	Tvetenia sp.	2	2	1	1	1	1	5
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Tvetenia	Tvetenia vitracies	2	2	1	1	1	3	5
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae		Xylotopus	Xylotopus par	2	2	1	1	1	1	7
Arthropoda	Insecta	Diptera	Chironomidae	Prodiamesinae		Odontomesa	Odontomesa sp.	2	2	1	1	1	1	5
Arthropoda		Diptera	Chironomidae	Prodiamesinae		Prodiamesa	Prodiamesa sp.	2	2	1	1	1	1	8
Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae		Ablabesmyia	Ablabesmyia sp.	2	2	1	1	1	3	8
Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae		Brundiniella	Brundiniella sp.	2	2	1	1	1	2	7
Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae		Conchapelopia	Conchapelopia sp.	2	2	1	1	1	2	6
Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae		Labrundinia	Labrundinia sp.	2	2	1	1	1	2	6
Arthropoda		Diptera	Chironomidae	Tanypodinae		Natarsia	Natarsia sp.	2	2	1	1	1	2	8
-		-	Chironomidae	**			•	2	2	1	1	1	3	6
Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae		Nilotanypus	Nilotanypus sp.	2	2	1	1	1		3

Arthropoda In Arthropoda In Arthropoda In	Insecta	Distant						Rheo		vim	Atch	Flow	Ther	Tol
1		Diptera	Chironomidae	Tanypodinae		Paramerina	Paramerina sp.	2	2	1	1	1	2	6
Arthropoda Ir	Insecta	Diptera	Chironomidae	Tanypodinae		Procladius	Procladius sp.	2	2	1	1	1	2	9
	Insecta	Diptera	Chironomidae	Tanypodinae			Tanypodinae	2	2	1	1	1	2	7
Arthropoda In	Insecta	Diptera	Chironomidae	Tanypodinae		Thienemannimyia	Thienemannimyia gr.	2	2	1	1	1	2	6
Arthropoda In	Insecta	Diptera	Chironomidae	Tanypodinae		Trissopelopia	Trissopelopia sp.	2	2	1	1	1	2	4
Arthropoda In	Insecta	Diptera	Chironomidae	Tanypodinae		Zavrelmyia	Zavrelimyia sp.	2	2	1	1	1	2	8
Arthropoda In	Insecta	Diptera	Culicidae				Culicidae	1	2	3	1	1		8
Arthropoda In	Insecta	Diptera	Dixidae			Dixella	Dixella sp.	2	2	1	1	1		1
Arthropoda In	Insecta	Diptera	Empididae	Clinocerinae		Clinocera	Clinocera sp.	2	2	1	1	1	2	6
Arthropoda In	Insecta	Diptera	Empididae	Hemerodromiina	e	Chelifera	Chelifera sp.	2	2	1	1	1	2	6
Arthropoda In	Insecta	Diptera	Empididae	Hemerodromiina	e	Hemerodromia	Hemerodromia sp.	2	2	1	1	1	2	6
Arthropoda In	Insecta	Diptera	Empididae	Hemerodromiina	e	Neoplasta	Neoplasta sp.	2	2	1	1	1	2	6
Arthropoda In	Insecta	Diptera	Empididae				Empididae	2	2	1	1	1	2	6
Arthropoda In	Insecta	Diptera	Simulidae			Simulium	Simulium sp.	3	2	1	2	2	2	5
Arthropoda In	Insecta	Diptera	Simulidae			Simulium	Simulium verecundum cplx.	3	2	1	2	2	2	5
Arthropoda In	Insecta	Diptera	Tabanidae				Tabanidae	1	2	1	1	1		6
Arthropoda In		Diptera	Tipulidae			Antocha	Antocha sp.	2	2	1	1	1	1	3
Arthropoda In	Insecta	Diptera	Tipulidae			Dicranota	Dicranota sp.	2	2	1	1	1	1	3
Arthropoda In		Diptera	Tipulidae			Hexatoma	Hexatoma sp.	2	2	1	1	1	2	2
Arthropoda In	Insecta	Diptera	Tipulidae			Pseudolimnophila	Pseudolimnophila sp.	2	2	1	1	1	2	2
Arthropoda In		Diptera	Tipulidae			Tipula	Tipula sp.	2	2	1	1	1	2	6
Arthropoda In	Insecta	Diptera	Tipulidae			•	Tipulidae	2	2	1	1	1	2	5
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Acentrella	Acentrella parvula	2	1	3	1	2	1	4
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Acentrella	Acentrella turbida	2	1	3	1	2	1	4
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Acerpenna	Acerpenna macdunnoughi	2	1	3	1	2	2	5
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Acerpenna	Acerpenna sp.	2	1	3	1	2	2	5
Arthropoda In	Insecta	Ephemeroptera	Baetidae			•	Baetidae	2	1	3	1	2	2	4
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Baetis	Baetis flavistriga	2	1	3	1	2	2	4
Arthropoda In		Ephemeroptera	Baetidae			Baetis	Baetis flavistriga/intercalaris	2	1	3	1	2	2	
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Baetis	Baetis intercalaris	2	1	3	1	2	3	6
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Baetis	Baetis pluto	2	1	3	1	2	2	6
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Baetis	Baetis sp.	2	1	3	1	2	2	6
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Baetis	Baetis tricaudatus	2	1	3	1	2	1	6
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Centroptilum	Centroptilum sp.	2	1	3	1	2	2	2
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Diphetor	Diphetor hageni	2	1	3	1	2	1	6
Arthropoda In	Insecta	Ephemeroptera	Baetidae			Labiobaetis	Labiobaetis frondale	3	1	3	1	3	1	6
Arthropoda In		Ephemeroptera	Baetidae			Plauditus	Plauditus sp.		1	3	1	2	2	4
Arthropoda In		Ephemeroptera	Caenidae			Caenis	Caenis sp.	1	2	2	1	1	3	6
Arthropoda In		Ephemeroptera	Ephemerellidae			Dannella	Dannella simplex	2	1		1	1	3	2
Arthropoda In		Ephemeroptera	Ephemerellidae			Drunella	Drunella cornutella	2	2	2	1	1	1	0
Arthropoda In		Ephemeroptera	Ephemerellidae			Ephemerella	Ephemerella sp.	2	2	2	1	1	1	1
Arthropoda In		Ephemeroptera	Ephemerellidae			Ephemerella	Ephemerella subvaria	2	2	2	1	1	1	1
Arthropoda In		Ephemeroptera	Ephemerellidae			Eurylophella	Eurylophella funeralis	2	2	2	1	1	1	0
Arthropoda In		Ephemeroptera	Ephemerellidae			Eurylophella	Eurylophella sp.	2	2	2	1	1	1	2
Arthropoda In		Ephemeroptera	Ephemerellidae			Serratella	Serratella serrata	2	2	2	1	1	2	2

Phylum	Class	Order	Family	Subfamily	Tribe	Genus	FinalId	Rheo	Shpe S		Atch	Flow	Ther	Tol
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae			Serratella	Serratella serratoides	2	2	2	1	1	2	2
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae			Serratella	Serratella sp.	2	2	2	1	1	2	2
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae			Teloganopsis	Teloganopsis deficiens		2	2	1	1	2	2
Arthropoda	Insecta	Ephemeroptera	Heptageniidae			Epeorus	Epeorus sp.	2	1	2	1	2	1	0
Arthropoda	Insecta	Ephemeroptera	Heptageniidae				Heptageniidae	2	1	2	1	2	1	4
Arthropoda	Insecta	Ephemeroptera	Heptageniidae			Maccaffertium	Maccaffertium modestum	2	1	2	1	2	2	1
Arthropoda	Insecta	Ephemeroptera	Heptageniidae			Maccaffertium	Maccaffertium sp.	2	1	2	1	2	2	3
Arthropoda	Insecta	Ephemeroptera	Heptageniidae			Stenacron	Stenacron interpunctatum	2	1	2	1	2	3	7
Arthropoda	Insecta	Ephemeroptera	Isonychiidae			Isonychia	Isonychia bicolor	3	1	3	1	3	2	2
Arthropoda	Insecta	Ephemeroptera	Isonychiidae			Isonychia	Isonychia sp.	3	1	3	1	3	2	2
Arthropoda	Insecta	Ephemeroptera	Leptophlebiidae				Leptophlebiidae	2	1	2	1	2	3	2
Arthropoda	Insecta	Ephemeroptera	Leptophlebiidae			Paraleptophlebia	Paraleptophlebia sp.	2	1	2	1	2	1	1
Arthropoda	Insecta	Hemiptera	Corixidae				Corixidae	1	1	3	1	2	2	5
Arthropoda	Insecta	Hemiptera	Nepidae			Ranatra	Ranatra sp.	1	2	1	1	1	2	
Arthropoda	Insecta	Hemiptera	Notonectidae			Notonecta	Notonecta sp.	1	1	3	1	2		5
Arthropoda	Insecta	Hemiptera	Veliidae			Microvelia	Microvelia sp.	1	2	3	1	1	2	5
Arthropoda	Insecta	Megaloptera	Corydalidae			Chauliodes	Chauliodes rastricornis	2	2	1	1	1	2	4
Arthropoda	Insecta	Megaloptera	Corydalidae			Corydalus	Corydalus cornutus	2	2	1	1	1	2	4
Arthropoda	Insecta	Megaloptera	Corydalidae			Nigronia	Nigronia serricornis	2	2	1	1	1	2	0
Arthropoda	Insecta	Megaloptera	Corydalidae			Nigronia	Nigronia sp.	2	2	1	1	1	2	0
Arthropoda	Insecta	Megaloptera	Sialidae			Sialis	Sialis sp.	2	2	1	1	1	2	4
Arthropoda	Insecta	Odonata	Aeschnidae				Aeschnidae	2	2	3	1	2	2	3
Arthropoda	Insecta	Odonata	Aeschnidae			Boyeria	Boyeria sp.	2	2	3	1	2	2	2
Arthropoda	Insecta	Odonata	Aeschnidae			Boyeria	Boyeria vinosa	2	2	3	1	2	2	2
Arthropoda	Insecta	Odonata	Calopterygidae				Calopterygidae	2	1	2	1	2	2	5
Arthropoda	Insecta	Odonata	Calopterygidae			Calopteryx	Calopteryx sp.	2	1	2	1	2	2	6
Arthropoda	Insecta	Odonata	Coenagrionidae				Coenagrionidae	2	1	2	1	2	2	9
Arthropoda	Insecta	Odonata	Cordulegastridae			Cordulegaster	Cordulegaster sp.	1	2	2	1	1	2	3
Arthropoda	Insecta	Odonata	Corduliidae				Corduliidae	1	2	2	1	1	2	5
Arthropoda	Insecta	Odonata	Gomphidae				Gomphidae	2	2	2	1	1	2	5
Arthropoda	Insecta	Odonata	Gomphidae			Ophiogomphus	Ophiogomphus sp.	2	2	2	1	1	2	1
Arthropoda	Insecta	Odonata	Zygoptera				Zygoptera				1			6
Arthropoda	Insecta	Plecoptera	Leuctridae			Leuctra	Leuctra sp.	2	2	2	1	1	1	0
Arthropoda	Insecta	Plecoptera	Leuctridae/Capniida	e			Leuctridae/Capniidae	2	2	2	1	1	1	0
Arthropoda	Insecta	Plecoptera	Peltoperlidae				Tallaperla maria	3	2	2	1	1	1	0
Arthropoda	Insecta	Plecoptera	Perlidae			Acroneuria	Acroneuria abnormis	3	1	2	1	2	2	0
Arthropoda	Insecta	Plecoptera	Perlidae			Acroneuria	Acroneuria sp.	3	1	2	1	2	2	0
Arthropoda	Insecta	Plecoptera	Perlidae			Paragnetina	Paragnetina media	3	1	2	1	2	2	5
Arthropoda	Insecta	Plecoptera	Perlidae			Paragnetina	Paragnetina sp.	3	1	2	1	2	2	1
Arthropoda	Insecta	Plecoptera	Perlidae			Perlesta	Perlesta placida	2	1	2	1	2	2	5
Arthropoda	Insecta	Plecoptera	Perlidae				Perlidae	2	1	2	1	2	2	1
Arthropoda		Plecoptera	Perlodidae			Isoperla	Isoperla sp.	2	2	2	1	1	2	2
Arthropoda		Plecoptera	Perlodidae			*	Perlodidae	2	1	2	1	2	2	2
		Plecoptera	Pteronarcyidae			Pteronarcys	Pteronarcys biloba	2	2		1		1	0

Phylum	Class	Order	Family	Subfamily	Tribe	Genus	FinalId	Rheo	Shpe Swim		Flow	Ther	Tol
Arthropoda	Insecta	Trichoptera	Apataniidae			Apatania	Apatania sp.	3	2 1	2	2	1	3
Arthropoda	Insecta	Trichoptera	Brachycentridae			Brachycentrus	Brachycentrus americanus	3	2 1	3	2	2	1
Arthropoda	Insecta	Trichoptera	Brachycentridae			Brachycentrus	Brachycentrus appalachia	3	2 1	3	2	2	0
Arthropoda	Insecta	Trichoptera	Brachycentridae			Brachycentrus	Brachycentrus numerosus	3	2 1	3	2	2	1
Arthropoda	Insecta	Trichoptera	Brachycentridae			Micrasema	Micrasema sp.	3	2 1	3	2	2	2
Arthropoda	Insecta	Trichoptera	Glossosomatidae			Glossosoma	Glossosoma sp.	3	2 1	1	1	1	0
Arthropoda	Insecta	Trichoptera	Hydropsychidae			Cheumatopsyche	Cheumatopsyche sp.	3	2 1	2	2	2	5
Arthropoda	Insecta	Trichoptera	Hydropsychidae			Diplectrona	Diplectrona modesta	3	2 1	2	2	1	0
Arthropoda	Insecta	Trichoptera	Hydropsychidae			Diplectrona	Diplectrona sp.	3	2 1	2	2	1	0
Arthropoda	Insecta	Trichoptera	Hydropsychidae			Hydropsyche	Hydropsyche betteni	3	2 1	2	2	2	7
Arthropoda		Trichoptera	Hydropsychidae			Hydropsyche	Hydropsyche morosa	3	2 1	2	2	2	6
Arthropoda	Insecta	Trichoptera	Hydropsychidae			Hydropsyche	Hydropsyche morosa gr.	3	2 1	2	2	2	6
Arthropoda		Trichoptera	Hydropsychidae			Hydropsyche	Hydropsyche sp.	3	2 1	2	2	2	4
Arthropoda		Trichoptera	Hydropsychidae			Hydropsyche	Hydropsyche sparna	3	2 1	2	2	2	6
Arthropoda		Trichoptera	Hydropsychidae			Hydropsyche	Hydropsyche ventura	3	2 1	2	2	2	5
Arthropoda		Trichoptera	Hydropsychidae				Hydropsychidae	3	2 1	2	2	2	4
Arthropoda		Trichoptera	Hydropsychidae			Macrostemum	Macrostemum sp.	3	2 1	2	2	3	3
Arthropoda		Trichoptera	Hydropsychidae			Macrostemum	Macrostemum zebratum	3	2 1	2	2	3	3
Arthropoda		Trichoptera	Hydroptilidae			Hydroptila	Hydroptila sp.	2	1 1	1	2	3	6
Arthropoda		Trichoptera	Hydroptilidae			Oxyethira	Oxyethira sp.	2	1 1	2	2	2	3
Arthropoda		Trichoptera	Lepidostomatidae			Lepidostoma	Lepidostoma sp.	2	2 1	1	1	1	1
Arthropoda		Trichoptera	Leptoceridae			Ceraclea	Ceraclea sp.	2	2 1 2 2	2	2	2	3
•		-	Leptoceridae			Ceracica	Leptoceridae	2	2 2 2	2	2	2	4
Arthropoda		Trichoptera	•			Mustaaidaa	Mystacides sepulchralis	2		2	2	2	4
Arthropoda		Trichoptera	Leptoceridae			Mystacides	5 1	2		2	2	2	4
Arthropoda		Trichoptera	Leptoceridae			Oecetis	Oecetis persimilis	2		2	2	3	5
Arthropoda		Trichoptera	Leptoceridae			Oecetis	Oecetis sp.						
Arthropoda		Trichoptera	Limnephilidae			Goera	Goera sp.	2	2 1	2	2	2	3
Arthropoda		Trichoptera	Limnephilidae				Limnephilidae	2	2 1	2	2	2	4
Arthropoda		Trichoptera	Limnephilidae			Platycentropus	Platycentropus sp.	1	2 1	2	1	2	4
Arthropoda		Trichoptera	Limnephilidae			Pycnopsyche	Pycnopsyche guttifera	2		2	2	1	4
Arthropoda		Trichoptera	Limnephilidae			Pycnopsyche	Pycnopsyche lepida gr.	2		2	2	1	
Arthropoda		Trichoptera	Limnephilidae			Pycnopsyche	Pycnopsyche sp.	2		2	2	1	4
Arthropoda		Trichoptera	Molannidae			Molanna	Molanna sp.		2 1	2	1		6
Arthropoda		Trichoptera	Odontoceridae			Psilotreta	Psilotreta frontalis	2		2	2	1	0
Arthropoda	Insecta	Trichoptera	Philopotamidae			Chimarra	Chimarra aterrima	3	2 1	2	2	3	4
Arthropoda	Insecta	Trichoptera	Philopotamidae			Chimarra	Chimarra obscura	3	2 1	2	2	3	4
Arthropoda	Insecta	Trichoptera	Philopotamidae			Chimarra	Chimarra sp.	3	2 1	2	2	3	4
Arthropoda	Insecta	Trichoptera	Philopotamidae			Dolophilodes	Dolophilodes distinctus	3	2 1	2	2	1	0
Arthropoda	Insecta	Trichoptera	Philopotamidae			Dolophilodes	Dolophilodes sp.	3	2 1	2	2	1	0
Arthropoda	Insecta	Trichoptera	Philoptamidae				Philopotamidae	3	2 1	2	2	2	3
Arthropoda	Insecta	Trichoptera	Polycentropodidae			Nyctiophylax	Nyctiophylax sp.	2	2 1	2	2	2	5
Arthropoda		Trichoptera	Polycentropodidae			Phylocentropus	Phylocentropus sp.	1	2 1	2	1	2	5
Arthropoda		Trichoptera	Polycentropodidae			Polycentropus	Polycentropus sp.	3	2 1	2	2	2	6
Arthropoda		Trichoptera	Psychomyiidae			Lype	Lype diversa	3	2 1	2	2	2	2
							2 F		2 1	2	2		

Phylum	Class	Order	Family	Subfamily	Tribe	Genus	FinalId	Rheo	Shpe Sv	/im	Atch	Flow	Ther	Tol
Arthropoda	Insecta	Trichoptera	Psychomyiidae				Psychomyiidae	3	2	1	2	2	2	2
Arthropoda	Insecta	Trichoptera	Rhyacophilidae			Rhyacophilia	Rhyacophila carolina	3	2	2	2	2	1	1
Arthropoda	Insecta	Trichoptera	Rhyacophilidae			Rhyacophilia	Rhyacophila fuscula	3	2	2	2	2	1	0
Arthropoda	Insecta	Trichoptera	Rhyacophilidae			Rhyacophilia	Rhyacophila minor	3	2	2	2	2	1	1
Arthropoda	Insecta	Trichoptera	Rhyacophilidae			Rhyacophilia	Rhyacophila sp.	3	2	2	2	2	1	1
Arthropoda	Insecta	Trichoptera	Uenoidae			Neophylax	Neophylax oligius	3	2	2	2	2	2	3
Arthropoda	Insecta	Trichoptera					Trichoptera	2	2	2	3	2	2	4
Mollusca	Gastropoda	Basommatophora	Ancylidae				Ancylidae	2	1	1	2	2		6
Mollusca	Gastropoda	Basommatophora	Ancylidae			Ferrissia	Ferrissia sp.	3	1	1	2	3		6
Mollusca	Gastropoda	Basommatophora	Lymnaeidae				Lymnaeidae	2	2	1	2	2		6
Mollusca	Gastropoda	Basommatophora	Physidae			Physa	Physa sp.	2	2	1	2	2	3	9
Mollusca	Gastropoda	Basommatophora	Physidae				Physidae	2	2	1	2	2		8
Mollusca	Gastropoda	Basommatophora	Planorbidae			Gyraulus	Gyraulus parvus		2	1	2	1		8
Mollusca	Gastropoda	Basommatophora	Planorbidae			Menetus	Menetus dilatatus		2	1	2	1		6
Mollusca	Gastropoda	Basommatophora	Planorbidae			Planorbella	Planorbella sp.		2	1	2	1		6
Mollusca	Gastropoda	Basommatophora	Planorbidae				Planorbidae	2	2	1	2	2		6
Mollusca	Gastropoda	Mesogastropoda	Hydrobiidae			Amnicola	Amnicola sp.	2	2	1	2	2	3	5
Mollusca	Gastropoda	Mesogastropoda	Hydrobiidae				Hydrobiidae	2	2	1	2	2	3	8
Mollusca	Pelecypoda	Veneroida	Corbiculidae			Corbicula	Corbicula fluminea	3	1	1	2	3		6
Mollusca	Pelecypoda	Veneroida	Pisidiidae				Pisidiidae	2	1	1	2	2		6
Mollusca	Pelecypoda	Veneroida	Pisidiidae			Pisidium	Pisidium sp.	1	1	1	2	2	2	6
Mollusca	Pelecypoda	Veneroida	Pisidiidae			Sphaerium	Sphaerium sp.		1	1	2	2	3	6
Nemata						-	Nemata			1	2	1		

Appendix C.2. Macroinvertebrate traits for rheophily, shape, swimming ability, and attachment were used to categorize taxa into categories of high-flow adaptation, some-flow adaptation, and low- or no-flow adaptation. The trait codes in parentheses refer to the categories referenced in Appendix C.1 and established by Poff et al. (2006b).

		Trait		
Flow adaptation	Rheophily	Shape	Swimming	Attachment
High (3)	Erosional (3)	Streamlined (1)	Strong (3)	None (1)
	Erosional (3)	Streamlined (1)	None (1)	Some (2)
Some (2)	Erosional (3)	Streamlined (1)	Weak (2)	None (1)
	Erosional (3)	Not streamlined (2)	Weak (2)	Some (2)
	Erosional (3)	Not streamlined (2)	None (1)	Some or none (3)
	Erosional (3)	Not streamlined (2)	None (1)	Some (2)
	Erosional or depositional (2)	Streamlined (1)	Strong (3)	None (1)
	Erosional or depositional (2)	Streamlined (1)	Weak (2)	None (1)
	Erosional or depositional (2)	Streamlined (1)	None (1)	Some (2)
	Erosional or depositional (2)	Not streamlined (2)	Strong (3)	None (1)
	Erosional or depositional (2)	Not streamlined (2)	Weak (2)	Some or none (3)
	Erosional or depositional (2)	Not streamlined (2)	None (1)	Some (2)
	Depositional (1)	Streamlined (1)	Strong (3)	None (1)
	Depositional (1)	Streamlined (1)	None (1)	Some (2)
Low/no (1)	Erosional (3)	Not streamlined (2)	Weak (2)	None (1)
	Erosional (3)	Not streamlined (2)	None (1)	None (1)
	Erosional or depositional (2)	Not streamlined (2)	Weak (2)	None (1)
	Erosional or depositional (2)	Not streamlined (2)	None (1)	None (1)
	Depositional (1)	Not streamlined (2)	Strong (3)	None (1)
	Depositional (1)	Not streamlined (2)	Weak (2)	None (1)
	Depositional (1)	Not streamlined (2)	None (1)	Some (2)
	Depositional (1)	Not streamlined (2)	None (1)	None (1)
	Not listed	Not streamlined (2)	None (1)	Some (2)

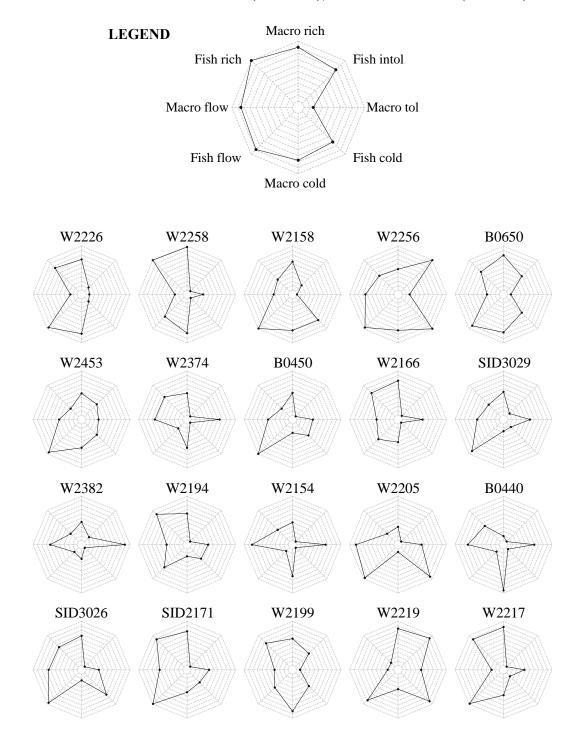
Appendix C.3. Fish classifications used for flow, thermal, and tolerance response variables (Kashiwagi and Richards 2009, Armstrong et al. 2011). Flow codes represent FD (fluvial dependent), FS (fluvial specialist), and MG (macrohabitat generalist). FD and FS were combined into one response variable for fluvial fishes. Thermal codes represent COLD (coldwater), COOL (coolwater), and WARM (warmwater). Tolerance codes represent INTOL (intolerant), INTER (intermediate), and TOL (tolerant).

AnguillidaeAEAnguilla rostrataAmerican eelMGWAICatostomidaeWSCatostomus commersoniWhite suckerFDCOCCCSErimyzon oblongusCreek chubsuckerFSWAICentrarchidaeBSEnneacanthus obesusBanded sunfishMGWAIPLepomis auritisRedbreast sunfishMGWAIPLepomis gibbosusPumpkinseedMGWAIBLepomis macrochirusBluegillMGWAISMBMicropterus dolomieuSmallmouth bassMGWAIBCPomoxis nigromaculatusBlack crappieMGWAICottidaeSCCottus cognatusSlimy sculpinFSCOICyprinidaeSSNotemigonus crysoleucasGolden shinerMGWAIFMPimephales promelasFathead minnowMGWAI	DL TOL RM INTOL RM INTER RM INTER RM INTER RM INTER RM TOL RM INTER
CatostomidaeGWSCatostomus commersoni Erimyzon oblongusWhite sucker Creek chubsuckerFDCOO COO Creek chubsuckerBSEnneacanthus obesus RBSBanded sunfishMGWAI WAI Redbreast sunfishPLepomis auritis gibbosusRedbreast sunfishMGWAI WAI BBLepomis gibbosus BPumpkinseedMGWAI WAI BBLepomis macrochirus BluegillBluegillMGWAI WAI BBCPomoxis nigromaculatus Black crappieMGWAI BCottidaeSCCottus cognatus CoprinidaeSlimy sculpinFSCOI COICyprinidaeCSLuxillus cornutus SNCommon shiner 	DL TOL RM INTOL RM INTER RM INTER RM INTER RM INTER RM TOL RM INTER
WS CCSCatostomus commersoni Erimyzon oblongusWhite sucker Creek chubsuckerFD FSCOC COC FSCentrarchidae	RM INTOL RM INTER RM INTER RM INTER RM TOL RM INTER
CCSErimyzon oblongusCreek chubsuckerFSWADCentrarchidae	RM INTOL RM INTER RM INTER RM INTER RM TOL RM INTER
CentrarchidaeBSEnneacanthus obesusBanded sunfishMGWAIRBSLepomis auritisRedbreast sunfishMGWAIPLepomis gibbosusPumpkinseedMGWAIBLepomis macrochirusBluegillMGWAISMBMicropterus dolomieuSmallmouth bassMGWAILMBMicropterus salmoidesLargemouth bassMGWAIBCPomoxis nigromaculatusBlack crappieMGWAICottidaeSCCottus cognatusSlimy sculpinFSCOICyprinidaeSSNotemigonus crysoleucasGolden shinerMGWAIFMPimephales promelasFathead minnowMGWAI	RM INTER RM INTER RM INTER RM TOL RM INTER
BSEnneacanthus obesusBanded sunfishMGWAIRBSLepomis auritisRedbreast sunfishMGWAIPLepomis gibbosusPumpkinseedMGWAIBLepomis macrochirusBluegillMGWAISMBMicropterus dolomieuSmallmouth bassMGWAILMBMicropterus salmoidesLargemouth bassMGWAIBCPomoxis nigromaculatusBlack crappieMGWAICottidaeSCCottus cognatusSlimy sculpinFSCOICyprinidaeSSNotemigonus crysoleucasGolden shinerMGWAISSNotropis hudsoniusSpottail shinerMGWAIFMPimephales promelasFathead minnowMGWAI	RM INTER RM INTER RM TOL RM INTER
RBSLepomis auritisRedbreast sunfishMGWAIPLepomis gibbosusPumpkinseedMGWAIBLepomis macrochirusBluegillMGWAISMBMicropterus dolomieuSmallmouth bassMGWAILMBMicropterus salmoidesLargemouth bassMGWAIBCPomoxis nigromaculatusBlack crappieMGWAICottidae </td <td>RM INTER RM INTER RM TOL RM INTER</td>	RM INTER RM INTER RM TOL RM INTER
PLepomis gibbosusPumpkinseedMGWAIBLepomis macrochirusBluegillMGWAISMBMicropterus dolomieuSmallmouth bassMGWAILMBMicropterus salmoidesLargemouth bassMGWAIBCPomoxis nigromaculatusBlack crappieMGWAICottidaeSCCottus cognatusSlimy sculpinFSCOICyprinidaeCSLuxillus cornutusGolden shinerMGWAISSNotemigonus crysoleucasGolden shinerMGWAIFMPimephales promelasFathead minnowMGWAI	RM INTER RM TOL RM INTER
BLepomis macrochirusBluegillMGWAISMBMicropterus dolomieuSmallmouth bassMGWAILMBMicropterus salmoidesLargemouth bassMGWAIBCPomoxis nigromaculatusBlack crappieMGWAICottidaeSCCottus cognatusSlimy sculpinFSCOICyprinidaeCSLuxillus cornutusCommon shinerFDWAIGSNotemigonus crysoleucasGolden shinerMGWAIFMPimephales promelasFathead minnowMGWAI	RM TOL RM INTER
BLepomis macrochirusBluegillMGWAISMBMicropterus dolomieuSmallmouth bassMGWAILMBMicropterus salmoidesLargemouth bassMGWAIBCPomoxis nigromaculatusBlack crappieMGWAICottidaeSCCottus cognatusSlimy sculpinFSCOICyprinidaeCSLuxillus cornutusCommon shinerFDWAIGSNotemigonus crysoleucasGolden shinerMGWAIFMPimephales promelasFathead minnowMGWAI	RM INTER
LMB BCMicropterus salmoides Pomoxis nigromaculatusLargemouth bass Black crappieMGWAI WAICottidaeSCCottus cognatusSlimy sculpinFSCOLCyprinidaeCSLuxillus cornutusCommon shinerFDWAI MGGSNotemigonus crysoleucasGolden shinerMGWAI MGSSNotropis hudsoniusSpottail shinerMGWAI MGFMPimephales promelasFathead minnowMGWAI	
BCPomoxis nigromaculatusBlack crappieMGWAICottidaeSCCottus cognatusSlimy sculpinFSCOICyprinidaeCSLuxillus cornutusCommon shinerFDWAIGSNotemigonus crysoleucasGolden shinerMGWAISSNotropis hudsoniusSpottail shinerMGWAIFMPimephales promelasFathead minnowMGWAI	RM INTER
BCPomoxis nigromaculatusBlack crappieMGWAICottidaeSCCottus cognatusSlimy sculpinFSCOICyprinidaeCSLuxillus cornutusCommon shinerFDWAIGSNotemigonus crysoleucasGolden shinerMGWAISSNotropis hudsoniusSpottail shinerMGWAIFMPimephales promelasFathead minnowMGWAI	
CottidaeSCCottus cognatusSlimy sculpinFSCOLCyprinidaeCSLuxillus cornutusCommon shinerFDWAIGSNotemigonus crysoleucasGolden shinerMGWAISSNotropis hudsoniusSpottail shinerMGWAIFMPimephales promelasFathead minnowMGWAI	RM INTER
CyprinidaeCommon shinerFDWAICSLuxillus cornutusCommon shinerFDWAIGSNotemigonus crysoleucasGolden shinerMGWAISSNotropis hudsoniusSpottail shinerMGWAIFMPimephales promelasFathead minnowMGWAI	
CyprinidaeCSLuxillus cornutusCommon shinerFDWAIGSNotemigonus crysoleucasGolden shinerMGWAISSNotropis hudsoniusSpottail shinerMGWAIFMPimephales promelasFathead minnowMGWAI	LD INTOL
CSLuxillus cornutusCommon shinerFDWAIGSNotemigonus crysoleucasGolden shinerMGWAISSNotropis hudsoniusSpottail shinerMGWAIFMPimephales promelasFathead minnowMGWAI	
SSNotropis hudsoniusSpottail shinerMGWAIFMPimephales promelasFathead minnowMGWAI	RM INTER
SSNotropis hudsoniusSpottail shinerMGWAIFMPimephales promelasFathead minnowMGWAI	RM TOL
FM <i>Pimephales promelas</i> Fathead minnow MG WAI	RM INTER
	RM TOL
BND Rhinichthys atratulus Blacknose dace FS COC	DL TOL
LND Rhinichthys cataractae Longnose dace FS COC	OL INTER
CRC Semotilus atromaculatus Creek chub FS COO	DL TOL
F Semotilus corporalis Fallfish FS COL	LD INTER
Esocidae	
RP Esox americanus Redfin pickerel MG WAI	RM INTER
CP Esox niger Chain pickerel MG WAI	RM INTER
Ictaluridae	
YB Ameiurus natalis Yellow bullhead MG WAI	RM TOL
BB Ameiurus nebulosus Brown bullhead MG WAI	RM TOL
Moronidae	
WP Morone americana White perch MG WAI	RM INTER
Percidae	
SD <i>Etheostoma fusiforme</i> Swamp darter MG WAI	RM INTOL
TD Etheostoma olmstedi Tesselated darter FS WAI	
YP Perca flavescens Yellow perch MG WAI	
Petromyzontidae	
SL <i>Petromyzon marinus</i> Sea lamprey FD COC	OL INTER
Salmonidae	
BT Salmo trutta Brown trout FS COL	
EBT Salvelinus fontinalis Brook trout FS COL	LD INTOL

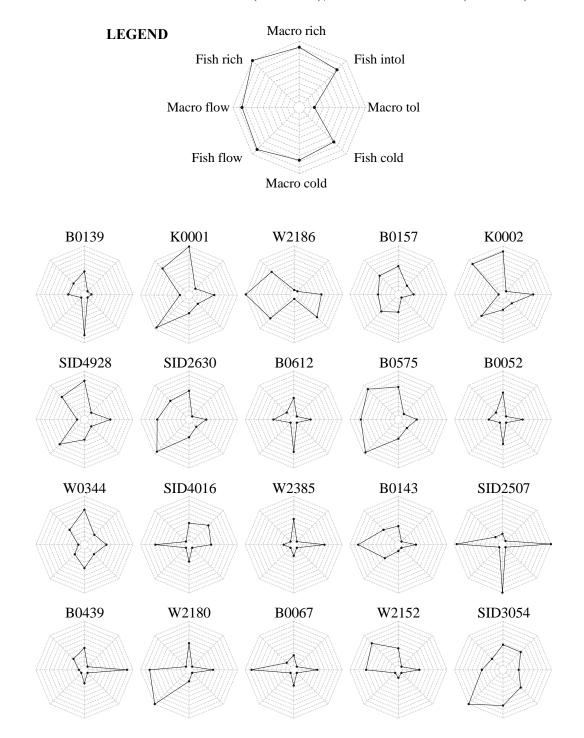
APPENDIX D:

BIOTIC RESPONSE METRICS

CALCULATED FROM RAW DATA


	Richr	ness	Flow tra	its (%)	Thermal t	raits (%)	Tole	rance
UniqueID	Macro	Fish	Macro	Fish	Macro	Fish	Macro	Fish (%)
B0052	26	3	31.8	0.0	29.1	0.0	4.9	0.0
B0067	16	3	84.1	0.0	16.8	0.0	5.3	0.0
B0139	23	4	35.3	0.0	52.0	0.0	3.6	0.0
B0143	20	5	80.4	33.3	3.7	0.0	4.7	0.0
B0157	27	6	43.1	44.7	19.6	0.0	4.4	17.0
B0439	22	4	15.8	0.0	13.7	0.0	7.1	0.0
B0440	12	6	72.0	12.5	59.0	4.2	6.0	0.0
B0450	26	4	51.0	100.0	13.5	39.4	4.9	0.0
B0575	30	9	75.5	95.4	21.7	16.6	4.8	7.3
B0612	22	3	43.1	0.0	40.2	0.0	4.6	0.0
B0650	35	7	36.0	90.4	48.0	46.6	3.7	46.6
K0001	42	8	22.5	94.2	20.5	17.4	5.4	9.9
K0002	38	9	13.5	58.8	16.3	17.6	5.9	0.0
SID2171	34	9	56.7	99.4	26.3	29.2	5.1	0.1
SID2507	13	3	90.8	0.0	62.9	0.0	7.7	0.0
SID2630	27	6	64.9	93.0	19.7	12.7	4.6	0.0
SID3026	31	7	66.8	95.7	9.7	66.8	4.6	0.0
SID3029	26	5	54.6	91.1	11.1	13.3	5.5	8.9
SID3054	24	4	44.7	100.0	45.0	45.0	4.5	45.0
SID4016	22	2	68.1	0.0	18.5	0.0	5.1	50.0
SID4928	35	7	18.9	69.2	23.1	11.5	5.5	11.5
W0344	32	5	16.6	20.9	27.8	19.8	5.1	20.9
W2152	22	8	65.7	0.0	5.9	0.0	5.0	0.0
W2154	22	5	81.0	10.5	39.2	0.0	6.2	0.0
W2158	30	5	40.6	99.3	45.3	69.6	3.4	18.1
W2166	35	8	45.4	53.1	26.5	0.0	5.3	2.1
W2180	26	2	79.1	100.0	10.9	0.0	5.3	0.0
W2186	9	7	96.1	66.7	1.0	60.6	5.6	0.0
W2194	29	9	43.4	62.8	11.1	33.6	5.0	0.0
W2199	29	8	39.0	46.9	53.0	40.6	3.7	40.6
W2205	19	4	84.0	96.6	5.0	89.0	5.3	0.0
W2217	38	9	27.6	98.7	30.4	10.3	5.0	0.0
W2219	37	3	24.7	87.5	22.0	87.5	5.2	87.5
W2226	32	8	26.2	96.0	50.0	12.0	3.7	12.0
W2256	25	6	66.3	96.1	45.2	96.1	4.1	96.1
W2258	41	10	28.2	61.2	49.1	1.5	4.5	0.4
W2374	25	7	65.7	18.4	34.6	0.0	6.1	0.0
W2382	23	4	63.8	13.3	14.8	0.0	7.2	13.3
W2385	25	2	24.1	0.0	10.5	0.0	6.0	0.0
W2453	25	4	47.2	94.9	34.5	37.4	4.6	37.4

Appendix D. Biotic response metrics calculated from macroinvertebrate and fish sampling at each site. Taxa abundances are from Appendix B; flow, thermal, and tolerance classifications are from Appendix C.


APPENDIX E:

BIOTIC RESPONSE SPIDER PLOTS

Appendix E.1. Spider plots showing response variables for sites within the very-low band, arranged from lowest to highest percent impervious cover (left to right, then top to bottom). Response metrics are: macroinvertebrate richness (macro rich), fish richness (fish rich), macroinvertebrate flow traits (macro flow), fish flow traits (fish flow), macroinvertebrate thermal traits (macro cold), fish thermal traits (fish cold), macroinvertebrate tolerance index (macro tol), and fish intolerance (fish intol).

Appendix E.2. Spider plots showing response variables for sites within the low band, arranged from lowest to highest percent impervious cover (left to right, then top to bottom). Response metrics are: macroinvertebrate richness (macro rich), fish richness (fish rich), macroinvertebrate flow traits (macro flow), fish flow traits (fish flow), macroinvertebrate thermal traits (macro cold), fish thermal traits (fish cold), macroinvertebrate tolerance index (macro tol), and fish intolerance (fish intol).

APPENDIX F:

REACH-SCALE VARIABLES AND CODES

Category	Code	Description	Units C	ategory	Code	Description	Units
Habitat			Te	emperati	ire		
	AREA.BF.mean	Bankfull area, mean	m2		Temp.Avg.summ.mean	Mean summer daily mean temp	°C
	AREA.BF.cv	Bankfull area, cv	unitless		Temp.Max.summ.mean	Max summer daily mean temp	°C
	WIDTH.BF.mean	Bankfull width, mean	m		Temp.Avg.summ.min	Mean summer daily min temp	°C
	WIDTH.BF.cv	Bankfull width, cv	unitless		Temp.Avg.summ.max	Mean summer daily max temp	°C
	TWP	Pool habitat	% of reach		Temp.Avg.summ.range	Mean summer daily temp range	°C
	TWRF	Riffle habitat	% of reach		Canopy	Canopy cover	%
	Hab.trans	Habitat unit transitions	number		Riparian.basal	Riparian vegetation	
	Sed.D16	Sediment, D16	mm W	Vater qua	lity		
	Sed.D50	Sediment, D50	mm		DO.min	Dissolved oxygen, min	mg/L
	Sed.D84	Sediment, D84	mm		DO.mean	Dissolved oxygen, mean	mg/L
	Sed.het	Sediment, heterogeneity	unitless		DO.cv	Dissolved oxygen, cv	unitless
	Sed.sorting	Sediment, gradation coefficient	unitless		Cond.max	Specific conductance, max	µS/cm
	Sed.SD	Sediment, sorting	unitless		Cond.mean	Specific conductance, mean	µS/cm
	Embed.avg	Embeddedness	%		Cond.cv	Specific conductance, cv	unitless
	Banks.veg	Banks, vegetated	% of reach		Nitrate.max	Nitrate, max	mg/L
	Banks.erode	Banks, eroded	% of reach		Nitrate.mean	Nitrate, mean	mg/L
	Banks.cut	Banks, undercut	%		Nitrate.cv	Nitrate, cv	unitless
	Banks.dep	Depositional features	% of reach				
	LWD.volume	Large wood, volume					
Flow							
	Slope	Slope					
	W.D.RATIO.mean	Width:depth ratio, mean	unitless				
	W.D.RATIO.cv	Width:depth ratio, cv	unitless				
	ENTRENCH.mean	Entrenchment, mean	unitless				
	ENTRENCH.cv	Entrenchment, cv	unitless				
	Power.width	Stream power					

Appendix F.1 Reach codes and descriptions for each predictor category of habitat, flow, temperature, and water quality.

	AREA.BF.	AREA.BF.	WIDTH.BF.	. WIDTH.BF	2														LWD.
UniqueID	mean	cv	mean	cv	TWP	TWRF	Hab.trans	Sed.D16	Sed.D50	Sed.D84	Sed.het	Sed.SD	Sed.sorting	Embed.avg	Banks.veg	Banks.erode	Banks.cut	Banks.dep	volume
B0052	2.32	0.24	6.07	0.22	0.00	11.50	6	4.0	29.0	89.4	3.08	2.24	5.17	25.71	50.75	39.00	12.50	0.00	0.65
B0067	5.40	0.14	6.68	0.10	0.00	0.00	0	1.0	1.0	2.7	2.72	0.68	1.86	10.48	74.63	62.88	37.50	4.50	0.13
B0139	1.60	0.29	4.45	0.29	0.00	42.69	9	4.0	28.0	60.0	2.14	1.95	4.57	24.76	49.25	23.25	17.50	0.00	0.98
B0143	3.26	0.46	8.32	0.51	2.87	31.40	11	2.6	19.0	69.4	3.65	2.37	5.43	23.10	45.25	54.75	25.00	13.25	5.04
B0157	4.67	0.43	9.36	0.32	0.00	15.83	6	2.0	13.0	53.0	4.08	2.36	5.29	20.48	48.38	26.50	30.00	0.00	0.99
B0439	6.37	0.13	8.59	0.08	43.96	0.00	6	1.0	4.0	34.1	8.52	2.54	6.26	5.95	93.13	7.75	0.00	0.00	0.81
B0440	1.41	0.34	4.83	0.33	6.29	60.08	10	6.0	30.0	78.4	2.61	1.85	3.81	14.29	50.00	49.00	30.00	24.75	0.85
B0450	3.21	0.39	6.51	0.26	4.90	44.22	14	56.3	104.0	265.0	2.55	1.12	2.20	1.82	33.81	16.79	14.29	0.00	1.54
B0575	1.99	0.41	5.01	0.30	23.95	29.63	11	2.0	15.0	45.4	3.02	2.25	5.26	30.00	41.88	29.75	2.50	14.63	1.38
B0612	1.57	0.23	3.54	0.12	0.00	15.80	4	4.0	36.0	85.0	2.36	2.20	5.68	23.33	53.00	79.50	80.00	0.00	0.46
B0650	7.73	0.16	11.40	0.37	0.00	0.00	0	2.0	4.0	27.1	6.77	1.88	4.39	10.71	69.50	27.50	7.50	0.00	0.67
K0001	3.98	0.10	9.37	0.16	5.94	0.00	2	1.0	1.0	1.0	1.00	0.00	1.00	3.81	64.13	71.50	7.50	55.25	1.66
K0002	7.51	0.24	8.25	0.10	57.01	0.00	9	1.0	1.0	2.0	2.00	0.50	1.50	0.95	45.75	74.00	32.50	35.00	2.54
SID2171	2.95	0.20	6.81	0.19	6.60	32.94	5	2.0	4.0	24.1	6.02	1.79	4.01	24.25	65.63	66.75	27.50	6.25	0.73
SID2507	1.39	0.53	3.28	0.39	0.00	0.00	0	1.0	1.0	1.0	1.00	0.00	1.00	15.71	78.00	67.00	37.50	7.25	0.00
SID2630	5.41	0.21	10.20	0.11	10.65	15.81	7	9.3	40.0	91.8	2.30	1.66	3.30	30.95	53.75	59.25	36.67	38.33	1.47
SID3026	4.96	0.20	11.02	0.03	2.32	57.04	10	4.0	85.0	241.8	2.84	2.96	12.05	46.67	35.63	46.38	27.50	18.75	0.83
SID3029	4.38	0.64	9.36	0.35	11.34	64.88	12	11.3	121.5	266.8	2.20	2.28	6.46	4.76	17.00	17.13	7.50	24.25	0.79
SID3054	2.35	0.21	6.13	0.27	3.07	93.11	3	7.0	72.0	161.7	2.25	2.26	6.24	27.71	47.05	30.91	45.00	2.50	0.39
SID4016	2.26	0.60	6.40	0.30	44.73	41.14	8	3.3	40.0	86.2	2.15	2.39	7.17	10.48	59.75	43.00	17.50	38.75	1.33
SID4928	1.66	0.25	4.97	0.22	0.00	0.00	6	1.0	1.0	2.0	2.00	0.50	1.50	0.71	54.25	51.00	27.50	30.50	0.06
W0344	4.47	0.19	9.93	0.18	12.72	3.99	11	7.6	29.0	75.4	2.60	1.65	3.20	14.05	64.75	38.63	45.00	26.00	5.43
W2152	2.80	0.44	7.73	0.34	16.40	37.74	8	4.0	34.0	83.4	2.45	2.19	5.48	26.90	52.88	48.88	32.50	28.50	0.61
W2154	2.17	0.24	7.45	0.34	0.00	2.66	2	1.0	1.0	31.4	31.36	2.49	16.18	4.52	45.63	69.13	22.50	67.25	0.49
W2158	3.60	0.33	7.74	0.26	18.79	19.07	10	2.0	49.0	121.4	2.48	2.96	13.49	16.19	49.00	69.75	75.00	0.00	49.78
W2166	0.89	0.38	3.11	0.19	8.91	4.05	5	2.6	7.0	19.4	2.77	1.45	2.71	0.95	82.50	20.75	17.50	7.25	0.58
W2180	3.23	0.32	7.57	0.36	32.22	27.21	9	2.0	29.0	91.4	3.15	2.76	8.83	25.24	55.88	49.25	15.00	4.25	0.10
W2186	2.39	0.67	7.24	0.24	36.21	63.79	4	42.0	67.0	108.0	1.61	0.68	1.60	3.10	50.25	38.75	25.00	24.75	8.19
W2194	8.37	0.36	14.67	0.24	59.23	25.70	8	18.4	50.0	95.6	1.91	1.19	2.31	10.97	70.31	27.73	27.50	20.75	18.98
W2199	3.88	0.34	8.84	0.24	8.81	72.26	4	2.0	180.0	350.7	1.95	3.73	45.97	54.05	49.13	20.75	85.00	10.00	1.95
W2205	2.60	0.14	6.22	0.11	57.65	5.88	8	4.0	25.0	85.4	3.42	2.21	4.83	9.29	36.88	69.13	67.50	34.50	7.13
W2217	1.07	0.62	3.11	0.33	38.38	37.06	7	1.0	12.0	54.4	4.53	2.88	8.27	10.48	71.50	28.50	10.00	15.25	0.47
W2219	3.30	0.21	5.39	0.18	0.00	0.00	0	1.0	1.0	1.0	1.00	0.00	1.00	0.00	31.38	83.75	87.50	1.00	23.34
W2226	2.71	0.31	7.06	0.24	13.20	61.20	8	7.6	67.0	126.0	1.88	2.02	5.33	11.67	45.38	26.50	67.50	23.50	4.33
W2256	3.42	0.24	9.06	0.15	11.82	88.18	4	30.6	54.0	87.4	1.62	0.76	1.69	8.10	70.00	31.88	15.00	41.75	28.42
W2258	9.54	0.18	13.17	0.11	0.00	57.82	3	2.0	20.0	72.3	3.62	2.59	6.81	17.20	68.02	52.40	5.00	25.00	1.15
W2374	5.37	0.31	9.45	0.26	57.40	0.00	10	1.0	1.0	2.0	2.00	0.50	1.50	0.00	54.63	57.25	52.50	14.00	0.76
W2382	4.27	0.12	5.86	0.08	0.00	0.00	0	1.0	1.0	1.0	1.00	0.00	1.00	0.00	60.00	70.75	0.00	0.00	0.00
W2385	3.57	0.23	7.52	0.10	5.31	0.00	2	1.0	2.0	12.0	6.00	1.79	4.00	20.00	38.75	27.00	0.00	0.00	0.67
W2453	2.37	0.29	5.89	0.30	70.68	15.56	13	2.0	2.0	15.4	7.68	1.47	4.34	10.00	50.63	44.50	67.50	38.75	1.71
	2.07	0.2/	0.07	0.00	, 0.00	10.00	10	2.0	2.0					10.00	00.00		07.00	00.70	

Appendix F.2. Reach-scale variables for each site within the habitat predictor category. Codes are referenced in Appendix F.1.

		W.D.RATIO.	W.D.RATIO.	ENTRENCH.	ENTRENCH.	
UniqueID	Slope	mean	cv	mean	cv	Power.width
B0052	0.01	16.11	0.27	3.33	0.16	41.06
B0067	0.00	8.28	0.07	4.28	0.08	0.98
B0139	0.01	12.46	0.30	2.41	0.42	97.01
B0143	0.01	22.15	0.60	2.86	0.16	84.99
B0157	0.00	19.59	0.35	3.12	0.27	27.28
B0439	0.00	11.73	0.16	3.68	0.14	11.23
B0440	0.01	17.31	0.43	2.70	0.24	79.62
B0450	0.03	13.85	0.33	3.54	0.36	283.24
B0575	0.01	12.81	0.29	2.32	0.55	124.95
B0612	0.00	8.11	0.10	2.02	0.17	52.84
B0650	0.00	17.44	0.59	4.30	0.59	2.82
K0001	0.00	22.84	0.35	3.36	0.21	1.61
K0002	0.00	9.46	0.29	3.52	0.46	29.98
SID2171	0.00	16.22	0.32	2.70	0.20	30.08
SID2507	0.00	8.03	0.30	4.87	0.30	11.39
SID2630	0.00	19.92	0.27	1.28	0.09	54.76
SID3026	0.01	25.16	0.17	1.89	0.23	151.68
SID3029	0.04	21.58	0.31	2.16	0.31	421.81
SID3054	0.02	16.14	0.35	2.25	0.30	200.15
SID4016	0.01	19.60	0.19	2.17	0.15	47.69
SID4928	0.00	16.11	0.44	3.35	0.58	8.32
W0344	0.00	22.82	0.33	3.43	0.44	28.16
W2152	0.00	22.31	0.37	3.84	0.53	41.40
W2154	0.00	26.16	0.51	2.74	0.40	11.84
W2158	0.01	16.90	0.25	1.96	0.28	71.69
W2166	0.00	12.07	0.50	5.57	0.38	19.84
W2180	0.00	20.23	0.64	1.70	0.20	45.30
W2186	0.01	27.29	0.58	1.84	0.61	161.85
W2194	0.01	29.26	0.59	2.87	0.37	57.43
W2199	0.02	21.18	0.36	2.19	0.31	60.78
W2205	0.01	15.01	0.15	2.00	0.28	67.11
W2217	0.01	11.38	0.49	3.38	0.20	126.04
W2219	0.00	9.15	0.33	4.45	0.21	11.16
W2226	0.02	18.89	0.30	2.23	0.24	214.12
W2256	0.01	25.03	0.27	1.65	0.38	114.14
W2258	0.01	18.46	0.19	1.89	0.27	73.46
W2374	0.00	16.71	0.24	3.38	0.17	4.53
W2382	0.00	8.16	0.17	2.14	0.40	2.87
W2385	0.00	16.23	0.19	2.89	0.09	2.49
W2453	0.01	14.70	0.32	2.85	0.07	34.29

Appendix F.3. Reach-scale variables for each site within the flow predictor category. Codes are referenced in Appendix F.1.

	Temp.Avg.	Temp.Max.	Temp.Avg.	Temp.Avg.	Temp.Avg.		Riparian.
UniqueID	summ.mean	summ.mean	summ.min	summ.max	summ.range	Canopy	basal
B0052	19.63	26.34	18.31	21.13	2.82	64.78	23.61
B0067	24.26	27.83	22.86	25.75	2.89	0.35	0.67
B0139	20.84	24.88	19.85	21.96	2.11	81.58	25.06
B0143	23.56	27.34	22.43	24.89	2.46	81.79	27.31
B0157	19.07	23.25	17.86	20.37	2.51	68.63	42.63
B0439	22.32	25.08	20.97	23.75	2.78	30.46	11.05
B0440	18.65	21.59	17.10	20.20	3.10	87.39	17.59
B0450	21.49	25.61	20.04	23.18	3.14	88.30	55.31
B0575	20.34	23.93	18.53	22.25	3.72	55.81	7.78
B0612	18.52	22.68	17.13	19.96	2.83	91.60	30.93
B0650	18.35	22.85	16.87	19.83	2.96	26.12	18.56
K0001	19.30	23.63	17.52	21.02	3.50	52.66	18.71
K0002	21.72	25.60	20.73	22.84	2.11	76.68	38.09
SID2171	20.11	22.77	18.92	21.50	2.58	77.66	28.95
SID2507	22.95	26.60	19.82	26.45	6.63	33.68	7.99
SID2630	21.83	25.77	20.74	23.05	2.31	75.98	25.73
SID3026	23.05	25.82	21.39	25.14	3.75	94.26	46.12
SID3029	21.37	26.63	20.45	22.40	1.96	93.91	42.03
SID3054	18.45	25.67	17.29	19.65	2.36	82.78	38.94
SID4016	19.53	23.06	17.85	21.39	3.55	83.89	20.42
SID4928	18.44	22.00	16.76	20.19	3.42	88.31	15.68
W0344	19.99	25.56	18.55	21.56	3.01	82.63	37.78
W2152	20.17	25.18	19.04	21.43	2.39	69.19	21.92
W2154	19.15	22.80	17.49	20.87	3.39	66.25	13.92
W2158	19.73	23.40	18.04	21.58	3.54	74.30	40.43
W2166	18.47	22.69	16.56	20.55	4.00	15.48	0.67
W2180	21.72	26.37	20.34	23.23	2.89	53.99	30.14
W2186	21.11	26.46	19.06	24.09	5.03	82.28	61.26
W2194	19.76	24.33	18.78	20.87	2.09	73.99	40.98
W2199	18.71	22.49	17.46	19.97	2.51	90.06	60.76
W2205	21.01	24.44	19.75	22.32	2.57	83.26	45.69
W2217	18.74	24.47	17.09	20.89	3.80	17.58	6.18
W2219	14.15	17.10	13.59	14.84	1.25	71.50	17.00
W2226	18.81	22.43	17.59	20.01	2.42	92.37	47.85
W2256	12.77	16.48	12.00	13.78	1.78	42.16	12.77
W2258	19.25	23.03	17.68	21.07	3.40	20.06	22.83
W2374	21.72	25.88	20.70	23.12	2.42	93.35	37.36
W2382	19.16	23.44	18.32	20.19	1.87	20.10	13.42
W2385	19.75	23.66	18.28	21.37	3.09	87.68	21.41
W2453	19.38	24.30	17.96	20.85	2.88	86.48	12.30

Appendix F.4. Reach-scale variables for each site within the temperature predictor category. Codes are referenced in Appendix F.1.

UniqueID	DO.min	DO.mean	DO.cv	Cond.max	Cond.mean	Cond.cv	Nitrate.max	Nitrate.mean	Nitrate.cv
B0052	5.34	8.88	0.34	1192.00	559.94	0.65	57.40	13.96	1.75
B0067	3.02	6.18	0.35	451.30	419.27	0.06	9.60	2.55	1.36
B0139	5.14	7.85	0.22	440.00	342.22	0.20	34.73	8.42	1.55
B0143	5.69	7.84	0.29	240.60	205.07	0.11	5.82	1.67	1.28
B0157	5.25	8.59	0.36	422.70	288.12	0.29	4.43	1.27	1.39
B0439	3.11	5.97	0.41	993.00	500.38	0.55	1.63	0.82	0.67
B0440	9.90	10.39	0.08	228.00	173.70	0.26	4.30	1.47	1.29
B0450	5.80	8.23	0.24	338.90	248.17	0.26	3.20	1.26	0.97
B0575	9.91	11.57	0.14	355.50	246.38	0.27	16.27	4.39	1.52
B0612	6.15	8.18	0.17	374.80	284.09	0.19	13.65	3.17	1.62
B0650	4.63	9.37	0.28	395.40	270.77	0.37	132.74	21.74	2.26
K0001	5.68	9.44	0.27	336.90	290.63	0.14	12.25	6.58	0.77
K0002	6.42	8.60	0.22	356.20	258.60	0.21	5.67	2.01	1.06
SID2171	8.44	9.27	0.10	253.60	223.14	0.19	2.49	1.29	0.72
SID2507	7.85	9.73	0.17	1067.00	974.50	0.09	3.69	2.15	0.69
SID2630	5.38	7.80	0.34	782.90	398.30	0.53	31.98	7.34	1.65
SID3026	7.24	9.66	0.22	206.80	178.22	0.12	15.32	3.72	1.75
SID3029	5.23	8.61	0.33	325.70	297.08	0.11	6.06	1.94	1.22
SID3054	5.47	9.82	0.25	573.00	470.39	0.14	12.66	3.57	1.43
SID4016	3.95	7.97	0.35	1139.00	540.50	0.45	2.69	1.17	0.72
SID4928	4.79	7.19	0.31	380.00	291.20	0.19	5.27	2.16	0.92
W0344	5.48	8.21	0.29	307.90	256.10	0.17	12.83	6.05	0.80
W2152	4.56	6.98	0.23	686.00	366.93	0.39	8.33	2.81	1.17
W2154	5.56	7.24	0.19	300.90	257.87	0.11	2.62	1.26	0.74
W2158	5.64	8.62	0.27	250.80	191.65	0.19	152.68	27.17	2.27
W2166	4.82	9.15	0.41	177.10	141.10	0.20	24.76	6.81	1.76
W2180	10.21	10.62	0.06	344.90	282.92	0.24	1.46	0.91	0.42
W2186	5.62	9.47	0.22	307.80	266.65	0.14	1.75	0.92	0.57
W2194	5.77	8.19	0.25	347.50	239.86	0.36	0.66	0.54	0.17
W2199	5.00	8.58	0.37	356.30	298.53	0.17	11.19	3.68	1.09
W2205	4.27	7.58	0.30	936.00	414.09	0.57	1.47	0.65	0.61
W2217	5.31	8.75	0.24	815.00	590.46	0.23	29.31	9.19	1.47
W2219	4.91	8.84	0.26	268.40	219.76	0.17	82.60	19.30	1.84
W2226	4.95	9.34	0.34	100.50	79.94	0.15	14.98	3.34	1.73
W2256	5.01	9.61	0.21	239.20	192.13	0.22	32.48	6.21	1.78
W2258	5.74	10.29	0.26	318.20	211.46	0.27	46.69	11.81	1.59
W2374	4.43	6.57	0.29	132.60	102.72	0.21	5.59	2.43	1.08
W2382	2.52	5.38	0.43	112.70	90.00	0.22	4.64	1.47	1.13
W2385	0.09	5.75	0.58	618.40	508.13	0.13	5.36	1.58	1.19
W2453	0.40	5.33	0.60	95.10	59.51	0.33	0.54	0.18	1.14

Appendix F.5. Reach-scale variables for each site within the water quality predictor category. Codes are referenced in Appendix F.1.

APPENDIX G:

PAIRWISE SPEARMAN RANK CORRELATION ANALYSIS

FOR REACH-SCALE VARIABLES

	Bankfull		Bankfull				Habitat				Sediment,	Sediment,						Depositio	Large
	area,	Bankfull	width,	Bankfull	Pool	Riffle	unit	Sediment	t, Sediment,	Sediment,	heterogen	gradation	Sediment,	, Embedded	Banks,	Banks,	Banks,	nal	wood,
	mean	area, cv	mean	width, cv	habitat	habitat	transitions	D16	D50	D84	eity	coefficient	sorting	ness	vegetated	eroded	undercut	features	volume
Bankfull area, mean																			
Bankfull area, cv	-0.42																		
Bankfull width, mean	0.86	-0.22	2																
Bankfull width, cv	-0.40	0.68	-0.15	5															
Pool habitat	0.08	0.28	0.17	0.03															
Riffle habitat	-0.18	0.44	0.07	0.27	0.16														
Habitat unit transitions	-0.04	0.41	0.10	0.28	0.54	0.34													
Sediment, D16	-0.07	0.27	0.16	0.11	0.19	0.71	0.41												
Sediment, D50	-0.01	0.34	0.22	0.12	0.22	0.84	0.39	0.8	5										
Sediment, D84	0.03	0.30	0.26	0.14	0.23	0.80	0.40	0.7	9 0.97										
Sediment, heterogeneity	0.00	-0.14	4 0.05	0.14	0.00	-0.08	0.16	-0.1	5 -0.14	-0.03									
Sediment, gradation coefficient	-0.07	0.16	6 0.14	0.28	0.09	0.48	0.24	0.1	3 0.47	0.57	0.51								
Sediment, sorting	-0.03	0.16	6 0.17	0.26	0.09	0.48	0.26	0.12	2 0.47	0.57	0.54	0.98							
Embeddedness	-0.05	0.05	0.12	0.16	-0.13	0.43	0.13	0.2	8 0.45	0.46	0.27	0.55	0.58	5					
Banks, vegetated	0.07	-0.16	5 0.02	-0.11	0.05	-0.27	-0.37	-0.2	2 -0.29	-0.33	0.00	-0.22	-0.21	-0.13	;				
Banks, eroded	0.01	-0.36	5 -0.10	-0.22	-0.16	-0.42	-0.25	-0.3	9 -0.46	-0.42	-0.20	-0.27	-0.30	-0.15	0.01				
Banks, undercut	-0.08	0.03	-0.09	0.01	0.11	0.02	0.09	0.1	1 0.12	0.12	-0.26	-0.03	-0.09	0.11	-0.20	0.3	5		
Depositional features	-0.03	0.06	0.21	0.01	0.40	0.15	0.18	0.14	4 0.01	0.02	-0.15	-0.07	-0.12	-0.19	0.02	0.2	3 0.1	1	
Large wood, volume	0.30	0.08	0.39	-0.13	0.43	0.27	0.36	0.3	9 0.35	0.31	-0.20	-0.06	i -0.01	-0.07	-0.31	-0.0	5 0.26	5 0.3)

Appendix G.1. Pairwise Spearman rank correlations for variables within the habitat predictor group.

		Width:depth	Width:depth	Entrenchment,	Entrenchment,	
	Slope	ratio, mean	ratio, cv	mean	cv	Stream power
Slope						
Width:depth ratio, mean	0.31					
Width:depth ratio, cv	0.19	0.40				
Entrenchment, mean	-0.47	-0.39	0.22			
Entrenchment, cv	0.12	0.16	0.39	0.05		
Stream power	0.95	0.27	0.09	-0.55	0.15	

Appendix G.2. Pairwise Spearman rank correlations for predictor variables within the flow predictor group.

Appendix G.3. Pairwise Spearman rank correlations for predictor variables within the temperature predictor group.

	Mean summer daily mean temp	Max summer daily mean temp	Mean summer daily min temp	Mean summer daily max temp	Mean summer daily temp range	Riparian Canopy cover vegetation
Mean summer daily mean temp						
Max summer daily mean temp	0.82					
Mean summer daily min temp	0.97	0.82				
Mean summer daily max temp	0.96	0.80	0.90			
Mean summer daily temp range	0.05	0.02	-0.12	0.26		
Canopy cover	0.08	0.00	0.12	0.02	-0.14	
Riparian vegetation	0.19	0.19	0.27	0.13	-0.23	0.64

Appendix G.4. Pairwise Spearman rank correlations for predictor variables within the water quality predictor group.

	Dissolved	Dissolved	Dissolved	Specific conductance,	Specific conductance,	Specific conductance,			
	oxygen, min	oxygen, mean	oxygen, cv	max	mean	cv	Nitrate, max	Nitrate, mean	Nitrate, cv
Dissolved oxygen, min									
Dissolved oxygen, mean	0.68								
Dissolved oxygen, cv	-0.78	-0.59							
Specific conductance, max	-0.13	-0.14	0.09						
Specific conductance, mean	-0.15	-0.13	0.10	0.95					
Specific conductance, cv	-0.16	-0.11	0.13	0.31	0.08				
Nitrate, max	0.01	0.31	-0.01	-0.01	-0.04	-0.07			
Nitrate, mean	0.05	0.35	-0.05	0.02	0.00	-0.10	0.97		
Nitrate, cv	-0.08	0.24	0.08	-0.17	-0.23	0.00	0.87	0.78	

APPENDIX H:

SINGLE-VARIABLE MODEL COMPARISON

FOR REACH-SCALE PREDICTORS

Appendix H.1. Macroinvertebrate richness models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

	Both bar	nds				Very-low	band		Low band						
Group	Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICo	c w
Habita	t					Habitat					Habitat				
	Sediment, D16	273.517	274.660	0.000	0.306	Depositional features	137.551	140.218	0.000	0.209	Sediment, D16	133.515	136.181	0.000	0.490
	Bankfull area, mean	274.585	275.728	1.068	0.180	Habitat unit transitions	138.409	141.075	0.858	0.136	Bankfull area, cv	133.770	136.437	0.256	0.431
	Bankfull area, cv	274.844	275.987	1.327	0.158	Bankfull area, mean	139.008	141.675	1.457	0.101	Depositional features	140.019	142.686	6.505	0.019
	Bankfull width, cv	276.321	277.464	2.804	0.075	Banks, vegetated	139.012	141.679	1.461	0.101	Large wood, volume	140.783	143.449	7.268	0.013
	Sediment, heterogeneity	278.029	279.172	4.512	0.032	Sediment, D16	140.011	142.677	2.460	0.061	Bankfull area, mean	141.212	143.879	7.697	0.010
	Banks, undercut	278.036	279.179	4.519	0.032	Pool habitat	140.111	142.778	2.560	0.058	Bankfull width, cv	142.093	144.760	8.578	0.007
	Pool habitat	278.151	279.294	4.634	0.030	Embeddedness	140.341	143.008	2.790	0.052	Habitat unit transitions	142.397	145.064	8.882	0.006
	Banks, vegetated	278.152	279.295	4.635	0.030	Sediment, sorting (stnd dev)	140.404	143.071	2.853	0.050	Banks, undercut	143.204	145.871	9.689	0.004
	Habitat unit transitions	278.369	279.512	4.852	0.027	Bankfull width, cv	140.688	143.355	3.137	0.044	Banks, eroded	143.228	145.895	9.714	0.004
	Embeddedness	278.427	279.570	4.910	0.026	Sediment, heterogeneity	140.768	143.435	3.217	0.042	Banks, vegetated	143.478	146.145	9.963	0.003
	Depositional features	278.437	279.580	4.920	0.026	Banks, eroded	140.935	143.602	3.384	0.039	Embeddedness	143.533	146.200	10.019	0.003
	Sediment, sorting (stnd dev)	278.465	279.608	4.948	0.026	Bankfull area, cv	141.028	143.695	3.477	0.037	Pool habitat	143.568	146.235	10.054	0.003
	Large wood, volume	278.473	279.616	4.956	0.026	Banks, undercut	141.076	143.742	3.525	0.036	Sediment, sorting (stnd dev)	143.640	146.307	10.125	0.003
	Banks, eroded	278.476	279.619	4.959	0.026	Large wood, volume	141.127	143.794	3.576	0.035	Sediment, heterogeneity	143.651	146.317	10.136	0.003
Flow						Flow					Flow				
	Entrenchment, mean	277.156	278.299	0.000	0.289	Entrenchment, mean	138.751	141.417	0.000	0.418	Stream power	141.317	143.984	0.000	0.437
	Stream power	277.477	278.620	0.321	0.246	Width:depth ratio, mean	140.585	143.252	1.834	0.167	Entrenchment, mean	143.452	146.119	2.135	0.150
	Width:depth ratio, mean	278.334	279.477	1.177	0.160	Width:depth ratio, cv	140.757	143.423	2.006	0.153	Width:depth ratio, cv	143.583	146.250	2.266	0.141
	Width:depth ratio, cv	278.441	279.584	1.285	0.152	Stream power	141.019	143.686	2.268	0.134	Width:depth ratio, mean	143.652	146.319	2.335	0.136
	Entrenchment, cv	278.443	279.586	1.287	0.152	Entrenchment, cv	141.113	143.780	2.362	0.128	Entrenchment, cv	143.654	146.321	2.337	0.136
Tempe	rature					Temperature					Temperature				
	Mean summer daily max temp	275.729	276.872	0.000	0.462	Canopy cover	137.213	139.879	0.000	0.663	Mean summer daily max temp	137.972	140.639	0.000	0.614
	Mean summer daily temp range	277.292	278.435	1.563	0.211	Mean summer daily temp range	140.449	143.116	3.236	0.132	Mean summer daily temp range	139.489	142.155	1.517	0.288
	Canopy cover	277.669	278.812	1.940	0.175	Riparian vegetation	140.867	143.534	3.655	0.107	Riparian vegetation	142.586	145.253	4.614	0.061
	Riparian vegetation	277.958	279.101	2.230	0.152	Mean summer daily max temp	141.032	143.699	3.819	0.098	Canopy cover	143.565	146.232	5.593	0.037
Water	quality					Water quality					Water quality				
	Nitrate, mean	272.443	273.586	0.000	0.773	Nitrate, mean	135.275	137.942	0.000	0.684	Specific conductance, mean	141.599	144.265	0.000	0.376
	Dissolved oxygen, mean	276.530	277.673	4.088	0.100	Dissolved oxygen, mean	138.511	141.178	3.236	0.136	Nitrate, mean	142.897	145.564	1.298	0.196
	Specific conductance, mean	277.873	279.016	5.430	0.051	Specific conductance, mean	139.517	142.184	4.242	0.082	Specific conductance, cv	143.453	146.120	1.855	0.149
	Dissolved oxygen, cv	278.443	279.586	6.000	0.038	Specific conductance, cv	140.120	142.787	4.845	0.061	Dissolved oxygen, mean	143.530	146.196	1.931	0.143
	Specific conductance, cv	278.478	279.621	6.036	0.038	Dissolved oxygen, cv	141.109	143.775	5.833	0.037	Dissolved oxygen, cv	143.628	146.295	2.029	0.136

Appendix H.2. Fish richness models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

	Both ban	ds				Very-low b	and				Low band					
Group	Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	c w	
Habitat						Habitat					Habitat					
	Depositional features	178.079	178.746	0.000	0.129	Banks, vegetated	87.386	88.886	0.000	0.383	Depositional features	86.857	88.357	0.000	0.309	
	Bankfull area, mean	178.081	178.748	0.002	0.128	Embeddedness	90.247	91.747	2.861	0.092	Habitat unit transitions	89.590	91.090	2.733	0.079	
	Banks, vegetated	178.652	179.319	0.573	0.097	Sediment, sorting (stnd dev)	90.374	91.874	2.988	0.086	Bankfull area, mean	89.844	91.344	2.987	0.069	
	Banks, undercut	179.059	179.726	0.979	0.079	Banks, eroded	90.760	92.260	3.374	0.071	Pool habitat	89.898	91.398	3.041	0.068	
	Embeddedness	179.203	179.870	1.124	0.073	Bankfull area, mean	91.053	92.553	3.666	0.061	Sediment, sorting (stnd dev)	90.022	91.522	3.165	0.063	
	Large wood, volume	179.305	179.971	1.225	0.070	Banks, undercut	91.677	93.177	4.291	0.045	Large wood, volume	90.373	91.873	3.516	0.053	
	Sediment, heterogeneity	179.667	180.334	1.588	0.058	Large wood, volume	91.723	93.223	4.337	0.044	Sediment, heterogeneity	90.399	91.899	3.542	0.053	
	Bankfull area, cv	179.716	180.383	1.637	0.057	Sediment, D16	92.020	93.520	4.634	0.038	Banks, vegetated	90.537	92.037	3.680	0.049	
	Banks, eroded	179.721	180.387	1.641	0.057	Bankfull area, cv	92.252	93.752	4.866	0.034	Banks, eroded	90.588	92.088	3.731	0.048	
	Pool habitat	179.835	180.502	1.756	0.053	Habitat unit transitions	92.383	93.883	4.997	0.031	Embeddedness	90.702	92.202	3.845	0.045	
	Habitat unit transitions	179.933	180.599	1.853	0.051	Sediment, heterogeneity	92.461	93.961	5.074	0.030	Sediment, D16	90.873	92.373	4.016	0.041	
	Sediment, D16	179.934	180.601	1.855	0.051	Depositional features	92.529	94.029	5.142	0.029	Bankfull width, cv	90.880	92.380	4.023	0.041	
	Sediment, sorting (stnd dev)	179.980	180.647	1.901	0.050	Bankfull width, cv	92.586	94.086	5.200	0.028	Banks, undercut	90.896	92.396	4.039	0.041	
	Bankfull width, cv	180.048	180.715	1.969	0.048	Pool habitat	92.594	94.094	5.207	0.028	Bankfull area, cv	90.909	92.409	4.052	0.041	
Flow						Flow					Flow					
	Entrenchment, cv	174.685	175.351	0.000	0.639	Width:depth ratio, mean	91.369	92.869	0.000	0.279	Entrenchment, cv	84.604	86.104	0.000	0.812	
	Width:depth ratio, cv	177.666	178.333	2.981	0.144	Width:depth ratio, cv	91.515	93.015	0.147	0.259	Width:depth ratio, cv	89.979	91.479	5.375	0.055	
	Width:depth ratio, mean	177.908	178.575	3.224	0.128	Stream power	92.488	93.988	1.120	0.159	Entrenchment, mean	90.331	91.831	5.727	0.046	
	Entrenchment, mean	179.980	180.647	5.296	0.045	Entrenchment, cv	92.596	94.096	1.228	0.151	Width:depth ratio, mean	90.349	91.849	5.744	0.046	
	Stream power	180.046	180.713	5.361	0.044	Entrenchment, mean	92.597	94.097	1.229	0.151	Stream power	90.606	92.106	6.002	0.040	
Temper	ature					Temperature					Temperature					
	Mean summer daily temp range	179.744	180.410	0.000	0.262	Mean summer daily temp range	91.057	92.557	0.000	0.362	Mean summer daily temp range	90.829	92.329	0.000	0.256	
	Canopy cover	179.773	180.440	0.030	0.258	Canopy cover	91.624	93.124	0.567	0.272	Canopy cover	90.855	92.355	0.026	0.253	
	Riparian vegetation	179.910	180.577	0.166	0.241	Mean summer daily max temp	92.256	93.756	1.199	0.199	Mean summer daily max temp	90.909	92.409	0.080	0.246	
	Mean summer daily max temp	179.927	180.594	0.183	0.239	Riparian vegetation	92.596	94.096	1.539	0.168	Riparian vegetation	90.919	92.419	0.090	0.245	
Water of	uality					Water quality					Water quality					
	Dissolved oxygen, mean	175.754	176.421	0.000	0.539	Dissolved oxygen, mean	89.217	90.717	0.000	0.515	Specific conductance, mean	87.229	88.729	0.000	0.534	
	Dissolved oxygen, cv	177.692	178.358	1.938	0.204	Dissolved oxygen, cv	91.570	93.070	2.353	0.159	Dissolved oxygen, cv	89.731	91.231	2.502	0.153	
	Specific conductance, mean	178.689	179.356	2.935	0.124	Specific conductance, mean	91.998	93.498	2.781	0.128	Dissolved oxygen, mean	90.093	91.593	2.864	0.128	
	Specific conductance, cv	179.937	180.604	4.183	0.067	Specific conductance, cv	92.476	93.976	3.259	0.101	Nitrate, mean	90.564	92.064	3.334	0.101	
	Nitrate, mean	179.941	180.607	4.187	0.066	Nitrate, mean	92.566	94.066	3.349	0.097	Specific conductance, cv	90.917	92.417	3.688	0.084	

Appendix H.3. Macroinvertebrate flow traits models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

	Both bar	nds				Very-low b	and		Low band						
Group	Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w
Habita	t					Habitat					Habitat				
	Bankfull area, cv	192.931	194.073	0.000	0.422	Depositional features	85.460	88.127	0.000	0.538	Bankfull area, cv	91.332	93.998	0.000	0.958
	Bankfull width, cv	194.751	195.894	1.820	0.170	Sediment, heterogeneity	89.080	91.747	3.620	0.088	Sediment, D16	98.837	101.504	7.505	0.022
	Sediment, D16	195.908	197.051	2.978	0.095	Bankfull area, cv	90.039	92.705	4.578	0.054	Bankfull width, cv	100.408	103.075	9.077	0.010
	Banks, eroded	197.150	198.292	4.219	0.051	Banks, eroded	90.461	93.128	5.001	0.044	Sediment, heterogeneity	102.868	105.535	11.536	0.003
	Depositional features	198.051	199.194	5.121	0.033	Habitat unit transitions	91.125	93.792	5.665	0.032	Large wood, volume	104.098	106.764	12.766	0.002
	Bankfull width, mean	198.117	199.260	5.186	0.032	Banks, undercut	91.159	93.826	5.699	0.031	Bankfull width, mean	105.726	108.393	14.395	0.001
	Sediment, heterogeneity	198.215	199.358	5.284	0.030	Banks, vegetated	91.287	93.954	5.827	0.029	Banks, eroded	106.155	108.822	14.824	0.001
	Banks, vegetated	198.455	199.597	5.524	0.027	Bankfull area, mean	91.327	93.993	5.866	0.029	Embeddedness	106.191	108.857	14.859	0.001
	Embeddedness	198.533	199.676	5.602	0.026	Pool habitat	91.450	94.117	5.990	0.027	Sediment, sorting (stnd dev)	106.476	109.142	15.144	0.000
	Sediment, sorting (stnd dev)	198.691	199.834	5.761	0.024	Embeddedness	91.458	94.125	5.998	0.027	Habitat unit transitions	106.541	109.208	15.209	0.000
	Pool habitat	198.698	199.840	5.767	0.024	Bankfull width, cv	91.515	94.181	6.055	0.026	Banks, vegetated	106.672	109.339	15.341	0.000
	Large wood, volume	198.759	199.902	5.828	0.023	Sediment, D16	91.553	94.219	6.092	0.026	Banks, undercut	106.689	109.355	15.357	0.000
	Habitat unit transitions	198.769	199.912	5.839	0.023	Sediment, sorting (stnd dev)	91.582	94.249	6.122	0.025	Pool habitat	106.809	109.475	15.477	0.000
	Banks, undercut	198.775	199.918	5.845	0.023	Large wood, volume	91.634	94.301	6.174	0.025	Depositional features	106.817	109.484	15.485	0.000
Flow						Flow					Flow				
	Entrenchment, mean	196.921	198.063	0.000	0.292	Entrenchment, mean	89.246	91.913	0.000	0.346	Stream power	103.649	106.316	0.000	0.366
	Width:depth ratio, mean	197.163	198.306	0.243	0.259	Width:depth ratio, mean	89.894	92.560	0.648	0.250	Width:depth ratio, cv	104.038	106.705	0.389	0.301
	Width:depth ratio, cv	198.046	199.189	1.125	0.166	Width:depth ratio, cv	90.392	93.059	1.146	0.195	Entrenchment, mean	105.761	108.428	2.112	0.127
	Stream power	198.116	199.259	1.195	0.161	Entrenchment, cv	91.490	94.156	2.244	0.113	Width:depth ratio, mean	105.931	108.598	2.282	0.117
	Entrenchment, cv	198.663	199.806	1.742	0.122	Stream power	91.783	94.450	2.537	0.097	Entrenchment, cv	106.488	109.155	2.839	0.088
Tempo	rature					Temperature					Temperature				
	Mean summer daily max temp	192.169	193.312	0.000	0.603	Mean summer daily max temp	90.600	93.267	0.000	0.328	Mean summer daily max temp	98.846	101.512	0.000	0.620
	Mean summer daily temp range	193.248	194.391	1.080	0.351	Canopy cover	90.662	93.329	0.061	0.318	Mean summer daily temp range	99.994	102.661	1.148	0.349
	Canopy cover	198.714	199.857	6.545	0.023	Riparian vegetation	91.826	94.493	1.226	0.178	Canopy cover	106.072	108.738	7.226	0.017
	Riparian vegetation	198.726	199.868	6.557	0.023	Mean summer daily temp range	91.838	94.505	1.238	0.177	Riparian vegetation	106.476	109.143	7.631	0.014
Water	quality					Water quality					Water quality				
	Nitrate, mean	194.395	195.538	0.000	0.421	Nitrate, mean	86.147	88.813	0.000	0.709	Dissolved oxygen, cv	103.212	105.878	0.000	0.381
	Dissolved oxygen, cv	194.492	195.635	0.097	0.401	Dissolved oxygen, mean	89.822	92.488	3.675	0.113	Dissolved oxygen, mean	103.450	106.117	0.238	0.338
	Dissolved oxygen, mean	198.165	199.308	3.770	0.064	Specific conductance, mean	90.921	93.588	4.774	0.065	Specific conductance, cv	105.742	108.409	2.531	0.107
	Specific conductance, cv	198.306	199.449	3.911	0.060	Specific conductance, cv	91.130	93.797	4.984	0.059	Nitrate, mean	105.844	108.510	2.632	0.102
	Specific conductance, mean	198.501	199.643	4.106	0.054	Dissolved oxygen, cv	91.271	93.937	5.124	0.055	Specific conductance, mean	106.557	109.223	3.345	0.072

Appendix H.4. Fish flow traits models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both b	ands				Very-low	band				Low bar	nd			
Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w w
Habitat					Habitat					Habitat				
Habitat unit transitions	174.644	175.787	0.000	0.170	Sediment, D16	94.349	97.016	0.000	0.152	Banks, vegetated	79.489	82.155	0.000	0.146
Banks, vegetated	175.142	176.285	0.498	0.133	Habitat unit transitions	94.608	97.274	0.259	0.134	Sediment, heterogeneity	79.812	82.479	0.323	0.124
Sediment, D16	175.289	176.432	0.645	0.123	Large wood, volume	94.908	97.574	0.559	0.115	Depositional features	80.069	82.736	0.581	0.109
Sediment, heterogeneity	176.108	177.251	1.464	0.082	Sediment, heterogeneity	95.679	98.345	1.330	0.078	Habitat unit transitions	80.641	83.307	1.152	0.082
Large wood, volume	176.369	177.512	1.725	0.072	Depositional features	95.898	98.565	1.550	0.070	Bankfull width, cv	80.972	83.639	1.483	0.069
Embeddedness	176.871	178.014	2.227	0.056	Sediment, sorting (stnd dev)	96.071	98.738	1.722	0.064	Large wood, volume	81.284	83.950	1.795	0.059
Pool habitat	177.051	178.194	2.407	0.051	Bankfull area, mean	96.384	99.050	2.035	0.055	Pool habitat	81.350	84.017	1.861	0.057
Sediment, sorting (stnd dev)	177.135	178.278	2.491	0.049	Bankfull area, cv	96.426	99.093	2.077	0.054	Sediment, D16	81.357	84.024	1.868	0.057
Bankfull width, cv	177.144	178.287	2.500	0.049	Banks, vegetated	96.471	99.138	2.122	0.053	Embeddedness	81.531	84.197	2.042	0.052
Depositional features	177.322	178.465	2.678	0.045	Embeddedness	96.582	99.248	2.233	0.050	Bankfull area, mean	81.615	84.281	2.126	0.050
Bankfull area, mean	177.338	178.481	2.694	0.044	Banks, eroded	96.705	99.372	2.356	0.047	Banks, eroded	81.617	84.284	2.129	0.050
Banks, undercut	177.423	178.566	2.779	0.042	Banks, undercut	96.712	99.379	2.363	0.047	Bankfull area, cv	81.684	84.351	2.196	0.049
Bankfull area, cv	177.423	178.566	2.779	0.042	Pool habitat	96.919	99.586	2.570	0.042	Banks, undercut	81.714	84.381	2.226	0.048
Banks, eroded	177.481	178.624	2.837	0.041	Bankfull width, cv	97.008	99.675	2.660	0.040	Sediment, sorting (stnd dev)	81.734	84.401	2.246	0.047
Flow					Flow					Flow				
Stream power	172.245	173.388	0.000	0.477	Stream power	93.626	96.292	0.000	0.522	Width:depth ratio, cv	73.184	75.850	0.000	0.733
Width:depth ratio, cv	173.756	174.899	1.511	0.224	Entrenchment, cv	96.154	98.821	2.528	0.147	Entrenchment, mean	76.436	79.103	3.253	0.144
Entrenchment, mean	173.924	175.067	1.679	0.206	Width:depth ratio, cv	96.511	99.177	2.885	0.123	Stream power	78.090	80.757	4.906	0.063
Width:depth ratio, mean	176.488	177.630	4.243	0.057	Width:depth ratio, mean	96.811	99.478	3.185	0.106	Width: depth ratio, mean	78.750	81.417	5.566	0.045
Entrenchment, cv	177.401	178.543	5.156	0.036	Entrenchment, mean	96.897	99.563	3.271	0.102	Entrenchment, cv	81.092	83.759	7.909	0.014
Temperature					Temperature					Temperature				
Riparian vegetation	174.633	175.776	0.000	0.551	Riparian vegetation	95.791	98.458	0.000	0.359	Riparian vegetation	79.454	82.120	0.000	0.473
Canopy cover	176.859	178.002	2.226	0.181	Canopy cover	96.615	99.282	0.824	0.238	Canopy cover	81.372	84.038	1.918	0.181
Mean summer daily max temp	177.464	178.607	2.831	0.134	Mean summer daily temp range	96.899	99.565	1.108	0.206	Mean summer daily max temp	81.384	84.050	1.930	0.180
Mean summer daily temp range	177.466	178.609	2.833	0.134	Mean summer daily max temp	96.991	99.657	1.200	0.197	Mean summer daily temp range	81.544	84.211	2.091	0.166
Water quality					Water quality					Water quality				
Dissolved oxygen, mean	166.823	167.966	0.000	0.951	Specific conductance, mean	93.533	96.199	0.000	0.499	Dissolved oxygen, mean	70.896	73.563	0.000	0.859
Dissolved oxygen, cv	173.723	174.866	6.901	0.030	Nitrate, mean	95.735	98.401	2.202	0.166	Specific conductance, mean	75.260	77.926	4.363	0.097
Specific conductance, mean	176.325	177.467	9.502	0.008	Dissolved oxygen, mean	96.004	98.670	2.471	0.145	Dissolved oxygen, cv	77.373	80.040	6.477	0.034
Nitrate, mean	177.197	178.340	10.375	0.005	Specific conductance, cv	96.792	99.459	3.260	0.098	Specific conductance, cv	80.991	83.657	10.094	0.006
Specific conductance, cv	177.241	178.384	10.418	0.005	Dissolved oxygen, cv	96.921	99.587	3.388	0.092	Nitrate, mean	81.503	84.169	10.606	0.004

Appendix H.5. Macroinvertebrate thermal traits models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

	Both bar	nds				Very-low b	oand				Croup Predictor ΔAIC ΔAICc				
Group	Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	e w
Habita	t					Habitat					Habitat				
	Sediment, D16	173.386	174.529	0.000	0.304	Bankfull width, cv	87.579	90.246	0.000	0.209	Large wood, volume	83.562	86.228	0.000	0.701
	Banks, vegetated	174.764	175.907	1.378	0.152	Sediment, D16	88.668	91.334	1.088	0.121	Sediment, D16	86.747	89.414	3.186	0.142
	Pool habitat	174.790	175.933	1.404	0.150	Banks, vegetated	89.224	91.890	1.644	0.092	Pool habitat	89.356	92.023	5.794	0.039
	Habitat unit transitions	176.119	177.262	2.733	0.077	Habitat unit transitions	89.545	92.212	1.966	0.078	Bankfull area, cv	91.030	93.697	7.468	0.017
	Bankfull area, cv	177.096	178.239	3.710	0.048	Pool habitat	89.861	92.527	2.281	0.067	Banks, undercut	91.230	93.897	7.669	0.015
	Banks, undercut	177.106	178.249	3.720	0.047	Sediment, heterogeneity	89.866	92.532	2.286	0.067	Bankfull area, mean	91.615	94.282	8.054	0.012
	Bankfull area, mean	177.582	178.725	4.196	0.037	Embeddedness	90.166	92.832	2.586	0.057	Habitat unit transitions	91.665	94.331	8.103	0.012
	Embeddedness	177.887	179.030	4.501	0.032	Sediment, sorting (stnd dev)	90.291	92.958	2.712	0.054	Banks, vegetated	91.693	94.359	8.131	0.012
	Bankfull width, cv	177.943	179.086	4.557	0.031	Bankfull area, mean	90.313	92.980	2.734	0.053	Sediment, heterogeneity	91.816	94.483	8.255	0.011
	Depositional features	178.204	179.347	4.818	0.027	Banks, undercut	90.462	93.128	2.882	0.049	Depositional features	91.822	94.488	8.260	0.011
	Large wood, volume	178.387	179.530	5.001	0.025	Large wood, volume	90.904	93.570	3.325	0.040	Embeddedness	92.581	95.248	9.020	0.008
	Sediment, heterogeneity	178.458	179.601	5.072	0.024	Banks, eroded	90.979	93.646	3.400	0.038	Sediment, sorting (stnd dev)	92.760	95.426	9.198	0.007
	Banks, eroded	178.568	179.711	5.182	0.023	Depositional features	90.988	93.654	3.409	0.038	Banks, eroded	93.004	95.671	9.443	0.006
	Sediment, sorting (stnd dev)	178.653	179.795	5.267	0.022	Bankfull area, cv	91.059	93.726	3.480	0.037	Bankfull width, cv	93.039	95.705	9.477	0.006
Flow						Flow					Flow				
	Width:depth ratio, mean	174.024	175.167	0.000	0.563	Stream power	87.661	90.328	0.000	0.497	Width:depth ratio, mean	83.660	86.327	0.000	0.895
	Stream power	176.235	177.378	2.211	0.187	Width:depth ratio, cv	89.372	92.039	1.711	0.211	Width:depth ratio, cv	88.681	91.347	5.021	0.073
	Entrenchment, mean	177.590	178.733	3.566	0.095	Entrenchment, mean	90.855	93.521	3.194	0.101	Entrenchment, mean	91.845	94.512	8.185	0.015
	Width:depth ratio, cv	177.699	178.842	3.675	0.090	Entrenchment, cv	90.871	93.538	3.210	0.100	Entrenchment, cv	92.900	95.566	9.240	0.009
	Entrenchment, cv	178.324	179.467	4.300	0.066	Width:depth ratio, mean	91.052	93.719	3.391	0.091	Stream power	92.984	95.651	9.324	0.008
Tempe	rature					Temperature					Temperature				
	Riparian vegetation	175.071	176.214	0.000	0.507	Mean summer daily max temp	89.515	92.181	0.000	0.340	Riparian vegetation	90.238	92.905	0.000	0.0-
	Mean summer daily max temp	176.706	177.849	1.635	0.224	Riparian vegetation	89.889	92.556	0.375	0.282	Mean summer daily max temp	92.463	95.129	2.224	0.173
	Mean summer daily temp range	177.449	178.592	2.378	0.155	Mean summer daily temp range	90.456	93.123	0.942	0.213	Mean summer daily temp range	92.684	95.351	2.446	0.155
	Canopy cover	178.057	179.199	2.986	0.114	Canopy cover	90.969	93.636	1.454	0.165	Canopy cover	92.818	95.485	2.580	0.145
Water	quality					Water quality					Water quality				
	Specific conductance, mean	175.453	176.596	0.000	0.358	Specific conductance, cv	88.823	91.490	0.000	0.330	Specific conductance, mean	85.905	88.571	0.000	0.810
	Nitrate, mean	175.946	177.089	0.493	0.280	Dissolved oxygen, cv	89.652	92.318	0.829	0.218	Nitrate, mean	89.885	92.551	3.980	0.111
	Dissolved oxygen, mean	177.193	178.336	1.740	0.150	Dissolved oxygen, mean	90.048	92.715	1.225	0.179	Dissolved oxygen, mean	92.478	95.145	6.574	0.030
	Dissolved oxygen, cv	177.803	178.946	2.350	0.111	Nitrate, mean	90.364	93.031	1.541	0.153	Dissolved oxygen, cv	92.706	95.373	6.802	0.027
	Specific conductance, cv	177.962	179.105	2.509	0.102	Specific conductance, mean	90.845	93.512	2.022	0.120	Specific conductance, cv	93.152	95.818	7.247	0.022

Appendix H.6. Fish thermal traits models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both bands Group Predictor AIC AICc ΔAICc w						Very-low b	and				Low ba	nd			
Group	Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICo	c w
Habita	t					Habitat					Habitat				
	Large wood, volume	152.890	154.033	0.000	0.487	Large wood, volume	97.402	100.069	0.000	0.736	Sediment, heterogeneity	54.919	57.585	0.000	0.324
	Sediment, D16	155.898	157.040	3.007	0.108	Banks, undercut	102.719	105.386	5.318	0.052	Depositional features	56.595	59.262	1.676	0.140
	Sediment, heterogeneity	156.232	157.375	3.342	0.092	Sediment, heterogeneity	103.559	106.226	6.157	0.034	Sediment, D16	56.938	59.604	2.019	0.118
	Banks, undercut	156.644	157.787	3.754	0.075	Sediment, D16	103.833	106.500	6.432	0.030	Large wood, volume	57.062	59.728	2.143	0.111
	Banks, vegetated	156.973	158.116	4.083	0.063	Banks, vegetated	104.037	106.704	6.635	0.027	Sediment, sorting (stnd dev)	58.221	60.887	3.302	0.062
	Bankfull width, cv	158.248	159.391	5.358	0.033	Embeddedness	104.450	107.116	7.048	0.022	Bankfull width, cv	59.615	62.282	4.696	0.031
	Depositional features	158.536	159.679	5.645	0.029	Bankfull width, cv	105.072	107.738	7.670	0.016	Banks, vegetated	59.627	62.293	4.708	0.031
	Sediment, sorting (stnd dev)	159.474	160.617	6.584	0.018	Bankfull area, cv	105.096	107.763	7.694	0.016	Banks, undercut	59.680	62.347	4.761	0.030
	Pool habitat	159.506	160.649	6.615	0.018	Pool habitat	105.586	108.252	8.184	0.012	Pool habitat	59.702	62.368	4.783	0.030
	Embeddedness	159.608	160.750	6.717	0.017	Habitat unit transitions	105.649	108.316	8.247	0.012	Embeddedness	59.824	62.491	4.906	0.028
	Bankfull area, cv	159.657	160.800	6.766	0.017	Bankfull area, mean	105.731	108.398	8.330	0.011	Bankfull area, cv	60.119	62.785	5.200	0.024
	Banks, eroded	159.756	160.899	6.866	0.016	Banks, eroded	105.740	108.407	8.339	0.011	Banks, eroded	60.162	62.829	5.243	0.024
	Habitat unit transitions	159.970	161.113	7.079	0.014	Sediment, sorting (stnd dev)	105.751	108.417	8.349	0.011	Bankfull area, mean	60.179	62.846	5.260	0.023
	Bankfull area, mean	160.040	161.183	7.150	0.014	Depositional features	105.755	108.421	8.353	0.011	Habitat unit transitions	60.182	62.848	5.263	0.023
Flow						Flow					Flow				
	Entrenchment, mean	157.332	158.475	0.000	0.304	Entrenchment, mean	103.856	106.523	0.000	0.337	Stream power	53.351	56.018	0.000	0.752
	Entrenchment, cv	158.007	159.150	0.674	0.217	Width:depth ratio, cv	104.946	107.613	1.090	0.196	Entrenchment, cv	56.953	59.620	3.602	0.124
	Stream power	158.013	159.156	0.680	0.217	Width:depth ratio, mean	105.121	107.788	1.265	0.179	Width:depth ratio, mean	59.004	61.671	5.653	0.045
	Width:depth ratio, mean	158.344	159.486	1.011	0.184	Stream power	105.356	108.022	1.500	0.159	Entrenchment, mean	59.088	61.754	5.737	0.043
	Width:depth ratio, cv	160.041	161.184	2.709	0.079	Entrenchment, cv	105.782	108.449	1.926	0.129	Width:depth ratio, cv	59.421	62.087	6.070	0.036
Tempe	rature					Temperature					Temperature				
	Riparian vegetation	155.717	156.860	0.000	0.446	Mean summer daily temp range	103.115	105.781	0.000	0.306	Riparian vegetation	58.296	60.963	0.000	0.376
	Canopy cover	156.387	157.530	0.669	0.319	Mean summer daily max temp	103.304	105.971	0.190	0.278	Canopy cover	58.960	61.627	0.664	0.270
	Mean summer daily max temp	157.594	158.737	1.877	0.175	Riparian vegetation	103.774	106.441	0.659	0.220	Mean summer daily max temp	59.739	62.406	1.443	0.183
	Mean summer daily temp range	159.733	160.876	4.015	0.060	Canopy cover	103.999	106.666	0.885	0.196	Mean summer daily temp range	59.872	62.538	1.576	0.171
Water	quality					Water quality					Water quality				
	Dissolved oxygen, mean	156.682	157.825	0.000	0.489	Nitrate, mean	103.972	106.638	0.000	0.281	Dissolved oxygen, mean	56.725	59.392	0.000	0.500
	Nitrate, mean	158.769	159.912	2.087	0.172	Specific conductance, cv	104.223	106.890	0.252	0.248	Specific conductance, mean	59.190	61.856	2.465	0.146
	Dissolved oxygen, cv	158.961	160.104	2.280	0.156	Specific conductance, mean	104.780	107.447	0.809	0.188	Specific conductance, cv	59.288	61.954	2.563	0.139
	Specific conductance, cv	160.038	161.181	3.356	0.091	Dissolved oxygen, mean	105.119	107.785	1.147	0.159	Dissolved oxygen, cv	59.536	62.202	2.811	0.123
	Specific conductance, mean	160.041	161.183	3.359	0.091	Dissolved oxygen, cv	105.609	108.276	1.638	0.124	Nitrate, mean	60.078	62.745	3.353	0.093

Appendix H.7. Macroinvertebrate tolerance index models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both bands Group Predictor AIC AICc ΔAICc						Very-low band				Low ban	d				
Group	Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w w
Habit	ıt					Habitat					Habitat				
	Embeddedness	99.630	100.773	0.000	0.814	Embeddedness	47.550	50.216	0.000	0.777	Embeddedness	47.672	50.339	0.000	0.610
	Sediment, sorting (stnd dev)	102.822	103.965	3.192	0.165	Sediment, sorting (stnd dev)	50.485	53.152	2.935	0.179	Sediment, sorting (stnd dev)	50.057	52.723	2.384	0.185
	Banks, undercut	110.212	111.355	10.582	0.004	Banks, undercut	55.757	58.424	8.208	0.013	Banks, vegetated	50.411	53.077	2.738	0.155
	Large wood, volume	110.533	111.676	10.903	0.003	Large wood, volume	56.971	59.638	9.421	0.007	Habitat unit transitions	55.381	58.048	7.709	0.013
	Banks, eroded	111.427	112.570	11.797	0.002	Banks, eroded	57.504	60.170	9.954	0.005	Pool habitat	56.393	59.060	8.721	0.008
	Habitat unit transitions	111.750	112.893	12.120	0.002	Sediment, heterogeneity	58.871	61.537	11.321	0.003	Banks, undercut	57.473	60.140	9.801	0.005
	Banks, vegetated	111.858	113.001	12.228	0.002	Depositional features	59.033	61.699	11.483	0.002	Bankfull area, mean	57.668	60.335	9.996	0.004
	Sediment, heterogeneity	111.959	113.102	12.329	0.002	Pool habitat	59.487	62.154	11.937	0.002	Bankfull width, cv	57.718	60.384	10.045	0.004
	Pool habitat	112.495	113.638	12.865	0.001	Bankfull area, cv	59.507	62.174	11.958	0.002	Sediment, heterogeneity	58.038	60.704	10.366	0.003
	Bankfull width, cv	112.908	114.051	13.278	0.001	Bankfull area, mean	59.515	62.181	11.965	0.002	Depositional features	58.343	61.009	10.670	0.003
	Depositional features	113.166	114.309	13.536	0.001	Bankfull width, cv	59.533	62.199	11.983	0.002	Banks, eroded	58.501	61.167	10.829	0.003
	Sediment, D16	113.509	114.652	13.879	0.001	Habitat unit transitions	59.540	62.207	11.991	0.002	Bankfull area, cv	58.620	61.287	10.948	0.003
	Bankfull area, cv	113.641	114.784	14.011	0.001	Sediment, D16	59.544	62.211	11.994	0.002	Large wood, volume	58.667	61.334	10.995	0.002
	Bankfull area, mean	113.646	114.789	14.016	0.001	Banks, vegetated	59.581	62.247	12.031	0.002	Sediment, D16	58.701	61.368	11.029	0.002
Flow						Flow					Flow				
	Entrenchment, mean	109.338	110.481	0.000	0.519	Width:depth ratio, mean	58.405	61.071	0.000	0.291	Entrenchment, mean	52.096	54.763	0.000	0.685
	Width:depth ratio, mean	111.132	112.275	1.794	0.211	Width:depth ratio, cv	59.276	61.942	0.871	0.188	Stream power	54.356	57.023	2.260	0.221
	Stream power	111.972	113.115	2.634	0.139	Stream power	59.346	62.013	0.942	0.182	Width:depth ratio, mean	57.698	60.364	5.601	0.042
	Width:depth ratio, cv	113.368	114.511	4.030	0.069	Entrenchment, mean	59.396	62.063	0.992	0.177	Width:depth ratio, cv	58.590	61.256	6.494	0.027
	Entrenchment, cv	113.593	114.736	4.255	0.062	Entrenchment, cv	59.575	62.242	1.171	0.162	Entrenchment, cv	58.706	61.372	6.609	0.025
Temp	erature					Temperature					Temperature				
-	Riparian vegetation	109.797	110.940	0.000	0.353	Riparian vegetation	56.617	59.284	0.000	0.534	Mean summer daily temp range	47.383	50.049	0.000	0.934
	Mean summer daily temp range	110.506	111.649	0.708	0.248	Mean summer daily temp range	58.939	61.606	2.322	0.167	Mean summer daily max temp	53.482	56.149	6.099	0.044
	Mean summer daily max temp	110.657	111.800	0.860	0.230	Canopy cover	59.067	61.733	2.449	0.157	Canopy cover	55.469	58.136	8.087	0.016
	Canopy cover	111.273	112.416	1.475	0.169	Mean summer daily max temp	59.267	61.934	2.650	0.142	Riparian vegetation	57.756	60.423	10.374	0.005
Water	quality					Water quality					Water quality				
	Nitrate, mean	105.828	106.971	0.000	0.812	Dissolved oxygen, mean	53.248	55.915	0.000	0.617	Specific conductance, mean	51.537	54.204	0.000	0.844
	Dissolved oxygen, mean	110.032	111.175	4.204	0.099	Nitrate, mean	55.151	57.818	1.903	0.238	Nitrate, mean	56.284	58.951	4.747	0.079
	Specific conductance, mean	111.222	112.365	5.394	0.055	Specific conductance, mean	57.083	59.749	3.835	0.091	Dissolved oxygen, cv	58.381	61.048	6.844	0.028
	Specific conductance, cv	113.508	114.651	7.680	0.017	Dissolved oxygen, cv	59.443	62.110	6.195	0.028	Dissolved oxygen, mean	58.551	61.218	7.014	0.025
	Dissolved oxygen, cv	113.561	114.703	7.733	0.017	Specific conductance, cv	59.546	62.213	6.298	0.026	Specific conductance, cv	58.635	61.302	7.098	0.024

Appendix H.8. Fish, intolerant models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both b	ands				Very-low b	oand				Low ba	nd			
Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w
Habitat					Habitat					Habitat				
Large wood, volume	129.744	130.887	0.000	0.180	Habitat unit transitions	78.510	81.177	0.000	0.253	Sediment, heterogeneity	53.985	56.651	0.000	0.101
Sediment, heterogeneity	130.539	131.682	0.795	0.121	Banks, undercut	79.906	82.573	1.396	0.126	Depositional features	54.200	56.866	0.215	0.090
Pool habitat	130.965	132.108	1.221	0.098	Large wood, volume	80.437	83.104	1.927	0.097	Banks, eroded	54.251	56.918	0.266	0.088
Habitat unit transitions	131.119	132.262	1.375	0.091	Pool habitat	80.637	83.304	2.127	0.087	Bankfull area, mean	54.425	57.092	0.440	0.081
Banks, undercut	131.235	132.377	1.491	0.085	Sediment, heterogeneity	81.310	83.977	2.800	0.062	Sediment, D16	54.508	57.175	0.523	0.077
Sediment, sorting (stnd dev)	131.895	133.038	2.151	0.061	Sediment, sorting (stnd dev)	81.419	84.085	2.909	0.059	Pool habitat	54.653	57.320	0.668	0.072
Bankfull area, mean	132.366	133.509	2.622	0.049	Depositional features	81.832	84.499	3.322	0.048	Bankfull width, cv	54.707	57.373	0.722	0.070
Banks, eroded	132.403	133.546	2.660	0.048	Bankfull area, mean	81.993	84.660	3.483	0.044	Embeddedness	54.935	57.602	0.950	0.063
Bankfull width, cv	132.420	133.563	2.677	0.047	Banks, vegetated	82.153	84.820	3.643	0.041	Banks, vegetated	54.968	57.634	0.983	0.062
Bankfull area, cv	132.442	133.585	2.699	0.047	Bankfull area, cv	82.168	84.835	3.658	0.041	Banks, undercut	55.006	57.672	1.021	0.060
Sediment, D16	132.520	133.663	2.776	0.045	Sediment, D16	82.354	85.021	3.844	0.037	Habitat unit transitions	55.021	57.687	1.036	0.060
Embeddedness	132.572	133.715	2.828	0.044	Embeddedness	82.458	85.125	3.948	0.035	Sediment, sorting (stnd dev)	55.049	57.715	1.064	0.059
Banks, vegetated	132.596	133.739	2.852	0.043	Banks, eroded	82.460	85.127	3.951	0.035	Large wood, volume	55.061	57.727	1.076	0.059
Depositional features	132.660	133.803	2.916	0.042	Bankfull width, cv	82.511	85.177	4.001	0.034	Bankfull area, cv	55.071	57.738	1.087	0.058
Flow					Flow					Flow				
Entrenchment, cv	131.397	132.540	0.000	0.324	Width:depth ratio, mean	81.756	84.423	0.000	0.247	Stream power	54.294	56.961	0.000	0.237
Width:depth ratio, cv	132.675	133.818	1.277	0.171	Entrenchment, cv	82.136	84.802	0.379	0.205	Width:depth ratio, mean	54.359	57.026	0.065	0.230
Entrenchment, mean	132.693	133.836	1.295	0.169	Stream power	82.281	84.947	0.524	0.190	Entrenchment, cv	54.535	57.201	0.241	0.211
Width:depth ratio, mean	132.711	133.854	1.314	0.168	Entrenchment, mean	82.300	84.967	0.544	0.188	Width:depth ratio, cv	55.058	57.725	0.764	0.162
Stream power	132.715	133.858	1.317	0.168	Width:depth ratio, cv	82.511	85.177	0.754	0.170	Entrenchment, mean	55.082	57.749	0.788	0.160
Temperature					Temperature					Temperature				
Mean summer daily max temp	109.930	111.073	0.000	1.000	Mean summer daily max temp	66.639	69.306	0.000	0.982	Mean summer daily max temp	44.859	47.526	0.000	0.978
Mean summer daily temp range	129.976	131.119	20.045	0.000	Mean summer daily temp range	74.749	77.416	8.110	0.017	Canopy cover	54.101	56.768	9.242	0.010
Riparian vegetation	132.397	133.540	22.467	0.000	Riparian vegetation	82.061	84.728	15.422	0.000	Riparian vegetation	55.030	57.696	10.170	0.006
Canopy cover	132.712	133.855	22.781	0.000	Canopy cover	82.470	85.137	15.831	0.000	Mean summer daily temp range	55.082	57.749	10.222	0.006
Water quality					Water quality					Water quality				
Nitrate, mean	129.793	130.935	0.000	0.345	Nitrate, mean	80.350	83.017	0.000	0.295	Dissolved oxygen, mean	53.589	56.256	0.000	0.326
Dissolved oxygen, cv	130.331	131.474	0.538	0.264	Dissolved oxygen, cv	80.492	83.159	0.142	0.275	Specific conductance, cv	54.668	57.335	1.080	0.190
Specific conductance, mean	131.259	132.401	1.466	0.166	Specific conductance, cv	81.345	84.012	0.995	0.180	Specific conductance, mean	54.896	57.563	1.307	0.169
Specific conductance, cv	131.829	132.972	2.036	0.125	Specific conductance, mean	81.725	84.391	1.374	0.149	Dissolved oxygen, cv	55.003	57.669	1.414	0.161
Dissolved oxygen, mean	132.268	133.411	2.475	0.100	Dissolved oxygen, mean	82.486	85.153	2.136	0.101	Nitrate, mean	55.081	57.748	1.492	0.154

APPENDIX I:

EQUALLY PLAUSIBLE MODELS FROM ALL-SUBSETS GLMS AND GLMMS WITH REACH-SCALE PREDICTORS Appendix I. Equally plausible models from all subsets modeling. All subsets of GLMs and GLMMs were run with impervious and the top four predictors from each predictor category for each biotic response variable and for each impervious band. Equally plausible models are those within $< 2 \Delta AICc$ units. The variance explained by each model was calculated with R² for macroinvertebrate richness and macroinvertebrate tolerance (GLM with Gaussian distribution); pseudo-R² for fish richness (GLM with Poisson distribution); and conditional-R² for relative abundances of macroinvertebrate flow traits, fluvial fish, coldwater macroinvertebrates, coldwater fishes, and intolerant fishes (GLMM with binomial distribution).

esponse Band Rank Variables	n	df	AICc	ΔAICc	W	
ichness						
Macroinvertebrate richness						
Both bands						
1 IC.2011 + Sed.D16 + Nitrate.mean	40	4 2	272.182	0.000	0.102	0.2
2 Sed.D16 + Temp.Avg.summ.max + Nitrate.mean	40	4 2	272.646	0.464	0.081	0.2
3 Nitrate.mean	40		272.649	0.467	0.080	0.
4 Temp.Avg.summ.max + Nitrate.mean	40		272.687	0.505	0.079	0.
5 Sed.D16 + Nitrate.mean	40	3 2	273.051	0.869	0.066	0.
6 IC.2011 + Nitrate.mean	40	3 2	273.110	0.928	0.064	0.
7 IC.2011 + Sed.D16 + Temp.Avg.summ.max + Nitrate.mean	40	5 2	273.269	1.087	0.059	0.
8 IC.2011 + Sed.D16 + Temp.Avg.summ.max	40	4 2	273.874	1.692	0.044	0.
Low band						
1 Nitrate.mean	20	2 1	33.984	0.000	0.176	0.
2 Canopy + Nitrate.mean	20	3 1	34.661	0.677	0.126	0.
3 ENTRENCH.mean + Nitrate.mean	20	3 1	35.698	1.714	0.075	0.
4 Banks.dep + Nitrate.mean	20	3 1	35.792	1.808	0.071	0.
5 Banks.dep + Canopy	20	3 1	35.850	1.866	0.069	0
High band						
1 IC.2011 + Sed.D16 + Temp.Avg.summ.max	20	4 1	33.025	0.000	0.162	0
2 IC.2011 + Sed.D16 + Cond.mean	20	4 1	33.072	0.047	0.158	0
3 IC.2011 + Sed.D16 + Temp.Avg.summ.max + Cond.mean	20	5 1	33.186	0.161	0.150	0
4 Sed.D16 + Temp.Avg.summ.max + Cond.mean	20	4 1	34.209	1.184	0.090	0
5 IC.2011 + Sed.D16	20	3 1	35.015	1.990	0.060	0
Fish richness						
Both bands						
1 IC.2011 + ENTRENCH.cv	40	3 1	75.352	0.000	0.113	0
2 IC.2011 + ENTRENCH.cv + DO.mean	40	4 1	75.352	0.000	0.113	0
3 IC.2011 + Banks.dep + ENTRENCH.cv + DO.mean	40	5 1	76.136	0.784	0.076	0
4 IC.2011 + Banks.dep + ENTRENCH.cv	40	4 1	76.287	0.935	0.071	0
5 IC.2011 + DO.mean	40		76.421	1.069	0.066	0
6 IC.2011 + Banks.dep + DO.mean	40	4 1	76.646	1.294	0.059	0
7 ENTRENCH.cv + DO.mean	40	3 1	77.153	1.801	0.046	0
8 Banks.dep + ENTRENCH.cv + DO.mean	40		77.275	1.923	0.043	0
Low band						
1 Banks.veg	20	2	86.183	0.000	0.190	0
2 Banks.veg + DO.mean	20		86.774	0.591	0.141	0
3 Banks.veg + W.D.RATIO.mean	20		87.517	1.334	0.097	0
4 DO.mean	20		87.977	1.794	0.077	0
High band	20	2	01.911	1.794	0.077	0
1 Banks.dep + ENTRENCH.cv	20	3	83.277	0.000	0.193	0.
2 ENTRENCH.cv	20 20		84.361	1.084	0.193	0.
2 ENTRENCH.cv 3 ENTRENCH.cv + Cond.mean	20 20		84.829	1.084	0.112	0.
4 Banks.dep + ENTRENCH.cv + Cond.mean	20	4	85.032	1.755	0.080	0.

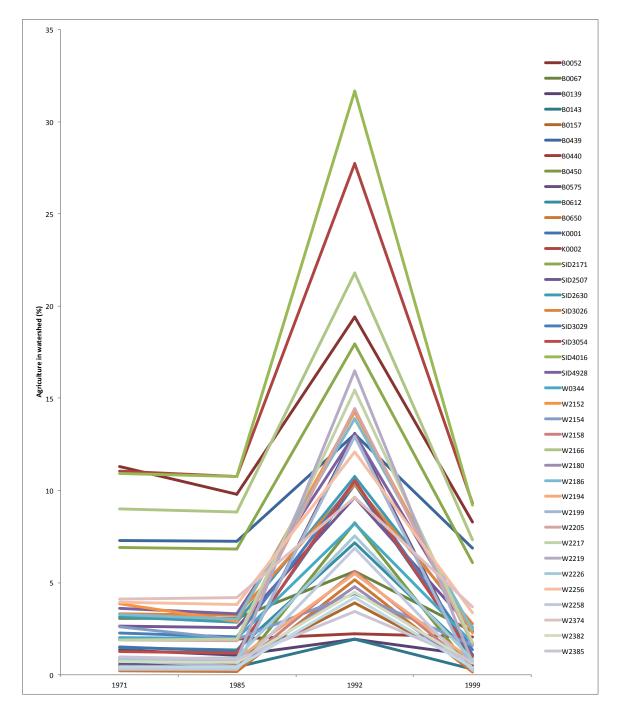
Appendix I, continued

	Variables	n	df	AICc	ΔAICc	W	
/ traits	flow twite						
Macroinvertebrate Both bands	now traits						
	AREA.BF.cv + ENTRENCH.mean + Temp.Avg.summ.max + (1 UniqueID)	40	5	189.059	0.000	0.137	0
	2 AREA.BF.cv + Temp.Avg.summ.max + (1 UniqueID)	40		189.206	0.000	0.137	0
	3 AREA.BF.cv + Temp.Avg.summ.max + Nitrate.mean + (1 UniqueID)	40		190.089	1.030	0.082	(
	AREA.BF.cv + ENTRENCH.mean + Temp.Avg.summ.max + Nitrate.mean + (1 UniqueID)			190.657	1.598	0.062	(
	5 AREA.BF.cv + Nitrate.mean + (1 UniqueID)	40		190.732	1.673	0.059	(
	5 ENTRENCH.mean + Temp.Avg.summ.max + (1 UniqueID)	40		190.982	1.924	0.052	(
	7 Temp.Avg.summ.max + (1 UniqueID)	40		191.055	1.996	0.050	(
Low band							
1	Nitrate.mean + (1 UniqueID)	20	3	85.926	0.000	0.175	(
	2 Banks.dep + Nitrate.mean + (1 UniqueID)	20	4		0.570	0.132	(
3	Banks.dep + $(1 UniqueID)$	20	3	86.835	0.909	0.111	(
4	4 Banks.dep + Temp.Avg.summ.max + (1 UniqueID)	20	4	87.480	1.554	0.081	(
High band							
J	1 AREA.BF.cv + Power.width + Temp.Avg.summ.max + (1 UniqueID)	20	5	87.508	0.000	0.315	(
2	2 AREA.BF.cv + Temp.Avg.summ.max + (1 UniqueID)	20	4	88.343	0.835	0.207	(
Fish flow traits							
Both bands							
	I IC.2011 + Hab.trans + DO.mean + (1 UniqueID)	40		167.116	0.000	0.247	(
	2 IC.2011 + DO.mean + (1 UniqueID)	40		167.966	0.850	0.162	(
	3 IC.2011 + Power.width + DO.mean + (1 UniqueID)	40		168.411	1.295	0.129	(
	4 IC.2011 + Riparian.basal + DO.mean + (1 UniqueID)	40		168.512	1.396	0.123	(
	5 IC.2011 + Hab.trans + Riparian.basal + DO.mean + (1 UniqueID)	40	6	169.002	1.887	0.096	
Low band							
	Power.width + (1 UniqueID)	20		93.178	0.000	0.169	
	2 Sed.D16 + (1 UniqueID)	20	3		0.671	0.120	(
	3 Cond.mean + (1 UniqueID)	20	3		1.541	0.078	(
	4 Sed.D16 + Cond.mean + (1 UniqueID)	20	4		1.640	0.074	(
	5 Power.width + Cond.mean + (1 UniqueID)	20	4	94.966	1.788	0.069	(
High band		20	4	60 475	0.000	0.200	
	W.D.RATIO.cv + DO.mean + (1 UniqueID)	20	4	68.475	0.000	0.369	(
conse Band Rank rmal traits	Variables	n	df	AICc	ΔAICc	W	
Macroinvertebrate	thermal traits						
Both bands							
	I IC.2011 + Sed.D16 + Cond.mean + (1 UniqueID)	40	5	173.710	0.000	0.150	(
	2 IC.2011 + Sed.D16 + W.D.RATIO.mean + (1 UniqueID)	40		174.425	0.715	0.105	(
	3 IC.2011 + Sed.D16 + (1 UniqueID)	40		174.529	0.819	0.100	(
	IC.2011 + Sed.D16 + W.D.RATIO.mean + Cond.mean + (1 UniqueID)	40		174.702	0.993	0.092	(
	5 IC.2011 + W.D.RATIO.mean + (1 UniqueID)	40	4	175.167	1.457	0.073	
	5 IC.2011 + W.D.RATIO.mean + Cond.mean + (1 UniqueID)	40		175.710	2.000	0.055	
Low band							
1	I IC.2011 + WIDTH.BF.cv + Power.width + Cond.cv + (1 UniqueID)	20	6	84.674	0.000	0.438	
High band							
-	W.D.RATIO.mean + (1 UniqueID)	20	3	83.909	0.000	0.147	(
	2 W.D.RATIO.mean + Cond.mean + (1 UniqueID)	20	4	84.640	0.731	0.102	
	3 LWD.volume + W.D.RATIO.mean + (1 UniqueID)	20	4	84.880	0.971	0.091	(
	4 LWD.volume + (1 UniqueID)	20	3		1.203	0.081	
4	5 IC.2011 + LWD.volume + Cond.mean + (1 UniqueID)	20	5	85.429	1.520	0.069	
6	5 IC.2011 + W.D.RATIO.mean + Cond.mean + (1 UniqueID)	20	5	85.544	1.635	0.065	
Fish thermal traits							
Both bands			-	150 -00	0.000	0.755	
	1 IC.2011 + LWD.volume + Riparian.basal + (1 UniqueID)	40		152.589	0.000	0.123	(
	2 LWD.volume + Riparian.basal + (1 UniqueID)	40		152.710	0.121	0.116	(
	3 IC.2011 + LWD.volume + Riparian.basal + DO.mean + (1 UniqueID)	40		152.836	0.248	0.109	1
	4 LWD.volume + Riparian.basal + DO.mean + (1 UniqueID)	40		153.047	0.458	0.098	(
	5 IC.2011 + LWD.volume + DO.mean + (1 UniqueID)	40		153.811	1.222	0.067	(
6	5 IC.2011 + LWD.volume + (1 UniqueID)	40		154.033	1.444	0.060	1
	7 LWD.volume + DO.mean + (1 UniqueID)	40	4	154.496	1.907	0.047	(
7				00.1	0.00-	0	
Low band		20	3		0.000	0.244	(
Low band	LWD.volume + (1 UniqueID)						(
Low band	2 LWD.volume + Temp.Avg.summ.range + (1 UniqueID)	20	4		1.338	0.125	
Low band		20 20		99.994 100.069	1.338	0.123	(
Low band 1 2 3 High band	2 LWD.volume + Temp.Avg.summ.range + (1 UniqueID)			100.069			(
Low band	2 LWD.volume + Temp.Avg.summ.range + (1 UniqueID)						

Appendix I, continued

Response	Band Rank Variables	n	df	AICc	ΔAICc	w	R2
Tolerance							
Macr	oinvertebrate tolerance index						
	Both bands						
	1 Embed.avg + Riparian.basal + Nitrate.mean	40	4	92.924	0.000	0.182	0.485
	2 IC.2011 + Embed.avg + Riparian.basal + Nitrate.mean	40	5	92.948	0.024	0.180	0.517
	3 Embed.avg + ENTRENCH.mean + Riparian.basal + Nitrate.mean	40	5	93.624	0.700	0.128	0.509
	4 IC.2011 + Embed.avg + ENTRENCH.mean + Nitrate.mean	40	5	93.922	0.998	0.110	0.505
	5 IC.2011 + Embed.avg + Nitrate.mean	40	4	93.948	1.024	0.109	0.471
	6 Embed.avg + ENTRENCH.mean + Nitrate.mean	40	4	94.117	1.193	0.100	0.469
	7 IC.2011 + Embed.avg + ENTRENCH.mean + Riparian.basal + Nitrate.mean	40	6	94.473	1.549	0.084	0.532
	Low band						
	1 IC.2011 + Embed.avg + DO.mean	20	4	48.378	0.000	0.366	0.614
	2 IC.2011 + Embed.avg	20	3	49.050	0.672	0.262	0.533
	High band						
	1 IC.2011 + Cond.mean + Embed.avg	20	4	40.667	0.000	0.205	0.705
	2 Cond.mean + Embed.avg	20	3	40.873	0.206	0.185	0.651
	3 IC.2011 + Temp.Avg.summ.range + Cond.mean + Embed.avg	20	5	41.100	0.433	0.165	0.749
	4 IC.2011 + Temp.Avg.summ.range + Embed.avg	20	4	42.001	1.334	0.105	0.685
	5 Temp.Avg.summ.range + Cond.mean + Embed.avg	20	4	42.491	1.824	0.082	0.677
Fish	intolerance						
	Both bands						
	1 Temp.Avg.summ.max + (1 UniqueID)	40	3	108.630	0.000	0.274	0.471
	2 ENTRENCH.cv + Temp.Avg.summ.max + (1 UniqueID)	40	4	110.008	1.378	0.137	0.491
	3 Temp.Avg.summ.max + Nitrate.mean + (1 UniqueID)	40	4	110.165	1.535	0.127	0.479
	Low band						
	1 IC.2011 + Temp.Avg.summ.max + (1 UniqueID)	20	4	69.306	0.000	0.342	0.556
	2 Temp.Avg.summ.max + (1 UniqueID)	20	3	70.435	1.130	0.194	0.481
	High band						
	1 Temp.Avg.summ.max + DO.mean + (1 UniqueID)	20	4	43.731	0.000	0.330	0.664
	2 Temp.Avg.summ.max + (1 UniqueID)	20	3	44.492	0.761	0.226	0.570

APPENDIX J:


LAND COVER CLASSIFICATIONS

Appendix J.1. National Land Cover Dataset (NLCD) land use classifications with corresponding MassGIS classifications to facilitate comparisons across land use datasets collected by different agencies.

			al Land Cover Dataset (2011)				al Land Cover Dataset (1992)			ssGIS (1971,	
lass		Subclass	Description	Class		Subclass	Description	Class	Abbrev.	Code	Description
/ater	11	Open Water	Areas of open water, generally with less than 25% cover of vegetation or soil	Water	11	Open Water	Areas of open water, generally with less than 25% cover of vegetation/land cover	Water	W	20, 30	Fresh water; coastal embayment
	12	Perennial Ice/Snow	Areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover		12	Perennial Ice/Snow	Areas characterized by year-long surface cover of ice and/or snow				
eveloped	21	Developed, Open Space	Areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes		85	Urban/ Recreational Grasses	Vegetation (primarily grasses) planted in developed settings for recreation, erosion control, or aesthetic purposes. Examples include parks, lawns, golf courses, airport grasses, and industrial site grasses	Urban Open	UO, UP, H, CM	17, 31, 33, 34	Parks; cemeteries; public & institutional greenspace; also vacant undeveloped land
			erosson contros, os acontele parposes					Participation Recreation	RP, RG	7,26	Golf; tennis; Playgrounds; skiing
								Spectator Recreation	RS	8	Stadiums; racetracks; Fairgrounds drive-ins
	22	Developed, Low Intensity	Areas with a mixture of constructed materials and v vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units	Developed	21	Low Intensity Residential	Areas with a mixture of constructed materials and vegetation. Constructed materials account for 30% to 80% of the cover. Vegetation may account for 20% to 70% of the cover. These areas most commonly include single-family housing units. Population densities will	Water Based Recreation Residential	RW, RSB, RM R3	9, 25, 29 13	Beaches; marinas; Swimming pools Larger than 1/2 acre lots
	23	Developed, Medium Intensity	Areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly				be lower than in high intensity residential areas	Residential	R1	11	Smaller than 1/4 acre lots
			include single-family housing units					Residential	R2	12	1/4 - 1/2 acre lots
24	24	Developed, High Intensity	Highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover		22	High Intensity Residential	Areas highly developed where people reside in high numbers. Examples include apartment complexes and row houses. Vegetation accounts for less than 20% of the cover. Constructed materials account for 80% to100% of the cover	Residential	R0	10	Multi-family
					23	Commercial/ Industrial/ Transportation	Areas of infrastructure (e.g. roads, railroads, etc.) and all highly developed areas not classified as High Intensity Residential	Commercial	UC	15	General urban; shopping center
								Industrial	UI	16	Light and heavy industry

Appendix J.1, continued.

			al Land Cover Dataset (2011)				l Land Cover Dataset (1992)			ssGIS (1971,	
Class	Code	Subclass	Description	Class	Code	Subclass	Description	Class	Abbrev.	Code	Description
orest	41	Deciduous Forest	Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change	Forest	41	Deciduous Forest	Areas dominated by trees where 75% or more of the tree species shed foliage simultaneously in response to seasonal change				
	42	Evergreen Forest	Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage		42	Evergreen Forest	Areas dominated by trees where 75% or more of the tree species maintain their leaves all year. Canopy is never without green foliage				
	43	Mixed Forest	Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover		43	Mixed Forest	Areas dominated by trees where neither deciduous nor evergreen species represent more than 75% of the cover present	Forest	F	3,37	Forest
'lanted/ Cultivated	81	Pasture/Hay	Areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation	Planted/ Cultivated	81	Pasture/Hay	Areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops	Pasture	AP	2	Extensive agriculture
	82	Cultivated Crops	Areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled		82	Row Crops	Areas used for the production of crops, such as corn, soybeans, vegetables, tobacco, and cotton	Cropland	AC	1	Intensive agriculture
					83	Small Grains	Areas used for the production of graminoid crops such				
					84	Fallow	as wheat, barley, oats, and rice Areas used for the production of crops that do not				
							exhibit visible vegetation as a result of being tilled in a management practice that incorporates prescribed alternation between cropping and tillage				
/etlands	90	Woody Wetlands	Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate is periodically saturated with or covered with water	Wetlands	91	Woody Wetlands	Areas where forest or shrubland vegetation accounts for 25% to 100% of the cover and the soil or substrate is periodically saturated with or covered with water				
	95	Emergent Herbaceous Wetlands	Areas where perennial herbaceous vegetation accounts for greater than 80% of vegetative cover and the soil or substrate is periodically saturated with or covered with water		92	Emergent Herbaceous Wetlands	Areas where perennial herbaceous vegetation accounts for 75% to 100% of the cover and the soil or substrate is periodically saturated with or covered with water	Wetland	FW	4	Nonforested freshwater wetla
								Salt Wetland	SW, TSM, ISM	14, 27, 28	Salt marsh

Appendix J.2 Agricultural time series for historical data available through 30-m resolution NLCD (1992) and 1-m resolution MassGIS (1971, 1985, 1999).

APPENDIX K:

WATERSHED-SCALE VARIABLES AND CODES

Category	Code	Description	Category	Code	Description
Natural cl	haracteristics		Flow alter	ration	
	Area.sqkm	Drainage area		Dams	Dams, total
	ElevBasin.m	Elevation, basin		DamDen.sqkm	Dams, per drainage area
	ElevPP.m	Elevation, site		Dams.strmkm	Dams, per stream length
	SandGravel_pct	Sand and gravel		UnDamLFPDistTOT_km	Longest undammed flow path
	Precip.mean.mm	Precipitation, mean		DamUS_N0Y1	Dams, upstream YN
	TMax.maxC	Max annual monthly max temp		JunUnalt.cms	Flow unaltered, Jun
	TMax.meanC	Mean annual monthly max temp		JulUnalt.cms	Flow unaltered, Jul
	TMin.minC	Min annual monthly min temp		AugUnalt.cms	Flow unaltered, Aug
	TMin.meanC	Mean annual monthly min temp		SepUnalt.cms	Flow unaltered, Sep
Land cove	er			JunAlt.cms	Flow altered, Jun
	Open Water, 2011			JulAlt.cms	Flow altered, Jul
	Developed, 2011			AugAlt.cms	Flow altered, Aug
	Forest, 2011			SeptAlt.cms	Flow altered, Sep
	Agriculture, 2011			JunPctDif	Flow percent dif, Jun
	Wetland, 2011			JulPctDif	Flow percent dif, Jul
	Open Water, buffer, 2011			AugPctDif	Flow percent dif, Aug
	Developed, buffer, 2011			SeptPctDif	Flow percent dif, Sep
	Forest, buffer, 2011			MeanPctDif	Flow percent dif, mean
	Agriculture, buffer, 2011		Other urb	an	
	Wetland, buffer, 2011			IC.2011	Impervious, 2011 NLCD
	Open Water, 2006			IC.2006	Impervious, 2006 NLCD
	Developed, 2006			IC.06.11.dif	Impervious, 2006 to 2011 dif
	Forest, 2006			IC.MassGIS	Impervious, 2005 MassGIS
	Agriculture, 2006			pctImp.Buffer.10m	Impervious, buffer, 10m
	Wetland, 2006			pctImp.Buffer.2011	Impervious, buffer, 2011 NLC
	Agriculture, 1992			PopDen.sqkm	Population density
				HousDen.sqkm	Housing density
				RoadDen.km.sqkm	Road density
				RoadCrossings	Road crossings, total
				RoadCrossings.sqkm	Road crossings, density
				FL0.5	Flow length, wgt 0.5
				FL1	Flow length, wgt 1.0
				FL1.5	Flow length, wgt 1.5
				FL2	Flow length, wgt 2.0
				GLR0.5	Gradient:length ratio, wgt 0.5
				GLR1	Gradient:length ratio, wgt 1.0
				GLR1.5	Gradient:length ratio, wgt 1.5
				GLR2	Gradient:length ratio, wgt 2.0

Appendix K.1. Watershed codes and descriptions for each predictor category of natural characteristics, land cover, flow alteration, and other urban measures.

				SandGravel	Precip.mean.	TMax.	TMax.	TMin.	TMin.
UniqueID	Area.sqkm	ElevBasin.m	ElevPP.m	_pct	mm	maxC	meanC	minC	meanC
B0052	9.00	75.66	48.30	5.02	1252.91	15.48	15.35	3.83	4.13
B0067	35.59	60.52	35.13	55.55	1233.50	15.73	15.61	3.16	3.57
B0139	6.47	85.34	56.10	51.08	1235.53	15.44	15.26	4.11	4.18
B0143	11.66	85.12	58.52	73.43	1244.51	15.44	15.26	4.03	4.18
B0157	31.61	48.01	25.57	22.51	1183.10	15.15	15.02	2.97	3.36
B0439	43.86	17.51	4.88	72.48	1214.28	14.89	14.66	4.08	4.33
B0440	5.85	22.74	12.29	72.95	1222.57	15.09	14.93	3.88	3.98
B0450	16.12	336.49	296.26	25.75	1191.56	13.37	13.17	0.59	1.30
B0575	22.71	88.06	37.78	69.89	1231.48	15.87	15.44	2.47	2.98
B0612	9.23	68.53	37.24	43.33	1207.41	15.60	15.37	3.87	3.99
B0650	18.39	259.24	130.83	22.50	1230.72	14.72	13.83	1.49	1.87
K0001	18.18	98.90	66.42	65.61	1198.64	15.58	15.29	2.67	3.16
K0002	57.98	80.08	32.25	60.20	1173.40	15.74	15.37	2.38	2.86
SID2171	9.24	97.16	64.16	34.58	1196.91	14.97	14.81	1.89	2.10
SID2507	5.26	53.41	37.25	79.79	1192.19	15.31	15.27	3.50	3.61
SID2630	66.33	104.72	56.11	25.91	1231.61	15.69	15.26	2.57	2.79
SID3026	51.96	273.99	198.51	3.34	1247.70	14.13	13.53	2.38	2.87
SID3029	27.28	245.64	163.18	2.60	1255.81	14.46	13.85	2.31	2.81
SID3054	13.75	322.43	213.25	29.00	1236.08	14.16	13.23	1.23	1.59
SID4016	10.11	98.33	67.09	29.29	1196.30	15.08	14.90	2.13	2.29
SID4928	8.22	125.03	91.05	22.76	1220.99	15.13	14.81	2.54	2.62
W0344	24.17	49.25	2.33	9.55	1247.21	15.48	15.41	5.58	5.81
W2152	16.50	82.72	60.06	16.19	1224.53	15.68	15.51	2.90	3.05
W2154	6.69	58.24	35.29	18.58	1202.24	15.63	15.52	3.50	3.74
W2158	22.40	363.77	299.74	19.44	1262.64	13.28	12.95	1.00	1.71
W2166	6.37	272.88	197.82	0.00	1229.44	14.10	13.61	1.85	2.12
W2180	27.37	226.95	111.45	10.86	1253.29	14.80	13.98	2.05	2.33
W2186	37.80	128.00	84.74	37.98	1220.58	15.03	14.76	2.05	2.28
W2194	45.81	323.82	237.17	11.64	1228.04	13.72	13.25	0.63	1.20
W2199	6.80	275.70	216.27	39.56	1174.68	14.10	13.61	1.02	1.19
W2205	21.38	120.50	73.80	15.82	1210.12	15.09	14.79	2.40	2.56
W2217	8.78	235.78	188.24	13.58	1254.67	14.16	14.00	2.35	2.49
W2219	15.72	115.71	47.14	43.37	1209.93	15.55	15.18	1.41	2.62
W2226	21.60	247.32	163.40	24.02	1284.48	14.39	13.79	2.01	2.28
W2256	28.66	507.32	319.35	8.67	1215.51	12.93	12.05	-0.22	0.95
W2258	72.13	502.44	349.58	19.48	1296.11	12.91	12.01	0.46	0.94
W2374	21.70	15.46	2.68	45.49	1252.66	15.38	15.17	5.22	5.47
W2382	11.54	38.40	27.42	57.24	1254.92	15.51	15.45	5.00	5.25
W2385	12.49	52.35	11.37	15.37	1243.41	15.43	15.22	4.62	4.73
W2453	6.66	173.42	76.96	48.67	1188.57	14.83	14.25	0.77	1.63

Appendix K.2. Watershed variables for each site within the natural characteristics predictor category. Codes are referenced in Appendix K.1.

	OpenWater.	Developed.	Forest.	Agriculture.	Wetland.	OpenWater.	Developed.	Forest.	Agriculture.	Wetland.	OpenWater.	Developed.	Forest.	Agriculture.	Wetland.	Agriculture.
UniqueID	2011	2011	2011	2011	2011	Buffer.2011	Buffer.2011	Buffer.2011	Buffer.2011	Buffer.2011	2006	2006	2006	2006	2006	1992
B0052	1.72	23.89	40.38	13.73	14.67	3.28	13.55	31.73	17.60	29.02	1.72	23.89	40.69	13.88	14.67	19.42
B0067	2.50	36.89	36.42	3.39	19.77	4.39	21.33	31.56	4.65	36.19	2.48	31.29	39.71	4.86	20.06	5.61
B0139	0.00	24.49	56.66	0.32	17.16	0.00	15.37	47.48	0.00	35.83	0.00	24.32	56.83	0.32	17.16	1.93
B0143	13.78	29.91	40.83	0.43	13.66	17.64	18.95	38.85	0.76	22.53	13.78	29.91	40.83	0.43	13.66	1.93
B0157	1.51	23.84	44.91	2.66	26.21	2.68	15.47	34.44	2.74	43.85	1.52	22.73	45.65	2.88	26.27	3.89
B0439	3.49	28.61	31.84	11.54	21.96	6.62	20.70	24.21	9.17	37.45	3.49	28.04	32.22	11.74	21.97	13.03
B0440	0.00	10.13	48.65	1.20	39.36	0.00	5.63	31.05	0.85	62.28	0.00	10.13	48.65	1.20	39.36	2.23
B0450	0.60	11.30	63.51	3.03	20.12	1.43	12.37	45.10	1.22	39.26	0.60	11.30	64.43	3.09	20.12	8.25
B0575	4.04	33.58	45.81	3.45	7.22	7.46	29.30	41.80	3.92	13.75	4.10	31.75	47.56	3.79	7.27	13.08
B0612	0.05	33.36	49.95	5.05	10.86	0.26	28.55	43.86	6.68	19.67	0.11	29.33	52.61	6.05	11.03	7.17
B0650	1.14	10.98	75.02	1.33	9.17	2.44	15.28	61.17	1.18	18.36	1.14	10.85	75.47	1.33	9.17	5.15
K0001	0.43	33.99	41.66	4.43	15.31	0.76	30.44	34.53	4.93	27.18	0.43	33.14	43.58	4.62	15.38	10.32
K0002	0.45	28.68	32.44	14.27	18.60	0.97	25.55	22.50	14.12	32.54	0.45	28.14	32.71	14.52	18.64	27.74
SID2171	0.50	12.61	57.13	14.33	13.71	1.06	8.82	51.25	10.94	27.51	0.50	12.61	57.43	14.33	13.71	17.95
SID2507	1.54	28.54	39.62	8.99	18.46	3.54	18.62	30.98	11.46	32.40	1.54	26.11	41.56	9.43	18.51	9.61
SID2630	1.18	24.05	51.12	6.50	12.41	2.37	15.85	45.50	6.84	25.26	1.18	21.88	51.91	7.44	12.44	10.74
SID3026	6.66	15.08	57.44	5.45	14.53	11.87	9.68	49.56	2.12	26.20	6.66	14.16	58.00	5.89	14.54	10.33
SID3029	1.44	10.83	65.21	7.23	13.90	3.06	10.94	56.35	3.15	25.86	1.44	10.72	65.47	7.38	13.90	10.52
SID3054	3.28	28.23	47.13	5.29	13.21	6.43	27.74	38.18	4.20	22.10	3.28	28.23	48.36	5.34	13.21	10.54
SID4016	0.36	25.25	29.49	20.35	19.13	0.75	16.28	25.03	14.44	37.10	0.36	23.80	29.59	21.66	19.13	31.64
SID4928	0.00	26.09	45.98	2.82	20.41	0.00	10.02	38.95	4.91	41.51	0.00	21.37	48.21	4.85	20.93	13.06
W0344	0.00	23.83	40.77	2.76	28.91	0.00	20.10	32.91	0.31	41.84	0.00	23.65	40.96	2.82	28.93	8.18
W2152	0.53	32.34	39.79	6.78	18.66	1.05	23.61	29.76	9.60	34.19	0.53	31.33	40.36	7.17	18.84	14.24
W2154	0.34	15.29	59.44	4.18	20.07	0.63	11.57	47.46	4.37	35.07	0.34	15.29	59.44	4.25	20.07	4.38
W2158	4.43	7.33	72.39	5.32	8.92	8.97	8.86	57.83	5.64	18.41	4.43	7.29	73.22	5.43	8.92	5.59
W2166	0.18	10.67	65.60	15.76	6.50	0.89	8.30	66.58	12.14	10.86	0.18	10.67	65.83	15.76	6.50	21.77
W2180	5.63	23.02	63.80	0.93	5.76	11.00	23.76	50.96	1.32	12.41	5.63	22.38	64.45	1.07	5.77	4.79
W2186	6.14	20.63	43.24	11.89	12.98	10.54	14.31	39.55	8.68	24.02	6.16	20.07	43.83	12.29	12.99	13.89
W2194	3.77	9.59	70.80	5.14	9.21	6.95	7.67	65.03	2.91	16.88	3.72	9.34	71.75	5.29	9.28	5.48
W2199	0.00	20.47	61.61	1.88	14.32	0.00	24.00	50.49	1.79	23.19	0.00	20.47	62.72	2.08	14.12	12.91
W2205	4.08	11.99	61.81	8.82	11.40	7.41	10.77	52.91	5.65	22.06	4.08	11.99	61.97	8.82	11.40	14.43
W2217	2.78	14.31	58.80	11.19	10.42	5.28	16.87	49.30	7.69	19.26	2.79	13.78	59.91	11.19	10.42	15.42
W2219	0.18	17.20	61.01	8.66	9.40	0.43	13.12	52.02	10.38	20.54	0.18	16.62	62.17	8.89	9.40	16.49
W2226	0.17	5.17	71.33	7.59	14.55	0.38	3.90	61.18	4.83	28.81	0.17	5.17	71.45	7.61	14.55	7.52
W2256	0.17	4.74	83.07	7.07	1.83	0.46	5.99	74.08	11.82	5.19	0.17	4.35	83.81	7.11	1.83	12.08
W2258	2.75	7.72	67.86	5.42	13.48	5.26	8.58	57.31	4.06	22.72	2.75	7.70	68.30	5.43	13.47	6.86
W2374	1.02	7.72	45.89	14.09	28.50	1.64	5.93	36.80	15.05	39.43	0.93	7.72	46.01	14.20	28.50	9.62
W2382	1.97	8.34	68.67	3.98	14.28	3.09	5.94	63.40	4.26	21.82	1.97	8.34	69.05	3.98	14.28	4.49
W2385	0.80	31.56	53.35	0.00	13.69	1.64	22.20	49.17	0.00	26.50	0.66	30.18	54.62	0.00	13.82	3.45
W2453	4.61	7.43	80.81	0.26	1.31	9.26	9.41	76.35	0.06	2.60	4.61	7.43	83.07	0.26	1.31	4.18

Appendix K.3. Watershed variables for each site within the land cover predictor category. Codes are referenced in Appendix K.1.

		DamDen.	Dams.strm	UnDamLFP	DamUS_	JunUnalt.	JulUnalt.	AugUnalt.	SepUnalt.	JunAlt.	JulAlt.	AugAlt.	SeptAlt.					
UniqueID	Dams	sqkm	km	DistTOT_km		cms	cms	cms	cms	cms	cms	cms	cms	JunPctDif	JulPctDif	AugPctDif	SeptPctDif	MeanPctDif
B0052	1	0.75	0.17	11.22	0	0.067	0.018	0.019	0.017	0.065	0.017	0.018	0.016	-2.746	-8.906	-6.959	-5.845	-0.360
B0067	4	0.75	0.21	25.15	1	0.287	0.097	0.109	0.104	0.253	0.066	0.083	0.083	-11.966	-32.178	-23.598	-20.028	-2.125
B0139	0	0.00	0.00	6.69	0	0.053	0.017	0.019	0.018	0.037	0.000	0.003	0.003	-30.796	-99.717	-83.945	-83.054	-8.750
B0143	4	2.30	0.45	3.92	1	0.086	0.033	0.038	0.036	0.083	0.031	0.036	0.035	-2.790	-6.766	-4.550	-2.850	-0.286
B0157	3	0.64	0.17	3.21	1	0.267	0.092	0.060	0.045	0.244	0.072	0.044	0.033	-8.461	-21.550	-26.674	-26.348	-1.402
B0439	2	0.31	0.07	16.72	1	0.404	0.167	0.117	0.090	0.394	0.156	0.107	0.080	-2.599	-6.371	-8.281	-10.439	-28.968
B0440	0	0.00	0.00	6.66	0	0.050	0.019	0.012	0.009	0.049	0.018	0.012	0.008	-2.197	-5.086	-6.318	-6.561	-0.345
B0450	4	1.66	0.60	21.54	1	0.110	0.063	0.039	0.043	0.053	0.013	0.000	0.013	-51.463	-79.459	-100.000	-69.046	-5.546
B0575	2	0.59	0.31	17.72	1	0.152	0.079	0.057	0.057	0.217	0.117	0.118	0.129	42.753	47.616	108.165	123.882	16.927
B0612	0	0.00	0.00	21.38	0	0.068	0.025	0.021	0.020	0.057	0.016	0.013	0.014	-15.905	-37.484	-36.997	-29.013	-2.026
B0650	5	1.82	0.61	3.66	1	0.119	0.068	0.059	0.047	0.075	0.029	0.027	0.024	-37.077	-56.774	-53.403	-49.668	-3.852
K0001	4	1.48	0.47	8.53	1	0.161	0.073	0.047	0.043	0.162	0.074	0.047	0.045	0.142	0.616	1.608	2.487	0.365
K0002	9	1.04	0.34	11.31	1	0.522	0.231	0.153	0.144	0.522	0.231	0.154	0.145	-0.005	0.145	0.541	0.953	-0.038
SID2171	0	0.00	0.00	32.75	0	0.073	0.029	0.021	0.014	0.076	0.032	0.024	0.017	3.973	9.988	13.682	21.225	1.552
SID2507	1	1.27	0.49	25.31	0	0.037	0.016	0.009	0.011	0.039	0.018	0.011	0.013	4.989	11.787	22.963	18.618	1.979
SID2630	18	1.82	0.49	12.35	1	0.520	0.197	0.168	0.161	0.520	0.198	0.170	0.164	0.002	0.367	1.112	1.875	0.211
SID3026	12	1.55	0.31	1.07	1	0.378	0.174	0.110	0.096	0.397	0.192	0.130	0.116	5.107	10.595	17.993	21.006	1.063
SID3029	5	1.23	0.24	7.61	1	0.186	0.065	0.037	0.031	0.184	0.063	0.035	0.030	-1.388	-3.481	-4.741	-3.522	-0.110
SID3054	4	1.95	0.72	4.64	1	0.087	0.050	0.047	0.032	0.087	0.050	0.047	0.032	0.049	0.262	0.509	1.138	-0.306
SID4016	0	0.00	0.00	22.28	0	0.082	0.030	0.022	0.014	0.083	0.031	0.023	0.015	1.367	3.913	5.876	9.715	0.693
SID4928	0	0.00	0.00	9.87	0	0.062	0.022	0.020	0.015	0.062	0.022	0.020	0.016	0.396	1.614	2.522	4.322	0.452
W0344	0	0.00	0.00	14.38	0	0.246	0.076	0.059	0.052	0.244	0.074	0.058	0.051	-0.808	-2.219	-2.136	-1.551	-0.079
W2152	1	0.41	0.10	11.18	1	0.122	0.038	0.032	0.030	0.079	0.001	0.001	0.009	-35.537	-98.566	-95.607	-70.621	-4.178
W2154	0	0.00	0.00	15.34	0	0.046	0.015	0.012	0.012	0.045	0.014	0.012	0.011	-2.002	-5.279	-5.478	-4.710	-0.300
W2158	5	1.50	0.52	7.78	1	0.179	0.086	0.068	0.046	0.106	0.021	0.015	0.007	-40.906	-75.297	-77.338	-84.434	-5.000
W2166	1	1.05	0.25	22.28	1	0.047	0.020	0.012	0.010	0.048	0.020	0.012	0.010	0.766	1.884	3.409	4.263	0.294
W2180	13	3.19	1.10	38.93	1	0.175	0.080	0.074	0.051	0.662	0.510	0.504	0.496	278.640	534.895	579.302	864.816	69.244
W2186	10	1.77	0.73	6.41	1	0.319	0.132	0.100	0.069	0.291	0.106	0.078	0.052	-8.992	-19.613	-21.297	-23.930	-2.114
W2194	6	0.88	0.31	4.27	1	0.294	0.153	0.143	0.101	0.201	0.071	0.076	0.052	-31.577	-53.499	-46.486	-48.653	-3.415
W2199	0	0.00	0.00	8.76	0	0.037	0.021	0.020	0.015	0.035	0.020	0.019	0.014	-5.106	-7.820	-6.669	-6.608	-0.489
W2205	10	3.14	1.03	4.81	1	0.172	0.068	0.050	0.034	0.107	0.010	0.003	0.000	-37.926	-84.587	-93.108	-100.000	-4.988
W2217	2	1.53	0.27	9.85	1	0.065	0.033	0.021	0.018	0.064	0.032	0.020	0.017	-2.030	-3.499	-4.789	-4.360	-0.298
W2219	1	0.43	0.15	14.29	1	0.139	0.059	0.037	0.034	0.122	0.037	0.018	0.015	-12.155	-36.265	-50.298	-56.590	-4.587
W2226	1	0.31	0.12	16.18	0	0.157	0.078	0.072	0.050	0.140	0.063	0.060	0.041	-10.368	-18.516	-16.638	-18.536	-1.389
W2256	2	0.47	0.15	15.92	0	0.228	0.120	0.087	0.077	0.232	0.123	0.088	0.078	1.999	2.361	1.967	2.111	0.069
W2258	6	0.56	0.21	7.54	1	0.609	0.360	0.267	0.261	0.589	0.343	0.253	0.250	-3.230	-4.807	-5.262	-4.004	-0.746
W2374	3	0.93	0.24	9.42	1	0.208	0.093	0.077	0.078	0.206	0.092	0.077	0.078	-0.743	-0.718	-0.365	0.296	-0.119
W2382	0	0.00	0.00	10.70	0	0.104	0.048	0.039	0.040	0.103	0.047	0.038	0.039	-1.112	-2.121	-2.049	-1.448	-0.152
W2385	2	1.08	0.29	1.29	1	0.079	0.026	0.022	0.027	0.079	0.027	0.022	0.028	0.627	1.991	2.608	2.237	-0.666
W2453	1	1.01	0.51	1.84	1	0.055	0.023	0.013	0.015	0.055	0.023	0.013	0.015	0.126	0.336	0.683	0.685	0.079

Appendix K.4. Watershed variables for each site within the flow alteration predictor category. Codes are referenced in Appendix K.1.

					pctImp.	pctImp.	PopDen.	HousDen.	RoadDen.	Road	RoadCrossings.								
UniqueID	IC.2011	IC.2006	IC.06.11.dif	IC.MassGIS	Buffer.10m	Buffer.2011	sqkm	sqkm	km.sqkm	Crossings	sqkm	FL0.5	FL1	FL1.5	FL2	GLR0.5	GLR1	GLR1.5	GLR2
B0052	8.44	8.40	0.05	8.01	5.82	5.89	108.11	40.05	2.85	12	1.33	10.97	15.81	20.27	18.70	12.26	21.89	22.89	8.19
B0067	9.90	8.23	1.67	10.01	6.84	6.82	144.40	44.41	3.85	46	1.29	9.66	9.22	8.89	8.36	9.89	10.40	8.84	3.15
B0139	6.73	6.57	0.16	9.12	5.84	4.49	112.58	41.69	3.94	8	1.24	10.68	12.11	11.90	8.84	12.14	15.51	14.97	10.91
B0143	8.82	8.72	0.09	9.69	6.74	5.47	203.22	68.09	4.30	35	3.00	10.70	11.68	11.91	10.54	11.87	13.67	7.68	2.37
B0157	7.55	7.25	0.30	8.50	6.80	5.87	289.25	93.14	3.48	51	1.61	7.49	6.49	5.16	3.06	8.14	7.35	3.83	0.66
B0439	9.49	9.24	0.25	10.13	7.51	7.04	135.01	48.46	3.88	71	1.62	9.23	8.46	7.88	6.29	10.17	10.33	8.26	3.92
B0440	3.49	3.42	0.07	3.41	1.91	1.28	388.07	148.82	1.11	2	0.34	2.63	2.00	1.82	2.00	2.78	1.72	0.45	0.07
B0450	2.31	2.26	0.06	4.15	3.92	2.60	65.71	26.24	2.41	21	1.30	4.04	3.65	2.73	1.45	3.90	3.16	1.84	0.96
B0575	8.38	7.82	0.55	10.79	9.39	7.67	138.33	61.83	3.70	18	0.79	11.64	13.12	17.59	29.53	12.35	18.71	56.94	79.73
B0612	8.35	7.56	0.79	9.38	8.59	7.70	170.37	53.32	4.06	23	2.49	9.93	10.60	10.79	8.99	10.30	10.36	1.94	0.12
B0650	1.45	1.40	0.05	3.91	4.01	1.71	126.56	47.95	2.09	18	0.98	5.12	6.82	8.01	6.55	5.01	6.97	9.31	9.84
K0001	7.18	6.91	0.27	9.15	8.45	6.38	233.44	85.44	4.00	33	1.82	10.09	11.06	11.16	9.10	9.85	10.80	8.00	3.08
K0002	7.58	7.16	0.42	9.51	7.95	6.71	164.38	66.68	3.30	78	1.35	10.64	11.19	9.55	5.33	10.32	10.31	2.08	0.06
SID2171	3.60	3.58	0.02	6.87	4.87	2.13	157.46	57.45	3.40	13	1.41	6.73	6.49	5.93	4.47	6.95	6.09	1.31	0.07
SID2507	9.23	7.82	1.41	7.18	4.67	6.19	142.74	54.87	4.04	9	1.71	7.08	7.37	8.74	11.35	8.45	9.75	7.60	5.61
SID2630	8.01	7.29	0.73	10.18	8.13	5.85	151.55	52.99	3.27	91	1.37	10.23	11.08	13.55	19.03	10.81	13.36	23.02	44.36
SID3026	3.55	3.15	0.40	6.01	4.38	2.31	182.57	72.74	2.76	86	1.66	6.73	7.97	9.57	9.91	7.35	9.56	8.14	4.23
SID3029	2.39	2.29	0.10	5.82	5.12	2.49	106.66	38.17	2.66	64	2.35	5.88	6.01	6.55	6.94	6.08	7.52	11.09	13.53
SID3054	10.00	9.83	0.17	11.30	9.86	9.09	177.87	69.44	4.54	28	2.04	12.87	15.02	16.82	15.20	13.77	17.49	14.70	4.38
SID4016	8.77	8.29	0.48	8.95	6.45	5.12	94.37	42.81	3.44	10	0.99	8.81	8.47	7.36	4.90	9.08	6.98	0.47	0.01
SID4928	7.92	6.83	1.10	7.80	4.45	3.97	341.93	125.62	2.68	12	1.46	7.91	7.89	9.31	15.37	8.32	8.70	16.13	42.38
W0344	8.44	8.23	0.21	9.22	7.54	5.72	260.55	95.31	3.56	22	0.91	9.71	9.99	8.52	4.17	10.06	10.10	4.72	0.74
W2152	9.93	9.56	0.37	9.55	8.17	8.47	204.53	69.92	3.48	23	1.39	9.89	9.87	8.29	4.63	10.22	9.76	2.43	0.17
W2154	3.11	3.11	0.01	7.49	5.57	1.97	162.39	55.31	3.55	9	1.35	7.54	7.56	6.95	5.04	7.84	7.70	6.31	4.46
W2158	1.16	1.15	0.01	3.53	3.88	1.42	108.13	49.21	1.76	22	0.98	3.66	3.69	3.23	1.92	3.33	3.00	1.63	0.36
W2166	2.36	2.33	0.02	4.88	3.64	1.86	71.25	29.95	2.98	10	1.57	4.57	3.97	2.89	1.53	4.64	4.68	5.88	7.52
W2180	9.77	9.50	0.26	8.85	9.73	10.95	151.65	57.85	3.17	39	1.43	13.12	23.37	44.65	61.16	12.21	27.25	64.96	80.96
W2186	7.27	6.98	0.29	10.71	8.53	5.60	149.99	57.04	3.09	37	0.98	10.64	10.57	9.97	7.30	10.93	10.06	1.87	0.13
W2194	2.64	2.51	0.14	3.89	3.27	2.07	76.84	29.83	2.26	44	0.96	3.90	4.03	4.70	5.90	3.93	4.72	6.47	4.17
W2199	3.62	3.55	0.07	5.29	4.91	4.01	102.02	41.48	2.16	6	0.88	4.84	3.87	2.35	0.91	4.38	2.51	0.86	0.23
W2205	3.44	3.40	0.04	5.80	4.19	2.82	79.91	33.16	3.61	32	1.50	6.64	8.27	10.05	8.89	7.25	10.31	9.14	2.12
W2217	3.75	3.52	0.23	8.00	8.09	4.32	101.33	39.50	2.84	28	3.19	9.35	11.21	13.60	15.75	9.43	11.10	4.31	0.69
W2219	3.71	3.58	0.13	5.53	5.25	2.79	84.83	32.98	2.62	19	1.21	5.65	5.28	3.87	1.86	5.12	3.81	0.95	0.05
W2226	1.09	1.08	0.01	2.81	2.03	0.57	188.89	71.88	1.36	8	0.37	2.75	2.68	2.37	1.50	2.88	2.73	1.81	0.73
W2256	1.18	0.99	0.20	3.70	4.88	1.44	54.12	39.43	1.18	21	0.73	4.01	4.08	3.65	2.48	3.66	3.21	1.81	0.25
W2258	1.16	1.10	0.06	3.64	3.61	1.43	49.08	23.66	1.76	47	0.65	4.11	5.12	7.99	12.72	4.04	4.52	4.81	2.36
W2374	1.64	1.63	0.00	5.10	3.93	1.07	107.64	43.23	1.64	17	0.78	5.62	6.12	5.79	3.69	5.69	4.51	0.16	0.00
W2382	2.56	2.54	0.02	6.40	4.50	1.56	269.37	92.00	1.75	6	0.52	6.18	5.90	6.30	10.24	6.91	20.07	52.98	58.37
W2385	8.81	8.35	0.46	8.61	5.77	5.51	150.69	68.97	3.40	24	1.92	9.11	10.57	13.29	14.83	9.30	10.17	3.51	0.57
W2453	1.59	1.59	0.01	3.34	4.49	1.97	22.78	9.23	1.71	4	0.60	4.58	6.00	6.80	5.58	3.88	4.95	4.71	1.76

Appendix K.5. Watershed variables for each site within the other urban measures predictor category. Codes are referenced in Appendix K.1.

APPENDIX L:

PAIRWISE SPEARMAN RANK CORRELATION ANALYSIS

FOR WATERSHED-SCALE PREDICTORS

	D '	Elevation,	Elevation,	Sand and	Precipitation,		Mean annual		Mean annual
	Drainage area	basin	site	gravel	mean	monthly max	monthly max	monthly min	monthly min
Drainage area									
Elevation, basin	0.18								
Elevation, site	0.10	0.97							
Sand and gravel	-0.19	-0.46	-0.46						
Precipitation, mean	0.23	0.14	0.15	-0.36					
Max annual monthly max temp	-0.07	-0.75	-0.79	0.44	-0.17				
Mean annual monthly max temp	-0.18	-0.82	-0.82	0.41	-0.15	0.96			
Min annual monthly min temp	-0.18	-0.90	-0.86	0.31	0.13	0.69	0.76		
Mean annual monthly min temp	-0.14	-0.89	-0.87	0.30	0.14	0.71	0.77	0.98	

Appendix L.1. Pairwise Spearman rank correlations for natural watershed characteristics.

	Open Water	, Developed,	Forest,	Agriculture,	Wetland,	Open Water,	Developed,	Forest,	Agriculture,	Wetland,	Open Water,	Developed,	Forest,	Agriculture,	Wetland,
	2011	2011	2011	2011	2011	buffer, 2011	buffer, 2011	buffer, 2011	buffer, 2011	buffer, 2011	2006	2006	2006	2006	2006
Open Water, 2011															
Developed, 2011	-0.02	!													
Forest, 2011	0.04	-0.79	1												
Agriculture, 2011	0.03	-0.12	-0.20												
Wetland, 2011	-0.38	0.27	-0.61	0.00											
Open Water, buffer, 2011	1.00	-0.03	0.06	0.03	-0.42	1									
Developed, buffer, 2011	0.05	0.87	-0.58	-0.19	0.04	0.05									
Forest, buffer, 2011	0.11	-0.72	0.95	-0.12	-0.71	0.13	-0.55								
Agriculture, buffer, 2011	-0.09	0.04	-0.30	0.90	0.02	-0.09	-0.07	-0.23	3						
Wetland, buffer, 2011	-0.39	0.29	-0.63	0.02	0.97	-0.42	0.04	-0.72	0.03						
Open Water, 2006	1.00	-0.02	0.04	0.02	-0.39	1.00	0.05	0.11	-0.10	-0.40)				
Developed, 2006	0.00	0.99	-0.79	-0.14	0.26	-0.01	0.89	-0.71	0.00	0.27	0.00				
Forest, 2006	0.04	-0.78	1.00	-0.20	-0.62	0.06	-0.56	0.95	-0.29	-0.64	0.04	-0.78	8		
Agriculture, 2006	-0.01	-0.06	-0.25	0.99	0.02	-0.01	-0.16	-0.16	5 0.91	0.05	-0.01	-0.10	0 -0.	24	
Wetland, 2006	-0.38	0.27	-0.61	0.00	1.00	-0.41	0.04	-0.71	0.01	0.97	-0.38	0.26	5 -0.	62 0.02	

Appendix L.2. Pairwise Spearman rank correlations for land cover variables.

		Dams, per	Dams, per	· Longest	Dams,	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow
	Dams,	drainage	stream	undammed	upstream	unaltered	unaltered,	unaltered,	unaltered,	altered,	altered,	altered,	altered,	percent	percent	percent	percent	percent
	total	area	length	flow path	YN	Jun	Jul	Aug	Sep	Jun	Jul	Aug	Sep	dif, Jun	dif, Jul	dif, Aug	dif, Sep	dif, mean
Dams, total																		
Dams, per drainage area	0.83																	
Dams, per stream length	0.82	0.95																
Longest undammed flow path	-0.31	-0.30	-0.28	3														
Dams, upstream YN	0.78	0.72	0.72	-0.35														
Flow unaltered, Jun	0.71	0.29	0.30	-0.11	0.52													
Flow unaltered, Jul	0.74	0.33	0.36	-0.10	0.55	0.97												
Flow unaltered, Aug	0.72	0.32	0.34	-0.10	0.49	0.95	0.98											
Flow unaltered, Sep	0.69	0.30	0.33	-0.09	0.49	0.93	0.95	0.97										
Flow altered, Jun	0.66	0.27	0.28	-0.01	0.46	0.94	0.92	0.90	0.87									
Flow altered, Jul	0.53	0.20	0.21	0.03	0.36	0.78	0.82	0.79	0.78	0.8	9							
Flow altered, Aug	0.53	0.19	0.19	0.02	0.30	0.76	0.81	0.82	0.80	0.8	8 0.9	7						
Flow altered, Sep	0.52	0.21	0.21	0.04	0.33	0.74	0.78	0.78	0.81	0.8	5 0.94	4 0.9	7					
Flow percent dif, Jun	-0.09	0.00	-0.01	0.25	-0.14	-0.10	-0.06	-0.11	-0.12	0.1	5 0.4	1 0.30	5 0.3	7				
Flow percent dif, Jul	-0.03	0.04	0.04	0.25	-0.10	-0.06	5 0.00	-0.05	-0.08	0.1	8 0.4	5 0.4	0.4	0.9	9			
Flow percent dif, Aug	-0.04	0.05	0.04	0.23	-0.11	-0.09	-0.04	-0.08	-0.09	0.1	5 0.42	2 0.39	0.4	0.9	8 0.9	9		
Flow percent dif, Sep	-0.04	0.05	0.03	0.26	-0.11	-0.08	-0.03	-0.07	-0.08	0.1	6 0.4	3 0.4	l 0.42	2 0.9	8 0.9	9 0.99)	
Flow percent dif, mean	-0.07	0.03	0.02	0.27	-0.18	-0.13	-0.09	-0.14	-0.15	0.1	0 0.3	5 0.32	2 0.3	3 0.9 2	2 0.92	2 0.94	4 0.94	4

Appendix L.3. Pairwise Spearman rank correlations for flow alteration variables.

Appendix L.4. Pairwise Spearman	rank correlations for	other urban characteristics.
---------------------------------	-----------------------	------------------------------

			Impervious	Impervious,		Impervious,				Road	Road	Flow	Flow	Flow	Flow	Gradient:	Gradient:	Gradient:	Gradient:
	Impervious,	Impervious,	2006 to	2005	Impervious,	buffer, 2011	Population	Housing	Road	crossings,	crossings,	length, wgt	length, wgt	length, wgt	length, wgt	length ratio,	length ratio,	length ratio,	length ratio,
	2011 NLCD	2006 NLCD	2011 dif	MassGIS	buffer, 10m	NLCD	density	density	density	total	density	0.5	1.0	1.5	2.0	wgt 0.5	wgt 1.0	wgt 1.5	wgt 2.0
Impervious, 2011 NLCD																			
Impervious, 2006 NLCD	0.98																		
Impervious, 2006 to 2011 dif	0.71	0.63																	
Impervious, 2005 MassGIS	0.85	0.85	0.66	5															
Impervious, buffer, 10m	0.76	0.77	0.60	0.89															
Impervious, buffer, 2011 NLCD	0.90	0.89	0.72	2 0.86	0.87	,													
Population density	0.42	0.43	0.31	0.42	0.32	0.30)												
Housing density	0.40	0.41	0.33	0.39	0.29	0.26	5 0.9 6	5											
Road density	0.77	0.76	0.52	0.81	0.69	0.79	0.32	2 0.2	6										
Road crossings, total	0.27	0.26	0.44	0.42	0.38	0.41	0.06	5 0.0	2 0.2	9									
Road crossings, density	0.50	0.48	0.40	0.47	0.44	0.53	0.20	0.1	3 0.6	6 0.4	7								
Flow length, wgt 0.5	0.81	0.83	0.55	0.92	0.89	0.85	0.38	3 0.3	4 0.7	5 0.3	3 0.4	8							
Flow length, wgt 1.0	0.74	0.76	0.52	0.84	0.83	0.79	0.28	3 0.2	6 0.7	1 0.3	5 0.4	9 0.9	7						
Flow length, wgt 1.5	0.64	0.64	0.50	0.72	0.70	0.69	0.22	2 0.2	1 0.6	0.3	8 0.5	0 0.8	7 0.94	1					
Flow length, wgt 2.0	0.47	0.45	0.45	0.51	0.46	0.48	0.18	3 0.1	7 0.4	0 0.3	2 0.4	1 0.66	6 0.7 3	3 0.88	8				
Gradient: length ratio, wgt 0.5	0.83	0.85	0.57	0.93	0.87	0.86	0.35	5 0.3	2 0.7	7 0.3	5 0.4	8 0.99	9 0.90	5 0.80	6 0.66	5			
Gradient: length ratio, wgt 1.0	0.67	0.68	0.43	0.78	0.73	0.71	0.33	3 0.2	8 0.6	6 0.3	1 0.4	6 0.8	8 0.89	0.88	8 0.81	0.88			
Gradient: length ratio, wgt 1.5	0.31	0.30	0.23	0.39	0.29	0.38	3 0.16	5 0.1	1 0.3	6 0.2	5 0.2	8 0.50	0 0.52	2 0.63	3 0.75	5 0.52	0.74		
Gradient:length ratio, wgt 2.0	0.11	0.08	0.08	3 0.16	0.07	0.16	6 0.07	7 0.0	3 0.1	8 0.0	7 0.1	7 0.22	7 0.28	3 0.40	0.60	0.29	0.52	0.93	

APPENDIX M:

SINGLE-VARIABLE MODEL COMPARISON FOR WATERSHED-SCALE PREDICTORS

Appendix M.1. Macroinvertebrate richness models with total impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both ba	ands				Very-low	band				Low ba	ind			
Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	w
Natural characteristics					Natural characteristics					Natural characteristics				
Sand and gravel	276.414	277.557	0.000	0.269	Sand and gravel	137.449	140.116	0.000	0.296	Sand and gravel	143.211	145.878	0.000	0.224
Drainage area	276.540	277.683	0.126	0.253	Min annual monthly min temp	137.483	140.149	0.034	0.291	Max annual monthly max temp	143.350	146.017	0.139	0.209
Min annual monthly min temp	276.543	277.686	0.129	0.252	Drainage area	138.900	141.567	1.452	0.143	Drainage area	143.465	146.131	0.253	0.197
Precipitation, mean	278.127	279.270	1.713	0.114	Max annual monthly max temp	139.010	141.676	1.561	0.136	Min annual monthly min temp	143.571	146.238	0.360	0.187
Max annual monthly max temp	278.191	279.334	1.777	0.111	Precipitation, mean	139.056	141.723	1.608	0.133	Precipitation, mean	143.598	146.265	0.386	0.184
Land cover					Land cover					Land cover				
Agriculture, 1992	274.729	275.871	0.000	0.481	Agriculture, 1992	134.602	137.268	0.000	0.554	Open Water, 2011	141.339	144.005	0.000	0.403
Wetland, 2011	276.579	277.722	1.851	0.191	Wetland, 2011	135.816	138.483	1.214	0.302	Agriculture, 1992	142.976	145.642	1.637	0.178
Open Water, 2011	276.767	277.910	2.038	0.174	Agriculture, 2011	138.094	140.761	3.493	0.097	Agriculture, 2011	143.218	145.885	1.880	0.158
Agriculture, 2011	278.293	279.436	3.565	0.081	Forest, 2011	140.759	143.426	6.158	0.025	Wetland, 2011	143.533	146.200	2.195	0.135
Forest, 2011	278.491	279.634	3.763	0.073	Open Water, 2011	141.043	143.710	6.441	0.022	Forest, 2011	143.655	146.321	2.316	0.127
Flow alteration					Flow alteration					Flow alteration				
Flow altered, Aug	276.570	277.713	0.000	0.438	Flow altered, Aug	138.059	140.726	0.000	0.556	Flow altered, Aug	142.732	145.399	0.000	0.306
Flow percent dif, Aug	277.959	279.102	1.389	0.219	Longest undammed flow path	140.229	142.896	2.170	0.188	Flow percent dif, Aug	142.745	145.412	0.013	0.304
Dams, per drainage area	278.406	279.549	1.836	0.175	Flow percent dif, Aug	140.864	143.530	2.804	0.137	Dams, per drainage area	143.600	146.267	0.868	0.198
Longest undammed flow path	278.480	279.623	1.910	0.169	Dams, per drainage area	141.127	143.794	3.068	0.120	Longest undammed flow path	143.654	146.321	0.922	0.193
Other urban measures					Other urban measures					Other urban measures				
Impervious, buffer, 10m-res	274.924	276.066	0.000	0.350	Housing density	135.814	138.481	0.000	0.378	Housing density	137.501	140.167	0.000	0.688
Road crossings, total	276.682	277.824	1.758	0.145	Road crossings, density	137.143	139.810	1.329	0.194	Gradient:length ratio, wgt 2.0	142.120	144.787	4.620	0.068
Road crossings, density	277.192	278.335	2.269	0.113	Impervious, buffer, 10m-res	137.790	140.456	1.975	0.141	Flow length, wgt 2.0	142.837	145.504	5.337	0.048
Flow length, wgt 2.0	277.409	278.552	2.486	0.101	Road density	138.915	141.582	3.101	0.080	Impervious, buffer, 10m-res	142.857	145.524	5.356	0.047
Road density	277.779	278.922	2.855	0.084	Flow length, wgt 2.0	139.307	141.974	3.493	0.066	Impervious, 2006 to 2011 dif	143.102	145.769	5.601	0.042
Gradient:length ratio, wgt 2.0	277.907	279.050	2.984	0.079	Road crossings, total	139.704	142.370	3.889	0.054	Road crossings, total	143.205	145.872	5.704	0.040
Impervious, 2006 to 2011 dif	278.168	279.311	3.245	0.069	Impervious, 2006 to 2011 dif	139.787	142.453	3.972	0.052	Road density	143.433	146.100	5.933	0.035
Housing density	278.494	279.637	3.571	0.059	Gradient:length ratio, wgt 2.0	140.548	143.215	4.734	0.035	Road crossings, density	143.645	146.312	6.145	0.032

Appendix M.2. Fish richness models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both ba	ands				Very-low	band				Low ba	nd			
Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W
Natural characteristics					Natural characteristics					Natural characteristics				
Drainage area	176.435	177.102	0.000	0.565	Max annual monthly max temp	90.418	91.918	0.000	0.285	Min annual monthly min temp	88.754	90.254	0.000	0.271
Min annual monthly min temp	179.063	179.730	2.629	0.152	Drainage area	90.909	92.409	0.491	0.223	Drainage area	88.982	90.482	0.228	0.242
Max annual monthly max temp	179.955	180.621	3.520	0.097	Precipitation, mean	90.918	92.418	0.500	0.222	Max annual monthly max temp	89.248	90.748	0.495	0.212
Sand and gravel	180.021	180.688	3.587	0.094	Sand and gravel	91.564	93.064	1.146	0.160	Precipitation, mean	90.080	91.580	1.327	0.140
Precipitation, mean	180.053	180.720	3.618	0.092	Min annual monthly min temp	92.305	93.805	1.887	0.111	Sand and gravel	90.155	91.655	1.401	0.135
Land cover					Land cover					Land cover				
Forest, 2011	177.512	178.178	0.000	0.375	Agriculture, 2011	91.205	92.705	0.000	0.300	Forest, 2011	89.352	90.852	0.000	0.322
Agriculture, 1992	178.204	178.871	0.693	0.265	Agriculture, 1992	91.855	93.355	0.650	0.217	Agriculture, 1992	90.054	91.554	0.702	0.227
Agriculture, 2011	179.398	180.065	1.887	0.146	Forest, 2011	92.192	93.692	0.987	0.183	Open Water, 2011	90.797	92.297	1.445	0.156
Wetland, 2011	179.970	180.637	2.459	0.110	Open Water, 2011	92.586	94.086	1.381	0.150	Wetland, 2011	90.915	92.415	1.563	0.147
Open Water, 2011	180.056	180.722	2.544	0.105	Wetland, 2011	92.593	94.093	1.388	0.150	Agriculture, 2011	90.920	92.420	1.568	0.147
Flow alteration					Flow alteration					Flow alteration				
Longest undammed flow path	179.484	180.150	0.000	0.271	Flow altered, Aug	89.434	90.934	0.000	0.450	Longest undammed flow path	89.895	91.395	0.000	0.339
Dams, per drainage area	179.629	180.296	0.145	0.252	Flow percent dif, Aug	90.079	91.579	0.646	0.326	Flow percent dif, Aug	90.485	91.985	0.590	0.253
Flow altered, Aug	179.648	180.315	0.164	0.249	Dams, per drainage area	92.068	93.568	2.634	0.121	Dams, per drainage area	90.904	92.404	1.009	0.205
Flow percent dif, Aug	179.820	180.487	0.336	0.229	Longest undammed flow path	92.376	93.876	2.943	0.103	Flow altered, Aug	90.919	92.419	1.024	0.203
Other urban measures					Other urban measures					Other urban measures				
Road crossings, total	178.237	178.904	0.000	0.207	Gradient:length ratio, wgt 2.0	91.600	93.100	0.000	0.168	Impervious, buffer, 10m-res	88.262	89.762	0.000	0.247
Impervious, buffer, 10m-res	178.269	178.936	0.032	0.204	Flow length, wgt 2.0	91.721	93.221	0.121	0.158	Housing density	88.263	89.763	0.001	0.247
Housing density	178.717	179.384	0.480	0.163	Impervious, 2006 to 2011 dif	92.123	93.623	0.523	0.129	Road crossings, total	89.661	91.161	1.399	0.123
Flow length, wgt 2.0	179.935	180.601	1.697	0.089	Road crossings, total	92.220	93.720	0.621	0.123	Gradient:length ratio, wgt 2.0	90.260	91.760	1.998	0.091
Gradient:length ratio, wgt 2.0	180.026	180.693	1.789	0.085	Road crossings, density	92.317	93.817	0.718	0.117	Road crossings, density	90.409	91.909	2.147	0.085
Road density	180.033	180.699	1.795	0.085	Impervious, buffer, 10m-res	92.587	94.087	0.987	0.102	Flow length, wgt 2.0	90.694	92.194	2.432	0.073
Impervious, 2006 to 2011 dif	180.049	180.715	1.811	0.084	Housing density	92.596	94.096	0.996	0.102	Road density	90.853	92.353	2.591	0.068
Road crossings, density	180.056	180.723	1.819	0.084	Road density	92.598	94.098	0.998	0.102	Impervious, 2006 to 2011 dif	90.911	92.411	2.649	0.066

Appendix M.3. Macroinvertebrate flow traits models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both ba	inds				Very-low	band				Low ba	nd			
Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	w
Natural characteristics					Natural characteristics					Natural characteristics				
Sand and gravel	198.076	199.219	0.000	0.244	Min annual monthly min temp	87.651	90.317	0.000	0.571	Min annual monthly min temp	104.360	107.027	0.000	0.422
Max annual monthly max temp	198.396	199.539	0.320	0.208	Max annual monthly max temp	90.187	92.854	2.537	0.161	Sand and gravel	105.819	108.486	1.459	0.204
Drainage area	198.594	199.736	0.517	0.188	Precipitation, mean	90.735	93.402	3.085	0.122	Max annual monthly max temp	106.772	109.439	2.412	0.126
Precipitation, mean	198.607	199.750	0.531	0.187	Drainage area	91.718	94.385	4.067	0.075	Precipitation, mean	106.811	109.477	2.450	0.124
Min annual monthly min temp	198.763	199.906	0.687	0.173	Sand and gravel	91.803	94.470	4.153	0.072	Drainage area	106.818	109.484	2.457	0.124
Land cover					Land cover					Land cover				
Open Water, 2011	192.227	193.370	0.000	0.851	Wetland, 2011	89.594	92.261	0.000	0.346	Open Water, 2011	101.686	104.352	0.000	0.614
Agriculture, 1992	197.918	199.061	5.691	0.049	Agriculture, 1992	90.261	92.928	0.666	0.248	Wetland, 2011	103.653	106.320	1.968	0.230
Wetland, 2011	198.663	199.806	6.436	0.034	Forest, 2011	91.043	93.710	1.449	0.168	Agriculture, 1992	106.518	109.185	4.832	0.055
Forest, 2011	198.740	199.883	6.513	0.033	Open Water, 2011	91.675	94.342	2.081	0.122	Forest, 2011	106.556	109.223	4.871	0.054
Agriculture, 2011	198.758	199.901	6.532	0.032	Agriculture, 2011	91.765	94.432	2.171	0.117	Agriculture, 2011	106.780	109.446	5.094	0.048
Flow alteration					Flow alteration					Flow alteration				
Dams, per drainage area	194.531	195.674	0.000	0.612	Dams, per drainage area	91.530	94.197	0.000	0.268	Dams, per drainage area	103.144	105.811	0.000	0.579
Longest undammed flow path	197.140	198.283	2.609	0.166	Flow altered, Aug	91.602	94.269	0.072	0.259	Longest undammed flow path	105.373	108.040	2.229	0.190
Flow percent dif, Aug	197.488	198.631	2.957	0.139	Longest undammed flow path	91.753	94.420	0.223	0.240	Flow percent dif, Aug	106.274	108.941	3.130	0.121
Flow altered, Aug	198.532	199.675	4.001	0.083	Flow percent dif, Aug	91.809	94.475	0.279	0.233	Flow altered, Aug	106.479	109.146	3.335	0.109
Other urban measures					Other urban measures					Other urban measures				
Impervious, 2006 to 2011 dif	196.793	197.936	0.000	0.229	Housing density	90.147	92.814	0.000	0.212	Housing density	104.144	106.810	0.000	0.290
Gradient:length ratio, wgt 2.0	197.617	198.760	0.824	0.152	Road crossings, density	90.987	93.654	0.839	0.139	Impervious, 2006 to 2011 dif	105.252	107.919	1.109	0.167
Flow length, wgt 2.0	197.703	198.846	0.911	0.145	Impervious, buffer, 10m-res	91.141	93.808	0.994	0.129	Flow length, wgt 2.0	106.154	108.820	2.010	0.106
Housing density	198.486	199.628	1.693	0.098	Gradient:length ratio, wgt 2.0	91.273	93.940	1.126	0.121	Gradient:length ratio, wgt 2.0	106.155	108.821	2.011	0.106
Road density	198.500	199.643	1.708	0.098	Road density	91.467	94.134	1.320	0.110	Road crossings, total	106.588	109.255	2.444	0.086
Road crossings, density	198.523	199.666	1.731	0.097	Impervious, 2006 to 2011 dif	91.582	94.249	1.434	0.104	Impervious, buffer, 10m-res	106.634	109.301	2.490	0.084
Road crossings, total	198.540	199.682	1.747	0.096	Flow length, wgt 2.0	91.772	94.439	1.625	0.094	Road crossings, density	106.639	109.305	2.495	0.083
Impervious, buffer, 10m-res	198.769	199.912	1.977	0.085	Road crossings, total	91.839	94.505	1.691	0.091	Road density	106.779	109.445	2.635	0.078

Appendix M.4. Fish flow traits models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both ba	nds				Very-low	band				Low ba	nd			
Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	w	Group Predictor	AIC	AICc	ΔAICc	w
Natural characteristics					Natural characteristics					Natural characteristics				
Min annual monthly min temp	163.226	164.369	0.000	0.991	Min annual monthly min temp	89.184	91.851	0.000	0.781	Min annual monthly min temp	73.109	75.775	0.000	0.888
Max annual monthly max temp	173.697	174.840	10.471	0.005	Max annual monthly max temp	93.217	95.884	4.033	0.104	Max annual monthly max temp	78.595	81.261	5.486	0.057
Sand and gravel	175.943	177.085	12.717	0.002	Sand and gravel	93.660	96.327	4.476	0.083	Drainage area	80.131	82.797	7.022	0.027
Drainage area	176.404	177.547	13.178	0.001	Precipitation, mean	96.909	99.575	7.724	0.016	Precipitation, mean	81.256	83.923	8.147	0.015
Precipitation, mean	177.481	178.624	14.255	0.001	Drainage area	97.044	99.711	7.860	0.015	Sand and gravel	81.492	84.159	8.383	0.013
Land cover					Land cover					Land cover				
Wetland, 2011	171.028	172.171	0.000	0.604	Wetland, 2011	91.342	94.008	0.000	0.584	Wetland, 2011	78.761	81.428	0.000	0.315
Forest, 2011	173.230	174.373	2.202	0.201	Agriculture, 1992	94.064	96.731	2.723	0.150	Forest, 2011	78.906	81.573	0.145	0.293
Open Water, 2011	173.981	175.124	2.953	0.138	Forest, 2011	94.249	96.915	2.907	0.136	Open Water, 2011	79.781	82.448	1.020	0.189
Agriculture, 1992	177.034	178.176	6.006	0.030	Open Water, 2011	95.117	97.784	3.775	0.088	Agriculture, 2011	80.528	83.195	1.767	0.130
Agriculture, 2011	177.212	178.355	6.184	0.027	Agriculture, 2011	96.624	99.291	5.283	0.042	Agriculture, 1992	81.682	84.348	2.921	0.073
Flow alteration					Flow alteration					Flow alteration				
Dams, per drainage area	161.707	162.849	0.000	0.944	Dams, per drainage area	91.668	94.335	0.000	0.684	Flow percent dif, Aug	68.737	71.404	0.000	0.599
Flow percent dif, Aug	167.914	169.057	6.208	0.042	Flow percent dif, Aug	94.295	96.962	2.627	0.184	Flow altered, Aug	70.749	73.416	2.012	0.219
Flow altered, Aug	170.196	171.339	8.489	0.014	Longest undammed flow path	96.199	98.866	4.531	0.071	Dams, per drainage area	71.121	73.788	2.385	0.182
Longest undammed flow path	176.485	177.628	14.778	0.001	Flow altered, Aug	96.521	99.188	4.853	0.060	Longest undammed flow path	81.561	84.228	12.824	0.001
Other urban measures					Other urban measures					Other urban measures				
Flow length, wgt 2.0	165.461	166.604	0.000	0.573	Road crossings, density	91.877	94.543	0.000	0.409	Flow length, wgt 2.0	72.015	74.682		0.484
Impervious, buffer, 10m-res	166.215	167.358	0.754	0.393	Gradient:length ratio, wgt 2.0	94.134	96.801	2.258	0.132	Impervious, buffer, 10m-res	72.911	75.577	0.895	0.309
Gradient:length ratio, wgt 2.0	172.000	173.143	6.539	0.022	Housing density	94.164	96.831	2.288	0.130	Gradient:length ratio, wgt 2.0	74.078	76.744	2.062	0.173
Road crossings, total	174.945	176.088	9.484	0.005	Road density	95.114	97.781	3.237	0.081	Housing density	79.309	81.975	7.294	0.013
Road crossings, density	176.340	177.483	10.879	0.002	Impervious, buffer, 10m-res	95.157	97.824	3.280	0.079	Road crossings, total	80.439	83.105	8.423	0.007
Impervious, 2006 to 2011 dif	176.733	177.876	11.272	0.002	Impervious, 2006 to 2011 dif	95.261	97.928	3.385	0.075	Impervious, 2006 to 2011 dif	80.623	83.289	8.608	0.007
Road density	176.915	178.057	11.453	0.002	Road crossings, total	95.654	98.320	3.777	0.062	Road crossings, density	81.706	84.373	9.691	0.004
Housing density	177.480	178.623	12.019	0.001	Flow length, wgt 2.0	96.969	99.636	5.092	0.032	Road density	81.708	84.374	9.692	0.004

Appendix M.5. Macroinvertebrate thermal traits models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both ba	ands				Very-low	band				Low ba	ınd			
Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	w
Natural characteristics					Natural characteristics					Natural characteristics				
Drainage area	174.856	175.999	0.000	0.457	Sand and gravel	85.056	87.722	0.000	0.701	Drainage area	90.568	93.234	0.000	0.436
Sand and gravel	175.651	176.794	0.795	0.307	Drainage area	88.008	90.675	2.952	0.160	Precipitation, mean	92.610	95.277	2.043	0.157
Min annual monthly min temp	177.934	179.077	3.078	0.098	Min annual monthly min temp	90.181	92.848	5.125	0.054	Min annual monthly min temp	92.833	95.500	2.266	0.140
Precipitation, mean	178.604	179.746	3.747	0.070	Max annual monthly max temp	90.466	93.133	5.410	0.047	Sand and gravel	92.856	95.522	2.288	0.139
Max annual monthly max temp	178.652	179.795	3.796	0.068	Precipitation, mean	90.926	93.593	5.871	0.037	Max annual monthly max temp	93.016	95.683	2.449	0.128
Land cover					Land cover					Land cover				
Open Water, 2011	166.502	167.644	0.000	0.983	Open Water, 2011	84.740	87.407	0.000	0.578	Open Water, 2011	85.666	88.333	0.000	0.907
Wetland, 2011	175.859	177.002	9.357	0.009	Wetland, 2011	86.394	89.061	1.654	0.253	Wetland, 2011	92.656	95.323	6.990	0.028
Agriculture, 1992	178.030	179.172	11.528	0.003	Forest, 2011	88.061	90.728	3.321	0.110	Forest, 2011	93.058	95.724	7.391	0.023
Agriculture, 2011	178.434	179.577	11.933	0.003	Agriculture, 1992	90.529	93.196	5.789	0.032	Agriculture, 1992	93.136	95.803	7.470	0.022
Forest, 2011	178.495	179.638	11.993	0.002	Agriculture, 2011	90.865	93.531	6.124	0.027	Agriculture, 2011	93.163	95.829	7.497	0.021
Flow alteration					Flow alteration					Flow alteration				
Dams, per drainage area	170.906	172.049	0.000	0.921	Dams, per drainage area	82.421	85.088	0.000	0.924	Dams, per drainage area	90.740	93.407	0.000	0.423
Longest undammed flow path	177.557	178.700	6.651	0.033	Flow percent dif, Aug	88.292	90.958	5.870	0.049	Flow altered, Aug	91.947	94.614	1.207	0.231
Flow altered, Aug	177.998	179.141	7.092	0.027	Longest undammed flow path	90.779	93.445	8.357	0.014	Longest undammed flow path	92.206	94.872	1.465	0.203
Flow percent dif, Aug	178.646	179.789	7.740	0.019	Flow altered, Aug	91.023	93.690	8.601	0.013	Flow percent dif, Aug	92.917	95.584	2.177	0.142
Other urban measures					Other urban measures					Other urban measures				
Road crossings, total	170.385	171.527	0.000	0.836	Road crossings, total	82.507	85.173	0.000	0.714	Road density	90.811	93.478	0.000	0.219
Road crossings, density	176.787	177.930	6.403	0.034	Road density	86.171	88.838	3.665	0.114	Road crossings, total	91.039	93.706	0.228	0.196
Impervious, 2006 to 2011 dif	176.904	178.047	6.520	0.032	Housing density	87.369	90.036	4.863	0.063	Impervious, 2006 to 2011 dif	91.244	93.911	0.433	0.176
Impervious, buffer, 10m-res	177.279	178.422	6.894	0.027	Road crossings, density	88.530	91.197	6.024	0.035	Impervious, buffer, 10m-res	91.732	94.399	0.921	0.138
Housing density	177.707	178.850	7.323	0.021	Flow length, wgt 2.0	89.347	92.014	6.841	0.023	Flow length, wgt 2.0	93.142	95.809	2.331	0.068
Road density	177.853	178.995	7.468	0.020	Gradient:length ratio, wgt 2.0	89.603	92.269	7.096	0.021	Housing density	93.146	95.813	2.335	0.068
Flow length, wgt 2.0	178.414	179.557	8.030	0.015	Impervious, 2006 to 2011 dif	89.639	92.306	7.133	0.020	Gradient:length ratio, wgt 2.0	93.180	95.846	2.368	0.067
Gradient:length ratio, wgt 2.0	178.430	179.573	8.045	0.015	Impervious, buffer, 10m-res	91.004	93.670	8.497	0.010	Road crossings, density	93.181	95.848	2.370	0.067

Appendix M.6. Fish thermal traits models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both ba	nds				Very-low	band				Low ba	nd			
Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	w
Natural characteristics					Natural characteristics					Natural characteristics				
Min annual monthly min temp	149.030	150.173	0.000	0.969	Min annual monthly min temp	93.813	96.480	0.000	0.977	Min annual monthly min temp	56.874	59.540	0.000	0.476
Precipitation, mean	157.537	158.679	8.506	0.014	Precipitation, mean	103.268	105.935	9.455	0.009	Max annual monthly max temp	58.714	61.380	1.840	0.190
Max annual monthly max temp	158.912	160.055	9.882	0.007	Max annual monthly max temp	103.566	106.233	9.753	0.007	Drainage area	59.295	61.962	2.421	0.142
Drainage area	159.164	160.306	10.133	0.006	Sand and gravel	105.032	107.699	11.219	0.004	Precipitation, mean	59.956	62.622	3.082	0.102
Sand and gravel	159.877	161.020	10.847	0.004	Drainage area	105.419	108.086	11.607	0.003	Sand and gravel	60.175	62.842	3.301	0.091
Land cover					Land cover					Land cover				
Wetland, 2011	156.702	157.845	0.000	0.415	Forest, 2011	96.346	99.013	0.000	0.817	Agriculture, 1992	58.246	60.913	0.000	0.359
Agriculture, 1992	157.410	158.553	0.708	0.291	Wetland, 2011	99.803	102.470	3.457	0.145	Agriculture, 2011	59.633	62.300	1.387	0.179
Forest, 2011	159.339	160.482	2.637	0.111	Open Water, 2011	104.315	106.982	7.970	0.015	Forest, 2011	59.733	62.399	1.486	0.171
Open Water, 2011	159.490	160.633	2.788	0.103	Agriculture, 2011	104.366	107.033	8.020	0.015	Wetland, 2011	59.994	62.660	1.747	0.150
Agriculture, 2011	160.009	161.152	3.307	0.079	Agriculture, 1992	105.608	108.275	9.262	0.008	Open Water, 2011	60.111	62.777	1.864	0.141
Flow alteration					Flow alteration					Flow alteration				
Dams, per drainage area	157.424	158.567	0.000	0.382	Flow percent dif, Aug	101.555	104.222	0.000	0.559	Longest undammed flow path	59.008	61.675	0.000	0.335
Longest undammed flow path	158.201	159.344	0.777	0.259	Dams, per drainage area	102.973	105.640	1.418	0.275	Dams, per drainage area	59.374	62.040	0.366	0.279
Flow percent dif, Aug	158.403	159.546	0.979	0.234	Longest undammed flow path	105.244	107.911	3.689	0.088	Flow percent dif, Aug	60.044	62.711	1.037	0.200
Flow altered, Aug	159.656	160.798	2.231	0.125	Flow altered, Aug	105.525	108.191	3.969	0.077	Flow altered, Aug	60.182	62.848	1.174	0.186
Other urban measures					Other urban measures					Other urban measures				
Impervious, buffer, 10m-res	156.609	157.752	0.000	0.403	Gradient:length ratio, wgt 2.0	102.283	104.949	0.000	0.312	Impervious, buffer, 10m-res	55.769	58.436	0.000	0.500
Road crossings, total	158.877	160.020	2.268	0.130	Impervious, 2006 to 2011 dif	102.683	105.350	0.400	0.256	Road crossings, density	58.706	61.373	2.937	0.115
Flow length, wgt 2.0	159.699	160.842	3.090	0.086	Housing density	104.443	107.109	2.160	0.106	Housing density	59.091	61.758	3.322	0.095
Road density	159.867	161.010	3.258	0.079	Road crossings, total	104.848	107.514	2.565	0.087	Gradient:length ratio, wgt 2.0	59.995	62.662	4.226	0.060
Gradient:length ratio, wgt 2.0	159.876	161.018	3.267	0.079	Flow length, wgt 2.0	105.330	107.997	3.048	0.068	Road crossings, total	60.056	62.722	4.286	0.059
Road crossings, density	159.941	161.083	3.332	0.076	Impervious, buffer, 10m-res	105.527	108.194	3.244	0.062	Impervious, 2006 to 2011 dif	60.091	62.758	4.322	0.058
Impervious, 2006 to 2011 dif	159.991	161.134	3.382	0.074	Road density	105.759	108.426	3.476	0.055	Road density	60.097	62.764	4.328	0.057
Housing density	160.034	161.177	3.425	0.073	Road crossings, density	105.782	108.449	3.499	0.054	Flow length, wgt 2.0	60.171	62.838	4.402	0.055

Appendix M.7. Macroinvertebrate tolerance index models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both ba	unds				Very-low	band				Low ba	ind			
Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W
Natural characteristics					Natural characteristics					Natural characteristics				
Min annual monthly min temp	104.431	105.574	0.000	0.824	Min annual monthly min temp	43.858	46.525	0.000	0.984	Precipitation, mean	53.891	56.557	0.000	0.542
Sand and gravel	109.044	110.187	4.613	0.082	Max annual monthly max temp	52.428	55.095	8.570	0.014	Sand and gravel	55.130	57.797	1.240	0.291
Max annual monthly max temp	109.256	110.399	4.825	0.074	Sand and gravel	57.465	60.131	13.607	0.001	Drainage area	58.210	60.877	4.320	0.062
Precipitation, mean	112.980	114.123	8.549	0.011	Precipitation, mean	58.928	61.595	15.070	0.001	Min annual monthly min temp	58.419	61.086	4.529	0.056
Drainage area	113.560	114.702	9.129	0.009	Drainage area	59.287	61.954	15.429	0.000	Max annual monthly max temp	58.729	61.396	4.839	0.048
Land cover					Land cover					Land cover				
Forest, 2011	107.975	109.118	0.000	0.500	Wetland, 2011	56.012	58.678	0.000	0.403	Forest, 2011	55.477	58.144	0.000	0.389
Wetland, 2011	109.075	110.218	1.100	0.288	Forest, 2011	56.562	59.229	0.551	0.306	Agriculture, 2011	56.153	58.819	0.676	0.277
Agriculture, 2011	110.466	111.609	2.491	0.144	Agriculture, 1992	58.543	61.209	2.531	0.114	Agriculture, 1992	57.666	60.333	2.189	0.130
Open Water, 2011	113.313	114.456	5.338	0.035	Agriculture, 2011	58.958	61.625	2.946	0.092	Wetland, 2011	57.826	60.493	2.349	0.120
Agriculture, 1992	113.381	114.524	5.406	0.033	Open Water, 2011	59.117	61.784	3.105	0.085	Open Water, 2011	58.543	61.210	3.066	0.084
Flow alteration					Flow alteration					Flow alteration				
Longest undammed flow path	112.374	113.517	0.000	0.366	Flow percent dif, Aug	58.561	61.228	0.000	0.312	Longest undammed flow path	58.027	60.694	0.000	0.321
Dams, per drainage area	113.357	114.499	0.983	0.224	Dams, per drainage area	58.642	61.309	0.081	0.299	Flow percent dif, Aug	58.728	61.395	0.701	0.226
Flow percent dif, Aug	113.443	114.586	1.069	0.214	Longest undammed flow path	59.433	62.100	0.872	0.202	Dams, per drainage area	58.730	61.396	0.703	0.226
Flow altered, Aug	113.616	114.759	1.242	0.196	Flow altered, Aug	59.580	62.247	1.019	0.187	Flow altered, Aug	58.730	61.396	0.703	0.226
Other urban measures					Other urban measures					Other urban measures				
Impervious, buffer, 10m-res	111.693	112.836	0.000	0.238	Gradient:length ratio, wgt 2.0	51.020	53.687	0.000	0.873	Impervious, buffer, 10m-res	56.221	58.888	0.000	0.260
Housing density	112.594	113.737	0.902	0.152	Impervious, 2006 to 2011 dif	57.517	60.183	6.497	0.034	Impervious, 2006 to 2011 dif	56.578	59.245	0.357	0.218
Impervious, 2006 to 2011 dif	112.665	113.808	0.972	0.147	Housing density	58.238	60.905	7.218	0.024	Gradient:length ratio, wgt 2.0	58.249	60.916	2.028	0.094
Gradient:length ratio, wgt 2.0	113.408	114.551	1.715	0.101	Flow length, wgt 2.0	58.968	61.634	7.948	0.016	Road crossings, total	58.289	60.956	2.068	0.093
Flow length, wgt 2.0	113.585	114.727	1.892	0.093	Road crossings, total	59.206	61.873	8.186	0.015	Flow length, wgt 2.0	58.315	60.981	2.093	0.091
Road crossings, density	113.644	114.787	1.951	0.090	Road crossings, density	59.323	61.990	8.303	0.014	Road density	58.340	61.007	2.119	0.090
Road density	113.647	114.790	1.954	0.090	Impervious, buffer, 10m-res	59.517	62.184	8.497	0.012	Road crossings, density	58.637	61.303	2.415	0.078
Road crossings, total	113.647	114.790	1.954	0.090	Road density	59.580	62.247	8.560	0.012	Housing density	58.681	61.347	2.459	0.076

Appendix M.8. Fish, intolerant models with impervious cover and one additional predictor. Model selection was performed with Akaike's Information Criterion (AIC), corrected for sample size and number of parameters (AICc; Burnham et al. 2011); model weights (*w*) were calculated relative to other models tested. Predictors with the lowest AICc (Δ AICc = 0) were used in the global model; predictors are indicated in bold. Impervious bands were tested together (both bands, *n* = 40) and separately (very-low band, 1–4%, *n* = 20; low band, 7–10%, *n* = 20).

Both ba	nds				Very-low	band				Low ba	nd			
Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W	Group Predictor	AIC	AICc	ΔAICc	W
Natural characteristics					Natural characteristics					Natural characteristics				
Min annual monthly min temp	129.614	130.757	0.000	0.384	Precipitation, mean	79.144	81.811	0.000	0.362	Max annual monthly max temp	52.360	55.027	0.000	0.358
Drainage area	130.115	131.258	0.501	0.298	Drainage area	79.624	82.291	0.480	0.285	Drainage area	52.893	55.560	0.533	0.274
Precipitation, mean	131.535	132.678	1.921	0.147	Min annual monthly min temp	80.686	83.353	1.542	0.167	Min annual monthly min temp	54.231	56.898	1.871	0.141
Max annual monthly max temp	132.525	133.668	2.911	0.089	Sand and gravel	81.597	84.264	2.453	0.106	Sand and gravel	54.628	57.295	2.268	0.115
Sand and gravel	132.706	133.849	3.092	0.082	Max annual monthly max temp	82.158	84.825	3.014	0.080	Precipitation, mean	54.693	57.359	2.332	0.112
Land cover					Land cover					Land cover				
Open Water, 2011	129.391	130.534	0.000	0.423	Forest, 2011	73.703	76.370	0.000	0.714	Wetland, 2011	53.173	55.840	0.000	0.301
Forest, 2011	130.903	132.046	1.512	0.199	Wetland, 2011	76.086	78.752	2.383	0.217	Open Water, 2011	53.915	56.582	0.742	0.208
Wetland, 2011	131.303	132.446	1.912	0.163	Open Water, 2011	79.380	82.047	5.677	0.042	Forest, 2011	53.927	56.593	0.754	0.207
Agriculture, 2011	132.092	133.235	2.701	0.110	Agriculture, 2011	81.638	84.305	7.935	0.014	Agriculture, 1992	54.345	57.011	1.172	0.168
Agriculture, 1992	132.149	133.292	2.758	0.106	Agriculture, 1992	81.663	84.329	7.960	0.013	Agriculture, 2011	55.074	57.741	1.901	0.116
Flow alteration					Flow alteration					Flow alteration				
Dams, per drainage area	129.838	130.981	0.000	0.470	Dams, per drainage area	80.030	82.697	0.000	0.423	Flow altered, Aug	52.977	55.643	0.000	0.380
Flow altered, Aug	130.832	131.975	0.994	0.286	Flow altered, Aug	80.551	83.218	0.521	0.326	Dams, per drainage area	53.791	56.457	0.814	0.253
Longest undammed flow path	132.470	133.613	2.633	0.126	Longest undammed flow path	82.433	85.100	2.403	0.127	Longest undammed flow path	54.184	56.851	1.207	0.208
Flow percent dif, Aug	132.585	133.727	2.747	0.119	Flow percent dif, Aug	82.481	85.148	2.451	0.124	Flow percent dif, Aug	54.729	57.395	1.752	0.158
Other urban measures					Other urban measures					Other urban measures				
Road crossings, total	128.263	129.406	0.000	0.407	Flow length, wgt 2.0	78.286	80.952	0.000	0.403	Housing density	50.384	53.050	0.000	0.488
Road crossings, density	129.668	130.811	1.405	0.201	Road crossings, total	80.111	82.777	1.825	0.162	Road crossings, total	52.499	55.165	2.115	0.169
Flow length, wgt 2.0	130.975	132.118	2.712	0.105	Road density	80.844	83.511	2.558	0.112	Flow length, wgt 2.0	54.338	57.004	3.954	0.068
Road density	131.538	132.681	3.275	0.079	Road crossings, density	81.387	84.054	3.101	0.086	Road density	54.385	57.052	4.001	0.066
Impervious, buffer, 10m-res	132.089	133.232	3.826	0.060	Impervious, buffer, 10m-res	81.658	84.325	3.373	0.075	Road crossings, density	54.587	57.254	4.203	0.060
Housing density	132.224	133.367	3.961	0.056	Gradient:length ratio, wgt 2.0	82.173	84.840	3.887	0.058	Impervious, 2006 to 2011 dif	54.823	57.490	4.439	0.053
Gradient:length ratio, wgt 2.0	132.606	133.749	4.343	0.046	Housing density	82.280	84.947	3.995	0.055	Impervious, buffer, 10m-res	54.975	57.641	4.591	0.049
Impervious, 2006 to 2011 dif	132.630	133.772	4.366	0.046	Impervious, 2006 to 2011 dif	82.484	85.151	4.198	0.049	Gradient:length ratio, wgt 2.0	55.058	57.725	4.674	0.047

APPENDIX N:

EQUALLY PLAUSIBLE MODELS FROM ALL-SUBSETS GLMS AND GLMMS WITH WATERSHED-SCALE PREDICTORS Appendix N. Equally plausible models from all subsets modeling. All subsets of GLMs and GLMMs were run with impervious and the top four predictors from each predictor category for each biotic response variable and for each impervious band. Equally plausible models are those within < 2 Δ AICc units. The variance explained by each model was calculated with R² for macroinvertebrate richness and macroinvertebrate tolerance (GLM with Gaussian distribution); pseudo-R² for fish richness (GLM with Poisson distribution); and conditional-R² for relative abundances of macroinvertebrate flow traits, fluvial fish, coldwater macroinvertebrates, coldwater fishes, and intolerant fishes (GLMM with binomial distribution).

Netpoint Data Data Data Data Data Data Data Both bands 1 1.1 1.4 21.1 21.1 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 1.1 22.0 0.005 0.207 8.1 0.205 0.207 8.1 0.207 0.005 0.207 8.1 0.201 S.3.6 0.259 1.773 0.101 23.2 0.274.224 0.000 0.207 0.133 0.223 0.277 8.1 0.279 0.001 0.207 8.3 0.223 0.277 8.3 0.223 0.277 0.3 0.277 0.3 0.277 0.3 0.277 0.3 0.277 0.3 0.223 0.277	Response	Band Rank Variables	n	df	AICc	ΔAICc	w	R2
Macroinvertebrate richness I.C.2011 + Agriculture.1992 + pctImp.Buffer.10m 4 4 274.770 0.000 0.114 0.238 I.C.2011 + Agriculture.1992 + pctImp.Buffer.10m 40 4 275.596 0.620 0.033 0.077 I.C.2011 + Agriculture.1992 + Agriculture.1992 + pctImp.Buffer.10m 40 3 275.591 0.821 0.076 I.C.2011 + SandGravel.pet + Agriculture.1992 + pctImp.Buffer.10m 40 4 276.466 1.650 0.030 0.027 I.C.2011 + SandGravel.pet + Agriculture.1992 40 4 276.466 1.660 0.030 0.027 I.C.2011 + SandGravel.pet + Agriculture.1992 20 2 274.527 1.603 0.030 0.020 I.C.2011 + SandGravel.pet + Agriculture.1992 20 2 274.527 1.603 0.030 0.021 I.C.2011 + SandGravel.pet + Agriculture.1992 20 2 274.527 1.603 0.030 0.021 I.C.2011 + SandGravel.pet 20 2 274.527 1.603 0.030 0.223 I.C.2011 + SandGravel.pet 2 <th></th> <th>Daild Railk Valiables</th> <th>п</th> <th>ui</th> <th>AICC</th> <th>DAICC</th> <th>w</th> <th>K2</th>		Daild Railk Valiables	п	ui	AICC	DAICC	w	K2
Both bands view		roinvertebrate richness						
1 1 1.1C.2011 + Agriculture.1992 + pclmp.Buffer.10m 40 4 2.75.396 0.329 0.0329 0.232 3 1.C.2011 + Agriculture.1992 + AugAlt.cms 40 4 2.75.396 0.626 0.833 0.177 4 1C.2011 + Agriculture.1992 + AugAlt.cms + pctmp.Buffer.10m 40 3 2.75.396 0.821 0.056 0.176 6 IC.2011 + SandGravel_pct + Agriculture.1992 + pctmp.Buffer.10m 40 5 2.76.478 1.508 0.050 0.207 8 IC.2011 + SandGravel_pct + Agriculture.1992 40 4 2.76.466 1.666 0.049 0.205 Low band 1 Agriculture.1992 20 2 2.74.924 0.000 0.207 0.183 3 IC.2011 + Agriculture.1992 20 2 2.76.527 1.603 0.093 0.020 1 1.2011 + Agriculture.1992 20 2 2.76.527 1.603 0.020 0.120 0.020 0.120 0.020 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.126	Witter							
2 IC.2011 + Agriculture.1992 40 3 275.096 0.626 0.083 0.177 4 IC.2011 + pctImp,Buffer.10m 40 3 275.591 0.821 0.075 0.173 5 IC.2011 + SandGravel_pct + Agriculture.1992 + pctImp.Buffer.10m 40 5 275.542 1.72 0.063 0.026 6 IC.2011 + SandGravel_pct + pctImp.Buffer.10m 40 5 276.406 1.636 0.059 0.207 8 IC.2011 + SandGravel_pct + Agriculture.1992 40 4 276.406 1.636 0.090 0.207 8 IC.2011 + SandGravel_pct + Agriculture.1992 20 2 274.924 0.000 0.207 1.183 2 IC.2011 + Agriculture.1992 20 2 274.924 0.000 0.207 1.183 3 IC.2011 + Agriculture.1992 20 2 274.924 0.000 0.207 1.183 2 OpenWater.2011 20 2 274.924 0.000 0.207 0.118 2 OpenWater.2011 20 2 278.283 0.000 0.210			40	4	274 770	0.000	0 114	0.238
3 IC.2011 + Agriculture.1992 40 3 275.396 0.626 0.083 0.177 4 IC.2011 + Agriculture.1992 + AugAlt.cms + pclimp.Buffer.10m 40 3 275.391 0.120 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.070 8 IC.2011 + SandGravel_pct + Agriculture.1992 40 4 276.406 1.660 0.049 0.205 Low band 1 Agriculture.1992 20 3 275.737 0.849 0.135 0.293 3 IC.2011 + Agriculture.1992 20 3 275.737 0.849 0.135 0.293 3 IC.2011 + Agriculture.1992 20 2 275.827 1.603 0.000 0.139 0.220 0.128 0.237 1.603 0.000 0.139 0.220 0.135 0.233 0.142 175.163 0.000 0.139 0.223 0.142 175.163 0.000 0.139 0.223 0.142 155.162 0.10								
4 IC 2011 + pct[mp,Buffer.10m 40 3 375.91 0.821 0.075 0.173 5 IC 2011 + Agriculture.1992 + AugAlt.cms + pctImp,Buffer.10m 40 5 275.942 1.172 0.063 0.266 7 IC 2011 + SandGravel_pct + pctImp,Buffer.10m 40 4 276.406 1.636 0.050 0.207 8 IC 2011 + SandGravel_pct + pctImp,Buffer.10m 40 4 276.406 1.636 0.050 0.207 1 Agriculture.1992 20 2 274.924 0.000 0.207 0.1183 2 IAgriculture.1992 20 2 275.577 0.849 0.120 3 IC 2011 + Agriculture.1992 20 2 275.577 0.849 0.120 2 0penWater.2011 20 2 275.878 0.000 0.210 0.012 2 0penWater.2011 20 2 275.878 1.774 0.899 0.121 2 1 1 1 1 6 1.771.07 0.81 0.121 2 0.000 0.121								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
6 IC.2011 + SandGraveLpet + Agriculture. 1992 + pctImp.Buffer.10m 40 5 276.278 1.508 0.050 0.259 7 IC.2011 + SandGraveLpet + pctImp.Buffer.10m 40 4 276.466 1.666 0.049 0.205 Low band 1 Agriculture.1992 20 2 274.924 0.00 0.207 0.183 2 IC.2011 + Agriculture.1992 20 3 275.773 0.849 0.135 0.293 3 IC.2011 3 andGraveLpet + Agriculture.1992 20 2 274.924 0.000 0.207 0.183 2 IC.2011 + Agriculture.1992 20 2 275.878 1.603 0.093 0.020 High band 1 SandGraveLpet 20 2 278.981 0.000 0.210 0.012 2 OpenWater.2011 20 2 279.978 1.074 0.089 0.423 2 IC.2011 + Area.sqkm 40 3 177.102 0.000 0.199 0.223 2 IC.2011 + Area.sqkm 40 3 177.102 0.000 0.139 0.223 2 IC.2011 + Area.sqkm 40 3 178.91 1.077 0.818 0.129 3 IC.2011 + Area.sqkm 40								
7 1C.2011 + SandGravel_pct + Agriculture.1992 40 4 276.466 1.636 0.050 0.207 8 1C.2011 + SandGravel_pct + Agriculture.1992 40 4 276.466 1.636 0.050 0.207 Low band 1 Agriculture.1992 20 2 274.924 0.000 0.207 0.183 2 1C.2011 + Agriculture.1992 20 3 275.773 0.849 0.103 0.020 High band 1 SandGravel_pct 20 2 278.283 0.000 0.210 0.012 2 OpenWater.2011 200 2 278.283 0.000 0.120 0.023 Fish richness 1 1C.2011 + Area.sqkm 40 3 177.102 0.000 0.139 0.223 2 1C.2011 + Area.sqkm 40 3 177.107 0.081 0.155 4 1C.2011 + Area.sqkm 40 3 178.179 1.067 0.012 3 1C.2011 + Area.sqkm 2 178.179 1.070 0.81 0.155 4 1C.2011 + Area.sqk								
8 IC.2011 + SandGravel_pct + Ågriculture.1992 40 4 276.466 1.696 0.049 0.205 Low band 1 Agriculture.1992 20 3 275.773 0.849 0.135 0.293 3 IC.2011 + Agriculture.1992 20 3 275.773 0.849 0.102 3 IC.2011 Agriculture.1992 20 2 278.283 0.000 0.210 4 BandGravel_pct 20 2 278.283 0.000 0.121 2 OpenWater.2011 20 2 278.283 0.000 0.122 2 OpenWater.2011 40 3 177.102 0.008 0.122 3 IC.2011 + Area.sqkm Forest.2011 40 4 17.467 0.365 0.116 0.279 3 IC.2011 + Area.sqkm + Forest.2011 40 4 17.467 0.365 0.116 0.279 3 IC.2011 + Area.sqkm + Forest.2011 40 3 178.179 1.077 0.081 0.155 4 IC.2011 + RoadCrossings 40 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Low band								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 Agriculture.1992	20	2	274.924	0.000	0.207	0.183
3 IC.2011 20 2 2 76.527 1.603 0.093 0.020 High band 1 3 andGravel_pct 20 2 2 78.283 0.000 0.210 0.012 2 OpenWater.2011 20 2 2 78.283 0.000 0.121 0.089 0.142 Fish richness 1 1.C.2011 + Area.sqkm 40 3 177.102 0.000 0.139 0.223 2 1.C.2011 + Area.sqkm + Forest.2011 40 4 178.179 1.077 0.081 0.152 4 IC.2011 + Forest.2011 40 3 178.179 1.077 0.081 0.153 4 IC.2011 + RoadCrossings 40 3 178.90 1.802 0.057 0.176 Low band 1 AugAlt.cms 20 2 88.370 0.000 0.163 0.224 2 TMax.maxC 20 2 89.383 1.013 0.098 0.148 3 Agriculture.2011 AugAlt.cms 20 2 89.383 1.013 0.099 0.224 5 AugAlt.cms + GLR2 20 <td< td=""><td></td><td></td><td>20</td><td></td><td></td><td></td><td></td><td></td></td<>			20					
High band 2 2.8.2.83 0.000 0.2.10 0.012 2 2.0.9.0.9 0.000 0.012 0.012 0.012 Fish richness 2 2.7.9.8 1.704 0.005 0.123 Both bands 1 1.7.01 0.000 0.131 0.232 2 1.6.2011 + Area.sqkm + Forest.2011 40 3 1.7.102 0.000 0.131 0.232 3 1.6.2011 + Area.sqkm + Forest.2011 40 3 1.7.102 0.014 0.7.14 4 1.6.2011 + RoadCrossings 40 3 1.7.104 0.02 0.077 0.181 5 1.6.2011 + RoadCrossings 40 3 1.7.104 0.02 0.077 0.161 Low band 1 Argiculture.2011 2 8.8.370 0.000 0.163 0.224 4 Agriculture.2011 4.9.4.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			20					
1 SandGravel_pct 20 2 278.283 0.000 0.012 2 OpenWater.2011 20 2 279.987 1.704 0.089 0.142 Fish richness Both bands 0 3 177.102 0.000 0.139 0.223 2 I.C.2011 + Area.sqkm 40 3 178.179 1.077 0.081 0.179 3 I.C.2011 + Forest.2011 40 4 178.179 1.077 0.081 0.128 4 I.C.2011 + Forest.2011 40 3 178.179 1.074 0.181 0.195 4 I.C.2011 + RoadCrossings 40 3 178.179 1.074 0.181 0.195 Low band 1 AugAlt.cms 20 2 8.370 0.000 0.163 0.224 2 TMax.maxC 20 2 89.753 1.383 0.082 0.330 4 Agriculture.2011 + AugAlt.cms 20 2 90.351 1.946 0.062 0.288 6 GLR2 20 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
2 OpenWater.2011 20 2 279.987 1.704 0.089 0.142 Fish richness Both bands 0.000 0.139 0.223 Both bands 1 IC.2011 + Area.sqkm + Forest.2011 40 4 177.467 0.365 0.116 0.279 3 IC.2011 + Forest.2011 40 3 178.179 1.077 0.081 0.128 5 IC.2011 + RoadCrossings 40 3 178.904 1.022 0.057 0.176 Low band 1 AugAlt.cms 20 2 89.373 1.033 0.028 0.242 3 Agriculture.2011 + AugAlt.cms 20 2 89.733 1.033 0.028 0.31 4 Agriculture.2011 20 3 90.316 1.946 0.062 0.288 6 GL2 0.211 + AugAlt.cms 20 3 90.316 1.946 0.062 0.288 6 GL2 0.211 + AugAlt.cms 21 9.0281 1.658			20	2	278.283	0.000	0.210	0.012
Fish richness Both bands I 1C.2011 + Area.sqkm + Forest.2011 40 3 177.102 0.000 0.139 0.223 3 IC.2011 + Area.sqkm + Forest.2011 40 4 177.467 0.365 0.116 0.279 3 IC.2011 + Forest.2011 40 3 178.179 1.077 0.081 0.195 4 IC.2011 + Forest.2011 40 3 178.179 1.077 0.081 0.195 5 IC.2011 + RoadCrossings 40 3 178.179 1.077 0.081 0.128 5 IC.2011 + RoadCrossings 40 3 178.81 1.279 0.074 0.128 6 IL.2011 RoadCrossings 40 3 178.804 1.30 0.098 0.148 3 Agriculture.2011 + AugAlt.cms 20 2 88.370 0.000 0.163 0.224 4 Agriculture.2011 + AugAlt.cms 20 3 90.316 1.946 0.062 0.288 6 GLR2 20 3 90.316 1.946 0.062 0.284 <td></td> <td></td> <td>20</td> <td></td> <td></td> <td>1.704</td> <td>0.089</td> <td>0.142</td>			20			1.704	0.089	0.142
1 IC.2011 + Area.sqkm + Forest.2011 40 3 177.102 0.000 0.139 0.223 2 IC.2011 + Area.sqkm + Forest.2011 40 4 177.467 0.365 0.116 0.279 3 IC.2011 + Forest.2011 40 3 178.179 1.077 0.081 0.195 5 IC.2011 + RoadCrossings 40 3 178.904 1.802 0.057 0.176 Low band 1 AugAlt.cms 20 2 88.370 0.000 0.163 0.224 2 TMax.maxC 20 2 89.383 1.013 0.098 0.148 3 Agriculture.2011 + AugAlt.cms 20 2 89.383 1.013 0.098 0.148 4 Agriculture.2011 20 2 90.351 1.981 0.060 0.075 High band 1 IC.2011 20 2 89.627 0.000 0.096 0.184 2 IC.2011 + pctImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + pctImp.	Fish							
2 IC.2011 + Area.sqkm + Forest.2011 40 4 177.467 0.365 0.116 0.279 3 IC.2011 + Forest.2011 40 3 178.179 1.077 0.081 0.195 4 IC.2011 + Forest.2011 40 2 178.381 1.279 0.074 0.128 5 IC.2011 + RoadCrossings 40 2 178.381 1.279 0.074 0.128 Low band 1 AugAlt.cms 20 2 88.370 0.000 0.163 0.224 2 TMax.maxC 20 2 89.383 1.013 0.098 0.148 3 Agriculture.2011 + AugAlt.cms 20 2 89.373 1.383 0.822 0.330 4 Agriculture.2011 20 2 90.028 1.658 0.071 0.099 5 AugAlt.cms + GLR2 20 3 90.316 1.946 0.062 0.228 6 GLR2 20 3 89.762 0.030 0.071 0.299 3 IC.2011 + pretImp.Buffer.10m 20 3 <td></td> <td>Both bands</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Both bands						
2 IC.2011 + Area.sqkm + Forest.2011 40 4 177.467 0.365 0.116 0.279 3 IC.2011 + Forest.2011 40 3 178.179 1.077 0.081 0.195 4 IC.2011 + Forest.2011 40 2 178.381 1.279 0.074 0.128 5 IC.2011 + RoadCrossings 40 2 178.381 1.279 0.074 0.128 Low band 1 AugAlt.cms 20 2 88.370 0.000 0.163 0.224 2 TMax.maxC 20 2 89.383 1.013 0.098 0.148 3 Agriculture.2011 + AugAlt.cms 20 2 89.373 1.383 0.822 0.330 4 Agriculture.2011 20 2 90.028 1.658 0.071 0.099 5 AugAlt.cms + GLR2 20 3 90.316 1.946 0.062 0.228 6 GLR2 20 3 89.762 0.030 0.071 0.299 3 IC.2011 + pretImp.Buffer.10m 20 3 <td></td> <td>1 IC.2011 + Area.sqkm</td> <td>40</td> <td>3</td> <td>177.102</td> <td>0.000</td> <td>0.139</td> <td>0.223</td>		1 IC.2011 + Area.sqkm	40	3	177.102	0.000	0.139	0.223
3 IC.2011 + Forest.2011 40 3 178.179 1.077 0.081 0.195 4 IC.2011 6 IC.2011 + RoadCrossings 40 3 178.904 1.802 0.057 0.176 Low band 1 AugAlt.cms 20 2 88.370 0.000 0.163 0.224 2 TMax.maxC 20 2 89.383 1.013 0.098 0.148 3 Agriculture.2011 + AugAlt.cms 20 2 89.373 1.383 0.082 0.330 4 Agriculture.2011 20 2 90.028 1.658 0.071 0.099 5 AugAlt.cms + GLR2 20 3 90.316 1.946 0.062 0.288 6 GLR2 20 2 90.028 1.658 0.071 0.099 3 IC.2011 pctImp.Buffer.10m 20 3 89.627 0.000 0.096 0.184 2 IC.2011 + pctImp.Buffer.10m 20 3 89.627 0.001 0.058 0.266 4 UnDamLFPDistTOT_			40	4	177.467	0.365	0.116	0.279
5 IC.2011 + RoadCrossings 40 3 178.904 1.802 0.057 0.176 Low band 1 AugAlt.cms 20 2 88.370 0.000 0.163 0.224 2 TMax.maxC 20 2 88.370 1.033 0.098 0.148 3 Agriculture.2011 + AugAlt.cms 20 3 89.753 1.383 0.092 0.330 4 Agriculture.2011 20 2 90.028 1.658 0.071 0.099 5 AugAlt.cms + GLR2 20 2 90.316 1.946 0.662 0.288 6 GLR2 20 2 90.351 1.981 0.060 0.075 High band 1 IC.2011 20 2 89.627 0.000 0.096 0.184 2 IC.2011 + pctImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + pctImp.Buffer.10m 20 3 90.630 1.003 0.058 0.416 4 UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 <td></td> <td></td> <td>40</td> <td>3</td> <td>178.179</td> <td>1.077</td> <td>0.081</td> <td>0.195</td>			40	3	178.179	1.077	0.081	0.195
Low band 20 2 88.370 0.000 0.163 0.224 2 TMax.maxC 20 2 89.383 1.013 0.098 0.148 3 Agriculture.2011 + AugAlt.cms 20 2 89.383 1.013 0.098 0.148 4 Agriculture.2011 + AugAlt.cms 20 3 89.753 1.383 0.082 0.330 5 AugAlt.cms + GLR2 20 2 90.028 1.658 0.071 0.099 5 AugAlt.cms + GLR2 20 2 90.316 1.946 0.062 0.288 6 GLR2 20 2 90.351 1.981 0.060 0.075 High band 1 1.C2011 20 2 89.627 0.000 0.096 0.184 2 I.C2011 + pctImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 90.630 1.003 0.058 0.416 4 UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.416 6		4 IC.2011	40	2	178.381	1.279	0.074	0.128
1 AugAlt.cms 20 2 88.370 0.000 0.163 0.224 2 TMax.maxC 20 2 89.383 1.013 0.098 0.148 3 Agriculture.2011 + AugAlt.cms 20 2 89.3753 1.383 0.082 0.330 4 Agriculture.2011 20 2 90.028 1.658 0.071 0.099 5 AugAlt.cms + GLR2 20 3 90.316 1.946 0.062 0.288 6 GLR2 20 2 90.351 1.981 0.000 0.075 High band 1 IC.2011 20 2 89.627 0.000 0.096 0.184 2 IC.2011 + pcImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + pcImp.Buffer.10m 20 3 90.630 1.003 0.058 0.268 6 IC.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.260 5 UnDamLFPDistTOT_km		5 IC.2011 + RoadCrossings	40	3	178.904	1.802	0.057	0.176
2 TMax.maxC 20 2 89.383 1.013 0.098 0.148 3 Agriculture.2011 + AugAlt.cms 20 3 89.753 1.383 0.082 0.330 4 Agriculture.2011 20 2 90.028 1.658 0.071 0.099 5 AugAlt.cms + GLR2 20 3 90.316 1.946 0.062 0.288 6 GLR2 20 2 90.351 1.946 0.062 0.288 1 IC.2011 2 20.51 1.946 0.062 0.288 2 IC.2011 pctImp.Buffer.10m 20 2 89.627 0.000 0.096 0.184 2 IC.2011 + pctImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 90.637 1.033 0.058 0.268 4 UnDamLFPDistTOT_km 20 3 90.630 1.003 0.058 0.268 6 IC.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.640 <		Low band						
3 Agriculture.2011 + AugAlt.cms 20 3 89.753 1.383 0.082 0.330 4 Agriculture.2011 20 2 90.028 1.658 0.071 0.099 5 AugAlt.cms + GLR2 20 3 90.316 1.946 0.062 0.288 6 GLR2 20 2 90.351 1.981 0.006 0.075 High band 1 IC.2011 20 2 89.627 0.000 0.096 0.184 2 IC.2011 + pcImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 90.254 0.627 0.071 0.286 4 UnDamLFPDistTOT_km 20 3 90.630 1.003 0.058 0.268 5 UnDamLFPDistTOT_km + pcImp.Buffer.10m 20 3 90.640 1.013 0.058 0.416 7 TMin.minC + UnDamLFPDistTOT_km 20 3 90.630 1.033 0.260 8 IC.2011 + Forest.2011 20 3 90.812 1.185 0.053 0.260 8 IC.2011 + Forest.2011		1 AugAlt.cms	20	2	88.370	0.000	0.163	0.224
4 Agriculture.2011 20 2 90.028 1.658 0.071 0.099 5 AugAlt.cms + GLR2 20 3 90.316 1.946 0.062 0.288 6 GLR2 20 2 90.351 1.981 0.060 0.075 High band 1 IC.2011 20 2 89.627 0.000 0.096 0.184 2 IC.2011 + pctImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 90.254 0.627 0.071 0.286 4 UnDamLFPDistTOT_km 20 3 90.630 1.003 0.058 0.416 5 UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.416 6 IC.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.852 1.225 0.052 0.260 6 IC.2011 + Forest.2011 20 3 90.630 1.003 0.058 0.416 7 TMin.minC + UnDamLFPDistTOT_km 20		2 TMax.maxC	20	2	89.383	1.013	0.098	0.148
5 AugAlt.cms + GLR2 20 3 90.316 1.946 0.062 0.288 6 GLR2 20 2 90.351 1.981 0.060 0.075 High band 1 IC.2011 20 2 89.627 0.000 0.096 0.184 2 IC.2011 + pctImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 90.254 0.627 0.071 0.286 4 UnDamLFPDistTOT_km 20 2 90.374 0.747 0.066 0.150 5 UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 3 90.630 1.003 0.058 0.416 6 IC.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.416 7 TMin.minC + UnDamLFPDistTOT_km 20 3 90.640 1.013 0.056 0.260 6 IC.2011 + Forest.2011 20 3 90.812 1.185 0.053 0.260 8 IC.2011 + Horest.2011		3 Agriculture.2011 + AugAlt.cms	20	3	89.753	1.383	0.082	0.330
6 GLR2 20 2 90.351 1.981 0.060 0.075 High band 1 I.C.2011 20 2 89.627 0.000 0.096 0.184 2 I.C.2011 + pctImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 90.254 0.627 0.071 0.286 4 UnDamLFPDistTOT_km 20 3 90.630 1.003 0.058 0.150 5 UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.268 6 I.C.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.812 1.185 0.053 0.260 5 UnDamLFPDistTOT_km 20 3 90.812 1.185 0.058 0.268 6 I.C.2011 + Forest.2011 pctImp.Buffer.10m 20 3 90.812 1.185 0.053 0.260 8 IC.2011 + Forest.2011 20 3 90.852 1.225 0.052 0.258 0.258 0.251 0.258		4 Agriculture.2011	20	2	90.028	1.658	0.071	0.099
6 GLR2 20 2 90.351 1.981 0.060 0.075 High band 1 I.C.2011 20 2 89.627 0.000 0.096 0.184 2 I.C.2011 + pctImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 90.254 0.627 0.071 0.286 4 UnDamLFPDistTOT_km 20 3 90.630 1.003 0.058 0.150 5 UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.268 6 I.C.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.812 1.185 0.053 0.260 5 UnDamLFPDistTOT_km 20 3 90.812 1.185 0.058 0.268 6 I.C.2011 + Forest.2011 pctImp.Buffer.10m 20 3 90.812 1.185 0.053 0.260 8 IC.2011 + Forest.2011 20 3 90.852 1.225 0.052 0.258 0.258 0.251 0.258		5 AugAlt.cms + $GLR2$	20	3	90.316	1.946	0.062	0.288
1 IC.2011 20 2 89.627 0.000 0.096 0.184 2 IC.2011 + pcImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 90.254 0.627 0.071 0.286 4 UnDamLFPDistTOT_km 20 2 90.374 0.747 0.066 0.150 5 UnDamLFPDistTOT_km + pcImp.Buffer.10m 20 3 90.630 1.003 0.058 0.268 6 IC.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.260 7 TMin.minC + UnDamLFPDistTOT_km 20 3 90.852 1.25 0.053 0.260 8 IC.2011 + Forest.2011 20 3 90.852 1.25 0.052 0.258 9 IC.2011 + UnDamLFPDistTOT_km + pcImp.Buffer.10m 20 4 91.363 1.736 0.040 0.382		6 GLR2	20	2	90.351	1.981	0.060	0.075
2 IC.2011 + pctImp.Buffer.10m 20 3 89.762 0.135 0.090 0.309 3 IC.2011 + TMin.minC 20 3 90.254 0.627 0.071 0.286 4 UnDamLFPDistTOT_km 20 2 90.374 0.747 0.066 0.150 5 UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 3 90.630 1.003 0.058 0.268 6 IC.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.416 7 TMin.minC + unDamLFPDistTOT_km 20 3 90.812 1.185 0.053 0.260 8 IC.2011 + Forest.2011 20 3 90.852 1.225 0.052 0.258 9 IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 4 91.363 1.736 0.040 0.382		High band						
3 IC.2011 + TMin.minC 20 3 90.254 0.627 0.071 0.286 4 UnDamLFPDistTOT_km 20 2 90.374 0.747 0.066 0.150 5 UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 3 90.630 1.003 0.058 0.268 6 IC.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.416 7 TMin.minC + UnDamLFPDistTOT_km 20 3 90.852 1.225 0.052 0.258 8 IC.2011 + Forest.2011 20 3 90.852 1.225 0.052 0.258 9 IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 4 91.363 1.736 0.040 0.382		1 IC.2011	20	2	89.627	0.000	0.096	0.184
4 UnDamLFPDistTOT_km20290.3740.7470.0660.1505 UnDamLFPDistTOT_km + pctImp.Buffer.10m20390.6301.0030.0580.2686 IC.2011 + Forest.2011 + pctImp.Buffer.10m20390.6401.0130.0580.4167 TMin.minC + UnDamLFPDistTOT_km20390.8121.1850.0530.2608 IC.2011 + Forest.201120390.8521.2250.0520.2589 IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m20491.3631.7360.0400.382		2 IC.2011 + pctImp.Buffer.10m	20	3	89.762	0.135	0.090	0.309
5 UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 3 90.630 1.003 0.058 0.268 6 IC.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.416 7 TMin.minC + UnDamLFPDistTOT_km 20 3 90.812 1.185 0.053 0.260 8 IC.2011 + Forest.2011 20 3 90.852 1.225 0.052 0.258 9 IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 4 91.363 1.736 0.040 0.382		3 IC.2011 + TMin.minC	20	3	90.254	0.627	0.071	0.286
6 IC.2011 + Forest.2011 + pctImp.Buffer.10m 20 3 90.640 1.013 0.058 0.416 7 TMin.minC + UnDamLFPDistTOT_km 20 3 90.812 1.185 0.053 0.260 8 IC.2011 + Forest.2011 20 3 90.852 1.225 0.052 0.258 9 IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 4 91.363 1.736 0.040 0.382		4 UnDamLFPDistTOT_km	20	2	90.374	0.747	0.066	0.150
7 TMin.minC + UnDamLFPDistTOT_km 20 3 90.812 1.185 0.053 0.260 8 IC.2011 + Forest.2011 20 3 90.852 1.225 0.052 0.258 9 IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 4 91.363 1.736 0.040 0.382		5 UnDamLFPDistTOT_km + pctImp.Buffer.10m	20	3	90.630	1.003	0.058	0.268
8 IC.2011 + Forest.2011 20 3 90.852 1.225 0.052 0.258 9 IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 4 91.363 1.736 0.040 0.382		6 IC.2011 + Forest.2011 + pctImp.Buffer.10m	20	3	90.640	1.013	0.058	0.416
9 IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m 20 4 91.363 1.736 0.040 0.382		7 TMin.minC + UnDamLFPDistTOT_km	20	3	90.812	1.185	0.053	0.260
		8 IC.2011 + Forest.2011	20	3	90.852	1.225	0.052	0.258
10 IC.2011 + UnDamLFPDistTOT_km 20 3 91.395 1.768 0.040 0.232		9 IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m	20	4	91.363	1.736	0.040	0.382
		10 IC.2011 + UnDamLFPDistTOT_km	20	3	91.395	1.768	0.040	0.232

Appendix N, continued

esponse	Band Rank	Variables	n	df	AICc	ΔAICc	W	F
low traits								
Macr	roinvertebrate	flow traits						
	Both bands							
		OpenWater.2011 + IC.06.11.dif + (1 UniqueID)	40		190.198	0.000	0.185	0.06
		OpenWater.2011 + (1 UniqueID)	40		190.948	0.750	0.127	0.04
		IC.2011 + OpenWater.2011 + IC.06.11.dif + (1 UniqueID)	40		191.611	1.412	0.092	0.0
		OpenWater.2011 + DamDen.sqkm + IC.06.11.dif + (1 UniqueID)	40	5	192.143	1.945	0.070	0.00
	Low band		20	2	07.554	0.000	0.000	0.0
		TMin.minC + (1 UniqueID)	20	3	87.554	0.000	0.260	0.0
	High band	$O_{1} = W_{1} = 2011 + (1/U_{1} = 1D)$	20	2	101 (20	0.000	0.122	0.1
		OpenWater.2011 + (1 UniqueID)	20		101.689	0.000	0.133	0.1
		OpenWater.2011 + HousDen.sqkm + (1 UniqueID)	20		101.845	0.156	0.123	0.1
		TMin.minC + OpenWater.2011 + (1 UniqueID)	20		102.147	0.459	0.106	0.1
		TMin.minC + OpenWater.2011 + HousDen.sqkm + (1 UniqueID)	20		102.240 103.204	0.551 1.516	0.101 0.063	0.1
		DamDen.sqkm + (1 UniqueID)	20					
Eab		DamDen.sqkm + HousDen.sqkm + (1 UniqueID)	20	4	103.283	1.594	0.060	0.1
FISH	flow traits							
	Both bands	IC 2011 + TMin minC + Dem Den selum + EI 2 + (1 UniousID)	40	6	152.040	0.000	0.411	0.5
		IC.2011 + TMin.minC + DamDen.sqkm + FL2 + (1 UniqueID)	40		152.040	0.000	0.411	0.5
		IC.2011 + TMin.minC + Wetland.2011 + DamDen.sqkm + FL2 + (1 UniqueID)	40	/	153.402	1.363	0.208	0.5
	Low band	TMin min() DemDen color + (1) Inima (D)	20	4	06 406	0.000	0.225	0.2
		TMin.minC + DamDen.sqkm + (1 UniqueID) $TMin.minC + BoadCreasings calm + (1 UniqueID)$	20	4	86.486	0.000	0.235	0.3
		TMin.minC + RoadCrossings.sqkm + (1 UniqueID)	20	4	87.071	0.584	0.176	0.3
		TMin.minC + DamDen.sqkm + RoadCrossings.sqkm + (1 UniqueID)	20	5	87.894	1.407	0.116	0.3
	High band		20		(7.071	0.000	0.005	0.0
		TMin.minC + AugPctDif + (1 UniqueID)	20	4	67.371	0.000	0.295	0.8
	2	IC.2011 + TMin.minC + AugPctDif + (1 UniqueID)	20	5	67.944	0.573	0.222	0.8
esponse	Band Rank	Variables	n	df	AICc	ΔAICc	w	
hermal tra	aits							
Macr	roinvertebrate	thermal traits						
	Both bands							
	1	IC.2011 + OpenWater.2011 + RoadCrossings + (1 UniqueID)	40	5	165.288	0.000	0.188	0.1
	1	reizorr + open (uterizorr + riouderosonigo + (rjeniqueno)		5				
		OpenWater.2011 + RoadCrossings + (1 UniqueID)	40		165.467	0.179	0.172	
	2			4		0.179 0.946	0.172 0.117	0.0
	2	OpenWater.2011 + RoadCrossings + (1 UniqueID)	40	4	165.467			0.0 0.1
	2 3 Low band	OpenWater.2011 + RoadCrossings + (1 UniqueID)	40	4	165.467			0.0
	2 3 Low band	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID)	40 40	4 5	165.467 166.234	0.946	0.117	0.0 0.1 0.1
	2 3 Low band 1 2	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID)	40 40 20	4 5 5	165.467 166.234 84.297	0.946 0.000	0.117 0.161	0.0 0.1
	2 3 Low band 1 2 3	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID)	40 40 20 20	4 5 5 4	165.467 166.234 84.297 85.088	0.946 0.000 0.791	0.117 0.161 0.108	0.0 0.1 0.1 0.1 0.0
	2 3 Low band 1 2 3	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID)	40 40 20 20 20	4 5 5 4 4	165.467 166.234 84.297 85.088 85.173	0.946 0.000 0.791 0.877	0.117 0.161 0.108 0.104	0.0 0.1 0.1 0.1 0.0
	2 3 Low band 1 2 3 4 High band	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID)	40 40 20 20 20	4 5 5 4 4	165.467 166.234 84.297 85.088 85.173	0.946 0.000 0.791 0.877	0.117 0.161 0.108 0.104	0.0 0.1 0.1 0.1 0.0
	2 3 Low band 1 2 3 4 High band 1	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID)	40 40 20 20 20 20 20	4 5 4 4 3	165.467 166.234 84.297 85.088 85.173 85.975	0.946 0.000 0.791 0.877 1.679	0.117 0.161 0.108 0.104 0.069	0.0 0.1 0.1 0.1 0.0 0.0
Fish	2 3 Low band 1 2 3 4 High band 1	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID)	40 40 20 20 20 20 20 20	4 5 4 4 3 4	165.467 166.234 84.297 85.088 85.173 85.975 81.524	0.946 0.000 0.791 0.877 1.679 0.000	0.117 0.161 0.108 0.104 0.069 0.405	0.0 0.1 0.1 0.1 0.0 0.0
Fish	2 3 Low band 1 2 3 4 High band 1 2	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID)	40 40 20 20 20 20 20 20	4 5 4 4 3 4	165.467 166.234 84.297 85.088 85.173 85.975 81.524	0.946 0.000 0.791 0.877 1.679 0.000	0.117 0.161 0.108 0.104 0.069 0.405	0.0 0.1 0.1 0.1 0.0 0.0
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID)	40 40 20 20 20 20 20 20	4 5 4 3 4 5	165.467 166.234 84.297 85.088 85.173 85.975 81.524	0.946 0.000 0.791 0.877 1.679 0.000	0.117 0.161 0.108 0.104 0.069 0.405	0.0 0.1 0.1 0.1 0.0 0.0 0.1
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID)	40 40 20 20 20 20 20 20 20	4 5 4 4 3 4 5 3	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014	0.946 0.000 0.791 0.877 1.679 0.000 1.490	0.117 0.161 0.108 0.104 0.069 0.405 0.192	0.0 0.1 0.1 0.0 0.0 0.1 0.1
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20	4 5 4 4 3 4 5 3	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496	0.946 0.000 0.791 0.877 1.679 0.000 1.490	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291	0.0 0.1 0.1 0.0 0.0 0.1 0.1
Fish	2 3 Low band 1 2 4 High band 1 2 thermal traits Both bands 1 2 Low band	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20	4 5 4 4 3 4 5 3	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291	0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.1 0.1
Fish	2 3 Low band 1 2 4 High band 1 2 thermal traits Both bands 2 Low band 1	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPetDif + GLR2 + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 40 40	4 5 5 4 4 3 4 5 3 4	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496	0.946 0.000 0.791 0.877 1.679 0.000 1.490	0.117 0.161 0.108 0.104 0.669 0.405 0.192 0.291 0.126	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.6
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 2	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137	0.0 1.0 1.0 0.1 0.1 0.1 0.1 0.1
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 3 3	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5 3	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101	 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 3 3 4	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137	 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 4 High band 4 High band	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5 3 4	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2
Fish	2 3 Low band 1 2 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 4 4 4 1 2 3 4 4 4 1 2 3 4 4 4 4 1 2 3 4 4 4 4 4 4 4 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5 3 4 4 4	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092	 1.0 1.1.0 <li< td=""></li<>
Fish	2 3 Low band 1 2 3 4 High band 1 2 Low bands 1 2 Low band 1 2 3 4 4 High band 1 2 3 4 4 1 2 3 4 1 2 3 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 4 1 2 3 3 4 4 4 1 2 3 4 4 4 4 1 2 3 4 4 4 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5 3 4 4 4	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.651	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083	 1.0 1.0
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 3 4 High band 1 2 3 4 4 High band 1 2 3 3 4 3 3 4 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 4 1 2 3 3 4 4 1 2 3 3 4 4 4 1 2 3 3 4 4 1 2 3 3 4 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 3 4 4 1 2 3 3 4 4 1 2 3 3 3 4 4 1 2 3 3 4 4 1 2 3 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 3 4 4 1 2 3 3 4 1 2 3 3 3 4 4 1 2 3 3 4 1 2 3 3 3 3 3 3 3 4 3 3 4 1 2 3 3 3 3 3 3 4 3 3 4 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 1 2 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) Agriculture.1992 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5 3 4 4 4 5	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.651 59.146	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215 0.710	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.065	 1.0 1.0
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 3 4 High band 1 2 3 3 4 4 High band 1 2 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 3 4 4 1 2 3 3 3 4 4 1 2 3 3 3 3 3 3 3 3 4 4 1 2 3 3 3 3 4 4 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + unDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5 3 4 4 5 5	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.651 59.146 59.182	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215 0.710 0.746	0.117 0.161 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.065 0.063	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 3 4 High band 1 2 3 4 4 High band 1 2 2 3 4 4 5 3 4 4 5 3 4 5 3 4 4 5 3 4 4 5 3 5 5 5 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPetDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + AugPetDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + petImp.Buffer.10m + (1 UniqueID) IC.2011 + petImp.Buffer.10m + (1 UniqueID) IC.2011 + unbamLFPDistTOT_km + petImp.Buffer.10m + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5 3 4 4 4 5 5 3	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.651 59.146 59.182 59.461	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215 0.710 0.746 1.025	0.117 0.161 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.065 0.063 0.055	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 Low band 1 2 3 3 4 High band 1 2 2 1 2 3 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + totImp.Buffer.10m + (1 UniqueID) Agriculture.1992 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 6 5 3 4 4 4 5 5 3 4	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.436 59.146 59.182 59.461 59.540	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215 0.710 0.746 1.025 1.104	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.065 0.065 0.055 0.055	0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Fish	2 3 Low band 1 2 3 4 High band 1 2 Low bands 1 2 Low band 1 2 3 4 4 High band 1 2 3 4 4 5 6 6 7	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + Forest.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + trim.minC + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 4 5 5 3 4 3	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.651 59.146 59.182 59.146 59.540 59.540	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215 0.710 0.746 1.025 1.104 1.246	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.065 0.063 0.053 0.049	0.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 3 4 4 High band 1 2 3 4 4 5 6 6 7 7 8	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) IC.2011 + RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + tortmp.Buffer.10m + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + (1 UniqueID) UnDamLFPDistTOT_km + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 4 5 5 3 4 3 3	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.436 59.182 59.146 59.182 59.540	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215 0.710 0.746 1.025 1.104 1.246 1.351	0.117 0.161 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.065 0.063 0.055 0.055 0.049 0.047	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Fish	Low band I High band High band I thermal traits Both bands Low band I 1 2 3 4 High band I 2 3 4 4 High band I 2 3 4 4 5 6 6 7 8 9	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + RoadDen.km.sqkm + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + AugPctDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + rotin.minC + (1 UniqueID) IC.2011 + pctImp.Buffer.10m + (1 UniqueID) UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) Agriculture.1992 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) UnDamLFPDistTOT_km + (1 UniqueID) IC.2011 + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 4 5 5 3 4 3 3 3 3	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.5035 95.552 96.161 96.480 58.436 58.651 59.146 59.540 59.540 59.540 59.540	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215 0.710 0.746 1.025 1.104 1.251 1.368	0.117 0.161 0.108 0.104 0.669 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.065 0.063 0.055 0.053 0.047 0.047 0.046	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Fish	2 3 4 1 2 3 4 4 1 2 4 4 1 2 5 5 6 4 4 4 1 2 3 3 4 4 4 1 2 3 3 4 4 5 6 6 7 7 8 9 10	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPetDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + AugPetDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + truin.minC + (1 UniqueID) IC.2011 + petImp.Buffer.10m + (1 UniqueID) IC.2011 + petImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + petImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + petImp.Buffer.10m + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 4 4 5 5 3 4 3 3 3 4	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.651 59.146 59.146 59.182 59.461 59.540 59.540 59.540 59.540	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215 0.710 0.746 1.025 1.104 1.268 1.351 1.368 1.415	0.117 0.161 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.065 0.063 0.055 0.053 0.049 0.046 0.046 0.045	 0.0 0.1
Fish	2 3 Low band 1 2 3 4 High band 1 2 thermal traits Both bands 1 2 Low band 1 2 3 4 High band 1 2 3 3 4 4 High band 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 10 11 10 10 10 10 10 10 10 10 10 10 10	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPetDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + AugPetDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + petImp.Buffer.10m + (1 UniqueID) Agriculture.1992 + UnDamLFPDistTOT_km + petImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + petImp.Buffer.10m + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + petImp.Buffer.10m + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) Agriculture.1992 + UnDamLFPDistTOT_km + (1 UniqueID) Agriculture.1992 + (1)UniqueID) Agriculture.1992 + (1)UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 5 3 4 4 4 5 5 3 4 3 3 3 4 3	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.651 59.146 59.182 59.461 59.540 59.540 59.582 59.682 59.787 59.804 59.850 59.828	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.517 1.127 1.445 0.000 0.517 1.127 1.445 0.000 0.517 1.445 1.625 1.104 1.246 1.351 1.361 1.492	0.117 0.161 0.108 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.063 0.055 0.053 0.053 0.049 0.045 0.045 0.045 0.045 0.053 0.045 0.045 0.053 0.045 0.045 0.055 0.053 0.045 0.045 0.055 0.053 0.045 0.045 0.055 0.045 0.045 0.055 0.055 0.055 0.055 0.045 0.045 0.055 0.055 0.055 0.045 0.045 0.055 0.055 0.055 0.045 0.045 0.055 0.055 0.055 0.045 0.045 0.045 0.055 0.055 0.055 0.045 0.045 0.045 0.055 0.055 0.045 0.045 0.045 0.045 0.055 0.045 0.045 0.045 0.055 0.045 0.045 0.045 0.045 0.055 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.044 0.045 0.044 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.045 0.045 0.055 0.055 0.055 0.055 0.045 0.044 0.045 0.	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Fish	2 3 Low band 1 2 3 4 High band 1 2 Low bands 1 2 Low band 1 2 3 4 4 High band 1 2 3 4 4 5 6 6 7 8 9 10 0 11 12	OpenWater.2011 + RoadCrossings + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID) IC.2011 + DamDen.sqkm + (1 UniqueID) RoadCrossings + (1 UniqueID) RoadCrossings + (1 UniqueID) OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) Area.sqkm + OpenWater.2011 + RoadDen.km.sqkm + (1 UniqueID) TMin.minC + (1 UniqueID) IC.2011 + Forest.2011 + AugPetDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + AugPetDif + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + Forest.2011 + GLR2 + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + truin.minC + (1 UniqueID) IC.2011 + petImp.Buffer.10m + (1 UniqueID) IC.2011 + petImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + petImp.Buffer.10m + (1 UniqueID) IC.2011 + UnDamLFPDistTOT_km + petImp.Buffer.10m + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + TMin.minC + (1 UniqueID) IC.2011 + (1 UniqueID)	40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	4 5 5 4 4 3 4 5 3 4 4 4 5 5 3 4 3 3 3 4	165.467 166.234 84.297 85.088 85.173 85.975 81.524 83.014 148.496 150.173 95.035 95.552 96.161 96.480 58.436 58.651 59.146 59.146 59.182 59.461 59.540 59.540 59.540 59.540	0.946 0.000 0.791 0.877 1.679 0.000 1.490 0.000 1.677 0.000 0.517 1.127 1.445 0.000 0.215 0.710 0.746 1.025 1.104 1.268 1.351 1.368 1.415	0.117 0.161 0.104 0.069 0.405 0.192 0.291 0.126 0.178 0.137 0.101 0.086 0.092 0.083 0.065 0.063 0.055 0.053 0.049 0.046 0.046 0.045	0.0 0.1 0.1 0.1

Appendix N, continued

Response	Band Rank Variables	n	df	AICc	ΔAICc	W	R2
Tolerance							-
Mac	roinvertebrate tolerance index						
	Both bands						
	1 TMin.minC + UnDamLFPDistTOT_km	40	3	102.139	0.000	0.185	0.310
	2 TMin.minC	40	2	102.834	0.695	0.131	0.255
	3 TMin.minC + Forest.2011 + UnDamLFPDistTOT_km	40		103.769	1.630	0.082	0.324
	4 TMin.minC + Forest.2011	40	3	103.805	1.666	0.080	0.280
	Low band						
	1 TMin.minC	20	2	44.274	0.000	0.219	0.577
	2 TMin.minC + GLR2	20	3	44.919	0.645	0.159	0.620
	3 IC.2011 + TMin.minC + GLR2	20	4	45.254	0.980	0.134	0.670
	4 IC.2011 + TMin.minC	20	3	45.358	1.084	0.127	0.611
	High band						
	1 IC.2011 + Precip.mean.mm	20	3	55.391	0.000	0.100	0.279
	2 Forest.2011	20	2	55.623	0.232	0.089	0.161
	3 IC.2011 + Precip.mean.mm + pctImp.Buffer.10m	20	4	55.771	0.380	0.083	0.373
	4 Forest.2011 + UnDamLFPDistTOT_km	20	3	55.957	0.566	0.075	0.258
	5 Precip.mean.mm	20	2	56.853	1.462	0.048	0.108
	6 IC.2011 + Forest.2011	20	3	56.977	1.586	0.045	0.219
	7 Forest.2011 + UnDamLFPDistTOT_km + pctImp.Buffer.10m	20	4	57.334	1.943	0.038	0.322
Fish	intolerance						
	Both bands						
	1 TMin.minC + OpenWater.2011 + RoadCrossings + (1 UniqueID)	40	5	124.722	0.000	0.131	0.367
	2 TMin.minC + RoadCrossings + (1 UniqueID)	40	4	124.892	0.170	0.120	0.263
	3 TMin.minC + DamDen.sqkm + RoadCrossings + (1 UniqueID)	40	5	124.945	0.223	0.117	0.301
	4 TMin.minC + DamDen.sqkm + (1 UniqueID)	40	4	125.125	0.403	0.107	0.255
	5 TMin.minC + OpenWater.2011 + (1 UniqueID)	40	4	125.561	0.839	0.086	0.332
	6 TMin.minC + OpenWater.2011 + DamDen.sqkm + (1 UniqueID)	40	5	126.248	1.525	0.061	0.341
	7 TMin.minC + OpenWater.2011 + DamDen.sqkm + RoadCrossings + (1 UniqueID)	40	6	126.713	1.991	0.048	0.360
	Low band						
	1 Forest. $2011 + FL2 + (1 UniqueID)$	20	4	71.520	0.000	0.297	0.549
	2 Forest.2011 + DamDen.sqkm + FL2 + (1 UniqueID)	20	5	72.818	1.299	0.155	0.606
	High band						
	1 HousDen.sqkm + (1 UniqueID)	20	3	49.961	0.000	0.222	0.200
	2 TMax.maxC + HousDen.sqkm + (1 UniqueID)	20	4	51.386	1.424	0.109	0.257
	3 AugAlt.cms + HousDen.sqkm + (1 UniqueID)	20	4	51.812	1.851	0.088	0.264

BIBLIOGRAPHY

- Alberti, M., D. Booth, K. Hill, B. Coburn, C. Avolio, S. Coe, and D. Spirandelli. 2007. The impact of urban patterns on aquatic ecosystems: an empirical analysis in Puget lowland sub-basins. Landscape and Urban Planning 80:345–361.
- Alberti, M. 2005. The effects of urban patterns on ecosystem function. International Regional Science Review 28:168–192.
- Allan, J. D. 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35:257–284.
- Alley, W.M., and J. E. Veenhuis. 1983. Effective impervious area in urban runoff modeling. Journal of Hydraulic Engineering 109:313–319.
- Angermeier, P. L., A. P. Wheeler, and A. E. Rosenberger. 2004. A conceptual framework for assessing impacts of roads on aquatic biota. Fisheries 29:19–29.
- Archfield, S. A., R. M. Vogel, P. A. Steeves, S. L. Brandt, P. K. Weiskel, and S. P. Garabedian. 2010. The Massachusetts Sustainable-Yield Estimator: A decision-support tool to assess water availability at ungaged stream locations in Massachusetts. U.S. Geological Survey Scientific Investigations Report 2009–5227, Reston, VA, USA. 41 p. plus CD-ROM.
- Arend, K. K. 1999. Macrohabitat identification. Pages 75–83 in M. B. Bain and N. J. Stevenson, eds. Aquatic assessment: common methods. American Fisheries Society, Bethesda, MD.
- Armstrong, D. S., T. A. Richards, and S. B. Levin. 2011. Factors influencing riverine fish assemblages in Massachusetts. U.S. Geological Survey Scientific Investigations Report 2011–5193, Reston, VA, USA. 59 p.
- Arnold, C. L., and C. J. Gibbons. 1996. Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association 62:243– 258.
- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling.1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. 339p.
- Bates, D., M. Maechler, B. Bolker, S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67:1–48.

- Bauer, S. B., and T. A. Burton. 1993. Monitoring protocols to evaluate water quality effects of grazing management of Western rangeland streams. U.S. Environmental Protection Agency, Seattle, WA, USA.
- Beauchene, M., M. Becker, C. J. Bellucci, N. Hagstrom, and Y. Kanno. 2014. Summer thermal thresholds of fish community transitions in Connecticut streams. North American Journal of Fisheries Management 34:119–131.
- Bhaskar, A. S., L. Beesley, M. J. Burns, T. D. Fletcher, P. Hamel, C. E. Oldham, and A. H. Roy. 2016. Will it rise or will it fall? Managing the complex effects of urbanization on base flow. Freshwater Science 35:293–310.
- Bhaskar, A. S. and C. Welty. 2012. Water balances along an urban-to-rural gradient of metropolitan Baltimore, 2001–2009. Environmental and Engineering Geoscience 18:37–50.
- Booth, D. B., A. H. Roy, B. Smith, and K. A. Capps. 2016. Global perspectives on the urban stream syndrome. Freshwater Science 35:412–420.
- Booth, D. B., K. A. Kraseski, and C. R. Jackson. 2014. Local-scale and watershed-scale determinants of summertime urban stream temperatures. Hydrological Processes 28:2427–2438.
- Booth, D. B. and P. C. Henshaw. 2001. Rates of channel erosion in small urban streams. Water Science and Application 2:17–38.
- Booth, D. B., and C. R. Jackson. 1997. Urbanization of aquatic systems: degradation thresholds, stormwater detention, and the limits of mitigation. Journal of the American Water Resources Association 33:1077–1090.
- Bouwes, N., J. Moberg, N. Weber, B. Bouwes, S. Bennett, C. Beasley, C.E. Jordan, P. Nelle, M. Polino, S. Rentmeester, B. Semmens, C. Volk, M.B. Ward, and J. White. 2011. Scientific protocol for salmonid habitat surveys within the Columbia Habitat Monitoring Program. Prepared by the Integrated Status and Effectiveness Monitoring Program and published by Terraqua, Inc., Wauconda, WA, USA. 118 p.
- Brabec, E., S. Schulte, and P. L. Richards. 2002. Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. Journal of Planning Literature 16:499–514.
- Brandes, D., G. J. Cavallo, and M. L. Nilson. 2005. Base flow trends in urbanizing watersheds of the Delaware River Basin. Journal of the American Water Resources Association 41:1377–1391.
- Brown, L. R., T. Cuffney, J. F. Coles, F. Fitzpatrick, G. McMahon, J. Steuer, A. H. Bell, and J. T. May. 2009. Urban streams across the US: lessons learned from studies in 9

metropolitan areas. Journal of the North American Benthological Society 28:1051–1069.

- Brown, D. G., K. M. Johnson, T. R. Loveland, and D. M. Theobald. 2005. Rural land-use trends in the conterminous United States, 1950–2000. Ecological Applications 15:1851–1863.
- Bryant, W. L. and D. M. Carlisle. 2012. The relative importance of physicochemical factors to stream biological condition in urbanizing basins: evidence from multimodel inference. Freshwater Science 31:154–166.
- Burnham, K. P., D. R. Anderson, K. P. Huyvaert. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65:23–35.
- Caissie, D. 2006. The thermal regime of rivers: a review. Freshwater Biology 51:1389–1406.
- Cappiella, K., W. P. Stack, L. Fraley-McNeal, C. Lane, G. McMahon. 2012. Strategies for managing the effects of urban development on streams. U.S. Geological Survey Circular 1378. 69 p.
- Carlisle, D. M., C. P. Hawkins, M. R. Meador, M. Potapova, and J. Falcone. 2008. Biological assessments of Appalachian streams based on predictive models for fish, macroinvertebrate, and diatom assemblages. Journal of the North American Benthological Society 27:16–37.
- Carlisle D. M. and C. P. Hawkins. 2008. Land use and the structure of western US stream invertebrate assemblages: predictive models and ecological traits. Journal of the North American Benthological Society 27:986–999.
- Carter, T., C. R. Jackson, A. Rosemond, C. Pringle, D. Radcliffe, W. Tollner, J. Maerz, D. Leigh, and A. Trice. 2009. Beyond the urban gradient: barriers and opportunities for timely studies of urbanization effects on aquatic ecosystems. Journal of the North American Benthological Society 28:1038–1050.
- Chin, A. 2006. Urban transformation of river landscapes in a global context. Geomorphology 79:460–487.
- Cianfrani, C. M., W. C. Hession, and D. M. Rizzo. 2006. Watershed imperviousness impacts on stream channel conditions in southeastern Pennsylvania. Journal of the American Water Resources Association 42:941–956.
- Coles, J. F., T. F. Cuffney, G. McMahon, and C. J. Rosiu. 2010. Judging a brook by its cover: the relation between ecological condition of a stream and urban land cover in New England. Northeastern Naturalist 17:29–48.

- Collier, K. J. and B. L. Clements. 2011. Influences of catchment and corridor imperviousness on urban stream macroinvertebrate communities at multiple spatial scales. Hydrobiologia 664:35–50.
- Cuffney, T. F., R. Kashuba, S. S. Qian, I. Alameddine, Y. K. Cha, B. Lee, J. F. Coles, and G. McMahon. 2011. Multilevel regression models describing regional patterns of invertebrate and algal responses to urbanization across the USA. Journal of the North American Benthological Society 30:797–819.
- Cuffney, T. F., R. A. Brightbill, J. T. May, and I. R. Waite. 2010. Responses of benthic macroinvertebrates to environmental changes associated with urbanization in nine metropolitan areas. Ecological Applications 20:1384–1401.
- Culp, J. M., D. G. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff, A. I. Pollard, A. G. Yates, and G. C. Hose. 2011. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7:187–197.
- Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. A. Pasteris. 2008. Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. International Journal of Climatology 28:2031–2064.
- Dolédec S., N. Phillips, M. Scarsbrook, R. H. Riley, and R. H. Townsend RH. 2006. Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25:44–60.
- Eaton, J. G., J. H. McCormick, B. E. Goodno, D. G. O'Brien, H. G. Stefany, M. Hondzo, and R. M. Scheller. 1995. A field information-based system for estimating fish temperature tolerances. Fisheries 20:10–18.
- Elmore, A. J. and S. S. Kaushal. 2008. Disappearing headwaters: patterns of stream burial due to urbanization. Frontiers in Ecology and the Environment 6:308–312.
- Finkenbine, J. K., J.W. Atwater, and D. S. Mavinic. 2000. Stream health after urbanization. Journal of the American Water Resources Association 36:1149–1160.
- Fitzgerald, E. P., W. B. Bowden, S. P. Parker, and M. L. Kline. 2012. Urban impacts on streams are scale-dependent with nonlinear influences on their physical and biotic recovery in Vermont, United States. Journal of the American Water Resources Association 48:679–697.
- Fitzpatrick F. A., I. R. Waite, P. J. D. Arconte, M. R. Meador, M. A. Maupin, and M. E. Gurtz. 1998. Revised methods for characterizing stream habitat in the National

Water-Quality Assessment Program. U.S. Geological Survey Water-Resources Investigations Report 98-4052. U.S. Government Printing Office, Washington, DC, USA. 67 p.

- Forman, R. T. T. and R. D. Deblinger. 2000. The ecological road-effect zone of a Massachusetts (U.S.A.) suburban highway. Conservation Biology 14:36–46.
- Forman, R. T. T. and L. E. Alexander. 1998. Roads and their major ecological effects. Annual Review in Ecology and Systematics 29:207–231.
- Fraterrigo, J. M. and J. A. Rusak. 2008. Disturbance-driven changes in the variability of ecological patterns and processes. Ecology Letters 11:756–770.
- Frimpong, E. A., and P. L. Angermeier. 2010. Trait-based approaches in the analysis of stream fish communities. American Fisheries Society Symposium 73:109–136.
- Frissell, C. A., W. J. Liss, C. E. Warren, and M. D. Hurley. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10:199–414.
- Gartner, J. 2016. Stream power: origins, geomorphic applications, and GIS procedures. Water Publications. Paper 1. http://scholarworks.umass.edu/water_publications/1>
- Giddings, E. M. P., A. H. Bell, K. M. Beaulieu, T. F. Cuffney, J. F. Coles, L. R. Brown, F. A. Fitzpatrick, J. Falcone, L. A. Sprague, W. L. Bryant, M. C. Peppler, C. Stephens, and G. McMahon. 2009. Selected physical, chemical, and biological data used to study urbanizing streams in nine metropolitan areas of the United States, 1999–2004. U.S. Geological Survey Data Series 423, Reston, VA, USA. 11 p. + data tables.
- Goetz, S. and G. Fiske. 2008. Linking the diversity and abundance of stream biota to landscapes in the mid-Atlantic USA. Remote Sensing of the Environment 112:4075–4085.
- Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel, and R. J. Nathan. 2004. Stream Hydrology: An Introduction for Ecologists, 2nd Edition. Chichester, West Sussex, England; Hoboken, N.J.; Wiley. 448p.
- Gotelli, N. J. and R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379–391.
- Graf, W. L. 1999. Dam nation: a geographic census of American dams and their largescale hydrologic impacts. Water Resources Research 35:1305–1311.
- Graf, W. L. 1977. Network characteristics in suburbanizing streams. Water Resources Research 13:459–463.

- Griffith, G. E., J. M. Omernik, S. A. Bryce, J. Royte, W. D. Hoar, J. W. Homer, D. Keirstead, K. J. Metzler, and G. Hellyer. 2009. Ecoregions of New England (color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia, U.S. Geological Survey (map scale 1:1,325,000).
- Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs. 2008. Global change and the ecology of cities. Science 319:756–760.
- Groffman, P. M., J. Cavender-Bares, N. D. Bettez, J. M. Grove, S. J. Hall, J. B. Heffernan, S. E. Hobbie, K. L. Larson, J. L. Morse, C. Neill, K. Nelson, J. O'Neil-Dunne, L. Ogden, D. E. Pataki, C. Polsky, R. Roy Chowdhury, and M. K. Steele. 2014. Ecological homogenization of urban USA. Frontiers in Ecology and the Environment 12:74–81.
- Groffman, P. M., N. J. Boulware, W. C. Zipperer, R. V. Pouyat, L. E. Band, M. F. Colosimo. 2002. Soil nitrogen cycle processes in urban riparian zones. Environmental Science & Technology 36:4547–4552.
- Guilbert, J., A. K. Betts, D. M. Rizzo, B. Beckage, and A. Bomblies. 2015. Characterization of increased persistence and intensity of precipitation in the northeastern United States, Geophysical Research Letters 42:1888–1893.
- Hale, R. L., M. Scoggins, N. J. Smucker, and A. Suchy. 2016. Effects of climate on the expression of the urban stream syndrome. Freshwater Science 35:421–428.
- Hall, B., G. Motzkin, D. R. Foster, M. Syfert, and J. Burk. 2002. Three hundred years of forest and land-use change in Massachusetts, USA. Journal of Biogeography 29:1319–1335.
- Hansen, A. J., R. L. Knight, J. M. Marzluff, S. Powell, K. Brown, P. H. Gude, and K. Jones. 2005. Effects of exurban development on biodiversity: patterns, mechanisms, and research needs. Ecological Applications 15:1893–1905.
- Harrelson C. C., C. L. Rawlins, and J. P. Potyondy. 1994. Stream channel reference sites: an illustrated guide to field technique. General Technical Report RM 245. U.S. Dept. of Agriculture Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, USA. 61 p.
- Hawkins, C. P., J. L. Kershner, P. A. Bisson, M. D. Bryant, L. M. Decker, S. V. Gregory, D. A. McCullough, C. K. Overton, G. H. Reeves, R. J. Steedman, and M. K. Young. 1993. A hierarchical approach to classifying stream habitat features. Fisheries 18:3–12.

- Hawley, R. J., M. S. Wooten, K. R. MacMannis, and E. V. Fet. 2016. When do macroinvertebrate communities of reference streams resemble urban streams? The biological relevance of Q_{critical}. Freshwater Science 35:778–794.
- Hawley, R. J., K. R. MacMannis, and M. S. Wooten. 2013. Bed coarsening, riffle shortening, and channel enlargement in urbanizing watersheds, northern Kentucky, USA. Geomorphology 201:111–126.
- Hayhoe, K., C. P. Wake, T. G. Huntington, L. Luo, M. D. Schwartz, J. Sheffield, E. Wood, B. Anderson, J. Bradbury, A. DeGaetano, T. J. Troy, and D. Wolfe. 2007. Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics 28:381–407.
- Heino J., H. Mykrä, J. Kotanen, and T. Muotka. 2007. Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path? Ecography 30:217–230.
- Heitke, J. D., E. K. Archer, R. J. Leary, and B. B. Roper. 2011. Effectiveness monitoring for streams and riparian areas: sampling protocol for stream channel attributes. Unpublished paper on file at: ">http://www.fs.fed.us/biology/fishecology/emp
- Helms, B. S., J. W. Feminella, and S. Pan. 2005. Detection of biotic responses to urbanization using fish assemblages from small streams of western Georgia, USA. Urban Ecosystems 8:39–57.
- Herb, W. R., B. Janke, O. Mohseni, and H. G. Stefan. 2008. Thermal pollution of streams by runoff from paved surfaces. Hydrological Processes 22:987–999.
- Hession, W. C., J. E. Pizzuto, T. E. Johnson, and R. J. Horwitz. 2003. Influence of bank vegetation on channel morphology in rural and urban watersheds. Geology 31:147–150.
- Hester, E. T. and M. W. Doyle. 2011. Human impacts to river temperature and their effects on biological processes: a quantitative synthesis. Journal of the American Water Resources Association 47:571–587.
- Hilderbrand, R. H., M. T. Kashiwagi, and A. P. Prochaska. 2014. Regional and local scale modeling of stream temperatures and spatio-temporal variation in thermal sensitivities. Environmental Management 54:14–22.
- Hilsenhoff, W. L. 1988. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society 7:65–78.
- Hoeinghaus, D. J., K. O. Winemiller, J. S. Birnbaum. 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. Journal of Biogeography 34:324–338.

- Horner, R. R., D. B. Booth, A. Azous, and C. W. May. 1997. Watershed determinants of ecosystem functioning. *In* Effects of watershed development and management on aquatic ecosystems, L. A. Roesner, ed. New York: American Society of Civil Engineers.
- Hopkins, K. G., N. B. Morse, D. J. Bain, N. D. Bettez, N. B. Grimm, J. L. Morse, M. M. Palta, W. D. Shuster, A. R. Bratt, and A. K. Suchy. 2015. Assessment of regional variation in streamflow responses to urbanization and the persistence of physiography. Environmental Science & Technology 49:2724–2732.
- Horrigan, N. and D. J. Baird. 2008. Trait patterns of aquatic insects across gradients of flow-related factors: a multivariate analysis of Canadian national data. Canadian Journal of Fisheries and Aquatic Sciences 65:670–680.
- Hynes, H. B. N. 1975. The stream and its valley. Verhandiungen der Internationale Vereinigung fur Theoretische und Angewandte Limnologie 19:1–15.
- Jin, S., L. Yang, P. Danielson, C. Homer, J. Fry, and G. Xian. 2013. A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sensing of Environment 132:159–175.
- Jones, J. A., F. J. Swanson, B. C. Wemple, and K. U. Snyder. 2000. Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conservation Biology 14:76–85.
- Kanno, Y., J. C. Vokoun, and M. Beauchene. 2010. Development of dual fish multimetric indices of biological condition for streams with characteristic thermal gradients and low species richness. Ecological Indicators 10:565–571.
- Kanno, Y. and J. C. Vokoun. 2010. Evaluating effects of water withdrawals and impoundments on fish assemblages in southern New England streams, USA. Fisheries Management and Ecology 17:272–283.
- Kashiwagi, M. and T. Richards. 2009. Development of target fish community models for Massachusetts mainstem rivers: technical report. Commonwealth of Massachusetts, Department of Fish and Game, Division of Fisheries and Wildlife. 92p.
- Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger, and D. V. Peck. 1999.Quantifying physical habitat in wadeable streams. EPA/620/R-99/003. U.S. Environmental Protection Agency, Washington, D.C. 149 p.
- Kaushal, S. S. and K. T. Belt. 2012. The urban watershed continuum: evolving spatial and temporal dimensions. Urban Ecosystems 15:409–435.

- Kaushal, S. S., G. E. Likens, N. A. Jaworski, M. L. Pace, A. M. Sides, D. Seekell, K. T. Belt, D. H. Secor, and R. L. Wingate. 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8:461–466.
- Kaushal, S. S., P. M. Groffman, G. E. Likens, K. T. Belt, W. P. Stack, V. R. Kelly, L. E. Band, and G. T. Fisher. 2005. Increased salinization of fresh water in the northeastern United States. Proceedings of the National Academy of Sciences 102:13517–13520.
- King, R. S., M. E. Baker, P. F. Kazyak, and D. E. Weller. 2011. How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecological Applications 21:1659–1678.
- King, R. S., M. E. Baker, D. F. Whigham, D. E. Weller, T. E. Jordan, P. F. Kazyak, and M. K. Hurd. 2005. Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications 15:137–153.
- Klein, R. D. 1979. Urbanization and stream quality impairment. Water Resources Bulletin 15:948–963.
- Konrad, C. P. and D. B. Booth. 2005. Hydrologic changes in urban streams and their ecological significance. American Fisheries Society Symposium 47:157–177.
- Konrad, C. P., A. M. D. Brasher, and J. T. May. 2008. Assessing streamflow characteristics as limiting factors on benthic invertebrate assemblages in streams across the western United States. Freshwater Biology 53:1983–1998.
- Lammert, M. and J. D. Allan. 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management 23:257–270.
- Lamouroux, N., S. Dolédec, and S. Gayraud. 2004. Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society 23:449–466.
- Laub, B. G., D. W. Baker, B. P. Bledsoe, and M. A. Palmer. 2012. Range of variability of channel complexity in urban, restored and forested reference streams. Freshwater Biology 57:1076–1095.
- Lazorchak, J. M., D. J. Klemm, and D. V. Peck. 1998. Environmental Monitoring and Assessment Program – surface waters: field operations and methods for measuring the ecological condition of wadeable streams. EPA/620/R-94/004F. U.S. Environmental Protection Agency, Washington, DC, USA.
- Leopold, L. B. 1968. Hydrology for urban land planning A guidebook on the hydrologic effects of urban land use. Geological Survey Circular 554. 21pp.

- Ligon, F. K., W. E. Dietrich, and W. J. Trush. 1995. Downstream ecological effects of dams. BioScience 45:183–192.
- Lowe, W. H., G. E. Likens, and M. E. Power. 2006. Linking scales in stream ecology. BioScience 56:591–597.
- Lyons, J., T. Zorn, J. Stewart, P. Seelbach, K. Wehrly, and L. Wang. 2009. Defining and characterizing coolwater streams and their fish assemblages in Michigan and Wisconsin, USA. North American Journal of Fisheries Management 29:1130–1151.
- Lyons, J., L. Wang, and T. D. Simonson. 1996. Development and validation of an index of biotic integrity for coldwater streams in Wisconsin. North American Journal of Fisheries Management 16:241–256.
- Magilligan, F. J., B. E. Graber, K. H. Nislow, J. W. Chipman, C. S. Sneddon, and C. A. Fox. 2016. River restoration by dam removal: enhancing connectivity at watershed scales. Elementa: Science of the Anthropocene. DOI 10.12952/journal.elementa.000108
- Magnuson, J. J., L. B. Crowder, P. A. Medvick. 1979. Temperature as an ecological resource. Integrative & Comparative Biology 19:331–343.
- Massachusetts Division of Ecological Restoration (MA DER). 2012. Massachusetts stream crossings handbook, 2nd edition. Commonwealth of Massachusetts, Executive Office of Energy and Environmental Affairs, Department of Fish and Game. 16p.
- Massachusetts Office of Energy and Environmental Affairs (MA EOEEA). 2012. Massachusetts Sustainable Water Management Initiative: Framework Summary. Commonwealth of Massachusetts. 40p.
- May, C. W., R. R. Horner, J. R. Karr, B. W. Mar, and E. B. Welch. 1997. Effects of urbanization on small streams in the Puget Sound ecoregion. Watershed Protection Techniques 2:483–494.
- Meador, M. R. and D. M. Carlisle. 2007. Quantifying tolerance indicator values for common stream fish species of the United States. Ecological Indicators 7:329–338.
- Meador, M. R., J. F. Coles, and H. Zappia. 2005. Fish assemblage responses to urban intensity gradients in contrasting metropolitan areas: Birmingham, Alabama and Boston, Massachusetts. American Fisheries Society Symposium 47:409–423.
- Menezes, S., D. J. Baird, and A. M. V. M. Soares. 2010. Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology 47:711–719.

- Meyer, J. L., M. J. Paul, and W. K. Taulbee. 2005. Stream ecosystem function in urbanizing landscapes. Journal of the North American Benthological Society 24:602– 612.
- Miltner, R. J., D. White, and C. Yoder. 2004. The biotic integrity of streams in urban and suburbanizing landscapes. Landscape and Urban Planning 69:87–100.
- Montgomery, D. R. 1999. Process domains and the river continuum. Journal of the American Water Resources Association 35:397–410.
- Moore, A. A., and M. A. Palmer. 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecological Applications 15:1169–1177.
- Morgan, R. P., K. M. Kline, and S. F. Cushman. 2007. Relationships among nutrients, chloride and biological indices in urban Maryland streams. Urban Ecosystems 10:153–166.
- Morgan, R. P. and S. F. Cushman. 2005. Urbanization effects on stream fish assemblages in Maryland, USA. Journal of the North American Benthological Society 24:643– 655.
- Morley, S. A. and J. R. Karr. 2002. Assessing and restoring the health of urban streams in the Puget Sound Basin. Conservation Biology 16:1498–1509.
- Nakazawa, M. 2015. fmsb: Functions for Medical Statistics Book with some demographic data. R package version 0.5.2. https://CRAN.R-project.org/package=fmsb
- Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2016. vegan: Community Ecology Package. R package version 2.4-1. ">https://CRAN.R-project.org/package=vegan>
- Palmer, M. A., C. C. Hakenkamp, and K. Nelson-Baker. 1997. Ecological heterogeneity in streams: why variance matters. Journal of the North American Benthological Society 16:189–202.
- Palmer, M. A. and N. L. Poff. 1997. The influence of environmental heterogeneity on patterns and processes in streams. Journal of the North American Benthological Society 16:169–173.
- Parsons, M. and M. C. Thoms. 2007. Hierarchical patterns of physical biological associations in river ecosystems. Geomorphology 89:127–146.

- Paul, M., and J. Meyer. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 32:333–365.
- Pickett, S. T. A., M. L. Cadenasso, J. M. Grove, C. G. Boone, P. M. Groffman, E. Irwin, S. S. Kaushal, V. Marshall, B. P. McGrath, C. H. Nilon, R. V. Pouyat, K. Szlavecz, A. Troy, and P. Warren. 2011. Urban ecological systems: scientific foundations and a decade of progress. Journal of Environmental Management 92:33 –362.
- Platts, W. S., C. Armour, G. D. Booth, M. Bryant, J. L. Bufford, P. Cuplin, S. Jensen, G. W. Lienkaemper, G. W. Minshall, S. P. Monsen, R. L. Nelson, J. R. Sedell, and J. S. Tuhy. 1987. Methods for evaluating riparian habitats with applications to management. General Technical Report INT-22, Intermountain Research Station, Ogden, UT, USA. 177 p.
- Poff, N. L., B. P. Bledsoe, and C. O. Cuhaciyan. 2006a. Hydrologic variation with land use across the contiguous United States: geomorphic and ecological consequences for stream ecosystems. Geomorphology 79:264–285.
- Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons, and B. C. Kondratieff. 2006b. Functional trait niches of North American lotic insects: traitsbased ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25:730–755.
- Poff, N. L. and J. V. Ward. 1990. Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14:629–645.
- Poff, N. L. and J. K. H. Zimmerman. 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55:194–205.
- Poole, G. C., and C. H. Berman. 2001. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environmental Management 27:787–802.
- R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/>
- Resh, V. H. 2008. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environmental Monitoring and Assessment 138:131–138.
- Richards, C., R. J. Haro, L. B. Johnson, and G. E. Host. 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology 37:219–230.

- Roy, A. H. and W. D. Shuster. 2009. Assessing impervious surface connectivity and applications for watershed management. Journal of the American Water Resources Association 45:198–209.
- Roy, A. H., B. J. Freeman, and M. C. Freeman. 2007. Riparian influences on stream fish assemblage structure in urbanizing streams. Landscape Ecology 22:385–402.
- Roy, A. H., M. C. Freeman, B. J. Freeman, S. J. Wenger, W. E. Ensign, J. L. Meyer. 2005. Investigating hydrologic alteration as a mechanism fish assemblage shifts in urbanizing streams. Journal of the North American Benthological Society 24:656– 678.
- Roy, A. H., A. D. Rosemond, M. J. Paul, D. S. Leigh, and J. B. Wallace. 2003. Stream macroinvertebrate response to catchment urbanisation (Georgia, U.S.A.). Freshwater Biology 48:329–346.
- Schueler, T. R. 1994. The importance of imperviousness. Watershed Protection Technology 1:100–111.
- Schueler, T. R., L. Fraley-McNeal, and K. Cappiella. 2009. Is impervious cover still important? Review of recent research. Journal of Hydrologic Engineering 14:309– 315.
- Schwartz, S. S., and B. Smith. 2014. Slowflow fingerprints of urban hydrology. Journal of Hydrology 515:116–128.
- Segura, C. and D. B. Booth. 2010. Effects of geomorphic setting and urbanization on wood, pools, sediment storage, and bank erosion in Puget Sound streams. Journal of the American Water Resources Association 46:972–986.
- Smith, R. F., L. C. Alexander, and W. O. Lamp. 2009. Dispersal by terrestrial stages of stream insects in urban watersheds: a synthesis of current knowledge. Journal of the North American Benthological Society 28:1022–1037.
- Smith, R. F. and W. O. Lamp. 2008. Comparison of insect communities between adjacent headwater and main-stem streams in urban and rural watersheds. Journal of the North American Benthological Society 27:161–175.
- Snyder, C. D., N. P. Hitt, and J. A. Young. 2015. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecological Applications 25:1397– 1419.
- Snyder, C. D., J. A. Young, R. Villella, and D. P. Lemarié. 2003. Influences of upland and riparian land use patterns on stream biotic integrity. Landscape Ecology 18:647– 664.

- Somers, K. A., E. S. Bernhardt, J. B. Grace, B. A. Hassett, E. B. Sudduth, S. Wang, and D. L. Urban. 2013. Streams in the urban heat island: spatial and temporal variability in temperature. Freshwater Science 32:309–326.
- Stanley, E. H., S. M. Powers, and N. R. Lottig. 2010. The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of the North American Benthological Society 29:67–83.
- Statzner, B. and L. A. Bêche. 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55:80–119.
- Steele, M. K. and J. B. Heffernan. 2014. Morphological characteristics of urban water bodies: mechanisms of change and implications for ecosystem function. Ecological Applications 24:1070–1084.
- Steele, M. K., J. B. Heffernan, N. Bettez, J. Cavender-Bares, P. M. Groffman, J. M. Grove, S. Hall, S. E. Hobbie, K. Larson, J. L. Morse, C. Neill, K. C. Nelson, J. O'Neil-Dunne, L. Ogden, D. E. Pataki, C. Polsky, and R. Roy Chowdhury. 2014. Convergent surface water distributions in U.S. cities. Ecosystems 17:685–697.
- Sylte, T. and C. Fischenich. 2002. Techniques for measuring substrate embeddedness. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-36), U.S. Army Engineer Research and Development Center, Vicksburg, MS. 25p.
- Taniguchi, Y., F. J. Rahel, D. C. Novinger, and K. G. Gerow. 1998. Temperature mediation of competitive interactions among three fish species that replace each other along longitudinal stream gradients. Canadian Journal of Fisheries and Aquatic Sciences 55:1894–1901.
- Theobald, D. M., S. J. Goetz, J. B. Norman, and P. Jantz. 2009. Watersheds at risk to increased impervious surface cover in the conterminous United States. Journal of Hydrological Engineering 14:362–368.
- Townsend, C. R., S. Dolédec, and M. R. Scarsbrook. 1997a. Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology 37:367–387.
- Townsend, C. R., M. R. Scarsbrook, and S. Dolédec. 1997b. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. Journal of the North American Benthological Society 16:531–544.
- Townsend, C. R., and A. G. Hildrew. 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31:265–275.

- Townsend, C. R. 1989. The patch dynamics concept of stream community ecology. Journal of the North American Benthological Society 8:36–50.
- Trombulak, S. C. and C. A. Frissell. 2000. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology 14:18–30.
- United Nations, Department of Economic and Social Affairs, Population Division. 2015. World Urbanization Prospects: The 2014 Revision, ST/ESA/SER.A/366. 517pp.
- U.S. Census Bureau. 2012. Growth in urban population outpaces rest of nation, Census Bureau reports. Accessed 25 June 2016. http://www.census.gov/newsroom/releases/archives/2010_census/cb12-50.html
- U.S. Environmental Protection Agency (EPA). 2016. Regional Monitoring Networks (RMNs) to detect changing baselines in freshwater wadeable streams. Office of Research and Development, Washington DC. EPA/600/R-15/280.
- U.S. Environmental Protection Agency (EPA). 2012. Freshwater traits database. Global Change Research Program, National Center for Environmental Assessment, Washington DC. EPA/600/R-11/038F. 99p.
- Utz, R. M., K. G. Hopkins, L. Beesley, D. B. Booth, R. J. Hawley, M. E. Baker, M. C. Freeman, and K. L. Jones. 2016. Ecological resistance in urban streams: the role of natural and legacy attributes. Freshwater Science 35:380–397.
- Utz, R. M., and R. H. Hilderbrand. 2011. Interregional variation in urbanization-induced geomorphic change and macroinvertebrate habitat colonization in headwater streams. Journal of the North American Benthological Society 30:25–37.
- Utz, R. M., K. N. Eschleman, and R. H. Hilderbrand. 2011. Variation in physicochemical responses to urbanization in streams between two Mid-Atlantic physiographic regions. Ecological Applications 21:402–415.
- Utz, R. M., R. H. Hilderbrand, and D. M. Boward. 2009. Identifying regional differences in threshold responses of aquatic invertebrates to land cover gradients. Ecological Indicators 9:556–567.
- Verkerk, W. C. E. P., C. G. E. van Noordwijk, and A. G. Hildrew. 2013. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32:531–547.
- Vieira, N. K. M., N. L. Poff, D. M. Carlisle, S. R. Moulton II, M. L. Koski, and B. C. Kondratieff. 2006. A database of lotic invertebrate traits for North America. U.S. Geological Survey Data Series 187.

- Vietz, G. J., M. J. Sammonds, C. J. Walsh, T. D. Fletcher, I. D. Rutherfurd, M. J. Stewardson. 2014. Ecologically relevant geomorphic attributes of streams are impaired by even low levels of watershed effective imperviousness. Geomorphology 206:67–78.
- Vinson, M. R. and C. P. Hawkins. 1998. Biodiversity of stream insects: variation at local, basin, and regional scales. Annual Review of Entomology 43:271–293.
- Violin, C. R., P. Cada, E. B. Sudduth, B. A. Hassett, D. L. Penrose, and E. S. Bernhardt. 2011. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems. Ecological Applications 21:1932–1949.
- Walsh, C. J., K. A. Waller, J. Gehling, and R. MacNally. 2007. Riverine invertebrate assemblages are degraded more by catchment urbanisation than by riparian deforestation. Freshwater Biology 52:574–587.
- Walsh, C. J., A. H. Roy, J.W. Feminella, P.D. Cottingham, P. M. Groffman, and R. P. Morgan. 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24:706–723.
- Walters, D. M., A. H. Roy, and D. S. Leigh. 2009. Environmental indicators of macroinvertebrate and fish assemblage integrity in urbanizing watersheds. Ecological Indicators 9:1222–1233.
- Wang, L. and P. Kanehl. 2003. Influences of watershed urbanization and instream habitat on macroinvertebrates in cold water streams. Journal of the American Water Resources Association 39:1181–1196.
- Wang, L., J. Lyons, and P. Kanehl. 2003. Impacts of urban land cover on trout streams in Wisconsin and Minnesota. Transactions of the American Fisheries Society 132:825– 839.
- Wang, L., J. Lyons, P. Kanehl, and R. Bannerman. 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management 28:255–266.
- Wang, L., J. Lyons, P. Kanehl, and R. Gatti. 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22:6–12.
- Warton, D. I. and F. K. C. Hui. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10.
- Wehrly, K. E., M. J. Wiley, and P. W. Seelbach. 2003. Classifying regional variation in thermal regime based on stream fish community patterns. Transactions of the American Fisheries Society 132:18–38.

- Weiskel, P. K., R. M. Vogel, P. A. Steeves, P. J. Zarriello, L. A. DeSimone, and K. G. Ries III. 2007. Water use regimes: characterizing direct human interaction with hydrologic systems. Water Resources Research 43:W04402, doi:10.1029/2006WR005062.
- Wenger, S. J., A. H. Roy, C. R. Jackson, E. S. Bernhardt, T. L. Carter, S. Filoso, C. A. Gibson, W. C. Hession, S. S. Kaushal, E. Martí, J. L. Meyer, M. A. Palmer, M. J. Paul, A. H. Purcell, A. Ramirez, A. D. Rosemond, K. A. Schofield, E. B. Sudduth, and C. J. Walsh. 2009. Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. Journal of the North American Benthological Society 28:1080–1098.
- Winemiller, K. O., A. S. Flecker, and D. J. Hoeinghaus. 2010. Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society 29:84–99.
- Wolman M. G. 1954. A method for sampling coarse bed material. American Geophysical Union, Transactions 35:951–956.
- Xian, G., C. Homer, J. Dewitz, J. Fry, N. Hossain, and J. Wickham. 2011. The change of impervious surface area between 2001 and 2006 in the conterminous United States. Photogrammetric Engineering and Remote Sensing 77:758–762.
- Zuellig, R. E., and T. S. Schmidt. 2012. Characterizing invertebrate traits in wadeable streams of the contiguous US: differences among ecoregions and land uses. Freshwater Science 31:1042–1056.
- Zuur, A. F., A. A. Saveliev, and E. N. Ieno. 2012. Zero inflated models and generalized linear mixed models with R. Newburgh, G.B., Highland Statistics, 134 p.