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ABSTRACT

STATISTICAL METHODS ON RISK MANAGEMENT
OF EXTREME EVENTS

MAY 2017

ZIJING ZHANG

B.Sc., XIAMEN UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor HongKun Zhang

The goal of the dissertation is the investigation of financial risk analysis method-

ologies, using the schemes for extreme value modeling as well as techniques from

copula modeling.

Extreme value theory is concerned with probabilistic and statistical questions re-

lated to unusual behavior or rare events. The subject has a rich mathematical theory

and also a long tradition of applications in a variety of areas. We are interested in

its application in risk management, with a focus on estimating and forecasting the

Value-at-Risk of financial time series data. Extremal data are inherently scarce, thus

making inference challenging. In order to obtain good estimates for risk measures, we

develop a two-stage approach: (1) fitting the GARCH-type models at the first stage

to describe the volatility clustering and other stylized facts of financial time series;

(2) using the extreme value theory based models to fit to the tails of the residuals.

Additionally, the performance measures provide information in terms of the compar-
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ison of the two-stage semi-parametric approach with the parametric methodologies,

through robust backtesting.

Copula is a particular branch of probability theory, with which, given sufficient

data, we can separate the marginal behavior of individual risks and their dependence

structure from a multivariate random variable. Linear correlation is widely used to

model dependence but has limitations as a measure of association and thus we opt to

use copulas to analyze the dependence structure and build models for our different

problems arising in risk management. For this part of the dissertation, we take a look

at different copula families, highlight for some when they are most appropriate to

use for a particular application, discuss some of their drawbacks as diverse scenarios

occur in different risk management models, and explore the possibility of developing

the copula modeling to reflect the complicated dependence structure of portfolios.
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PREFACE

Sections of this Ph.D. thesis have been submitted for publication. They are as

follows:

Chapter 1, Section 1.1[89].

Chapter 1, Section 1.2[91].

Chapter 1, Section 1.3[92].

Chapter 2, Section 2.1.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. EXTREME VLUE THEORY IN RISK MANAGEMENT . . . . . . . . . 13

1.1 Calendar Effects in AAPL Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Data exploration and statistical analysis . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.2.2 Test for stationary property . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.2.3 Test for normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.2.4 Test for correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.3.1 VaR of a time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.3.2 Extreme Value Theory approach to Value-at-Risk . . . . . 25

1.1.4 VaR analysis of AAPL and SPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.1.5 Day-of-the-week effect on AAPL Value-at-Risk . . . . . . . . . . . . . . . . 33
1.1.6 Seasonal Effect on AAPL VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.2 Calendar Effects Analysis of Americas Indexes . . . . . . . . . . . . . . . . . . . . . . . 43

viii



1.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.2.2 Data Exploration and Statistical Analysis . . . . . . . . . . . . . . . . . . . . 46

1.2.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.2.2.2 Statistical Tests of Stationarity, Normality and

Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.2.3.1 Standardization – Estimating σt and µt . . . . . . . . . . . . . . 51
1.2.3.2 VaR Estimation – Extreme Value Approach . . . . . . . . . . 53

1.2.4 Empirical Results and Calendar Effect Analysis . . . . . . . . . . . . . . . 58

1.2.4.1 Seasonal Effect on Americas Indexes VaR . . . . . . . . . . . . 58
1.2.4.2 Day-of-the-Week Effect on Americas Indexes VaR . . . . . 62

1.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1.3 The Dynamics of Precious Metal Markets VaR . . . . . . . . . . . . . . . . . . . . . . 65

1.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.3.2 Data exploration and statistical analysis . . . . . . . . . . . . . . . . . . . . . . 70
1.3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

1.3.3.1 Estimating µt+1 and σt+1 using ARMA -
GARCH-type model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

1.3.3.2 Estimating VaR using Extreme Value Theory . . . . . . . . . 77

1.3.4 Backtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1.3.4.1 Kupiec’s unconditional coverage test . . . . . . . . . . . . . . . . . 81
1.3.4.2 A Duration-based test of independence . . . . . . . . . . . . . . . 82

1.3.5 Empirical results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1.3.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2. COPULAS FOR FINANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.1 Conditional dependence among oil, gold and U.S. dollar exchange
rates: a copula-GARCH approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.1.2.1 Marginal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.1.2.2 Copula function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ix



2.1.2.3 Copula models of conditional dependence
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.1.2.4 Estimation of copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.1.3 Data and Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.1.3.1 Data description and stochastic properties . . . . . . . . . . . 106
2.1.3.2 Marginal distribution specifications and parameter

estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.1.3.3 Conditional tail dependences . . . . . . . . . . . . . . . . . . . . . . 113

2.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

x



LIST OF TABLES

Table Page

1.1 Summary statistics of the AAPL returns from 1995-7-3 to 2015-7-2 . . . . . 17

1.2 Tests for the AAPL negative daily log returns from 1995-7-3 to
2015-7-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 GPD parameter estimators and one-day-ahead VaR forecasts for
AAPL and SPY returns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Summary statistics of the AAPL returns by day-of-the-week . . . . . . . . . . . 35

1.5 Normality and independency tests of the AAPL returns by
day-of-the-week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.6 Estimators of GPD parameters and forecast VaRs of AAPL returns
by day-of-the-week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.7 Estimators pf GPD parameters and VaR of AAPL returns by
day-of-the-week via the same threshold µ = 4.032778 . . . . . . . . . . . . . . 37

1.8 Estimators of GPD parameters and VaR of SPY returns by
day-of-the-week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.9 Summary statistics of AAPL returns by quarter . . . . . . . . . . . . . . . . . . . . . 39

1.10 Normality and independent test p-value of the AAPL returns by
quarter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.11 Estimated GPD parameters and VaR of AAPL returns by quarter . . . . . 40

1.12 Estimated GPD parameters and VaR of AAPL returns by quarter via
the same threshold µ = 4.110644. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.13 Estimated GPD parameters and VaR of SPY returns from 1995-7-3
to 2015-7-2 by quarter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi



1.14 Stationarity and normality tests on the five Americas Indexes returns
from 2006-7-17 to 2015-11-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.15 Estimation results of AR(1)-GARCH(1,1) model for Americas
Indexes returns from 2006-7-17 to 2015-11-13 . . . . . . . . . . . . . . . . . . . . . 59

1.16 Descriptive Summary Statistics of Americas Indexes Seasonal
Standardized Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.17 Results from Fitted GPD for Standardized Returns & Estimates for
VaRs of Negative Daily Log Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.18 Descriptive Summary Statistics of Americas Indexes Weekly
Standardized Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.19 Results from Fitted GPD for Standardized Returns & Estimates for
VaRs of Negative Daily Log Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.20 Previous research about analyzing market risk of metals . . . . . . . . . . . . . . 71

1.21 Descriptive statistics and hypothesis tests results for the four precious
metal prices daily log-returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.22 Estimation and hypothesis test result of AR(1) - GARCH-type
models for four precious metal daily log-returns from 2000-1-1 to
2016-9-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

1.23 Parameter estimation results from fitted GPD and estimates for
one-day ahead VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

1.24 Backtesting results of VaR from the asymmetric GARCH-EVT
approach for four precious metal return series from 2000-1-11 to
2016-9-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.1 Previous research on the interactions among gold prices, oil prices
and exchange rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.2 Descriptive statistics and stochastic properties of return series from
2006-3-1 to 2016-3-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.3 AIC of GARCH(1,1) model with different innovation distributions for
modeling the conditional heteroscedasticity . . . . . . . . . . . . . . . . . . . . . 110

2.4 MLE result of AR(1)-GARCH(1,1) models for each return series and
the descriptive statistics of standardized residual series . . . . . . . . . . . 111

xii



2.5 Correlation estimates of the Kendall’s τ and the Spearman’s ρ
between oil prices, gold price and exchange rates . . . . . . . . . . . . . . . . . 112

2.6 Estimates of the dependence parameters of different copula
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.7 Estimates of the dependence parameters of trivariate copula models
and the goodness of fit tests for copulas . . . . . . . . . . . . . . . . . . . . . . . . 116

2.8 P-value of the goodness-of-fit test for different copula functions . . . . . . . 116

2.9 Tail dependence coefficients of the best fit copula . . . . . . . . . . . . . . . . . . . 117

xiii



LIST OF FIGURES

Figure Page

1.1 Time plots of AAPL from 1995-7-3 to 2015-7-2. . . . . . . . . . . . . . . . . . . . . . . 17

1.2 QQ-plot of AAPL returns from 1995-7-3 to 2015-7-2 against normal
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Sample autocorrelation coefficients up to 100 lags for AAPL returns
from 1995-7-3 to 2015-7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Hill plots (left) and mean excess plots (right) for the AAPL returns
(top) and SPY returns (lower) with 95% asymptotic confidence
bounds (dotted line) based on the normal asymptotics of the
estimator, depending on different threshold values µ. . . . . . . . . . . . . . . 30

1.5 GPD tail estimates fitness summary of the AAPL returns
distribution and the innovations distribution. . . . . . . . . . . . . . . . . . . . . . 32

1.6 Diagnostic plots for GPD fit to SPY daily negative log returns. . . . . . . . . 33

1.7 1-day-ahead, 5%(dotted), 1%(dotdash) and 0.1%(longdash) VaR of
AAPL (upper) and SPY (lower) returns from 2005-7-6 to
2015-7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.8 Time plots of Standards and Poors index from 2006-7-17 to
2015-11-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.9 Quantile-quantile plot of S&P 500 returns from 2006-7-17 to
2015-11-13 against the normal distribution. . . . . . . . . . . . . . . . . . . . . . . 49

1.10 Sample autocorrelations of (a) returns and (b) squared returns of the
S&P 500 from 2006-7-17 to 2015-11-13. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.11 Estimation of the conditional standard deviation derived from
AR(1)-GARCH(1,1) model of the S&P 500 returns. . . . . . . . . . . . . . . . 52

1.12 Sample autocorrelations of (a) standardized returns and (b) squared
standardized returns of the S&P 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiv



1.13 Hill plot and Mean Excess Plot of the S&P 500 returns from
2006-7-17 to 2015-11-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.14 Time series plots of gold daily prices and daily log-returns from
2000-1-11 to 2016-9-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1.15 Time series plot of the negative standardized residuals for gold daily
returns from 2000-1-11 to 2016-9-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

1.16 Correlograms for the gold price returns and their squared values, as
well as for the standardized residuals and squared residuals. . . . . . . . . 86

1.17 Hill plot and Mean Excess Plot of gold negative standardized
residuals from 2000-1-11 to 2016-9-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1.18 Downside 0.005 quantile VaRs of gold, silver, platinum, and
palladium (from top to bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.1 Time series plots of oil prices (upper left), gold value (lower left) and
USD exchange rates(upper and lower right) from 2006-3-1 to
2016-3-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.2 Daily returns on crude oil, gold and USD exchange rates from
2006-3-1 to 2016-3-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.3 Plot of negative dynamic Kendall’s tau (the rolling Kendall’s tau)
between WTI price and USD/CDA exchange rate(top panel),
normalized WTI price and negative normalized USD/CDA
exchange rate chart(bottom panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xv



INTRODUCTION

In the last decade risk management has become a major discipline in Finance.

It is studied in different fields within finance: financial econometrics, mathematical

finance or financial engineering. Financial risk management is the process by which

the financial risks are identified, assessed, measured, and managed in order to create

economic value. The main concern of risk management is analyzing the causes and

consequences of negative events for investor interests. In addition, one of the more

promising research areas in finance recently is the development of financial instru-

ments and investment strategies that allow one hedging from negative events.

As financial markets have expanded over recent decades, the risk management

function has become more important. Risk can never be avoided. More generally,

the goal is not to minimize risk, it is to take smart risks. Some risks can be measured

reasonably well. For those, risk can be quantified using statistical tools to generate a

probability distribution of profits and losses. Other risks are not amenable to formal

measurement but are nonetheless important. Risk that can be measured can be

managed better. Investors assume risk only because they expect to be compensated

for it in the form of higher returns. To decide how to balance risk against return,

however, requires risk measurement.

Since uncertainty is intrinsic to the definition of random variable and is usually

described by the variance. Risk however entails something more not captured by

the variance. Risk in this situation comes from very low or high forecasted values.

Centralized risk management tools such as Value-at-Risk (VaR) were developed in

the early 1990s. They combine two main ideas. The first is that risk should be

measured at the top level of the institution or the portfolio. This idea is not new.
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It was developed by Harry Markowitz (1952)[66], who emphasized the importance

of measuring risk in a total portfolio context. A centralized risk measure properly

accounts for hedging and diversification effects. It also reflects the fact that equity is

a common capital buffer to adsorb all risks. The second idea is that risk should be

measured on a forward-looking basis, using the current position.

VaR raise the issue of defining risk as something occurring in the tails of the

distribution of the random variable and entailing the knowledge of its probability

distribution. It uses quantiles, which requires us to pay attention to discontinuities

and intervals of quantile numbers.

Definition 0.1. Given α ∈ [0, 1] the number q is an α−quantile of the random

variable X under the probability distribution P if one of the three equivalent properties

below is satisfied:

a. P(X ≤ q) ≥ α ≥ P(X < q),

b. P(X ≤ q) ≥ α and P(X ≥ q) ≥ 1− α,

c. F (q) ≥ α and F (q−) = limx→q− F (x) ≤ α, where F is the cumulative distribution

function of X.

We formally define VaR in the following way.

Definition 0.2. Given α ∈ [0, 1], and a reference instrument r, the Value-at-Risk

VaRα at level α of the final new worth X with distribution P, is the negative of the

quantile q+
α of X/r, that is

V aRα = − inf{x|P(X ≤ x× r) > α}.

It is interesting however the statisticians and econometricians vision of risk. It

boils down to measuring the variance of the random variable describing the event.

This is only true if the probability distribution is known and the only unknown is the

variance. Consider the example of a normal distribution N(µ, σ2) where µ is unknown
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but σ is known. The knowledge of σ is not sufficient to know the uncertainty neither

the risk. The probability distribution is not known, but a set of possible distribution

functions. This unusual example reflects the ambiguity of knowing only the variance.

In the particular example of analyzing financial returns it is a common hypothesis

to assume the expected value of the returns to be zero, and then makes sense to

think of the volatility as measuring the risk. Nevertheless this example derived from

financial econometrics needs of another assumption. The prices of the financial in-

strument are assumed to follow a log-normal distribution, and in consequence the

returns distribution is assumed normal.

There is a handful of econometric techniques for estimating the risk under these

assumptions. The focus is in the estimation and modeling of the volatility pro-

cess. The standard methodology is estimation from the historical distribution where

the volatility is considered constant, and all the observations have the same weight

in estimating the variance. Instead, if some dynamics is observed in the data, a

more adequate estimator for the volatility is some exponential smoothing technique

where the most recent observations have more protagonism than past observations.

GARCH models, which was introduced in Engle and Bollerslev (1986)[14], followed

this philosophy. There are minor modifications of this model reflecting different styl-

ized facts of the financial data. Examples of these models are Exponential GARCH,

Threshold GARCH, and Asymmetric Power ARCH regarding the leverage effect,

IGARCH where describing infinite variance, Fractionally Integrated GARCH, Hyper-

bolic GARCH and Fractionally Integrated Power ARCH regarding the long memory

effect, etc.

More sophisticated forms of measuring risk in this setting are given by the implied

volatility and the realized volatility. Implied volatility is derived from option pricing

and in consequence from Black-Scholes formula, Black and Scholes (1973)[13]. The

prices are supposed to follow a geometric Brownian Motion. Other volatility measure
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founded on stochastic differential equations is the realized volatility. The expression

for volatility builds on the theory of continuous-time arbitrage-free price processes

and the theory of quadratic variation.

All of the above different methodologies to quantify risk fail if the distribution of

returns is far from the Gaussian assumption. This fact is gaining popularity within

the academics and practitioners that have raised the need of a more realistic modeling

of the distribution of returns, and of the analysis of risk. The focus moves from a

measure for the dispersion of the data to a measure that describes the probability in

the tails. The risk underlying the financial sequence is renamed as downside risk since

it is associated to negative outcomes that are usually represented in the left tail of the

distribution of returns. It is worth mentioning the upside risk due to the existence of

hedging instruments that are designed to compensate values in the left tail and can

yield negative outcomes when the returns take on large positive values. The interest

of risk managers is found in estimating the distribution of the data, in particular

the distribution in the tails. The results found in Gnedenko (1943)[39] derived from

the distribution of the sample maximum are the basis of a new and exciting area in

Statistics involving the analysis of the extreme values of random sequences and the

distribution in the tails. This area is denominated Extreme Value Theory (EVT)

and is the theoretical basis and statistical toolkit for the techniques developed in this

thesis.

The foundations of the theory were laid by Fisher and Tippett (1928)[34] and

(1943)[39], who demonstrated that the distributions of the extreme values of an inde-

pendent and identically distributed sample from a cumulative distribution function F,

when adequately rescaled, can converge towards one out of only three possible distri-

butions. The crucial element of this finding is that the type of asymptotic distribution

of extreme values does not depend on the exact cumulative distribution function F

of returns. The precise form of F can thus be ignored and a non-parametric or a
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semi-parametric method can be used to estimate VaR. This is important, given that

the whole tail of the distribution of returns is unknown and that, although financial

time series usually exhibit skewed and fat-tailed distributions, there is no complete

agreement on what distribution would fit them best.

In principle, EVT-based estimates of VaR should be more accurate and reliable

than the usual ones because EVT concentrates directly on the tails of the distribution.

This avoids a major flaw of parametric approaches, i.e. that their estimates are

somehow biased by the credit given on the central part of the distribution, thus

underestimating extremes and outliers, which are precisely that is of interest when

calculating VaR. The third and final reason why EVT is especially promising in

risk measurement is that it allows each of the two tails of the distribution to be

tackled independently, in a flexible approach that takes the skewness of the underlying

distribution into account.

These three main advantages of an EVT approach to risk management are sum-

marized as “letting the tails speak for themselves”. This is a very fitting description,

as risk management focuses primarily on avoiding large unexpected losses and sudden

crashes rather than on long sequences of medium-sized losses.

Nowadays, the most popular application of EVT to finance is for the estimation

of VaR and Expected Shortfall (ES), which takes into account the whole tail of the

distribution and also possesses the properties required for a coherent risk measure

as defined by Artzner et al. (1999)[6]. But it is not the only possible one, Rocco

(2012)[75] presents a critical survey of all main financial applications.

Here we give a brief presentation of the main theoretical underpinnings of EVT.

For a thorough presentation of the theory, we refer the reader to the specialist lit-

erature, such as Beirlant et al. (2006)[10], Coles (2001)[27], de Haan and Ferreira

(2007)[31].
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Given an unknown distribution F, EVT only models the tails of F, without making

any specific assumption concerning the centre of the distribution. There are two

different parametric approaches to EVT. The two parametric approaches differ as to

the meaning that they assign to the notion of ‘extreme value’.

Considered N independent and identically distributed random variables Xi, i =

1, 2, · · · , N , representing positive losses and denote by their distribution F. The first

parametric approach, the block maxima method, divides a given sample of N obser-

vations into m subsamples of n observations each (n-blocks) and picks the maximum

MK (K − 1, 2, · · · ,m) of each subsample, a so-called block maximum. The set of

extreme values of F is then identified with the sequence (Mk)k of block maxima and

the distribution of this sequence is studied. The main result of EVT is that, as m

and n grow sufficiently large, the limit distribution block maxima belongs to one of

three different families. Which one it belongs to depends on the behavior of the

upper tail of F, whether it is power-law decaying, exponentially decaying, or with

upper bounded support. The three asymptotic distributions of block maxima can

be written in a unified manner by means of the generalized extreme value (GEV)

distribution, a parametric expression depending on a real parameter, known as the

shape parameter, that we denote by ξ. The three cases just mentioned correspond,

respectively, to ξ > 0 (Fréchet case), ξ = 0 (Gumbel case) and ξ < 0 (Weibull case).

The second parametric approach, the threshold exceedances method, defined ex-

treme values as those observations that exceed some fixed high threshold µ. This

method models the distribution of the exceedances over µ, that is to say, the random

variables Yj = Xj − µ, calculated for those observations Xj that exceed µ, i.e. such

that Xj > µ. The main result of EVT following this approach is that as the thresh-

old µ tends to infinity, the distribution of the positive sequence (Yj)j, appropriately

scaled, belongs to a parametric family, the generalized Pareto distribution (GPD),
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whose main parameter is the same shape parameter ξ as the corresponding GEV

distribution.

Any of these approaches to EVT entails choosing an adequate cut-off between the

central part of the distribution and the upper tail, i.e. a point separating ordinary

realizations from extreme realizations of the random variable. When working with

threshold exceedances, the cut-off is induced by the threshold µ, while in the block

maxima method, it is implied by the number m of blocks. This is a very problematic

aspect of the statistical methods of EVT, as the estimated value of the shape parame-

ter can vary considerably depending on the chosen cut-off. Indeed, there is a trade-off

between bias and variance of the estimated of the shape parameter ξ. For instance,

with threshold exceedances, if µ is set too low, many ordinary data are taken as

extreme, yielding biased estimated. By contrast, an excessively high threshold gives

scant extreme observations, too few to obtain efficient estimates. In both cases, the

resulting estimates are flawed and may lead to erroneous conclusions when assessing

risk.

An optimal cut-off cannot be selected once and for all as it depends on the time

series at hand. The literature suggests three main ways to cope with this issue:(a)

employing graphical methods, Hill plots, that display the estimated values of ξ as a

function of the cut-off in order to find some interval of candidate cut0off points that

yields stable estimates of ξ; (b) making Monte Carlo simulations and then choosing

the cut-off that minimizes a statistical quantity, yielding a trade-off between bias and

variance of the estimates; (c) implementing algorithms, based for instance on the

bootstrap method, that endogenously pick out the cut-off best suited to the data at

hand.

Another important issue raised by the practical implementation of EVT is that

for the theory to work, the data must be independent and identically distributed,

whereas most financial time series do not satisfy this requirement. Therefore, using
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EVT without properly considering the dependence structure of the data yields incor-

rect estimates, possibly resulting in unexpected losses or in excessively conservative

positions.

Two main approaches are usually employed to take data dependence into consid-

eration. (a) If the time series is strictly stationary, then an additional parameter can

be estimated, the extremal index, which accounts for the clustering of extremal val-

ues due to dependence. (b) Alternatively, the dependence structure can be explicitly

modeled, fitting some GARCH-type model to the data. If the standardized residuals

exhibit a roughly independent and identically distributed (i.i.d.) structure, EVT can

then be applied to them rather than directly to the data. This is the same as im-

plementing a two-stage procedure that filters the data with econometric tools and is

suited to deal with conditional heteroskedasticity before applying EVT methods.

The latter approach works well when using EVT for estimating quantile-based

measures of risk, such as VaR or ES, and it seems to be sufficiently robust to yield

good estimates even when the GARCH type model is mis-specified to some extent.

Finally, when EVT is applied to some data, the very choice of the dataset may be

an issue owing to the dichotomy inscribed in the theory: on the one hand, EVT re-

quires a lot of data as its results are asymptotic, but, on the other hand, it necessarily

encounters a scarcity of data because it concentrates on the tails of the distribution

and extreme events are by definition, rare. Several practical remedies to this anti-

nomy are found in empirical studies, such as using high frequency data, expanding

the time window as much as possible, jointly modeling extreme values from both the

upper and the lower tail, or pooling different data series in a single one.

In Chapter 1, we applied and improved the EVT cased methodologies to estimate

and forecast VaR for different financial assets.

From a theoretical point of view, when studying extremes of multivariate time

series, the dependence between the extreme values of the different components plays
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a crucial role. The common notion of correlation, which is useful for the normal

distribution, is often inadequate to explain the dependence between extremes of mul-

tivariate time series. Pearson correlation, which is the most common measure of

dependence, is neither a good measure of dependency in cases where the extreme

realizations are important. This has resulted in the introduction of copulas method,

which has become rapidly developed and has bought the attention in various fields

as a way to overcome the limitations of classical dependence measures as exemplified

by the linear correlation.

Copula theory was first developed in Sklar (1959)[83]. It is a powerful tool as it

does not require any assumptions on the selection distribution function and it allows

the risk manager to decompose any n-dimensional joint distribution function into n

marginals and a copula. In the field of finance, the two major phenomena account for

the rise of copula modeling are the lack of normality in returns and the dependence

between extreme values of various assets. The oldest research group is that of Paul

Embrechts. As early as 1999, Embrechts, McNeil and Straumann[33] were using the

concept of copula to alert readers of Risk Magazine to the pitfalls of correlation.

The papers by Embrechts and his collaborators on the use of copulas in managing

financial risks are by far the most numerous and cited. They culminated in 2015 with

the publication of the book by McNeil, Frey, and Embrechts (2015)[68].

Copulas are defined as functions that links univariate marginals to form multi-

variate distributions. A real advantage of using copula functions for the description

of dependence structures consists in the ability to combine different types of marginal

distributions into a joint risk distribution. At the same time, the joint distribution

created using copulas can have a dependence structure described by more than a

simple correlation matrix.

Definition 0.3. A function C : [0, 1]n → [0, 1] is a n-dimensional copula if it satisfies

the following properties:
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(1) For all ui ∈ [0, 1], C(1, · · · , 1, ui, 1, · · · , 1) = ui. (2) For all ui ∈ [0, 1], C(u1, · · · , un) =

0 if at least one ui = 0.

(3) C is grounded and n-increasing.

Hence a n-dimensional copula is a joint distribution function defined on [0, 1]n with

standard uniform marginal distributions. According to Sklar’s well-known theorem,

copulas allows the dependence structure of a joint distribution to be disentangled

from its marginal behavior.

Theorem 0.4. Sklar’s theorem: Given a d-dimensional distribution function G

with continuous marginal cumulative distributions F1, · · · , Fd, then there exists a

unique n-dimensional copula C : [0, 1]d → [0, 1] such that for x ∈ Rn

G(x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)).

Moreover, if F1, · · ·Fn are continuous, then C is unique. Sklar’s theorem is a

fundamental result concerning copula functions.

If F is a univariate distribution function then the generalized inverse of F is defined

as

F−1(t) = inf{x ∈ R : F (x) ≥ t}

for all t ∈ [0, 1], and using the convention inf{∅} =∞.

Corollary 0.5. Let G be an n-dimensional distribution function with continuous

marginals F1, · · · , Fd and an n-dimensional copula C. Then for any u ∈ [0, 1]n,

C(u1, · · · , un) = G(F−1
1 (u1), · · · , F−1

n (un)).

Note that without the continuity assumption, this relation may not hold. The

copula links the quantiles of the two distributions rather than the original variables,
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so one of the key properties of a copula is that the dependence structure is unaffected

by a monotonically increasing transformation of the variables. The definition and

invariance properties suggest that we interpret a copula associated with (x1, · · · , xn)

as being the dependence structure. This makes particular sense when all the Fi are

continuous and the copula is unique; in the discrete case there will be more than one

way of writing the dependence structure.

Dynamic modeling of dependence between financial risks is crucial to achieving

consistent calibration through time to market data, as well as to dynamic hedging

of there risks. In this thesis, the concordance between extreme values of random

variables is of interest. Such a dependence measure is essentially related to the condi-

tional probability that one index exceeds some value given that another exceeds some

value. If such a conditional probability measure is a function of the copula, then it

too will be invariant under strictly increasing transformations.

In the case of a bivariate series, the coefficient of upper tail dependence measures

the conditional probability of one component of the series exceeding a given quan-

tile, provided that the other component exceeds the same quantile, as this quantile

tends to one. If the coefficient of upper tail dependence equals zero, the two compo-

nents of the bivariate time series are asymptotically independent; otherwise, they are

asymptotically dependence. The extremal dependence structure is typically different

from the dependence we find at the centre of the distribution, since asymptotically

independence can occur even if the components of the distribution are not linearly

independent.

In general, a statistical problem for copulas could be decomposed into two steps:

the identification of marginal distributions and the definition of an appropriate copula

function. We refer to the first step as modeling the marginal distributions and second

as modeling the dependence structure. We describe and implement the copula based
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two step methodologies to discover the dynamic tail dependence of financial assets in

Chapter 2.
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CHAPTER 1

EXTREME VLUE THEORY IN RISK MANAGEMENT

1.1 Calendar Effects in AAPL Value-at-Risk

This study investigates calendar anomalies: day-of-the-week effect and seasonal

effect in the VaR analysis of stock returns for AAPL during the period of 1995 through

2015. The statistical properties are examined and a comprehensive set of diagnostic

checks are made on the two decades of AAPL daily stock returns. Combing the

Extreme Value Approach together with a statistical analysis, it is learnt that the

lowest VaR occurs on Fridays and Mondays typically. Moreover, high Q4 and Q3

VaR are observed during the test period. These results are valuable for anyone

who needs evaluation and forecasts of the risk situation in AAPL. Moreover, this

methodology, which is applicable to any other stocks or portfolios, is more realistic

and comprehensive than the standard normal distribution based VaR model that is

commonly used.

1.1.1 Background

Into the maelstrom of digital revolution came a greatly innovative digital company:

Apple Inc.. The company designs, manufactures, and markets mobil communication,

media devices, personal computers, and portable digital music players, and sells a

variety of related software, services, accessories, networking solutions, and third-party

digital content and applications. America’s favorite pastime used to be baseball, but

during the last couple of years, that has changed. The new American pastime has

become getting long Apple Inc. stock (NASDAQ:AAPL) any way that you can, and
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wait for the profits to accumulate. While the above saying may not be absolute

true, increasing numbers of investors to AAPL trading, make the current topic about

AAPL risk in a certain time frame is indeed worthy to be studied thoroughly.

For a rational financial decision maker, expected returns constitute only one part

of the decision making process. Another part that must be taken into consideration

is the volatility or risk of returns. Therefore, understanding the risks and volatility

involved in stock investing is essential. It is helpful to know whether there are vari-

ations in the risk of stock returns by the day-of-the-week as well as during different

seasons. If investors can identify a certain pattern in the risk, then it would be easier

to make investment decisions based on both returns and risk. It is also important

to know whether a high stock performance is associated with a correspondingly high

risk taking behavior. For example, there have been extensive studies of the relation

between aggregate volatility and expected returns of the market, see Campbell and

Hentschel (1992)[18], Campbell (1996)[17], and Guo and Whitelaw (2003)[42]. Un-

covering certain volatility or risk patterns in returns might also benefit investors in

option pricing, portfolio optimization, and risk management.

It is well known that the financial institutions with significant amounts of trading

activity are vulnerable to extreme market movements. Hence risk quantification,

i.e. estimations of probabilities of large losses in financial markets, has become a

primary concern for regulators and also for internal risk control. Ideally, the best and

most informative risk measure of financial vulnerability is given by the whole tail of

the loss distribution. A popular method of risk measurement is the Value-at-Risk

(VaR), which is defined as the loss level that will not be exceeded with a certain

confidence level during a certain period of time. The VaR was firstly used as an

internal management tool by a number of banks after the 1987 crash, then improved

by J.P. Morgan who designed its RiskMetrics System in 1994. It has emerged as

one of the most used risk measures in the financial industry, mostly because of its

14



simplicity and intuitive interpretation. Details can be found on the homepage of

MSCI. To make the risk measurement coherent, the quantity of Expected Shortfall

(ES) is also widely used. The ES of an asset or a portfolio is the average loss, given

that VaR has been exceeded. Thus, it is also called conditional value at risk. The

advantage of ES is that it is not only sensitive to the shape of the loss distribution in

the tail of the distribution, but also possesses the properties required for a coherent

risk measure as defined by Artzner (1999)[6].

Hence, the goal of this section is to characterize the VaR of AAPL relative re-

turns. Based on investigations of the day-of-the-week effect and seasonal effect in

extreme event risk, we also provide valuable and applicable analysis for investors who

are interested in Apple Inc. stock. The major obstacle to this investigation is a vi-

able measure of tail risk over time. Ideally, one would directly construct a measure

of aggregate tail risk dynamics from the time series of stock returns in analogy to

dynamic volatility estimated from a GARCH model. But dynamic tail risk estimates

are infeasible in a univariate time series model due to the infrequent nature of extreme

events. In this section, by using the Extreme Value Theory, we not only overcome this

problem, but also analyze the week effect as well as the seasonal effect based on our

computation of the small quantile of VaR. However, we should be aware of various

layers of uncertainty, which include the parameter uncertainty, model uncertainty,

and data uncertainty, in extreme value analysis. In a sense, it is never possible to

have enough data in an extreme value analysis.

Here we first examine certain statistical properties of the time series of stock re-

turns, including stationarity, correlations as well as non-normal distributions. There-

after, we apply the extreme value analysis on the tested AAPL returns sample set.

The calendar effect in stock market returns includes day-of-the-week effect, weekend

effect, January effect, and holiday effect, etc. It has been widely studied and inves-

tigated in finance literature. Studies by Cross (1973)[29], and Rogalski (1984)[76]
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demonstrate that there are differences in distribution of stock returns for each day

of the week. Studies by Baillie and DeGennaro (1990)[7], Berument and Kiymaz

(2001)[12] posit that day-of-the-week effect has an impact on stock market volatility.

In recent years, another stream of research has considered seasonality in stock returns

and volatility, see Saunders (1993)[79], Bouman and Jacobsen (2002)[16], Hirshleifer

and Shumway (2003)[47], Kamstra, Kramer and Levi (2003)[57], and Cao and Wei

(2005)[19], etc. These studies generally report that calendar anomalies are present

in both returns and volatility equations in the stock market. None of these studies,

however, test for the possible existence of day-of-the-week and seasonal variation in

stock return VaR. Empirical findings in this section show that both the day of the

week effect and seasonal effect are present in the AAPL VaR. In the empirical results

of the day-of-the-week effect on AAPL tail risk, we observe the lowest VaR of AAPL

returns on Fridays and Mondays. We also find that the lower VaR occur on Q1 and

Q2 during the test period. AAPL VaR and SPY VaR were compared, the AAPL was

found to have its own personality.

1.1.2 Data exploration and statistical analysis

1.1.2.1 Data description

In this study, we examine the daily AAPL stock price activity over the twenty-

year period, July 3, 1995 to July 2, 2015. The collection of AAPL daily adjusted

closing price was from Yahoo Finance. The adjusted closing price is used to develop

an accurate track record of the stock’s performance.

Further, use the negative log return to examine extreme losses of the stock. Let

pt denote the adjusted closing price of a stock on day t, then the daily percentage

change on the day is defined by

rt = −100 log
pt
pt−1

= 100 log
pt−1

pt
. (1.1)
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The reason for using the negative returns is that we are mainly interested in the

possibility of large losses rather than large gains.

Figure 1.1: Time plots of AAPL from 1995-7-3 to 2015-7-2.

Fig.1.1 shows the time plots of adjusted closing price and negative daily log re-

turns of AAPL stock from July 3, 1995 to July 2, 2015. The upper plot shows that

AAPL stock price has skyrocketed over 100 times since 2005. The lower plot shows

AAPL negative daily log return time series. We also observe that there are more

pronounced peaks than one would expect from Gaussian data. Table 1.1 summarizes

the basic statistical characteristics of the whole AAPL stock negative daily log return

series. Note that the expected AAPL log returns during the test period is 0.09. The

skewness and kurtosis measures are highly significant, and those indicate substantial

departures from normality. Since the possibility of time-varying variance and non-

Table 1.1: Summary statistics of the AAPL returns from 1995-7-3 to 2015-7-2

Mean Range Std dev Skewness Kurtosis Observations
-0.09 (-28.69, 73.12) 3.05 2.55 70.82 5035
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normal behavior have been noticed, we provide formal tests to check the stationarity

and normality of the return process.

1.1.2.2 Test for stationary property

The invariance of statistical properties of the return process in time corresponds

to the stationarity hypothesis that the joint probability distribution of the returns

does not change when shifted in time. It is not obvious whether AAPL returns

verify this property in calendar time since financial time series data often have non-

stationary behaviors, such as trends, and cycles. Here we use the KPSS test[61], to

verify the hypothesis of weak stationarity, i.e. time invariance of the mean value and

the autocorrelation function of AAPL returns.

Proceeding in the spirit of Kwiatkowski, Phillips, Schmidt and Shin (1992)[61],

we assume that the series {rt}Tt=1 can be decomposed into the sum of a deterministic

trend, a random walk and a stationary error. We express this symbolically by writing

rt = βt+ αt + εt, (1.2)

where the constant β is the trend; εt is assumed to be stationary; and αt is a random

walk, i.e.

αt = αt−1 + ut.

Here {ut} is a white noise series with zero mean and variance σ2
u.

The hypothesis for the KPSS test is

H0 : σ2
u = 0 vs H1 : σ2

u 6= 0.

Assume et = rt − (β̂t + α̂t) as residuals of the regression of rt on an intercept and

time trend, St =
∑t

i=1 ei, t = 1, 2, · · · , T, as the partial sum process of the residuals.

The KPSS test statistics is
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KPSS =
T−2

∑T
t=1 S

2
t

s2
, (1.3)

where s2 is a consistent estimator of the long-run variance of αt.

The rejection rule is that if the value of the KPSS statistic in Eq.(1.3) exceeds the

critical values estimated in [61], or the p-value is less than or equal to the significance

level α, we reject H0.

Table 1.2: Tests for the AAPL negative daily log returns from 1995-7-3 to 2015-7-2

Null Hypothesis H0 Stats p-value Test Result

KPSS test
for stationary

The series is stationary
around a straight line

time trend
0.08 0.1 Accept H0,

the series is
stationary.The series is stationary

around a constant.
0.21 0.1

Shapiro-Wilk
test for

normality

The series come from
a normally distributed

population.
0.86 2.2e-16

Reject H0,
the series does
not come from

a normal
distribution.

Ljung-Box
test for

correlation

ρ1 = ρ2 = · · · = ρ5 = 0 16.455 0.005658 Reject H0,
the series is not
autocorrelated.

ρ1 = ρ2 = · · · = ρ10 = 0 30.34 0.0007536
ρ1 = ρ2 = · · · = ρ15 = 0 42.303 0.0002018

As shown in Table 1.2, for the null hypothesis which claims that the series follows

a straight line time trend with stationary errors, i.e. β 6= 0 in Eq.(1.2), the p-value

is 0.1 and the corresponding KPSS statistic is 0.080433. In addition, for the null

hypothesis that the series is stationary around a constant rather than a trend with

stationary errors, i.e. β = 0 in Eq.(1.2), the p-value is 0.1 and the corresponding

KPSS statistic is 0.20611. In conclusion, the KPSS test result indicates that the

considered AAPL returns is stationary from July 3, 1995 to July 2, 2015.
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1.1.2.3 Test for normality

In studying the financial time series, one common assumption is that the process

follows normal distribution. However, it is barely true in the real stock return series.

Our study shows that the AAPL stock returns are not normally distributed. We begin

by forming a QQ-plot of the AAPL negative daily log returns sample set against the

normal distribution, in order to confirm that an assumption of normality is unrealistic,

and that the innovation process has fat tails or is leptokurtic – see Fig.1.2.

Figure 1.2: QQ-plot of AAPL returns from 1995-7-3 to 2015-7-2 against normal
distribution.

We also use the Shapiro-Wilk test[81], which has been demonstrated as one of the

most powerful normality tests by Razali and Wah (2011)[74], to verify an empirical

fact that the AAPL returns do not have the normality property. The Shapiro-Wilk

test utilizes the null hypothesis principle to check whether the series {rt}Tt=1 comes

from a normally distributed population. The Shapiro-Wilk test statistic is defined as

W =
(
∑T

t=1 atrt)
2∑T

t=1(rt − r̄)2
, (1.4)
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where rt is the t-th order statistic; r̄ is the sample mean; (a1, a2, · · · , aT ) are the

weights1. The value of W lies between zero and one. Small values of W lead to

the rejection of normality whereas a value of one indicates the normality of data. We

reject the null hypothesis if the p-value of the test is less than the predetermined

significance level.

Apply the Shapiro-Wilk test on the considered AAPL returns, we get the Shapiro-

Wilk statistic W = 0.86. The p-value is less than 2.2e-16, see Table 1.2. Hence, we

reject the null hypothesis at the significant level 1% and conclude that the AAPL

returns are not normally distributed during above time period.

1.1.2.4 Test for correlations

In the finance literature, testing for zero autocorrelations has been used as a tool

to verify the efficiency of the market hypothesis. Since applying extreme value theory

on a data set suggests that the time series are highly uncorrelated with a common

cumulative distribution function, we need to check the correlations of the AAPL

returns.

We begin by considering the autocorrelation function of a time series {rt}. The

correlation between rt and its past values rt−l is called the lag-l autocorrelation of

{rt} and is commonly denoted by ρl. Under the weakly stationary assumption, we

assume ρl is a function of l only, i.e.

ρl =
Cov(rt, rt−l)√
V ar(rt)V ar(rt−l)

=
Cov(rl+1, r1)

V ar(r1)
=
γl
γ0

, (1.5)

where the property V ar(rt) = V ar(r1) = γ0 for a weakly stationary series is used.

1(a1, a2, · · · , aT ) = mTV −1

(mTV −1V −1m)1/2
; m = (m1,m2, · · · ,mn)T , m1,m2, · · · ,mn are the expected

values of the order statistics of independent and identically distributed random variables sampled
from the standard normal distribution, and V is the covariance matrix of those order statistics.
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For a given sample of returns {rt}Tt=1, let r̄ = (
∑T

t=1 rt)/T is the sample mean.

The lag-l sample autocorrelation of {rt} can be represented as:

ρ̂l =

∑T
t=l+1(rt − r̄)(rt−l − r̄)/(T − l + 1)∑T

t=1(rt − r̄)2/(T − 1)
, 0 ≤ l ≤ T − 1. (1.6)

If a time series is not autocorrelated, then the estimates of ρ̂l will not be significantly

different from 0.

Fig.1.3 shows the sample autocorrelation coefficient ρ̂l plotted against different

lags l (measured in days), along with the 95% confidence band around zero for AAPL

negative daily log returns, for the period July 3, 1995 to July 2, 2015. The dashed lines

represent the upper and lower 95% confidence bands ±1.96√
T

, where the time length for

our AAPL returns is T = 5036 days. Fig.?? shows a small autocorrelation in AAPL

daily log price changes. Even in the cases where the autocorrelations are outside the

confidence bands, the autocorrelation coefficients are quite small, less than 5%.

Figure 1.3: Sample autocorrelation coefficients up to 100 lags for AAPL returns from
1995-7-3 to 2015-7-2.

Besides using the graphical plot to check autocorrelation, we also apply a formal

statistic test: the Ljung-Box test by Ljung and Box (1978)[62], which checks serial

correlation of the time series. The null and alternative hypothesis of the Ljung-Box

test is

H0 : ρ1 = · · · = ρm = 0 vs H1 : ρi 6= 0 for i ∈ {1, 2, · · · ,m}
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As Ljung and Box[62] proposed, under the assumption that {rt}Tt=1 is an i.i.d. se-

quence with certain moment conditions, the modified Portmanteau statistic is defined

as

Q(m) = T (T + 2)
m∑
l=1

ρ̂2
l

T − l
. (1.7)

It is asymptotically a chi-squared random variable with m degrees of freedom, i.e.

Q(m) ∼ χ2
m under the null hypothesis H0. In the definition of Q(m), T is the sample

size, ρ̂l is the sample autocorrelation at lag l, and m is the number of lags being

tested.

The decision rule is to reject H0 if Q(m) > χ2
1−α,m for significance level α, where

χ2
1−α,m denotes the 100(1−α)th percentile of a chi-squared distribution withm degrees

of freedom. Also, one should reject H0 if the p-value of Q(m) is less than or equal to

the significance level α.

The test result in Table 1.2 confirms that the AAPL returns does not have strong

serial correlations during the test period. The p-values of lag 5, lag 10 and lag 15

Ljung-Box test for AAPL returns are all less than significant level 1%.

Based on the statistical analysis for AAPL negative daily log returns, we dis-

covered that the AAPL returns is a stationary, uncorrelated time series, yet is not

normally distributed. Some computations of VaR are based on the assumption that

the series {rt} is normally distributed, or has t-distribution, see [63][5][11]. That is

the main reason why these study can use volatility to estimate VaR. However, the

real time series {rt} may not follow any known distributions, such as the normal or

t-distribution. To overcome the difficulty of {rt} having an unknown distribution, we

compute the VaR of AAPL returns by applying Extreme Value Theory, which avoid

making assumptions of the distribution of {rt}.
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1.1.3 Methodology

While exposure to risk can be summarized as a single number by estimating the

VaR, which is defined by Jorion[55] as “ the worst expected loss over a great horizon

within a given confidence level ”, it is crucial to have an accurate estimate on VaR.

Following the approach by Longin (1999a,b) [65][64], and Ruey S. Tsay (2007)[85],

we introduce the statistical principles behind VaR as well as the VaR estimation

methodology in this section.

1.1.3.1 VaR of a time series

VaR is the amount that might be lost in a portfolio of assets over a specified

time period T with a specified small failure probability α, usually set as 0.01 or 0.05.

Suppose a random variable X characterizes the distribution of negative returns of a

portfolio over a certain time horizon T , the right-tail α-quantile of the portfolio is

then defined to be the VaRα such that

Pr(X ≤ VaRα) = 1− α. (1.8)

The VaRα is the largest value for X such that the probability of a loss over the time

horizon T is no more than 1 − α. Although the parameters T and α are arbitrarily

chosen, the analysis in this study does not refer to the process of choosing the two

parameters of VaR which were considered to be T = 1day, α ∈ {0.01, 0.05, 0.1}.

The crux of being able to provide an accurate estimate for VaR is in estimating

the cutoff return VaRα. Studies of VaR are essentially concerned with the estimation

of the cumulative distribution function (CDF) of portfolio negative returns and/or

its quantile, especially the upper tail behavior of the loss CDF. Therefore, the CDF

of {Xt} is the focus of econometric modeling. Different methods for estimating the

CDF give rise to different approaches to VaR estimation.
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1.1.3.2 Extreme Value Theory approach to Value-at-Risk

In this section, we further estimated the upper tail behavior of the AAPL re-

turns CDF by using the extreme value approach. Extreme Value Theory (EVT) is

experiencing a boom in the financial field, especially with respect to its application

to the market risk. Its appearance as a popular instrument for estimating VaR can

be explained as a consequence of two factors. On the one hand, the assumption of

the normality of financial markets does not reflect the reality of the situation. As a

consequence, the VaR estimation methods which are based on the normality assump-

tion underestimates the risk. Historical or Monte Carlo simulation methods arise as

alternative methods. But given the difficulties and the inefficiencies of these methods,

EVT is sought out as a new solution.

The mathematical foundation of EVT is based on the class of extreme value

limit theories, originally posited by Fisher and Tippett (1928)[34] and later derived

rigorously by Gnedenko (1943)[39]. The central result in EVT is that the extreme tail

of a wide range of distributions can approximately be described by the Generalized

Pareto distribution (GPD), which is derived by Smith (1989)[?], Davison and Smith

(1990)[30].

For a random variable X, we first fix some high threshold µ and consider the

distribution of excess values Y = X − µ, which is defined as:

Fµ(y) = Pr(X − µ ≤ y|X > µ) =
F (µ+ y)− F (µ)

1− F (µ)
, (1.9)

where F is the underlying distribution of X, Fµ is the conditional excess distribution

function. In fact, Pickands (1975)[72] introduced the GPD as a two parameter family

of distributions for exceedance over a threshold.

Extreme Value Theory. Assume {Xt} is a sequence of stationary, uncorrelated

random variables with distribution F . For any µ > 0, let Fµ be the conditional excess
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distribution function, for random variables defined in (1.26) with Yt = Xt − µ. Let

ωF = sup{x : F (x) < 1}, then

lim
µ→ωF

Fµ(y) = Hσµ,ξ(y)

where Hσµ,ξ(y) is called GPD, specified as

Hσµ,ξ(y) = 1−
(

1 + ξ
y

σµ

)−1/ξ

+

. (1.10)

The parameters of GPD are the scale parameter σµ and the shape parameter ξ.

Although we may not know the distribution of each individual random variable

Xt, EVT specifically describes the tail distribution. The tail fatness of a distribution

is reflected by the shape parameter:

• ξ < 0 refers to thin tails;

• ξ = 0 implies that the kurtosis is 3 as for a standard normal distribution;

• ξ > 0 implies fat tails.

Therefore, the shape parameter measures the speed with which the distribution’s tail

approaches zero. The fatter the tail, the slower the speed and the higher the shape

parameter. Using GPD, EVT models the right tail of the distribution, i.e. the returns

in excess of a threshold. Because we are interested in extreme loss, the EVT analysis

is developed on negative stock returns. As tested in previous section that AAPL

returns are stationary and serially uncorrelated, its VaR is analyzed by using EVT.

In the literature, an optimal threshold is selected by employing graphical methods,

the mean excess plot2 and Hill plot3. The mean excess plot for threshold exceedance

2Details about the mean excess plot are described in Davison and Smith (1990)[30].

3Technical details about Hill plot can be found in Hill (1975)[45].
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is a diagnostic plot drawn before fitting any model and can therefore give guidance

about what threshold to use. One difficulty with this method is that the sample mean

excess plot typically shows very high variability, particularly at high thresholds. This

can make it difficult to decide whether an observed departure from linearity is in fact

due to the failure of the GPD or is just sample variability. As an alternative approach

to choose threshold, the Hill plot has some advantages. It displays the estimated

values of the shape parameter ξ as a function of the cut-off threshold, so that one can

easily find some interval of candidate cut-off points that yields stable estimates of the

shape parameter ξ. Here we use both approaches to choose a reasonable threshold,

see Figure 1.4.

According to the research of Hosking and Wallis (1987)[49], for the shape param-

eter ξ > −0.5, it is shown that maximum likelihood regularity conditions are fulfilled

and that maximum likelihood estimates {ξ̂n, (σ̂µ)n} based on a sample of n excesses

are asymptotically normally distributed. Therefore, we choose to use the paramet-

ric approach, maximum likelihood method (MLE) to estimate the two parameter in

GPD, which are the shape parameter ξ and the location parameter σµ.

Next, we make explicit the relationship between excess value and a observed return

series {rt}. Assume that {rt} have distribution F , and a high enough threshold µ is

given. We define the number of exceedance of the threshold µ within {r1, · · · , rn} as:

Nµ = card{t : rt > µ, t = 1, · · · , n}.

Then the conditional excess distribution function can be presented as:

Fµ(y) = Pr(rt − µ ≤ y|rt > µ) =
F (µ+ y)− F (µ)

1− F (µ)
.

Denote F µ(y) = 1− Fµ(y), then
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F µ(y) = Pr(rt − µ > y|rt > µ) =
F (µ+ y)

F (µ)
,

which is equivalent to

F (µ+ y) = F (u)F µ(y).

Consequently, the estimators of F (u) and F µ(y) can be written as:

F̂ (u) : =
1

n

n∑
i=1

I(Xi > µ) =
Nµ

n
,

F̂ µ(y) : = 1−Hσ̂µ,ξ̂
(y) =

(
1 + ξ̂

y

σ̂µ

)−1/ξ̂

+

,

where ξ̂ and σ̂µ are (maximum likelihood) estimators of the shape parameter ξ and

location parameter σµ. Therefore the tail estimator can be written as

̂F (µ+ y) =
Nµ

n

(
1 + ξ̂

y

σ̂µ

)−1/ξ̂

+

. (1.11)

This relationship between probabilities allows us to obtain VaR for the original asset

return series {rt}. More precisely, for a specified small probability α

α = Pr(rt > µ+ y) = F (µ+ y),

where the α-th upper tail quantile VaR of {rt} is µ + y. Consequently, for a given

small probability α, one can check that the VaR of holding a long position in the

asset underlying return {rt} is

VaRα =

 µ+ σ̂µ

ξ̂

(
( n
Nµ
α)−ξ̂ − 1

)
, ξ̂ 6= 0

µ+ ξ̂ ln ( nα
Nµ

) , ξ̂ = 0
(1.12)

We preferred to use the extreme value approach, or named GPD approach in this

study to tail estimation mainly for three reasons. One is that in finite samples of the
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order of points from typical return distributions, EVT quantile estimators are more

efficient than the historical simulation method. Second, considering the fact that

most financial returns series are asymmetric, the EVT approach is advantageous over

models which assume symmetric distributions such as t-distributions, or generalized

error distribution. Third, comparing with Hill method which is designed specifically

for the heavy tail (ξ > 0) data, the EVT approach to VaR has larger applicability

since it also applicable to light tail (ξ = 0) cases or even short tail (ξ < 0) cases.

1.1.4 VaR analysis of AAPL and SPY

In this section, one-day-ahead VaR forecasts are adopted along with the 5%,

1% and 0.1% level of significance in the empirical investigation. In order to make

a comparison, we use AAPL as well as SPDR S&P 500 ETF (AMEX:SPY) daily

negative log returns to compute the VaR and related statistical properties. The daily

AAPL negative log returns data set is introduced in section 2.1. The SPDR S&P 500

ETF is the first and most popular ETF in the U.S.. It tracks one of the most popular

indexes in the world, the S&P 500 Index. The objective of the SPY is to duplicate as

closely as possible, before expenses, the total return of the S&P 500 Index. Since the

performance of SPY is thought to be representative of the stock market as a whole,

we compare VaR between AAPL returns and SPY returns to find the characteristics

of AAPL. The daily SPY negative log returns are examined for the period of July 3,

1995 to July 2, 2015, which is the same test period as AAPL returns. We also ran

Shapiro-Wilk test and Ljung-Box test in SPY returns and found no evidence against

the non-normal and non-correlated assumptions for the series.

Before applying the extreme value approach to VaR on our data sets, it is necessary

to choose a specific threshold, confining the estimation to those observations that are

above the given threshold. As mentioned in section 1.1.3, we chose the threshold

through graphical procedures: Mean Excess plot and Hill plot. Fig.1.4 shows the Hill
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Figure 1.4: Hill plots (left) and mean excess plots (right) for the AAPL returns (top)
and SPY returns (lower) with 95% asymptotic confidence bounds (dotted line) based
on the normal asymptotics of the estimator, depending on different threshold values
µ.

plots and Mean Excess plots, with 95% confidence bands, for the AAPL returns and

SPY returns respectively. Since for the generalized pareto distribution, a possible

choice of threshold is given by the value, above which the empirical mean excess

value is approximately linear. The right-hand plots of Fig.1.4 indicate a reasonable

choice for AAPL returns where threshold should around 5, and SPY returns threshold

should around 2. The Hill estimator estimates the shape parameter ξ in the GPD

model as a function of the Nµ exceedances upper order statistics in the return sample.

The estimate is taken in the Nµ–region where the plot does not change much. For

the AAPL returns, Nµ = 280, with corresponding threshold µ = 4.153575; for SPY

returns, Nµ = 268, with corresponding threshold µ = 1.911077 would be reasonable.
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Table 1.3: GPD parameter estimators and one-day-ahead VaR forecasts for AAPL
and SPY returns.

Negative daily log returns from 1995-7-3 to 2015-7-2 AAPL SPY
Threshold µ 4.153575 1.911077
Exceedances Nµ 280 268

Shape parameter ML estimator ξ̂ 0.2619561 0.2411802
Scale parameter ML estimator σ̂µ 1.6145412 0.7537094
VaR( T = 1 day, α = 5%, ) 4.327371 1.958427
VaR( T = 1 day, α = 1% ) 7.65061 3.463027
VaR( T = 1 day, α = 0.1% ) 15.64864 6.935867

Table 1.3 contains the empirical results on the AAPL and SPY daily negative log

returns for the whole sample period using a total of 5035 observations. The upper part

of Table 1.3 contains the threshold values and the corresponding exceedances values

as well as the maximum likelihood GPD parameter estimates used in the construction

of tail estimators of AAPL and SPY negative daily log returns from July 3, 1995 to

July 2, 2015. The shape parameter estimates of the right tail are 0.2619561 and

0.2411802 for AAPL and SPY returns, respectively, which indicate that the AAPL

returns show fatter tails than the SPY returns. Those values and estimators enable

us to estimate the upper 5%, 1% and 0.1% quantile of the AAPL and SPY negative

daily price changes. As is obvious from the estimation of the quantile by means of

extreme value theory in this table, the AAPL returns VaR are much larger, even more

than two times, than SPY returns VaR. Therefore, AAPL exhibits a more downside

risk than SPY.

In order to visualize the model (1.12) accuracy, we backtest the extreme value

approach on the AAPL and SPY returns and show the fitness summary in Fig.1.5

and Fig.1.6. At the top panel of Fig.1.5 and Fig.1.6, the probability density function

of the empirical distribution and the log probability density function of the empirical

distribution are all plotted along with the estimated GPD. The scatterplot and QQ-

plot of residuals are at the lower panel. Based on those plots, we find that the
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Figure 1.5: GPD tail estimates fitness summary of the AAPL returns distribution
and the innovations distribution.

estimates fit the given AAPL and SPY returns quite well, even in the far end tail.

It confirms that the assumption of an underlying heavy tailed distribution is well in

line with the data. In this context, the corresponding estimate of the upper 5%, 1%

and 0.1% quantile of the VaR seems very plausible.

After modeling the distribution of AAPL and SPY returns and computing all

the necessary quantiles, we proceed to the determination of VaR. Using a 2520 day

(approximately 10 years) rolling window, we apply an iterative procedure of the EVT

based model (1.12) to predict the 1-day ahead, 5%, 1% and 0.1% VaR for the period

July 3, 2005 to July 2, 2015. The moving window design starts with the estimation of

the VaR model using in-sample period data to predict the 1-day ahead VaR estimate.

Then, we move the in-sample period forward by one period to iterate the estimation

and prediction. The whole process keeps running forward step by step until the end of

the entire data set. Before applying the procedure, we choose the corresponding 95-th
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Figure 1.6: Diagnostic plots for GPD fit to SPY daily negative log returns.

sample quantile as the threshold of each in-sample period data. This yields a total

of 2516 out-of-sample VaR forecasts for AAPL and SPY returns, respectively. The

results obtained for VaR along with the negative log returns of the AAPL and SPY

are shown in the following figures. From Fig.1.7, we find that the AAPL returns VaR

slightly increased during the financial crisis of 2008. During the middle of 2010 to

2013, it had a decreasing trend. Since then, the AAPL returns VaR seems stable. If

we take SPY returns VaR as a comparison, except the increasing during the financial

crisis of 2008, we can see that it has been stable for the last decade.

1.1.5 Day-of-the-week effect on AAPL Value-at-Risk

Notice that the definition of VaR is based on the upper tail of a loss function. The

reason we use the negative returns is that loss occurs when the returns are negative for

a long financial position. We write the whole sample set as {rt} ={AAPL Negative

daily log returns from July 3, 1995 to July 2, 2015}.
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Figure 1.7: 1-day-ahead, 5%(dotted), 1%(dotdash) and 0.1%(longdash) VaR of AAPL
(upper) and SPY (lower) returns from 2005-7-6 to 2015-7-2.

To formally test the timing and existence of weekly patterns, we divide the whole

data set {rt} to five subsets by day-of-the-week, which is written as:

{ditrt} , i = 1, 2, 3, 4, 5,

where dit are dummy variables such that if day t is a Monday d1t = 1, if d1t = 0 remove

the data; if day t is a Tuesday d2t = 1, if d2t = 0 remove the data, etc. The five subsets

are the AAPL return time series for Monday through Friday respectively. The basic

statistical characteristics of the five return series are calculated and shown in Table

1.4. The AAPL mean returns is calculated to observe differences of expected returns

during the week. The hypothesis of equal expected returns for each trading day of the

week is rejected for the testing period. Our results show that the highest returns occur

on Mondays and the lowest returns occur on Fridays, which have a negative average

return. The standard deviation indicates that the trading risk of Fridays is the highest

among that of the week. There is less fluctuation in Mondays and Tuesdays return,
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Table 1.4: Summary statistics of the AAPL returns by day-of-the-week

Mean Range Std dev Skewness Kurtosis Obs
Mon. -0.20 (-13.02, 19.75) 2.89 0.51 5.78 949
Tue. -0.08 (-17.64, 13.25) 2.82 -0.17 3.18 1032
Wed. -0.12 (-28.69, 18.84) 2.98 -0.26 12.17 1034
Thu. -0.14 (-21.27, 13.19) 3.03 -0.54 4.52 1012
Fri. 0.10 (-21.36, 73.12) 3.47 8.91 194.73 1008

but there are large fluctuations in Fridays return. The table also reports skewness

and kurtosis for the return series of each weekday. The distribution of Mondays

and Fridays return are positively skewed while the distribution of all other sample

return are negatively skewed, indicating that they are nonsymmetric. Furthermore,

Fridays and Wednesdays return exhibit high levels of kurtosis, indicating that these

distributions have thicker tails than a normal distribution. These initial findings

show that the day-of-the-week returns are not normally distributed, they are skewed

and leptokurtic. Moreover, on average, an investor buying stock on Friday afternoon

and then sell it by Monday afternoon may make more profit. Next, we examine the

Table 1.5: Normality and independency tests of the AAPL returns by day-of-the-week

W Q(5) Q(10) Q(15)
Mon. <2.2e-16 0.2963 0.5304 0.2641
Tue. 2.713e-15 0.7911 0.08139 0.1224
Wed. <2.2e-16 0.8355 0.7908 0.5826
Thu. <2.2e-16 0.5063 0.8421 0.2699
Fri. <2.2e-16 0.06514 0.1182 0.08148

normality and independency of the day-of-the week return series. Table 1.5 reports p-

values of the Shapiro-Wilk test and the Ljung-Box Q statistics for the AAPL returns

at 5-, 10- and 15- day lags. We use the Shapiro-Wilk test to test the normality of every

subset. W here is the Shapiro-Wilk test statistic in Eq.(1.4). The normality test result

shows that the p-value of every weekday subset is far less than significant level 1%.

It indicates that none of these AAPL return subsets has normal behavior during the
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test period. For all series, the Ljung-Box test is applied to test the serial correlation.

Q(m) in the table is the Portmanteau statistic in Eq.(1.7). The Ljung-Box test result

confirms that none of the AAPL return subsets has serial correlations. Rather than

using a single value for lag m, we choose three different lags m = 5, 10, 15 to test the

correlation of each series. Even the minimum p-value of each series is greater than

the usual significant level 5%. Therefore, we can approximately view all AAPL day-

of-the-week return series as stationary, independent, non-normal distributed series.

Based on the above tests, in order to test the weekly effects on AAPL VaR, we apply

the VaR estimation approach introduced in section 2 to capture the day-of-the-week

effect on AAPL returns VaR.

We apply the extreme value approach to the negative daily log returns of AAPL

day-of-the-week series from July 3, 1995 to July 2, 2015. Table 1.6 and Table 1.7

summarize some estimation results of the shape parameter ξ and VaR. We applyed

the maximum likelihood method to estimate parameters of the generalized Pareto

distribution for AAPL returns and we calculated the upper 5% quantile VaR based

on Eq.(1.12). Table 1.6 shows the shape parameter estimates for the day-of-the-

Table 1.6: Estimators of GPD parameters and forecast VaRs of AAPL returns by
day-of-the-week

ξ σµ µ Nµ VaR0.05

Mon. 0.2688498 1.6041546 3.795551 60 4.184124
Tue. 0.01042914 1.76975174 4.031559 69 4.546602
Wed. 0.3107167 1.5597188 3.871468 68 4.317635
Thu. -0.01453561 1.95606434 4.032778 68 4.609665
Fri. 0.3825541 1.4247496 3.367018 71 3.888713

week excess returns respectively and corresponding VaR estimates. In Table 1.6,

the threshold µ was chosen via the Hill Plot of the AAPL returns. Around the

exceedances Nµ selected by Hill plot, the estimates of the shape parameter are stable

36



for the extremes. Based on the estimated AAPL upper 5% quantile VaR, we found

that Friday and Monday VaR is smaller than that of the rest of the week.

To further investigate systematic weekday differences for AAPL VaR, we also

estimate the upper 5% quantile VaR via the same threshold µ = 4.032778, which is the

highest threshold in Table 1.6. Using the same threshold allows a better comparison

of the day-of-the-week VaRs. The results in Table 1.7 are mostly consistent with

Table 1.7: Estimators pf GPD parameters and VaR of AAPL returns by day-of-the-
week via the same threshold µ = 4.032778

ξ σµ Nµ VaR0.05

Mon. 0.2725663 1.6566470 51 4.153487
Tue. 0.01126478 1.76707300 68 4.521224
Wed. 0.3821768 1.4131813 64 4.347029
Thu. -0.01453561 1.95606434 68 4.609665
Fri. 0.4554803 1.4688451 47 3.931803

the previous findings in Table 1.6. VaRs due to the different tail shapes and the tail

fatness of distributions are reflected by the shape parameter ξ. The shape parameter

measures the speed with which the distribution’s tail approaches zero. The fatter the

tail, the slower the speed and the higher the shape parameter. From the results in

Table 1.6 and 1.7, the right tail fatness of Friday excess returns is the highest while

that of Thursday is the smallest. The most interesting feature of the results is that

the day-of-the-week effect on AAPL VaR is examined. Low Friday and Monday VaR

and high Thursday VaR are observed for the AAPL returns.

In capturing the character of AAPL, we present the estimated VaR of SPY returns

in Table 1.8, which were obtained via the same approach as applied on AAPL returns.

The S&P 500 Index is composed of five hundred selected stocks in which AAPL

weights 3.88% of total assets. By comparing the VaR of AAPL and SPY, we were

able to better capture the characteristic of AAPL. Table 1.8 shows that during the

test period July 3, 1995 to July 2, 2015, the upper 5% quantile VaR of SPY Tuesday
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Table 1.8: Estimators of GPD parameters and VaR of SPY returns by day-of-the-week

ξ σµ µ Nµ VaR0.05

Mon. 0.2346827 1.0624234 1.677897 63 1.989292
Tue. 0.1305324 0.6817181 1.665352 68 1.856927
Wed. 0.3743073 0.5765108 1.780462 65 1.918262
Thu. 0.1189783 0.8888867 1.777264 65 2.003223
Fri. -0.06331137 0.91646749 1.714381 64 1.93167

and Wednesday returns are smaller than that of the rest of the week. As the top one

holding stock of SPY, AAPL naturally has a positive correlation with SPY. However,

based on above results, we find the day-of-the-week effect on AAPL VaR and SPY

VaR are different. Moreover, the day-of-the-week VaRs of SPY are much more stable

and smaller than that of AAPL. The interesting finding about AAPL is that there

is comparatively a high mid-week risk and a low Monday and Friday risk is observed

during the test period.

There are many reasons that may cause the day-of-the-week effect on AAPL VaR.

Possible explanations for the day-of-the-week effect include the dividends effect, week-

end effect and trading activity effect. Apple usually pay its shareholders quarterly

dividend on Thursday. It may cause lower trading activity on the following Friday.

Due to the positive correlation between trading activity and returns, the trading activ-

ity during the middle of the week averagely is higher than that of Monday and Friday.

In addition, options expiration can influence the overall market as well as specific eq-

uities, especially on the last trading day before expiration. AAPL Weeklys option

are listed to provide expiration opportunities every week. Weeklys are typically listed

on Thursdays and expire on Fridays4. Weeklys options can provide opportunities for

investors to implement more targeted buying, selling or spreading strategies, which

may be the reason why the AAPL returns has an increasing trend during Thursday

4Weeklys are not listed if they would expire on a 3rd Friday or if a Quarterly option would expire
on the same day
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to Friday. Further research about the exact reasons of weekly effect on AAPL VaR

is needed.

1.1.6 Seasonal Effect on AAPL VaR

Despite finding a weekly pattern in AAPL, one should stress that seasonal effect is

by far more relevant in determining stock performance because a three-month period

on a financial calendar acts as a basis for the reporting of stock earnings and the

paying of dividends. In order to investigate systematic quarterly effects on the stock

AAPL, we divide the sample data {rt} into the following four groups:

{rt|t ∈ Qi} , i = 1, 2, 3, 4,

which are referred to the four quarters AAPL returns. A quarter refers to one-fourth

of a year and is typically expressed as Q. Basic tests to examine the seasonal pattern

in AAPL returns are carried out next. Table 1.9 contains the summary statistics

Table 1.9: Summary statistics of AAPL returns by quarter

Mean Range Std dev Skewness Kurtosis Obs
Q1 -0.14 (-21.36, 19.62) 2.98 -0.25 5.7 1227
Q2 -0.04 (-12.09, 16.30) 2.58 -0.23 3.11 1264
Q3 -0.10 (-28.69, 73.12) 3.65 6.10 130.62 1272
Q4 -0.07 (-13.37, 17.21) 2.87 -0.08 3.33 1273

for the four quarter AAPL returns. During the trading period from July 3, 1995

to July 2, 2015, all quarters have positive average return. The first quarter Q1 has

the largest average return. Significantly a large range and standard deviations are

observed for the Q3 return. The AAPL Q2 return has the smallest standard deviation

and average returns than those of the rest seasons. Moreover, the kurtosis indicates

the Gaussian behavior of Q2 return since the kurtosis of Q2 return is around 3. Table

1.10 presents that all four quarter AAPL returns are not normally distributed since
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Table 1.10: Normality and independent test p-value of the AAPL returns by quarter

W Q(5) Q(10) Q(15)
Q1 <2.2e-16 0.01275 0.001784 0.001235
Q2 <2.2e-16 0.3114 0.2341 0.07385
Q3 <2.2e-16 0.1665 0.1343 0.01003
Q4 <2.2e-16 0.6867 0.7337 0.2699

all the p-value of the Shapiro-Wilk test are less than 2.2e-16, which are less than the

significant level 1%. The correlation test results indicate that quarterly AAPL returns

are uncorrelated because the smallest p-value among three different lags correlation

tests for each group is smaller than the significant level 1%. While for AAPL Q1

returns, the 10 lag and 15 lag Ljung-Box tests p-value indicate the serial correlation

of the data set during the test period. However, the 5 lag Ljung-Box test p-value is

greater than the significant level 1%, which indicate that there is only weak correlation

of AAPL Q1 returns. Therefore, we still can process the four datasets as non-normal,

independent time series.

Table 1.11: Estimated GPD parameters and VaR of AAPL returns by quarter

ξ σµ µ Nµ VaR0.05

Q1 0.1582695 1.6388243 4.110644 77 3.40719
Q2 0.1856602 1.0737989 3.724132 84 4.037854
Q3 0.4833337 1.6498127 3.931378 79 4.308532
Q4 -0.009111332 2.049748142 4.038558 82 4.557201

Table 1.12: Estimated GPD parameters and VaR of AAPL returns by quarter via
the same threshold µ = 4.110644.

ξ σµ Nµ VaR0.05

Q1 0.1582695 1.6388243 77 3.40719
Q2 0.2627277 0.9750694 63 4.107555
Q3 0.4524895 1.8346705 64 4.302533
Q4 -0.04550122 2.23903661 75 4.492442
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Next, we implement the same extreme value approach to VaR on the four seasonal

AAPL returns. Table 1.11 and 1.12 tell us the same story. Irrespective of our choice

to use the different thresholds by Hill plot on the four groups or applying the same

threshold, the shape parameter ξ of Q3 returns is the largest which indicates the

fattest tail behavior. The upper 5% quantile VaR of AAPL returns is increasing as

the seasons go by in a year. The first season Q1 upper 5% quantile VaR is the smallest

and the fourth season Q4 upper 5% quantile VaR is the largest among four seasonal

AAPL returns.

Before giving any explanations of the seasonal effect on AAPL VaR, we take SPY

returns as a comparison again to see the characteristic of AAPL. Table 1.13 contains

Table 1.13: Estimated GPD parameters and VaR of SPY returns from 1995-7-3 to
2015-7-2 by quarter.

ξ σµ µ Nµ VaR0.05

Q1 -0.01303372 0.81464133 1.819322 76 1.445435
Q2 0.1257745 0.5497238 1.614129 78 1.693531
Q3 0.2794518 0.7088729 1.956663 80 2.124614
Q4 0.3808598 0.8443904 1.887993 75 2.030969

estimated upper 5% quantile VaR of SPY returns by quarter. When comparing results

in Table 1.13 and Table 1.11, the difference between AAPL VaR and SPY VaR is that

the VaR of SPY third quarter returns is the highest while the VaR of AAPL fourth

quarter returns is the highest. Moreover, the upper 5% quantile VaR of seasonal

SPY returns is more stable and twice smaller than that of seasonal AAPL returns.

It is immediately apparent from the above results of test period returns that the

seasonal effect on AAPL VaR is different from that on SPY VaR. More importantly,

we captured the comparatively high risk in Q4 and low risk in Q1 for AAPL returns

during the test period.

Possible explanations for the seasonal effect on AAPL VaR include the tax-

motivated trading, economic and political announcements dates concentrated in one
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part of the season. For instance, Apple often releases its new products, like iPhone,

iPad or iMac, during July to November. It may cause large AAPL stock vibration to

occur subsequently.

Overall, our findings have implications for investors, financial institutions, and

futures exchanges. For conservative investors who would prefer lower risk, they can

choose to trade during the lower VaR period to avoid potential high loss. The method-

ology of extreme value approach to VaR can also be used in other stock or asset

returns.
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1.2 Calendar Effects Analysis of Americas Indexes

We apply an approach for estimating VaR describing the tail of the conditional

distribution of a heteroscedastic financial return series. The method combines quasi-

maximum-likelihood fitting of AR-GARCH model to estimate the current mean as

well as volatility, and EVT to estimate the tail of the mean and volatility adjusted

standardized return series. We employ the approach to investigate the existence and

significance of the calendar anomalies: seasonal effect and day-of-the-week effect in

Americas Indexes VaR. during the period of 2006-7-17 through 2015-11-13. We also

examined the statistical properties and made a comprehensive set of diagnostic checks

on the one decade of considered Americas Indexes returns. Our results suggest that

the lowest VaR of considered Americas Indexes negative log returns occurs on the

fourth season among all seasons. Moreover, comparatively low Wednesday VaR is

captured among all weekdays during the test period.

1.2.1 Background

In today’s financial world, the large increase in the number of traded assets in

the portfolio of most financial institutions has made the measurement of market risk

a primary concern for regulators and for internal risk control. Following the Basle

Accord on Market Risk (1996) every bank in more than 100 countries around the

world has to calculate its risk exposure for every individual trading desk, banks are

also required to hold a certain amount of capital as a cushion against adverse market

movements. VaR has become the benchmark risk measure. In a mathematician’s

view, VaR is simply a quantile of the profit-and-Loss distribution of a given portfolio

over a prescribed holding period. The importance of VaR is undoubted since regu-

lators accept this model as a basis for setting capital requirements for market risk

exposure.
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In this section, we discover the calendar anomalies in Americas equity market

movements, which including the seasonal effect and the day-of-the-week effect on

Americas Indexes returns. The calendar effect in stock market returns includes day-

of-the-week effect, weekend effect, January effect, and holiday effect, etc. It has been

widely studied and investigated in finance literature. Studies by Cross (1973)[29],

and Rogalski (1984)[76] demonstrate that there are differences in distribution of

stock returns for each day of the week. Studies by Baillie and DeGennaro (1990)[7],

Berument and Kiymaz (2001)[12] posit that day-of-the-week effect has an impact on

stock market volatility. In recent years, another stream of research has considered

seasonality in stock returns and volatility, see Saunders (1993)[79], Bouman and Ja-

cobsen (2002)[16], Hirshleifer and Shumway (2003)[47], Kamstra, Kramer and Levi

(2003)[57], and Cao and Wei (2005)[19], etc. These studies generally report that

calendar anomalies are present in both returns and volatility equations in the stock

market. None of these studies, however, test for the possible existence of day-of-

the-week and seasonal variation in stock return VaR. Hence, the goal of this section

is to characterize the VaR of Americas Indexes returns. Based on investigations of

the day-of-the-week effect and seasonal effect in extreme risk, we also provide valu-

able and applicable analysis for equity market investors. The major obstacle to this

investigation is a viable measure of tail risk over time.

We are concerned with tail estimation for those considered financial return series.

Our basic assumption, whose validation is examined in this section, is that returns

follow a stationary time series model with stochastic volatility structure. The presence

of stochastic volatility implies that returns might dependent over time. Therefore,

we consider to model the return distribution as the conditional return distribution

where the conditioning is on the current volatility and mean. Although VaR only

deal with extreme quantiles, disregarding the centre of the distribution, estimation of

the extreme quantile is not an easy task. As one wants to make inference about the
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extremal behavior of a portfolio, there is only a very small amount of data in the tail

area of a sample set. Furthermore, exploration even beyond the range of the data

might be wanted. Statistical methods have been developed which are based only on

that part of the sample that carries the information about the extremal behavior. In

this study, we need a method that not only based on the smallest or largest sample

values, but also includes a probabilistic argument concerning the behavior of the

extreme sample values. This leads to a semi-parametric method, which is based on

extreme value theory, may prove to be an effective tool for obtaining reliable estimates.

In the field of probability, it is widely used to study the distribution of extreme

realizations of a given distribution function, or stochastic processes that satisfy suit-

able assumptions. The foundations of the theory were laid by Fisher and Tippett

(1928)[34] and Gnedenko (1943)[39], who demonstrated that the distributions of the

extreme values of an independent and identically distributed sample from a cumula-

tive distribution function, when adequately rescaled, can converge towards one out

of only three possible distributions. Unfortunately, most financial time series are not

independent, but exhibit some very delicate temporal dependence structure. In this

study, we capture it by a fully parametric method, which is based on an economet-

ric model for volatility dynamics and the assumption of conditional normality, AR-

GARCH model. We use AR(1)-GARCH(1,1) model and quasi-maximum-likelihood

estimation to obtain estimates of the conditional mean and the conditional volatility.

Statistical tests and exploratory data analysis confirm that the standardized returns,

i.e. mean and volatility adjusted returns, do form approximately i.i.d. series. If we

only use GARCH model to estimate VaR, the assumption of conditional normality

does not seem to hold for real data. Thereafter, we use threshold methods from EVT

to estimate the distribution of the standardized returns. EVT is a well known tech-

nique in many fields of applied sciences including risk management, insurance and

engineering. Numerous research studies surfaced recently which analyze the extremes
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in the financial markets due to currency crises, stock market turmoils and credit

defaults. The behavior of financial series tail distributions has, among others, been

discussed in McNeil and Frey (2000)[67], Longin (1999)[65] and (2000)[64], and Ameli

and Malekifar, 2014[5]. An estimate of the conditional return distribution is now eas-

ily constructed from the estimates of the conditional mean and volatility as well as

the estimated distribution of the standardized returns. We learned the central idea

of the dynamic two stage extreme value process from McNeil and Frey (2000)[67], to

forecast daily VaR with historical data in a moving window. This approach reflects

two stylized facts exhibited by most financial return series – stochastic volatility, and

the non-normal behavior of conditional return distributions.

1.2.2 Data Exploration and Statistical Analysis

1.2.2.1 Data Description

Our sample covers the period from July 17, 2006 to November 13, 2015. Five dif-

ferent Americas Indexes, namely, the S&P 500, Financial Select Sector SPDR ETF,

NASDAQ-100 Technology Sector, Dow Jones Utility Average, and Dow Jones Trans-

portation Average, are used to characterize the performance of specific sectors of the

market. The S&P 500 is an American national index composed of large capitaliza-

tion stocks. It represents the overall performance of the stock market. The Financial

Select Sector SPDR ETF tracks the overall S&P Financial Select Sector Index. The

NASDAQ-100 Technology Sector is an equal weighted index based on the securities

of the NASDAQ-100 Index that are classified as Technology according to the Indus-

try Classification Benchmark classification system. The Dow Jones Utility Average

is a stock index from Dow Jones Indexes that keeps track of the performance of 15

prominent utility companies. The Dow Jones Transportation Average is a U.S. stock

market index from S&P Dow Jones Indices of the transportation sector, and is the

most widely recognized gauge of the American transportation sector. The collection
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of those indices’ daily adjusted closing price were from Yahoo Finance. The adjusted

closing price is used to develop an accurate track record of the stock’s performance.

Further, use the daily negative log return to examine extreme losses of the stock.

Let pt denote the adjusted closing price of a stock on day t, then the daily percentage

change on the day is defined by

rt = −100 log
pt
pt−1

= 100 log
pt−1

pt
. (1.13)

Fig.?? shows the time plots of adjusted closing price and negative daily log returns

Figure 1.8: Time plots of Standards and Poors index from 2006-7-17 to 2015-11-13.

of S&P 500 from July 17, 2006 to November 13, 2015. From the lower plot, we

observe that daily log returns of the index show clear evidence of volatility clustering.

That is, periods of large returns are clustered and distinct from periods of small

returns, which are also clustered. If we measure such volatility in terms of variance,

then it is nature to think that variance changes with time, reflecting the clusters of

large and small returns. We also observe that there are more pronounced peaks than
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one would expect from Gaussian data. Since the possibility of time-varying variance

and non-normal behavior are noticed in Fig.??, we provide formal tests to check the

stationarity, normality, and independency of those log return series.

1.2.2.2 Statistical Tests of Stationarity, Normality and Independence

Table 1.14: Stationarity and normality tests on the five Americas Indexes returns
from 2006-7-17 to 2015-11-13

Data5 S&P XLF NDXT DJU DJT
Observations (2350) (2350) (2398) (2351) (2350)
KPSS Test for time series level stationarity
KPSS 0.17128 0.28586 0.072364 0.081087 0.1073
p-value 0.1 0.1 0.1 0.1 0.1

Shapiro-Wilk Test for time series normality
W 0.87934 0.82416 0.94139 0.88601 0.9479

p-Value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

The KPSS rest results on the five America Indexes negative daily log returns from

July 17, 2006 to November 13, 2015 are shown in Table 1.14, all p-values are greater

than the significant level 5%. Therefore, we accept the null hypothesis and conclude

that the five return series are stationary during the test period.

To confirm that an assumption of normality is unrealistic, and that the innovation

process is leptokurtic, we begin by forming a QQ-plot on the S&P 500 negative daily

log returns against the normal distribution – see Fig.1.9.

Thereafter, we use the Shapiro-Wilk test[81] to verify an empirical fact that the five

America Indexes negative daily log return series do not have the normality property.

Applying the Shapiro-Wilk test on the five America Indexes negative daily log returns

from July 17, 2006 to November 13, 2015, we show the test result in Table 1.14.

5The five Americas Indexes data sets are: S&P 500 (GSPC), Financial Select Sector SPDR ETF
(XLF), NASDAQ-100 Technology Sector (NDXT), Dow Jones Utility Average (DJU), and Dow
Jones Transportation Average (DJT).
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Figure 1.9: Quantile-quantile plot of S&P 500 returns from 2006-7-17 to 2015-11-13
against the normal distribution.

Because all p-values are less than 2.2e-16, we reject the null hypothesis and conclude

that all the five return series are not normally distributed during the test time period.

Except the verified stylized fact of the fat tail distribution, we explore the cor-

relations for the returns and their squared values. Fig.1.10(a) shows the sample au-

Figure 1.10: Sample autocorrelations of (a) returns and (b) squared returns of the
S&P 500 from 2006-7-17 to 2015-11-13.

tocorrelation coefficient ρ̂l plotted against different lags l (measured in days), along

with the classical 95% significance bands around zero for S&P 500 negative daily log

returns, for the period July 17, 2005 to November 13, 2015. The dashed lines repre-

sent the upper and lower 95% confidence bands ±1.96√
T

, where the time length for our

S&P 500 returns is T = 2350 days. A stylized fact that absence of autocorrelation for

the daily price variations is illustrated in Fig.1.10(a). The series of S&P 500 returns
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displays small autocorrelations, making it close to a white noise. However, the S&P

500 squared returns are strongly autocorrelated, see Fig.1.10(b). This property is

not incompatible with the white noise assumption for America Indexes returns, but

shows that the white noise is not strong.

Based on the statistical analysis for the five America Indexes negative daily log

return series from July 17, 2006 to November 13, 2015, we discovered that those Amer-

ica Indexes returns are stationary, and uncorrelated time series, yet are not normally

distributed and the squared returns are strongly correlated. Those properties illus-

trate the difficulty of daily price returns modeling. Any satisfactory statistical model

for daily returns must be able to capture the main stylized facts, including the lep-

tokurticity, the unpredictability of returns, the existence of positive autocorrelations

in the squared returns, and the conditional heteroscedasticity. Some computations

of VaR are based on the assumption that the series {rt} is normally distributed, or

has t-distribution, see reference [69][5][11][51]. That is the main reason why these

study can use volatility to estimate VaR. However, the real time series {rt} may not

follow any known distributions. To overcome the difficulty of a return series {rt}

having an unknown distribution, we compute the VaR of America Indexes returns by

the Extreme Value Theory, which avoid making assumption about the distribution of

{rt}.

1.2.3 Methodology

Following the approach by Longin (1999a,b)[65][64], and McNeil and Frey (2000)[67],

we use a two-stage approach to estimate the VaR of the five America Indexes negative

daily log return time series.

(1) Fit a AR(1)-GARCH(1,1) model to the returns and use a pseudomaximum-

likelihood approach to estimate parameters. Use the fitted model to standardize the

raw returns to a strict white noise process, i.e. independent, identically distributed
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process with zero mean and unit variance.

(2) Use EVT to model the tail of the marginal distribution of the standardized re-

turns, and use this EVT model to estimate VaR.

1.2.3.1 Standardization – Estimating σt and µt

Since stock returns have heavy-tailed and/or outlier-prone probability distribu-

tions, we use GARCH models to deal with both the conditional heteroskedasticity

and the heavy-tailed distributions of American Indexes returns. we consider the rea-

son for outliers may be that the conditional variance is not constant, and the outliers

occur when the variance is large. In fact, GARCH processes exhibit heavy tails even

if the innovations is Gaussian. Nonetheless, many financial time series have tails that

are heavier than implied by a GARCH process with Gaussian innovations. To handle

such data, one can assume that, instead of being Gaussian white noise, the innova-

tions is an i.i.d. white noise process with a heavy-tailed distribution. Therefore, we

assume the standardized, i.e. mean and variance adjusted American Index returns

series is an i.i.d. white noise process with a generalized Pareto distribution.

Let {rt}Tt=T−n+1 be a strictly stationary time series representing the negative daily

log return on a financial asset price. We fix a constant memory n so that at the end of

day T our data consist of the last n negative daily log returns {rT−n+1, · · · , rT−1, rT}.

We assume that the dynamics of {rt}Tt=T−n+1 to be a realization from a AR(1)-

GARCH(1,1) process, which are given by


rt = µt + σtzt,

µt = φ0 + φrt−1,

σ2
t = ω + α(rt−1 − µt−1)2 + βσ2

t−1,

(1.14)

where the innovations zt are a strict white noise process with zero mean, unit variance,

and marginal distribution function F ; w > 0, α > 0, and β > 0; the conditional mean
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µt|Ft−1, and the conditional volatility σt|Ft−1 are measurable, Ft−1 is the information

about the return process available up to time t−.

This model is fitted using the quasi-maximum-likelihood estimation (QML) method,

which assumes normal distribution and uses robust standard errors for inference. It

means that the likelihood for a GARCH(1,1) model with normal innovations is maxi-

mized to obtain parameter estimates {ŵ, α̂, β̂}. While this amounts to fitting a model

using a distributional assumption we do not necessarily believe, the QML method de-

livers reasonable parameter estimates. Bollerslev and Wooldridge (1992)[15] proved

that if the mean and the volatility equations are correctly specified, the QML esti-

mates are consistent and asymptotically normally distributed.

From Eq.(1.14), we get estimates of the conditional mean {µ̂T−n+1, · · · , µ̂T−1, µ̂T}

and the conditional volatility {σ̂T−n+1, · · · , σ̂T−1, σ̂T} of {rt}Tt=T−n+1. To check the

Figure 1.11: Estimation of the conditional standard deviation derived from AR(1)-
GARCH(1,1) model of the S&P 500 returns.

adequacy of the model and to use in next stage of the approach, we calculate the

standardized returns

{zT−n+1, zT−n+2, · · · , zT} = { r̂T−n+1 − µ̂T−n+1

σ̂T−n+1

,
r̂T−n+2 − µ̂T−n+2

σ̂T−n+2

, · · · , r̂T − µ̂T
σ̂T

}

The standardized returns should be i.i.d. if the fitted model is tenable. In Fig.1.12,

we plot the sample autocorrelation of the standardized S&P 500 returns as well as the

52



squared standardized S&P 500 returns. As shown in Fig.??, while the raw returns

are clearly not i.i.d., this assumption may be tenable for the standardized returns.

Figure 1.12: Sample autocorrelations of (a) standardized returns and (b) squared
standardized returns of the S&P 500.

We end the standardization stage by calculating estimates of the conditional mean

and variance for day T + 1, which are the 1-step forecasts

µT+1 = φ̂0 + φ̂rT ,

σ2
T+1 = ω̂ + α̂(rT − µ̂T )2 + β̂σ2

T .

(1.15)

1.2.3.2 VaR Estimation – Extreme Value Approach

In the second stage, we estimate the upper tail behavior of the cumulative dis-

tribution function of the standardized returns F by extreme value theory. Extreme

Value Theory is experiencing a boom in the financial field, especially with respect to

the application to the market risk measure VaR. Its appearance as a popular instru-

ment for estimating VaR can be explained as a consequence of two factors. On the

one hand, the assumption of normality of financial markets does not reflect the reality

of the situation. As a consequence, the VaR estimation methods which based on the

normality assumption provide wrong estimates. Historical or Monte Carlo simulation

methods arise as alternative methods. But given the difficulties and “slowness” of

these methods, Extreme Value Theory (EVT) as a new solution is sought. On the
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other hand, although VaR can be calculated with simulation methods, it still has

limitations, so this measure needs to be complemented with others. We present it as

a way of solving the problem of fat tails when calculating VaR.

For a random variable X, we first fix some high threshold µ and consider the

distribution of excess values Y = X − µ as

Fµ(y) = Pr(X − µ ≤ y|X > µ) =
F (µ+ y)− F (µ)

1− F (µ)
, (1.16)

where F is the underlying distribution of X, Fµ is the conditional excess distribution

function. Pickands (1975)[72] introduced the GPD as a two parameter family of

distributions for exceedances over a threshold. More precisely, he proved that for a

large class of underlying distribution functions F, the conditional excess distribution

function Fµ(y), as µ→ ωF = sup{x : F (x) < 1}, is well approximated by

Fµ(y) ≈ Hσµ,ξ(y)

where Hσµ,ξ(y) is called GPD, specified as

Hσµ,ξ(y) = 1−
(

1 + ξ
y

σµ

)−1/ξ

+

. (1.17)

The parameters of GPD are the scale parameter σµ and the shape parameter ξ.

EVT describes specifically at the distribution of the standardized returns in the

tails. The tail fatness of the distribution is reflected by the shape parameter: the case

when ξ < 0 means thin tails, ξ = 0 means the kurtosis is 3 as for the standard normal

distribution; while ξ > 0 implies fat tails, which is the case of interest in our study.

Therefore, the shape parameter measures the speed with which the distribution’s tail

approaches zero. The fatter the tail, the slower the speed and the higher the shape

parameter is. Since almost all returns in EVT assume that the returns are i.i.d.,
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the analysis was developed on the standardized returns which, in many cases, could

be reasonably assumed to be i.i.d.. Because we are interested in extreme negative

returns, we use EVT to model the right tail of the distribution, i.e. the standardized

returns in excess of a high threshold.

It is necessary to choose a specific threshold to confine the estimation to those

observations that are above the given threshold. However, it is difficult to apply

threshold based methods because of the lack of a clear-cut criterion for choosing the

threshold. If the threshold is chosen too low, the GPD may not be a good fit to the

excesses over the threshold, and consequently there will be a bias in the estimates.

Conversely, if the threshold is too high, then there are not enough exceedances over

the threshold to obtain reliable estimates of the extreme value parameters, and con-

sequently, the variances of the estimators will be high. In this section, an optimal

threshold is selected by employing graphical methods, known as the Hill plot and the

mean excess plot. The Hill plot displays the estimated values of shape parameter

ξ as a function of the cut-off threshold in order to find some interval of candidate

cut-off points that yields stable estimates of the shape parameter ξ. Technical details

about Hill plot can be found in Hill (1975)[45]. The mean excess function is the mean

of exceedances over a threshold. If the underlying distribution of those exceedances

follows a GPD, then the corresponding mean excess must be linear in the threshold.

Details about the mean excess plot are described in Davison and Smith (1990)[30].

Fig.1.13 shows the Hill plot and the mean excess plot of the negative daily S&P 500

log returns. A threshold 1.968748, with 132 exceedances, seems to be reasonable for

the S&P 500 returns.

We have seen that the GPD contains two parameters, shape parameter ξ and

location parameter σµ. They can be estimated by using either parametric or non-

parametric methods. From the research of Hosking and Wallis (1987)[49], for the tail

index ξ > −0.5, it can be shown that maximum likelihood regularity conditions are
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Figure 1.13: Hill plot and Mean Excess Plot of the S&P 500 returns from 2006-7-17
to 2015-11-13.

fulfilled and that maximum likelihood estimates {ξ̂n, (σ̂µ)n} based on a sample of n

excesses are asymptotically normally distributed. Therefore, we use MLE to estimate

parameters in GPD.

Next, we make explicit the relationship between excess value and the standardized

return series, denoted as {zt}. We may use the following relationship to estimate the

VaR of the standardized asset returns {zt}. Assume that {zt} are i.i.d. random

variable with CDF F , and a high enough threshold µ is given. Define

Nµ = card{t : zt > µ, t = 1, · · · , n.}

Then

Fµ(y) = Pr(zt − µ ≤ y|zt > µ) =
F (µ+ y)− F (µ)

1− F (µ)

i.e.

F µ(y) = Pr(zt − µ > y|zt > µ) =
F (µ+ y)

F (µ)
,

which is equivalently to

F (µ+ y) = F (u)F µ(y).

Then, the estimators of F (u) and F µ(y) can be written as:

56



F̂ (u) =
1

n

n∑
i=1

I(Xi > µ) =
Nµ

n
,

F̂ µ(y) = 1−Hσ̂µ,ξ̂
(y) =

(
1 + ξ̂

y

σ̂µ

)−1/ξ̂

+

,

where ξ̂ and σ̂µ are maximum likelihood estimators of shape parameter ξ and location

parameter σµ. Therefore the tail estimator can be written as:

̂F (µ+ y) =
Nµ

n

(
1 + ξ̂

y

σ̂µ

)−1/ξ̂

+

. (1.18)

This relationship between probabilities allows us to obtain VaR for the original

asset return series {rt}. More precisely, for a specified small probability α such that

α = Pr(rT+1 > v) = Pr(zT+1 >
v − µT+1

σT+1

) = Pr(zT+1 − µ >
v − µT+1

σT+1

− µ|zT+1 > µ)

= F µ(
v − µT+1

σT+1

− µ) = F (
v − µT+1

σT+1

)/F (µ),

the α-th upper tail quantile VaR of {rt} is v. Consequently, for a given small proba-

bility α, one can check that the VaR of holding a long position in the asset underlying

return {rt} is

VaRα =


(
µ+ σ̂µ

ξ̂

(
( n
Nµ
α)−ξ̂ − 1

))
∗ σT+1 + µT+1, ξ̂ 6= 0(

µ+ ξ̂ ln ( nα
Nµ

)
)
∗ σT+1 + µT+1, ξ̂ = 0

(1.19)

We favor the extreme value approach, or the GPD approach in this study to tail

estimation mainly for three reasons. One is that in finite samples of the order of points

from typical return distributions, EVT quantile estimators are more efficient than

the historical simulation method. Moreover, considering the fact that most financial

returns series are asymmetric, the EVT approach is advantageous over models which

assume symmetric distributions such as t-distributions, GARCH distribution family.
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In addition, comparing with Hill method which is designed specifically for the heavy

tail (ξ > 0) data, the EVT approach to VaR has larger applicability since it also

applicable to light tail (ξ = 0) cases or even short tail (ξ < 0) cases.

1.2.4 Empirical Results and Calendar Effect Analysis

We backtest the approach on the five Americas Indexes historical series of neg-

ative daily log returns: the the Standard and Poors index S&P 500, the Financial

index SPDR ETF, the Technology index NASDAQ-100, the Utility index Dow Jones

Utility Average, and the Transportation index Dow Jones Transportation Average.

As introduced in Section 2, we excerpt all five indexes’ adjusted closing price from

July 17, 2006 to November 13, 2015.

To backtest the approach, we first estimate σt and µt and use it to standardize

the daily negative log returns {rt}. The reason we use the negative returns is that

loss occurs when the returns are negative for a long financial position. We show the

estimation results of AR(1)-GARCH(1,1) model for Americas Indexes negative daily

log returns in Table 1.15. After getting the standardized returns {zt}, we apply the

second stage to test the calendar effect on Americas Indexes returns.

1.2.4.1 Seasonal Effect on Americas Indexes VaR

Because a three-month period on a financial calendar acts as a basis for the re-

porting of stock earnings and the paying of dividends, the seasonal effect is a vital

factor in determining stock performance. To identify the existence of seasonal ef-

fect on Americas Indexes returns, we divide the each Americas Index’s standardized

returns {zt} into the following four subsets:

{zt|t ∈ Qi} , i = 1, 2, 3, 4,
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Table 1.15: Estimation results of AR(1)-GARCH(1,1) model for Americas Indexes
returns from 2006-7-17 to 2015-11-13

Parameter S&P XLF NDXT DJU DJT
Mean equation AR(1)
φ0 -0.069493 -0.037231 -0.082928 -0.042878 -0.060223
φ -0.058278 -0.079456 -0.015441 -0.029874 -0.016125

Variance equation GARCH(1,1)
ω 0.025183 0.027637 0.026652 0.018436 0.028343
α 0.114753 0.128632 0.078668 0.097303 0.077237
β 0.867333 0.867966 0.908884 0.889307 0.910656

LogLikelihood -3342.299 -4189.893 -4062.424 -3268.324 -4117.66

p-Value of Standardised Residuals Tests
Shapiro-Wilk Test 0 1.92972e-15 6.597162e-11 9.209965e-13 7.049808e-10
Ljung-Box Test Q(10) 0.1749702 0.02211829 0.4162687 0.6369799 0.3831675
Ljung-Box Test Q(15) 0.1254892 0.03006419 0.4009677 0.8425757 0.2452127
Ljung-Box Test Q(20) 0.2380792 0.06046306 0.4091626 0.9131188 0.1832375
Ljung-Box Test Q(10)
for squared residuals

0.02556951 0.4572453 0.7371797 0.06534186 0.08447315

Ljung-Box Test Q(15)
for squared residuals

0.05896544 0.4860042 0.8815682 0.1705194 0.2434914

Ljung-Box Test Q(20)
for squared residuals

0.1596955 0.5549062 0.7223037 0.3516701 0.2387464

Information Criterion Statistics6

AIC 2.848765 3.570121 3.392347 2.784623 3.508647
BIC 2.861025 3.582381 3.404404 2.796879 3.520907

which are referred to the four quarters Index returns. A quarter refers to one-fourth

of a year and is typically expressed as Q. Table 1.16 provides a summary of descriptive

statistics for the considered return series.

Table 1.16 reports skewness and kurtosis for the standardized return series of each

quarter. In statistics, skewness and kurtosis, which are normalized third and fourth

central moments of a process, are often used to summarize the extent of asymmetry

and tail thickness. For the normal distribution, kurtosis is 3. We observe that distri-

butions of all four seasons’ standardized returns are positively skewed, indicating that

they are nonsymmetric. Further, except for the S&P 500 Q1 standardized returns, all

kurtosis are less than 3, indicating that those series have distributions with tails that
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Table 1.16: Descriptive Summary Statistics of Americas Indexes Seasonal Standard-
ized Returns

Summary Statistics S&P XLF NDXT DJU DJT
Observations n
Q1 550 550 565 550 550
Q2 569 569 579 569 569
Q3 626 626 639 626 626
Q4 604 604 614 605 604

Skewness
Q1 0.81 0.6 0.45 0.42 0.32
Q2 0.56 0.34 0.16 0.45 0.4
Q3 0.53 0.27 0.35 0.35 0.21
Q4 0.23 0.03 0.16 0.19 0.24

Kurtosis
Q1 3.15 2.97 1.19 1.3 1.23
Q2 0.56 0.68 0.33 0.54 0.47
Q3 1.32 1.5 0.95 1.7 0.59
Q4 0.73 0.87 0.39 0.85 0.49

Shapiro-Wilk normality test p-Value
Q1 1.021e-10 1.959e-09 2.88e-06 3.952e-06 3.669e-05
Q2 1.37e-07 0.0004483 0.001367 1.454e-05 0.0001729
Q3 3.42e-09 1.923e-07 3.879e-05 2.109e-06 0.003301
Q4 0.0001126 0.005276 0.06336 0.006695 0.02605

are thinner than those of the normal distribution. This indication of non-normality is

also supported by the Shapiro-Wilk test, which rejects the null hypothesis of a normal

distribution at 5% significance level. Based on the Ljung-Box test results fromTable

1.15 and the Shapiro-Wilk test results from Table 1.16, we consider all five Americas

Indexes seasonal standardized returns are i.i.d. and non-normally distributed.

Thereafter, we apply the extreme value approach to the considered seasonal stan-

dardized return series. Table 1.17 summarizes estimation results of the shape pa-

rameter ξ, scale parameterσµ from fitted GPD model for the standardized Americas

Indexes returns as well as 0.95 quantile VaR and 0.99 quantile VaR for the original
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considered negative daily log returns. To better investigate systematic seasonal dif-

ferences for Americas Indexes VaR, we first find a proper threshold for each seasonal

series by Hill plot and then choose the highest one as the common threshold for all

four seasonal series. Using the same threshold allows a better comparison of the

quarterly VaRs.

Table 1.17: Results from Fitted GPD for Standardized Returns & Estimates for VaRs
of Negative Daily Log Returns

Standardized Return
(Threshold µ)

S&P
(1.651907)

XLF
(1.658118)

NDXT
(1.595358)

DJU
(1.630336)

DJT
(1.590404)

Shape Parameter ξ
Q1 0.01263226 0.08324439 0.2507826 -0.2261632 -0.05614722
Q2 -0.4155444 0.04520885 -0.8514776 -0.2794260 -0.06843322
Q3 -0.4418723 -0.1682089 -0.0387090 0.1329915 -0.2223172
Q4 -0.1534931 0.1375718 -0.1974187 0.06310129 -0.1744764

Scale Parameter σµ
Q1 0.77437179 0.77968703 0.4372119 0.9268999 0.68909844
Q2 0.9013567 0.53571577 0.9237556 0.7847136 0.61659084
Q3 1.2207484 0.8877799 0.6161069 0.6354024 0.7442377
Q4 0.6340782 0.4532491 0.6423728 0.49605948 0.6551974

Exceedances Nµ

Q1 37 36 44 31 39
Q2 44 46 45 44 43
Q3 41 44 48 35 46
Q4 34 33 35 33 32

95% quantile VaR (VaR0.05) of original negative daily log returns
Q1 1.61934 1.947586 2.00777 1.996732 1.908087
Q2 1.739842 2.000061 2.166308 2.252225 1.921836
Q3 1.694324 2.036937 2.059414 1.951028 1.947265
Q4 1.474158 1.759062 1.864537 1.917086 1.691029

99% quantile VaR (VaR0.01) of original negative daily log returns
Q1 2.797445 3.453345 3.147227 3.459343 3.032853
Q2 2.562514 3.002238 2.820178 3.334415 2.909932
Q3 2.857624 3.333057 3.172462 3.341999 2.947104
Q4 2.301884 2.665381 2.879703 2.932556 2.675514

From Table 1.17, we find that for S&P 500, at a quantile level of 95%, the smallest

estimated VaR among all seasons is 1.474158 for the Q4 returns; at a quantile level
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of 99%, the smallest estimated VaR is 2.301884 for the Q4 returns as well. This is,

in the fourth season, with the AR(1)-GARCH(1,1)-GPD model, we are 95% confi-

dence that the expected overall Americas equity market value would not lose more

than 1.474158% for the worst case scenario; we are 99% confidence that the expected

market value of the S&P 500 would not lose more than 2.301884%. Similar interpre-

tations can be made for the other Americas Indexes.

In comparison of all four seasonal returns, it is also interesting to note that our model

produced the smallest VaR in the fourth season, at the 95% quantile level for all five

America Indexes. While at the 99% quantile level, except for the NASDAQ-100 tech-

nology index, the four seasonal VaRs exhibits analogous characteristics as observed

from 95% quantile VaRs under different Americas Indexes seasonal returns. More-

over, given the quantile levels, the corresponding VaR estimates for S&P 500 seasonal

returns are less than the rest Indexes seasonal returns. It indicates that the trading

risk of S&P 500 is the smallest among all five Americas Indexes.

Our findings have important implications for investors and financial institutions. For

example, for conservative investors who would prefer lower risk, they can choose to

trade during the lower VaR period or trade lower risk stocks to avoid potential high

loss.

1.2.4.2 Day-of-the-Week Effect on Americas Indexes VaR

To formally test the timing and existence of weekly patterns, we divide the whole

standardized returns {zt} to five subsets by day-of-the-week, which is written as:

{zt|dit = 1} , i = 1, 2, 3, 4, 5,

where dit are dummy variables such that if day t is a Monday d1t = 1, if d1t = 0 remove

the data; if day t is a Tuesday d2t = 1, otherwise remove the data, etc. The five subsets

are the considered Indexes weekly returns for Monday through Friday respectively.
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The basic statistical characteristics of the five return series are calculated and shown

in Table 1.18.

Table 1.18: Descriptive Summary Statistics of Americas Indexes Weekly Standardized
Returns

Summary Statistics S&P XLF NDXT DJU DJT
Observations n
Monday 442 442 468 442 442
Tuesday 480 480 483 481 480
Wednesday 483 483 485 483 483
Thursday 473 473 479 473 473
Friday 471 471 482 471 471

Skewness
Monday 0.41 0.24 0.22 0.17 0.41
Tuesday 0.77 0.68 0.31 0.47 0.12
Wednesday 0.04 0.27 0.08 -0.1 0.08
Thursday 0.18 0.03 0.38 0.47 0.47
Friday 0.65 0.43 0.49 0.83 0.53

Kurtosis
Monday 1.22 1.15 1.28 2.04 0.8
Tuesday 3.1 3.14 0.88 0.62 0.3
Wednesday 0.47 1.01 0.61 0.41 0.57
Thursday 0.94 0.78 0.44 0.77 0.52
Friday 1.04 1.1 0.41 1.82 1.69

Shapiro-Wilk normality test p-Value
Monday 2.07e-06 0.0008976 0.0004619 1.911e-05 0.0007413
Tuesday 2.242e-09 1.94e-09 0.001296 9.745e-05 0.5958
Wednesday 0.002344 0.001305 0.005957 0.4103 0.00485
Thursday 3.495e-08 0.006136 0.0004881 8.066e-05 0.0001246
Friday 8.661e-08 8.494e-05 6.554e-06 2.965e-09 4.802e-06

Except the Dow Jones Utility Average Wednesday standardized returns, the dis-

tribution of the rest weekday standardized returns are slightly positively skewed,

indicating that they are nonsymmetric. The kurtosis of the S&P 500 and the SPDR

ETF Tuesday standardized returns show Gaussian property while the rest of the week

returns are substantially departure from normal distribution. The Shapiro-Wilk test

63



results also indicates that normal distribution is not a realistic assumption for the

weekly standardized returns for considered Indexes.

Next, we apply the VaR estimation approach to capture the day-of-the-week effect

on Americas Indexes VaR and show the result in Table 1.19. Given Americas Indexes

and the 99% quantile level, we captured the comparatively low risk in Wednesday.

Among the five Americas Indexes, the number of exceedances is comparatively small

in Monday and Friday.

1.2.5 Conclusion

With the empirical analysis of this section we demonstrated how we can use a

GARCH-EVT approach to model VaR for short term forecasting. The dynamic EVT

method has the advantage of dynamically reacting to changing market conditions

which is useful in getting better VaR forecasts. We apply the two stage approach on

five Americas Indexes return series. Empirical findings in this section show that both

seasonal effect and day-of-the-week effect are present in Americas Indexes returns.

We captured the comparatively low VaR in Q4 and Wednesday for considered returns

during the test period.

Overall, our findings have implications for investors, financial institutions, and

futures exchanges. For example, for conservative investors who would prefer lower

risk, they can choose to trade during the lower VaR period to avoid potential high

loss. The dynamic EVT approach to VaR can also be used in other stock or asset

returns. Finally, it has significant value for investors and regulators in terms of an in

depth analysis of the equity market.
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Table 1.19: Results from Fitted GPD for Standardized Returns & Estimates for VaRs
of Negative Daily Log Returns

Standardized Return
(Threshold µ)

S&P
(1.685563)

XLF
(1.597324)

NDXT
(1.616329)

DJU
(1.498996)

DJT
(1.654929)

Shape Parameter ξ
Monday -0.490609 0.08324439 0.3182840 0.2423261 -0.4065323
Tuesday 0.09756212 0.1224898 0.0999698 -0.1381534 -0.1377236
Wednesday -0.1117621 0.1075196 -0.2249917 -0.1726082 -0.2138769
Thursday -0.3322698 -0.1846136 -0.3958165 0.06310129 -0.1077049
Friday -0.5091703 -0.1816384 -0.1592645 -0.174639 -0.09100887

Scale Parameter σµ
Monday 1.239719 0.77968703 0.3634457 0.4779636 1.0962016
Tuesday 0.65606741 0.7608726 0.5040591 0.6698328 0.6560630
Wednesday 0.5055943 0.4589546 0.6706803 0.5467823 0.6069613
Thursday -0.3322698 0.7758208 0.9214631 0.49605948 0.6291783
Friday 1.1695172 0.8252605 0.5823002 1.037172 0.87551725

Exceedances Nµ

Monday 25 30 29 26 22
Tuesday 33 36 33 37 27
Wednesday 30 35 27 44 40
Thursday 38 39 39 33 35
Friday 24 28 39 32 17

95% quantile VaR (VaR0.05) of original negative daily log returns
Monday 1.574378 1.9127 1.886357 1.844478 1.714618
Tuesday 1.63393 1.994884 1.976933 2.085929 1.802911
Wednesday 1.537115 1.838576 1.875154 2.123752 2.034037
Thursday 1.827274 2.054521 2.272032 1.949974 1.981222
Friday 1.456647 1.802248 2.10879 2.121393 1.406727

99% quantile VaR (VaR0.01) of original negative daily log returns
Monday 2.784977 3.423013 2.848478 3.020582 3.117782
Tuesday 2.733362 3.554699 3.044567 3.180491 2.810845
Wednesday 2.214732 2.758804 2.914875 2.956329 2.836568
Thursday 2.776619 3.134498 3.335698 2.981338 2.945308
Friday 2.642806 3.025973 3.009405 3.77907 2.867233

1.3 The Dynamics of Precious Metal Markets VaR

The data analysis of the metal markets has recently attracted a lot of attention,

mainly because the prices of precious metal are relatively more volatile than its histor-

ical trend. A robust estimate of extreme loss is vital, especially for mining companies
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to mitigate risk and uncertainty in metal price fluctuations. This section examines

the VaR and statistical properties in daily price return of precious metals, which in-

clude gold, silver, platinum, and palladium, from January 11, 2000 to September 9,

2016. An advanced two stage approach which combining GARCH-type models with

Extreme Value Theory is implemented. In the first stage, the conditional variance

is modeled by different rolling univariate GARCH-type models (GARCH, EGARCH

and TGARCH) under the GED error assumption in the returns of precious metal

markets and compare the same with other well-known models. In the second stage,

Extreme Value approach is applied to capture the tail behavior of distribution for

the extracted standardized residuals. In comparison with the dynamic VaRs of these

precious metals, we find that gold has the most steady and the highest VaRs, followed

by platinum and silver; on the other hand our results show that palladium has the

most volatile VaRs. The backtesting result confirms that our approach is an adequate

method in improving risk management assessments and hedging strategies in the high

volatile metal markets.

1.3.1 Background

Commodity markets have been highly volatile in recent years due to many fac-

tors, such as political unrest, extreme weather conditions, introduction of new finan-

cial innovations, and international inflation. In this study, we mainly focus on the

risk analysis of precious metal markets because of the following reasons. (1) Precious

metals play important roles in portfolio selection and management; (2) Investors have

more belief and faith in metal markets as compare to stock market because metals

act as a retainer of economic value and best hedging against inflation in economy;

(3) Precious metals have high liquidity in market. Therefore, at the time of economic

crisis people can convert their jewelry, currency, bars etc., into hard cash; (4) The

prices of precious metal are relatively more volatile than its historical trend due to the
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introduction of new financial innovations, such as futures, options, exchange-traded

funds, and changes in demand and supply. During the periods of uncertainty caused

by the global financial crises, certain precious metals may serve as important hedge

assets against inflation. Hillier, Draper and Faff (2006)[46] examined the weak-form

efficiency of precious metals markets and concluded that precious metals have low

correlations with stock index returns. Consequently, precious metals are important

components of investment portfolios for individuals and institutions, due mainly to

their effectiveness as a safe haven. In particular, there are a number of studies fo-

cusing on gold, not only for its role as a hedge in portfolio diversification, but also

for its unique characteristic that are comparable to a monetary univariate (see, e.g.

Goodman (1956)[41], Jaffe (1989)[52], Baur and Lucey (2010)[9]). Silver is also widely

used, both as a financial instrument for inclusion in investment portfolios since it has

been considered as an intrinsic store of wealth, and a valuable industrial commodity.

For other precious metals, such as platinum, which is the rarest precious metal, as

well as palladium, their unique physical properties make them very desirable indus-

trial metals, especially for jewelry and automotive industries. Hence, quantification

of the risk in precious metal markets is fundamental in designing risk management

strategies. Yet, quantitative literature about the characteristics of metal markets

risks are insufficient.

To measure market risk, VaR which is the maximum loss of a portfolio such

that the likelihood of experiencing a loss exceeding that amount over a specified risk

horizon, is undoubted a suitable measurement, since regulators accept this quantity

as a basis for setting capital requirements for market risk exposure. The development

of more robust approaches in estimating VaR is thus crucial. In this section, we aim

to take the advantage of probability and time series theory to improve estimations

of appropriate underlying distributions, to capture extreme tails of the profit and

loss distribution; and as a result, improve the estimation of VaR. Although VaR only
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characterizes the extreme quantiles while disregarding the center of the distribution,

estimation of the tail is not an easy task. As one wants to make inferences about the

extremal behavior of a portfolio, there is only a very small amount of data in the tail

area of a sample set. Advanced methods and tools are needed to enable us to explore

beyond the range of the limited data set.

A common approach to model VaR is using GARCH (Generalized AutoRegressive

Conditional Heteroskedasticity)-type models to estimate volatility and correlations.

It is similar in spirit to RiskMetrics, who demonstrates the behavior of the daily

volatility estimator produced by a GARCH(1,1) volatility model with normal dis-

turbances. Although the standard GARCH model is able to encompass volatility

clustering as well as the leptokurtic behavior in the tails of the distribution of the

underlying financial return time series, it cannot model asymmetries of the volatility

with respect to the sign of past shocks. Bad news which is identifies by a negative sign

in the standard GARCH model, has the same influence on the volatility as good news.

The so called Leverage Effect can be modeled using extensions to the GARCH, such

as a threshold GARCH (TGARCH) or exponential GARCH (EGARCH). However,

there are still limitations to apply GARCH models since it based on the assumption

of error distribution.

In the last two decades, the Extreme value theory has experienced a boom in the

financial field, especially with respect to the application to measure VaR. The EVT

methods are attractive because of the following features: they are based on a profound

probability theorem; they offer a parametric form for the distribution of tail events yet

requires no knowledge of the original distribution. Moreover, extreme value approach

has been applied to depict the dynamic VaR of metal markets. Tolikas (2008)[84]

compared the EVT-based VaR estimates with those generated by traditional methods.

He showed that when the focus is on the extreme tails of stationary, uncorrelated time

series, the EVT methods can be particularly useful. Unfortunately, empirical results
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show that most financial time series are correlated, some even exhibit asymmetric

and/or long memory structure.

To remedy those shortcomings of both methods, we contain a development of

GARCH theory and the application of different, symmetric and asymmetric models,

to predict the volatility of metal returns, accompanied with the theory of EVT to es-

timate VaR. First, we estimate the conditional mean and volatility, then standardize

the time series to make them stationary and uncorrelated. Because the presence of

stochastic volatility implies that returns might have volatility clustering, time depen-

dent, heteroskedastic and leverage effect behavior, we capture the conditional mean

using autoregressive moving average (ARMA) model, and the conditional volatility

using univariate GARCH-type models. The standardized residuals will be confirmed

stationary and uncorrelated by statistical hypothesis tests. Second, we use threshold

methods of EVT to estimate the tail distribution of the standardized residuals.

To date, VaR has been applied in metal markets to measure risk, and several

authors have accomplished commendable research. In order to offer a comparative

view, we summarize the key findings of major studies in the related literature in

Table 1.20, which demonstrates that both GARCH-type models and extreme value

approach are widespread tools used in the literature to analyze volatility and VaR in

metal markets. We go beyond previous research by (i) considering daily spot price of

four precious metal during the latest sixteen years, which includes the period around

September 11, 2001, the beginning of the Iraq war in 2003, the global financial cri-

sis of 2008, and the 2016 Brexit referendum; (ii) integrating the linear symmetric/

asymmetric GARCH-type models with EVT to estimate VaR, which is confirmed a

more advanced approach to VaR by backtesting result. While some results speak in

favor of nonlinear GARCH models, for instance, Chkill, Hammoudeh and Nguyen

(2014)[23] found that the FIAPARCH model performs best in predicting VaR. In this

study, we choose to exclude nonlinear GARCH-type models to estimate the condi-
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tional volatility for two reasons. First, there is a trade-off between model flexibility

on the one hand and interpretability and complexity on the other. Based on Chkill’s

research, the difference between the performance in estimating conditional volatility

of FIAPARCH model with other linear GARCH models are very small, while the

FIAPARCH model has more parameters to estimate which increases uncertainty as

well as decreases the interpretability. Second, our data are tested to exhibit cer-

tain stylized features, including volatility clustering and asymmetry. Moreover the

lack of long memory feature in metal markets convinces us that comparing to the

FIAPARCH model, the linear GARCH model would be better suited in modeling

the considered return series. (iii) To evaluate objectively whether the VaR model is

adequate, two statistical backtest methods are used in our paper, following Kupiec

(1995)[60], Christoffersen and Pelletier[24].

1.3.2 Data exploration and statistical analysis

This study analyzes the precious metal markets risk on gold, silver, platinum, and

palladium daily spot price from January 11, 2000 to September 9, 2016. Since the

gold, silver, platinum and palladium price auctions take place in London on a daily

basis. All of these prices are internationally regarded as the pricing mechanism for a

variety of precious metal transactions and products. We thus collect daily gold P.M.

fixing price and silver fixing price from LBMA7, as well as platinum P.M. fixing price

and palladium P.M. fixing price from LPPM8. All the four metal price based in U.S.

Dollars.

To develop an accurate track record of asset performance, the initial price data

are transformed into daily log-returns. Let pt denotes the metal price on day t, then

the daily log returns on day t is defined by

7LBMA: London Bullion Market Association.

8LPPM: LBMA platinum and palladium price data.
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Table 1.20: Previous research about analyzing market risk of metals

Studies Purposes Data Methodology Main findings
Tully
and

Lucey
(2007)

[86]

The paper investigates the
applicability of the asymmetric

power GARCH model
(APGARCH) and its nested
variants to the gold market.

Monthly observations of
gold, both cash and futures

prices, and a set of
macroeconomic variables,

from 1984 to 2003.

APGARCH
Confirm that the US dollar is

the main macroeconomic
variable which influences gold.

Hammoudeh
and

Yuan
(2008)

[44]

The paper examines the
volatility behavior of three

strategic commodities: gold,
silver and copper in presence

of oil and interest rate shocks.

Daily time series for the
closing three-month futures
prices of oil, gold, silver and
copper, and for the US three

month Treasury bill rates
from Jan. 2, 1990 to

May 1, 2006.

GARCH,
CGARCH,
EGARCH

Monetary policy and to leaser
extent the oil shocks have
calming effects on precious
metals but not on copper
if the T bill rate is used.

Crises heighten metal volatility.

Tolikas
(2008)

[84]

To describe the distribution
of the extreme minima

for daily returns of a wide set
of markets; to assess whether

the EVT approach can be
useful for risk measurement
purposes by deriving VaR

estimates.

Daily closing prices of the
CAC-DS index and the

CRB index over the period
1977 to 2006, and daily prices

for the German 10 year
benchmark bond index

from 1980 to 2006.

GEV and
generalized

logistic
distributions

When the focus is on the
really ruinous events,
the EVT methods can
be particularly useful

since they produce VaR
estimates that outperform

those derived by the
traditional methods at
high confidence levels.

Hammoudeh,
McAleer,

and
Malik
(2011)

[43]

This paper examines volatility
and correlation dynamics in
price returns of gold, silver,

platinum and palladium, and
explores the corresponding

risk management implications
for market risk and hedging.

Daily returns based on
closing spot prices for the
four precious metals(gold,

silver, platinum, and
palladium) from Jan. 4,
1995 to Nov. 12, 2009.

RiskMetrics,
GARCH,

GARCH-FHS

Portfolio managers engaged
in precious metals should

calculate VaR using GARCH-t
as it will yield fewer violations,
though with lower profitability.

Chaithep
et al.
(2012)

[21]

This paper focuses on risk
evaluation of gold price

return and the tail
distribution of extreme

events in gold price returns.

Daily gold price from Jan.
1, 1985 to Aug. 31, 2011

Extreme Value
Approach,

Generalized
Extreme Value
(GEV model)

Reveals that value of gold
price return when modeled
after Generalized Extreme
Value is that a maximum

tomorrow’s loss is 6.5461%
at the significant of 99

percent confidence interval.

Chkili
et al.
(2014)

[23]

To explore the relevance of
asymmetry and long memory
in modeling and forecasting

the conditional volatility
and VaR of four widely

traded commodities (crude oil,
natural gas, gold, and silver).

Daily spot and three-month
futures prices of WTI, Henry

Hub natural gas, gold and
silver from Jan. 7, 1997 to

Mar. 31, 2011.

GARCH,
IGARCH,
EGARCH,

RiskMetrics,
and

FIGARCH,
FIAPARCH,
HYGARCH

The FIAPARCH model is
the best suited for estimating

the VaR forecasts. This
model also gives the lowest
number of violations under
the Basel II Accord rule.

Chinhamu
et al.
(2015)

[50]

To improve current
assumptions of appropriate
underlying distributions to
capture extreme tails, and

improve the estimation of VaR
and Expected Shortfall.

Monthly gold prices from
Jan.1969 to Oct. 2012

Generalized
Pareto

Distribution
(GPD model)

EVT provides effective
means of estimating tail

risk measures, such as VaR
and Expected Shortfall,
which is confirmed by

backtesting procedures.

rt = 100 log
pt
pt−1

= 100× (log pt − log pt−1). (1.20)

Since gold has been considered as a financial indicator and also has an influence

on other precious metals, we could capture some metal markets historical tendency
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through taking a glance at gold prices. Fig.?? provides the time series plots of daily

spot gold prices as well as log-returns. As can be seen in Fig.??, the lower figure

Figure 1.14: Time series plots of gold daily prices and daily log-returns from
2000-1-11 to 2016-9-9.

indicates heteroscedasticity and volatility clustering behavior. Also, there are more

isolated pronounced peaks than one would expect from Gaussian series. The statis-

tical results of the four precious metal returns are shown in Table 1.21.

As demonstrated in Panel A of Table 1.21, the mean of these return series are

low, whereas the corresponding standard deviation are substantially high. Palladium

has the highest standard deviation, while gold has the lowest. Meanwhile, compared

with the standard normal distribution with skewness 0 and kurtosis 3, we conclude

that each return has a leptokurtic distribution with fat tail. The indication of non-

normality is also supported by the Shapiro-Wilk test in Panel B, which rejects the null

hypothesis of a normal distribution at all levels of significance. We also examine the

stationary property for the returns by means of KPSS test. Results are reported in

Panel B, which indicates that the null hypothesis of weak stationarity for all returns
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Table 1.21: Descriptive statistics and hypothesis tests results for the four precious
metal prices daily log-returns

Gold Silver Platinum Palladium
Panel A: Descriptive statistics

Num. 4218 4219 4220 4220
Mean 0.02987 0.03076 0.00952 -0.00585
Std. dev. 1.14 2.09 1.48 2.16
Maximum 6.84 18.28 8.43 15.84
Minimum -9.6 -18.69 -17.28 -17.86
Skewness -0.29 -0.55 -0.7 -0.33
Kurtosis 5.35 9.83 8.92 5.28

Panel B: Hypothesis tests results

KPSS
1.6858e-229

(0.1)
0.12013

(0.1)
0.33771

(0.1)
0.10912

(0.1)

Shapiro-Wilk
0.9437∗

(<2.2e-16)
0.91238∗

(<2.2e-16)
0.93077∗

(<2.2e-16)
0.94044∗

(<2.2e-16)

LB-Q(5)
3.3998

(0.6386)
37.507∗

(4.739e-07)
6.9491

(0.2245)
39.766∗

(1.664e-07)

LB-Q(10)
13.137

(0.2161)
41.187∗

(1.046e-05)
8.2851
(0.601)

43.584∗
(3.91e-06)

LB-QS(5)
280.49∗

(<2.2e-16)
589.2∗

(<2.2e-16)
432.53∗

(<2.2e-16)
421.57∗

(<2.2e-16)

LB-QS(10)
469.21∗

(<2.2e-16)
857.11∗

(<2.2e-16)
621.48∗

(<2.2e-16)
599.79∗

(<2.2e-16)

The KPSS test[61] corresponds to the test statistic for the null hypothesis of weak sta-
tionarity, i.e. time invariance of the mean value and the autocorrelation function, in the
distribution of sample returns.
The Shapiro-Wilk test[81] utilizes the null hypothesis principle to check whether the series
come from a normally distributed population. As Razali and Wah (2011)[74] demonstrate,
the Shapiro-Wilk test is one of the most powerful formal normality tests.
The Ljung-Box statistics, Q(n) and QS(n), check for serial correlation of the return series
and the squared returns up to the n-th order, respectively.
p-values are reported in parentheses; ∗ indicates rejection of the null hypothesis at the 1%
significant level.
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are not rejected at the 1% significant level. To check the autocorrelation of the

returns, the Ljung-Box (LB for short) test is applied for returns at lag 5 and 10, Q(5)

and Q(10), and squared returns QS(5) and QS(10). Although partial sample returns

(gold and platinum) support for the null hypothesis of no serial autocorrelation, the

Ljung-Box test results for squared return series confirms that all sample return series

have short memory. Therefore, the unpredictability of returns is evidenced through

the autocorrelation effect in squared returns indicate volatility clustering.

Base on the statistical analysis for precious metal price return series, we conclude

that these metal returns are stationary, non-normally distributed, and have short

memory. Those properties illustrate the complication of estimating the distribution

of the returns series. To overcome these difficulties, we use the methodology incor-

porate GARCH type models with EVT to accommodate the stylized facts exhibits

in the metal markets. By taking advantage of EVT, the VaR can be evaluated us-

ing generalized Pareto distribution (GPD) of extreme events, without the need of

exploring the full distribution of {rt}.

1.3.3 Methodology

1.3.3.1 Estimating µt+1 and σt+1 using ARMA - GARCH-type model

Let {rt}Tt=T−n+1 be a time series representing the daily log-return of metal price.

We fix a constant memory n so that at the end of day T our data consist of the

last n daily log-returns {rT−n+1, · · · , rT−1, rT}. Since the existence of the volatility

clustering and leptokurtosis in precious metal returns, we assume that the conditional

mean of {rt}Tt=T−n+1 follows a autoregressive moving average model ARMA(p,q), and

the conditional volatility follows a univariate GARCH-type model, which is given by


rt = µt + σtzt,

µt = φ0 +
∑p

i=1 φirt−i +
∑q

j=1 θjεt−j + εj

σ2
t ∼ GARCH-type model

(1.21)
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where the innovations zt are white noise process with zero mean, unit variance, and

marginal distribution F ; the conditional mean µt = E(rt|Ft−1), and the conditional

volatility σt = Var(rt|Ft−1), Ft−1 is the historical information about the return process

available up to time t− 1.

Bollerslev (1986)[14] developed the generalized ARCH, or GARCH, to capture

the time-vary volatility, which relies on modeling the conditional variance as a linear

function of the squared past innovations. The conditional variance of the standard

GARCH(1,1) is defined as

σ2
t = ω + η(rt−1 − µt−1)2 + βσ2

t−1, (1.22)

where ω > 0, η > 0, β > 0, and α + β < 1 which reflects the duration of the return

volatility.

However the standard GARCH model has a drawback, as it fails to describe

the leverage effect in the volatility of metal price returns. Leverage effect means

that the volatility tends to increase dramatically following bad news, and to in-

crease moderately or even to diminish following good news. The threshold GARCH,

or TGARCH (Zakoian (1994)[88]), and the similar GJR-GARCH (Glosten, Jagan-

nathan, and Runkle (1993)[38]), which define the conditional variance as a linear

piecewise function, is applied to discuss this leverage effect topic. The conditional

variance of TGARCH(1,1) can be depicted as

σ2
t = ω + η(rt−1 − µt−1)2 + βσ2

t−1 + γ(rt−1 − µt−1)2I{rt−1−µt−1>0}, (1.23)

where w > 0, η ≥ 0, and β ≥ 0. Due to the use of switching condition I{rt−1−µt−1>0},

the influence of return increase and decrease on the conditional variance are charac-

terized distinctly, as long as γ 6= 0.
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Another popular model proposed to capture the asymmetric effects is Nelson’s

(1991)[71] exponential, or EGARCH model. The EGARCH(1,1) is defined as

lnσ2
t = ω + η[|zt−1 − E(|zt−1)] + β lnσ2

t−1 + γzt−1, (1.24)

where η depict the leverage effect. In contrast to the GARCH model, no restrictions

need to be imposed on the model parameters since the logarithmic transformation

ensures that the forecasts of the variance are non-negative.

In this study, we fit model (1.21) by means of quasi-maximum-likelihood esti-

mation method (QML), under the assumption that the innovations {zt} from the

above univariate GARCH-type models follows a generalized error distribution (GED)

(Nelson, 1991 [71]). It means that the likelihood for a return series {rt}Tt=T−n+1 in

model (1.21) with GED innovations {zt} is maximized to obtain parameter estimates

{φ̂0, φ̂, ω̂, α̂, γ̂, β̂}. The main reason we choose QML estimation is that according to

Bollerslev and Wooldridge (1992)[15], the QML estimates are consistent and asymp-

totically normally distributed, if the mean and the volatility equations are correctly

specified. We choose GED to estimate the residual series based on the statistical

results which indicate these metal price returns have leptokurtic and fat tail distri-

bution which do not in accordance with the commonly used Gaussian or Student t

distribution.

The probability density function of GED is given by:

f(zt) =
k exp{−1

2
| zt
λ
|k}

λ2(k+1)/kΓ(1/k)
, k ≥ 0,

where λ =

(
2−

2
k

Γ(1/k)
Γ(3/k)

) 1
2

, Γ(·) denotes the Gamma function. k is the tail-thickness

parameter. In particular, if k = 2, zt is standard normally distributed; k < 2 indicates

its tail is fatter than that of the standard normal distribution; while k > 2 indicates

a thinner tail.
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For each GARCH-type model mentioned above, we can calculate the estimates

of conditional mean µ̂t+1 and conditional variance σ̂2
t+1 for day t + 1, which are the

1-step forecasts of day t, t = T − n + 1, · · · , T . Subsequently, estimation has been

carried out using GARCH-type models, based on the GED, for VaR of returns in

precious metal markets.

V aRα,t = −µ̂t + zασ̂t, (1.25)

where zα is the left α-quantile of the GED distribution which is used for the residual

series of GARCH-type model.

However, in our methodology, we implement ARMA - GARCH model to the

original return series for getting the standardized residuals. From Eq.(1.21), we get

estimates of the conditional mean {µ̂T−n+1, · · · , µ̂T−1, µ̂T} and conditional volatility

{σ̂T−n+1, · · · , σ̂T−1, σ̂T} of {rt}Tt=T−n+1. The residual series therefore can be formu-

lated as

{zT−n+1, · · · , zT} =

{
r̂T−n+1 − µ̂T−n+1

σ̂T−n+1

, · · · , r̂T − µ̂T
σ̂T

}
,

which should be uncorrelated and stationary if the fitted model is tenable. In the

implementation stage, the best fitted GARCH-type model will be chose based on the

goodness of fit measure Akaike information criterion (AIC).

1.3.3.2 Estimating VaR using Extreme Value Theory

For convenience of interpretation, we produce all analogous results for negative

residuals by taking into account the relation

min{zT−n+1, · · · , zT} = max{−zT−n+1, · · · ,−zT}.

As we are interested in extreme negative returns, we use EVT to model the residuals’

left tail behavior, which is equivalent to model the right tail of the distribution for

the corresponding negative residuals.
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From the negative residuals, we estimate the upper tail behavior of its cumulative

distribution function (CDF) using EVT. For a random variable X, we fix a high

threshold µ and consider the distribution of excess values Y = X − µ as

Fµ(y) = Pr(X − µ ≤ y|X > µ) =
F (µ+ y)− F (µ)

1− F (µ)
, (1.26)

where F is the underlying CDF of X, Fµ is the conditional excess distribution func-

tion. Pickands (1975)[72] introduced the GPD as a two parameter family of distri-

butions for exceedances over a threshold. More precisely, for a large class of under-

lying distribution functions F , the conditional excess distribution function Fµ(y), as

µ→ ωF = sup{x : F (x) < 1}, can be well approximated by

Fµ(y) ≈ Hσµ,ξ(y),

where Hσµ,ξ(y) is called GPD, which is specified as

Hσµ,ξ(y) = 1−
(

1 + ξ
y

σµ

)−1/ξ

+

. (1.27)

The parameters of GPD are the scale parameter σµ and shape parameter ξ.

EVT describes specifically at the tail of distributions. The tail fatness of the

distribution is reflected by the shape parameter: ξ < 0 indicates thin tails; ξ = 0

means the kurtosis is 3 as for the standard normal distribution; ξ > 0 implies fat tails.

Therefore, the shape parameter ξ measures the speed with which the distribution’s

tail approaches zero. The fatter the tail, the slower the speed and the higher ξ is.

Because EVT begins with the assumption that the sequence of variables are i.i.d.,

the analysis in this study was developed on the residuals, which would be much more

reasonable than assuming the original returns are i.i.d. sequence.
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It is necessary to choose a specific threshold to confine the estimation to these

observations that are above the given threshold. In this study, an optimal threshold

is selected by employing graphical methods, known as the Hill plot and the mean

excess plot. The Hill plot[45] displays the estimated values of shape parameter ξ as

a function of the cut-off threshold in order to find some interval of candidate cut-off

points that yields stable estimates of ξ. The mean excess function[30] is the mean

of exceedances over a threshold. If the underlying distribution of these exceedances

follow GPD, then the corresponding mean excess must be linear in the threshold.

Hosking and Wallis (1987)[49] proved that, for shape parameter ξ > −0.5, the

maximum likelihood regularity conditions are fulfilled and that maximum likelihood

estimates {ξ̂n, (σ̂µ)n} based on a sample of n excesses are asymptotically normally

distributed. Hence, we estimate the shape parameter ξ and location parameter σµ

using maximum likelihood estimation.

Next, we make explicit the relationship between excess value of negative residuals,

denoted as {zt}, and the original return series. Assume that {zt} are i.i.d. random

variable with CDF F , and a high enough threshold µ is given. Define the number of

exceedances as Nµ such that

Nµ = card{t : zt > µ, t = 1, · · · , n}.

Then

Fµ(y) = Pr(zt − µ ≤ y|zt > µ) =
F (µ+ y)− F (µ)

1− F (µ)
,

i.e.

F µ(y) = Pr(zt − µ > y|zt > µ) =
F (µ+ y)

F (µ)
.

The estimators of F (u) and F µ(y) can be written as:

F̂ (u) =
1

n

n∑
i=1

I(Xi > µ) =
Nµ

n
,
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F̂ µ(y) = 1−Hσ̂µ,ξ̂
(y) =

(
1 + ξ̂

y

σ̂µ

)−1/ξ̂

+

,

where ξ̂ and σ̂µ are maximum likelihood estimators of ξ and σµ. Thereafter the tail

estimator is

̂F (µ+ y) =
Nµ

n

(
1 + ξ̂

y

σ̂µ

)−1/ξ̂

+

.

This relationship between probabilities allows us to obtain VaR for the original

asset returns {rt}. For a specified small probability α such that

α = Pr(rT+1 < v) = Pr(−zT+1 > −v−µT+1

σT+1
)

= F
(
µ+ (−v−µT+1

σT+1
− µ)

)
,

the lower tail α-th quantile VaR of {rt} is v. Consequently, for a given small prob-

ability α, one can check that the VaR of holding a long position in the asset with

underlying return {rt} is

VaRt,α =

 −
(
µ+ σ̂µ

ξ̂

(
( n
Nµ
α)−ξ̂ − 1

))
× σt+1 + µt+1, ξ̂ 6= 0,

−
(
µ+ ξ̂ ln ( nα

Nµ
)
)
× σt+1 + µt+1, ξ̂ = 0.

(1.28)

1.3.4 Backtesting

Based on the market risk amendment by the Basel Committee (1996), qualifying

financial institutions have the freedom to specify their own model to compute their

VaR. The procedure of backtesting thus becomes crucially important for regulators

to assess the quality of the models.

Consider a time series of daily portfolio returns, rt, and a corresponding time

series of VaR forecasts, V aRt,α with promised coverage rate α, such that ideally

Pr(rt < V aRt,α) = α.
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Define the hit sequence of V aRt,α violations as

It(α) =

 1 if rt < V aRt,α

0 else.

As stressed by Christoffersen (1998)[25], VaR forecasts are valid if and only if the

violation sequence {It} satisfies the following two hypotheses:

(i) The unconditional coverage hypothesis: the probability of an return exceeding

the VaR forecast must be equal to the coverage rate

Pr(It(α)) = 1) = E(It(α)) = α.

(ii) The independence hypothesis: VaR violations observed at two different dates

for the same coverage rate must be distributed independently.

We thereafter implement two backtesting tests, the Kupiec’s unconditional coverage

test and the Christoffersen and Pelletier’s duration-based test of independence, for

the GARCH-VaR and GARCH-EVT-VAR model evaluation.

1.3.4.1 Kupiec’s unconditional coverage test

Kupiec likelihood ratio unconditional coverage test (Kupiec, 1995[60]) exploits the

fact that an adequate model is supposed to have its proportion of violations of VaR

estimates close to the corresponding tail probability level. Assume the sample size

is n and days of failure is N , then the frequency of failure is N/n. Subsequently,

for the null hypothesis that the expected proportion of violations is equal to α, i.e.

H0 : N/n = α, Kupiec (1995)[60] proposed a proper likelihood ration test.
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Under the null hypothesis, the statistic function

LR = 2 ln
(
(1− N

n
)n−N(

N

n
)N
)
− 2 ln

(
(1− α)n−NαN

)
is asymptotically distributed according to a chi-square distribution with one degree

of freedom, i.e. LR ∼ χ2(1). Consequently, one rejects the null hypothesis if the

p-value of the unconditional coverage test is less than the predetermined significance

level.

1.3.4.2 A Duration-based test of independence

Denote Di the duration between two consecutive violations as

Di = ti − ti−1,

where ti denotes the date of the i-th violation. Under the null hypothesis that the

risk model is correctly specified, the no-hit duration should have no memory and a

mean duration of 1/α days. Hence, the duration variable {Di} follows a geometric

distribution given by

fgeo(D;α) = α(1− α)D−1. (1.29)

A more convenient representation of the same information is given by transforming

the geometric probabilities into a flat function. The hazard rate defined as

λ(Di) =
Pr(Di = d)

1− Pr(Di < d)
, (1.30)

where λ(Di) could be written explicitly as

(1− α)d−1α

1−
∑d−2

j=1(1− α)jα
= α,

collapses to a constant after expanding and collecting terms.
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Exploiting Eq.(1.29), Christoffersen and Pelletier (2004)[24] proposed the first

duration-based test. They used under the null hypothesis the exponential distribu-

tion, which is the continuous analogue of the geometric distribution with a probability

density function, defined as:

fexp(D;α) = αexp(−αD). (1.31)

The most powerful of the two alternative hypotheses they consider is that the duration

follow a Weibull distribution where

fWeibull(D; a, b) = abbDb−1exp(−(aD)b). (1.32)

As the exponential distribution corresponds to a Weibull with a flat hazard function,

i.e b = 1, the test for the independence hypothesis (Christoffersen and Pelletier,

2004[24]) is then simply:

H0 : b = 1.

When b < 1, the hazard, i.e., the probability of getting a violation at time Di given

that we did not up to this point, is a decreasing function of Di. One rejects the hull

hypothesis if the p-value less than the predetermined significance level.

In conclusion, Kupiec’s unconditional coverage test [60] checks whether the amount

of expected versus actual exceedances given the tail probability of VaR actually occur

as predicted, while the conditional coverage test of Christoffersen [24] is a joint test of

the unconditional coverage and the independence of the exceedances. In this section,

both the joint and the separate unconditional test will be reported in the following

section since it is always possible that the joint test passes while failing either the

independence or unconditional coverage.
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1.3.5 Empirical results and discussion

By observing the autocorrelations in section 1.3.2, we found the unpredictability

and volatility clustering behavior in the considered precious metal returns. To filter

out the autocorrelations of considered metal log-returns, the autoregressive AR(1)

model is used here since AR(1) is singled out according to the censored orders of au-

tocorrelation and partial autocorrelation functions graphs through numerous trails.

Whereas the four metal returns has significant volatility clustering, so a GARCH-

type model needs to be adopted. Because of the fat tail of the return, the GED is

carried out to depict the residual of the GARCH-type model. Hence, GARCH(1,1),

TGARCH(1,1) and EGARCH(1,1) models are developed so as to further investi-

gate the leverage effect of the precious metal returns. According to the minimum

AIC value and the need to describe the asymmetric volatility, a AR(1) - GED based

EGARCH(1,1) model is singled out for the four metal daily log-returns, whose esti-

mation results as well as estimation results from the other two model are stated in

Panel A of Table 1.22.

As can be seen from Panel A of Table 1.22, GED degree parameter k of all return

series on any of the three models are all less than 2, which confirms the fact that the

tails of these metal returns are thicker than that of Gaussian distribution. According

to the parameter estimation result from the conditional variance EGARCH(1,1) equa-

tion, we found that the leverage effects coefficient γ are all positive and significant at

any significant level which means that good news generates more volatility than bad

news for precious metal markets. Moreover, the asymmetric volatility behavior is the

most significant in Palladium while the least significant in gold. The coefficient esti-

mators β of lnσ2
t−1 in the EGARCH(1,1) conditional variance model are all greater

than 0.95, which indicates that over 95% of current variance shock can still be seen

in the following period. Therefore, the volatility clustering in those metal returns are

clear, and the decay of the volatility shock are quite slow.
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After choosing the most appropriate conditional variance model for each metal log-

returns, the standardized residual series from the AR(1) - GED based EGARCH(1,1)

model can be retrieved. In Fig.1.15, we plot the negative standardized residuals of

gold price return series from AR(1) - GED based EGARCH(1,1) model. We thereafter

Figure 1.15: Time series plot of the negative standardized residuals for gold daily
returns from 2000-1-11 to 2016-9-9.

investigate the normality and autocorrelation function for the negative standardized

residuals, and show the result in Panel B of Table 1.22. The result of the Shapiro-Wilk

normality test confirms that none of these negative standardized returns follow normal

distribution. Examining the result of Ljung-Box test for the negative standardized

residual series and the squared residuals from AR(1) model, it can be seen that most

of the autocorrelation coefficients fall within the 99% confidence interval. There-

fore, one can deduce that there are no longer autocorrelation in these non-normally

distributed residual series. The autocorrelation correlograms of the negative stan-

dardized residuals are plotted in Fig.1.16 which confirms that although the original

gold price return time series are autocorrelated, the standardized residuals are mem-

oryless. All of this indicates that the AR(1) - GED based EGARCH(1,1) model has

fitted the four precious metal returns very well.

Then we apply the extreme value approach as stated in section 1.3.3.2 on the

negative standardized residuals to estimate VaR of the four precious metals. First, we

choose a proper threshold for each metal residual series using Hill plot and mean excess
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Figure 1.16: Correlograms for the gold price returns and their squared values, as well
as for the standardized residuals and squared residuals.

plot. Fig.1.17 shows the Hill plot and mean excess plot of gold negative standardized

residuals, which indicates that a threshold with around 50 exceedances, is reasonable

for the gold residual series. The selected threshold values and the corresponding

Figure 1.17: Hill plot and Mean Excess Plot of gold negative standardized residuals
from 2000-1-11 to 2016-9-9

number of exceedances Nµ are reported in Panel A of Table 1.23. Then, we fit

these excess values to a GPD model and use the maximum likelihood estimation to

determine the shape parameter ξ and location parameter σµ, which are also included

in Panel A of Table 1.23.
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According to the Panel A of Table 1.23, the estimated shape parameter ξ are

positive suggesting that the left tail of standardized residuals for gold, silver and

platinum are characterized by heavy-tail distributions. Meanwhile, for palladium,

the negative ξ̂ indicates that the left tail of palladium standardized residuals are

characterized by a light-tail distribution. In comparison of the four precious metal

VaRs, Panel B and C of Table 1.23 provides the one-day ahead estimates of VaR for

each returns, at various quantiles levels. The table presents the forecasts constructed

from the fitted GPD model on the standardized negative residuals, which is shown

is Eq.(1.28), and these are contrasted against the estimates drawn directly from the

traditional GARCH model, see Eq.(1.25).

At a quantile level of 99.5% , the estimated VaR from our GARCH-EVT ap-

proach is 3.2283881 for losses. This means that we are 99.5% confidence that the

expected market value of gold would not lose more than 3.2283881% for the worst

case scenario, within one-day duration. Similar interpretations can be made for the

considered GARCH-VaR model. The reason we choose the AR(1) - GED based

EGARCH(1,1) model as the representative of traditional GARCH models to VaR

is that EGARCH(1,1) model is identified as the most proper conditional variance

model for the four metal returns. In comparison of different models to VaR, it is

also interesting to note that the GARCH-EVT produced lower VaR forecasts than

the EGARCH model, at any quantile levels for any metal price return series. It

indicates that our methodology, which first adopt GARCH-type models to forecast

volatility and then concentrate on the tail distribution of standardized residuals, is

more realistic and comprehensive than the commonly used GARCH to VaR model.

To investigate further about the dynamics of VaR for the four precious metal, we

use a moving window to estimate the one-day-ahead 0.5% quantile VaRs using our

GARCH-EVT approach and show it in Fig.1.18.
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Figure 1.18: Downside 0.005 quantile VaRs of gold, silver, platinum, and palladium
(from top to bottom).
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In comparison of dynamic VaRs for the four precious metals, averagely speaking,

gold has the most steady and the highest VaR, then is platinum and silver, while

palladium has the most volatile and the lowest VaR. As a valuable asset in terms of

investment, gold has served as the most stable monetary standards which might be a

reason that gold has the most steady VaR comparing to other precious metals. The

VaRs for palladium are the most volatile one mainly due to the demand and supply

of it is highly unstable since palladium is much rarer than other precious metals. It

is interesting to note that, according to the comparison graphs Fig.1.18, silver has

been more volatile than platinum. Moreover, there are several factors contributing

to VaR de-escalations in metal markets. Firstly, in the period that financial markets

crash, such as around 2008, investors lose confidence on equity market and prefer to

invest those assets that do not have heavy liability or unpredictability such as precious

metals. Conversely, when the financial market thriving or there is a bull run in U.S.

stocks, the demand for gold will decline, such as around 2013, most of the investors

moved out of gold and into equities because there was a string of strong economic data

soothed worries about wealth preservation and encouraged investors to seek greater

gains in equities. Gold’s losses at 28% in 2013, neatly match the percentage gains in

U.S. equities, illustrating how funds flowed from one asset class and into the other.

Secondly, precious metal trading can offset the potential movement of real value in the

short-term market against international inflation and US dollar oscillations. Thirdly,

the oil price is a main macroeconomic variables that influence the precious metal

market. Fig.1.18 hence also depict several significant VaRs historical jumps in the

latest sixteen years.

To show the validation result our GARCH-EVT approach to VaR, Table 1.24

provides the backtesting results of VaR estimates, where the level of VaR ranging

among 0.5%, 1% and 5%. Both the Kupiec test and Christoffersen test suggest that

the VaR estimates from our asymmetric GARCH-EVT approach cannot be rejected.
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Therefore, the GED based EGARCH model combined with EVT approach does very

well in predicting critical loss for precious metal markets. Our findings reveal that

models considering for some stylized facts such as leptokurtic, volatility clustering

and asymmetry in the financial time series behavior enhance the VaR predicting.

1.3.6 Conclusion and future work

In this section, we introduce an extension of the two stage approach by McNeil

and Frey (2000)[67]. We extend the GARCH model to GED based GARCH-type

models by taking into account major stylized facts into the price return volatilities of

precious metal markets. Our findings reveal that precious metals are characterized by

fat tail distributed, volatility clustering and leverage effect behavior. After illustrating

the GED based GARCH-type models combined with EVT methodology, we then

implemented it in predicting one-day ahead VaRs for precious metal markets and

compared it with VaRs from GARCH-type model directly. We also compared VaRs

from our GARCH-EVT approach with that from GARCH based VaR model, The

comparative analyses with the well-known GARCH-based VaR models were included

as well. Moreover, we compared the dynamic VaRs in gold, silver, palladium and

platinum and found that gold has the most steady VaRs, while palladium has the

most volatile VaRs. At the end, the backtesting results confirms that our approach

performs exceptional.

Since a combination of our results with analysis about the multivariate dependence

structure between four precious metals may prove very useful in the context of an

investor’s optimal portfolio choice, we will return to these, copulas application in

estimating multivariate dependence structure, in future publications. Moreover, we

are also interested in quantifying spillover effects of extreme price movements from one

precious metal to other precious metals. Based on our results, CoVaR (Adrian and

Brunnermeier (2011)[1]), which is a systemic risk measure, would be used in analyzing
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this question. By providing the VaR of one precious metal price conditional on the

fact that another precious metal price is experiencing extreme movements as measures

by its own VaR, CoVaR captures spillover effects in precious metal prices. We have

not done so yet. A detailed analysis of this question is left for future research.

Overall, our findings confirm that taking into account volatility clustering and

asymmetry in the behavior of precious metal return time series as well as combin-

ing filtering process such as extreme value approach is important in improving risk

management assessments and hedging strategies.
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Table 1.22: Estimation and hypothesis test result of AR(1) - GARCH-type models
for four precious metal daily log-returns from 2000-1-1 to 2016-9-9

Parameter Gold Silver Platinum Palladium
Panel A: Parameter estimation and information criterion statistics

AR(1) - GED based GARCH(1,1) model

φ0
0.032112
(0.01124)

0.007650
(0.69950)

0.034659
(0.05210)

0.022264
(0.38095)

φ
0.010066
(0.46697)

-0.069080
(0.00000)

0.026840
(0.08754)

0.058940
(0.00007)

ω
0.016303
(0.00294)

0.011118
(0.02539)

0.041797
(0.00006)

0.113815
(0.00002)

η
0.052498
(0.00000)

0.054522
(0.00000)

0.093124
(0.00000)

0.133045
(0.00000)

β
0.0934726
(0.00000)

0.944478
(0.00000)

0.888573
(0.00000)

0.850146
(0.00000)

k
1.211903
(0.00000)

1.318597
(0.00000)

1.351262
(0.00000)

1.191177
(0.00000)

AIC 2.8515 3.9304 3.3205 4.0727
AR(1) - GED based TGARCH(1,1) mode

φ0
0.029930
(0.04181)

0.009773
(0.63482)

0.036904
(0.03693)

0.027338
(0.11242)

φ
0.009053
(0.53166)

-0.068119
(0.00001)

0.027271
(0.07388)

0.060296
(0.00001)

ω
0.015212
(0.00285)

0.011672
(0.02255)

0.040867
(0.00008)

0.116066
(0.00001)

η
0.040201
(0.00046)

0.062613
(0.00000)

0.101645
(0.00000)

0.162129
(0.00000)

β
0.937073
(0.00000)

0.944359
(0.00000)

0.889090
(0.00000)

0.847365
(0.00000)

γ
0.021170
(0.11379)

-0.015951
(0.19605)

-0.016083
(0.41100)

-0.050227
(0.05322)

k
1.214966
(0.00000)

1.317588
(0.00000)

1.352807
(0.00000)

1.191175
(0.00000)

AIC 2.8514 3.9305 3.3208 4.0722
AR(1) - GED based EGARCH(1,1) model

φ0
0.023192
(0.10257)

0.003407
(0.87198)

0.037506
(0.04652)

0.025043
(0.33152)

φ
0.007056
(0.61582)

-0.065504
(0.00004)

0.027154
(0.086327)

0.062081
(0.00032)

ω
0.000650
(0.66099)

0.005104
(0.00016)

0.010462
(0.00002)

0.044633
(0.00017)

η
-0.022538
(0.02696)

-0.006479
(0.48258)

0.008270
(0.509879)

0.022015
(0.17214)

β
0.990753
(0.00000)

0.995171
(0.00000)

0.979532
(0.00000)

0.965677
(0.00000)

γ
0.113033
(0.00005)

0.120380
(0.00000)

0.189213
(0.00000)

0.260041
(0.00000)

k
1.224575
(0.00000)

1.328313
(0.00000)

1.353979
(0.00000)

1.197389
(0.00000)

AIC 2.8436 3.9203 3.3174 4.0647
Panel B: Hypothesis tests on negative residuals

Shapiro-Wilk
0.97862

(< 2.2e− 16)
0.9784

(< 2.2e− 16)
0.97503

(< 2.2e− 16)
0.97815

(< 2.2e− 16)

LB - Q(5)
3.7988

(0.5787)
7.7768
(0.169)

7.9392
(0.1596)

19.85∗
(0.001333)

LB - Q(10)
8.2653

(0.6029)
11.015

(0.3564)
9.7096

(0.4663)
23.057

(0.01054)

LB - Qs(5)
9.8461

(0.07972)
23.025∗

(0.0003339)
5.3307

(0.3769)
4.5388

(0.4747)

LB - Qs(10)
13.253

(0.2099)
28.794∗

(0.001346)
5.6133

(0.8466)
8.9894

(0.5331)

Note: p-values are reported in parentheses; the Akaike information criterion (AIC for short)
is a measure of the relative quality of statistical models.
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Table 1.23: Parameter estimation results from fitted GPD and estimates for one-day
ahead VaR

Gold Silver Platinum Palladium
Panel A: results from fitted GPD model for negative standardized residuals

µ 2.358336 2.469984 2.125745 2.699225
Nµ 50 55 95 52

ξ̂
0.2060037

(0.2020086)
0.1758788

(0.1546582)
0.2008195

(0.09845623)
-0.1175530
(0.1527495)

σ̂µ
0.5383237

(0.1318199)
0.6859990

(0.1397956)
0.5596442

(0.07874522)
0.7239877

(0.1488937)

Panel B: estimates for 1-day ahead VaRs from the GARCH-EVT approach

VaRT+1,0.005 -3.2283881 -4.3744174 -5.3888110 -6.7105573
VaRT+1,0.01 -2.7632794 -3.6741353 -4.5493432 -5.9440062
VaRT+1,0.05 -1.9081735 -2.3425701 -2.9970233 -3.9037074

Panel C: estimates for 1-day ahead VaRs from the AR(1) - GED based EGARCH(1,1) model

VaRT+1,0.005 -2.954591 -3.53238 -4.905009 -5.272009
VaRT+1,0.01 -2.565507 -3.090641 -4.288894 -4.547062
VaRT+1,0.05 -1.614489 -1.614489 -2.746142 -2.784847

Standard deviation are reported in parentheses; The quantile level α is various in
{0.005, 0.01, 0.05}.
T represents the last day of the time series, which is September 9th, 2016.
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Table 1.24: Backtesting results of VaR from the asymmetric GARCH-EVT approach
for four precious metal return series from 2000-1-11 to 2016-9-9

Gold Silver Platinum Palladium
Panel A: Kupiec’s unconditional coverage test result

LRα=0.005 4.399908 0.0003865 0.07121597 0.07121597
EE/AE 20/31 21/21 20/22 20/22
Decision Fail to reject H0 Fail to reject H0 Fail to reject H0 Fail to reject H0

LRα=0.01 8.056199 0.1158002 0.007386259 0.004905377
EE/AE 41/61 42/40 41/41 41/42
Decision Reject H0 Fail to reject H0 Fail to reject H0 Fail to reject H0

LRα=0.01 0.3001823 0.4966088 0.8401481 0.02556351
EE/AE 207/200 210/201 207/195 207/210
Decision Fail to reject H0 Fail to reject H0 Fail to reject H0 Fail to reject H0

Panel B: Christoffersen’s duration-based test result

LRα=0.005 0.6083054 0.04492569 0.4389884 0.1929353
Decision Fail to Reject H0 Fail to reject H0 Fail to reject H0 Fail to reject H0

LRα=0.01 0.6782278 0.6003412 0.8752114 0.427504
Decision Fail to reject H0 Fail to reject H0 Fail to reject H0 Fail to reject H0

LRα=0.01 0.01013684 0.8848006 0.001358113 0.02317906
Decision Fail to reject H0 Fail to reject H0 Fail to reject H0 Fail to reject H0

LR means the likelihood ratio test statistic with various confidence level α in
{0.005, 0.01, 0.05}.
In Panel A, EE/AE means the ratio of expected exceed (EE) and the actual exceed (AE)
of the tested data series.
Decisions are made with 1% significance level.
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CHAPTER 2

COPULAS FOR FINANCE

2.1 Conditional dependence among oil, gold and U.S. dollar

exchange rates: a copula-GARCH approach

This section investigates the dependence structure among nominal crude oil (WTI),

gold, and specific U.S. dollar against four major currencies (Euro, British Pound,

Japanese Yen and Canadian Dollar) on a daily basis over the last decade. In order

to capture the tail dependence between commodity market and USD exchange rates,

we apply both bivariate zero tail and tail copulas, as well as trivariate copulas, com-

bined with the AR-GARCH marginal distribution for gold, oil and exchange rates

daily returns. The primary findings are as follows. Firstly, based on the concordance

and correlation coefficient, we find that there is a positive correlation between gold

and crude oil prices, and a negative dependence between gold and currencies as well

as oil and currencies. Secondly, the crude oil price can be viewed as a short term

indicator in the exchange rates movement; the crude oil price also can be viewed as a

short term descend indicator of gold price, while the gold price is an short term rise

indicator of oil price. Thirdly, small degree of conditional extreme tail dependence for

all considered pairs are observed. Our results provide useful information in portfolio

diversification, asset allocation and risk management for investors and researchers.

2.1.1 Background

As a financial indicator, gold is classed as one of the most important commodities

and one of the most stable monetary asset. As a multifaceted metal through the
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centuries, it has common ground with money in that it acts as a unit of value, a store

of wealth, medium of exchange and a hedging instrument. Therefore, gold has always

been used as a hedge against inflation, deflation and currency devaluation. Gold

also plays an important role with significant portfolio diversification properties. An

abundance of research point to the benefits of including gold holdings that leads to

a more balanced portfolio (Johnson and Soenen (1997)[54]; Ciner (2001)[26]; Shafiee

and Topal (2010)[80]).

Since the international gold and foreign exchange markets are both dominated

by the U.S. dollar, the relationship between gold and U.S. exchange rates have re-

ceived much attention, especially after the international financial crisis. Moreover,

the price of oil, another one of the most important commodities, is also dominated

in U.S. dollar. The importance of crude oil in global economy will continue during

this century as a unique raw material responsible for power generation and lots of

derivatives production. Hence, due to its effect on world economic growth and energy

costs, the behavior of crude oil price has attracted considerable attention. Also, the

oil price and inflation rate are two main macroeconomic variables that influence the

gold market.

The above motivations demonstrate the importance in measuring and capturing

the stylized facts exhibited in the oil price, gold price and U.S. dollar exchange rates,

as well as the relationship among them. In this section, we focus on investigating both

the conditional dependence and the extreme comovement of gold, crude oil and U.S.

dollar exchange rates on each other using a copula-GARCH approach. The analysis

of our study is not merely for risk management and market trading issues, but also

for the better regulation of foreign exchange markets.

In recent years, a number of methods have been employed to explore the rela-

tionship between gold prices or oil prices with US dollar exchange rate. Sjaastad

and Scacciavillani (1996)[82] identified the effect of major currency exchange rates
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on the prices of gold. A variation in any exchange rate will result in an immediate

adjustment in the prices of gold. The power of such phenomenon is also suggested

by Capie et. al. (2005)[20] where assessed the role of gold as a hedge against the

dollar and concluded that the negative relationship was found between gold prices

and the sterling-dollar, yen-dollar exchange rates. Recently, Sari et. al.(2010)[78]

examined the co-movement and information transmission among precious metals, oil

price, and dollar-euro exchange rate. Joy (2011)[56] applied the dynamic conditional

correlations model on 23 years weekly data for 16 major dollar-paired exchange rates

and find that the gold has behaved as a hedge against dollar. For the theory on oil

prices and dollar exchange rates, Krugman (1983)[59], Golub (1983)[40], and Rogoff

(1991)[77] identified the important relation between the oil prices and the exchange

rate movements. Using various data set on oil prices and dollar exchange rates over

different time period, the extensive evidences on the co-movement between two vari-

ables can also be found in literature, see Amano et al. (1998)[4], Akram (2009)[2],

Basher (2012)[8] , Wu et al. (2012)[87], and Aloui et al. (2013)[3]. To offer a compar-

ative view, we summarize the key findings of major studies in the related literature

in Table 2.1. In this study, we use a Copula - GARCH model to capture the con-

ditional volatility and dependence structures of gold, crude oil and USD exchange

rates on each other. To appropriately investigate the behavior of considered assets,

AR-GARCH models have been chosen to describe and measure the conditional mean

and conditional volatility of returns. The advantage of our method is that we stan-

dardize the return series by filtering out the influence of the conditional mean and the

volatility using AR-GARCH models; then we apply the copula approach to analyze

the tail dependence for the standardized residues. The conditional dependence and

tail dependence analysis are based on copula approach with proper marginal distri-

butions. The reason to apply copula based approach to our data is that copulas allow

for better flexibility in joint distributions than multivariate normal and Student-t

97



Table 2.1: Previous research on the interactions among gold prices, oil prices and
exchange rates

Studies Purposes Data Methodology Primary findings
Recent literature on modeling gold prices and USD exchange rates.

Sari et. al.
(2010)

This study examines the
co-movements among the
prices of metals, oil price,
and the exchange rate.

Daily data
(1999 -
2007)

The forecast
error variance
decomposi-
tion on
impulse
response
functions

The evidence of a weak
long-run equilibrium
relationship but strong
feedbacks in the short run.

Pukthuant-
hong and
Roll(2011)[73]

The paper investigated
relationship between Dollar,
Euro, Pound, and Yen.

Daily data
(1971 -
2009)

GARCH

The gold price expressed in
a currency can be associated
with weakness in that
currency and vice versa.

Joy (2011)

This paper addresses a
practical investment
question if the gold act as a
hedge against the US dollar.

Weekly data
(1986 -
2008)

Multivariate
GARCH

The gold has acted,
increasingly, as an effective
hedge against currency risk
associated with the US
dollar.

Yang and
Hamori
(2014)

The paper investigates the
dynamic dependence
structure between specific
currencies(GBP, EUR, JPY)
and gold prices

Daily data
(2012 -
2013)

Copula -
GARCH

Lower and upper conditional
dependences between
currencies and gold were
weaker during the financial
turmoil period than normal
period

Recent literature on modeling oil prices and USD exchange rates.

Akram
(2009)

The author investigates the
contribution of a decline in
real interest rates and the
US dollar to higher
commodity prices.

Quarterly
data (1990 -
2007)

Structural
VAR model

A fall in the value of the US
dollar leads to drive up
commodity prices, including
crude oil price.

Wu et al.
(2012)

The authors examine the
economic value of
comovement between WTI
oil price and U.S. dollar
index futures.

Weekly data
(1990 -
2009)

Copula -
GARCH

The dependence structure
between oil and exchange
rate returns becomes
negative and decreases
continuously after 2003.

Basher et
al. (2012)

The authors study the
dynamic link between oil
prices, exchange rates and
emerging market stock
prices.

Monthly
data (1988 -
2008)

Structural
VAR model

Positive shocks to oil prices
tend to depress emerging
market stock prices and the
trade-weighted US dollar
index in the short run.

Aloui et
al. (2013)

The authors study the
conditional dependence
structure between crude oil
prices and U.S. dollar
exchange rates.

Daily data
(2000 -
2011)

Copula -
GARCH

The rise in the price of oil is
found to be associated with
the depreciation of the
dollar.

distributions. In addition, copulas not only capture linear dependence as correlation,

but also describe nonlinear dependence of different financial markets. Moreover, since

copulas present rich patterns of tail dependence, it helps us to examine changes in

the dependence structure during a financial crisis period.

The data we used are daily log returns of gold price, Brent and WTI prices,

and specific exchange rates which including U.S. dollar against four major currencies
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(Euro, British Pound, Japanese Yen and Canadian Dollar) from March 1, 2006 to

March 18, 2016. Since Brent is the reference for about two-thirds of the oil traded

around the world, and WTI the dominant benchmark for oil consumed in the United

States, daily prices of Brent and WTI are used in this study to represent crude oil

market. To investigate the dynamic of conditional dependence among gold, oil and

U.S. dollar exchange rates, we first select the most appropriate marginal for each

time series asset returns among four types of marginal models. Then, we apply

copula models (elliptical and Archimedean copulas) on the standardized residuals to

describe the conditional dependence structure between all considered pairs. We select

Gaussian copula, Student-t copula, Clayton, Gumbel, BB7 copulas and their rotated

versions copulas to compare and contrast with the conditional correlation.

2.1.2 Methodology

2.1.2.1 Marginal Distributions

The complexity of modeling financial time series is mainly due to the existence

of stylized facts. After investigating daily log returns of gold value, Brent and WTI

prices, and each of the four U.S. dollar exchange rates, the following three properties

are concerned in this study. First one is that the price variations generally displays

small autocorrelations while the corresponding squared returns or absolute returns are

generally strongly autocorrelated. The second is leptokurtosis, which means financial

time series tendency to have distributions that exhibit fat tails and excess peakedness

at the mean. The third is the volatility clustering that large absolute returns are

expected to follow large absolute returns and small absolute returns are expected to

follow small absolute returns.

To capture these stylized facts, we use the autoregressive moving average model

ARMA(p, q) to quantify the conditional mean and the univariate generalized autore-

gressive conditional heteroscedasticity model GARCH(1,1) to capture the conditional
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variance. This modeling approach is advantageous in that it offers the possibility to

separately model the margins and association structure of different variables.

Let {rt}Tt=T−n+1 be the time series representing the daily log return on a financial

asset price. Here we fixed a constant memory n so that at the end of day T our data

consist of the last n daily log returns {rT−n+1, · · · , rT−1, rT}. Assume the dynamics

of {rt}Tt=T−n+1 be a realization from an ARMA(p, q)-GARCH(1,1) process, which are

given by 
rt = µt + σtzt

µt = µ+
∑p

i=1 φirt−i +
∑q

j=1 θjεt−j + εj

σ2
t = ω + α(rt−1 − µt−1)2 + βσ2

t−1,

(2.1)

where the innovations zt are white noise process with zero mean, unit variance, and

marginal distribution function F ; ω > 0, α > 0, and β > 0. The conditional mean

µt = E(rt|Ft−1), and the conditional volatility σ2
t = Var(rt|Ft−1) are measurable with

respect to Ft−1 which is the σ-algebra generated by information about the return

process available up to time t− 1.

The traditional GARCH model assumes a normal distribution for the innovations

zt. However, to capture the leptokurtosis properties for considered return series, we

consider various marginal distributions for zt, which includes normal, skewed normal,

Student-t and skewed Student-t distributions. For each considered return series, we

specify the marginal distribution by comparing with Akaike information criterion

(AIC) under different assumptions of innovation marginal distributions.

2.1.2.2 Copula function

Recently, the study of copula functions have been a popular phenomenon in con-

structing joint distribution functions and modeling statistical dependence in real mul-

tivariate data. Copulas have been applied to many areas including finance[22], ac-

tuarial science[35], medical research[32], econometrics[?], environmental science[90],

just to name a few. Copulas provide flexible representations of the multivariate dis-

100



tribution by allowing for the dependence structure of the variables of interest to be

modeled separately from the marginal structure. We here briefly review the multi-

variate copulas. For the general copula theory, see [70, 53].

A bivariate copula is a joint cumulative distribution function (CDF) on [0, 1]2

with standard uniform marginal distributions. More precisely, a bivariate copula (or

2-copula) is a function C : [0, 1]2 7→ [0, 1] satisfying following properties:

(i) C(u, 0) = C(0, v) = 0, for u, v ∈ [0, 1],

(ii) C(u, 1) = u,C(1, v) = v, for u, v ∈ [0, 1], and

(iii) For any u ≤ u′, v ≤ v′, C(u′, v′)− C(u, v)− C(u′, v) + C(u, v) ≥ 0.

Let (X1, X2)T be a 2-dimensional random vector with CDF denoted as H(x1, x2),

and marginal CDF’s F1(x1), F2(x2). Sklar’s theorem [83] states that if the marginals

of (X1, X2)T are continuous, then there exist a unique copula C such that

H(x1, x2) = C(F1(x1), F2(x2)).

Copulas can be used to characterize the dependence in the tails of the distribution.

Tail dependence is a measure of strength of dependence in the joint lower or joint

upper tail of a joint distribution, which are particularly helpful for measuring the

probability or the tendency of markets to crash or boom together. Two tail depen-

dence measures defined in terms of the copulas are known as the upper and the lower

tail dependence coefficients, respectively. The coefficient of lower tail dependence λL

quantifies the probability of observing a lower X2 assuming that X1 itself is lower. It

is defined as

λL = lim
u→0+

P (X2 ≤ F−1
2 (u)|X1 ≤ F−1

1 (u)) = lim
u→0+

C(u, u)

u
.

Similarly, the upper tail dependence measure λU is defined as
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λU = lim
u→1−

P (X2 > F−1
2 (u)|X1 > F−1

1 (u)) = lim
u→1−

1− 1− C(u, u)

1− u
.

Most of the commonly used copulas are exchangeable, which requires that the value

of the copula is invariant under permutations of its arguments. For some practical

situations where one component of the variables influences the other one more than

the other way around, exchangeability assumption on copula is not suitable. If the

copula is assumed to be exchangeable, then there is a symmetric tail dependence

between two random variables, i.e., λU = λL.

2.1.2.3 Copula models of conditional dependence structure

In this section, we consider two families of copulas: elliptical copulas (Gaussian

copula and Student-t copula) and Archimedean copulas (Clayton, Gumbel, and BB7

copulas). These copula models allow us to study the conditional dependence structure

and to evaluate the degree of tail dependence.

The normal and the Student-t copulas are constructed based on the elliptically

contoured distribution such as multivariate Gaussian or Student-t distributions, re-

spectively. Consider random variables X1 and X2 with standard bivariate normal

distribution:

Hρ(x1, x2) =

x1∫
−∞

x2∫
−∞

1

2π
√

1− ρ2
exp

(
−t

2 + s2 − 2ρst

2(1− ρ2)

)
dtds,

where ρ is the Pearson correlation between X1 and X2. The marginal distributions

of X1 and X2 follow standard normal distributions N(0, 1) with distribution function

Φ. Then, the Gaussian copula is defined by

CG(u, v) = Hρ(Φ
−1(u),Φ−1(v)),
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where ρ ∈ (−1, 1) is the correlation coefficient, and if ρ = 0 the Gaussian copula is

reduced to be independent copula.

For random variables X1 and X2 with standard bivariate Student t distribution,

Ht(x1, x2; ρ, ν) =

x1∫
−∞

x2∫
−∞

1

2π
√

1− ρ2

(
1 +

t2 + s2 − 2ρst

2(1− ρ2)

)− ν+2
2

dtds.

We let Tν denote the standard univariate Student t distribution function with degree

freedom ν for the marginals X1 and X2 . Then the Student-t copula is defined by

Ct(u, v) = Ht(T
−1
ν (u), T−1

ν (v); ρ, ν), (2.2)

where ρ ∈ (−1, 1) and ν > 0. The Gaussian copula is symmetric and has no tail

dependence while the Student-t copula is also symmetric and can capture extreme

dependence between variables. The trivariate Gaussian copula and t copula can be

defined in similar fashion. Both the trivariate Gaussian copula and t copula associated

with the random variables X1, X2 and X3 has a correlation matrix, inherited from the

elliptical distributions, and t-copula has one more parameter, the degrees of freedom

(df). The correlation matrix in elliptical copulas determines the dependence structure.

When we model the conditional dependence among variables in Section 2.1.3.3, we

utilize the unstructured correlation matrix for both Gaussian copula and t-copula.

Archimedean copula family, a very popular family of parametric copula, contains

the most widely used copulas like, Ali-Mikhail-Haq, Clayton, Frank, Gumbel, and

Joe as the nest models [37]. The bivariate Archimedean copula is defined as

C(u1, u2) = φ[−1](φ(u1) + φ(u2)), (2.3)

where φ : [0, 1]→ [0,∞] is a continuous strictly decreasing convex function such that

φ(1) = 0 and φ[−1] is the pseudo-inverse of φ, i.e.,

103



φ[−1](t) =


φ−1(t) if 0 ≤ t ≤ φ(0)

0 if φ(0) ≤ t ≤ ∞.

The convex function φ is called the generator function of the copula C. If φ(t) =

1
θ
(t−θ − 1), θ > 0, then C defined in Eq.(2.3) is the Clayton copula. If we set

φ(t) = (− log t)θ, θ ≥ 1, C defined in Eq.(2.3) is the Gumbel copula. Furthermore, C

defined in Eq.(2.3) is called the BB7 copula when φ(t) = (1− (1− t)θ)−δ, θ ≥ 1, and

δ > 0.

One limitation for the Clayton copula, Gumbel copula, and the BB7 copula is

that they only allow the positive association. And in this section, we employ the

rotated Clayton, Gumbel, and BB7 copulas to model the negative dependence among

variables. Note that the t-copula defined in Eq.(2.2), the Clayton, Gumbel, the

BB7 copula are able to capture the tail dependence. Furthermore, the Clayton,

Gumbel, the BB7 copula are asymmetric copulas which can be utilized in modeling

the asymmetric dependence and asymmetric tail dependence among variables during

bear and bull markets.

For an absolutely continuous copula C, the copula density is defined to be

c(u, v) =
∂2C(u, v)

∂u∂v
. (2.4)

2.1.2.4 Estimation of copulas

In the copula literature there are several commonly used estimation methods,

for instance, the maximum likelihood (ML) estimation , the inference functions for

margins (IFM)[53], and the maximum pseudo-likelihood (MPL) estimation[36]. The

ML and IFM methods require the specification of parametric models for the marginals.

In contrast, the advantage of MPL method is that it uses the rank-based estimators

for the marginals, thus it is robust against misspecification of the marginal models.
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In this section we take the advantage of the MPL method to estimate the proposed

class of copulas, as it is not influenced by the choice of the marginal distributions.

Given a sample of m observations (x11, x21), . . . , (x1m, x2m) from a random vector

(X1, X2)T , and let C(u, v) be the associated copula. We first compute the normalized

ranks or the rescaled empirical distributions for the variable X1 and X2, which are

defined as: ui = ri
m+1

, vi = si
m+1

, for i = 1, . . . ,m, where ri and si are the rank of x1i

and x2i among m data points from X1, X2, respectively. The pseudo log-likelihood

function for the parameters in the copula is

`p(θ) = log
n∏
i=1

c(ui, vi) =
n∑
i=1

log c(ui, vi), (2.5)

where c(u, v) is the copula density of C(u, v) in Eq.(2.4). We can obtain the maximum

pseudo-likelihood estimators (MPLE) for the parameters by maximizing Eq.(2.5) with

respect to θ.

To compare the performances of different parametric copula models with continu-

ous response variables, we apply the goodness of fit procedures used by Genest et. al.

(2009)[36] and Kojadinovic and Yan(2011)[58]. The goodness of fit test for copulas is

obtained from the process comparing the parametric estimate of the copula derived

under the null hypothesis with empirical copula,

Cn =
√
n(Cn(u, v)− CθMPLE (u, v)),

where Cn is the empirical copula defined by

Cn(u, v) =
1

n

n∑
i=1

I(ui ≤ u, vi ≤ v), u, v ∈ [0, 1].

CθMPLE(u, v) is the copula with parameter θMPLE estimated based on the MPLE of

θ. In other words, we want to test

105



H0 : C ∈ C0 against H1 : C 6∈ C0

The test statistics is computed based on the rank-based versions of the Cramér-

Von Mises,

Sn =

∫
C2
ndCn =

n∑
i=1

(Cn(ui, vi)− CθMPLE(u, v))2.

Large values of the statistics Sn indicates the lack of fit. We find the p-values associ-

ated with test statistics by utilizing the R function ‘gofCopula’ in copula package[48].

The highest p-value indicates the distance between the estimated and empirical cop-

ulas is the smallest which in turn shows the best fit to the data.

2.1.3 Data and Empirical results

2.1.3.1 Data description and stochastic properties

To study the dynamical correlations, risk contagion and portfolio risks among

gold price, oil prices, and exchange rates, we select the daily gold price in London

bullion market quoted in U.S. dollars per gram, daily closing oil prices in US dollars

per barrel of West Texas Intermediate (WTI), and five U.S. dollar (USD) exchange

rates over the period from March 1, 2006 to March 18, 2016. As for the exchange

rates, we employ the data come from the amount of USD per unit of each of the four

major currencies in international trade: Euro (EUR), British Pound Sterling (GBP),

Japanese Yen (JPY) and Canadian Dollar (CAD). The data used in this study are

all taken from the database of Quandl. Fig.?? provides the time series plots of daily

spot oil prices, gold prices, as well as USD exchange rates.

To develop an accurate track record of asset performance, the initial price data

are transformed into daily log-returns. Let pt denotes the asset price on day t, then

the corresponding daily percentage change is defined by
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Figure 2.1: Time series plots of oil prices (upper left), gold value (lower left) and USD
exchange rates(upper and lower right) from 2006-3-1 to 2016-3-18.

rt = 100 log
pt
pt−1

= 100(log pt − log pt−1).

We show the time paths of considered daily log returns in Fig.??. According to

Fig.??, we observe that there are more isolated pronounced peaks than one would

expect from the Gaussian series. Besides that, the high instability and volatility

clustering behavior are also noticed in all return series. Those return series also

exhibit two important price shocks, one is around the 2008 global financil crisis, the

other one ranges from 2015 until recently.

Table 2.2 reports the descriptive statistics and distributional characteristics of all

return series. As can be seen in Panel A of Table 2.2, the mean of all returns are quite

small. As expected, the standard deviation of crude oil returns are larger than that

of gold since oil is traded more heavily and actively than gold. Meanwhile, comparing

with the standard normal distribution with skewness 0 and kurtosis 3, we confirm that

all returns are lightly skewed and exhibit excess kurtosis. Verification of non-normal

distributed behavior is from the results of Shapiro-Wilk normality test[81] in Panel

B, which rejects the null hypothesis that the series follow a normal distribution at 1%
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Figure 2.2: Daily returns on crude oil, gold and USD exchange rates from 2006-3-1
to 2016-3-18.

significance level. To check the autocorrelation of those returns, the Ljung-Box test

is applied for returns at lag 5 and 10, i.e. Q(5) and Q(10), and squared returns Q2(5)

and Q2(10). Specifically, Q(10) is the Ljung-Box Q-statistic for the null hypothesis

that the series has no autocorrelation up to lag 10. The Ljung-Box test results for

both return series and squared return series confirm that all sample returns have

significant autocorrelation.

Based on above statistical analysis, we discover that all return series exhibit sta-

tionary, non-normally distributed, autocorrelated, and volatility clustering properties,

which supports our choice of using the ARMA-GARCH based approach to analyze

the conditional mean and conditional volatility for all returns.

2.1.3.2 Marginal distribution specifications and parameter estimations

In order to filter out the autocorrelation of the considered return series, the ARMA

model is used in this section. According to the censored orders of autocorrelation

and partial autocorrelation function graphs, an AR(1) model is singled out through
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Table 2.2: Descriptive statistics and stochastic properties of return series from 2006-
3-1 to 2016-3-18

WTI Gold USD/EUR USD/GBP USD/JPY USD/CAD

Panel A: Summary statistics

Obs. 2532 2623 3661 3661 3661 3661

Min. -12.83 -9.6 -9.4 -4.23 -3.68 -7.21

Max. 16.41 6.84 9.84 4.6 3.06 7.39

Mean -0.02 0.03 0 0.01 0 0

Std. dev 2.47 1.26 0.59 0.49 0.48 0.52

Skew 0.14 -0.38 0.46 0.64 -0.19 0.51

Kurtosis 4.68 4.75 67.54 13.04 6.33 39.54

Panel B: Hypothesis tests about stochastic properties (p-value)

L-B
Q(5)

361.64
(<2.2e-16)

272.48
(<2.2e-16)

177.14
(<2.2e-16)

18.879
(0.002025)

42.461
(4.752e-08)

51.517
(6.777e-10)

L-B
Q(10)

400.63
(<2.2e-16)

323.79
(<2.2e-16)

180.92
(<2.2e-16)

32.153
(0.0003776)

51.185
(1.615e-07)

57.071
(1.293e-08)

L-B
Q2(5)

870.18
(<2.2e-16)

1188.2
(<2.2e-16)

2896.2
(<2.2e-16)

696.64
(<2.2e-16)

108.88
(<2.2e-16)

2394.5
(<2.2e-16)

L-B
Q2(10)

1058.8
(<2.2e-16)

1703.5
(<2.2e-16)

2896.3
(<2.2e-16)

837.62
(<2.2e-16)

183.89
(<2.2e-16)

2400.3
(<2.2e-16)

S-W
W

0.27775
(<2.2e-16)

0.15051
(<2.2e-16)

0.76637
(<2.2e-16)

0.8637
(<2.2e-16)

0.9114
(<2.2e-16)

0.79191
(<2.2e-16)

numerous trials. Examine the result of the Ljung-Box test for the residual series of

the AR(1) model, it can be seen in Table 2.4 that almost all of the autocorrelation

coefficients fall within the given confidence interval as well as their squared values.

We hence conclude that the conditional mean of all the considered return series can

be well fitted by the AR(1) model.

Whereas the considered return series has significant volatility clustering, the ARCH

LM test is carried out for the residual series of the AR(1) model above. The result

indicates that GARCH model needs to be adopted since there is high-order ARCH

effect. According to the requirements that the AIC value should be relatively small,

and model coefficients must be significant and positive, the GARCH(1,1) model is the

best when comparison are made among GARCH(1,1), GARCH(1,2), GARCH(2,1)

and GARCH(2,2) models. Because of the fat tail of the return, we consider differ-
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ent distributions, including normal, skewed normal, Student-t, and skewed Student-t

distributions, for the innovation term zt. The most appropriate distribution for zt

are chosen based on the information criteria AIC. As reported in Table 2.3, the re-

turn series of WTI and Gold can be adequately modeled by GARCH(1,1) model with

skewed Student-t distribution; while for the return series of all USD exchange rates,

GARCH(1,1) model with Student-t distribution is the most appropriated marginal

distribution.

Table 2.3: AIC of GARCH(1,1) model with different innovation distributions for
modeling the conditional heteroscedasticity

WTI Gold USD/EUR USD/GBP USD/JPY USD/CAD

norm 9.565341 8.909433 1.462971 1.153586 1.243578 1.191535

snorm 9.352697 8.493306 1.453081 1.149500 1.243839 1.174589

std 6.561036 5.407278 1.178011 0.9509337 1.020435 0.8782591

sstd 6.559500 5.405993 1.178552 0.9514799 1.020910 0.8786730

Thereafter, we apply the AR(1)-GARCH(1,1) model based on correspondingly

specified innovation distribution to model the marginal distributions of considered

return series. Table 2.4 summarizes the marginal distribution estimation results as

well as diagnostic of the residuals. In Panel A of Table 2.4, µ and φ are respectively

estimates of a constant and an autoregressive coefficient in the conditional mean

equation; ω, α, and β are the coefficients of the conditional variance equation (see

Eq.(2.1)); while γ is the degree of freedom as well as skew represents the skewness

parameter of the innovation distributions. We note that for all the return series,

the conditional variance term β with values above 0.93, which indicates that con-

ditional variance is majorally past dependent and thus highly persistent over time.

Moreover, all the degrees of freedom term γ are statistically significant with positive

values, with relatively high value for the oil returns. Panel B of Table 2.4 reports
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Ljung-Box Q(20)- and Q2(20)-statistics to justify the empirical results of the speci-

fied marginal distribution models. According to Panel B, except the USD/GBP and

USD/JPY exchange rates, the null hypothesis of no autocorrelation up to lag 20 for

standardized residuals and squared standardized residuals are accepted for all the rest

return series. Moreover, the test results for the ACFs of the standardized residuals

and squared standardized residuals confirms that the standardized residuals are not

autocorrelated, which support our model specifications. Thereafter, instead of using

raw returns, we use standardized residuals obtained from the GARCH fit to copula

estimation.

Table 2.4: MLE result of AR(1)-GARCH(1,1) models for each return series and the
descriptive statistics of standardized residual series

WTI Gold USD/EUR USD/GBP USD/JPY USD/CAD

Panel A: Quasi-maximum likelihood estimation of AR(1)-GARCH(1,1) models for returns
Mean equation
µ 0.018770 0.034694 -0.0074404 -0.0048215 0.0030268 -0.00065804
φ -0.033442 -0.018618 -0.0115148 0.0434363 0.0615313 0.06941182

Variance equation
ω 0.024691 0.011855 0.0021825 0.0050164 0.0092501 0.00324397
α 0.064767 0.035795 0.0587397 0.1400125 0.2373281 0.10712361
β 0.932880 0.958417 0.9762747 0.9770070 0.9564173 0.96291750
γ 8.542901 4.346358 2.2506521 2.0852898 2.0987041 2.20365290
skew 0.939485 0.969979 - - - -

Panel B: Ljung-Box test results of standardized residuals (p−value)

L-B
Q(20)

11.56275
(0.9303042)

27.15204
(0.1310404)

20.46524
(0.4291852)

20.37437
(0.4347408)

38.88932
(0.0068818)

23.32544
(0.2730989)

L-B
Q2(20)

21.88527
(0.3467685)

5.109431
(0.9996719)

28.26894
(0.1031843)

152.7406
(0)

26.18052
(0.1599324)

11.86768
(0.9205551)

Then, the copula functions are estimated based on the Pseudo data through the

MPL method as described in Section 2.1.2.3. We consider the standardized residuals

obtained from GARCH models and transform them into uniform variates. Moreover,

we check the rank correlation coefficients for the dependence between the gold prices

and oil prices, gold prices and exchange rates, as well as oil prices and exchanges rates,
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respectively. Table 2.5 reports the Kendall’s τ and Spearman’s ρ statistics for both

the overall sample period and crisis period. We select the crisis period from July 1st,

2008 to June 30th, 2009 because the key trigger event for the global financial crisis

on summer 2008, and the real GDP rebound modestly to 1.8 percent growth in 2009

according to the U.S. quarterly national GDP reports[28].

Table 2.5: Correlation estimates of the Kendall’s τ and the Spearman’s ρ between oil
prices, gold price and exchange rates

Overall sample
(March 1, 2006-March 18, 2016)

Crisis period
(July 1, 2008-June 30, 2009)

Kendall’s τ Spearman’s ρ Kendall’s τ Spearman’s ρ

Gold-WTI 0.122 0.177 0.11 0.161

Gold-USD/EUR -0.23 -0.333 -0.221 -0.328

Gold-USD/GBP -0.182 -0.265 -0.029 -0.034

Gold-USD/JPY -0.08 -0.119 -0.058 -0.086

Gold-USD/CAD -0.181 -0.263 -0.368 -0.526

WTI-USD/EUR -0.19 -0.274 -0.256 -0.358

WTI-USD/GBP -0.164 -0.236 -0.231 -0.325

WTI-USD/JPY 0.061 0.09 0.24 0.341

WTI-USD/CAD -0.261 -0.375 -0.315 -0.442

The monotone property of Kendall’s τ and Spearman’s ρ indicates the negative

association relationship for all pairs between gold and exchange rates, as well as oil

and exchange rates except oil to USD/JPY. And we observe the positive Kendall’s τ

and Spearman’s ρ for gold and oil prices as excepted. In overall period, the constant

correlations for the gold price and oil prices are positive and range from 0.12 to 0.25,

while the constant correlation between the gold price and USD exchange rates are

all negative and range from -0.058 to -0.526. Moreover, during the crisis period, the

association between the gold price and oil prices, as well as the gold price and the

USD/CAD are higher than that of the overall period; while the association between

the gold price and the rest currencies are smaller than that of the overall period.

It implies that the gold price are more deviated from the oil prices rather than the

currencies. However, by comparing the correlations for oil prices with others in overall
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period and crisis period, we found that both of the comovement between oil prices

and gold price, as well as currencies are substantially higher during the crisis period.

It indicates that the oil prices are deviated not only by gold price but also the USD

exchange rates. Specifically, we conclude that the association between USD/CAD

exchange rate with both gold and oil are significant high during the crisis period.

To investigate further on the dynamical correlation between all considered pairs,

we provide the dynamical curves which display the changes of association measure (the

rolling Kendall’s tau) in Fig.2.3. The figures are constructed by the following steps:

(1) we start to compute the Kendall’s tau by using the standardized residuals includ-

ing the data between the period March 1st, 2006 and July 1st, 2008; (2)Kendall’s tau

is then calculated by shifting one data point at a time until the time window reaches

up to March 18th, 2016. From the top panel of Fig.2.3, we can see that the association

between WTI price and USD/CAD exchange rates are peaked between the year 2010

and 2011(end of crisis period). The bottom panel of Fig.2.3 indicates the normalized

WTI price and negative normalized USD/CAD exchange rate. Note that we utilize

the negative USD/CAD exchange rates because the negative association between oil

prices and exchange rates as shown in Table 2.5. Notice that a rise or fall of WTI

price at the time Jan 1st, 2007, July 1st, 2008, Dec 20th, 2008, June 20th ,2014, and

Jan 10th, 2016 were followed by similar motion in the USD/CAD exchange rates.

This indicates that crude oil (WTI price) is a good short-term indicator in the move

in asset prices(USD/CDA exchange rates).

2.1.3.3 Conditional tail dependences

The estimates of the dependence parameters for the copula functions among each

pair variables, which includes Normal copula, Student-t copula, Clayton copula, Gum-

bel copula, and BB7 copula and their rotated versions, are reported in Table 2.6. They

are highly significant for almost all pairs of the considered copula functions.
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Figure 2.3: Plot of negative dynamic Kendall’s tau (the rolling Kendall’s tau) be-
tween WTI price and USD/CDA exchange rate(top panel), normalized WTI price
and negative normalized USD/CDA exchange rate chart(bottom panel).

We also apply the trivariate Gaussian copula and t copula functions to model the

conditional dependence among trivariate variables (Gold-WTI-Exchange rates) and

their parameter estimations are reported in Table 2.7 . They are highly significant

for all combinations of variables for the considered copula functions. By comparing

the p-values of the goodness-of-fit test, we found that the trivariate Gaussian copula
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Table 2.6: Estimates of the dependence parameters of different copula models

Normal Copula Student-t Copula (rotated) Clayton (rotated) Gumbel (rotated) BB7

Gold-WTI
0.194

(0.0189)
0.194 ν=10.718

(0.0204) (2.6686)
0.243

(0.0275)
1.116

(0.0156)
θ = 1.054 δ = 0.2134
(0.021) (0.0293)

Gold-USD/EUR
-0.363

(0.0163)
-0.366 ν=10.951

(0.0177) (2.6979)
-0.454

( 0.0309)
-1.278

(0.0191)
θ = −1.21 δ = −0.34
(0.0292) (0.0342)

Gold-USD/GBP
-0.29

(0.0176)
-0.292 ν=10.496

( 0.0191) (2.4994)
-0.329

(0.0294)
-1.211

( 0.0176)
θ = −1.182 δ = −0.225

(0.0273) (0.032)

Gold-USD/JPY
-0.191

(0.0189)
-0.193 ν=11.013

(0.0204) (2.7959)
-0.209

(0.0269)
-1.125

(0.0156)
θ = −1.097 δ = −0.157

(0.0234) (0.0285)

Gold-USD/CAD
-0.285

(0.0177)
-0.285 ν=13.945

(0.0189) (4.4067)
-0.31

(0.0285)
-1.203

(0.0174)
θ = −1.175 δ = −0.215

(0.0267) (0.0308)

WTI-USD/EUR
-0.275

(0.0178)
-0.279 ν=10.769

(0.0192) (2.585)
-0.33

(0.0293)
-1.189

(0.0172)
θ = −1.128 δ = −0.258

(0.0254) (0.0319)

WTI-USD/GBP
-0.237

(0.0184)
-0.239 ν=13.149

(0.0196) (3.878)
-0.241

(0.0278)
-1.165

(0.0164)
θ = −1.155 δ = −0.155

(0.025) (0.0296)

WTI-USD/JPY
0.069

(0.0199)
0.071 ν=12.157

(0.0212) (3.271)
0.11

(0.0238)
1.054

(0.0126)
θ = 1.001 δ = 0.109
(0.014) (0.025)

WTI-USD/CAD
-0.36

(0.0164)
-0.362 ν=13.647

(0.0175) (4.132)
-0.423

(0.0305)
-1.277
(0.019)

θ = −1.233 δ = −0.293
(0.0297) (0.034)

The table summarizes the copula estimation results between gold price and oil price,
currency exchange rates. The values in the parenthesis represent the standard error of
the parameter estimations. The Clayton, Gumbel and BB7 copulas are fitted when
the Kendall’s value of the pair in Table 2.5 is positive and the 90 degree rotated
Clayton, Gumbel and BB7 copulas are fitted when the Kendall’s value of the pair in
Table 2.5 is negative.

fits the data best for each combinations of variables. In order to capture the tail

dependence among each pair variables, we focus on the bivariate copulas next.

From Table 2.6, we see that the dependence between gold and exchange rates,

oil and exchange rates are all negative associated except for the WTI-USD/JPY. To

choose the most appropriate model for our data, we adopt the goodness-of-fit test

described in section 2.1.2.4. We summarize the results of the goodness-of-fit test

for considered four copula models in Table 2.8. By comparing the p-values of the

goodness-of-fit test, we select the copula which fits the data best for each pair of

variables.

Combining the findings of Table 2.6 and 2.8, we see that the dependence between

gold and crude oil returns is positive, while the dependence between gold and USD

exchange rate returns are negative for all considered pairs. Note that from the es-
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Table 2.7: Estimates of the dependence parameters of trivariate copula models and
the goodness of fit tests for copulas

Normal Copula
GOF statistics

(p-value)
Student-t Copula

GOF statistics

(p-value)

Gold-WTI-USD/EUR
( 0.194, -0.363, -0.275)

(0.018) (0.015) (0.016)

0.0273

(0.24)

(0.197, -0.365, -0.278) ν=11.744

(0.02) (0.018) (0.019) (1.886)

0.0327

(0.055)

Gold-WTI-USD/GBP
( 0.194, -0.29, -0.238)

(0.018) (0.016) (0.017)

0.0296

(0.245)

(0.197, -0.294, -0.233) ν=12.417

(0.02) (0.019) (0.02) (2.102)

0.055

(0.0004995)

Gold-WTI-USD/JPY
( 0.194, -0.192, 0.068)

(0.018) (0.018) (0.018)

0.0296

(0.235)

(0.194, -0.19, 0.068) ν=11.58

(0.02) (0.02) (0.021) (1.859)

0.0612

(0.0004995)

Gold-WTI-USD/CAD
( 0.194, -0.285, -0.36)

(0.018) (0.017) (0.016)

0.025

(0.33)

(0.198, -0.286, -0.358) ν=13.018

(0.02) (0.019) (0.018) (2.338)

0.0465

(0.002498)

The table summarizes the copula estimation, the goodness of fit test statistics and
p-value results among gold price and oil price, currency exchange rates by using the
trivariate Gaussian copula and trivariate t-copula. The values in the parenthesis rep-
resent the standard error of the parameter estimations and p-values for the goodness
of fit test.

Table 2.8: P-value of the goodness-of-fit test for different copula functions

Normal Copula Student-t Copula (rotated) Clayton (rotated) Gumbel (rotated) BB7

Gold-WTI 0.43 0.29 0.07 0 0.37

Gold-USD/EUR 0.02 0.39 0 0 0.05

Gold-USD/GBP 0.26 0.34 0 0.03 0.16

Gold-USD/JPY 0.43 0.84 0 0.03 0.4

Gold-USD/CAD 0.4 0.46 0 0.02 0.48

WTI-USD/EUR 0.5 0.85 0 0 0.04

WTI-USD/GBP 0.56 0.67 0 0 0.21

WTI-USD/JPY 0.09 0.54 0.79 0.63 0.65

WTI-USD/CAD 0.71 0.77 0 0 0

Notes: The largest p-value indicate that the copula fits best for the data.

timation of the dependence parameters for copula models, the dependence between

crude oil and USD exchange rates are negative for all considered pairs, except for

WTI-USD/JPY. It indicates that a fall in the value of the U.S. dollar leads to drive

up gold price, while an increase of crude oil price causes the depreciation of U.S.

dollar. Also, the oil price and gold price are positively correlated. When the gold

price increases, oil price increases as well.
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The negative relationship between oil price and the price of dollar is supported

by the historical facts that, for example, the crude oil price rose steadily from 20 per

barrel in January 2002 to a high of 147 per barrel in July 2008. It then fell sharply

to 32 per barrel in January 2009. On the other hand, since 2002 the US dollar index

has behaved in a markedly distinct manner compared to the way it behaved prior

to 2002 where it has moved in the totally opposite direction to the price of crude

oil. One explanation for the negative relationship between oil and dollar prices, as

indicated by [?], is that the oil-exporting countries want to stabilize the purchasing

power of their export revenues (US dollar) in terms of their imports (non-US dollar),

so in order to avoid losses they may adopt currencies pegged to the US dollar.

Since extreme events may create huge disruptions in dependence structure of mar-

kets, tail dependence are very helpful to examine how extreme events affect the cor-

relation during crisis periods. Hence, we use the best fitted copula models selected

from the Table 2.8 to capture the extreme dependence of all pairs and reported it in

Table 2.9.

Table 2.9: Tail dependence coefficients of the best fit copula

Gold-Brent λL = λU = 0
Gold-USD/EUR λL = λU = 2.767× 10−4 WTI-USD/EUR λL = λU = 6.77× 10−4

Gold-USD/GBP λL = λU = 7.055× 10−4 WTI-USD/GBP λL = λU = 2.747× 10−4

Gold-USD/JPY λL = λU = 1.199× 10−3 WTI-USD/JPY λL = 1.834× 10−3, λU = 0

Gold-USD/CAD λL = λU = 0 WTI-USD/CAD λL = λU = 5.618× 10−5

Since the Student-t copula is symmetric, the upper and lower tail dependence

coefficients are the same. According to Table 2.9, the tail dependence, i.e., the hy-

pothesis of extreme comovements, between gold and U.S. dollar exchange rates, as

well as crude oil and U.S. dollar exchange rates are weak. The strongest extreme

comovement with gold is found in USD/JPY. Moreover, the strongest extreme co-

movement with crude oil markets is in USD/JPY.
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2.1.4 Conclusion

This section investigates the dependence structure among gold, nominal crude oil

and major U.S. dollar exchange rates from March 1, 2006 to March 18, 2016. Based

on a copula-GARCH approach, we examine the conditional dependence structure and

the extreme comovement on returns between paris of gold and oil, gold and currencies,

as well as oil and currencies. We first apply the AR(1)-GARCH(1,1) model based

on different innovation distributions to model the margins. The adoption of this

filtering step is motivated by the stylized facts of our financial returns including

non-normal distributed, autocorrelation of squared returns and volatility clustering.

Then, different copula models are fitted to standardized residuals from the best fitted

marginal models. The comparison results of various copula models show that the

Student-t copula outperforms other copulas for fitting the conditional dependence

structure of all considered pairs.

Empirical results show that (i) each of the analyzed series of gold, oil and cur-

rencies returns can be adequately described with the proposed AR(1)-GARCH(1,1)

model based on either Student-t or skewed Student-t innovation distributions; (ii)

there are positive dependence between gold and oil, negative dependence between

gold and currencies, as well as oil and currencies, as indicated by the Kendall’s τ and

Spearman’s ρ concordance, and the correlation coefficient; (iii) there is a small degree

of conditional dependence in the extreme tail of all considered pairs; (iv) furthermore,

we found that the crude oil price was a good short-term indicator in the move in asset

prices like exchange rates. The crude oil price was a short term descend indicator

of gold price, and the gold price was an short term rise indicator of oil price. The

above findings lead us to conclude that the U.S. dollar depreciation was a key factor

in driving up the crude oil price and gold price, while gold market and oil market are

positively associated.
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Besides the applied contribution, our paper have three main contributions for in-

vestors. First, the results of the study provide useful information for investors in asset

allocation and portfolio diversification. Second, we show that gold has served as a

hedge against fluctuation in the U.S. dollar exchange rates. Moreover, the apprecia-

tion of the U.S. dollar are found to coincide with a decrease in crude oil prices. Third,

taking into account the extreme comovement between different assets, investors can

improve the accuracy of market risk forecasts.
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CHAPTER 3

CONCLUSION

This thesis aims at computing accurate estimates for the risk of a portfolio by con-

structing its conditional loss distribution with a flexible methodology that separates

the description of the marginal distributions from the dependence structure.

In Chapter 1, we have presented extreme value theory from a double perspective:

on the one hand, the main elements of the probabilistic theory and the statistical

methods related to it; on the other hand, their applications to finance.

One part was intended as a critical resume of both the foundations of the theory

and its scope and limitations. From a theoretical viewpoint, EVT shows some con-

siderable pros:

(a) it ofers tools, with strong theoretical underpinnings, to model extreme events,

which are of great interest in many applications, pertaining to several different fields.

In finance, in particular, EVT is especially useful in the context of risk measurement,

given the importance of extreme events to the overall profitability of a portfolio;

(b) it provides a variety of such tools, ranging from non-parametric methods to point

processes, thus guaranteeing a flexible approach to the modeling of extreme events,

that can be adjusted to the particular features of the problem at hand;

(c) the fact that the vast majority of standard distributions, even though displaying

considerably different tail behavior, can be equally modeled by EVT also increases

flexibility;

(d) furthermore, the flexibility and the accuracy of modeling are enhanced by the

fundamental characteristic of EVT, namely its exclusive consideration of the tail of
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the distribution of the data, disregarding ordinary observations (the centre of the

distribution);

(e) and they are also enhanced by the capability of EVT of independently modeling

each tail of the distribution;

(f) finally, the availability of parametric approaches allows for projections and fore-

casting of extreme events.

Some drawbacks emerged as well:

(a) the most problematic one is probably the dependence of the parameters on the

choice of the so-called cut-off, i.e., the delimitation of the subsample employed to

estimate the extreme quantiles, given that there is not yet complete agreement on

how such a choice should be made;

(b) moreover, the basic theory of extreme values assumes that the data are not serially

correlated; when this assumption is violated, we have some alternative approaches at

hand, but there is no agreement on which of them is the most suitable one;

(c) multivariate EVT is admittedly not as straightforward as its univariate counter-

part and can still encounter severe computational limitations, in some applications;

(d) EVT is characterized by an unavoidable trade-off between its asymptotical na-

ture and its interest in extreme events, therefore, the choice and preparation of the

data-set can be a crucial step in applying EVT.

Coming to applications, we have only considered financial applications and mainly

focused on some of them. The return series for each of the financial assets was mod-

eled using GARCH type methods in order to explain the autocorrelation and time-

varying volatility. Then, the innovation series resulted from the GARCH type model

is described as a semi-parametric distribution with GPD tails and a kernel-smoothed

interior that captures the stylized facts of financial time series. The most important

one, both for its role in financial regulation and for the amount of contributions to the

research concentrating on it, is the employment of EVT for the estimation of quantile-
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based risk measure Value-at-Risk. Many papers deliver comparative analyses of the

accuracy of different methods for VaR calculation and they agree in indicating EVT

as a considerably valuable candidate when calculating VaR at high confidence levels.

The great degree of accuracy displayed by EVT-based estimates of VaR for several

different markets probably makes the employment of EVT in risk measurement one

of the most relevant and better acknowledged contributions of extreme value theory

to finance.

Related to the use of EVT for risk management is the role of EVT in asset allo-

cation problems, associated to the concept of “safety first investor”. The awareness

of the importance of taking into account the risk profile of the investor is permeating

the financial practice and, for investors who are particularly interested in avoiding

extreme shocks, i.e. huge and rare losses, EVT provides a suitable tool, given its

accuracy in modeling such shocks.

Then, portfolio selection naturally entails the consideration of a multivariate set-

ting. In this setting, another important problem is that of systemic risk and the issue

of contagion across markets in presence of extreme events. This topic, highlighted by

the credit crisis, deserves a particular attention, since the dependence pattern in a

multivariate time series can be different in normal times and under stress conditions,

i.e. extremal dependence can differ from ordinary correlation. Another fact is that

the correlation among the price or volatility behaviors of the financial assets within a

portfolio is a crucial dimension for the proper estimation of the VaR amount. How-

ever, restrictions on the joint distributions of the financial assets within the portfolio

might decrease the performance of the VaR estimation. The joint distribution of the

portfolio should be free from any normality assumptions especially if the portfolio is

composed of assets from markets where there exists high volatility and non-linearities

in the returns. Those facts have an impact on diversification effects and has to be
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explicitly modeled and taken into account. Copulas offers statistical tools suited to

this aim.

Copulas reveal to be a very powerful tool in the finance profession, more especially

in the modeling of assets and in the risk management. Nevertheless, the finance

industry needs more works on copula and their applications. Even if it is an old

notion, there are many research directions to explore. Moreover, many pedagogical

works have to be done in order to familiarize the finance industry with copulas.

In Chapter 2, we present the concept of copula and how it could be used in

quantitative finance, especially to risk management. We focus on study and modeling

of interdependencies between extreme events. Thanks to Sklars Theorem such tasks

decompose into the study of the tail behavior of the marginal univariate distributions

and of the tail (i.e. corner) behavior of the corresponding copulas. Chapter 2 describes

a model for estimating portfolio VaR by the conditional copula-GARCH model, in

which the empirical evidence shows that this method can be quite robust in estimating

VaR. Copula-GARCH models allow for a very flexible joint distribution by splitting

the marginal behaviors from the dependence relation. In contrast, most traditional

approaches for the estimating VaR, such as variance-covariance, and the Monte Carlo

approaches, of the traditional method shows that the copula model captures the VaR

most successfully. The copula method has the feature of flexibility in distribution,

which is more appropriate in studying highly volatile financial markets, and which

there is lack of in traditional methods.

At the end, we can see those contributions made by EVT to finance are based

on the very definition of extreme value theory and Sklar theorem, namely on its

capability to accurately model the distribution of extreme events, which are the main

concern of modern risk management. Thus, in the end, we come back to the widely

quoted motto of DuMouchel we began with, which is key to risk management “Let

the tails speak for themselves”.
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