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ABSTRACT 

SYNTHESIS, CHARACTERIZATION AND APPLICATION OF BLOCK 
COPOLYMER AND NANOPARTICLE COMPOSITES 

 
MAY 2017 

 
YUE GAI, B.S., NANJING UNIVERISTY 

 
M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor James J. Watkins 

 
 

The “bottom-up” fabrication of functional hybrid material can be achieved by 

using directed self-assembly of functional nanoparticles (NP) and block copolymers 

(BCP) as templates. The versatile nanostructures of BCP provide possibilities to precisely 

control NPs spatial distribution and the resulting hybrid materials exhibit enhanced 

electrical, mechanical and optical functionalities. Three main topics related to BCP/NP 

composites are discussed in this dissertation: I) the spatial distribution of large NP in 

linear BCP; II) the morphology control of BCP templates with new architectures; and III) 

the magneto-optical properties of hybrid material using magnetic NPs. 

For well-ordered BCP/NP composite, the ratio of NP core diameter (dcore) and 

BCP domain width (L) has been generally limited with dcore/L < 0.3 when BCP/NP 

interactions are relatively neutral or weak. By modifying the Au NPs with hydrogen 

bonding (H-bonding) donor group, the selective spatial distribution of Au NPs ranges in 

size up to 0.8 times that of the target domain width in symmetric polystyrene-block-poly 

(2-vinylpyridine) (PS-b-P2VP). In addition, H-bonding meditated 15 nm NPs can be 

directed by linear BCP of dcore/L up to 0.4 at 20wt % loading. The H-bonding interactions 



 

viii 

between NP and BCP provide favorable enthalpic interaction to overcome the inherent 

entropy penalties mainly arising from polymer chain stretching upon the sequestration of 

large particles.  

On the other hand, the extensive chain entanglements of linear BCP still remain a 

challenge for hybrid materials with the consequence of long processing duration, many 

defects and lack of orientation. Bottlebrush BCPs (BBCPs) exhibit much lower degree of 

chain entanglement due to the highly extended confirmation. A systematic study was 

conducted to investigate the morphology transitions that occur in polystyrene-block-poly 

(ethylene oxide) (PS-b-PEO) BBCPs upon varying PEO volume fraction (fPEO) from 22 

% to 81 %. Either symmetric or asymmetric lamellar morphologies were observed in the 

BBCPs over an exceptionally wide range of fPEO from 28 % to 72 %. A microphase 

transition temperature TMST was observed over a temperature range of 150-180 ℃. 

Finally, enhanced magneto-optical (MO) composites with excellent Faraday 

rotation (FR) response were fabricated using iron platinum (FePt) NPs and PS-b-P2VP 

linear BCP. Gallic acid (GA) functionalized FePt NPs with average dcore from 1.9 to 9.3 

nm were selectively incorporated into a P2VP domain through H-bonding interactions. 

The use of copolymer template to selectively arrange the magnetic NPs enabled high MO 

performance with limited trade-off of scattering loss, providing a simple strategy to 

prepare functional materials for MO applications. Verdet constants of a 10 wt % loaded 

4.9 nm FePt NP composite reached absolute magnitudes as high as ~ -6×104 °/T⋅m at 845 

nm, as determined by FR measurements at room temperature, which is comparable to 

today’s benchmark materials.  
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 CHAPTER 1  

INTRODUCTION 

1.1 Self-Assembly of Block Copolymers 

Block copolymers (BCP) are macromolecules consisting of two or more segments 

connected with a covalent bond. Di-BCPs are macromolecules covalently bonded of two 

blocks and can self-assemble into periodical structures at the nanoscale.1–5 Three 

parameters contribute to the morphology transition of BCP: the Flory-Huggins parameter 

(χ), total degree of polymerization (N), and block volume fractions (f).1,4 By simply 

tuning the block chemical nature, compositions, and molar mass, the BCPs can exhibit 

periodically ordered lamellar, cylindrical, and spherical structures as shown in Figure 1.1 

(a) and (b). In most cases, the phase diagram may be deviated from the Figure 1.1 (a) due 

to the two monomers size difference and complex interaction description between two 

blocks (instead of χN). Asymmetric morphology transition have been observed, such as 

the phase diagram of poly (styrene)-block-poly (isoprene) (PS-b-PI) in Figure 1.1(c).6  

 
 

Figure 1.1(a) an illustration of di-BCP phase diagram where χN versus f, (b) the phase 
transition of a typical di-BCP, ranging from spherical, cylindrical, gyroid, lamellar to 
reverse corresponding structures as function of volume fractions, (c) experimental phase 
diagram of a series of PS-b-PI di-BCPs (adapted from reference 2, 6 in Chapter 1).  
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As a scaffold, BCPs have been utilized in many nanotechnology applications, 

including directing functional nanofillers, nanolithography, solar cells percolation layer 

matrix, and micelle template for drug or biomolecules delivery.7–16 BCPs of more varied 

architectures, star-, brush- or ring-like structures can yield more interesting structures and 

enrich the potential applications.2 

1.2 Functional Nanoparticles of Size-dependent Physical Properties 

Miniaturization of bulk materials results in the development of nanoparticles 

nowadays of high surface per volume ratio. Materials including noble metals, metal 

oxides, and semiconducting elements have been studied for decades. Particularly, 

particles of the feature size of sub-100 nm are known as nanoparticles (NPs), which 

increases surface per volume ratio significantly. NPs retains the attractive physical 

properties of bulk state material and high ratio of surface over volume, enabling it to 

work as high efficient catalysts, biomedicine vehicles, bio-sensors, and additives to 

improve raw material mechanical, optical, or electrical performance.17–23 

1.2.1 Gold Nanoparticles 

In the long history, gold (Au) has always been valued by society. The 

miniaturized Au NPs, similar to their bulk state in human society, have always garnered 

people’s attention. This type of metal NPs has been widely applied in biology for 

imaging, sensing and drug delivery for excellent biocompatibility, and in optical or 

electrical devices due to their plasmonic effects.17,18,24–28 For example, Parak and 

coworkers28 reported that the optical microscopy can image Au NPs of larger than 20 nm. 

Because the wavelength of absorbed light highly generally depends on the size and shape 
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of Au NPs, they can be utilized as labels with different color in the visible spectrum. In 

another review25, plasmonic glucose or cysteine sensors have been fabricated based on 

the principles that a plasmon absorption spectrum changes upon the NPs aggregation, 

strong interaction, or surface stabilizer variation. 

 

Figure 1.2 An overview of synthesized Au nanofillers of different sizes and shapes: (A) 
Au NPs of spherical geometry; (B) a series of Au NPs of increasing size synthesized via 
seed-growth mediated method; (C) anisotropic Au nanorods of various aspect ratio 
(adapted from reference 29, 30 in Chapter 1).  
 

Over the last several decades, researchers have developed various techniques to 

control Au NPs size, surface functionalization, geometry and aspect ratio (Figure 1.2).29–

32 These valuable efforts have enabled the preparation of hybrid materials using Au NPs 

with control over the moieties. Precise control over building block direction, medium, 

size, and shape of Au species in final composite provides more possibilities for the next- 

generation hybrid materials. 



 

 4 

1.2.2 Magnetic Nanoparticles 

Humans have known ferromagnetic bulk material containing cobalt (Co) or iron 

(Fe) elements for centuries, and discovered the new continent based on the invention of a 

compass. For such kind of materials, the magnetization follows the direction of an 

external magnetic field and remains after the removal of the field. Today, the progresses 

in the miniaturized magnetic NPs synthesis provide the control over size and shape by 

using a series of method: co-precipitation, thermal decomposition or reduction, micelle or 

hydrothermal synthesis.33–35 For example, the shape and size (3- 50 nm) of iron oxide 

(Fe3O4) NPs can be well controlled using decomposition of an iron precursor with 

oleylamine, oleic acid in phenol ether.34 Similar to other NPs, the poorly stabilized 

magnetic NPs easily form aggregates due to surface energy. Subsequent oxidation may 

further degrade the magnetic properties in solution. In order to maintain their unique 

properties, grafting surface of polymer and inorganic layers have been utilized.33 

The magnetism of the NPs is highly size-dependent. The smaller NPs of core 

diameter less than 20 nm, usually known as paramagnetic or superparamagnetic, exhibit 

minima amount of remaining magnetization after removal of external field, offering the 

possibility for different nanotechnology applications.19 For instance, because the 

magnetic NPs have comparable sizes relative to cells, viruses and proteins, from the 

biomedicine view, these tiny objects have been controlled well to demonstrate separation 

of labeled cells apart from other biological species, targeted delivery of drug and gene, 

therapy curing of tumors and contrast enhancement in magnetic resonance imaging for 

disease diagnose.36,37 In addition, efforts have also been dedicated to the magnetic fluids, 

catalysis, environmental remediation and data storages applications to take advantages of 
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magnetic NPs.19,20,38 By embedding the 11 nm Co NPs within the ordered mesoporous 

carbon, the resulting material was suitable for the separable sorbent or catalyst support.20 

1.2.3 Dielectric Nanoparticles 

Dielectric materials exhibit polarization when exposed to an external electric 

field. High dielectric permittivity materials have been used as medium in electronic 

device such as capacitors. Recent development of electronic device requires the dielectric 

material having high dielectric constant, low dielectric loss especially at a high 

frequency, and low temperature dependency.39 

Previous bulky dielectric materials are usually limited with their mechanical 

properties because most known metal oxides lack the physical flexibility. Efforts have 

been dedicated to preparing nanocomposites using polymer as matrix to direct the 

dielectric nanofillers.40–42 The performance of the final composites requires delicate 

control over dielectric species surface modification and degree of homogeneity of final 

blends. Structured composites have shown enhanced dielectric constants for various 

applications.23,43–45 For example, Jiang et al.45 reported the synthesis of core-shell 

structured barium titanate (BaTiO3) NPs using radical polymerization methods. The 

dielectric loss of resulting high loaded homogenous composites were effectively 

suppressed, which was well suited for energy storages applications. Gupta and 

coworkers43 reported the silica (SiO2) NPs enhanced the conjugated polymers 

performance in organic solar cells. The dielectric NPs have been also utilized in nonlinear 

and ultrafast nano-photonics, enhanced infrared absorption, and imaging in electrostatic 

force microscopy.21,22,44,46,47 
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1.3 Hybrid Material Containing Nanofillers Arrays Using Block Copolymers as 
Templates 

Composites containing functional nanofillers using polymers as templates have 

been quite popular in recent years. For instances, the mechanical reinforcement of 

composites was achieved by blending carbon nanotubes into polymer matrix.48 

Polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) and Au NPs blends showed 

their excellent performance in the organic electronic area.49 The integral performance of 

hybrid material requires delicate control over nanofillers size, shape, geometry loading, 

spatial distribution as well as the building blocks directions.50–52  

Self-assembly of NPs and BCPs has been demonstrated as an elegant and 

powerful “bottom-up” method to fabricate naocomposites, enabling the large-scale 

nanostructured system available for electronic, magnetic or photonic performance 

enhancement.49,53–55 Unlike in-situ reaction, “bottom-up” strategy is more attractive 

because it allows better control over additives, surface stabilizer, and loading in the final 

composite.56–58 

Numerous efforts have been dedicated to optimize surface ligand of NPs, and it 

has been proved that selective surface medication assists the NPs to distribute in a target 

domain of BCP.59–67 Kramer group60,61,66 has reported that the NPs capped with PS have 

favorable locations in PS domain of Polystyrene-block-poly (2-vinyl pyridine) (PS-b-

P2VP) BCP; on the other hand, the PS and P2VP homopolymer blend tethered NPs 

prefer to localize at the interface of the two blocks. The NPs distribution within BCP 

matrix is balanced by the enthalpy contributed from BCP/NP interaction and the entropy 

penalty resulting from polymer chain stretching and NPs translation.50–52  
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The typical system in which “A” polymer protected NPs reside in an “A-B” BCP, 

the enthalpy contribution is usually limited due to the neutral or weak interaction between 

NP and BCP. In order to increase loading while maintaining the ordering of a final 

composite, strong hydrogen bonding (H-bonding) interactions of BCP/NP has been 

introduced.68–76 Xu’s group68,70 used a small molecule to connect alkyl chain stabilized 

NPs, and lock these additives in polystyrene-block-poly (4-vinyl prydine) (PS-b-P4VP) 

BCP. Hawker and coworkers62 reported that Au NPs distribution in P2VP domain with 

multiple H-bonding donor oligomer ligand in PS-b-P2VP matrix. Our group71,74 has 

demonstrated using small molecule ligand to introduce direct H-bonding interaction 

between NPs and target domain, and achieved 30 wt % loading of additives while 

maintaining the well-ordered lamellar structures. The favorable enthalpy offsets the 

entropy penalty and enhances the composite phase segregation. This method provides a 

new platform for hybrid material preparation for functional applications. 

1.4 Dissertation Overview 

In this thesis, three main projects were performed and are fully discussed 

(illustration in Figure 1.3).  

In the first part, Au NPs distribution in linear BCP template as a function of size 

and loading concentration was systematically investigated. As mentioned above in the 

chapter 1.3, the entropy penalty from polymer chain rearrangement increases after 

sequestration of large obstacles, limiting either the relative or absolute size of 

incorporated NPs.77,78 H-bonding donor ligands were used to modify the Au NPs and as a 

result, the relatively large NPs can be incorporated into the linear BCP. 
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In the second part, the morphology evolution of a new architecture BCP was 

studied. The severe chain entanglements of linear BCP may induce longer processing 

time and potentially more defects. The highly extended conformation of brush polymers 

provides many attractive properties for nanotechnology applications: large domain size, 

rapid kinetic ordering, and the ability to take high loading of functional additives.79,80 

This project focuses on two molecular characteristics: side chain and block volume 

fraction, which affect the interface curvature of two blocks and subsequently introduce 

the morphology transitions of polymers. 

 

Figure 1.3 Summary of projects, (a): large NPs distribution in linear BCP, (b): 
bottlebrush BCP morphology Transitions and (c): magneto-optical properties of magnetic 
nanocomposite, with courtesy to Norwood group at Univeristy of Arizona. 
 

In the third part, more attention was paid to the application of BCP and magnetic 

NPs. Thanks to the collaboration with Norwood group in the University of Arizona, the 

magneto-optical properties of this hybrid materials were able to be investigated. The 

Faraday rotation performance of composites was comparable to today’s benchmark 

material. The low cost, simple and straightforward “bottom-up” method using BCP as 
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template to direct magnetic NPs is compatible with various coating techniques for 

flexible deposition, ideal for large-area device fabrication. 
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 CHAPTER 2  

STRONG LIGAND-POLYMER INTERACTION FOR INCORPORATION OF 

LARGE NANOPARTICLES IN ORDERED COMPOSITE 

2.1 Introduction 

2.1.1 Block Copolymer Based Nanocomposite Application 

Well-ordered block copolymer (BCP) nanocomposite containing inorganic 

nanoparticles (NP) are of great interest as next generation functional materials with 

enhanced electronic, optical and magnetic properties.1–8 The performance of such hybrid 

materials fundamentally depends on precise control of the spatial organization of the NPs 

that offer attractive physical properties as determined by particle size, shape, and filling 

fraction.1,5 For example, localized surface plasmon resonance (LSPR) and quantum 

emission of semiconductor NPs displaying size-dependent properties have been applied 

in bio-sensing and solar energy harvesting.9–14 Recent development of fine control over 

NP sizes from a few to tens of nanometers provides new opportunities for fabricating 

novel functional block polymer-based composite.15–22 

2.1.2 Size Limitation of Large Nanoparticles in Ordered Composite 

A delicate thermodynamic balance between enthalpy and entropy determines the 

spatial distribution of NPs in a linear BCP.1,2,5,23,24 The enthalpic contribution arises from 

the interaction of NP with specific block. Particularly for large NPs, the entropic 

contributions are often dominated by polymer chain stretching penalties while particles 

translation entropy is more dominant for smaller NPs.23–28 Recent work has shown that 

surface modification of small NPs with core diameter (dcore) from 2 to 3 nm is a facile 
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strategy to localize the NPs selectively within a BCP target domain (domain width L) at 

dcore/L less than 0.2.29–33 However, by either increasing the loading of such small 

enthalpically neutral particles or by incorporating large particles with dcore over 10 nm, 

the entropic penalties push the system towards a disorder state.  

In spite of successful selective loading small NPs within linear BCPs, it remains 

challenging to integrate large NPs with core diameter greater than 10 nm into BCP or 

maintain well ordered composites structures with dcore/L greater than 0.3. NP organization 

with weak or neutral interaction has been studied both theoretically and experimentally. 

Thompson et al.27 predicted that for NPs chemically compatible with the A block of an 

A-block-B BCP system, larger NPs (dcore/L~0.3) prefer to localize at the center of A 

domain, while smaller NPs (dcore/L~0.2) were preferentially distributed at the interface of 

the two domains (Figure 2.1 (a)). Bockstaller et al.25 experimentally observed trends 

consistent with these simulations by introducing particles modified with aliphatic ligands 

into poly (styrene-b-ethylene propylene) (PS-b-PEP). Gold NPs with dcore/L~0.06 

segregated to the intermaterial dividing surface and silica NPs with dcore/L=0.26 mostly 

localized in the center of the PEP domain (Figure 2.1 (b)). Chiu et al.29,30 reported a more 

systematic study in which PS stablized gold NPs were incorporated into symmetric 

polystyrene-block-poly (2-vinyl pyridine) (PS-b-P2VP) BCP with dcore/L ranging from 

0.035 to 0.12. Particles were localized in the center of the PS domain and their Gaussian 

distribution width became more narrow with increasing loading of NPs or with 

decreasing domain width (Figure 2.1 (c)).  

Although the distribution of the enthalpically neutral modified NPs within the 

BCP was studied in detail, the weak interaction between NPs and BCP ultimately limited 
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dcore/L less than 0.3. It is of great interest both from fundamental and application 

viewpoints to investigate systematically the potential for achieving well-ordered 

composites with substantially higher dcore/L in linear BCP using hydrogen bond-mediated 

assembly. 

 

Figure 2.1 NPs distribution in BCP of weak or neutral interactions: (a) simulation results 
(adapted from reference 27 in Chapter 2), (b) aliphatic NPs distribution (adapted from 
reference 25 in Chapter 2) in BCP as function of relative size ratio over domain width. 

2.1.3 Strong Interaction Meditated Self-Assembly of Block Copolymer and 
Nanoparticles 

Efforts have been dedicated to the enhancement of the NP and BCP surface 

interaction. For example, Xu et al.34 have reported the use of a small molecule 3-n-

pentadecylphenol (PDP) to connect alkyl chain terminated quantum dots and poly (4-

vinly pyridine) (P4VP) domain in a series of PS-b-P4VP BCPs (Figure 2.2 (a)). On the 

other hand, direct hydrogen-bonding (H-bonding) interaction between NPs and BCP 

domains has been demonstrated by our group35–37 and others38–41 (Figure 2.2 (b), (c)). By 

introducing functional groups on the NP surfaces that exhibit strong interactions with one 

block of the BCP, the favorable enthalpic interactions between NPs and corresponding 

block alleviate the BCP chain stretching penalty and enable the very high loading of more 

than 40 wt % of NPs while maintaining the strong phase segregation in the composite.35 

Recently, our group has demonstrated the directed assembly of large NPs over 15 nm 
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using an amphiphilic brush BCP with a large domain widths up to 150 nm as the 

template.37 Surprisingly, very little work has been directed towards incorporating relative 

large NP into smaller linear BCP domains by employing favorable interactions between 

NPs and BCPs. The strong BCP/NP interactions are expected to have the possibilities to 

offset the entropy penalties upon sequestration of such large obstacles while maintaining 

the composite ordering. 

 
 

Figure 2.2 Illustration of strong interaction between the NPs and BCPs domains: (a) 
small molecules additives (adapted from reference 34 in Chapter 2) (b) direct H-bonding 
(adapted from reference 35 in Chapter 2) of Au NPs and PS-b-P2VP BCPs. 

2.1.4 Project Overview  

 

Figure 2.3 Illustration of first project: Au NPs of different core diameter were modified 
with H-bonding donor group and directed by symmetric PS-b-P2VP BCPs. The 
distributions of Au NPs were systematically investigated as function of size and loading. 
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This project explores the assembly of hydroxylated gold NPs within linear PS-b-

P2VP BCPs and quantifies preferential NP segregation in terms of particle core diameter 

versus domain width (dcore/L). We synthesized Au NPs with diameters of 2 nm, 5 nm, 9 

nm, and 15 nm and either 2-(11-mercaptoundecyl) hydroquinone or thiol-terminated poly 

(4-hydroxystyrene) (PHOST) served as hydrogen bonding donor ligands. Pyridine units 

of the P2VP in symmetric PS-b-P2VP functioned as a hydrogen-bonding acceptor as 

illustrated in Figure 2.3. Ultra large NPs (dcore ~ 15 nm) incorporation into linear BCPs 

was also investigated to under different loading and domain width conditions. 

2.2 Experimental 

2.2.1 Materials 

Sodium borohydride, dodecanethiol (>98%), 2-(11-Mercaptoundecyl) 

hydroquinone (short for quinone) (95%), acetoxystyrene (96%, inhibitor removed by base 

aluminum oxides before usage), azobisisobutyronitrile (98%, recrystallized before use), 

and hexylamine (99%) were purchased from Sigma Aldrich; tetra-n-octylammonium 

bromide (98%), hydrogen tetrachloroaurate (100%, for traces of metal analysis), 

octadecanethiol(96%), 2-cyano-2-propyl benzodithioate (97%),  and aluminum oxide 

basic Brockmann I for chromatography 50-200µm, 60A were bought from Acros 

Organics; sodium citrate (99%-101%) was from Fisher Bioreagents. Hydrochloric acid, 

ammonium hydroxide, acetic acid, toluene, methanol, ethanol, ethyl ether, hexane, 

tetrahydrofuran (THF), and N, N-dimethylformamide (DMF) (99.8%) were purchased 

with guaranteed grade. Symmetric PS-b-P2VP block copolymers were obtained from 
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Polymer Source, Inc. (Montreal, Canada). The properties of each block copolymer are 

listed in Table 2.1.  

Table 2.1 Molecular information for BCPs used for assemblies 
 

PS-b-P2VP Mn 
(kg/mol) 

P2VP 
(vol %) 

Mw/Mn LP2VP 
(nm) 

8.2k-b-8.3k 16.5 50.3 1.09 7.1 
25k-b-25k 50 50.0 1.06 15.1 
40k-b-44k 84 52.4 1.10 25.1 
102k-b-97k 199 48.7 1.12 36.9 

2.2.2 Preparation and Surface Modification of Gold Nanoparticles 

Core diameter 2 nm Au NPs modified with quinone were synthesized following 

established Brust one-phase procedures17 by replacing methanol with THF. Quinone 

capped Au NPs with dcore~5-9 nm followed the methods of heat treatment by Mikio 

Miyake et al.15,18. Au NPs with core diameter ~ 15 nm were prepared based on one-step 

water phase Turkevich42 synthesis procedure. The capping agent sodium citrate was then 

replaced by PHOST and hydroquinone in order to disperse Au NPs in DMF. PHOST 

synthesis followed the routine used in previous work.37 All Au NPs were filtered through 

0.2 µm PTFE filter (from VWR) before further usage. A typical ligand exchange went as 

follows: The hexane was gently removed from 5 mL of 1 wt % purified NPs solution. 2.5 

mL hydroquinone (200 mg) THF solution was added into the NP solid. The mixture was 

sonicated for 20 minutes and stirred for 2 days in order to complete the ligand exchange. 

The NPs were then washed with 40 mL THF: hexane (volume ratio =1:20) at least three 

times to remove excess ligand and ODT. Purified NPs was preserved in THF or DMF 

after purified with 0.2 µm filter for further usage. 
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2.2.3 Preparation of Symmetric Block Copolymer and Gold Nanoparticles 
Composite 

Au NPs of core diameter from 2 nm to 15 nm with 10 wt %~ 50 wt % were 

dissolved in freshly prepared PS-b-P2VP (~1 wt %) solution with selective solvent. 

Typically, 2 nm Au NPs composite were prepared in THF solution. 5-9 nm Au NPs 

composite were prepared as mixture solvent THF: DMF (v:v=3:7). 15 nm Au NPs 

composite were dissolved in DMF. The NP/BCP composites solution were kept stirring 

for 2 hours and then dropcast onto glass slides, drying at the room temperature. The 

obtained films were annealed in saturated chloroform solvent vapor at room temperature 

for at least 2 days and slowly dried in air for 1 day. 

2.2.4 Characterization  

The core diameter of Au NPs were characterized by Transmission Electron 

Microscopy (TEM, JEOL 2000FX, 200 kV) by dropping a dilute nanoparticle solution 

onto a thin carbon film supported by a copper grid. Au NP size distributions and 

corresponding histograms were analyzed for a sample size of 300-400 particles with 

standard image analysis software (Image J). Fourier Transform Infrared (FT-IR)  (Perkin 

Elmer 2000) spectra of ligands and nanoparticles were taken in the range from 4000 cm-1 

to 650 cm-1 in ATR mode. The weight fraction of the gold core was determined by 

Thermogravemetric Analysis  (TGA, TA instrument Q500) from 20 ℃ to 800 ℃ at 

10 ℃/min under air purge flow.  

Morphology and domain spacing of neat block copolymer and NP/BCP blends 

were characterized using Small Angle X-ray Scattering (SAXS). Bulk films of PS-b-

P2VP/Au NPs were scraped from glass slides and placed evenly in the center of a metal 



 

 23 

washer sandwiched by Kapton tape. These samples were measured on a Ganesha SAXS-

LAB instrument (UMass Amherst) with Cu Kα 0.154 nm line on SAXS or ESAXS mode. 

Room-temperature microtoming (Leica Ultracut microtome) was used to cut the 

nanocompsite bulk film into 50 nm thin films, and sections collected using a carbon film 

supported by copper grids. For the samples containing dcore~9-15 nm Au NPs, subsequent 

Iodine selective staining was applied to P2VP domains to improve PS/P2VP domain 

contrast. The prepared thin films of NP/BCP composites were then characterized by TEM 

(JEOL 2000FX, 200kV). 

2.3 Results and Discussions 

2.3.1 Size Distribution and Surface Stabilizer of Gold Nanoparticles 

Au NPs mean core diameters (dcore) and standard deviations are presented in 

Figure 2.4. FT-IR spectra (Figure 2.5) of NPs resemble that of the hydroquinone or 

PHOST ligands bounds to the particles’ surfaces. Less intense S-H band at 2550 cm-1 are 

present in the spectrum of the hydroquinone ligand and are not evident in hydroquinone 

capped Au NPs spectra, indicating that the thiol bond has dissociated while Au-S bond 

formed. The broad peak at 3300-3400 cm-1 suggests the existence of hydroxyl groups on 

the NPs surface (Figure 2.5 (A)). Complete deesterification of poly (4-acetoxystyrene) is 

indicated by the disappearance of C=O characteristic band at 1755 cm-1 as well as the 

presence of a broad O-H peak at 3300 cm-1 in the spectrum of PHOST (Figure 2.5 (B)).37 

The appearance of characteristic band of PHOST in NP spectrum indicates the successful 

attachment of PHOST onto the NPs surfaces. 
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Figure 2.4 TEM images and core diameter histograms of synthesized hydroxylated gold 
NPs; hydroquinone stabilized Au NPs (a) 1.81±0.30, (b) 5.70 ±0.86, (c) 8.87±1.50, (d) 
15.3±1.70 nm and (e) PHOST capped Au NPs 16.0±2.60 nm accordingly. 
 

 
 

Figure 2.5 FT-IR spectra of sets (A): (a) hydroquinone, hydroquinone coated Au NPs 
with average size (b) 1.81 (c) 5.70, (d) 8.87, (e) 15.3 nm. FT-IR spectra of sets (B): (f) 
PHOST coated Au NPs with dcore 16.0 nm, (g) poly (4-vinylphenol) (PHOST) and (h) 
poly (4-acetoxystyrene). 
 

Au NPs ligand densities are listed in Table 2.2. The calculations are based on core 

weight fraction measured by TGA, the number of hydroxyl groups per unit of PHOST 

(~25, PHOST Mn~3.2 kg/mol, PDI~1.09, synthesized by Dr. Dongpo Song) and 
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hydroquinone (~2), as well as the densities of the components (PS-b-P2VP ~ 1.05 g/cm3, 

gold ~19.3 g/cm3, PHOST~ 1.16 g/cm3 and hydroquinone ~ 1.052 g/cm3).35,37 Hydroxyl 

group density is particularly higher for NP-15.3 due to the ineffective stabilization of 

large NPs with a small molecule thiol. To avoid NPs aggregation, the addition of excess 

hydroquinone inevitably leads to the presence of free ligands and thus an increase in the 

number of H-bonding donor groups (both free and bound). We also noticed that using the 

number of hydroxyl group to estimate the enthapic contribution has several issues. For 

example, the H-bonding has direction and saturation; the number of hydroxyl groups is 

more than the number of hydrogen bonds between particles and block copolymer due to 

particles self-interaction and the existence of free ligand. In spite of these issues, earlier 

work35,36,38,39 has reported that the favorable H-bonding interactions between NPs and 

corresponding block enhanced the microphase segregation to alleviate the BCP chain-

stretching penalty in different systems. The hydroxyl group density of ligands stabilized 

Au NPs in this system are high enough to yield adequate interaction with P2VP domain. 

Table 2.2 Properties of Au NPs: samples from (a) to (d) stabilized with hydroquinone 
and (e) capped with PHOST 
 

NP Aver dcore 
(nm) 

Core 
weight (%) 

Ligand density 
(per nm2) 

Hydroxyl group 
density (per nm2) 

NP-1.81 1.80 19.5 48.8 97.6 
NP-5.70 5.70 29.2 90.3 181 
NP-8.87 8.87 40.8 83.5 167 
NP-15.3 15.3 10.6 843 1690 
NP-16.0 16.0 67.2 4.70 118 

 
The volume fraction of NPs in the composite varies among particles batches, and 

Table 2.3 provides the detailed information. The organic ligands of NPs were included 

during the calculation. 
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Table 2.3 Au NPs volume fraction in hybrid composite 
 
NP-1.81 
loading ϕNP ϕNP+p2vp NP-5.70 

loading ϕNP ϕNP+p2vp NP-8.87 
loading ϕNP ϕNP+p2vp 

0.10 0.08 0.54 0.10 0.07 0.54 0.10 0.06 0.53 
0.20 0.17 0.58 0.20 0.15 0.58 0.20 0.13 0.57 
0.30 0.26 0.63 0.30 0.24 0.62 0.30 0.21 0.60 
0.40 0.35 0.68 0.40 0.33 0.66 0.40 0.29 0.65 
0.50 0.45 0.72 0.50 0.42 0.71 0.50 0.38 0.69 

NP-15.0 
loading ϕNP ϕNP+p2vp NP- 16.0 

loading ϕNP ϕNP+p2vp 

0.10 0.09 0.55 0.10 0.04 0.52 
0.20 0.18 0.59 0.20 0.08 0.54 
0.30 0.28 0.64 0.30 0.13 0.56 
0.40 0.37 0.69 0.40 0.18 0.59 
0.50 0.47 0.74 0.50 0.25 0.63 

2.3.2 Gold Nanoparticles Distribution in Terms of Size Variation 

To demonstrate NPs distributions, TEM images of composite samples are 

presented for a range of particle core diameters (dcore) and P2VP domain widths L (Figure 

2.6). Consider the assembly of NP-1.81/BCP as one example (Figure 2.6 (a) to (d)), the 

dcore/L ratios for these samples were less than 0.3 (from 0.049 to 0.25). NP-1.81 and NP-

5.70 composites were unstained and contrast in the images only came from the electron 

density difference between metal core and polymer matrix. With core diameter increasing 

to 5.70 nm, NPs became centralized in the domain with dcore/L greater than 0.3 but 

remained uniformly distributed in larger domains at which dcore/L is 0.23 and 0.15 (Figure 

2.6 (e) to (h)). The incorporation of NP-5.70 into 7.1 nm domains, resulting in a 

significantly increasing dcore/L to 0.8 in BCP/NP assembly with an inter-particle distance 

less than 10 nm is noteworthy. Larger NPs (samples were then stained with Iodine to 

increase domain contrast) were more apparently pushed toward the center of the P2VP 

domains for most dcore/L ratios greater than 0.3 (Figure 2.6 (i) to (p)). 
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Figure 2.6 TEM images of NP-1.81 blends (a)-(d), NP-5.70 blends (e)-(h), NP-8.87 
blends (i)-(l), and NP-15.3 blends (m)-(p) with linear symmetric PS-b-P2VP block 
copolymer of Mn (total) (a) 16.5, (b) 50, (c) 84, (d) 199 kg/mol. NPs volume fraction 
(including organic component) ~ 9 vol %-17 vol % (20 wt % from (a) to (l), 10 wt % 
from (m) to (p)). 
 

Figure 2.6 (a), (e), (i) and (m) confirms the particles distribution transition, in 

which the particles were pushed toward to center of domain with increasing dcore/L. For 

NP-8.87, which had a core diameter slightly larger than the P2VP domain size (7.1 nm), 

Y-shape defects occured in the nanocompostie (Figure 2.6 (i)).  In Figure 2.6 (m), NPs 
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were expelled out of the polymer domain with dcore/L over than 2, while the BCP 

maintains its lamellar structure. 

 
 
Figure 2.7 TEM images of NP-16.0 blends with linear symmetric PS-b-P2VP of Mn 
(total) (a) 16.5, (b) 50, (c) 84, (d) 199 kg/mol. NPs volume fraction ~ 4 vol % (10 wt %). 
The P2VP domains are lightly stained with iodine to increase domain contrast. 
 

Figure 2.7 shows that linear block copolymer templates direct the distribution of 

dcore~16.0 nm PHOST coated Au NPs. The NPs were by definition larger than the block 

domain at dcore/L~2, but clearly reside at the center of the domain with dcore/L~0.64. A 

lamellar morphology is observed with a dcore/L of 0.4 and particles were not restricted to 

center of the P2VP domain. Figure 2.6 and Figure 2.7 suggest that large NPs (dcore ~15 

nm) distributions in linear BCP are mainly dependent of relative size between NPs and 

block domain rather than their surface stabilizer. 

The corresponding SAXS spectra are shown in Figure 2.8, and domain spacing 

was calculated from the primary order peak using equation d=2π/q*. Unfortunately, 

SAXS (Figure 2.8 (D)) does not provide structure information for NP-15.3 and BCP 

composite. The high scattering cross-section of the 15 nm Au NPs produced strong 

background scattering and made the resolution of signal generated from the NP/BCP 

blends quite difficult. 
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Figure 2.8 SAXS spectra of (A) NP-1.81 blends (a)-(d), (B) NP-5.70 blends (e)-(h), (C) 
NP-8.87 blends (i)-(l), and (D) NP-15.3 blends (m)-(p) with linear symmetric PS-b-P2VP 
of Mn (total) (a) 16.5, (b) 50, (c) 84, (d) 199 kg/mol. NPs volume fraction (including 
organic component) 9 vol %-17 vol % (20 wt % from (a) to (l), 10 wt % from (m) to (p)). 

2.3.3 Gold Nanoparticles Distribution in Terms of Loading 

Figure 2.9 shows NP distribution with increasing loading of Au NPs. PS (25k)-b-

P2VP (25k) BCP formed an ordered lamella structure with up to 26 vol % (30 wt %) 

dcore~1.81 nm Au NPs, but underwent a morphology transition at a NP loading 

concentration of 35 vol % (40 wt %).  The system was disordered upon incorporation of 

45 vol % (50 wt %) Au NPs. As no staining is used in these samples, the high contrast 
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from gold core indicates that the NPs were uniformly distributed in block domain in 

regardless of loading. 

 

Figure 2.9 TEM images of NP-1.81 blends with PS(25k)-b-P2VP(25k) (dcore/L~0.12) 
with NPs volume fraction (including organic component) from 8 vol % to 45 vol %: (a) 
10 wt %, (b) 20 wt %, (c) 30 wt % (d) 40 wt % (e) 50 wt %; TEM images of NP-5.70 
blends with PS(25k)-b-P2VP(25k) (dcore/L~0.38) with volume fraction (including organic 
component) from 7 vol % to 42 vol % : (f) 10 wt %, (g) 20 wt %, (h) 30 wt % (i) 40 wt % 
(j) 50 wt %; TEM images of NP-16.0 blends with PS(40k)-b-P2VP(44k) (dcore/L~0.61) 
with NPs volume fraction (including organic component) from 4 vol % to 18 vol %: (k) 
10 wt %, (l) 20 wt %, (m) 30 wt % (n) 40 wt %; samples from (k) to (n) are stained with 
Iodine to increase domain contrast. Ordered structured remained with NPs volume 
fraction up to ~ 25 vol % (with organic ligands). 
 

Figures 2.9 ((f) to (j)) show the structures of NP-5.70 and PS (25k)-b-P2VP (25k) 

BCP composites. Well-ordered lamellar structures were observed again by incorporating 

up to 24 vol % (30 wt %). Self-aggregation of NPs appeared at loadings over 28 vol % 

(40 wt %). We also noted that the NPs were centralized within the target domain at low 

loading, and gradually spread to the domain edges as more particles were loaded in the 

BCP. The structure of NP-16.0 and PS (40k)-b-P2VP (44k) nanocomposites were shown 
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in Figure 2.9 (k) to (n). It is noteworthy to point out the lamellae structure at NPs loading 

less than 8 vol % (20 wt %), confirming that the linear block copolymer is useful as a 

template to guide large NPs assemblies. 

 

Figure 2.10 (A): SAXS spectra of blends of PS (25k)-b-P2VP (25k) with NP-1.81 at 
different volume fraction (including organic component) from 8 vol % to 45 vol %: (a) 
10 wt %, (b) 20 wt %, (c) 30 wt % (d) 40 wt % (e) 50 wt % with dcore/L~0.12; (B):  SAXS 
profiles of blends based on the same BCP containing NP-5.70  (dcore/L~0.38) with NPs 
volume fraction (including organic component) from 7 vol % to 42 vol % : (f) 10 wt %, 
(g) 20 wt %, (h) 30 wt % (i) 40 wt % (j) 50 wt %. 

 
Figure 2.10 shows a shift of the primary peaks to lower q values with the 

increasing loading of NPs, indicating a swelling of the target domains due to a selective 

incorporation of NPs within P2VP domains. As shown in Figure 2.10 (A), the domain 

spacing was increased from 30 to 40 nm as calculated according to the q values for the 

primary peak (d = 2π/q*). A symmetric lamellar morphology formed in the neat BCP 

sample as indicated by the higher order reflections at 3q. In contrast, an asymmetric 

lamellar morphology was observed in the composite samples containing NPs 8 vol % ~ 

26 vol % (10 wt % ~ 30 wt %). Moreover, a morphology transition from lamellae to 

cylinder was achieved at a high NP loading of up to 35 vol % (40 wt %) (Fig. 2.10 (A)). 

A further increasing of NP loading to 45 vol % (50 wt %) resulted in a disordered state. 
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Upon addition of larger NPs (Fig. 2.10(B)), self-aggregation occurs and phase 

segregation and order within the composites are compromised, as verified by more 

intense NPs scattering intensity and a less intense 1st order peak at 42 vol % (50 wt %) 

loading of NPs. 

2.3.4 Summary 

A number of studies have explored the thermodynamic balance of NP/BCP 

assemblies.1,2,5,43 Generally, the enthapic contribution is governed by the interactions 

between the NPs and BCPs, while polymer chain stretching as well as NP translation 

upon mixing influence the entropic contribution. H-bonding meditated assembly provides 

favorable enthalpic interactions that can promote strong phase segregation in the NP and 

BCP composite.  Figure 2.11 summarizes the nature and distribution of NPs in the 

composites at specific dcore/L values based on TEM image analysis. 

 

Figure 2.11 (a) Relationship between dcore/L and NPs location as indicated by labels:  U 
= uniform distribution, ED=edge diffused, C=centered distribution, B=interface/boundary 
of domain, D=disorder/ NPs expelled from domain. The analysis TEM images are from 
Figure 2.6 and Figure 2.7. NP-REF-(i) (reference 25) and NP-REF-(ii) (reference 30 in 
Chapter 2) are representative NPs distribution of neutral/weak NP/BCP interactions. 
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The behavior can be summarized as follows.  

For 0<dcore/L<0.3, the favorable enthalpic interactions effectively offset the 

entropy penalty and the relatively small NPs are easily accommodated up to relatively 

high NP loadings. The NPs are uniformly distributed in the target domain. And the 

uniform distribution in selective domain differs from systems with relatively weak 

interactions in which NPs distribution is biased towards the center of the target (dcore/L up 

to 0.12).29–31 The surface modification of neutral or mixture ligand may also introduce 

particles locate at the interface of two domains at low dcore/L (less than 0.2), also 

significantly different from a H-bonding interaction system with selective incorporation 

of nanoparticles.35,37 

At 0.3< dcore/L< 0.5, as the relative NP size increases, entropy begins to play a 

prominent role in the spatial organization of the NPs. Initially, with low loading of NPs, 

the NPs distribute towards the center of the target domain in order to reduce entropic 

penalty by minimizing chain stretching through localization near chain ends.27,30 The 

favorable enthalpic contribution of the strong interactions enable the incorporation of 

additional NPs into the domain but the NPs have to increasingly be accommodated in less 

preferred regions near the domain edges. Once NPs saturate the domain further addition 

of NPs results in aggregation and macrophase separation.  

At 0.5 < dcore/L < 1. Entropic penalties become significant and begin to dominate 

as the NPs size becomes comparable to the domain width. While the favorable 

interactions enable the accommodation of NPs within the target domains, the loadings 

concentrations are not as high as those of composite containing smaller NPs. Our 
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experimental results indicate that well-ordered lamellar morphologies can be observed in 

NP/BCP blends at dcore/L ~0.8 with less than 15 vol % (20 wt %) NP (Figure 2.6 (f)).  

1 < dcore/L. NPs with core diameter size similar or larger than domain width 

increase the NP/BCP mixture entropy significantly. Under these conditions, the distortion 

of domain and chain stretching required to incorporate the NPs causes X, Y or T shape 

defects, consistent with simulation results.44 In many cases, NPs are expelled out of the 

domain as free energy does not favor the assembly and NPs only attach interface of the 

two blocks by hydrogen-bonding interaction.  

In summary, hydroxylated Au nanoparticles with narrow size distributions have 

been synthesized over a wide range of particle diameters and selectively incorporated 

within the target domains of linear block copolymers to reveal NP spatial distribution in 

composites with hydrogen-bonding interactions between the NPs and BCP chain 

segments. At small values of dcore/L~0.1, the particles are nearly homogeneously 

distributed within the target domains. As particle size increases relative to the target 

domain width (dcore/L over 0.3), the NP locations are initially biased towards the domain 

center at low concentrations and then are accommodated in less energetically preferred 

locations nearer the domain boundaries as NP loading increases. Favorable enthalpic 

introduction by H-bonding offset entropic penalties mainly arising from chain stretching 

upon incorporation of large NPs. We successfully employ symmetric linear block 

copolymer as template to incorporate 15 nm Au NPs and increase dcore/L to 0.8 while 

maintaining well-ordered lamellar structure in NP/BCP composites. This systematic 

study provides a guide for a precise control on NP-size-tunable NP/BCP hybrid materials 

in the presence of strong enthalpic interactions. 



 

 35 

The contents of Chapter 2 have been published in Macromolecules, 2016, 49, 

3352-3360. 
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 CHAPTER 3  

MORPHOLOGY EVOLUTIONS OF BOTTLEBRUSH BLOCK COPOLYMERS: 

INFLUENCE OF SIDE CHAIN AND VOLUME FRACTIONS 

3.1 Introduction 

3.1.1 Chain Entanglement of Linear Block Copolymer 

Block Copolymers (BCPs) have attracted tremendous attention due to their roles 

as scaffolds in directing self-assembly from a few to tens of nanometers through 

microphase separation.1–15 For a traditional linear A-B BCP, the morphology is governed 

by control over the Flory-Huggins parameter (χ), the number of repeat units  (N) and the 

block volume fraction (f).1–3 The degrees of chain entanglement or the viscosities of 

linear BCPs become quite serious when the molecular weight increases. The resulting 

increase in defects, longer processing time and lack of long-range ordering limit the 

further application of BCPs in next-generation hybrid materials.  

3.1.2 Architecture and Application of Bottlebrush Block Copolymers 

Bottlebrush block copolymers (BBCP) are novel architected macromolecules with 

densely grafted branches attached to a linear backbone.16,17 Significant repulsive forces 

between the short densely grafted side chains induce the stretching in the backbone of 

BBCP, and the BBCPs exhibit a reduced degree of chain entanglement compared to 

linear BCPs.18,19 Such intrinsic properties enable BBCP to exhibit fast ordering dynamics 

with large domain spacings (d-spacings) over 100 nm, offering opportunities for rapid 

and scalable manufacturing for various applications.20–30 
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3.1.3 Current Morphology Study Progress of Bottlebrush Block Copolymers 

Knowledge of BBCP phase behavior is essential for the control of their 

morphology and subsequent applications. Multiple parameters including the chemical 

incompatibility of two blocks, the block volume ratio, the side chain asymmetry, and the 

length of backbone should be considered when investigating their morphology 

transitions. Theodorakis31 and coworkers reported a simulation result for the self-

assembly of BBCPs in which the transition from lamellae to hexagonally packed 

cylinders did not quite depend on asymmetry of volume fraction, but rather from the 

asymmetry of the side chain. This result significantly deviated from the current 

understanding of linear BCP phase behavior.  

  Recent experimental studies has offered a glimpse into the phase behavior of 

BBCPs, but not yet provided a satisfactory description of the parameters that precisely 

control the morphology upon microphase segregation.32–35 To date there has been 

incomplete control over molecular characteristics of synthesized BBCP and studies have 

been limited to purely symmetric system. The most developed “graft from” or “graft 

onto” methods for BBCP synthesis introduced subsequent growth of side chains from a 

linear backbone, requiring orthogonal mechanisms or the purification of unreacted side 

chain in grafting process.36–42 For example, Rzayev group20,32,35 reported the self-

assembly of asymmetric polystyrene-b-polylactide (PS-b-PLA) or polystyrene-b-poly 

(methyl methacrylate) (PS-b-PMMA) BBCPs using “RAFT-ATRP” method, in which 

they observed the formation of cylindrical structures with 55 nm in average pore size. 

However, the limited initiation efficiency of macroinitiators could not guarantee 

complete grafting in most “graft-from” or “graft to” methods, making it difficult to 
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determine side chain characteristics and precisely explain the control over the BBCP 

phase transition.19  

On the other hand, combinations of norbornene (NB) modified macromonomers 

(MM) and ring opening metathesis polymerization (ROMP) developed by Xia et al.19,43 

and other groups44,45 presented a more attractive route to synthesize BBCP, ensuring 

complete grafting of every backbone repeat unit. Nevertheless, only lamellar structures of 

BBCP in symmetric system have been investigated in detail so far.18,19,46 For instance, Gu 

et al.18 and Dalsin et al.46 separately studied phase segregation of symmetric PS-b-PLA or 

polystyrene-b- (atactic) polypropylene (PS-b-aPP) BBCPs with well-ordered lamellae 

over a wide range of domain sizes. While those works explored the relationship between 

backbone length and the resulting domain spacing, there were no complete studies of the 

role of block volume fraction or side chain length on the phase behavior of asymmetric 

BBCPs, especially the BBCPs synthesized via MM methods.  

3.1.4 Project Overview 

Here the morphology transitions of polystyrene-b-poly (ethylene oxide) (PS-b-

PEO) BBCP as a function of PEO side chain length and block volume fraction was 

studied (Figure 3.1). We specifically studied the asymmetric architectures, crystallization 

effects on microphase segregation, and microphase transition temperature (TMST). 

Understanding of the role that side chain length and block volume fraction play in 

controlling the phase behavior of BBCP offers new opportunities for creating functional 

materials using BBCP as the scaffolds. 
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Figure 3.1 Illustration of PS-b-PEO BBCP with designated side chain lengths: PEO-NB 
(Mn ~ 0.75, 2.0 and 5.0 kg/mol accordingly) and PS-NB (Mn ~ 3.5 kg/mol). The PEO 
volume fraction (fPEO) was controlled approximately from 20 % to 80 %. 

3.2 Experimental 

3.2.1 Materials 

Cis-5-norbornene-exo-2,3-dicarboxylic anhydride (95%), ethanolamine (99.0%, 

ACS grade), triethylamine (> 99.5 %), N,N’-dicyclohexyl-carbodiimide (DCC, > 99.0 

%), , 4-dimethylaminopyridine (DMAP, > 99%), sodium azide (NaN3> 99.5%) styrene 

(contained 4-tert-butylcatechol as stabilizer, ≥ 99%), CuBr (98%), ethyl-2-

bromoisobutyrate (98%),N,N,N′,N′′,N′′-Pentamethyldiethylenetriamine (PMDETA, 

99%), poly (ethylene glycol) methyl ether (Mn ~ 0.75, 2.0 and 5.0 kg/mol), exo-5-

norbornenecarboxylic acid (97 %), gallic acid (GA) were purchased from Sigma-Aldrich. 

Pentynoicacid (98 %), anhydrous dichloromethane (DCM), anhydrous toluene (99.8 %), 

anhydrous N,N-dimethylformamide (DMF, 99.8%), anhydrous tetrahydrofuran (THF, 

99.9 %) were purchased from Acros Organics. Third-generation Grubbs catalyst was 

prepared based on the reported method.19,43 Styrene was passed through basic aluminum 

oxide before the polymerization. Under nitrogen flow, PEO methyl ether was heated at 

120 °C for about 4 hours to remove moisture before usage. Ruthenium tetroxide (0.5% 
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stabilized aqueous solution) was purchased from VWR. Thiol-terminated polystyrene (Mn 

~ 2.5 kg/mol, PDI~1.05) was purchased from Polymer Source, Inc. 

3.2.2 Preparation of Macromonomers and Third-Generation Grubbs Catalyst  

The synthesis and characterization of PS-NB (Mn ~ 3.5 kg/mol) and PEO-NB (Mn 

~ 0.75, 2.0 and 5.0 kg/mol) followed the established procedures.19,43,47–50 PS-NB was 

prepared using atom transfer radical polymerization (ATRP) and click chemistry. A high 

yield strategy was proposed to synthesize PEO-NB MM by modifying the end group of 

commercial available PEO. Under nitrogen flow, PEO methyl ether (CH3-PEO-OH) was 

heated at 120 oC for about 4 hours to remove moisture. After cooling, 2 mmol PEO-OH 

(Mn ~ 0.75 kg/mol (1.5 g), Mn ~2.0 kg/mol (4.0 g) or 5.0 kg/mol (10.0 g)), exo-5-

norbornenecarboxylic acid (0.55 g, 4 mmol), DCC (0.99 g, 4.8 mmol) and DMAP (24 

mg, 0.2 mmol) were added into a 200 mL of Schlenk flask followed by 30 mL anhydrous 

DCM. The reaction mixture was stirred at room temperature for about 48 hours, filtered 

to remove precipitates, and the filtrate was precipitated in cool diethyl ether three times to 

yield white solid as PEO-NB. Table 3.1 summarized the characteristics of as prepared 

MMs. 

The third generation Grubbs catalyst was prepared based on the established 

routine. 19,43 Typically, 100 mg second generation Grubbs catalyst was mixed with 0.5 

mL 3-bromopyridine. The mixture color immediately changes from dark brown to bright 

green, indicating the new ligand coordination. The product was precipitated and washed 

with 10 mL pentane for three times. The green solid was then dried under vacuum and 

transferred to nitrogen glove box. 
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Table 3.1 Characteristics of PS-NB and PEO-NB macromonomer (MM) 
 

MMa Mn (kg/mol)b PDIb DPc
NMR DPd

GPC DPe
supplier 

PS-3500-NB 4.0 1.06 33 35 - 

PEO-750-NB 1.3 1.04 25 27 17 

PEO-2000-NB 3.2 1.03 53 70 45 

PEO-5000-NB 8.1 1.03 128 181 114 
a The MMs are named as “X-Mn-NB”, where X refers to MM chemical composition. b 

Measured by GPC. c Calculated using the integrations of PS phenyl group, PEO 
backbone and protons on the C=C bonds of NB end groups from 1H-NMR spectra. d 

Calculated from GPC traces, higher DP was obtained due to PS standards used for 
calibration. Contribution of end group to MW was subtracted from the results (354 g/mol 
for PS-NB and 120 g/mol for PEO-NB respectively). e Calculated from molecular weight 
provided by Sigma-Aldrich. 

3.2.3 Preparation of Bottlebrush Block Copolymers 

In a typical experiment, 40-200 mg of PS-NB and PEO-NB MM were added to 

separate Schlenk flasks followed by the desired amount of anhydrous DCM. The 

concentration of the PS-NB MM was controlled from 0.05 to 0.1 M. The resulting 

solutions were degassed with three cycles of freeze-pump-thaw before the sequential 

polymerization. At room temperature, the polymerization of PS-NB was initiated by 

adding the desired amount of third generation Grubbs catalyst solution in DCM. After the 

first MM PS-NB reacted for 20 minutes, solution of the second MM, PEO-NB, was 

injected into the reaction mixture. This solution was stirred for an additional 2-3 hours. 

The reaction was quenched with ethyl vinyl ether. By tuning the mass ratio of reacting 

PS-NB and PEO-NB MM, the volume fraction of PS and PEO block was controlled. The 

mass ratio of PS and PEO block was calculated according to the corresponding molar 

ratio as determined using 1H-NMR spectra. 
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3.2.4 Characterization  

Proton or carbon nuclear magnetic resonance (1H-NMR/13C-NMR) spectroscopy 

was recorded in CDCl3 using a Brucker 300 or 500 NMR Spectrometer. Gel permeation 

chromatography (GPC) of the BBCPs was carried out in THF on two PLgel 10 µm 

mixed-B LS columns (Polymer Laboratories) connected in series with a DAWN EOS 

multi angle laser light scattering (MALLS) detector and an RI detector. A calibration 

standard of PS with Mn ~ 30 kg/mol were used for the BBCP, and dn/dc values were 

obtained for each injection by assuming 100% mass elution from the columns. GPC 

analysis of PS-NB and PEO-NB MM were carried out using a Polymer Labotatories PL-

GPC50 instrument with two 5 µm mixed-D columns, a 5 µm guard column, and a RI 

detector (HP1047A). THF was used as the eluent at a flow rate of 1.0 mL /min. 

Polystyrene standards were used for the calibration. Fourier Transform Infrared (FT-IR) 

(Perkin Elmer 2000) spectra of BBCP were taken in the range from 4000 to 650 cm-1 on 

ATR mode. Differential scanning calorimetry (DSC) analysis was performed on TA 

instrument Q200-1390-RCS. The melting enthalpy of PEO domain was measured on the 

second heating scan from - 60 to 110 ℃ at a rate of 5 ℃/min. The heat of fusion for 

100 % crystalline PEO was ΔHm0 ~197 J/g as referred in the TA instrument thermal 

application note. Morphology and domain spacing of BBCP were characterized using 

small/wide angle X-ray scattering (SAXS/WAXS). Bulk films were placed in the center 

of a metal washer and sealed with Kapton tape. These samples were measured on 

Ganesha SAXS-LAB with Cu Kα 0.154 nm line on SAXS/WAXS or ESAXS mode with 

a temperature control stage. Cryo-microtoming (Leica Ultracut microtome) was used to 

cut the nanocomposite bulk film into 50 nm thin films. Sections were collected using a 
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carbon film supported by copper grids. Subsequent RuO4 staining was applied to improve 

contrast between PS and PEO domains. The prepared thin films were then characterized 

by transmission electron microscopy (TEM) on JEOL 2000FX 200kV. 

3.3 Results and Discussions 

3.3.1 Synthesis Control of Bottlebrush Block Copolymers 

Table 3.2 Characteristics of the PS-b-PEO BBCP 5k-Y, 2k-Y and 0.75k-Y series 
 

BBCPa [Cat]:[PSMM]:[PEOMM] fPEO 
(%)b 

Mw 
(kg/mol)c PDIc DP PSd DP 

PEOd 
d-spacing 

(nm)e 

5k-24 1:100:18 24 714.7 1.28 121 27 43.6 

5k-28 1:51:12 28 320.2 1.10 60 16 41.9 

5k-32 1:47:14 32 345.9 1.12 60 20 51.1 

5k-37 1:101:30 37 727.9 1.26 105 41 46.9 

5k-49 1:36:25 49 473.6 1.09 63 42 59.5 

5k-57 1:72:50 57 808.0 1.23 81 75 76.2 

5k-72 1:20:33 72 416.5 1.13 29 53 35.0 

5k-81 1:15:43 81 401.9 1.16 19 56 34.0 

2k-22 1:47:21 22 346.0 1.09 70 34 43.3 

2k-41 1:25:31 41 214.6 1.16 30 43 55.6 

2k-45 1:38:46 45 393.3 1.38 49 60 82.7 

2k-71 1:14:58 71 299.3 1.16 21 92 41.9 

2k-79 1:9:61 79 282.9 1.25 14 89 34.4 

0.75k-20 1:111:130 20 693.2 T 133 155 52.4 

0.75k-28 1:79:159 28 710.1 D 121 220 61.0 

0.75k-41 1:44:206 41 394.1 D 54 176 50.3 
a BBCPs are labeled as “X-Y”, where X and Y represent PEO side chain length and PEO 
domain volume fraction respectively. b Volume fraction of PEO (fPEO) was calculated 
from characteristic protons in 1H-NMR spectrum. c Mw and PDI were determined by 
GPC MALLS traces, D referred to two and T represented three components in one 
sample. d An approximate estimation of degree of polymerization using absolute 
molecular weights were measured by GPC-MALLS. e Domain spacing (d-spacing) of 
BBCP was calculated using the equation d=2π/q*,where q* corresponded to the primary 
peak in SAXS. 
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We synthesized a family of PS-b-PEO BBCPs with volume fraction of PEO block 

(fPEO ) varying from 22 % to 81 %, and with different PEO side chain lengths (Mn ~ 2.0 

and 5.0 kg/mol) following reported procedures.19,43,47 Table 3.2 summarizes the 

molecular characteristics of the synthesized 2k-Y and 5k-Y series of PS-b-PEO BBCP. 

The chemical compositions of the obtained BBCPs were determined using 1H-

/13C-NMR data (Figure 3.2) and FT-IR spectra (Figure 3.3). Figure 3.2 shows a 

representative 1H-NMR spectrum of PS-b-PEO BBCP, where the signals of 6.5-7.2 ppm 

are ascribed to PS phenyl groups and 3.6-3.8 ppm for protons of PEO side chains. The 

mass ratio of PS and PEO blocks was calculated according to the corresponding molar 

ratio as determined using 1H-NMR spectra. Subsequently, the volume ratio of PS and 

PEO (VPS/VPEO) was obtained using their approximate bulk densities (1.05 and 1.08 

g/cm3 for PS and PEO, respectively). The PEO domain volume fraction was calculated as 

fPEO=VPEO/(VPEO+VPS).  

 
 

Figure 3.2 Representative (a)1H-NMR, (b)13C-NMR spectrum of synthesized PS-b-PEO 
BBCPs and (c) 1H-NMR spectra of PS homo brush polymer after 20 minutes reaction and 
PS MM. 
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The nearly quantitative conversion of both PS-NB and PEO-NB MM can be 

confirmed from 1H-NMR spectra Figure 3.2 (a), where the signals (6.15-6.28 ppm) of 

protons on the C=C bonds of NB end groups were absent for all the BBCP. At the same 

time, signals at 5.04-5.38 ppm from protons of opened C=C bonds indicated successful 

polymerization of norbornene backbone. In addition, nearly all PS-NB MMs were 

converted into brush polymer after 20 minutes of reaction. This was accomplished by 

acquiring the 1H-NMR spectrum of first block Figure 3.2 (c) polymerized via ROMP 

using PS-NB of similar molecular weight (2.9 kg/mol).  The second MM, PEO-NB was 

added after 20 minutes reaction of the first MM (PS-NB), and initiated the 

polymerization of the second MM, affording PS-b-PEO BBCP for the study. 

 
 

Figure 3.3 FT-IR spectrums of representative 5k-Y series. 
 

The molecular weights of BBCPs were obtained using GPC MALLS. The light 

scattering (LS) traces of the BBCPs are provided in Figure 3.4. While all 2k-Y and 5k-Y 

samples exhibited a monomodal peak, weak shoulders and tailing were observed in GPC 

traces of a few samples, such as 5k-28, 5k-32 in Figure 3.4 (a), 2k-22 in Figure 3.4 (b). 

These features were observed previously for other brush polymers with high molecular 
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weights.35,37,39,51 The shoulders observed in GPC traces of 5k-28 and 5k-32 at the shorter 

elution times could be due to higher molecular weight species. The tailing observed for 

5k-81, 5k-49 and 5k-32 were mainly due to low molecular weight species.19,35,43 The low 

population of these “impurities” is not expected exert a significant influence on the phase 

behavior of the BBCP.35,51–53  

A series of PS-b-PEO BBCPs with extremely short PEO chains (0.75 kg/mol) 

were prepared. However, the synthesis of the BBCPs containing PEO of 0.75 kg/mol was 

poorly controlled, possibly due to the rapid polymerization kinetics of small PEO-NB 

MMs with short side chain lengths. The GPC traces (Figure 3.4 (c)) of the resulting 

samples show multiple peaks, indicating that multiple species in fact exist in those 

samples. Therefore, the discussion of the morphology of these BBCPs was not included. 

Despite the exclusion of 0.75k-Y system, the preparation of 5k-Y and 2k-Y PS-b-PEO 

BBCPs was generally under control, and the samples were suitable for subsequent 

morphology studies. 

 
 

Figure 3.4 GPC traces of PS-b-EPO BBCPs (a) 5k-Y, (b) 2k-Y and (c) 0.75k-Y series. 

3.3.2 Morphology Evolution As Function of Side Chain and Volume Fraction 
Asymmetry 

The morphologies of PS-b-PEO BBCPs in the bulk state were measured with 

SAXS (Figure 3.5) as well as complementary TEM analysis (Figure 3.6) of cryo-

microtomed samples. The domain spacing (d-spacing) was calculated using d=2π/q* for 
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each primary scattering peak and listed in Table 3.1. All samples showed sharp primary 

scattering signals suggesting strong phase segregation between the PS and PEO domains. 

 
 
Figure 3.5 SAXS spectra (at room temperature) of PS-b-PEO BBCPs with PEO side 
lengths (a) PEO Mn ~ 2.0 kg/mol, fPEO from 22 % to 79 %; (b) and (c) PEO Mn ~ 5.0 
kg/mol, fPEO from 24 % to 81 %. The broad curve with an arrow is attributed to X-ray 
scattering from PEO crystalline lamellae. 
 

A disordered morphology (fPEO < 22 %) was observed (Figure 3.6 (a)), in which 

short and irregular shaped PEO domains were dispersed within the PS matrix. In this 

sample, the BBCP exhibited strong phase segregation but did not form a well-defined 

periodical structure such as lamellae or hexagonal packed cylinders. The SAXS spectra 

(Figure 3.5 (a)) only show strong primary peak without high order reflections. Annealing 

for longer times or at higher temperature did not improve the regularity of packing. The 

formation of such strongly segregated but disordered morphology may result from a 

highly asymmetric volume fraction coupled with irregular interface curvature.  

As fPEO increased, we noticed that the morphology transition more depended on 

the variation of fPEO rather than PEO side chain length (Figure 3.5). PS-b-PEO BBCP 

appeared to arrange into well-ordered lamellae at approximate equal volume fraction 
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(fPEO~0.5) similar to other symmetric PS-b-PLA brush polymer systems.18 Asymmetric 

lamellar structures were observed with fPEO as low as 28 % or as high as 71 % in 5k-Y 

series. SAXS spectra of samples 2k-71, 5k-28, 5k-32 and 5k-72 reveal the ratios of q*:q2 

= 1:2 and are consistent with TEM analysis (Figure 3.6 (b) to Figure 3.6 (e)). 

 

Figure 3.6 TEM images of cryo-microtomed PS-b-PEO BBCPs: (a) a disordered 
morphology in 2k-22; (b, c, d, e) asymmetric lamellae in (b) 2k-71, (c) 5k-28, (d) 5k-32 
and (e) 5k-72; highly asymmetric BBCPs (f) 5k- 81 and (g) 2k-79. Ruthenium tetroxide 
(RuO4) was used as the staining agent to improve the contrast between PS (bright area) 
and PEO (dark area) domains, all scale bars correspond to 100 nm. The arrow in (g) 
points to a region where PEO crystalline lamellae can be identified in the PEO-rich 
BBCP. 
 

TEM images of highly asymmetric PS-b-PEO BBCPs, for example, 5k-81 (Figure 

3.6 (f) shows some evidence of parallel cylindrical or lamellar morphology patterns, 

while 2k-79 (Figure 3.6 (g)) does not reveal clear morphology information due to the 

high crystallinity of PEO block and the low staining contrast between PS and PEO 

domains. Although TEM images have limitations for determining sample morphology, 

SAXS profiles with a characteristic high order reflection ratio of q*:q2 = 1:√3 (Figure 3.5 

(a), (c)) indicate that in fact 5k-81 and 2k-79 exhibit cylindrical morphology at bulk state. 
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Temperature controlled SAXS profiles (Figure 3.7(a), (b)) provide a more convincing 

result, which will be discussed later. 

TEM images of PS-b-PEO BBCPs have relatively low contrast, especially with 

high fPEO samples, mainly due to weak selectivity of RuO4 staining of PS-b-PEO BBCP 

and PEO crystallization. The right bottom of Figure 4g shows the PEO crystalline 

lamellae with a feature size approximately 14-20 nm (labeled by a small arrow), which is 

consistent with appearance of broad peak at high q in SAXS spectra (Figure 3.5 (a)).  

3.3.3 Crystallization Effects of PEO Blocks 

The crystallization of PEO became more apparent as fPEO increased and therefore 

its effect on microphase segregation must be taken into consideration. A broad peak with 

feature size around 14-20 nm appeared in 2k-71, 2k-79 and 5k-49, 5k-57, 5k-72 and 5k-

81 SAXS spectra, corresponding to the thickness of PEO crystalline lamellae. To obtain a 

better understanding of the effect that crystallization has on the morphology transition, 

we compared both SAXS and WAXS spectra of four samples with high fPEO (70 %- 

80 %) acquired at room temperature and above the PEO melting point (Figure 3.7). 

In Figure a, at 25 ℃ the sample showed both sharp crystalline peaks in WAXS 

regime and broad peak beside the secondary high order reflection (q*:q= 1:√3) in the 

SAXS regime. A series of higher order reflections (1: √3: √4: √7) consistent with a 

cylindrical morphology appeared as temperature increased to 65 ℃, accompanied by the 

disappearance of PEO crystalline scattering signals in WAXS regime. The crystalline 

lamellae of PEO completely melt at this temperature and a well-ordered cylindrical 

structure was observed. Figure 3.7 (b), (c) and (d) show similar behaviors, confirming the 
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cylindrical (5k-81) and lamellar (2k-71 and 5k-72) morphologies of the BBCPs above the 

PEO melting point. 

 

Figure 3.7 Temperature controlled SAXS and WAXS 1-D profiles of BBCPs containing 
high volume fractions of PEO: (a) 2k-79, (b) 5k-81, (c) 2k-71, and (d) 5k-72. Higher 
order reflections peaks can be observed at temperature that result in a melt state of the 
PEO domain. 
 

Before and after heating, the SAXS/WAXS profiles of BBCPs remained same at 

25 ℃. SAXS and WAXS spectra of PS-b-PEO BBCPs with low fPEO do not show 

significant PEO crystallization effects on the morphology transitions. The microphase 

segregation of 2k-22, 5k-28 remained approximately the same when heated within the 

same temperature range. DSC (Figure 3.8) analysis reveals decrease in degree of 

crystallization of lower fPEO samples. For 2k-22, the PS-b-PEO BBCPs had degrees of 

crystallization of around 50 %, compared to 60 % - 66 % crystalline degree for 2k-79 and 
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5k-81. The slightly lower degree of crystallinity may be attributed to combination of 

degree of PEO side chain polymerization and reduced mobility of PEO in the high Tg PS 

matrix, which limited PEO side branch arrangement into crystallite lamellae.  

 

Figure 3.8 DSC measurement of representative PS-b-PEO BBCPs. 

3.3.4 Microphase Transition Temperatures 

A microphase transition temperature was observed when PS-b-PEO BBCPs were 

heated from 25 °C to 250 °C in a 30 °C step heating schedule with 3 minutes thermal 

equilibration at each temperature. The primary peaks in SAXS profiles of three typical 

PS-b-PEO samples (5k-28, 2k-79, 2k-22) were fitted to Gaussian curve and a series of 

full-width-at-half-maximum (FWHM) values were calculated. An abrupt change in slope 

determined the transition temperature in a plot of FWHM versus temperature (Figure 

3.9). 

When temperature was elevated, decreased intensities of the primary peaks and 

the disappearance of high order reflections was observed, indicating the decrease in 

degree of phase segregation.4,5,54 Because the BBCP did not display long-range ordering, 
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we followed the reference and define this temperature as microphase transition 

temperature TMST
55

 rather than order-to-disorder transition temperature (TODT).  

  

Figure 3.9 1-D SAXS profiles of BBCPs: (a) 5k-28, (c) 2k-79 and (e) 2k-22 show the 
influence of temperature on FWHM of the primary peak. (b, d, f) FWHM as a function of 
temperature of BBCPs: (b) 5k-28, (d) 2k-79 and (f) 2k-22 obtained by Gaussian Fitting of 
the primary peak. 
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The TMST were found to be within the range of 150-180 °C for 5k-28, 2k-79, 2k-

22 which had Mw from 280 kg/mol to 350 kg/mol. In light of these observations, the TMST 

seemed to be relatively insensitive to volume fraction and side chain length within the 

molecular weight range investigated.  

A few studies also investigated the effects of molecular characteristics of brush 

polymer on TODT. Although given the extensive variable space available in the design of 

brush polymers, these data sets are limited at this time. For example, Xia and coworkers19 

found that changes in TODT of polylactide-b-poly (n-butyl acrylate) (PLA-b-PnBA) 

bottlebrush random polymers (75-85 °C) was dominated by the degree polymerization N 

of side chain. Dalsin et al.46 reported that only polystyrene-b-(atactic) polypropylene (PS-

b-aPP) brush block copolymer (BBCP) of  low molecular weight (Mn~28.3 kg/mol) had 

measurable TODT of approximately 215-220 °C, while most high molecular samples did 

not exhibit accessible TODT below the decomposition temperature of 300 °C. In this case, 

the overall molecular weight affected the final TODT of BBCPs. For a typical linear BCP, 

the product of the Flory-Huggins parameter χ and the degree of polymerization N 

determines the phase transition temperature. To fully understand the role of the complex 

molecular characteristics of BBCPs on TODT for any one system, a comprehensive family 

of BBCPs with measureable TODT as function of variable side chain lengths, backbone 

lengths and block volume fractions need to be synthesized and studied. 

3.3.5 Asymmetric Template for Incorporating Dual Functional Nanoparticles  

In order to achieve polymer based magneto-dielectric or metal-dielectric 

metamaterial, it is required to incorporate two types of functional NPs into two separate 

polymer domains.56 However, few efforts have been dedicated to fabrication of a ternary 
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composite and control over its characteristics.57–59 Bockstaller et al.59 showed the 

preparation of ternary blends using polystyrene-block-polypropylene (PS-b-PEP) BCP 

and alkyl stabilized gold and silica NPs. Smaller gold NPs (d/L~0.06) were distributed at 

the interface between two domains while larger silica NPs (d/L~0.26) resided at the 

center of PEP domain, in which d was core diameter of particles and L was respective 

domain size. Despite the achievement of an ordered structure and controlled distribution 

of particles, the NPs loading was limited to less than 2% due to weak or neutral 

interaction between particles and polymer. Strong hydrogen bonding (H-bonding) 

NP/BCP interaction has been proven to increase particle size and loading.47,60,61 

Surprisingly, few efforts have been dedicated to the direct employment of H-bonding in 

ternary dual-NP/BCP composite. 

Figure 3.10 reveals the integration of 5 wt % 6 nm Zirconium dioxide (ZrO2)-GA 

NPs and 5 wt % 15 nm Au NPs (synthesize process followed the procedure48,62 described 

in Chapter 2.2.1) into asymmetric PS-b-PEO BBCPs. ZrO2-GA NPs were filled into the 

PEO domain through strong H-bonding interaction while Au NPs capped with PS had 

favorable affiliation to PS block. The ratio of core diameter (dcore) over domain width (L) 

d/L of ZrO2-GA/PEO block and Au-PS/PS block were estimated to be 0.37 and 0.43 

respectively, which was determined by PEO volume fraction of fPEO ~ 32 % over a d-

spacing of 51 nm. Although the SAXS spectra (Figure 1.10 (c)) did not show primary 

peak of this composite due to strong scattering from large gold metal cores, the well-

ordered structure was confirmed with TEM images over large scale. It is worth noting 

that this metal-dielectric composite was formed without further annealing after solvent 

evaporation.  
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Figure 3.10 Ternary composite using PS-b-PEO BBCP as template, with 5 wt % 6 nm 
ZrO2-GA and 5 wt % 15 nm Au-PS NPs:(a) TEM images of asymmetric lamellae, ZrO2-
GA resided in the narrower PEO domain while Au NPs had selective distribution in PS 
domain (b) schematic of asymmetric BBCP and ternary composite, (c) SAXS spectra of 
ternary composite. 

3.3.6 Summary 

A map of PS-b-PEO BBCP morphology trends was constructed using side chain 

asymmetry versus volume fraction (f) to provide a basic understanding of the morphology 

for these polymers. A linear BCP phase diagram is typically plotted as the phase 

segregation parameter χN versus volume fraction f. Considering the complex parameters 

in tuning the BBCP morphology, the side chain length ratio or asymmetry was applied 

for the Y-axis of a phase behavior plot (Figure 3.11) rather than χN. It is necessary to 

point out that there might be several physical parameters that could also be used to 

illustrate the phase behavior of a BBCP. For instance, Runge et al.33 used mole fraction of 

one monomer in backbone as the Y-axis for their preliminary phase diagram. 

Figure 3.11 shows the observed morphology transitions of PS-b-PEO BBCPs 

based on our experimental results. For the reported BBCPs, a lamellar structure formed 

over a much wider range of volume fraction when compared to linear BCP systems. The 
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prevalence of lamellae was weakly dependent on the side chain length. This phenomenon 

was expected due to the existence of a highly extended backbone and the fact that the 

volume fraction change did not significantly affect the cross-sectional area of BBCP.20,31  

 
 

Figure 3.11 Summary of PS-b-PEO BBCP phase transition: a plot of side chain length 
ratio (Mn (PEO-NB)/Mn (PS-NB)) vs PEO volume fraction (fPEO). 
 

The samples with high fPEO yielded cylindrical morphologies with PEO acting as 

the matrix domain. On the other end, we noticed that in samples with low fPEO the PEO 

domain did not exhibit cylindrical morphology, instead, they formed a “disordered” 

structure. This unsymmetrical morphology evolution was different from a linear PS-b-

PEO, in which hexagonally packed PEO cylinders have been observed with fPEO ~ 33 

%.63 Although the hexagonal packing of PEO cylinders in PS matrix were not observed in 

the low fPEO samples, such a morphology could still be expected by tuning the molecular 

weight of PEO-NB MM to much smaller than that of PS-NB MM.64 For instance, 

previous studies20 showed that PLA cylinders were observed in a PS-b-PLA BBCP, in 
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which the PLA side chains were much shorter than the PS. This asymmetry introduced a 

favorable curved interface, leading to the formation of well-defined PLA cylinders.  

The chemical nature of side chain may also account for the interface curvature 

change and effect the subsequent morphology transition. Recently, the Osuji group65 

explored phase behavior of liquid crystalline brush like polymers, in which spheres, 

cylinders, lamellae, inverse cylinders and spheres were observed by merely increasing 

weight fraction of liquid crystal. The simple occurrence of curved interface for spherical 

or cylindrical morphology had strong dependence on volume fraction but regardless of 

side chain asymmetry was apparently apart from the current understanding of BBCP 

system.31,64 Such interesting phenomenon may be due to the existence of liquid crystal 

group. More detailed investigations of side chain effects on BBCP morphology should be 

performed in the future. 

The contents of Chapter 3 have been published in Macromolecules, 2017, 50, 

1503-1511. 
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 CHAPTER 4  

MAGENTO-OPTICAL PROPERITES OF IRON PLATIUM NANOPARTICLES 

AND BLOCK COPOLYMER COMPOSITE 

4.1 Introduction 

4.1.1 Magnetic Nanoparticles 

As discussed in the introduction, magnetic materials comprised of cobalt or iron 

elements have been known for thousand of years. The recent development of magnetic 

material miniaturization provides possibilities for functional materials aimed in 

nanotechnologies.1 For instance, magnetic nanoparticles (MNP) such as iron oxide 

(FeOx), iron platinum (FePt), cobalt oxide (Co3O4), cobalt platinum (Co/Pt) nano-

additives have been widely used in therapy drug delivery, biosensor or imaging, magnetic 

fluids, nano-engineering catalyst, environmental remediation and data storage.1–3  

All these inspiring applications are realized by the unique physical properties of 

MNPs. Accompanying with decrease in the size of MNPs, the magnetization of MNPs 

returns to zero without the exposure to the applied field, which is known as 

paramagnetism. Large NPs of core diameter above 20 nm, in contrast, usually display 

ferromagnetism, in which the magnetizations persist without the field.4 These interesting 

physical behaviors of MNPs are highly size dependent, and provide the opportunities for 

other optical or electronic utilization.5,6  

4.1.2 Faraday Rotations and Verdet Constant 

The optical property of a magneto-optical (MO) material can be simply tuned by 

the external magnetic field (MF).7,8 The active MO response of materials enables 
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numerous high-end applications including optical isolators and switches, high 

performance MF sensors and electromagnetic signal amplifier.9–17 Specially, Faraday 

rotation (FR) is one of the most important MO phenomena, in which the applied MF 

changes the polarization (Figure 4.1, copyright by DrBob~commonswiki on Wikipedia 

website) plane of propagating linearly polarized light by inducing a circular 

birefringence.7,8 Assuming the materials exhibit negligible light absorption, the FR 

performance highly depends on the Verdet constant (V) of a unit °/T⋅m. The polarization 

rotation angle (θ) is proportional to V multiplied by the propagation length (L) under 

magnetic field (B) (θ=VBL).  

The Verdet constant (V) depends strongly on wavelength, temperature during the 

measurement of MO materials, and intrinsic material properties. The macroscopic 

response is determined by the interaction of the magnetic field with the net volumetric 

magnetic moment within the optical path, whereas the magnetic moment itself is 

determined by the inherent electronic structure and composition of the material.7  

 

Figure 4.1 The illustration of Faraday rotation: the polarization plane of light will be 
altered to certain angle when exposed to an applied field (adapted from online reference 
18 in Chapter 4).  
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4.1.3 Current Progress of Magneto-Optical Materials 

Transparent materials with FR response at room temperature have been of great 

interest over the last few decades.19–29 Acceptable MO performance in a composite 

generally requires the dispersion of a high volume fraction of magnetic species, which 

often leads to light losses through scattering of aggregated additives, thereby decreasing 

the transparency and effective FR response.22 Today’s benchmark MO materials include 

ferromagnetic terbium gallium garnet (TGG, Tb3Ga5O12)30–32 and bismuth (Bi) doped 

yttrium iron garnet (Bi:YIG, Y2Fe5O12)33–38, targeting the visible and near infrared (NIR) 

regimes, respectively. However, this family of materials containing rare-earth elements is 

usually produced as single crystals in order to achieve millimeter-scale path lengths for 

sufficient MO performance.26 The high processing costs associated with high-quality 

crystal growth and limited achievable film thickness have restricted their broader 

utilization. 

4.1.4 Magnetic Nanoparticles and Polymer Composite: Advantages and Challenges 

Recently, composites using MNPs dispersed in organic matrices have offered an 

alternative low-cost method for generating MO materials.21,22 To balance the trade-off 

between high NP loading and decreased transparency, the scattering loss generated by 

MNPs need be taken into consideration and alleviated. If the MNPs of core diameters (d) 

are much smaller than the wavelength of light but larger than 20 nm, Rayleigh scattering 

predominates the scattering loss. Significant scattering loss can arise when there are 

substantial (> 0.1) differences between the refractive indices of the polymer matrix and 

inorganic NP. In this case, it is a necessary to use small NPs (< 20 nm) that are evenly 

distributed in a pore-free polymer matrix.39,40 The transmittance of the film follows 



 

 69 

Beer’s law, which is exponentially dependent on both NP medium concentration and 

propagation length of light. Taken together, delicate control over the dispersion and 

spatial distribution of MNPs in polymer matrix, homogeneity, and thickness of films are 

essential to guarantee adequate film FR performance. 

Various systems including MNPs and silica sol-gel porous matrix blends41–46, 

plasmonic enhanced shell MNPs47–51, and homopolymer stabilized core-shell MNP 

composites52–57 have been studied to understand both their scattering mechanisms and 

MO performance. Despite the high Verdet constants achieved in some of these 

composites, the resulting scattering from the aggregation of large NPs at higher 

concentrations still limits the FR application at realistic length scales. Thus, it is essential 

to find other strategies that give uniform MO composite materials with precise control 

over the particle distribution and balance light losses and concentration of MO species.  

Self-assembly of functional NPs and block copolymer (BCP) offers a 

straightforward “bottom-up” avenue for producing MO composite materials.58–62 BCPs 

can microphase segregate into periodic structures at the nanoscale, with facile control 

over the volume fraction and chemical nature of the two blocks. Strong NP/BCP 

interactions have been shown to selectively integrate functional NPs into specific 

domains with desired size, filling fractions, and building block directions.63–70 Resulting 

hybrid materials, with improved electric and optical properties, have been utilized in 

organic field effect transistors and polymeric Bragg mirrors.71–73  

As a critical MO component in hybrid materials, iron platinum (FePt) NPs are of 

great interest due to their excellent chemical stability and demonstrated applications in 

high-density magnetic storage, bio-sensing, and therapeutics.5,6,74–76 Simultaneous 
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synthesis4,77,78 and surface modification79 of size controlled FePt particles with diameters 

less than 10 nm allowed the construction of paramagnetic materials displaying unique 

size dependent properties. A series of BCPs including polystyrene-block-poly (2-vinyl 

pyridine) (PS-b-P2VP), polystyrene-block-poly (ethylene oxide) (PS-b-PEO), and 

polystyrene-block-poly (acrylic acid) (PS-b-PAA) have used to assemble with MNPs by 

strong hydrogen-bonding (H-bonding) interaction, leading to the enhanced phase 

segregation and long-rang ordering (Figure 4.2).80 Copolymer templates are expected to 

selectively template the NPs, resulting in the reduced light scattering and improvement of 

FR response by permitting the control of the NP filling fraction and distribution. To date 

few efforts have been directed toward the MO material fabrication using selective 

arrangement of MNPs into a BCP template. 

 

Figure 4.2 Well-ordered lamellae morphology using modified FePt NPs and PS (13.7k)-
b-P2VP (5.2k) BCPs via H-bonding interaction. 40 wt % loading of FePt NPs introduced 
order-to-order transition (Courtesy to Dr. Xinyu Wang, adapted from reference 80 in 
Chapter 4).  
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4.1.5 Project Overview 

In this work, a solution-processable method has been demonstrated to prepare MO 

materials of high Verdet constants at room temperature by integrating FePt NPs into a 

(PS-b-P2VP) template (Figure 4.3). NPs with core diameters (dcore) from 1.9 to 9.3 nm 

were synthesized and modified with gallic acid (GA) to enable H-bonding interactions 

with the P2VP domains. The selective distribution of particles in the P2VP domain at the 

nanoscale reduced light scattering and achieved large Verdet constants in conjunction 

with improved transparency compared to conventional composites. The roles of particle 

size, loading, and optical wavelength played in the FR response of BCP based polymeric 

composites have been systematically investigated. This work was conducted in 

collaboration with Norwood group at University of Arizona. Alexander Miles and Dr. 

Palash Gangopadhyay measured the FR responses of composites. The author 

acknowledges Professor Norwood and Dr. Palash Gangopadhyay for detailed discussion 

and interpretation of FR measurement results. 

 

Figure 4.3 Project overview: (a) Surface modification of FePt NPs using gallic acid (GA) 
as a hydrogen bonding donor followed by selective NP dispersion in the P2VP domain 
within a symmetric PS-b-P2VP BCP template (b) setup of FR response measurement, 
courtesy to Norwood group. 
  

On the other hand, introducing the MNPs on the substrate of periodical structures 

can also be achieved by using the imprinting method, which has been demonstrated by 
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our group81 (Figure 1.4) with general applicability to a wide range of metal oxides NPs. 

In this project, another type of commercial available MNP was surface modified. 

Together with FePt-GA NPs solutions, two different MNPs inks were used to prepare 

MNPs grafting film on substrate. A preliminary test was performed by Norwood group 

and the FR behavior difference from the BCP composites were briefly discussed.  

 

Figure 4.4 Nanoimprinting of MNPs using polar suspension and polydimethylsiloxane 
(PDMS) stamp. The feature sizes of pattern were transferred from a master substrate 
(courtesy to Yiliang Zhou for procedure sketch). 

4.2 Experimental 

4.2.1 Materials 

4-Hydroxybenzoic acid (HBA) (99%) and gallic acid (GA) (98%), oleylamine 

(80%-90%) and oleic acid (97%) were purchased from Acros Organics. Dioctyl ether 

(99%), iron (0) pentacarbonyl (> 99.99% traces metals basis), platinum acetylacetonate 

(97%), homo polymer P2VP (Mn ~152 kg/mol, PDI ~1.04) were purchased from Sigma 

Aldrich. 1,2-hexadecanediol (>98%) was purchased from TCI America. Fe3O4, high 

purity, 99.5+%, 15-20 nm powders were purchased from US research nanomaterials, Inc. 

PS (102 kg/mol)-b-P2VP (97 kg/mol) fP2VP ~ 48.7 %, PDI~1.12 was purchased from 

Polymer Source, Inc. Common solvents were purchased from Fisher Scientific. All 

reagents were used as received without further purification. 
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4.2.2 Preparation of Iron Platinum Nanoparticles 

FePt NPs with core diameters from 1.9 to 9.3 nm were synthesized and surface- 

modified following established procedures.4,78,79 Typically hexane was removed from 

each 50 mg of as-prepared FePt NPs solution (10 mg/mL) under a gentle nitrogen flow 

and 25 mg/mL GA (20 mL ethanol) solution was added immediately to the dried solids. 

The mixture was kept under sonication for two hours, and then left stirring overnight. The 

FePt-GA NPs were precipitated in a 200 mL 1:10 (v/v) ethanol/hexane mixture solvent 

with a neodymium magnet (2 inch × 2 inch × ½ inch, McMaster-Carr). Purified NPs were 

passed through a 0.2 µm PTFE filter and were stored in dimethylformamide (DMF).79 

4.2.3 Preparation of Commercial Available Magnetic Nanofillers Ink   

In a typical experiment, 100 mg commercial Fe3O4 MNP powders were mixed 

with 20 mL (25 mg/mL) HBA ethanol solution. The mixture was sonicated for at least 2 

hours and kept stirring over night. The suspension was precipitated in a 100-150 mL 1:5 

(ethanol/hexane) mixture solvent with a neodymium magnet. Purified NPs were passed 

through a 0.45 µm PTFE filter and then preserved in ethanol, DMF or 1,2-propendiol.  

4.2.4 Preparation of Nanocomposite Films 

FePt-GA NPs with different dcore with varied concentrations (from 0.1 %, 0.5 %, 

1 %, 2.5 %, 5 %. 7.5 % to 10 wt %) were mixed with PS (102k)-b-P2VP (97k) freshly 

prepared solution. The concentration of the blend solution was diluted to 2 wt % (10 mg 

solid content) with a mixture solvent of tetrahydrofuran (THF)/DMF (vT:vD=7:3). The 

solution was then drop cast onto pre-cleaned glass slides (area ~ 1” × 3” inch square) and 
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dried at room temperature. The films were then annealed in saturated chloroform vapor at 

room temperature for at least 2 days, and then slowly dried in air for 1 day. 

4.2.5 Preparation of Imprinted Nanoparticles Films 

The feature sizes of PDMS stamps were transferred from the master substrate by 

crosslinking commercial Sylgard 184 silicone. Two feature sizes were utilized: pitch 

1000 nm, width 500 nm, height 500 nm and pitch 480 nm, width 240 nm, height 100 nm, 

respectively. The MNP solutions were either in DMF or 4:1 volume ratio of ethanol and 

1,2-propendiol at high concentration 80-100 mg/mL. The PDMS stamp were immediately 

pressed on the spincoated film (2000-3000 rpm, 30-45 seconds, dependent of ink 

concentration) and dried on a hot plate for 2 hours. The stamp was gently pealed off from 

the film when solvent was completely removed. A well-formed grating film usually 

displays shining color.81 

4.2.6 Characterization 

Transmittance electron microscopy (TEM) was carried out with a JEOL 2000FX 

(accelerating voltage of 200kV) to investigate NP size and composite morphology. The 

samples were prepared by dropping dilute NP solution onto a thin carbon film supported 

by a copper grid. The size distribution of NPs was analyzed for a sample size of 300-400 

particles with a standard image analysis software (Image J).  Electron diffraction images 

of NPs were calibrated with gold deposited carbon film. Thermogravimetric analysis  

(TGA) was performed on TA Instruments Q500, and the weight fraction of the FePt 

metal core was measured from 20 ° C to 800 °C at 10 °C/min under an air purge flow.  X-

ray diffraction (XRD) was performed using a Panalytical X-pert X-ray powder 
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diffractometer and X-ray reflectometer. The crystal structures of FePt NPs of varioius 

sizes were characterized with 5-10 mg FePt NPs powders with a 2θ scan from 30° to 

110°. Vibrating sample magnetometer (VSM) measurements were performed on a 

Microsense EZ9 with FePt NPs copolymer composite films at a room temperature. A 

solution was dropcast on a 5mm × 5 mm Si wafer for at least three times to yield the 

samples. Ultraviolet–visible spectroscopy (UV-vis) was performed on a Cary 5000 UV-

Vis-NIR spectrometer to characterize the film absorption coefficient as a function of 

wavelength in the same regions of the thin films sampled in the thickness and Faraday 

rotation measurements. Small angle X-ray scattering (SAXS) was carried out on a 

Ganesha SAXS-LAB and performed with the Cu Kα 0.154 nm line. Bulk film was 

carefully scraped and secured in the center of a washer with Kapton tape. Microtoming 

was performed on a Leica Ultracut UCT microtome at a room temperature. Composite 

samples were prepared as 50 nm thin sections collected with carbon film on copper grids 

for microscopy, followed by subsequent iodine staining to increase P2VP domain 

contrast. Profilometry was performed on a Veeco Dektak 150 and the film thickness of 

the dropcast film was determined by contact mode with a minimum of three scans per 

film. Atomic Force Microscopy (AFM) was performed on SPM Dimension 3100 

scanning probe microscope. Scanning Electron Microscopy (SEM) was carried on the 

FESEM Magellan 400. Because the grafting MNPs film might be ferromagnetic, only 

top-view mode was performed due to potential damage to the EM lens. 

Faraday rotation measurements (courtesy of the Norwood group). The Verdet 

constants were measured in a two-pass sinusoidal magnetic field driven homodyne 

apparatus using a NewFocus Nirvana 2017 auto-differential detector with efficient 
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common-mode noise cancellation (Figure 4.3(b), courtesy to Norwood group). This 

detector employed in conjunction with a lock-in amplifier, allowed for accurate 

measurement of small Faraday rotations. Due to the nonreciprocal nature of FR, such a 

two-pass setup generates twice the rotation for a given magnetic field and cancels any 

rotation effect present that is reciprocal in nature. Inherent anisotropy in FePt NPs 

copolymer composites may generate such reciprocal rotations of the polarization as a 

result of circular birefringence and scattering. The sinusoidal output from the internal 

oscillator of the lock-in amplifier, a Stanford Research Systems SR830, was fed into a 

home-built low-noise amplifier/solenoid driver to create 20 to 400 gauss of sinusoidal 

magnetic flux density at the composite film.  The magnetic fields were calibrated 

periodically using a Hall probe AC gauss meter. A polarization controller consisting of a 

half-wave plate and a high extinction-ratio linear polarizer produced the light in a known 

polarization state. After a non-polarizing beam splitter (NPBS), the light was passed 

through the sample twice, yielding a rotation of the linear polarization state of 2θ, where 

θ is directly proportional to the sample thickness, applied magnetic field, and Verdet 

constant. The transmitted light is then spatially separated into vertically and horizontally 

polarized components (denoted s and p) by a Wollaston prism, focused by a singlet lens, 

and detected with an auto-differential detector. The detector used here is an InGaAs 

(1000-1600 nm) based Nirvana autobalanced front-end receiver, Model 2017 from New 

Focus. The wavelengths used in these experiments are 850 nm, 980 nm, 1310 nm, and 

1550 nm (all distributed feedback semiconductor diode lasers). Auto-balanced phase-

sensitive detection was used to reduce common-mode laser noise reference correction. 

The measured rotation was generally recovered as a phase change, a ratiometric quantity, 



 

 77 

unlike the more common traditional polarimetric method, i.e., through a polarizer/rotating 

analyzer. 

4.3 Results and Discussions 

4.3.1 Iron Platinum Nanoparticles Size Distributions 

Four batches of FePt NPs were synthesized by reduction of platinum and iron 

precursors and the average dcore were measured as 1.9, 4.9, 5.7 and 9.3 nm with narrow 

size distributions. The TEM images and corresponding size distribution histograms are 

shown in Figure 4.5. After surface modification, the particles exhibited fair stability in 

polar solvents (e.g. DMF) without obvious aggregation, ensuring the selective dispersion 

in the P2VP domain. The particle geometry was observed to undergo a spherical to cubic 

transition as the particle core diameter increased, consistent with previous work.78 

 

Figure 4.5 TEM images of FePt NPs and size distribution histogram: (a) 1.9 nm, (b) 4.9 
nm, (c) 5.7 nm and (d) 9.3 nm of average core diameter. Spherical estimation was used 
for (a)-(c) and square geometry was applied to (d) in Image J analysis. 
 

The core metal weight fraction of particles and the corresponding volume/filling 

fractions (fNP) in the BCP were calculated and are provided in Table 4.1. Among the 

composites, fNP ranged from 0.02 % to 4.8 % depending on particle size and loading. fNP 
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was calculated with using the equation fNP=VNP/(VNP+VBCP), in which VNP and VBCP 

referred to NP and BCP volumes accordingly, with the following known or estimated 

densities: PS-b-P2VP ~ 1.05 g/cm3, Fe ~7.8 g/cm3, Pt ~ 21.3 g/cm3 and GA~ 1.7 g/cm3.79 

Fe and Pt atoms pack at a 1:1 mole ratio based on the synthesis protocol. NPs with dcore 

~1.9 nm had comparatively high volume fraction due to insufficient GA stabilization for 

small FePt NPs; the excess free ligand was attributed to the low volume fraction 

compared to other samples. Because no apparent aggregation was observed in polar 

solvents, the NPs are believed to have strong H-bonding interactions with the P2VP 

domain. 

Table 4.1 FePt NPs core weight percentage and volume fraction (fNP,,%) in the 
nanocomposites 

dcore 
a 

(nm) 
Coreb 
wt % 

fNP
c  

0.1wt % 
fNP  

0.5wt % 
fNP  

1.0 wt % 
fNP   

2.5 wt % 

fNP  
5 wt % 

fNP  
7.5 wt % 

fNP  
10 wt % 

1.9 30 0.04 0.23 0.46 1.2 2.3 3.6 4.8 
4.9 81 0.02 0.12 0.25 0.63 1.3 2.0 2.7 
5.7 77 0.03 0.14 0.29 0.73 1.5 2.3 3.1 
9.3 85 0.02 0.07 0.16 0.39 0.80 1.2 1.7 

a Average core diameter as analyzed by Image J. b Inorganic weight fraction as measured 
by TGA. c Volume fraction of NPs as calculated according to ligand and polymer density. 

 

Figure 4.6 Crystal structure of size controlled FePt particles: (a) XRD spectrum of dcore ~ 
5.7 nm and 9.3 nm FePt NPs powder, fcc characteristic peaks agree with previous results; 
(b) dcore ~ 9.3 nm and (c) dcore ~ 5.7 nm are electron diffraction images, the halo pattern 
corresponds to the XRD spectrum calibrated with a gold standard sample. 
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To further confirm the FePt MNPs structure, both electron and X-ray diffraction 

were conducted and indicated (Figure 4.6) face centered cubic (fcc) FePt lattice structures 

with characteristic peaks (111)/(200), (220)/(202) and (311)/(113). The strong and clear 

ring pattern in the electron diffraction spectra indicated high crystallinity of the FePt NPs. 

The identical 2θ angle, and the decrease of the full width at height maxima (FWHM) as 

the particles size increased agreed well with reported work.4,77,78 

4.3.2 Morphology and Magnetism of Nanocomposite 

SAXS was used to determine the NP/BCP blend morphology and domain spacing 

(d-spacing). Because paramagnetic materials are temperature sensitive, solvent annealing 

was adopted to avoid changes in the magnetic properties. As shown in Figure 4.7 (a), the 

SAXS 1D profiles of the polymer showed an obvious primary peak at q*= 0.087 nm-1 

suggesting phase separation of the composite with a d-spacing of 72 nm (d = 2π/q*). This 

primary scattering signal remained apparent upon the addition of NPs indicating a 

persistent strong phase segregation of NP/BCP blends. The value of q* shifted to a 

slightly lower value, indicating that sequestration of NPs began to swell the block. 

Figures 4.7 (b) and (c) (courtesy to Dr. Xinyu Wang) show that GA capped FePt 

NPs had selective dispersion in the P2VP domain (dark area stained with iodine). The 

paramagnetic NPs arrays could be self-assembled into the linear BCP template with NPs 

sizes less than 10 nm. Although high order reflection was not observed in the 1D 

spectrum, the TEM images confirmed that lamellae morphology was obtained through 

solvent annealing. The absence of higher order peaks may result from chain 

entanglements of high molecular weight BCPs that leads to slow ordering dynamics or 

from background scattering signals generated from the NPs. As stated in the introduction, 
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the hydrophilic FePt NPs have been shown to enhance BCP phase segregation. The 

detailed morphology trantion of FePt/BCP nanocomposite have been fully elaborated by 

Dr. Xinyu Wang.80 

 

Figure 4.7 Room temperature SAXS profiles of neat PS (102 kg/mol)-b-P2VP (97 
kg/mol) with (i) 1.9 nm, (ii) 4.9 nm, (iii) 5.7 nm and (iv) 9.3 nm FePt NPs at 2.5 wt % 
loading. TEM images of 10 wt % loading of (b) 1.9 nm NPs and (c) 9.3 nm NPs in BCP. 
The P2VP domain was lightly stained with iodine: particles show selective distribution 
through favorable H-bonding interactions (provided by Dr. Xinyu Wang). 
 

The magnetization of prepared FePt NPs/BCP composites were correlated with 

increasing the core diameter of FePt NPs (Figure 4.8, measured by Dr. Palash 

Gangopadhyay). FePt NPs were paramagnetic at the room temperature (298 K), 

consistent with previous studies. There were no differences in magnetization between in-

plane and out-of-plane measurement geometries indicating isotropic bulk magnetization 

in these films. Usually, paramagnetic materials produce induced fields along the direction 

of the applied field, and lose their magnetization upon removal of the applied field or at 

elevated temperatures higher than its Curie temperature. Paramagnetic NP/BCP 

composites, due to a lack of coercivity, are ideally suited for MO magnetic field sensor 
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applications, and the current study enabled us to choose candidate materials with 

maximum magnetization.4,77 Phenomenologically, the wavelength dependent FR was 

directly proportional to the available volume magnetization of the transducing material. 

Because 4.9 nm and 5.7 nm FePt NPs have similar core diameters, a representative 

particle of close diameter (5.5 nm) was measured.  

 

Figure 4.8 Hysteresis loops of 2.5 wt %1.9 nm, 5.5 nm and 9.3nm FePt NPs in PS (102 
kg/mol)-b-P2VP (97 kg/mol) composite. The magnetization falls back to zero in absence 
of the applied magnetic field for all sizes of particles (the measurement was performed by 
Dr. Palash Gangopadhyay). 

4.3.3 Verdet Constant versus Nanoparticles Loading 

To determine the Verdet constant, the film thicknesses (L) of the composites were 

determined by surface profilometry (measured by Alexander Miles). The FePt NP BCP 

composite films were prepared by drop-casting onto a 3” × 1” inch glass slide, resulting 

in wide thickness variations. The spot size in the FR measurement setup is < 1mm2, and 

measurements were carried out on multiple spots on each film.  
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Table 4.2 Film thickness measurement of resulting FePt/BCP composite 
Wt% 
FePt 

Avg. Thick 
(µm) 

Avg Ra 
(nm) 

Max Error 
(nm) 

Uncertainty 
(%) 

 Neat BCP 
0 3.17 57.3 69.80 2.20 
 1.9 nm FePt-Composite 

0.1 7.62 71.6 298.95 3.92 
0.5 8.44 66.7 456.40 5.41 
1 8.34 70.6 1304.85 15.65 

2.5 8.98 38.1 49.62 0.55 
5 7.06 17.3 2299.67 32.57 

7.5 8.86 523 636.24 7.18 
10 7.96 53.2 120.12 1.51 

 4.9 nm FePt Composite 
0.1 6.11 28.7 28.72 0.47 
0.5 7.83 65.9 65.90 0.84 
1 9.40 152 151.60 1.61 

2.5 8.49 39.9 39.88 0.47 
5 6.66 37.5 40.03 0.60 

7.5 5.59 41.1 41.07 0.73 
10 4.97 206 205.57 4.13 

10* 10.74 81.8 836.00 7.79 
15* 12.30 155 171.00 1.39 
20* 11.43 93.5 691.00 6.04 
25* 10.60 31.3 43.00 0.41 

 5.7 nm FePt Composite 
0.1 11.21 439 581.87 5.19 
0.5 6.29 46.1 979.53 15.56 
1 7.39 168 1012.86 13.71 

2.5 6.83 82.1 488.56 7.15 
5 6.61 50.8 194.69 2.95 

7.5 6.46 44.5 152.73 2.37 
10 6.66 39.7 88.65 1.33 

 9.3 nm FePt Composite 
0.1 10.08 312 483.43 4.80 
0.5 10.69 651 686.18 6.42 
1 9.68 602 754.62 7.80 

2.5 7.12 101 378.31 5.31 
5 5.98 94.0 109.13 1.83 

7.5 7.70 75.0 179.06 2.33 
10 7.10 79.2 143.58 2.02 
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Given that any error in the thickness measurement directly affects the calculated 

Verdet constant, thickness was measured only on the 1mm2 segment of film actually used 

for each of the FR measurements. Thicknesses and corresponding uncertainties were 

taken into account during Verdet constant calculations and constitute the error bars in 

data plots (Table 4.2, measured by Alexander Miles).  

The Verdet constant (V= θ/BL) was determined through the FR measurements, in 

which the total rotation angle of the polarized light, film thickness, and applied magnetic 

field were measured. The FR performance contributed by the 1 mm thick glass substrate 

was accounted for at each wavelength in the NIR regime and the experimental values for 

the glass substrate were found to agree well with the existing literature (Table 4.3). 

Table 4.3 Verdet constants (V) of the glass substrate 
 

Wavelength (λ) 
(nm) 

V 
(°/T⋅m) 

845 146.8 
980 104.0 
1310 74.0 
1550 39.1 

 
The measured Verdet constants for FePt NP/BCP composites are listed in Table 

4.4. The Verdet constant of NP/BCP composites at 845 nm with 10 wt % loading and 

dcore ~ 4.8 nm FePt particles was as high as -6.3×104 °/T⋅m. The FR response of 

composite surpassed TGG, which has V was around ~ 8.3×103 °/T⋅m at 632 nm.22 The 

Verdet constant of neat polymer film was measured as +12 °/T⋅m at 980nm, thus the 

strong MO response of the NP/BCP composite was introduced by the addition of FePt 

NPs. Unlike single crystal materials, this high Verdet constant NP/BCP composite was 
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prepared through a solution process, making versatile coating techniques and large area 

films on flexible substrates possible.   

Table 4.4 Verdet constants (V) of FePt NP/BCP composite films (104 °/T⋅m), calculation 
and measurements by Norwood group 

 
 λ=845 nm λ=980 nm 
wt %/ dcore 1.9 nm 4.8 nm 5.7 nm 9.3 nm 1.9 nm 4.8 nm 5.7 nm 9.3 nm 

0.10 -3.82 -5.25 -2.81 -3.18 -2.96 -3.52 -2.16 -2.18 
0.50 -3.43 -4.09 -5.25 -2.99 -2.71 -2.95 -3.71 -2.05 
1.00 -3.62 -3.27 -4.52 -3.18 -2.87 -2.05 -2.99 -2.27 
2.50 -3.20 -3.71 -4.83 -4.42 -2.57 -2.70 -2.81 -3.27 
5.00 -4.39 -4.79 -4.79 -5.34 -3.30 -3.46 -3.30 -3.84 
7.50 -2.99 -5.51 -4.88 -4.00 -2.58 -4.13 -3.20 -2.35 
10.00 -3.61 -6.27 -4.70 -4.40 -2.91 -4.70 -3.29 -3.18 

 λ=1310 nm λ=1550 nm 
wt%/ dcore 1.9 nm 4.8 nm 5.7 nm 9.3 nm 1.9 nm 4.8 nm 5.7 nm 9.3 nm 

0.10 -1.09 -2.27 -1.22 -1.35 -1.16 -1.37 -0.37 -0.55 
0.50 -0.98 -1.80 -2.21 -1.20 -1.01 -0.96 -0.67 -0.64 

1.00% -0.98 -1.45 -1.93 -1.43 -0.89 -0.91 -0.57 -0.58 
2.50% -0.90 -1.66 -2.07 -1.94 -0.90 -1.01 -0.62 -0.80 
5.00% -1.14 -2.10 -2.06 -2.25 -1.15 -1.26 -0.65 -0.79 
7.50% -0.91 -2.33 -2.10 -1.77 -0.90 -1.48 -0.68 -0.67 
10.00% -1.02 -2.79 -2.08 -1.90 -0.99 -1.74 -0.77 -0.70 

aThe given weight percentages include the capping layer of GA, results of 1.9 nm 
samples under longer wavelength are currently not available. 
 

The Verdet constant of homopolymer/FePt composites under different wavelength 

was measured as a control group (Table 4.5). First, the absolute value of homopolymer 

composite was at least 2 magnitudes smaller than the BCP composite. This result 

confirmed that the nanostructures of BCP assist to direct the MNPs and reduce the light 

scattering loss. However, one phenomenon is unusual: the Verdet constant was positive 

rather than negative as expected. The inconsistence of homopolymer composite behavior 

is not completely explained so far. Serious chain entanglement or the inhomogeneity of 

MNPs dispersion in homopolymer matrix may be attributed to the unexpected results. 
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Table 4.5 Verdet constant of homopolymer/9.3 nm FePt-GA at 10 wt % 
 

Wavelength (λ) 
(nm) 

V 
(°/T⋅m) 

980 848 
1310 638 
1550 442 

4.3.4 Imprinted Films Morphology  

The surface modified commercial MNPs had relatively stable dispersion in the 

polar solvent (Figure 4.9). The shapes of MNPs were not spherical but more like very 

irregular. Large MNPs aggregation could still be observed over 100 nm but less than 500 

nm. The dispersion of commercial MNPs was not as good as FePt-GA NPs but stable 

enough for imprinting film on the glass or the Si substrate. 

 

Figure 4.9 TEM images of (a) asymmetric X=3-4 nm, Y=5-7 nm FePt-GA NPs in DMF 
solution and (b) surface modified commercial MNPs (15-20 nm according to supplier) in 
1,2-propendiol and ethanol, stabilized with HBA. 
 

The morphology of imprinted films on Si substrate was then characterized by the 

AFM and SEM top-view (Figure 4.10). Qualities of Fe3O4 and FePt NPs imprinting films 

seemed to have the best results with the 500 nm PDMS stamp. The pitch and width of the 

master were completely transferred to the MNPs films while the height was left with an 

average height of 300 nm, which resulted from the evaporation of solvent. The height or 
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width of pillars may have further shrinkage under thermal calcination treatment.81 In spite 

of the good control over the feature size, there are still remaining aggregated NPs on top 

of imprinted film, which was obvious in the SEM images. To get rid of these grains, 

smaller MNPs or better commercial suspension would be ideal. 

 
 

Figure 4.10 Morphology of imprinted films on Si wafer: (a) and (c) AFM and height 
profiles imprinted MNPs films using 500 nm PDMS stamp; (b) and (d) SEM images of 
FePt and Fe3O4 films respectively. All scale bars are 2 µm. 
 

Rest samples tested with other feature size or MNPs showed poor control of film 

quality. Limited ink stability, low concentrations and solvent viscosity were attributed to 

the phenomenon. In spite of limited exploration of this MNPs imprinting, this method 
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still proved to be very useful in patterning the functional NPs for ideal nanostructures 

without organic polymer matrix. 

Figure 4.11 shows the preliminary FR measurement of FePt films, measured by 

Dr. Palash Gangopadhyay. The imprinted film contained much higher magnetic species 

and feature sizes were 2-3 times larger compared to BCP based composites. Active MO 

performances were observed as well as polymer/MNPs composite. However, there were 

remains of polarization plane rotation after removal of magnetic fields due to the highly 

ordered pillar structures.  

 

Figure 4.11 A preliminary FR response characterization of pillar structured FePt-GA 
NPs on glass substrate. The polarization plane of light can still be tilted after removal of 
the magnetic fields.  

4.3.5 Summary 

The self-assembly of MNPs and BCPs provides an effective strategy toward MO 

materials with Verdet constants up to ~ 104 °/T⋅m in the NIR regime at room temperature. 

The magnetic NPs introduce the improved FR performance, while neat polymer only has 

V~ 12 °/T⋅m under the same conditions. The Verdet constant of NP/BCP blends 
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decreased with increased measurement wavelength, consistent with paramagnetic 

composite behavior. In general, this method provides a simple route toward fabrication of 

high-performance MO material through a solution process. The method is compatible 

with dropcast-, spin-, rod- and blade-coating, providing the possibilities for the roll-to-

roll processing over large area of next-generation functional materials. 

The author acknowledges the Norwood group for the equal contributions and 

useful discussions of contents of Chapter 4. 
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CHAPTER 5  

SUMMARY AND OUTLOOK 

5.1 Incorporation of Large Functional Nanoparticles into Ordered Composite 

The first project systematically investigated the spatial distribution of gold 

nanoparticles (NP) ranging in size up to 0.8 times that of the target domain width in 

symmetric polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP) using hydrogen 

bonding-mediated (H-bonding) assembly. NP with core diameters (dcore) 2 nm, 5 nm, 9 

nm and 15 nm, are coated with ligands bearing phenol groups as the hydrogen donating 

sites for H-bonding including 2-(11-mercaptoundecyl) hydroquinone and thiol-terminated 

poly (4-hydroxystyrene). These hydroxylated NPs are selectively incorporated into the 

P2VP block (domain width L = 7-37nm) over a wide range of volume fractions (φ = 3 

vol %- 26 vol %). Particles distributions are biased towards the center of in the P2VP 

domains when dcore/L is greater than 0.3 and are otherwise uniformly distributed within 

the target domain. The H-bonding interactions between NP and BCP provide favorable 

enthalpic interaction to overcome the inherent entropy penalties mainly arising from 

polymer chain stretching upon the sequestration of large particles. This strong 

thermodynamic driving force provides a means of incorporating relatively large NPs 

within BCP templates to further enable the preparation of well-ordered composites that 

can take advantage of the attractive size-dependent properties of NPs. 

Recently, our group has demonstrated a simple strategy for preparation of large-

area porous hybrid films containing silica, carbon and gold on flexible substrate via 

photothermal processing (Figure 5.1).1 The films was constructed by self-assembly of 

sacrificial BCPs, Au NPs and cross-linked silsesquioxane, in which the polymer and 
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silica source provided the frame of mesopores and the Au NPs served as nanoheaters to 

transform light as heat.  

 
 
Figure 5.1 Illustration of a rapid and scalable process for the synthesis of hierarchical 
porous hybrid films of silica, carbon and gold on flexible substrate via photothermal 
treatment (adapted from reference 1 in Chapter 5).  
 

After photothermal treatment, the organic residues were removed and the films 

formed with uniform mesopores from 44-48 nm and interconnected macropores of more 

than 50 nm. Such hybrid material can be utilized in the electrode material due to the large 

surface area of conductive carbon and Au composition. The rapid photothermal treatment 

was completed in submillisecond, providing the opportunities for scaling-up to roll-to-

roll processing of large area electronic device.   

In the future, such hybrid porous materials are not limited to Au NPs, utilization 

of cheaper additives including iron oxides, graphene or graphene oxides, silicon NPs 

provides more possibilities for photothermal treatment. The resulting films are next-

generation promising electrode materials for lithium ion batteries or super-capacitors.2–5 
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5.2 High Molecular Mobility of Brush Block Copolymers 

A systematic study was conducted to investigate the morphology transitions that 

occur in polystyrene-block-poly (ethylene oxide) (PS-b-PEO) bottlebrush block 

copolymers (BBCP) upon varying PEO volume fraction (fPEO) from 22 % to 81 %. A 

series of PS-b-PEO BBCPs with different PEO side chain lengths were prepared using 

ring opening metathesis polymerization (ROMP) of PEO-norbornene (PEO-NB) (Mn ~ 

0.75, 2.0 or 5.0 kg/mol) and PS-norbornene (PS-NB) (Mn ~ 3.5 kg/mol) macromonomers 

(MM). A map of fPEO versus side chain asymmetry (Mn (PEO-NB)/Mn (PS-NB)) was 

constructed to describe the BBCP phase behavior. Symmetric and asymmetric lamellar 

morphologies were observed in the BBCPs over an exceptionally wide range of fPEO from 

28 % to 72 %. At high fPEO, crystallization of PEO was evident. Temperature controlled 

SAXS and WAXS revealed the presence of high order reflections arising from phase 

segregation above the PEO melting point. A microphase transition temperature TMST was 

observed over a temperature range of 150-180 °C. This temperature was relatively 

insensitive to both side chain length and volume fraction variations. The findings in this 

study provide insight into the rich phase behavior of this relatively new class of 

macromolecules, and may lay the groundwork for their use as templates directing the 

fabrication of functional materials. 

The morphology investigation of BBCP was not enough. Recently, our group also 

has demonstrated the rheological study of PS-b-PEO BBCPs and provides the solid proof 

that such macromolecules have high molecular mobility (Figure 5.2).6 The dynamic 

master curves of G’ (storage modulus) and G”(loss modulus) of BBCPs were built up at a 

reference temperature of 120 °C. In the intermediate regime, on rubbery plateau was 
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observed, which usually appeared in the linear polymer rheological response. The 

absence of rubbery plateau confirmed that the short side chain of BBCP did not have 

chain entanglement. Even at lower frequency, the entanglement of norbornene backbone 

was not observed either. The integral performance confirmed that high molecular 

mobility of BBCP of short side branches.  

 
Figure 5.2 Dynamic Master Curves of G’ (open symbols) and G” (closed symbols) for 
PS-b-PEO BBCP samples at a reference temperature of Tref = 120 °C. Labels indicate the 
following features (1) Glassy region, (2) Intermediate (Backbone) Relaxation, (3) 
Confined Terminal Flow. Curves shifted vertically by indicated scaling factors to provide 
clarity. b) Time Temperature Superposition shift factors aT (closed symbols) and bT (open 
symbols) for master curve. Line shows fit to WLF equation (adapted from reference 6 in 
Chapter 5).  
 

More questions of the BBCP linear viscoelasticity needed to be answered. Due to 

the testing temperature, rheological behavior under low frequency was not quite clear. 

The phase segregation of BBCPs may play a role in the “terminal flow” regime and the 

rheological response should differ from the homo-brush polymers.7–9 There are several 

limitations current PS-b-PEO BBCPs for rheology study: (1) crystallization of PEO 

block, (2) glass transition of PS block and (3) the relatively weak long range ordering. In 
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order to better investigate the BBCPs behavior at low frequency, samples of long-range 

ordering and non-crystallized blocks would be of great interest. 

5.3 Anisotropic Magnetic Nanocomposite 

Magneto-optical (MO) composites with excellent Faraday rotation (FR) response 

were fabricated using iron platinum (FePt) nanoparticles (NPs) and polystyrene-block-

poly (2-vinyl pyridine) (PS-b-P2VP) block copolymers (BCPs). Gallic acid (GA) 

functionalized FePt NPs with average core diameters (dcore) of 1.9, 4.9, 5.7 and 9.3 nm 

have been selectively incorporated into a P2VP domain through hydrogen bonding 

interactions. The use of copolymer templates to selectively arrange the magnetic NPs 

guaranteed high MO performance with little trade-off in terms of scattering loss, 

providing a simple strategy to preparing functional materials for MO applications. As a 

result, Verdet constants of a 10 wt % loaded 4.9 nm FePt NP composite reached absolute 

magnitudes as high as ~ -6×104 °/T⋅m at 845 nm, as determined by FR measurements at 

room temperature. The dependence of the nanocomposite FR properties on particle 

diameter, loading (from 0.1 wt % to 10 wt %) and composite nanostructure were 

systematically investigated at four infrared wavelengths (845, 980, 1310 and 1550 nm). 

In the future, the interpretation of NPs size or loading effects of films MO 

performance needed to be investigated in more details. Acknowledgement to the 

Norwood group, they propose to use number density and Figure of merit to discuss the 

results rather than use the NPs loading directly. From some perspective, this method is 

quite reasonable. NPs of different batches usually have various core weight percent and 

size, thus the comparison of loading including the organic ligand may be meaningless. 

On the other hand, the Figure of merit takes both Verdet constant and absorption 
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coefficient into the consideration, which gives a better evaluation of material integral 

performance. The preparation of films needs improvement as well. In the third project, a 

drop-cast method on flat stage was utilized. In spite of relatively roughness errors for 

most film, 2-3 samples still show poor control of films homogeneity (Table 4.2). To 

acquire consistent results, films using spin- or rod coating may be quite necessary in the 

next stage.  

The MO materials are not limited to the nanospherical additives. Magnetic 

nanorods (NRs) become quite popular in electrical or optical material fabrication because 

their geometries introduce anisotropic electronic or ionic orientations or 

transportations.10–12 Thanks to Lacroix group at Institut National des Sciences Appliquées 

de Toulouse (France), narrow distributed of high aspect ratio cobalt NRs have been 

synthesized (Figure 5.3). Integration of such kind of NRs into brush block copolymers or 

imprinting of these NRs ink as pillar structures are of great promise to generate materials 

of anisotropic FR response. Using the selective hydrogen bonding donor group ligands as 

stabilizer, these NRs have possibilities to be well dispersed in the polar solvent for 

subsequent blending. 

 
 

Figure 5.3 TEM images of cobalt NRs in ethanol suspension: (a) average core diameter 
19 nm, length 100 nm and (b) average core diameter 14.5 nm, length 20-40 nm (courtesy 
to Lacroix group at Institut National des Sciences Appliquées de Toulouse, France). 
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