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ABSTRACT 

THE EFFECTS OF EXERCISE TRAINING ON INSULIN SUPPLY AND 
DEMAND IN BREAST CANCER SURVIVORS 

MAY 2017 

RICHARD VISKOCHIL, B.S., UNIVERSITY OF MIAMI 

M.S.Ed, UNIVERSITY OF MIAMI 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Barry Braun 

  

Elevated insulin concentrations may influence cancer and cardiometabolic disease 

onset and prognosis, and lower insulin levels after exercise may contribute to disease 

prevention and overall health. The effect of exercise training on systemic and tissue-

specific insulin supply and demand in breast cancer survivors and adults at risk for 

cardiometabolic disease is unclear. The objective of this dissertation was to evaluate the 

effects of exercise training on postmeal insulin concentrations in breast cancer survivors, 

and identify mechanisms responsible for changes to insulin supply and demand following 

exercise training in breast cancer survivors and adults at risk for cardiometabolic disease. 

Study 1 investigated differences between systemic and tissue-specific responses 

to exercise training and/or the anti-diabetes drug metformin in adults with prediabetes.  

Fasting proinsulin concentrations were lower following combined exercise and 

metformin (-24%), and insulin clearance was higher in the metformin and combined 

exercise and metformin groups (+19% and +17%). There were no differences in the 

exercise or placebo group, and taken together with previous work from our lab, suggests 

that exercise regulates insulin supply and demand systemically, while pharmacological 

adaptations may be tissue-specific.  
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Study 2 evaluated the effects of physical activity on postmeal insulin 

concentrations in breast cancer survivors. Fifteen women completed 12 weeks of exercise 

training with pre- and post-intervention oral glucose tolerance testing. Insulin 

concentrations 120 minutes following glucose ingestion decreased (68.8±34.5 vs. 

56.2±31.9 uU/ml, p<0.05), along with leptin (-22.7%) and estrogen (-20.9%), biomarkers 

of cancer risk. This postmeal insulin response may have been blunted by the use of 

aromatase inhibitors.  

Study 3 assessed the specific components of insulin supply and demand that may 

contribute to the blunted or absent postmeal insulin response observed in study 2. There 

was a significant increase in estimated skeletal muscle glucose uptake following exercise 

training (5.7±1.8 vs. 7.2 ±1.8, mmo*pmol*kg/m2 p<0.05), however there were no 

changes to systemic measures of insulin supply and demand. This, combined with 

reductions in leptin and estrogen (study 2), suggests that exercise training was sufficient 

to induce tissue-specific adaptations but was unable to alter systemic insulin supply and 

demand in breast cancer survivors. 
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CHAPTER I 

INTRODUCTION 

Statement of the problem 

The American Society of Clinical Oncology expects newly diagnosed cases of 

cancer to double by the year 2030 and, as a result, cancer will dethrone heart disease as 

the number one cause of death in the United States (ASCO, 2013).  One in eight 

American women will be diagnosed with breast cancer in their lifetime, and the majority 

of these diagnoses will occur during or after menopause (Britt, 2012).  The high rate of 

breast cancer incidence, improvements in screening/treatment, and an aging population 

have resulted in a large (and growing) number of postmenopausal breast cancer survivors 

living in the United States, with recent estimates approaching 3 million women (Toriola 

& Colditz 2013).  While the majority of breast cancer survivors have been declared 

cancer free, breast cancer treatment often induces physiological and psychological 

changes that increase the risk of both cancer recurrence and cardiometabolic disease, 

such as type 2 diabetes.  

Three specific aspects of breast cancer treatment may influence breast cancer 

recurrence and/or the risk of cardiometabolic disease. First, many chemotherapy drugs 

impair cardiac function (Kirkham et al. 2015), which reduces aerobic fitness and 

increases the risk of cardiovascular disease (Jones et al. 2016). These effects are not 

confined to the periods of chemotherapy delivery alone, since most breast cancer 

survivors immediately start a multi-year plan of secondary pharmacotherapy (e.g. 

aromatase inhibitors) that can have detrimental effects on cardiovascular and bone health 
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(Zagar et al. 2016, Hadji et al. 2011). Additionally, women undergoing chemotherapy 

and radiation are given glucocorticoids (e.g. Dexamethasone) as anti-emetics, which 

often raise glucose concentrations into the range of diabetes during treatment (Lu et al. 

2014, JuanJuan et al. 2015). Finally, cancer treatment often induces physical and 

psychological fatigue (Berger et al. 2012, Stagl et al. 2014), which leads to lower levels 

of physical activity and increased sedentary behavior both during and after treatment. 

Given the large and growing number of breast cancer survivors in the United States, 

developing a greater understanding the relationship between modifiable cancer and 

cardiometabolic risk factors and using that knowledge to design precision interventions 

that improve prognosis has clear public health implications.  

Being physically active reduces the risk of cancer recurrence and improves the 

prognosis of cancer survivors (Moore et al. 2016). Epidemiological evidence suggests 

that women who are meeting the US physical activity guidelines (150 min/wk of 

moderate to vigorous PA) are 20% less likely to develop breast cancer, and breast cancer 

survivors meeting the physical activity guidelines are 40% less likely to have a cancer 

recurrence or cancer related death (Ballard Barbash et al. 2012). The mechanisms behind 

this risk reduction are multi-factorial (e.g. weight control, reduced inflammation), 

however the results of several large cross-sectional studies and randomized controlled 

trials suggest that insulin may play a role (Ahern et al. 2013, Goodwin et al. 2012, Irwin 

et al. 2005). The amount of insulin released into the circulation (insulin supply) is based 

largely on the amount of insulin required by the body to maintain blood glucose 

concentrations within a relatively tight physiological range (insulin demand). Obesity and 

sedentary behavior reduce the effectiveness of insulin to regulate blood glucose, and this 
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insulin resistance (i.e. increased insulin demand) causes a compensatory increase in 

insulin supply in order to match the higher demand and maintain glycemic control.  

Without this compensatory hyperinsulinemia most individuals with insulin resistance 

(approximately 30-40% of the population in the United States) would likely develop 

frank type 2 diabetes.   

Although hyperinsulinemia helps restrain blood glucose and prevent T2D, it may 

be detrimental to cancer risk. In addition to regulating blood glucose levels, insulin 

stimulates cell growth and proliferation in both normal and cancerous cells (Gallagher et 

al. 2013). In a study by Irwin et al. women in the highest quartile of circulating insulin 

have a 3x greater risk of cancer mortality compared to women in the lowest quartile 

(Irwin et al. 2011). Several recent epidemiological studies have also suggested a role for 

insulin in cancer prevention. While the causal mechanisms are unclear, women who 

regularly engage in physical activity or those taking the anti-hyperglycemia drug 

metformin have a reduced risk of developing cancer, which is potentially mediated by 

reductions in circulating insulin concentrations following each treatment (Goodwin et al. 

2015, Del Giudice et al. 1998). Despite epidemiological and cell/animal model evidence 

supporting a role of insulin in carcinogenesis, results from exercise training studies in 

breast cancer survivors have been largely equivocal (Fairey et al. 2003, Ligibel et al. 

2008, Irwin et al. 2009, Campbell et al. 2012 and Guinan et al. 2013). This has lead some 

researchers to conclude that elevated insulin concentrations may contribute to 

carcinogenesis, however exercise-induced reductions in insulin are either absent or play a 

negligible role in cancer prognosis and/or the risk of recurrence in breast cancer survivors 

(Irwin et al. 2009).   
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One limitation of the prior interventions designed to evaluate the 

mediating/moderating effect of insulin on cancer risk and prognosis is the use of fasting 

insulin concentrations as the sole representation of glycemic control. Maintaining 

appropriate glucose concentrations involves complex regulation of insulin supply and 

demand on both a systemic and tissue-specific level across different metabolic states (e.g. 

fasting, postmeal), all of which have unique responses to physical activity. For example, 

fasting insulin concentrations primarily reflect the volume of insulin required for the liver 

to maintain appropriate glucose production and prevent low blood glucose.  After a large 

meal however, insulin supply increases dramatically as insulin demand shifts from 

restraining liver glucose production to inducing skeletal muscle glucose uptake. While 

lean, physically active individuals tend to have lower fasting and postmeal insulin 

demand compared sedentary obese individuals, there can be a large degree of discordance 

between fasting and postmeal muscle insulin demand both within and across different 

populations (Faerch et al. 2008). It is therefore possible for two individuals with very 

similar fasting insulin concentrations to have significantly different postmeal insulin 

concentrations due to differences in postmeal insulin demand (i.e. skeletal muscle insulin 

sensitivity). Since insulin is a mitogenic, dose-dependent contributor to cancer risk, the 

relationship between insulin and cancer likely cannot be extrapolated from fasting insulin 

concentrations alone, as postprandial insulin represents an equal, and in some cases 

greater, contributor to daily insulin exposure.  

Additionally, changes to insulin supply and demand following interventions  are 

not similar in magnitude across all tissues and in all metabolic states. For example, 

exercise training appears to reduce skeletal muscle insulin demand (i.e. insulin resistance) 
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to a much greater degree than liver insulin demand. Since skeletal muscle insulin 

sensitivity plays a significant role in postmeal, but not fasting, glycemic control, the 

magnitude of reductions in postmeal insulin are significantly greater than the reductions 

in fasting insulin following exercise training (Jenkins & Hagberg 2011). This response is 

in contrast to other interventions like metformin, which primarily reduces fasting insulin 

concentrations (Goodwin et al. 2008).  Given the unique tissue-, and metabolic state-

specific changes to insulin demand and supply, it is possible that studies evaluating the 

efficacy of physical activity interventions on cancer risk and prognosis may be 

undervaluing the impact of exercise training by failing to account for changes in postmeal 

insulin concentrations.  

Objectives and significance 

Despite the disproportional relationship between fasting and postmeal insulin 

concentrations and the unique tissue- and metabolic state-specific effects of interventions 

on insulin supply and demand, many studies in breast cancer survivors only measure 

insulin in the fasted state, and thus may be underestimating the role of insulin in cancer 

risk and prognosis.  Fasting insulin concentrations are only one component of insulin 

supply and demand, and one that is not particularly reflective of the overall impact of 

interventions on glycemic control.  This limitation is especially relevant for exercise 

training, as reductions in skeletal muscle insulin resistance are primarily reflected through 

changes to postmeal insulin concentrations. While several clinical trials investigating the 

role of pharmacology- and/or exercise-induced changes in metabolism in cancer 

survivors are underway (Patterson et al. 2013), the health recommendations derived from 

these studies are predicated on the changes to fasting insulin concentrations observed 
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following each treatment.  Before physical activity, dietary and pharmacological 

interventions can be optimally combined into a personalized intervention to prevent or 

reverse chronic disease, a full understanding of independent and combined effects of 

these interventions must be elucidated in the populations that would most benefit from 

them. Without a greater understanding of the tissue- and metabolic state- specific effects 

of exercise training on insulin supply and demand in cancer survivors, the optimal utility 

of physical activity as means to improve cancer prognosis and reduce the risk of 

recurrence remains unknown. 

The overall goal of this dissertation was therefore to address the current 

limitations in our understanding of the interactions between physical activity, insulin 

supply and demand and cancer risk. Study one evaluated the effects of 12-weeks of 

exercise training and/or metformin on systemic and tissue-specific measures of 

fasting insulin supply and whole-body insulin demand. This study used a fasting blood 

draw and the hyperinsulinemic-euglycemic clamp technique to better classify the 

responses to exercise training and/or metformin in men and women at risk for developing 

cardiometabolic disease. Study two investigated the relationship between physical 

activity, insulin and cancer by measuring fasting and postmeal insulin 

concentrations and their relationship with cancer biomarkers prior to and following 

a personalized 12-week aerobic exercise training program in breast cancer 

survivors. This involved the use of a five-sample oral glucose tolerance test prior to and 

following the completion of the exercise training protocol, with a primary focus on the 

aspects of physical activity and insulin supply and demand that modify cancer risk. 

Finally, in study three we investigated the potential influence of exercise training on 
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cardiometabolic health in breast cancer survivors in order to identify any potential 

changes to insulin supply and demand through which exercise training may reduce 

cancer-specific and all-cause mortality in breast cancer survivors. The information 

derived from this series of studies will shed light on the relationship between insulin 

supply and demand, exercise training and cardiometabolic disease risk, as well as their 

impact on cancer recurrence in breast cancer survivors, and guide future studies 

attempting to develop precise and personalized interventions to improve cancer 

prognosis. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Overview of cancer development and treatment 

 This project pertains to exercise training in women who have been previously 

diagnosed with breast cancer, received treatment, and have been deemed in remission or 

“cancer-free” by their oncologist.  Cancer diagnosis and treatment can have profound 

effects on physical and psychological health and well being, and it is therefore necessary 

to provide background information regarding the development and treatment of cancer. 

This brief overview is by no means extensive, however it is important to review breast 

cancer development and treatment in order to understand why the effects of an exercise 

training program may differ between postmenopausal breast cancer survivors and non-

cancer survivors of similar age, BMI and cardiometabolic health profile.  

Cancer develops due to genetic or epigenetic mutations that confer a selective growth 

advantage to specific cells by 1) stimulating the cellular signaling pathways that lead to 

cell proliferation and/or 2) inhibiting the cellular signaling pathways that suppress tumor 

growth (Hanahan & Weinberg 2009). In most cases it takes many small genetic mutations 

(over the course of many years) to “add up” to a mutation large enough to overcome the 

inherent cellular defense mechanisms and manifest as a distinct physiological cancer 

phenotype (Vogelstein et al. 2013). Most solid tumor (e.g. breast) cancers can therefore 

be viewed as a stepwise genetic disorder associated with aging.   This long process of 

genetic mutation can be exacerbated through many physiological mechanisms within 

individual control. For example, an individual may, after many years, have enough 
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random mutations within his or her lung tissue to develop lung cancer. The length of time 

required to develop this “mutation load” may be extensive, and the likelihood of this 

mutation load reaching the point of metastasis, impairing breathing to a degree that would 

result in death, or outpacing other potentially fatal diseases (e.g. cardiovascular disease) 

is quite low.  If however, he or she chooses to introduce a potent mix of carcinogens into 

his lungs via smoking, the likelihood of a mutation increases steeply and lung cancer is 

much more likely to develop over the course of his or her lifetime.   

The modification of cancer risk through environmental factors within an 

individuals control represents an arm of cancer research that is equally important as the 

work being done on a genomic level, and equally as challenging (Vogelstein et al. 2013).  

The most appropriate primary outcome for studies investigating how environment and 

lifestyle (e.g. physical activity levels) may modify cancer risk is the development of 

cancer. Despite the increasing prevalence of cancer in America, the randomized 

controlled trials needed to establish causality or efficacy of prevention require very large 

sample sizes and many years of follow-up, which is quite burdensome on participants and 

researchers alike.  Compounding the difficulty associated with evaluating cancer risk is 

the fact that cancer is not a singular disease originating from a singular location, but 

rather a collection of many different diseases with vastly discordant development 

trajectories (Baird & Caldas 2013). While the goal of cancer treatment is to halt the 

unregulated cell growth, prevent metastatic spread and eliminate (or vastly prolong) 

recurrence, the ways in which oncologists accomplish this task is highly dependent on the 

individual characteristics of the cancer. In order to understand the relationship between 



10	
  
	
  

PA and breast cancer recurrence it is necessary to delineate some of the differences and 

similarities in breast cancer development and treatment. 

Breast cancer development 

Breast cancer is a carcinoma arising from a mutation in the epithelial cells of the 

breast tissue, either in the lactiferous ducts or the lobular cells that supply milk to the 

ducts. The specific cause of the mutation can be multifactorial, however the primary 

manifestation of the mutation is disruption of one (or more) proliferative signaling 

pathways, such as PI3K/Akt (Dillon et al. 2007) or Ras-MAPK (Dunn et al. 2005), AND 

disruption of tumor suppressor pathways such as p53 or PTEN (Weng et al. 1999). The 

combination of enhanced cellular proliferation and loss of tumor suppression leads to 

unregulated cell growth, forming a solid and often palpable tumor within the breast 

tissue. Once detected, the size and growth rate of the solid tumor are then used to stratify 

the development into a specific stage (0-IV). Stage 0, or carcinoma in situ, is a non-

invasive carcinoma that has not spread to surrounding tissue, stages I-III are breast 

cancers localized to the breast tissue, axillary lymph nodes and chest area, and stage IV is 

metastatic breast cancer that has spread to other organs of the body (Matsen & Neumayer 

2013). These stages represent the progression of the disease, predict much of the 

physiological manifestations of treatment, and highly influence prognosis. 

Since cancer is typically driven by a single mutated cancer stem cell (or several 

from within the same line of cells), receptors on the surface of the mutated cancer stem 

cell will be expressed ubiquitously on almost all of the cancerous cells throughout the 

tumor (Gupta et al. 2009).  Tumors expressing the estrogen receptor (ER) and 

progesterone receptor (PR) fall under a similar category of hormone receptor positive 



11	
  
	
  

cancers, which can be used for treatment as well as prevention by binding to that receptor 

and delivering drugs or preventing cell replication. The majority of breast cancers are 

hormone receptor positive cancers (>85%, Britt 2012), and it is common for women 

diagnosed with ER+ cancer to be given endocrine therapy, designed to inhibit estrogen 

production or binding, for five to ten years after successful primary treatment (Goss et al. 

2016). An additional receptor known as the HER2/neu receptor is not responsive to 

estrogen-based therapy but does respond to other chemotherapy, notably herceptin. A 

breast tumor that is negative for ER, PR or HER2 expression is referred to as triple 

negative breast cancer, a much more worrisome diagnosis due to the lack of 

chemotherapeutic treatment options and in many cases a much more aggressive mutation. 

The specific differences in staging and receptor status are the primary components 

of cancer diagnosis, and play the largest role in prognosis for successful treatment. More 

advanced stage (e.g. IIIA) is typically associated with reduced levels of PA following 

treatment (Mason et al. 2013), which may be due in part to greater fatigue induced by 

more aggressive chemotherapy (Blaney et al. 2013) or more intensive surgical procedures 

and lymphedema (Schmitz & Speck, 2010). 

Breast cancer treatment 

Treatment for breast cancer involves surgery and (when necessary) radiation 

therapy to remove the cancer localized within the breast and axillary lymph nodes, as 

well as the use of chemotherapy based on the specific expression of receptors on the 

surface of the cancerous cells.  
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Surgery represents the most common treatment for breast cancer, and can range 

from orthoscopic surgery with minimal invasiveness to a full mastectomy (including the 

removal of lymph notes and non-breast tissue) that could impact range of motion and 

lymphatic function (Boquiren et al. 2016). Extensive removal of axillary lymph nodes 

increases the risk for the development of lymphedema during physical activity, and may 

contribute to the lower physical activity levels observed in breast cancer survivors 

(Paskett et al. 2012).  Radiation therapy involves targeted use of ionizing radiation to 

disrupt replication of cancer cells. Fatigue, nausea and localized discomfort or burning 

may accompany radiation therapy, and can contribute to the cancer-related fatigue and 

increase in sedentary behavior observed in individuals undergoing cancer treatment 

(Taunk et al. 2011), albeit to a lesser degree than surgery and chemotherapy.  

  Chemotherapy involves delivery of compounds and toxins designed to prevent 

cell replication and thus disrupt tumor growth and viability. Unlike surgery and radiation, 

chemotherapy is delivered systemically, and therefore has the largest impact on systemic 

physiology, cardiometabolic disease and physical activity. Chemotherapy may impact 

physical activity and exercise training both during and after treatment via cardiovascular 

impairment, nausea-induced anti-emetic use and fatigue. The impact of these three 

detrimental aspects of chemotherapy on physical activity, cardiometabolic health and 

cancer recurrence will be discussed in greater detail later in this review. 

 Women who have been treated for estrogen receptor positive breast cancer will 

often be prescribed drugs designed to disrupt estrogen binding for five to ten years after 

conclusion of primary treatment in order to reduce the risk of cancer recurrence. These 
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drugs, often referred to as secondary treatment, fall into two broad classes that have wide-

ranging effects of metabolism and health.  

For many years SERMs (e.g. Tamoxifen) were the primary means by which the 

potentially mitogenic effects of estrogen were controlled in breast cancer survivors 

(Chlebowski 2000). This class of drugs binds to the estrogen receptor and exhibits pro- or 

anti-estrogenic activity, depending on the tissue (Huang et al. 2015). In breast tissue, 

SERMs play and anti-estrogenic role, inhibiting the cellular activity of estrogen within 

breast cells. There are several known side effects of SERM use, including clotting 

disorders and elevated risk of other types of cancer, including endometrial cancer (Chen 

et al. 2014). Most studies support a beneficial role of SERM use for the prevention of 

cancer recurrence, and they are currently the most commonly prescribed secondary 

cancer prevention drugs to premenopausal women (Chojecki et al. 2014), due to their 

ability to block estrogen binding in certain tissues while allowing estrogen production to 

continue in the ovaries.  

Aromatase inhibitors block the conversion of testosterone and anabolic precursors 

into estrogens, and, as a result, circulating concentrations of estrogen can be reduced to 

levels virtually undetectable in circulation. Longitudinal and case-control studies suggest 

that AI’s are more effective in reducing cancer risk than SERMS, with fewer high-risk 

side effects (e.g. stroke), and they are currently used as the primary means of endocrine 

therapy for postmenopausal women (Amir et al. 2011). Recently, several studies have 

advocated for breast cancer survivors to remain on AIs for up to 10 years following 

remission, with some oncologists recommending lifelong adherence for those that can 

tolerate the drug and do not manifest many of the side effects (Goss et al. 2016). These 
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side effects are primarily related to bone and joint health, including an increased risk of 

osteopenia/osteoporosis (Becker et al. 2012), as well as increased risk of arthralgia and 

joint pain (Niravath 2013). There is no evidence that AIs interfere with cardiovascular or 

metabolic health (Younus et al. 2011), however the evidence has primarily focused on 

their safety, and the long-term evaluation of their efficacy as well as their interaction with 

other pharmacological agents or lifestyle interventions is still being evaluated (Foglietta 

et al. 2016).   

Summary of cancer development and treatment 

 Cancer is a multifaceted disease that has at its core genetic mutations that confer a 

selective growth advantage by increasing cell proliferation and inhibiting or abrogating 

tumor suppression. These mutations take many years to develop, and solid tumor cancers 

are often viewed as a disease of aging exacerbated by lifestyle choices (e.g. smoking, 

inactivity).  Breast cancer is a specific type of carcinoma in which the mutation develops 

in the mammary epithelial tissue.  Breast cancer treatment varies based on progression 

(stage 0-IV) and receptor status, (ER, PR, HER2 +/-; triple negative), and the techniques 

used to treat breast cancer (surgery and radiation with or without chemotherapy) are 

employed on a personalized basis with the overall goal of halting progression and 

preventing recurrence.  The physiological manifestations of this personalized treatment 

include large inter-individual differences in the response to exercise interventions among 

breast cancer survivors. 
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Mediators and moderators of cancer development and prognosis 

Overview of cardiometabolic health and cancer 

 While cancer is primarily a genetic disorder associated with aging, 30-50% of 

cancer cases are directly caused, or exacerbated by, environmental factors and lifestyle 

choices that may be within individual control (McKenzie et al. 2015). To evaluate the 

impact of a lifestyle intervention designed to increase physical activity (e.g. exercise 

training) on cancer recurrence, it is important to understand how physical activity levels 

and obesity moderate and/or mediate cancer risk. Additionally, the third aim of this 

project is to evaluate the impact of exercise training on cardiometabolic health in cancer 

survivors, which requires some background on the overlap between cancer and 

cardiometabolic disease.  

Both incidence and prevalence of obesity and inactivity have risen exponentially 

over the last 50 years in the United States and abroad (Yang & Colditz, 2015). When 

combined with an aging population, these twin epidemics of obesity and sedentary 

behavior have lead to a significant increase in the prevalence and incidence of both 

cancer-specific and all-cause mortality, which is often the result of cardiometabolic 

disease (Chang et al. 2013). Investigators who focus on systemic physiology and the 

response to obesity, sedentary behavior, and lifestyle interventions have recently begun to 

envelop factors that impact both cardiovascular and metabolic disease under the blanket 

term “cardiometabolic health.” This phrase is beneficial due to the strong relationship 

between diabetes and cardiovascular disease, the similarity between the general 

pathology of each disease, and the shared beneficial response to lifestyle interventions 

targeting obesity and inactivity. The use of cardiometabolic health and disease within this 
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section and throughout the rest of the document can therefore be interpreted as 

“cardiovascular and/or metabolic” health and disease, specifically as it pertains to 

obesity, inactivity, and lifestyle interventions such as exercise training.  

Postmenopausal women have a significantly higher risk of developing cancer 

and/or cardiometabolic disease than premenopausal women (Britt 2012), and both obesity 

and inactivity contribute to this increased risk (Su et al. 2013). Additionally, 

postmenopausal women with cardiometabolic disease also have a higher risk of 

developing cancer or having a cancer recurrence (Eulenberg et al. 2016) compared to 

postmenopausal women without cardiometabolic disease. The primary aim of this section 

of the literature review is twofold; 1) to establish the impact of inactivity and obesity on 

cancer and cardiometaboic disease risk in postmenopausal women and 2) to identify 

potential areas where a previous cancer diagnosis and treatment places postmenopausal 

women at greater risk of cardiometabolic disease or cancer than age- and BMI- matched 

women without a cancer diagnosis. It is important to note that cancer survivors remain 

susceptible to cancer even if they have been aggressively treated for cancer in the past 

and been declared cancer free. While a double mastectomy may virtually eliminate the 

risk of a subsequent breast cancer diagnosis, the risk of developing other cancers remains 

at least the same, and in many cases may be greater due to side effects of the breast 

cancer treatment.  

Inactivity 

 Many postmenopausal women do not meet the physical activity guidelines 

(McTiernan et al. 1998), and this number is even greater in postmenopausal breast cancer 

survivors (Bluthmann et al. 2015). Sabiston et al. found that breast cancer survivors 
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spend an average of 78% of waking hours sedentary and just 2% of each day engaged in 

moderate-to-vigorous physical activity (MVPA). Not only is this volume of sedentary 

time consistent throughout the first year after treatment, the levels of MVPA decrease as 

the year progresses (Sabiston et al. 2015). The specific mechanism behind the increased 

sedentary time and reduced physical activity observed in breast cancer survivors is 

unclear, however it appears to be closely related to fatigue severity (Bower et al. 2000). 

Inactive breast cancer survivors are also more likely to report having poor quality of life 

compared to inactive age- and BMI-matched non-cancer controls (Meeske et al. 2007), 

which increases the likelihood of developing cardiometabolic disease (Rozenberg et al. 

2007).  

Paradoxically, women receiving chemotherapy in addition to surgery have 

significantly lower objectively measured sedentary time and higher MVPA than women 

who received surgery alone (Phillips et al. 2016), despite the greater fatigue induced by 

chemotherapy.   While the specific nature of the association between objectively 

measured physical activity and sedentary time and cancer recurrence is still unclear, 

randomized controlled trials and case-control studies have clearly demonstrated both 

increased sedentary time and decreased physical activity in cancer survivors contributes 

to elevated risk of cardiometabolic disease compared to age- and BMI- matched 

postmenopausal women without a cancer diagnosis (Colditz et al. 2016, Jones et al. 2016, 

Foraker et al. 2016). Specific interventions designed to increase physical activity through 

exercise training, and their effects on cardiometabolic health, will be discussed later in 

this review. 
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Obesity 

Obesity is a significant contributor to both cancer and cardiometabolic disease 

development (McTiernan 2005, Ndumele et al. 2016), and increases the risk of both all 

cause and cancer specific mortality after cancer diagnosis (Chang et al. 2013, McTiernan 

et al. 2010).  Recently, the World Cancer Research Fund estimated that 17% of breast 

cancer diagnoses were a direct result of obesity (WCRF Food, nutrition, physical activity 

and the prevention of cancer global report, 2014), and Howell et al. estimated that weight 

loss, coupled with increased physical activity and a reduction in alcohol consumption, 

would reduce the risk of cancer development by 30% (Howell et al. 2014).   

While the increased risk of cardiometabolic disease due to obesity is fairly consistent 

across the lifespan, this is not the case for the relationship between obesity and breast 

cancer risk. Overweight and obesity may have a protective effect on breast cancer risk in 

premenopausal women, but significantly increase the rate of breast cancer development 

in postmenopausal women (Hsieh et al. 1990, Chlebowski et al. 2015).  The direct 

mechanisms for the discordant relationship between obesity and cancer risk based on 

menopause status are unclear, but it appears to impact and overlap with several systemic 

aspects of obesity. For example, one of the hallmarks of obesity-induced increases in 

cardiometabolic disease risk is the development of insulin resistance and elevated 

circulating insulin levels. The mechanisms behind insulin resistance and 

hyperinsulinemia will be discussed (in great length) later in this review, however it is 

important to note that while there is a significant association between insulin and both 

cancer development and recurrence in postmenopausal women (Goodwin et al. 2008), no 

such relationship exists between cancer development, insulin resistance and/or 
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hyperinsulinemia in premenopausal women (Eliassen et al. 2007). The difficulty of 

studying the relationship between cancer, obesity, and the bioenergetics behind obesity 

has been well documented, and several large clinical trials are currently underway with 

the express purpose of clarifying the complex mechanisms behind the obesity-induced 

increase in cancer risk (Patterson et al. 2010).  

Chemotherapy-induced cardiometabolic disease 

 The primary goal of chemotherapy is to deliver chemicals that will significantly 

impair or halt the ability of the cancerous cells to grow and/or replicate, however the 

systemic delivery of chemotherapy can induce profound changes to cardiometabolic 

health. These changes not only affect women during the months of chemotherapy, but 

also may impact health outcomes for years.  

Several recent studies have identified an unusually high percentage of women 

who have blood glucose concentrations that move from the normal range into the range 

of T2D during chemotherapy (JuanJuan et al. 2015). Interestingly, the majority of these 

cases of chemotherapy-induced transient diabetes are only identified through postprandial 

glucose and/or hemoglobin A1c values (Lu et al. 2014), suggesting that the common 

measure of glycemic control during cancer treatment (fasting blood glucose) may be 

vastly underestimating the impact of chemotherapy on glucose homeostasis. The most 

likely culprit for this transient diabetes is a combination of reduced physical activity and 

glucocorticoids regularly given during treatment as anti-emetics. Glucocorticoids 

increase glucose concentrations through a combination of increased glucose production 

and decreased insulin sensitivity, and the elevated glucose concentrations mostly return to 

normal following cessation of treatment (Wu et al. 2015). While there have been no 
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longitudinal studies investigating the role of glucocorticoid use or elevated blood glucose 

during cancer treatment as risk factors for the subsequent development of frank T2D, 

evidence from other situations that induce transient diabetes and/or insulin resistance 

(e.g. gestational diabetes, polycystic ovary syndrome) suggests this would be highly 

likely (Appelman et al. 2015). 

Cardiovascular fitness and maximal aerobic capacity (VO2max) represent key 

predictors of cardiometabolic disease risk, and emerging evidence suggests that many 

chemotherapeutic agents have a detrimental effect on aerobic fitness. A recent meta-

analysis by Peel et al. that evaluated 27 different studies in which VO2max was 

determined prior to and after chemotherapy found a significant reduction in aerobic 

fitness due to the chemotherapy, and this could only be partially explained by reduced 

levels of physical activity (Peel et al. 2014). Jones et al. recently quantified the decline in 

VO2max following cancer treatment in terms of the age-related decline in 

cardiorespiratory fitness, and found that a group of women who enter chemotherapy with 

the average aerobic capacity within the normal range for 60 year old women have aerobic 

capacity more reflective of 80 year old women following an average of 6 months of 

treatment (Jones et al. 2016). As discussed in the previous paragraph, this precipitous 

decline in aerobic fitness following cancer treatment is not met with a vigorous exercise-

induced rebound following completion of treatment, but rather with a decline in MVPA 

in the year following treatment completion.  
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Summary of moderators of cancer progression 

While the root of cancer is a genetic mutation that confers a selective growth 

advantage in certain cells, inactivity and obesity both can significantly contribute to 

cancer development, recurrence and cancer-specific mortality. Additionally, there 

appears to be a relationship between cardiometabolic disease and cancer recurrence, both 

as a direct relationship (e.g. women with diabetes are more likely to develop cancer) as 

well as the shared common root of obesity and inactivity. The systemic impact of 

inactivity and obesity, as well as the difficulty of measuring the “crosstalk” between 

many of the tissues and organs that link obesity and inactivity with cardiometabolic 

health (e.g. adipose tissue, skeletal muscle), have made it difficult to determine the 

precise mechanistic relationship between cancer and cardiometabolic health. This 

difficulty is compounded by the large sample size necessary for cancer research; while 

cancer rates are rising, evaluating cancer risk with the primary outcome of cancer 

development (or recurrence) still requires large sample sizes and many years of follow-

up. For smaller studies designed to test the efficacy of interventions designed to target 

inactivity and/or obesity in order to determine the impact on cancer and cardiometabolic 

disease risk, surrogate measures, such as biomarkers, are required 

Biomarkers of cancer development and prognosis 

Over the last 20 years several cross-sectional and longitudinal epidemiological 

studies that are large enough to use cancer diagnosis as a primary outcome, such as the 

Women’s Health Initiative (Thomson et al. 2014), the Nurses Health Study (Eliassen et 

al. 2010) and NHANES (Lynch et al. 2011), have contributed much to the understanding 

of cancer risk and prognosis, especially as they pertain to lifestyle factors (e.g. obesity, 



22	
  
	
  

inactivity). These epidemiological studies are vital links in the research chain, and have 

served as the primary “jumping off point” for many subsequent randomized controlled 

trials, case-control studies and interventions. A major contribution of these longitudinal 

epidemiological studies was the identification of biomarkers associated with cancer. The 

strength of these biomarkers with respect to cancer-specific or all-cause mortality is in 

fairly constant flux, and the associations between these biomarkers and cancer risk range 

from moderate to weak. Despite this limitation, biomarkers of breast cancer risk and 

recurrence represent the most viable metric by which intensive short-term (e.g. 3-12 

month) lifestyle interventions can study cancer risk in human beings. Many of the 

biomarkers are not localized to the cancerous tissue, and have wide-ranging effects that 

are not directly related to tumorigenesis or cellular growth. It is therefore not enough to 

simply identify the circulating quantities of the biomarker and block (or reduce) it’s 

activity, as that may have wide-ranging detrimental (and potentially life-endangering) 

effects. 

Given the difficulty of using systemic hormones and metabolites as cancer 

biomarkers, studies making use of them must also include 1) the mechanisms of action of 

a hormone/metabolite within the specific cancerous tissue 2) the effects of the biomarker 

on non-cancerous tissue and 3) the potential interaction of two or more biomarkers on 

cancerous and non-cancerous tissue. This three-pronged approach may appear arduous, 

especially when one considers that in many cases these biomarkers do not CAUSE cancer 

(i.e. are carcinogens), but instead increase the RISK of cancer development and/or 

ENHANCE tumor growth (i.e. are mitogens). However, until biomarkers directly 

associated with tumorigenesis and/or genetic profiling can be identified, understanding 
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the nature and interaction of biomarkers associated with risk of recurrence is critical for 

interpreting projects in which a relationship between metabolism and cancer must be 

established.  

Insulin 

Insulin is a peptide hormone secreted from the pancreas that has wide-ranging 

metabolic effects on many different tissues throughout the body. Insulin is a primary 

anabolic hormone, and the majority of the effects of insulin on cellular tissue are to 

induce nutrient uptake, storage and cell growth. Several other studies have identified a 

relationship between hyperinsulinemia, poor breast cancer treatment prognosis (Ahern et 

al. 2013), and increased risk of breast cancer recurrence (Irwin et al. 2011), However, 

these findings are by no means uniform, and other researchers have either observed very 

weak or absent relationships (Minatoya et al. 2013, Sieri et al. 2012), or have been unable 

to disentangle hyperinsulinemia from the myriad inter-related concurrent symptoms of 

obesity and/or metabolic syndrome that have all been identified as potential mediators or 

moderators of breast cancer risk (Capasso et al. 2013).  In order to clarify the potential 

role of hyperinsulinemia as a causal mechanism of increased risk of breast cancer 

recurrence, an investigation into the cellular relationship between insulin and cancer 

development is warranted. 

 The intricate relationship between insulin and insulin-like growth factors (IGFs) is 

often cited as the primary means by which circulating insulin can induce cellular 

proliferation, but insulin alone can provide enough impetus to cause aberrant cellular 

growth (Rostoker et al. 2013). The signaling pathways induced by insulin are far-

reaching and varied, however the ones most associated with cellular proliferation are the 
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PI3K/Akt and MAPK pathways (Weinstein et al. 2009).  Briefly, insulin binds to a 

tyrosine kinase receptor on the surface of the cell, which activates insulin receptor 

substrate 1 (IRS-1) and induces phosphorylation cascades through the activation of PI3K 

and MAPK.  The phosphorylation of PI3K induces the phosphorylation of Akt, mTOR 

and p70S6k, while phosphorylation of MAPK induces the phosphorylation of the 

Ras/ERK/MEK pathway, both of which induce cell proliferation (Weinberg 2008). 

Mutations in these pathways are often present in all types of cancer, and can represent the 

acceleration of proliferation that is akin to “stepping on the gas pedal” which, when 

combined with loss of tumor suppressor genes, leads to unchecked cell growth and 

tumorigenesis.   

 Both insulin and the genetic mutations that induce cancer cell proliferation 

activate similar phosphorylation cascades, and indeed several studies have demonstrated 

a strong relationship between exposure to insulin and cell proliferation in cancer cell 

models (Milazzo et al. 1997, Rostoker et al. 2013). Additionally, blocking the PI3K 

signal cascade appears to reduce the size of mammary tumors in a hyperinsulinemic 

mouse breast cancer model (Gallagher et al. 2012, Novosyadlyy et al. 2010), albeit with 

the unfortunate side effect of severe hyperglycemia. The specific mechanism behind any 

potential mitogenic action of insulin is poorly understood, likely due to the intricacy of 

the signaling cascade.  In addition to the role insulin may play in tumorigenesis through 

overactivation of these critical phosphorylase cascades, hyperinsulinemia may also 

increase the activity of insulin receptors themselves, another potential mechanism of 

cancer cell proliferation (Gallagher et al. 2013). Finally, it has recently been 

demonstrated that insulin suppresses the metabolic intermediate PTEN, a potent tumor 
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suppressor that inhibits PI3K/Akt pathway expression (Liu et al. 2013). This suggests that 

hyperinsulinemia may be helping cells “step on the gas” through enhanced proliferation 

and “take the foot off of the brake” through inhibition of tumor suppression at the same 

time.   

There are several limitations in generalizing the results of these cell culture and 

mouse model studies to systemic human cancer development. First, these studies often 

are demonstrating proof of concept through activation of a specific signal cascade 

intermediate, and therefore insulin exposure is often higher and of greater duration than 

what would normally be observed in even the most hyperinsulinemic individuals. Along 

similar lines, even those studies that reduce the insulin exposure to physiological levels 

use static exposure, which does not represent the cyclical insulin release in humans.  

 While the precise mechanisms are unclear there is consensus that insulin 

represents a mitogenic, rather than carcinogenic, compound on a cellular level (Call et al. 

2010). If we equate the spread of cancer to an uncontrolled wildfire, insulin likely does 

not provide the spark that triggers the mutation leading to cancer. But hyperinsulinemia 

may add fuel to that spark, allowing a fire to grow where it would otherwise not via 

overexpression of PI3K/MAPK pathways, enhanced insulin receptor activity, and 

inhibition of tumor suppressor activity. Additionally, it appears that the mitogenic 

response to hyperinsulinemia is highly variable (Beelen et al. 2014, Baxi et al. 2012). To 

extend the wildfire analogy to its terminus, in some cases the hyperinsulinemia plays a 

minimal role, such as a few leaves on a blazing bonfire, however in others 

hyperinsulinemia behaves more like dumping lighter fluid on a candle.  It is unclear what 

specifically causes insulin to show such a high degree of variability, and further research 
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in this area is required before any definitive conclusions may be made regarding the 

direct cellular influence of insulin on cancer development.  In addition to this direct role 

of insulin as a biomarker of cancer development, the myriad roles of insulin throughout 

the body create several other mechanisms by which hyperinsulinemia can mediate or 

modify cancer risk. The two areas that appear to contribute the most in breast cancer are 

through the homology and cross-reactivity between insulin and insulin-like growth 

factors (IGFs) and through the effects of insulin on the activity of the sex hormones, 

specifically estrogen. 

Insulin-like growth factors and binding proteins 

 IGFs represent a distinct class of molecules with high sequence homology to 

insulin (hence the name), but with markedly different physiological roles and regulation. 

Structurally these molecules exist in a complex composed of one of the two specific 

factors (IGF-1 and IGF-2) and are typically associated with one of six binding proteins 

(IGFBP1-6) (Rosen et al. 1991).  Unbound IGFs bind to two different types of receptors 

(IGFR1 and IGFR2) that induce cellular proliferation and growth through interaction 

with growth hormone (Vottero et al. 2013).  IGF-1 is the primary circulating IGF in 

adults, and is found in almost every tissue in the body. The ubiquitous nature of IGF-1 as 

one of the, if not the, primary regulators of cell growth (including exercise-induced 

skeletal muscle hypertrophy) results in widely discordant and opaque views on the role of 

IGF-1 in health, aging and disease (Berryman et al. 2008). Liver production and secretion 

is primarily responsible for circulating (as opposed to tissue specific) IGF-1 and the 

proportion of IGF-1 bound to associated IGFBPs dictates its physiological activity. 
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IGFBP1 and IGFBP3 appear to bind to IGF-1, hindering its ability to bind to the IGF1R 

and induce cell proliferation and growth (Yeap et al. 2011).  

Results have been mixed (Shernhammer et al. 2006), but current epidemiological 

evidence suggests that elevated IGF-1 levels positively correlate with ER+ breast cancer 

development in women over 50 (Key et al. 2010, Kaaks et al. 2013).  Additionally, the 

ratio of IGF-1/IGFBP3 has been widely used as a metric to assess the bioactivity of the 

IGF system in the development of all forms of breast cancer, with positive associations 

between IGF-1/IGFBP3 ratio and mortality in breast cancer survivors (Duggan et al. 

2013). The reasons behind a specific type (ER+) and age range being more susceptible to 

breast cancer are unknown, however it is possible that there is some interaction between 

IGF-1 and estrogen, which will be discussed later in this section. Elevated IGF-1 and 

Reduced IGFBP also appear to be related to hyperinsulinemia and may combine 

synergistically to increase the risk of cancer development (Malin et al. 2004). The precise 

nature of the relationship between insulin binding to the insulin receptors and IGF-1 

secretion from the liver is unclear, however recent studies suggest that it may be a result 

of hyperinsulinemia interfering with the actions of IGFBP3 and its binding affinity with 

IGF-1, thus increasing the bioavailable supply of circulating IGF-1 (Yamada et al. 2010, 

Kaaks et al. 2001).   

The close homology between insulin and IGF-1, as well as their cellular receptors, 

may serve as an additional means by which hyperinsulinemia increases the risk for breast 

cancer development and/or recurrence. For many years it was a mystery how vast 

differences between insulin signaling (nutrient uptake, metabolism) and IGF-1 signaling 

(cell proliferation and growth) could exist despite the close homology between insulin 
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receptors (IRs) and IGF receptors (IGFRs) and the virtually identical signal transduction 

cascades.   Work in the late 1990s identified a specific set of pre-receptor ligand binding 

interactions between IGF and IGFBPs that effectively “set up” the system for the 

appropriate phosphorylation and cellular result (Mynarcik et al. 1997). However, just as 

this mystery was being solved IR/IGFR hybrids were identified (Federici et al. 1998), and 

these receptors were responsive to both insulin and IGF-1 (Belfiore et al. 2009). These 

receptors typically exist in extremely small quantities, however they become hyperactive 

and overexpressed in many cancer cells, including breast cancer cells (Pandini et al. 

1999).  Results from several studies using a breast cancer mouse model generated by 

LeRoith and colleagues suggests that the overexpression of IR/IGFR hybrids in the 

presence of systemic hyperinsulinemia results in enhanced risk of breast cancer 

development and greater tumor load (Novosyadlyy et al. 2010).  

The specific role that these IR/IGFR hybrids may play after diagnosis and 

treatment of breast cancer in humans is unclear, however it provides a secondary 

mechanism by which high insulin and/or high IGF-1 may activate the PI3K/Akt and 

MAPK pathways and increase the risk for recurrence of breast cancer after treatment.  

Sex hormones 

 There has been extensive research into the role of sex hormones, specifically 

estrogens (e.g. 17-b estradiol) and their receptors, on the development of breast cancer. 

Thoroughly delineating the relationship between estrogen and breast cancer would 

encompass an entire literature review, however there are several key concepts that have 

bearing on this project, and therefore warrant discussion. For simplicity, all subsequent 

information presented in this section will be with respect to postmenopausal women.  
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There are several key manifestations of this distinction. First, while premenopausal 

women produce estrogen in the ovary (which may enhance cardiometabolic protection), 

postmenopausal women produce estrogen primarily in adipose tissue. This estrogen 

production is under the primary regulation of a complex of enzymes known as aromatase, 

which converts androgens into estrogen within the adipocytes (Bulun et al. 2012).  In 

addition to the activity in the adipose tissue, aromatase can become highly active in the 

adipocytes of the breast, greatly increasing the local concentrations of estrogen (Sebastian 

et al. 2002). Since this aromatase activity is localized in adipose tissue and adipocytes, 

there is a high degree of correlation between fat tissue and circulating estrogen 

concentrations in postmenopausal women (Perry et al. 1998). Additionally, a strong 

correlation exists between circulating estrogens and breast cancer risk in postmenopausal 

women (Zhang et al. 2013, Licznerska et al. 2008), suggesting that adipocyte-derived 

estrogen plays a significant role in breast cancer development and recurrence. 

This correlation also appears to hold for androgen levels (Folkerd, 2013), which 

represent the precursors for estrogen. Approximately 75-85% of breast cancers are ER+ 

or PR+ (Glass et al. 2007), and often exhibit overexpression of estrogen receptors on the 

surface of cancer cells. The elevated circulating estrogen concentrations derived from 

adipose tissue may initiate a signaling cascade by activating these receptors, leading to 

cell proliferation and growth which is enhanced through the localized estrogen 

production in the adipocytes of breast tissue. In support of this correlation between 

obesity, estrogen and cancer risk, weight loss appears to significantly reduce circulating 

estrogen concentrations in postmenopausal women as well as significantly reduce the risk 

of cancer development. This risk reduction occurs regardless of whether that weight loss 
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is achieved via diet (Wasserman et al. 2004), physical activity (Friedenreich et al. 2011) 

or their combination (Carpenter et al. 2012), provided the primary means of this weight 

loss is through reductions in adiposity. 

 Insulin appears to play an active role in estrogen production within the adipocytes 

by increasing a specific type of aromatase activity that converts androstenedione to 

estrone (McTernan et al. 2000), which can then either be released into the general 

circulation as estrone or undergo an additional conversion to estradiol prior to subsequent 

release. The magnitude of this increased production of estrone and estradiol due to 

hyperinsulinemia is not clear, however it appears to occur in all adipose tissue and breast 

cancer cell models (Lisztwan et al. 2008), indicating that the specific magnitude of effect 

would be increased with higher degrees of insulin and/or greater volume of adipose 

tissue. In addition to regulating production of estrogen, hyperinsulinemia can also modify 

bioactive adipose-derived estrogen concentrations by reducing the activity of sex 

hormone binding globulin (SHBG), which attaches to estrogens and androgens and 

deactivates them (Tymchuk et al. 2000). SHBG is produced by the liver in response to 

circulating estrogen and androgen concentrations, however it has a high degree of 

negative regulation through the activity of several primary hormones and growth factors, 

most significantly insulin and IGF-1 (Kaaks et al. 2005). This downregulation of SHBG 

occurs in the liver at the site of production, and can partially explain results from studies 

in which a change in circulating insulin concentrations can drive a change in circulating 

estrogen concentration with no apparent change in body fat (Zeleniuch-Jacquette et al. 

2004).  
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 The significant variability of cancer development, essentially a progressive 

genetic disease, and the interrelatedness of symptoms associated with obesity and 

metabolic disease causes much debate over the impact of biomarkers in the progression 

of cancer. There is a positive association between circulating estrogen concentrations on 

the risk for developing postmenopausal (ER+) breast cancer, despite the low levels of 

estrogens within this population. Aromatase inhibition via pharmacotherapy has become 

quite common, and one of the outcomes of aromatase inhibition is to drive concentrations 

of circulating estradiol well below detectable assay limits, a significant challenge to 

studies attempting to address the relationships between postmenopausal estradiol 

concentrations and health outcomes after primary breast cancer treatment (Rosner et al. 

2013). Additionally, aromatase inhibition may significantly alter SHBG concentrations. 

Several studies have identified both significant increases and significant decreases in 

SHBG following aromatase inhibition (Bajetta et al. 1999, Boeddinghaus et al. 2001) and 

the appropriateness of using SHBG as a surrogate measure for estradiol in 

postmenopausal women is unclear. Thus, while estradiol represents a prime candidate for 

the assessment of intervention efficacy (based on the high correlation with cancer risk 

and recurrence), that rapidly increasing number of women taking aromatase inhibitors 

and the difficulty of assessing postmenopausal estradiol concentrations may necessitate 

using alternative measures, such as SHBG and estrone. This limitation will be discussed 

further in chapter III. 

Adipokines 

 The role of leptin and adiponectin in breast cancer has recently generated large 

amounts of research. One contributing factor to this is the identification of leptin 
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expression in mammary epithelial cells, a primary location for mutations leading to breast 

cancer development. Leptin has wide-ranging systemic effects on a variety of tissues, but 

is currently viewed as both a regulator of energy balance and an inflammatory adipokine. 

Estrogen production in adipose tissue is highly promoted by leptin (Binai et al. 2013), 

and circulating leptin levels are correlated with aromatase activity (Maccio et al. 2010). 

Leptin could therefore serve as a surrogate marker for the effects of exercise on 

aromatase activity in postmenopausal women taking aromatase inhibitors. These women 

would not register significant levels of circulating estrogen, but may have locally active 

estrogen acting in a paracrine fashion to enhance breast cancer risk. Another interesting 

and potentially relevant aspect of leptin is the signaling pathway activated by the binding 

of leptin to its receptor. While insulin and IGF-1 enhance cellular proliferation through 

PI3K/Akt and MAPK pathways, leptin appears to enhance cell proliferation through the 

JAK/STAT pathway (Sharma et al. 2006). This would therefore suggest that a mutation 

residing on this pathway may not be enhanced by hyperinsulinemia but may be enhanced 

by hyperleptinemia. As researchers begin to view leptin as hormone that shares some 

similarity with insulin with respect to disease development and impact (however with 

daily peaks and nadirs much more narrow than those of insulin), investigations into the 

role of leptin as a contributor to metabolism in both health and disease are critical.  

 Adiponectin is also a hormone secreted from adipocytes that may play a role as a 

biomarker for breast cancer development, however it appears to have an inverse 

relationship with cancer risk (Liu et al. 2013). The mechanisms by which adiponectin 

may influence breast cancer development are unclear, however it has been proposed to be 

related to insulin and IGF-1 activity (Duggan et al. 2011). Adiponectin also displays an 
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inverse relationship with circulating estrogen levels (Cleary et al. 2009), but any potential 

causal interactions have not been identified. Similar to leptin, it appears that adiponectin 

may work via a PI3K/Akt independent pathway, in this case through direct modification 

of AMPK (Kim et al. 2009). The adipokines therefore represent a highly intriguing 

secondary area of interest in studies in which the primary focus centers on insulin/IGF-1 

because these hormones often alter cellular metabolism independently of the PI3K/Akt 

phosphorylation cascade.  

Summary of biomarkers 

 The current literature on biomarkers associated with physical activity and breast 

cancer recurrence centers around three overlapping and interrelated pathways with two 

potential alternatives. First, insulin itself may act as a potent mitogenic compound, 

directly activating the PI3K/Akt pathway and potentially blocking the tumor suppressors 

that regulate this pathway. Secondly, high levels of IGF-1 may stimulate cell 

proliferation, and this may be in part regulated via insulin’s’ effects on IGFBP3 activity 

and shared sequence and receptor homology. Finally, aromatization of androgens to 

estradiol in adipose tissue represents a significant risk factor for breast cancer 

development, and this process may also be modulated in part by the degree of insulin and 

IGF-1 exposure. In addition to these primary mediators and moderators of breast cancer 

risk, systemic low-grade inflammation and adipokines may provide alternative means by 

which the environment may modify breast cancer development. In all of these cases it is 

not necessarily the exposure to a specific hormone/factor that induces breast cancer, but 

rather the magnitude and/or combinations of exposure. Unlike specific (and avoidable) 
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carcinogens, it is virtually impossible to eliminate these hormones and factors from the 

body, and in many cases it would be unwise to try and do so.  

Assessing the degree of systemic exposure to biomarkers traditionally involves 

measuring them at a singular, well-controlled timepoint. This is not unreasonable, and 

while there may be slight variations in the majority of these hormones over the course of 

the day it is typically on a relatively small order of magnitude. This is not the case 

however when it comes to insulin. The role of insulin to induce glucose uptake and 

initiate many of the cellular processes involved in nutrient storage require it to be highly 

variable over the course of the day. Indeed, the pancreas is capable of increasing insulin 

production up to 25x that of basal levels (Ferrannini, 2010), and upwards of 70% of the 

insulin to which an individual may be exposed is primarily in response to a meal, as 

opposed to the fasted state when insulin is generally assessed. In order to thoroughly 

understand the relationship between insulin and breast cancer risk, as well as the 

modification of that relationship through exercise training, it is necessary to understand 

the behavior of insulin as a hormone, especially in its primary role as the regulator of 

glycemic control. 

Postprandial insulin and insulin supply and demand 

Several epidemiological studies have identified a potential relationship between 

insulin and breast cancer risk and/or risk of recurrence (Irwin et al. 2011, Goodwin et al. 

2012). Most notably, Goodwin and colleagues have consistently shown over the last 

decade that not only is there a relationship between circulating insulin concentrations and 

breast cancer (Goodwin et al. 2009, Goodwin et al. 2002), but that immediate treatment 

with the anti-diabetes drug metformin after breast cancer diagnosis leads to a 
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significantly better prognosis in hyperinsulinemic women (Niraula et al. 2012, Goodwin 

& Stambolic 2011). This data is consistent with an unexpected finding that individuals 

taking metformin for its anti-hyperglycemic properties were somewhat less likely to 

develop breast cancer (Bodmer et al. 2010). Insulin may play a role in the regulation of 

cancer risk, but studies investigating this role have traditionally fit into either cellular 

mechanistic studies or population-based epidemiological studies, which have potential 

limitations in their applicability to case-control or randomized controlled trials. 

Concentrations of insulin, as mentioned previously, do not exist as a fixed and 

stable value throughout the day. Instead, insulin rises and falls due to meals given its role 

as a secretory hormone responsible for nutrient uptake and metabolism. While certainly 

not exclusive, the primary role of insulin in systemic physiology is glycemic control, or 

the maintenance of glucose homeostasis. In skeletal muscle, this involves initiating the 

translocation of GLUT-4 glucose transporters to the surface of the cell, inducing glucose 

uptake (Goodyear & Kahn 1998). In the liver, insulin causes cessation of hepatic glucose 

production by inhibition of gluconeogenenesis and hepatic glycogenolysis  (Wahren & 

Ekberg 2008). The degree of insulin required by these tissues to accomplish these tasks 

represents the insulin demand, or insulin sensitivity. Given the negative health outcomes 

associated with hyperglycemia, the beta cells of the pancreas are quick to modify insulin 

supply to match any changes in muscle and/or liver demand.   

Should insulin supply exceed insulin demand (as is often the case with pancreatic 

tumors), glucose levels will decline and there is severe risk of hypoglycemia. Likewise, 

should insulin supply fail to match insulin demand, hyperglycemia and Type II Diabetes 

(T2D) is likely. Diagnoses of T2D have reached epidemic proportions through a 
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combination of obesity- and age-associated increases in incidence and prevalence. 

Estimates now suggest that by the year 2050 one in three people in America over the age 

of 50 will be present some form of dysglycemia (either prediabetes or frank T2D) (Boyle 

et al. 2010), making it one of the nations’ most pressing health concerns. Given the 

increased prevalence of both T2D and cancer, by 2050 breast cancer survivors presenting 

with prediabetes or T2D may become the norm, rather than a minority subset of the 

breast cancer survivor population. The development of T2D centers on the dynamic 

closed-loop relationship between insulin secretion and both hepatic and peripheral (e.g. 

skeletal muscle) insulin action, and this relationship may play a role in the risk of breast 

cancer recurrence.  

The role of insulin in the progression of T2D 

 The closed-loop relationship between insulin supply and insulin demand has made 

isolating the physiological mechanisms of worsening glucose tolerance difficult, however 

the development of the hyperinsulinemic-euglycemic clamp “opened the loop” and 

provided a direct assessment of whole body insulin sensitivity (DeFronzo et al. 1979). 

This newfound ability to isolate whole body insulin demand contributed to the idea of a 

singular “pathophysiology” of T2D, in which skeletal muscle insulin resistance induced 

by obesity, inactivity, and/or genetic predisposition was the initial insult to glycemic 

control (Bonadonna et al. 1990).  To compensate for this reduced insulin action, 

adaptations occur within the beta cells of the pancreas that increase circulating insulin 

concentrations and “overcome” both the ineffective insulin-mediated glucose uptake and 

reduced suppression of hepatic glucose production in order to maintain circulating 

glucose concentrations within a tight range (Festa et al. 2006).  
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Insulin-resistant individuals can thus maintain normal glucose tolerance, provided that 

they maintain enough compensatory hyperinsulinemia to match the higher insulin 

demand.  Eventually however, some combination of genetic factors, aging and consistent 

hypersecretion of insulin causes the pancreatic beta cells to fail to produce enough insulin 

to match the prevailing insulin demand (Kanat et al. 2012). In this period, commonly 

referred to as ‘beta cell dysfunction,’ blood glucose begins to rise into the range of 

prediabetes, and the elevated blood glucose exacerbates the beta cell dysfunction. This 

has led to a view of a homeostatic negative feedback loop between insulin sensitivity and 

insulin secretion that is maintained until the beta cells, weary after (in some cases) years 

and decades contending with elevated insulin demand, cannot maintain glycemic control, 

and glucose homeostasis enters into a positive feedback loop that invariably results in the 

development of T2D (DeFronzo & Abdul-Ghani 2009). While this linear disease 

trajectory may be appropriate with respect to the development of T2D, several 

interactions between exercise training and insulin supply/demand make T2D prevention a 

more complicated situation.  

Insulin demand (sensitivity) 

 The unique ability of insulin to both induce glucose uptake (primarily) in the 

skeletal muscle and suppress glucose production in the liver manifest as two distinct 

metrics of insulin demand. Given the critical nature of insulin resistance as a primary link 

between obesity/inactivity and T2D, there has been much research into how insulin 

resistance develops in both skeletal muscle and the liver. The specific mechanism is still 

unclear, but insulin resistance in skeletal muscle appears to manifest downstream from 

both the surface receptor and the upper aspects of the phosphorylase cascade (PI3K/Akt) 
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(Johnson & Olefsky 2013), such that insulin binds normally to its receptor, PI3K/Akt gets 

turned on, but the signal gets lost along the way to the GLUT-4 receptors and they never 

translocate to the surface.  Glucose uptake can also be hindered by a loss of total GLUT-4 

receptors in the case of obesity and inactivity (Bienso et al. 2012). It is unclear what 

molecular signal induces the compensatory increases insulin supply to overcome this 

insulin resistance, however the additional insulin binding to receptors on the surface of 

skeletal muscle provides enough impetus to drive enough GLUT-4 translocation to 

maintain adequate glucose uptake.  Since these GLUT-4 receptors are only active in the 

insulin stimulated (i.e. postmeal) state, changes to skeletal muscle insulin demand have a 

much larger effect on postprandial insulin secretion than on fasting insulin 

secretion(Daily 2003). It is common for highly inactive people to have relatively normal 

fasting insulin levels but require large amounts of insulin during and after a meal to 

induce glucose uptake lower blood glucose and.  

 Liver insulin resistance is different from skeletal muscle in that abnormalities to 

insulin demand are reflected in both fasting and postmeal glycemic regulation. In the 

fasted state, the liver is responsible for producing sufficient amounts of glucose in order 

to maintain adequate circulating concentrations. The importance of this task cannot be 

overstated; if you do not produce glucose from the liver by creating it (gluconeogenesis) 

and/or breaking down stored liver glycogen, hypoglycemia can be common and 

debilitating. Hyperinsulinemia in the fasted state is therefore a reflection of the amount of 

insulin required to maintain this normal production of glucose from the liver (Basu et al. 

2013). Because glucose concentrations following a meal are high enough to keep the 

brain operating, the role of liver insulin demand in the postmeal state shifts towards 
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suppressing the (now superfluous) production of glucose.  This leads to a fairly clear 

distinction between the role of liver and skeletal muscle insulin sensitivity, based on the 

presence or absence of elevated circulating glucose concentrations. The insulin levels 

observed in the fasted state represent the interaction between liver insulin demand and 

pancreatic beta cell insulin supply, whereas the insulin levels observed in the fed state are 

a reflection of the interaction between; 1) liver insulin demand (to suppress endogenous 

glucose production), 2) skeletal muscle insulin demand (to initiate glucose uptake) and 3) 

beta cell insulin supply (Matveyenko et al. 2008).  We, and others, have observed 

discordance between skeletal muscle insulin sensitivity and hepatic insulin sensitivity 

(Braun et al. in preparation, Faerch et al. 2010). The correlation between liver and 

skeletal muscle insulin sensitivity is not strong enough that one may serve as a surrogate 

for the other, and this may have wide-ranging implications on the conclusions drawn in 

many studies investigating the influence of insulin and diabetes on breast cancer risk or 

recurrence.  

Insulin supply and beta cell function 

 Insulin demand is the primary driver of insulin supply, but there are several 

distinct ways that the pancreas and liver can accomplish the task of meeting the demand.  

Insulin, as mentioned previously, is formed in the beta cells of the pancreas through the 

process of cleaving proinsulin into insulin and C-peptide. This cleaving takes place inside 

the vesicles, and therefore C-peptide and insulin leave the beta cells of the pancreas in an 

equimolar ratio (Polonsky & Rubenstein 1984). A certain percentage of these vesicles lie 

attached to the cell membrane of the beta cells and are released extremely quickly in 

response to a rise in circulating glucose, but other vesicles are located deeper within the 
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beta cells and take longer to release their stored insulin in response to both glucose and 

other signals, such as free fatty acids and incretins (Hatakeyama et al. 2006). This results 

in a distinct secretory pattern in which insulin is released very quickly with the first 

exposure of glucose (known as the acute insulin response, or AIR), followed by a second 

slower phase of insulin secretion. The relationship between these phases of insulin 

secretion and diabetes risk are fairly well established (Cobelli et al. 2007), however their 

role in breast cancer risk or risk of recurrence is unknown. 

  Prior to reaching the general circulation, a portion of the insulin produced by the 

pancreas is extracted and degraded by the liver in a process referred to as first-pass 

hepatic insulin extraction (HE) (Campioni et al. 2009). The percentage of insulin 

extracted through HE is highly variable, such that severely insulin resistant individuals 

(i.e. those requiring a high degree of hyperinsulinemia to maintain glycemic control) may 

extract minimal amounts of insulin (Andreev et al. 2009, Tura et al. 2001). In order to get 

an accurate assessment of insulin secretion from the beta cells (beta-cell function), 

interventions often use C-peptide instead of insulin to quantify changes to insulin 

secretion and the effects of interventions on the pancreas. The precise metabolites and 

signaling pathways that influence hepatic extraction are poorly understood, and several 

researchers have noted that HE and insulin degradation in general represents a 

remarkably understudied area of research (Bonnet et al. 2011). Given the importance of 

the liver in relation to many of the risk factors associated with cancer development (e.g. 

SHBG, IGF-1), the assessment of HE along with insulin may represent a fruitful area of 

research with respect to interventions.  
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To return to the study in which the relationship between insulin resistance and 

biomarkers of breast cancer risk was determined based on the change in fasting C-peptide 

(Fairey et al. 2003), it should now be evident that these conclusions may be an 

oversimplification of the actual effect of the exercise intervention.  The C-peptide 

concentration reflects the function and adaptation of the beta cell and not necessarily the 

action of the affector hormone (insulin). Additionally, the assessment of insulin 

resistance in the fasted state may not be capturing the change to insulin demand in the 

postprandial state, which may be important considering the role of exercise to modify 

postmeal hyperinsulinemia and the uncertainty about total or fasting insulin exposure in 

the risk for breast cancer recurrence.  

Clinical role of the disruption of insulin supply and demand 

  In order to assess the impact of insulin supply and demand on the risk for breast 

cancer, it would make the most sense to include individuals with prediabetes who display 

marked hyperinsulinemia. Prediabetes exists as an intermediate metabolic state between 

normal glucose homeostasis and T2D, and is primarily characterized by mild 

hyperglycemia and exaggerated hyperinsulinemia. Compared to T2D, insulin levels are 

higher in this prediabetic stage, and it has been recently reported that the risk for breast 

cancer development is higher in individuals with prediabetes than in those with normal 

glycemic control or frank T2D (Onitilo et al. 2014).  Additionally, the largest magnitude 

of change in insulin concentrations following exercise training is seen in individuals with 

prediabetes, which is likely due to a confluence of factors associated with the 

pathophysiology of T2D.  Individuals with prediabetes are close to maximally insulin 

resistant, however they retain the ability to secrete considerable amounts of insulin 
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(Abdul-Ghani et al. 2006). Reducing insulin supply by reducing insulin demand (in the 

form of exercise induced increase in insulin sensitivity) will preserve beta cell function 

and significantly prolong the time in which normal circulating glucose concentrations can 

be maintained (Utzschneider et al. 2004).  Additionally, the reduction in insulin 

concentrations in individuals with prediabetes following exercise training often 

approaches 10-20% in the fasted state and 30-50% in the postprandial state (Jenkins & 

Hagberg 2011, Malin et al. 2013), which may represent a significant reduction in risk of 

breast cancer recurrence and warrants a more complete understanding of the precise 

mechanisms involved. 

Interventions to better match insulin supply and demand 

Given the role of mismatched insulin supply and demand in diabetes 

pathophysiology, it is not surprising that researchers have focused a large volume of 

research on interventions that may better match insulin supply and demand. While 

exercise training significantly increases whole body insulin sensitivity (Malin et al. 2013) 

and likely leads to concomitant reductions in insulin supply, pharmacological agents such 

as metformin likely exert a tissue-specific effect (Viollet & Foretz, 2013). While it is 

unlikely that metformin and exercise training work together to improve specific 

components of systemic insulin supply and demand (Malin et al. 2013, 2014, Jenkins et 

al. 2014), it is possible that they have unique tissue specific effects. Therefore, the 

purpose of Study 1 of this dissertation was to investigate the role of exercise training 

and/or metformin on tissue-specific components of insulin supply and demand. This 

may provide insight into the specific means by which exercise training can modify 

breast cancer risk and/or improve prognosis in breast cancer survivors. 
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Summary of insulin supply and demand 

 Insulin is the primary hormone responsible for maintaining glycemic control, and 

circulating insulin concentrations have wide-ranging applicability in health and disease. 

While the assessment of insulin concentrations in the fasted state may present a snapshot 

of metabolic health, it is by no means exclusive and all encompassing. There is evidence 

that insulin levels may play a role in cancer recurrence, however an individuals insulin 

exposure may be widely discordant based on that individuals particular supply and 

demand. Insulin demand can be identified through skeletal muscle, liver, fasting and 

postmeal effects. Insulin supply includes not only the actions of the beta cell increasing 

or decreasing secretion, but also that of the liver breaking down a certain percentage 

before it reaches the general circulation. Conclusions and inferences based on 

relationships between insulin supply and demand and markers for breast cancer risk may 

be failing to capture areas in which hyperinsulinemia, glycemic control and breast cancer 

risk overlap. Both hyperinsulinemia and insulin resistance have been suggested to be 

moderators of breast cancer recurrence, however not all insulin resistance and 

hyperinsulinemia are created equal. Many aspects of the interactions between 

hyperinsulinemia and insulin resistance and breast cancer risk have not been thoroughly 

investigated. This lack of information can have direct effects on several aspects of 

glycemic control not traditionally assessed in breast cancer survivorship studies, 

including those using exercise training. 
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Exercise, hyperinsulinemia and breast cancer 

The relatively recent obesity epidemic has triggered interest in the relationship 

between physical activity, metabolic outcomes, and diseases such as cancer. As 

mentioned previously, the link between physical activity and cancer development appears 

to be fairly consistent across all types of solid tumor cancers (Courneya et al. 2013, 

McTiernan 2003), and the consensus based on these large cross-sectional epidemiological 

studies is that individuals who engage in physical activity have approximately 10-25% 

lower risk of developing breast cancer than highly sedentary individuals (Ballard-Barbash 

et al. 2012, Irwin et al. 2003). Additionally, several observational studies suggest that 

breast cancer survivors who habitually engage in walking or other aerobic activities 

reduce their risk of all cause and cancer specific death by up to 70% (Holmes et al. 2005, 

Holick et al. 2008).  This relationship between PA and cancer recurrence has generated 

research into prospective mechanisms behind this risk reduction. 

Randomized controlled trials of exercise training in breast cancer 

In 2010 the American College of Sports Medicine released an evidence-based 

position stand on the relationship and efficacy of exercise training to improve outcomes 

related to cancer (Schmitz et al. 2010). In it, they identified 32 prospective randomized 

controlled trials (RCTs) that investigated the relationship between an exercise training 

program and health outcomes in breast cancer survivors. The results of these studies all 

seem to suggest that exercise training in breast cancer survivors is safe and leads to 

improvements in fitness and quality of life similar to those benefits seen in age and sex-

matched controls. One of the limitations noted by the authors of this position stand was 

the relative paucity of information with respect to metabolic outcomes. Of the 32 RCTs 
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included, less than 10 collected any type of blood metabolites, and very few of those did 

so with specific transdisciplinary goals in mind, such as the role of exercise training to 

modify the relationship between breast cancer survivorship and CVD.  Indeed, it was this 

paucity of data that likely spurred on several aspects of the current Transdisiplinary 

Research on Energetics and Cancer (TREC) initiative (Patterson et al. 2013(a)), 

composed of several large RCTs designed to investigate the relationship between cancer 

and a host of physiological variables, such as insulin resistance. Several of these TREC 

projects include exercise training and/or increased PA as the means by which they 

modify energetics and potentially manipulate health outcomes, including a major wing of 

the project investigating the role of insulin in breast cancer (Patterson et al. 2013 (a)). 

These projects were all initiated in 2011 (with study designs published) and given a five-

year window to complete before the information will be reduced and released in a 

singular document, and until 2016 we are left to speculate with respect to what they will 

find. Given the relatively few published studies investigating metabolic outcomes in 

breast cancer survivors it is beneficial to identify their specific methods and outcomes, 

specifically highlighting any relationship between exercise, insulin/glycemic control and 

markers of breast cancer risk.  

 One of the first studies to investigate the role of insulin to moderate the effects of 

exercise in breast cancer survivors was published in 2003 by Fairey and colleagues at the 

University of Alberta (Fairey et al. 2003). This study included 52 postmenopausal stage 

I-III breast cancer survivors randomized into 3x/week of cycle ergometry for 15 weeks 

(n=24) or control (n=28). The primary outcomes of this study were fasting insulin, IGF-1, 

IGFBP and insulin resistance (assessed by homeostasis model assessment, or HOMA, the 
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product of fasting insulin and glucose and an algorithmic constant). They observed no 

differences in insulin or insulin resistance following the 15 weeks of exercise training, 

however they did observe statistically significant decreases in IGF-1 and increases in 

IGFBP3, leading to a significant change in the IGF-1/IGFBP3 ratio.  

The results from this study would therefore suggest that exercise training may 

have a significant impact on risk of breast cancer recurrence, however this risk reduction 

does not occur as a result of a change in insulin concentrations or insulin sensitivity. This 

conclusion is limited in scope however, as the effects of insulin and insulin resistance 

were evaluated only through fasting insulin concentrations, which also serves as the 

basis for their modeling of insulin resistance. Since exercise training manifests primarily 

in reductions in postprandial insulin concentrations (as a reflection of increased skeletal 

muscle insulin sensitivity), it is likely that assessing fasting insulin concentrations alone 

was not enough to capture the full modifications to glycemic control brought on by the 

exercise training intervention. In fact, one of the interesting aspects of this study was that 

fasting insulin concentrations in the exercise group slightly increased following the 

exercise training, rather than decreasing (as was expected) or staying the same (as was 

the case with the control group). This was not commented upon by the researchers, 

however it is not a unique finding. Other researchers have observed slight increases in 

fasting insulin and/or glucose levels following the initiation of an exercise program as the 

mechanisms controlling fasting insulin supply and demand attempt to adjust to 

potentially large changes in postmeal insulin supply and demand (Winnick et al. 2008, 

Yates et al. 2010). This behavior of fasting insulin may therefore represent a 

manifestation of changes in postmeal insulin levels that were not addressed in the study. 
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 Ligibel and colleagues (Ligibel et al. 2008, Ligibel et al. 2009) attempted to build 

on the conclusions of the previously described study by incorporating resistance training 

and including a slightly larger number of participants (n=40 for the exercise group). This 

study achieved remarkable control for an exercise training study in which 40 women did 

supervised resistance training, and the results from this intervention suggest that this 

program was enough to induce moderate changes in insulin concentrations. These 

changes in insulin and insulin resistance were significant over time, and were trending 

towards significance when compared to the control group. In addition to the standard 

limitation of using fasting insulin concentrations as a marker for daily glycemic control, 

the women in this study were remarkably metabolically healthy. While the criteria for 

enrollment in this study almost exactly matched the study by Fairey et al. (mostly 

postmenopausal breast cancer survivors with BMI>28 and exercising <15 min/wk), their 

fasting glucose (85 mg/dL) and insulin (8 uU/mL) are in the optimal range for this 

population. It is therefore possible that the results from this study may be difficult to 

interpret based on the health of the participants and the relative lack of improvement to 

insulin and glucose concentrations that may be gained through moderate aerobic and 

resistance training. The results of this intervention may have been different had the 

participants been hyperinsulinemic or prediabetic, which is a significant proportion of 

overweight, inactive postmenopausal women.   

 At roughly the same time, Irwin and colleagues published results from the Yale 

Exercise and Survivorship (YES) study, a large RCT also aimed at further establishing 

the metabolic pathways by which exercise may modify cancer recurrence. Metabolic 

results from this study were published in three papers (Irwin et al 2009 (a), Irwin et al. 
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2009(b), Jones et al. 2013), and served as much of the basis for this proposed project. The 

primary metabolic outcome investigated was the relationship between insulin, IGF-1 and 

IGFBP3 following a 6-month combined supervised and home-based aerobic exercise 

intervention in breast cancer survivors (Irwin et al. 2009(a)). This study is notable for its 

inclusion of several key measures that were not included in the previous studies, 

including an objective (albeit pedometer based) measure of PA and DEXA scanning to 

assess changes in BMD, body fat and central adiposity. The women enrolled in this study 

were remarkably similar to those from Fairey et al. and Ligibel et al with respect to BMI 

(30), age (57 years) and activity status prior to intervention (12 min/week). Participants 

fasting insulin concentrations decreased in the exercise training group (24.57 uU/mL to 

22.9 uU/mL) and increased in the control group (25.69 uU/mL to 31.98 uU/mL), 

however this result was not significant (p=0.08). When compared to control, the exercise 

training group did have significantly lower IGF-1 concentrations following the exercise, 

in support of the results found by Fairey and colleagues. In addition to the changes 

observed in IGF-1 and trends towards change in insulin, this cohort also lost a significant 

amount of weight and body fat compared to control, leading the researchers to conclude 

that the primary impact of the exercise training on metabolic health and risk of recurrence 

is through weight loss in this population. Without a thorough investigation into the 

mechanisms of postmeal insulin supply and demand, that conclusion may not be 

representative of the exact role an exercise induced increase in insulin sensitivity plays in 

the reduction of breast cancer risk.  

 In addition to the direct measurement of insulin and IGF-1 the YES cohort was 

evaluated for changes in inflammatory markers, including TNF-a and IL-6 (Jones et al. 
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2013). While there was no role of inflammation in the overall group responses, there was 

a significant change in IL-6 in those who performed >80% of the training sessions. Based 

on this result and the results of several other exercise studies (Rogers et al. 2013), a 

potential role of inflammation with respect to exercise induced modulation of breast 

cancer recurrence risk cannot be ruled out and warrants further investigation. Absent 

from these previous studies is an investigation into the role of estrogen, SHBG and the 

adipokines (leptin and adiponectin). Roughly 30% of the participants of the YES study 

were on aromatase inhibitors, and that may have severely complicated any potential 

conclusions made with respect to the interaction between estrogen/SHBG levels and 

exercise. 

Other exercise training in breast cancer survivor studies 

 Several studies investigating the role of exercise training in breast cancer 

survivors published after the 2010 ACSM position stand warrant further discussion. 

Campbell and colleagues have recently completed an exercise trial in which an exercise 

program similar to the one introduced by the United States Diabetes Prevention Program 

(USDPP) was used in breast cancer survivors (Campbell et al. 2012), while Goodwin and 

colleagues have published preliminary work on the role of metformin in breast cancer 

survivors (Niralua et al. 2012), which also draws partly from the USDPP. The USDPP 

was a large multi-site RTC investigating the role of a lifestyle intervention or metformin 

in the prevention of the transition from prediabetes to frank T2D. This trial was a 

resounding success, as the lifestyle intervention reduced the transition from prediabetes to 

T2D by well over 50% and metformin was also effective at a rate of approx. 30% 

(Knowler et al. 2002). The success of this program has lead to widespread follow-up 



50	
  
	
  

studies, including by our lab (Malin et al. 2012). Of particular note, these follow-up 

studies have shown that while both exercise (the primary driver of the changes seen in the 

lifestyle group) and metformin improve metabolic health and reduce insulin 

concentrations, they do so through different mechanisms. Exercise training, as mentioned 

previously, induces metabolic adaptations to insulin supply and demand through skeletal 

muscle, and therefore manifests most prominently in postmeal hyperinsulinemia (Kirwan 

& Jing 2002), while metformin interacts primarily with the liver (McCormack et al. 

2001), inducing changes to fasting insulin and glucose concentrations.   

 Results from Goodwin and colleagues work with metformin and breast cancer 

recurrence/prognosis have been mixed. They generally support a significant reduction in 

fasting insulin concentrations and insulin resistance (Niralua et al. 2012), but with 

minimal effect on prognosis in those with T2D (Lega et al. 2013). Several large clinical 

trials, including several arms of the TREC initiative, are underway to determine the exact 

role metformin may play in reducing the risk of cancer recurrence, with the results from 

these trials forthcoming. The study by Campbell et al. did not observe any relationship 

between a USDPP-based lifestyle intervention composed of exercise and dietary 

modification and biomarkers of breast cancer recurrence, however several limitations 

may have confounded their results. First, their fasting glucose concentrations were not in 

the prediabetic range (95 mg/dL) and their fasting insulin concentrations were normal 

(8.9 uU/mL), potentially running into a “basement” effect where the low levels of 

glucose and insulin prevent exercise training from having a measurable effect on 

glycemic control, similar to Ligibel et al. Secondly, while there was considerable 

reduction in insulin concentrations following the exercise training, the high degree of 
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variability (+/- 9.1 uU/mL SD) in those insulin concentrations may have contributed to 

the lack of significant differences in the lifestyle intervention group. Finally, as with 

other studies investigating the role of exercise in breast cancer survivors, the metrics of 

hyperinsulinemia and insulin resistance were derived from a fasting measure of insulin 

(and glucose for the HOMA score), which may not be an appropriate reflection of the 

role of exercise in the modulation of hyperinsulinemia.  Several of the TREC studies 

were designed to investigate the interaction between exercise training and cancer risk, 

prognosis and treatment. Their study designs are consistent in that they all include 

metabolic measurements, and those investigating the role of insulin are designed to 

primarily reflect insulin supply and demand in the fasted state.  The relationship 

between fasting and postmeal insulin supply and demand and biomarkers of cancer 

recurrence are unclear, and therefore study 2 will investigate the relationship using 

information from the pre-intervention glucose tolerance testing and fasting 

biomarkers of cancer risk taken at the same timepoint. Lack of information regarding 

the effect of exercise training on postprandial hyperinsulinemia could lead to a significant 

underestimation of the role of exercise training in modifying cancer risk in this 

population. To address this potential confounding relationship between fasting and 

postmeal insulin concentrations with cancer risk, study 3 will examine the change in 

insulin supply and demand following exercise training and how that relates to the 

change in cardiometabolic health in breast cancer survivors.  Results from this study 

should aide in the understanding of treatment-specific mechanisms, potentially 

identifying situations in which reducing postmeal insulin concentrations though exercise 

may be more critical than reducing fasting insulin concentrations via pharmacology, such 
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as metformin. Evaluating postprandial insulin within this population takes additional 

importance from the recent results from our lab that suggest that adding metformin to 

exercise training blunts the effects of the exercise (Malin et al. 2012). Should changes to 

postprandial rather than fasting insulin concentrations drive the beneficial adaptations to 

biomarkers of breast cancer risk, breast cancer survivors who both exercise and take 

metformin may actually be increasing their risk of recurrence. This well-controlled, albeit 

relatively small, prospective study into the interaction between postprandial 

hyperinsulinemia, exercise and breast cancer recurrence may not be enough to alter the 

conclusions derived from these large generously funded multi-site RCTs, however it 

could potentially serve as the basis for larger proposals investigating this relationship in 

the future.   
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CHAPTER III 

EXERCISE TRAINING AND METFORMIN DIFFERENTIALLY IMPACT 

COUPLING OF INSULIN SUPPLY AND DEMAND 

Introduction 

A key aspect of type 2 diabetes (T2D) prevention is the ability to appropriately 

match the production of insulin with the demand of whole-body insulin resistance.  Up to 

70% of individuals with prediabetes (fasting and/or post-challenge glucose 

concentrations above normal but below the range of frank T2D) are characterized by an 

inappropriate matching of insulin secretion and sensitivity (DeFronzo & Abdul-Ghani 

2011), and without lifestyle or pharmacological intervention the transition from 

prediabetes to T2D is highly likely (Nijpels et al. 1996).  Results from the United States 

Diabetes Prevention Program suggest that both lifestyle intervention (comprised of 

weight loss and increased physical activity) and the anti-hyperglycemia medication 

metformin delay the transition from prediabetes to T2D (Kitabchi et al. 2005). Despite a 

plausible expectation of additivity, recent evidence suggests that combining metformin 

and exercise training confers no added benefit to whole-body insulin sensitivity and 

markers of cardiovascular risk when compared to exercise training alone (Jenkins et al. 

2012, Malin et al. 2012, Malin et al. 2013). Lifestyle interventions increase whole-body 

insulin sensitivity and reduce circulating insulin concentrations, which is primarily a 

result lower insulin secretion (Kahn et al. 1992). However, circulating insulin 

concentrations may also be modified by insulin synthesis in the beta cells (Polonsky et al. 

1994) or altered rates of insulin extraction and clearance by the liver (Escobar et al. 

1999).  These effects likely lie outside the closed-loop relationship between whole-body 
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insulin sensitivity and compensatory insulin secretion, and may not be effectively 

captured with standard tools (e.g. euglycemic clamp) and metrics (e.g. HOMA-IR) used 

to evaluate changes to insulin sensitivity and secretion.  Understanding the difference 

between tissue-specific and whole body insulin supply and demand regulation has more 

than academic importance given that preservation of beta-cell capacity is a key to 

diabetes prevention.  Metformin influences glycemic control through inhibition of hepatic 

glucose production (Madiraju et al. 2014), and it is likely that there are other tissue-

specific responses (e.g. hepatic insulin clearance) through which metformin may 

influence glycemic control. Without evaluating the combined effects of exercise training 

and metformin on tissue-specific markers of glycemic control (e.g. beta cell proinsulin 

processing, insulin clearance) that lie outside the insulin secretion-sensitivity feedback 

loop, it is possible that the utility and drawbacks of combining lifestyle interventions and 

metformin to prevent or delay T2D are not fully understood.  

Proinsulin, the precursor prohormone to insulin and a marker of insulin synthesis, 

is primarily contained within the beta cells of the pancreas, where it is cleaved into 

insulin and C-peptide prior to release into the general circulation. Elevated circulating 

proinsulin concentrations represent a decoupling between glucose variations and the 

synthesis and release of insulin, as proinsulin that could otherwise be used for insulin 

production ‘leaks out’ into the general circulation. It is therefore not surprising that total 

proinsulin concentrations, as well as the ratio between proinsulin and both insulin (PI/I) 

and C-peptide (PI/C), are elevated in adults with prediabetes (Larrson et al. 1999, 

Warcham et al. 1999). Additionally, hyperproinsulinemia is associated with both the 

development and severity of T2D (Loopstra et al. 2011, Roder et al. 1999), and may 
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serve as a link between impaired glycemic control and cardiovascular disease (Choi et al. 

1999, Zethelius et al. 2002).  Circulating proinsulin concentrations are reduced following 

intervention with lifestyle or metformin  (Kitabchi et al. 2005), but the effects of 

combining the two interventions are unknown. First pass hepatic insulin extraction (HIE) 

involves the degradation of insulin by the liver after secretion from beta cells but prior to 

reaching the general circulation (Toffolo et al. 2006). Obese individuals and individuals 

with hyperinsulinemia often display reduced HIE (Kim et al. 2007, Mittelman et al. 

2000), which may partly contribute to their elevated circulating insulin concentrations.   

HIE may be higher following interventions that reduce hyperinsulinemia or improve 

glucose tolerance (Krogh-Madsen et al. 2014), however the impact of exercise training 

and/or pharmacological interventions is unclear. As a result little is known about how 

HIE changes with respect to alterations to insulin secretion and sensitivity, or the 

relationship between HIE and changes in glycemic control (Krogh-Madsen et al. 2013, 

Mittelman et al. 2000).  Insulin clearance (IC), or the systemic breakdown of insulin, 

occurs primarily in the liver (~80%) and kidney (~20%) and is also reduced in obesity 

(Ader et al. 2014, Valera Mora et al. 2003) and prediabetes (Castel-Auvi et al. 2012, 

Marini et al. 2014). IC may respond to pharmacologically augmented weight loss (Kim et 

al. 2014) but the effects of lifestyle interventions on IC are unknown.  

There is a pressing public health need to prevent T2D, and maximizing the 

efficacy/precision of prevention will require evaluating the independent and interactive 

effects of lifestyle and pharmacological interventions. Thus the purpose of this study was 

to evaluate the effects of a 12-week exercise training and/or metformin intervention on 

insulin synthesis, clearance and extraction. Given our previous work suggesting 
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metformin and exercise training in combination is not more beneficial than exercise alone 

with respect to cardiometabolic health (Malin et al. 2012, Malin et al. 2013), we 

hypothesized that metformin would not confer any added benefit, and may even blunt, 

the beneficial tissue-specific effects of exercise training on IC, HIE and proinsulin 

processing.  

Methods 

Overview 

The protocol has been previously described in detail elsewhere (Malin et al. 2012, 

Malin et al. 2013). Briefly, overweight to obese sedentary women and men (Table 1) with 

impaired glucose tolerance, as determined by a 75 g oral glucose tolerance test, were 

randomly assigned to one of four groups: Placebo (P, n=8), Metformin (M, n=9), exercise 

training plus placebo (E+P, n=9), and exercise training plus metformin (E+M, n=10).  

Exclusion criteria were smoking, weight instability (> 5 kg change over previous 6 

months), regular physical activity (> 60 min/wk), or contraindications to metformin. Peak 

aerobic capacity (VO2peak, cycle ergometer), maximal strength (1 repetition max for key 

muscle groups), and body composition (dual X-ray absorptiometry, DEXA, Lunar 

Technologies, Chicago IL) were tested before and after the intervention.  All participants 

were verbally briefed about the study and signed informed consent documents approved 

by the University of Massachusetts Amherst Institutional Review Board.   

Intervention protocol 

All participants were instructed to maintain baseline diet and physical activity 

levels throughout the 12-week intervention, and no change in diet (3-day diet records) or 
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habitual ambulation (pedometer) was observed (18).  Participants were randomly 

assigned to receive metformin (1000 mg twice per day separated by 8-12 hours) or an 

identical placebo and further subdivided into exercise training  (3 days/week, 225 total 

minutes of supervised aerobic and resistance exercise) or non-training groups.   

Blood collection and hyperinsulinemic-euglycemic clamp 

Following 24-hours of dietary and physical activity control (meals provided to 

ensure caloric and macronutrient balance) and a 10-12 hour overnight fast, blood samples 

were taken from an indwelling catheter placed in an antecubital vein.  Blood samples 

were collected and plasma was separated in tubes containing EDTA (proinsulin, insulin 

and C-peptide) and NaF (glucose) and stored at -80° for subsequent analysis.  Following 

the fasting blood draw a 120-minute hyperinsulinemic-euglycemic clamp (5mmol, 80 

mU/m2/min) was used to determine peripheral (skeletal muscle) insulin sensitivity.  

Biochemical analysis 

Fasting blood glucose was determined using the glucose oxidase method (GM7 

analyzer, Analox Instruments, Lunenberg MA). Fasting plasma proinsulin, insulin and C-

peptide concentrations were determined using a commercial radioimmunoassay 

(Millipore, Billerica MA). The cross-reactivity of the human proinsulin RIA with insulin 

and C-Peptide is <0.1%, and the cross-reactivity of the human C-Peptide RIA for total 

proinsulin is <4%. The intra-assay coefficient of variation was 4.7%, and the interassay 

coefficient of variation was <10%.  
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Proinsulin processing, hepatic insulin extraction and insulin clearance 

Total fasting proinsulin, proinsulin to insulin (PI/I) and proinsulin to C-peptide 

(PI/C) ratios were calculated to depict proinsulin secretion. Hepatic insulin extraction 

(HIE) was assessed using the volume-adjusted insulin to C-Peptide ratio as defined by 

Cobelli and colleagues (Cobelli et al. 2007). Insulin clearance was determined during the 

last 30 minutes of the clamp by dividing the insulin infusion rate by the circulating 

steady-state plasma insulin concentration (SSPI), as previously used by Marini and 

colleagues (Marini et al. 2014, Marini et al. 2013). Whole-body insulin sensitivity was 

defined as the glucose infusion rate (M) during the last 30 minutes of the clamp divided 

by the SSPI.  

Statistics 

Data were analyzed using R statistical software (Vienna AU 2010, http://www.R-

project.org). Baseline and group differences were evaluated using a one-way ANOVA. 

Pre to post differences within groups were determined using paired t-tests. Pearson 

product moment correlation coefficients were used to determine associations between 

changes in proinsulin, HIE and IC as well as changes in insulin action and markers of 

cardiometabolic health. Statistical significance was accepted as p<0.05.  

Results 

Baseline characteristics and effects of training 

Baseline body weight, fitness, insulin sensitivity, and physical activity levels were 

similar among groups (Table 1).   As reported previously (Malin et al. 2012, Malin et al. 

2013), VO2peak increased in both E+P (+18%) and E+M (+10%), and weight loss was 
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greater after M (-4%) and E+M (-7%) compared with P (0%) and E+P (-0.2%). Insulin 

sensitivity also higher following all treatments, and the rise in sensitivity was 25-30% 

greater in E+P compared with E+M (Malin et al. 2012). While there were no changes to 

fasting glucose, insulin or C-peptide in the P and M groups, there were significant 

reductions in fasting plasma insulin and C-peptide following E+P and significant 

decreases in fasting plasma glucose and C-Peptide in the E+M group (Table 2). 

Proinsulin and proinsulin ratios 

Baseline proinsulin concentrations did not differ among groups. Compared to 

baseline, fasting plasma proinsulin was not different in P, M, or E+P, however proinsulin 

concentrations were significantly lower following E+M (Figure 1). There were no 

significant differences in the PI/I ratio or PI/C ratio across the interventions (Table 2). 

There was also no significant correlation between the change in fasting proinsulin and 

change in insulin sensitivity (r=-0.127, p=0.46), fasting plasma glucose (r=0.199, 

p=0.25), or body fat percentage (r=0.323, p=0.64).  

Hepatic extraction and insulin clearance 

There were no significant changes to first pass HIE in the control group or any of 

the intervention groups (Table 2). There was also no significant correlation between the 

change in HIE and the change in fasting proinsulin (r=0.053, p=0.76), insulin sensitivity 

(r=-0.064, p=0.96), body fat percentage(r=0.139, p=0.88) or body weight (r=-0.208, 

p=0.43). Steady state plasma insulin was significantly lower in M and E+M, but there 

was no difference in P or E+P (Table 2). Similarly, insulin clearance was also 

significantly increased in M and E+M, and unchanged in P and E+P (Figure 2). There 
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was a significant association between the change in insulin clearance and change in 

insulin sensitivity (r=0.344, p=0.014), however there was no association between insulin 

clearance and fitness (r=0.291, p=0.15) or body fat (r=-0.143, p=0.42). 

Discussion 

In this study, fasting proinsulin was significantly reduced (-24%) only after 

exercise training was combined with metformin.  Although not significant, the decrease 

with metformin alone (-20%) was comparable in magnitude to the combined intervention. 

Additionally, rates of steady state insulin clearance during a hyperinsulinemic-

euglycemic clamp were also significantly greater following 12 weeks of metformin, with 

or without exercise training, but not with placebo or exercise training alone. These results 

surprised us because we expected insulin clearance to follow a similar pattern to that of 

whole-body glucoregulatory responses, such as insulin sensitivity, which were most 

strongly impacted by exercise training alone (Malin et al. 2012, Malin et al. 2013). The 

decoupling of changes to proinsulin and insulin clearance from insulin sensitivity and 

fasting insulin implies that metformin and exercise differentially impact the relationship 

between insulin demand (tissue sensitivity) and supply (secretion). 

There are several potential explanations for these results.  In the current study, only the 

two groups that received metformin lost weight. Weight loss drives many of the 

beneficial outcomes of lifestyle or pharmacologic interventions on cardiometabolic 

health/disease risk.  However the driving force behind these positive changes is generally 

considered to be loss of fat, particularly loss of abdominal fat (Malin et al. 2012).  In our 

study it was only the two exercise groups, not the metformin-only group, who lost total 

and central adiposity.  Therefore, a causal relationship between weight/fat loss and both 
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lower proinsulin concentrations and greater steady state insulin clearance in our study is 

not supported. Similarly, although whole-body insulin sensitivity was strongly associated 

with higher cardiorespiratory fitness (CRF), there was no change to fasting proinsulin or 

insulin clearance in the exercise-only group, which showed the largest rise in CRF. In 

contrast, metformin alone caused a 20% reduction in proinsulin and a 20% increase in 

insulin clearance despite no change in CRF.  These results imply that changes in CRF are 

not necessary to alter fasting proinsulin or insulin clearance. 

It is also possible that in men and women with prediabetes, fasting hyperproinsulinemia 

and reduced insulin clearance are more closely associated with fasting hyperglycemia 

than hepatic or peripheral insulin resistance.  If so, fasting proinsulin may only decline in 

response to lowering of fasting glucose. We observed no association between change in 

proinsulin and changes in fasting glucose, however it is conceivable that any relationship 

between the two was obscured by the relatively modest fasting hyperglycemia at 

baseline, restricting the magnitude of any declines in fasting glycemia and, therefore, 

proinsulin.  The only group that exhibited a statistically significant decline in proinsulin 

was the E+M group, which also had a statistically significant reduction in fasting glucose 

concentration. 

Metformin also affects signaling pathways in the beta cell (Leclerq et al. 2004), 

and can alter insulin production within the beta cells through AMPK-dependent changes 

to insulin synthesis (Kefas et al. 2004, Masini et al. 2014). It is therefore possible that 

metformin has a direct impact on insulin production in humans but exercise does not.  

Similar reductions in both insulin and proinsulin in the metformin groups suggests that 

metformin may act directly on the beta cell to lower the output of proinsulin into the 
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portal vein rather than altering hepatic extraction.  It is also possible that metformin 

influences hepatic and renal regulation of insulin kinetics via upregulation of key insulin 

degradation enzymes and possibly improvement of hepatic and renal function (Cao et al. 

2014, Foretz et al. 2010) but that exercise training has a minimal effect on these 

processes. Directly testing how combining exercise training and metformin impact beta-

cell function will require animal models and cell culture work in follow-up studies.  

In contrast to the effects of metformin, discord between changes in circulating insulin, 

proinsulin, insulin sensitivity and insulin clearance in the exercise groups suggests that 

exercise training may modify glycemic control primarily by enhancing peripheral insulin 

sensitivity with consequent reductions in circulating insulin (Kahn et al. 1992).  While 

insulin secretion represents the primary mechanism by which circulating insulin can be 

adjusted, first-pass hepatic insulin extraction may also play a significant role (Kim et al. 

2007). We attempted to evaluate the effects of exercise and metformin on this tissue-

specific moderator of insulin supply using the relationship between circulating insulin 

and C-peptide to estimate hepatic extraction.  There were no differences in fasting hepatic 

extraction attributable to any of the 3 interventions.  The calculation of hepatic insulin 

extraction using fasting C-peptide and insulin kinetics relies on several assumptions, and 

without a pre- and post-intervention glucose challenge it is hard to argue that hepatic 

extraction plays no role in the interaction between exercise training and metformin. A 

better understanding of how exercise training or metformin alter beta cell secretion and 

circulating insulin metabolism/kinetics will require cleverly designed studies to tease 

apart several interrelated processes.   
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Understanding the effects of exercise or metformin on measures of glycemic 

control requires considering the larger context.  The hyperbolic law of insulin kinetics 

suggests that coupling between insulin demand (sensitivity or resistance) and supply 

(secretion and clearance) is coupled such that increasing sensitivity leads to lower 

circulating insulin concentrations (Stumvoll et al. 2005). The current study suggests that 

metformin, but not exercise, can change insulin synthesis/clearance without necessity for 

upstream changes to insulin sensitivity.  If true, there are potentially important clinical 

ramifications. For example, one of the oft-cited benefits to improving insulin sensitivity 

is reducing hyperinsulinemia and “resting” the pancreas to preserve beta cell function. If 

lower circulating insulin is a result of changes in post-secretion insulin clearance instead 

of reductions in first and/or second phase insulin secretion, there may be little or no 

reduction in beta cell “stress” following exercise training.  Additionally, if there is 

recognized value in reducing insulin synthesis by the islets regardless of the degree of 

insulin reaching the general circulation, there may be practical reasons to choose between 

metformin or exercise for patients who are still able to compensate for insulin resistance 

with hyperinsulinemia.  The divergent impact of exercise and/or metformin on tissue-

specific (e.g. proinsulin and insulin clearance) compared to whole-body (e.g. insulin 

action) metrics of glycemic control suggests that the utility of selecting one treatment 

versus the other, or combining both treatments, is outcome-specific.   

   Scaling up to the critical public health issue of preventing diabetes and 

cardiovascular disease in humans, the independent and combined actions of physical 

activity and/or metformin on the transition from prediabetes to T2D is difficult to predict 

from studies of insulin sensitivity alone.  To understand the comparative efficacy of 
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physical activity, metformin or both on T2D and cardiovascular disease prevention, 

studies will need to be conducted in the target population with the development of frank 

T2D or cardiovascular disease as the primary outcome.  
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Tables 

Table 3.1: Participant characteristics 

 

Data presented as mean ± SEM. There were no significant differences at baseline across the four 
conditions 

 

 

 

 

 

 

 

 

 

 

 

 P M E+P E+M 

N (male) 8(2) 9(4) 9(4) 10(4) 

Age (years) 49.75 ± 3.87 46.33 ± 2.57 46.22 ± 2.60 49.50 ± 1.77 

Weight (kg) 94.78 ± 5.28 96.47 ± 5.26 97.3 ± 4.74 93.44 ± 4.77 

Body Fat (%) 45.96 ± 3.05 42.47 ± 2.45 42.16 ± 2.31 41.43 ± 2.21 

VO2Peak (mlkg-1min-1) 21.44 ± 2.32 24.18 ± 2.75 25.28 ± 2.21 27.25 ± 1.76 

Fasting Glucose (mmol) 5.34 ± 0.18 5.23 ± 0.24 5.45 ± 0.25 5.86 ± 0.21 

2-h Glucose (mmol) 9.36 ± 0.47 9.23 ± 0.47 10.37 ± 0.34 9.81 ± 0.49 
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Table 3.2: Changes to glycemic control after intervention period 

 P M E+P E+M 

Glucose (mmol/L)     

Pre 5.34 ± 0.18 5.23 ± 0.24 5.45 ± 0.25 5.86 ± 0.21 

Post 5.29 ± 0.12 5.28 ± 0.25 5.41 ± 0.21 5.49 ± 0.13* 

Insulin (pmol/L)     

Pre 139.9 ± 28.9 152.9 ± 27.5 94.9 ± 11.5 95.6 ± 20.8 

Post 149.9 ± 34.0 119.7 ± 26.3 84.5 ± 9.7* 80.3 ± 13.9 

C-Peptide (pmol/L)     

Pre 874.1 ± 151.0 1375.1 ± 142.8 1154.9 ± 195.8 1052.2 ± 96.4 

Post 969.8 ± 142.3 1226.4 ± 150.7 983.2 ± 169.3* 765.8 ± 76.4* 

PI/I (pmol)     

Pre 0.15 ± 0.02 0.16 ± 0.03 0.27 ± 0.11 0.24 ± 0.04 

Post 0.19 ± 0.04 0.18 ± 0.04 0.27 ± 0.08 0.19 ± 0.02 

PI/C (nmol/pmol)     

Pre 0.25 ± 0.04 0.21 ± 0.03 0.19 ± 0.03 0.17 ± 0.03 

Post 0.23 ± 0.04 0.17 ± 0.04 0.21 ± 0.05 0.20 ± 0.05 

HIE (%)     

Pre 71.2 ± 3.8 74.4 ± 4.0 84.4 ± 1.7 84.2 ± 3.1 

Post 75.8 ± 3.2 79.5 ± 3.2 83.3 ± 2.6 79.8 ± 5.1 

SSPI (pmol/L)     

Pre 1462.5 ± 75.4 1474.4 ± 74.8 1494.4 ± 118.9 1449.0 ± 86.4 

Post 1456.3 ± 58.6 1247.2 ± 102.7* 1295.5 ± 57.3 1199.0 ± 77.5* 

Data presented as mean ± SEM. PI/I- Fasting proinsulin/insulin ratio. PI/C- Fasting proinsulin/C-
peptide ratio. HIE-Hepatic insulin extraction. (*) Indicates significant change from baseline 
(p<0.05). 
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Figures 

 

Figure 3.1: Fasting proinsulin concentrations 

Data presented as mean±SEM. *Indicates significant difference from baseline (p<0.05) 
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Figure 3.2: Clamp-derived insulin clearance 

Data presented as mean±SEM. *Indicates significantly different from baseline (p<0.05) 
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Prologue to chapters IV and V 

 Studies 2 and 3 (chapters IV and V) of this dissertation differ from study 1 in 

terms of the population (men and women with prediabetes vs. postmenopausal breast 

cancer survivors) and research techniques (euglycemic clamp vs. oral glucose tolerance 

test). While this gives the appearance of two disconnected and unrelated projects, there 

are several areas of overlap between the studies that are worth mentioning.  

 The benefits of metformin as means to restrain blood glucose concentrations have 

been studied for decades, however the potential utility of metformin as a 

mediator/moderator of cancer risk is a relatively novel and unexpected finding (Bodmer 

et al. 2010). As with any unexpectedly fortuitous result, research has been directed 

towards identifying the mechanisms behind metformin-induced reductions in cancer risk 

(Chae et al. 2016) and optimally incorporating metformin into existing oncotherapy 

(Grossmann et al. 2015). Metformin appears to lower blood glucose concentrations by 

reducing hepatic glucose production (Madiraju et al. 2014), which leads to lower insulin 

concentrations in both the fasting and the postmeal state. Exercise training primarily 

regulates blood glucose through reductions in skeletal muscle insulin demand in the 

postmeal state, leading to a compensatory reduction in insulin supply. It is therefore 

reasonable to suspect that metformin and exercise training would have additive effects on 

glycemic control, as was the hypothesis for the series of experiments by Malin et al. 

(Malin et al. 2012, Malin et al. 2013).  This was not the case however, as combining 

metformin with exercise training did not enhance, and may have even attenuated, the 

beneficial adaptations to systemic insulin supply and demand that occurred as a result of 

exercise training alone. The results from study 1 support the hypothesis that exercise 
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training acts to reduce diabetes risk through systemic modification of insulin supply and 

demand (e.g. increased insulin sensitivity), whereas metformin may accomplish this same 

task (albeit to a lesser degree) through specific modifications of insulin-sensitive tissue. 

While it is tempting to expand this conclusion to encompass both exercise and 

metformin-induced reductions in carcingenesis, the lack of information regarding the 

relationship between changes to insulin supply and demand and cancer risk following 

lifestyle or pharmacological interventions prevents such interpretation from being made. 

 In 2011 The National Cancer Institute, in conjunction with several research 

institutions across the country, began a series of research studies known as the 

Translational Research in Energetics of Cancer (TREC) project (Patterson et al. 2011). 

One such study mimics the four-armed intervention used in study 1 to evaluate the 

benefits of exercise training and metformin in combination on cancer recurrence. While 

this may shed light on the efficacy and utility of the combined and independent effects of 

each intervention as oncotherapy, the lack of information regarding the tissue vs. 

systemic effects of exercise training on insulin supply and demand in both the fasted and 

fed state in cancer survivors may influence the interpretation of the benefits of each 

treatment on metabolic health. The purpose of studies 2 and 3 of this dissertation project 

were therefore to develop a greater understanding of changes to postmeal insulin supply 

and demand and the physiological mechanisms responsible for them as a result of 

exercise training in cancer survivors. These small, highly controlled research studies 

could therefore ‘fill in the gaps’ of large clinical trials, and by doing so guide future 

clinical trials and enhance the efficacy of personalized targeted therapy to reduce the risk 

of cancer and diabetes. 
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CHAPTER IV 

EXERCISE TRAINING LOWERS POSTMEAL, BUT NOT FASTING, INSULIN 

CONCENTRATIONS IN BREAST CANCER SURVIVORS 

Introduction 

 Women who regularly engage in physical activity have significantly lower rates 

of cancer development and recurrence (Moore et al. 2016), as well as reduced rates of 

cancer-specific and all-cause mortality (Ballard-Barbash et al 2012). Although the precise 

mechanisms are unclear, lower circulating insulin concentrations in active women may 

play a role. Insulin appears to have mitogenic effects on cancer cells, and results from 

cell culture, animal model and epidemiological studies support a role for elevated insulin 

concentrations (hyperinsulinemia) in the development of breast cancer (Gallagher et al. 

2013) and breast cancer-specific mortality (Irwin et al. 2011). Despite a mechanistically 

plausible hypothesis that lower insulin concentrations following exercise training 

contribute to reduced cancer risk and improved cancer prognosis, this relationship has not 

been consistently observed in breast cancer survivors.  Fairey et al. first evaluated the 

effects of exercise training on circulating insulin concentrations in breast cancer 

survivors, and their results suggested that 24 weeks of aerobic exercise training did not 

lower insulin concentrations (Fairey et al. 2003). Several subsequent exercise training 

studies in breast cancer survivors also failed to observe a significant reduction in 

circulating insulin concentrations or decrease in insulin resistance following 12-, 16- or 

26-week exercise training interventions (Ligibel et al. 2008, Irwin et al. 2009, Campbell 

et al. 2012, Guinan et al. 2013). These results are surprising, as reductions in circulating 

insulin concentrations have been consistently observed following exercise training in 
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other populations, including postmenopausal women (Friedenreich et al. 2011). It is 

unclear why exercise training interventions in breast cancer survivors do not elicit 

significant changes in circulating insulin concentrations. One plausible explanation is that 

the relationship between insulin and cancer risk is obscured by the use of fasting insulin, 

and metrics of insulin resistance derived from fasting insulin levels (e.g. HOMA), as the 

sole representation of exercise-induced improvements in insulin action and regulation.  

While the relationship between insulin and cancer is often predicated on its 

anabolic and mitogenic nature, the role of insulin as a glucoregulatory hormone makes it 

unique among biomarkers of cancer risk. Insulin levels rise and fall several times 

throughout the day in response to meals, restraining blood glucose concentrations via 

induction of skeletal muscle glucose uptake and suppression of liver glucose production. 

The volume of insulin required for postmeal glycemic control can account for 50-80% of 

daily insulin exposure (Basu et al. 2003), and often shows a high degree of discordance 

with fasting insulin concentrations (Varghese et al. 2016). Additionally, interventions that 

improve glycemic control do not do so equally across different insulin-sensitive tissues 

and metabolic states. Exercise training is a potent skeletal muscle insulin sensitizer, and 

is more effective at reducing postmeal than fasting insulin concentrations (Jenkins and 

Hagberg 2011). In fact, while fasting insulin resistance metrics have a moderate 

correlation with gold standard measures of insulin resistance, it is unclear what specific 

physiological components of glucose metabolism they reflect (Reaven 2013). This 

potentially makes fasting insulin and associated metrics of insulin resistance 

inappropriate tools for evaluating the effects of exercise training, in which changes to 
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glycemic control primarily manifest through changes to postmeal insulin action and 

volume. 

It is possible that studies investigating the links between exercise training and 

cancer risk/prognosis underestimate the role of insulin by failing to assess changes in 

postmeal insulin concentrations. To date, no study has evaluated the effects of an exercise 

training program on postmeal insulin concentrations or metrics of insulin resistance that 

incorporate both fasting and postmeal glucose and insulin concentrations in breast cancer 

survivors. Therefore, the purpose of this study was to evaluate the effects of 12-weeks of 

supervised exercise training on postmeal insulin concentrations in breast cancer 

survivors, and identify any significant associations between changes in postmeal insulin 

concentrations and changes in biomarkers of cancer recurrence. We expect that exercise 

training will minimally change fasting insulin levels but will cause a significant reduction 

in postmeal insulin concentrations. Additionally, we expect that changes in cancer 

biomarkers (e.g. IGF-1, leptin, SHBG) will be more closely associated with changes to 

postprandial insulin concentrations than with changes in fasting insulin concentrations.  

Methods 

Recruitment and participants 

 Seventeen breast cancer survivors were recruited from the western Massachusetts 

area. Participants were between the ages of 35 and 70, and were either postmenopausal  

(or had oophrectomy) as determined by questionnaire. Participants were in overall good 

physical health, and were free from diabetes, heart disease and any injury that would 

prevent them from engaging in exercise training. Participants reported not meeting the 
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current physical activity guidelines of 150 minutes/week of moderate to vigorous 

physical activity. Several participants were taking endocrine therapy for ER+ breast 

cancer, including Arimidex (n=5), Tamoxifen (n=2) and Aromasin (n=1). All medication 

use remained stable throughout the intervention period. All participants completed an 

informed consent document approved by the University of Massachusetts Institutional 

Review Board prior to starting the study.  

Baseline fitness and anthropometric testing 

 Prior to metabolic testing, participants reported to the Energy Metabolism Lab in 

the Department of Kinesiology on the University of Massachusetts campus for 

determination of health history, body composition and fitness. Participants filled out a 

baseline health history and fitness questionnaire, followed by measurement of their height 

and weight (stadiometer and physicians scale, Detecto, Webb City, MO), blood pressure 

(manual sphygmomanometer, Santa medical inc., Tustin, CA) and waist circumference 

(tape measurer).  

Baseline fitness levels were determined using a submaximal exercise test on a 

cycle ergomter (ACSM guidelines for exercise testing and prescription, 9th ed.). After a 

two minute resting period, participants were instructed to begin pedaling at an initial 

resistance of 25 watts, maintaining a cadence of  >60 revolutions per minute. Resistance 

was increased in 25-watt increments every two minutes, and heart rate and rating of 

perceived exertion (RPE) were recorded at the end of each two minute stage. 

Additionally, expired gasses were continuously collected using a metabolic cart 

(Parvomedics, Sandy, UT) for the determination of volume of oxygen consumption 

(VO2) and respiratory exchange ratio (RER). Stages were increased until participants 
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reached 80% of age-predicted maximal heart rate (HRmax). Upon completion of the test, 

heart rate and VO2 responses from each stage were plotted and a linear line-of-best-fit 

was used to estimate VO2peak at age-predicted HRmax. To determine body composition, 

participants underwent a DEXA scan (Lunar technologies, Chicago IL) at the University 

of Massachusetts Health Services Center. This test was used to determine body fat 

percentage, bone mineral density as well as android (central) obesity and fat free mass 

(FFM).  

Fasting blood sample and oral glucose tolerance test (OGTT) 

 Participants entered the lab following an overnight fast for assessment of fasting 

and postmeal glycemic control, as well as determination of cancer biomarkers. 

Participants were asked to refrain from physical activity and maintain habitual dietary 

patterns 24 hours prior to the glucose challenge. An indwelling catheter was placed in an 

antecubital vein by a trained research technician, and fasting blood samples were 

collected in tubes containing Sodium Fluoride (Glucose), Potassium EDTA (Insulin) and 

Serum Separator (cancer biomarkers). Following the baseline blood collection, 

participants consumed a 75 g oral glucose test beverage (Sundex, ThermoFisher, 

Waltham MA), and additional blood samples were taken at 30, 60, 90 and 120 minutes 

following glucose consumption for determination of glucose and insulin concentrations. 

Blood plasma/serum was centrifuged at 3000xg, aliquoted into polypropylene cryotubes 

and stored at -80 degrees for future analysis.  
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Supervised exercise training intervention 

  All participants were required to exercise at least once a week and at most four 

times a week under the supervision of study personnel at the University of Massachusetts 

Department of Kinesiology exercise facility (The Body Shop, Amherst, MA). 

Supervising members of the research team were responsible for recording results of the 

exercise training session (e.g. heart rate, METs, RPE), as well as ensuring appropriate 

exercise intensity and safety. The exercise training protocol consisted of aerobic exercise 

for 45-60 minutes per session at an intensity of 65-90% HRmax. Participants were allowed 

to choose between a cycle ergometer, elliptical machine and/or treadmill, and exercise 

sessions on a specific machine were required to last at least 20 minutes. As fitness 

improved over the course of the 12-week intervention the intensity of exercise was 

increased to avoid a plateau effect, including the introduction of higher intensity 

intervals. The overall goals of the exercise training program were to: 1) provide sufficient 

exercise stimulus to increase in aerobic fitness, insulin sensitivity, and meet the physical 

activity guidelines and induce the health benefits of exercise training, as well as 2) mimic 

real-world exercise training programs most commonly used in non-laboratory situations.  

Post-intervention testing 

 Upon completion of the 12-week exercise training period participants returned to 

the lab for post-intervention assessment of glycemic control, aerobic fitness and body 

composition. In order to avoid confounding the exercise training effect with acute 

changes to glycemic control due to diet and/or physical activity, participants were asked 

to refrain from physical activity and match (as accurately as possible) their food intake 

from the 24h period prior to their baseline glucose tolerance test. All participants 
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completed their final exercise training session 24-36 hours prior to post-intervention 

glucose tolerance testing.  

Hormone, biomarker and metabolite analysis 

 Several different analytical techniques were used to determine the circulating 

concentrations of hormones, metabolites and biomarkers, and pre- and post-intervention 

samples from each participant were assayed in duplicate on the same assay in order to 

reduce inter- and intra-assay variability, respectively. Circulating glucose concentrations 

were determined using the glucose oxidase method (Analox instruments, Atlanta, GA) 

and an inter-assay coefficient of variability (CV) of <5%. Concentrations of insulin, 

leptin and adiponectin were determined using a commercially available 

radioimmunoassay (RIA, Millipore, Billerica, MA) and an interassay CV of <10%. 

Concentrations of 17b Estradiol (E2), IGF-1, IGFBP3 and SHBG were determined using 

high-sensitivity enzyme-linked immunosorbent assay (ELISA, R&D Systems, 

Minneapolis MN) and an interassay CV of <10%.  

Postmeal insulin concentrations and insulin sensitivity 

 In addition to the insulin concentrations at each timepoint of the oral glucose 

challenge (30, 60, 90 and 120 minutes), total postmeal insulin was quantified as 1) the 

highest measured insulin concentration during the OGTT (peak insulin) and 2) insulin 

area under the curve (AUC) using the trapezoidal method.  To estimate changes to 

insulin sensitivity due to the exercise training, we used the glucose and insulin values 

from the oral glucose tolerance test to determine the Composite Insulin Sensitivity Index 

(C-ISI) based on the formula developed by Matsuda et al. (Matsuda & DeFronzo, 1999). 
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This metric is a reflection of fasting glucose and insulin homeostasis AND the 

responsiveness to a glucose load (insulin action) and has a high degree of correlation 

(0.78) with the euglycemic clamp (the gold standard measure of insulin sensitivity). The 

formula for the determination of C-ISI is (10,000/square root of [fasting glucose x fasting 

insulin] x [mean glucose x mean insulin during OGTT]). 

Statistical analysis 

 All statistical analyses were performed using the R statistics package and 

computing language using an a priori alpha of <0.05. Paired t-tests were used to evaluate 

pre- to post-intervention changes in fitness, body composition, fasting hormones, 

metabolites and biomarkers as well as pre- to post- intervention differences between 

single timepoints of the oral glucose tolerance test. Linear mixed models were used to 

evaluate the relationship between the intervention and oral glucose tolerance over the 

sequential timepoints of the test, as well as the effect of any mediators of the relationship 

between exercise training and change in glycemic control (e.g. the presence or absence of 

Aromatase Inhibitor). Finally, associations between biomarkers and variables of interest 

were determined using Pearson product-moment correlation coefficients.  

Results 

Participant characteristics 

Of the 17 participants enrolled in this study, two were unable to complete the 

fasting and glucose challenge blood draw and were thus excluded from the results. 

Additionally, one participant completed the fasting blood draw but was unable to 

complete the oral glucose challenge and was eliminated from any post-challenge 
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comparisons (but was included for fasting metabolite/biomarker analysis). One 

participant declined the DEXA scan, and her data was therefore eliminated from body 

composition analysis. A flowchart of participant recruitment and inclusion is presented in 

figure 4.1, and participant characteristics are presented in table 4.1. Data are presented as 

mean ± SD.  

Exercise training 

 Participants attended an average of 34.4 ± 7.7 training sessions over the 12-week 

intervention. Due to the progressive nature of the exercise training program, the average 

number of training sessions attended by participants increased throughout the 

intervention, with participants averaging 2.7 ± 1.1 training sessions per week during 

weeks 1-4 and 3.3 ± 0.8 training sessions per week during weeks 9-12. Exercise volume 

increased throughout the supervised exercise training sessions, from 141.3 ± 32.9 min/wk 

during weeks 1-4 to 166.8 ± 30.6 min/week during weeks 9-12. Additionally, exercise 

intensity increased over the duration of the study, from 77.4 ± 5.2% HRmax during weeks 

1-4 to 85.7 ± 5.7% HRmax during weeks 9-12, for an average of 81.8 ± 5.5% HRmax over 

the entire 12-week protocol. As this protocol was personalized to better encourage 

attendance/compliance and mimic non-laboratory exercise prescriptions, participants 

were allowed to engage in several bouts of High Intensity Interval Training (HIIT) per 

week at the discretion of the trainer. Each session involved 24-30 total minutes of HIIT 

activity as a component of the 45-60 minute training session, and included 4 or 5 1-

minute periods of high intensity (>90%  Age-predicted HRmax) cycling followed by 3-5 

minutes of moderate intensity (<60% Age-predicted HRmax) cycling. Participants engaged 

in a total of 11.1 ± 7.8 HIIT sessions over the course of the intervention, with the 
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majority occurring later in the intervention (1.6 ± 0.8 HITT sessions/week over weeks 9-

12). A full summary of the dose of exercise (e.g. volume, intensity, duration) for the 

exercise training intervention by individual response is provided in Appendix A. 

Fitness, body composition and ancillary health outcomes 

 Participants experienced a significant increase in aerobic fitness and a significant 

decrease in body weight following the intervention (Table 4.2), however this reduction in 

body weight was not a result of significant reductions in body fat or fat free mass. There 

was no significant association between baseline fitness and change in fitness (r=0.13, 

p=0.74), nor were there any significant associations between volume of exercise 

performed over the 12-week intervention period and change in fitness (r=0.18, p=0.52) or 

body weight (r=0.08, p=0.94). In addition to the small but significant change in body 

weight there were significant reductions in waist circumference and systolic blood 

pressure, but no significant changes in fasting or postmeal blood glucose concentrations 

(Table 4.2). 

Cancer biomarkers 

 One participant had E2 concentrations below the detectable limit of the assay 

(5pg/ml) and was excluded from analysis. There were no significant pre- to post-

intervention differences in IGF-1, IGBP3, Adiponectin or SHBG levels as a result of the 

exercise training (Table 4.2), however leptin and E2 levels were significantly lower 

following exercise training (Table 4.2). Surprisingly, this change in circulating leptin 

concentrations was not significantly associated with change in aerobic fitness (r=0.06, 

p=0.92), body composition (r=0.18, p=0.48) or any of the variables associated with 
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insulin concentrations. The change in circulating E2 concentrations was not associated 

with changes to body fat or other adipocyte-derived biomarkers, however there was a 

significant inverse association between the change in E2 and participants average 

exercise intensity (r=-0.55, p=0.04) during the 12-week intervention period (Figure 4.2).  

Fasting and postmeal insulin concentrations 

 There were no significant differences in fasting insulin concentrations (11.4 ± 5.2 

vs. 11.6 ± 5.1 uU/ml) or at timepoints 30 minutes (74.4 ± 19.8 vs. 83.2 ± 37.6 uU/ml), 60 

minutes (95.8 ± 30.4 vs. 98.4 ± 23.3 uU/ml) and 90 minutes (91.3 ± 32.8 vs. 88.3 ± 29.5 

uU/ml) of the glucose challenge test (Figure 4.3 A). Insulin concentrations were 

significantly lower 120 minutes (2h) following glucose ingestion (68.8 ± 34.5 vs. 56.2 ± 

31.9 uU/ml, p<0.05, Figure 4.3 A). There were no significant differences in insulin AUC 

(301.6 ± 82.2 vs. 301.9 ± 93.6 uU/ml, Figure 4.3 B) or peak insulin concentrations during 

the OGTT (107.4 ± 27.8 vs. 106.5 ± 26.5, Figure 4.3 C), nor was insulin sensitivity (3.29 

± 1.76 vs. 3.27 ± 1.27, Figure 4.3 D) different following the exercise training 

intervention.  

Factors influencing the insulin response to exercise 

 There were no differences in the training response when participants were 

stratified based on age, stage of cancer diagnosis or cancer receptor type. However, 

women who were currently taking or had taken Aromatase Inhibitors (AIs) within the last 

five years (n=6) had significantly different and opposing responses in peak insulin (-

11.99 (non-AI) vs +13.91 (AI) uU/mL) and insulin AUC (-24.03 (non-AI) vs +32.73 (AI) 

uU/mL) compared to those women who did not take AI (N=8, Figure 4.4 A and B). 
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Women who were currently or had taken AIs also displayed an opposing response in C-

ISI (+0.39 (non-AI) vs. -1.12 (AI) Figure 4.4 C) following exercise training and a blunted 

reduction in 2h insulin concentrations (-20.2 ± 15.8 vs. -2.7 ± 22.7 uU/ml, Figure 4.4 D). 

This result occurred despite no significant differences in exercise training volume as well 

as no differences in baseline and/or change in body weight, body composition or aerobic 

fitness between the two groups. Given the role of AIs are to reduce circulating estrogen 

concentrations, we then evaluated the relationship between changes to peak insulin, 

insulin AUC and C-ISI and changes to basal, raw and percent change in E2. We observed 

a significant negative relationship between the change in peak insulin concentrations and 

the change in E2 as a result of the exercise training (r=-0.57, p=0.04, Figure 4.4).  

Discussion 

 The mitogenic role of insulin in carcinogenesis is well established, and it is 

plausible that lower insulin concentrations are one of the primary benefits of physical 

activity interventions on cancer risk. Several previous exercise training interventions in 

cancer survivors have failed to observe any significant differences in insulin 

concentrations, however these studies were limited in scope by their use of fasting insulin 

(and fasting metrics of insulin resistance) as the sole representation of insulin supply and 

demand.  Given the large contribution of postmeal insulin to 24-hour insulin exposure 

and the relationship between exercise and postmeal insulin action, it is possible that a 

comprehensive relationship between exercise training and insulin supply and demand in 

breast cancer survivors has yet to be established. This goal of this study was to use the 

oral glucose tolerance test, a common tool for evaluating postmeal insulin supply and 
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demand, to evaluate the impact of exercise training on postmeal insulin responses in 

breast cancer survivors.  

 Results from this study demonstrate that insulin concentrations two hours after a 

glucose challenge are significantly lower following exercise training, despite no 

significant change in fasting insulin concentrations. This result partially supports our 

hypothesis and suggests that the relationship between cancer risk/prognosis, insulin 

and/or exercise training cannot be fully determined through the use of fasting insulin 

concentrations alone. While insulin may contribute to carcinogenesis, the lack of 

association between fasting insulin and more established cancer biomarkers (e.g. 

estrogen) and minimal or absent reductions in insulin following exercise have led to a 

general consensus that insulin is a minimal contributor to the improved prognosis of 

cancer survivors following lifestyle interventions (McTiernan et al. 2010). The results of 

this study suggest that interventions that alter postmeal insulin concentrations (e.g. 

physical activity) may have a greater impact on cancer risk reduction than previously 

estimated. Additionally, comparative efficacy studies on cancer risk/prognosis (e.g. 

exercise training vs. metformin) may be underestimating the potential benefits of exercise 

training by selecting a primary outcome (i.e. fasting insulin) that fails to capture the full 

extent of the benefits of exercise training on insulin supply and demand.  

In addition to lower postmeal insulin concentrations, there were several other 

areas of improved cardiometabolic health following this exercise training program that 

may influence prognosis in cancer survivors. Jones et al. have suggested that low aerobic 

fitness following cancer treatment contributes to the elevated risk of cardiovascular 

disease observed in cancer survivors, and increasing cardiorespiratory fitness through 



84	
  
	
  

exercise training may significantly reduce all-cause mortality in the years following a 

cancer diagnosis (Jones et al. 2015). Our personalized and progressive exercise program 

was sufficient to significantly increase cardiorespiratory fitness, while still providing the 

flexibility inherent in recreational and non-laboratory based exercise programs. It is 

possible that by increasing and/or varying the exercise training volume and intensity 

during the intervention, participants experienced greater improvements in fitness and 

enjoyment than they would have in an intervention based on fixed volume and/or 

intensity. Future studies that combine mixed doses (volume, intensity, duration and 

mode) of exercise in ways that mimic real-world exercise accrual are needed in order to 

establish the most effective dose for both cancer prevention and the litany of detrimental 

health outcomes associated with cancer treatment.   

In addition to increases in cardiorespiratory fitness, we also observed significant 

decreases in circulating leptin and estrogen concentrations following exercise training. 

While many of the health risks associated with leptin are linked to obesity, leptin also 

contributes to cancer risk by enhancing adipocyte-derived estrogen activity (Vona-Davis 

& Rose 2007) and increasing cancer cell motility and invasiveness (Ando et al. 2014). 

We did not observe any significant associations between the changes in leptin and body 

composition or fitness. This was surprising, as lower leptin concentrations after exercise 

training are often the result of exercise-induced reductions in body fat (Friedenreich et al. 

2011, Abbenhardt et al. 2013). However, high intensity exercise training can reduce 

circulating leptin concentrations independent of weight loss in adults with type 2 diabetes 

(Balducci et al. 2010), and it is possible that the relatively high intensity of the exercise 

training in the current study (85% HRmax) was enough to induce a similar beneficial 
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leptin response. Given the notorious difficulty of initiating and sustaining weight loss in 

older individuals (Kassier et al. 1998), identifying potential ways interventions can 

reduce leptin concentrations without the requirement for weight loss may have important 

clinical applicability. We also observed a small but significant reduction in circulating 

estrogen concentrations, which was associated with intensity, but not volume, of exercise 

training. Given the extremely low concentrations of estrogen at baseline in this 

population as well as the confounding factor of AI use, it is difficult to determine whether 

the minor reduction in estrogen as a result of the exercise training intervention has 

clinical relevance. There is a significant relationship between elevated estrogen 

concentrations and increased risk of cancer development and recurrence in 

postmenopausal women (Zhang et al. 2013), and reductions in circulating estrogens have 

often been cited as a major contributor to lower cancer risk (Cummings et al. 2009). 

Future exercise studies in breast cancer survivors that are large enough in size to account 

for the low concentrations of estrogen (especially in those taking AIs) are required before 

the relationship between physical activity and estrogen in this population can be fully 

understood. 

Despite significant reductions in insulin concentrations 120 minutes after oral 

glucose consumption, we did not observe any significant differences in insulin 

concentrations at 30, 60 or 90 minutes during the OGTT, nor did we observe any change 

in insulin sensitivity, insulin peak concentration or area under the insulin curve. This is 

surprising, as an increase in insulin sensitivity and reduction in insulin AUC are 

commonly observed following exercise training interventions in many different 

populations. There are several potential reasons for this outcome that are worth 
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exploration. First, most participants in this study had normal glucose tolerance and 

therefore had relatively low fasting and postmeal insulin concentrations prior to 

beginning the exercise training program. Given the participants were normoglycemic, it 

is possible that the dose of exercise was not sufficient to reduce insulin resistance or 

insulin AUC from this already low baseline. While the significant increase in fitness in 

the current study suggests that the exercise dose was sufficient, we did not observe any 

significant associations between change in fitness and subsequent metabolic responses. 

We therefore cannot rule out the possibility that our exercise dose was sufficient to 

induce physiological improvements, but insufficient to alter glucoregulatory metabolism.  

A second possibility for the null effect of the insulin action response is the 

potential role that endocrine therapy may play in the metabolic adaptations to exercise 

training.  Past/present AI users had a blunted, and in some cases opposing, response to 

exercise training compared to those women not taking any endocrine therapy or taking 

tamoxifen. Given the role of AI to reduce estrogen production and concentrations in 

circulation, we attempted to identify any potential relationships between change in 

estrogen and change in postmeal insulin in both AI and non-AI participants. We observed 

a significant inverse relationship between change in estrogen concentrations and change 

in peak insulin, which suggests that low or significantly reduced estrogen concentrations 

may negatively impact postmeal glycemic control. This supports findings by Evans et al. 

that estrogen plays a role in metabolic adaptations to exercise training in postmenopausal 

women (Evans et al. 2001) and warrants further investigation into the role of estrogen 

concentrations as a mediator of changes to cardiometabolic health in breast cancer 

survivors following exercise.   
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Exercise training represents a potent tool to improve prognosis and reduce cancer 

recurrence in breast cancer survivors, however the mechanisms that explain this 

relationship are unclear. As we move towards the idea of personalized oncotherapy and 

precision medicine, it is important to develop a greater understanding of the relationship 

between exercise training and its metabolic effects in different populations. Results from 

this study suggest that while exercise training may have little impact on fasting insulin in 

breast cancer survivors, it has significant effects on postmeal insulin concentrations, 

albeit blunted compared to those seen in other populations. Future studies designed to 

link changing insulin concentrations with cancer risk and prognosis should incorporate 

measures of fasting and postmeal insulin whenever possible. It is also important for larger 

studies to identify whether breast cancer survivors have a diminished postmeal insulin 

response compared to non-cancer survivors. As the population of cancer survivors grows, 

so too does the population of cancer survivors at risk for diabetes and cardiovascular 

disease. Understanding the metabolic regulation of glycemic control and its response to 

exercise in cancer survivors is necessary in order to deliver personalized lifestyle and 

pharmacological interventions to this already large and growing segment of the 

population.  
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Tables 

Table 4.1: Participant characteristics 

N=15 Mean ± SD 
Age (yrs) 59.9 ± 9.2 
Years post diagnosis  4.0 ± 3.5 
Stage (1-3) 1.67 ± 0.62 
ER+ (%) 11 (73%) 
Endocrine Therapy (%) 7 (47%) 
Weight (kg) 75.5 ± 16.4 
Body Mass Index  (kg/m2) 27.6 ± 5.4 
Body Fat (%) 43.1 ± 9.9 
Estimated VO2peak (ml/kg/min) 25.2 ± 5.4 
Blood Pressure (mmHg) 124.5/75.5 ± 10.7/5.2 
Fasting Blood Glucose (mg/dL) 102.0 ± 13.7 
2 hour Blood Glucose (mg/dL) 120.6 ± 21.6 

Data reported as mean ± SEM.  
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Table 4.2: Changes in fitness, body composition, health and biomarkers  

 Baseline Post-training Change p-value 
Fitness, body composition and cardiometabolic health 
Weight (kg) 75.5 ± 16.4 74.5 ± 15.8* -1.0 0.04 
BMI (kg/m2) 27.6 ± 5.4 26.9 ± 5.2* -0.9 0.03 
Body fat (%) 43.1 ± 9.9 42.6 ± 9.7 -0.5 0.31 
WC (cm) 91.2 ± 11.9 88.6 ± 10.1* -2.6 0.02 
Android obesity (%) 48.1 ± 11.9  47.2 ± 11.1 -0.9 0.76 
BMD (g/cm2) 1.16 ± 0.11 1.16 ± 0.11 -0.0 0.94 
FFM (kg) 42.8 ± 4.9 42.5 ± 4.5 -0.3 0.88 
Est. VO2peak (ml/kg/min) 25.2 ± 5.4 27.7 ± 5.0* +2.5 <0.01 
Fasting glucose (mg/dl) 102.0 ± 13.7 99.1 ± 11.8 -2.9 0.19 
2h glucose (mg/dl) 120.6 ± 21.6 115.5 ± 20.4 -5.1 0.54 
Systolic BP (mmHg) 124.5 ± 10.7 120.2 ± 13.1* -4.3 0.03 
Diastolic BP (mmHg) 75.5 ± 5.2 73.8 ± 4.9 -1.7 0.10 
Cancer-relevant biomarkers 
Insulin (uU/mL) 11.4 ± 5.4 11.6 ± 5.1 +0.2 0.79 
Leptin (ng/mL) 30.8 ± 19.3 23.8 ± 13.0* -7.0 0.03 
Adiponectin (ng/mL) 649.2 ± 208.1 622.8 ± 241.9 -26.4 0.63 
E2 (pg/mL) 12.9 ± 6.3 10.2 ± 3.4* -2.7 0.04 
SHBG (nmol) 66.2 ± 47.4 64.4 ± 41.5 -1.8 0.70 
IGF-1 (ng/mL) 31.6 ± 8.4 33.1 ± 9.8 +1.5 0.45 
IGFBP3 (nmol) 70.3 ± 6.7 70.1 ± 8.2 -0.2 0.95 
Data reported as mean ± SD. BMI= Body Mass Index, WC= Waist circumference, 
BP=Blood pressure, E2= 17b-estradiol, SHBG= Sex hormone binding globulin 
*p<0.05 
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Figures 

	
  

Figure 4.1: Participant enrollment and intervention completion 

Data from participants who did not complete the fasting blood draw were excluded from analysis. 
Data from participants who completed the fasting blood draw but not the OGTT were excluded 
from all comparisons between intervention outcomes and OGTT-derived metrics (e.g. postmeal 
insulin) 
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Figure 4.2: Association between estradiol and exercise intensity and change in Estradiol  

There was a significant negative association between the exercise intensity (% age-predicted 
HRmax) throughout the 12 week exercise training intervention and the change in circulating 17-B 
estradiol (E2) concentrations. 
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Figure 4.3: Postmeal insulin responses  

(A)- Insulin concentrations at each timepoint of the glucose challenge. (B)- Composite insulin 
sensitivity index (C-ISI). (C) Insulin area under the curve (AUC). (D) Peak insulin 
concentrations. Data presented as Mean ± SEM. *p<0.05 
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Figure 4.4: Postmeal insulin responses in women with a history of aromatase inhibitor (AI) use 

 (A)- Change in peak insulin concentration recorded during OGTT. (B)- Change in insulin area 
under the curve (AUC). (C)- Change in insulin sensitivity (C-ISI). (D)- Change in 120 min (2h) 
insulin concentrations.  Data presented as mean ± SEM. (*) denotes significant difference 
between AI and Non-AI response (p<0.05) 
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Figure 4.5: Relationship between change in estrogen and change in peak insulin 

Relationship between change in 17-b estradiol and change in peak insulin following exercise 
training  
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CHAPTER V 

CHANGES TO INSULIN SUPPLY AND DEMAND MAY BE BLUNTED 

FOLLOWING EXERCISE TRAINING IN BREAST CANCER SURVIVORS 

Introduction 

As the population of the United States increases in age, so too does the number of 

women diagnosed with breast cancer. In addition to the increase in breast cancer 

prevalence, better screening and treatment methods have greatly increased the survival 

rate and longevity of breast cancer survivors (Bray et al. 2004). Interventions designed to 

improve prognosis in cancer survivors primarily focus on preventing cancer recurrence, 

however breast cancer survivors also face higher rates of diabetes and heart disease 

compared to age and BMI-matched non-cancer survivors (Hooning et al. 2007). While 

cancer-specific mortality is the leading cause of death in the decade following a cancer 

diagnosis, all-cause mortality (primarily as a result of cardiometabolic disease) eventually 

surpasses cancer-specific mortality as the leading cause of death in cancer survivors 

(Bardia et al. 2012).  As the number of breast cancer survivors increases, precision 

interventions designed to prevent cardiometabolic disease in cancer survivors may be just 

as important as interventions to prevent cancer recurrence.  

   One common physiological component that may link cancer and cardiometabolic 

disease is insulin resistance and the subsequent increase in insulin supply required to 

maintain glycemic control (Belardi et al. 2013). Insulin has anabolic and mitogenic 

properties, and hyperinsulinemia may enhance carcinogenesis (Gallagher et al. 2013) and 

contribute to poor prognosis (Irwin et al. 2011) in breast cancer survivors. Prior studies 



96	
  
	
  

investigating the role of insulin and insulin resistance as a mediator of breast cancer risk 

and prognosis have primarily measured insulin in the fasted state, or used metrics of 

insulin resistance that are derived from fasting glucose and insulin concentrations.  The 

mechanisms behind insulin resistance and hyperinsulinemia are complex however, and 

represent a delicate balance of tissue-specific insulin demand (e.g. skeletal muscle insulin 

sensitivity) matched by the appropriate volume of insulin supply (e.g. insulin secretion) 

that will maintain blood glucose concentrations within a relatively tight physiological 

range. Tissue-specific insulin demand changes throughout the day in response to meals, 

and there can be a high degree of discordance between insulin demand and supply in the 

fasted state compared to the fed state, both within (Faerch et al. 2008) and between 

(Varghese et al. 2016) different populations.  

Exercise training is often recommended to cancer survivors in order to counter the 

detrimental effects of cancer treatment, prevent cancer recurrence and improve 

cardiometabolic health (Lahart et al. 2015). One of the oft-cited benefits of exercise 

training is reduced insulin resistance (Colberg et al. 2010), and this lower insulin demand 

may be beneficial for cancer survivors by reducing insulin supply and thus lowering 

mitogenic load. Several previous exercise training studies in breast cancer survivors have 

evaluated insulin resistance through the use of fasting glucose and insulin homeostasis 

modeling (HOMA), and found no significant changes to insulin sensitivity (Ligibel et al. 

2008, Guinan et al. 2013). While HOMA scores effectively characterize insulin resistance 

in large populations, the failure of HOMA scores to account for changes to postmeal 

glycemic control makes them inadequate tools for evaluating changes to insulin supply 

and demand following interventions that significantly affect postmeal insulin resistance, 
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such as exercise training (Wallace et al. 2004). Given that 50-80% of total daily insulin 

exposure (and thus mitogenic load) can occur in response to meals (Reaven 1979), a 

more comprehensive evaluation of the changes to insulin resistance and insulin secretion 

in breast cancer survivors may have significant implications for public health and cancer 

prognosis.  

Compared to other populations, it is possible that chemotherapy-induced 

impairments to aerobic fitness and glycemic control (Jones et al. 2015), increased 

sedentary behavior (Sabiston et al. 2015), and the use of endocrine therapies designed to 

lower estrogen concentrations all contribute to fundamentally different adaptations to 

insulin supply and demand in breast cancer survivors following exercise training.  The 

purpose of this study was therefore to use an oral glucose challenge to evaluate the 

effects of a personalized 12-week exercise training program on systemic and tissue-

specific metrics of insulin resistance, insulin secretion and other aspects cardiometabolic 

health in postmenopausal breast cancer survivors. Additionally, exercise training can 

reduce fatigue and enhance quality of life (Demark-Wahnefried et al. 2015), however the 

relationship between these subjective measures of health and well-being and changes to 

glucoregulatory control are unknown.  We expect that exercise training will increase 

insulin sensitivity, decrease insulin secretion and improve both beta cell insulin 

processing and function in a dose-dependent fashion, however this response may be 

blunted in those breast cancer survivors with low circulating estrogen concentrations. 

These improvements in cardiometabolic health would also be significantly associated 

with reductions in fatigue and increases in quality of life, suggesting a potential link 
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between the physiological and subjective/psychological benefits of exercise training in 

breast cancer survivors.  

Methods 

NOTE: Participants in this study were the same as those in study 2 (Chapter IV), and 

underwent similar testing and exercise training protocol. Several aspects of the methods 

as well as some results (e.g. estimated VO2peak, E2 concentrations) are integral to both 

studies and are reported in both Chapter IV and V in order to facilitate understanding and 

enhance continuity.  

Participants and recruitment 

 Seventeen breast cancer survivors were recruited from the Western Massachusetts 

area. In order to qualify for the study participants had to be postmenopausal (or have an 

oophrectomy) as determined by questionnaire, and completed primary breast cancer 

treatment greater than 6 months but less than 10 years ago. Additionally, participants 

were free from any diagnosed cardiometabolic disease or medications that would 

interfere with carbohydrate metabolism. Participants taking anti-depressants (n=3), 

cholesterol- (n=1) or blood pressure lowering medications (n=2) remained on a stable 

dose throughout the intervention period. Participants who were prescribed aromatase 

inhibitors (n=6) or selective estrogen receptor modulators (n=2) were asked to remain at a 

similar dose and regimen throughout the duration of the study.  

Baseline fitness and body composition 

Prior to metabolic testing, participants reported to the Energy Metabolism Lab in 

the Department of Kinesiology on the University of Massachusetts campus for 
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determination of health history, body composition and fitness. Participants filled out a 

baseline health history and fitness questionnaire, followed by measurement  of height and 

weight (stadiometer and physicians scale, Detecto, Webb City, MO), blood pressure 

(manual sphygmomanometer, Santa medical inc., Tustin, CA) and waist circumference 

(tape measurer).  

Baseline fitness levels were determined using a submaximal exercise test on a 

cycle ergomter (ACSM guidelines for exercise testing and prescription, 9th ed.). After a 

two minute resting period, participants were instructed to begin pedaling at an initial 

resistance of 25 watts, maintaining a cadence of  >60 revolutions per minute. Resistance 

was increased in 25-watt increments every two minutes, and heart rate and rating of 

perceived exertion (RPE) were recorded at the end of each two minute stage. 

Additionally, expired gasses were continuously collected using a metabolic cart 

(Parvomedics, Sandy, UT) for the determination of volume of oxygen consumption 

(VO2) and respiratory exchange ratio (RER). Stages were increased until participants 

reached 80% of age-predicted maximal heart rate (HRmax). Upon completion of the test, 

heart rate and VO2 responses from each stage were plotted and a linear line-of-best-fit 

was used to estimate VO2peak at age-predicted HRmax. To determine body composition, 

participants underwent a DEXA scan (Lunar technologies, Chicago IL) at the University 

of Massachusetts Health Services Center. This test was used to determine body fat 

percentage, bone mineral density as well as android (central) obesity and fat free mass 

(FFM).  
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Fatigue, self-efficacy and quality of life 

Prior to metabolic testing, participants filled out several questionnaires to 

determine their current subjective levels of fatigue, general and exercise self-efficacy and 

quality of life (QoL).  Total of fatigue, self-efficacy and QoL, as well as specific 

components of fatigue and QoL, were determined by evaluating the responses to the 

entire questionnaire as well as subscore analysis.  

Piper fatigue scale (PFS):The piper fatigue scale is a series of 22 validated (Piper et al. 

1998) questions in which a seven point likert scale is used to evaluate current fatigue 

levels over the span of days, weeks and months. In addition to overall fatigue, the PFS 

has four subscales comprised of groupings of the questions to address specific 

components of subjective fatigue. This includes: behavioral impact/severity of fatigue, 

affective meanings of fatigue, sensory, and the impact of fatigue on cognition/mood. 

General Self-Efficacy: General self-efficacy was determined using a 10-question test with 

four point likert scale responses validated by Luszczynska et al. (2005).  

Barriers to Self-Efficacy (BARSE): The barriers to self efficacy scale is a series questions 

validated in breast cancer survivors (Awick et al. 2016) in which a five- or seven-point 

likert scale is used to determine the barriers that are keeping individuals from engaging in 

regular physical activity.  

Exercise Self-Efficacy: Exercise self-efficacy was determined using an 8-question test 

developed by McCauley (1993). Participants answered all questions on a 10 point likert 

scale and both total and single questions were used. 
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European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30: 

Health and QoL was determined using the EORTC QLQ-C30, a quality of questionnaire 

designed for cancer patients and survivors. This questionnaire asks a series of 28 specific 

cancer-related questions on weekly QoL on a 4-point likert scale, and two questions 

regarding overall health and QoL on a seven point likert scale. 

Oral glucose tolerance test (OGTT) 

Participants entered the lab following an overnight fast for assessment of fasting 

and postmeal glucose homeostasis. Participants were asked to refrain from physical 

activity and maintain habitual dietary patterns in the 24 hours prior to the glucose 

challenge. An indwelling catheter was placed in an antecubital vein by a trained research 

technician, and fasting blood samples were collected in tubes containing Sodium Fluoride 

(Glucose), Potassium EDTA (Insulin, C-Peptide, Proinsulin, Triglyceride and Free Fatty 

Acid) and Serum Separator (E2). Following the baseline blood collection, participants 

consumed a 75 g oral glucose test beverage (Sundex, ThermoFisher, Waltham MA), and 

additional blood samples were taken at 30, 60, 90 and 120 minutes following glucose 

consumption for determination of glucose and insulin concentrations. Blood samples 

were centrifuged at 3000xg, aliquoted into polypropylene cryotubes and the 

plasma/serum was stored at -80 degrees for future analysis.  

Exercise training 

All participants were required to exercise at least once a week and at most four 

times a week under the supervision of study personnel at the University of Massachusetts 

Department of Kinesiology exercise facility (The Body Shop, Amherst, MA). 
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Supervising members of the research team were responsible for recording components of 

the exercise training session (e.g. heart rate, METs, Rating of Perceived Exertion), as 

well as ensuring appropriate exercise intensity and safety. The exercise training protocol 

consisted of aerobic exercise for 45-60 minutes per session at an intensity that would 

elicit a heart rate between 60-80% of maximal heart rate. Specific details of the exercise 

training intervention are provided in the methods section of chapter IV as well as the 

appendix.  

Hormone and metabolite analysis 

Several different analytic techniques were used to determine the circulating 

concentrations of hormones, metabolites and biomarkers, and  pre- and post-intervention 

samples from each participant were assayed in duplicate on the same assay in order to 

reduce inter- and intra-assay variability. Circulating glucose and triglyceride 

concentrations were determined using the glucose and triglyceride oxidase method 

(Analox instruments, Atlanta, GA) and an inter-assay coefficient of variability (CV) of 

<5%. Concentrations of insulin, C-Peptide, proinsulin and leptin were determined using a 

commercially available radioimmunoassay (RIA, Millipore, Billerica, MA) and an 

interassay CV of <10%. Concentrations of Free Fatty Acids were determined using an 

Enzyme linked colormetric assay (Sigma Aldrich, St. Louis MO) and Estradiol 

concentrations were determined using high-sensitivity enzyme-linked immunosorbent 

assay (ELISA, R&D Systems, Minneapolis MN) and an interassay CV of <10%.  
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Systemic and tissue-specific components of insulin supply and demand 

Beta-cell insulin processing: Beta cell insulin processing was evaluated using pre- and 

post-intervention determination of fasting proinsulin as well as proinsulin area under the 

curve (AUC). Additionally, the ratio of Proinsulin to C-Peptide (PI/C) normalized to C-

Peptide was used as a reflection of insulin processing. This ratio has been associated with 

diabetes risk (Halfner et al. 2008). 

Skeletal muscle metabolic (glucose) clearance rate: Skeletal muscle glucose uptake was 

estimated using the Metabolic Glucose Clearance Rate (MCR) derived by Stumvoll et al. 

(Stumvoll et al. 2000). This metric estimates the degree by which insulin can induce 

skeletal muscle uptake, and is therefore primarily a reflection of peripheral insulin 

sensitivity without the confounding effects of basal insulin supply and demand. The 

MCR has a high correlation with the glucose disposal rate determined by the euglycemic 

clamp (0.80) and is derived from the equation (18.8 - (0.271 x BMI) – (0.0052 x Ins120) 

– (0.27 x Glu90)). 

Insulin supply: Insulin supply was comprised of three specific components. First, the 

Insulinogenic Index0-30 (IGI0-30), which represents first phase insulin secretion and is 

determined by dividing the increase in C-Peptide over the first 30 minutes of the OGTT 

by the ambient glucose concentration over that same timeframe. In addition to the 

commonly used IGI0-30, we also determined IGI60-120 in a similar fashion in order to 

evaluate second phase insulin secretion. Finally, the percent first pass hepatic insulin 

extraction (HIE) was evaluated at each timepoint and over the entire OGTT through the 

use of insulin and C-Peptide area under the curve ((1-AUCI/AUCC)* 100) and adjusted 

for body volume based on the calculations developed by Cobelli and colleagues (Cobelli)  
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Insulin demand: Whole body insulin sensitivity was estimated using the Composite 

insulin sensitivity index (C-ISI) developed by Matsuda and DeFronzo (Matsuda & 

DeFronzo 1999). This metric is a reflection of both hepatic and peripheral insulin 

demand, and is derived from measures in both the basal state and after a carbohydrate 

load. C-ISI has a high correlation (0.68) with the gold standard measure of insulin 

sensitivity (euglycemic clamp) and is derived from the equation (10,000/square root of 

[fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]).   

Beta-cell function/matching of supply and demand: Beta cell function was determined 

using the Disposition index (DI), or the product of whole body insulin sensitivity (C-ISI) 

and both first- (IGI0-30) and second- (IGI60-120) phase insulin secretion (IGI0-30). This 

metric is based on the hyperbolic relationship between insulin sensitivity and secretion 

(Kahn et al. 1992), and is typically used to identify situations where an individual risks 

the development of diabetes by failing to match a reduction in insulin sensitivity with a 

change in secretion. As a change in sensitivity should be matched with an change in 

secretion of the opposite magnitude, the product of insulin supply and demand should be 

similar regardless of the effects of an intervention, and a change in the DI represents a 

change in the appropriate matching of insulin supply and demand.  

Statistical analysis 

All statistical analyses were performed using the R statistics package and 

computing language and an a priori alpha of <0.05. Paired t-tests were used to evaluate 

pre- to post-intervention changes in fitness, body composition, fasting hormones, 

metabolites and biomarkers as well as pre- to post- intervention differences between 

single timepoints of the oral glucose tolerance test. Linear mixed models were used to 
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evaluate the relationship between the intervention and oral glucose tolerance over the 

sequential timepoints of the test, as well as the effect of any mediators of the relationship 

between exercise training and change in glycemic control (e.g. the presence or absence of 

Aromatase Inhibitor). Finally, associations between biomarkers and variables of interest 

were determined using Pearson product-moment correlation coefficients.  

Results 

Participant characteristics 

Fifteen participants completed the study protocol, including fitness and 

anthropometric testing, subjective fatigue, self efficacy, QoL, blood analysis and exercise 

training. Indwelling catheter failure led to an incomplete OGTT for one participant, and 

thus this participant was included for the exercise training and basal blood parameters but 

not for the metrics of insulin supply and demand. Participant characteristics are included 

in table 5.1.  

Exercise training 

Participants attended 34.4 ± 7.7 training sessions, or 2.8 sessions/wk, and 

averaged 156.9 ± 30.6 minutes/wk of monitored exercise over the course of the 12-week 

intervention period. Data from the exercise training intervention can be found in the 

results section of chapter IV as well as the appendix. 

Fitness and body composition 

Aerobic fitness significantly increased as a result of the exercise training 

intervention (25.2 ± 5.4 vs. 27.7 ± 5.0 ml/kg/min, p<0.05). This represents a percent 
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change of +12.9 ± 3.2% over baseline. While participants experienced a significant 

reduction in weight (74.3 ± 15.5 vs. 73.2 ± 15.3 kg, p<0.05) and BMI (27.2 ± 5.2 vs. 26.8 

± 5.1 kg/m2, p<0.05), this was not a result of a significant change in body fat. Fitness and 

body composition results are presented in Table 5.2. 

Markers of cardiometabolic health 

Hormones and metabolites that both reflect and regulate cardiometabolic health 

are included in Table 5.2. There were no significant changes in fasting glucose or 

glycemic responses to a glucose load. While there were no significant changes in 

circulating triglycerides or free fatty acids, there were significant reductions in leptin and 

17-b estradiol (E2) concentrations as a result of the exercise training intervention (Table 

5.2).   

Metrics of insulin supply and demand 

There were no significant differences in metrics of beta-cell processing 

(Proinsulin, PI/C), however there was a significant increase in estimated skeletal muscle 

glucose clearance rate (5.7 ± 1.8 vs. 7.2 ± 1.8, mmol*pmol*kg/m2 p<0.05) as a result of 

the exercise training intervention (figure 5.1). There were no significant differences in 

insulin secretion/supply (IGI0-30, IGI60-120, HIE) or insulin sensitivity (C-ISIS) or beta cell 

function/matching of insulin demand and supply (DI, table 5.3).  

Self-Efficacy, fatigue and quality of life questionnaires 

There were no significant differences in general, exercise or barriers of self-

efficacy as a result of the intervention. Subscore analysis revealed significant reductions 

in fatigue severity (18.5 ±13.5 vs. 11.2 ±8.8, Figure 5.2 A) as well as the impact of 
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fatigue on cognition and mood (23.5 ± 10.1 vs. 19.0 ± 8.7, Figure 5.2 B). Additionally 

question 1 of the PFS, an independent question not included in subscore and total 

analyses regarding duration of fatigue on a six point likert scale (Months, Weeks, Days, 

Hours, Minutes, and Seconds) was significantly lower following exercise training ( 3.2 ± 

2.3 vs. 1.9 ± 1.6 Figure 5.3 C). There were no significant differences in cancer-specific 

symptoms or fatigue as determined by the EORTC- QLQ C-30, however participants had 

a significant improvement in the QoL subscale (5.3 ± 1.0 vs. 5.9 ± 0.9 Figure 5.3 D) as a 

result of the exercise training. Neither the reductions in fatigue nor the improvements in 

quality of life were significantly associated with any changes in the primary physiological 

(e.g. estimated VO2peak) or metabolic (e.g. C-ISI) outcomes. 

Discussion 

 The goal of the current study was to investigate the effects of 12 weeks of 

personalized exercise training on the components of fasting and postprandial insulin 

secretion and sensitivity in breast cancer survivors. The exercise training program used in 

the current study was effective at increasing physical activity levels, which lead to a 

modest but significant reduction in weight and a significant increase in aerobic fitness. 

We also observed significant reductions in leptin and estrogen concentrations and an 

increase in skeletal muscle glucose clearance rate, which suggests that the exercise 

training in this study was of sufficient dose to induce peripheral adaptations in adipocytes 

and skeletal muscle.  We also observed a significant reduction in fatigue and increase in 

quality of life.  Despite improvements to fitness, fatigue, adipokine function and skeletal 

muscle, the intervention had a minimal effect on many of the systemic components of 

insulin supply and demand, such as insulin resistance and beta cell function. This result is 
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surprising, given that an increase in skeletal muscle insulin sensitivity and compensatory 

reduction in insulin secretion to maintain glucose homeostasis is commonly observed in 

exercise training interventions (Malin et al. 2012, Kirwan & Jing, 2002).  

There are several possible explanations for the lack of changes to insulin supply 

and demand following exercise training, which may have both scientific and clinical 

relevance. First, it is possible that the exercise dose applied in this current intervention 

was not sufficient to induce changes to liver and pancreatic function that contribute to 

overall regulation of insulin supply and demand. Participants in this study exercised at a 

relatively high intensity and volume compared to other studies within this population, and 

therefore the most likely contributor to a dose-dependent lack of effect may be the 

duration of exercise training.  While unlikely, it is possible that metabolic adaptations are 

delayed in breast cancer survivors, and a 12-week exercise intervention that would be 

effective in many other populations is not of sufficient duration to induce changes to 

glycemic control.   

 A second potential explanation for the lack of observed changes to insulin 

secretion, insulin sensitivity and beta cell function in the current study is that baseline 

fasting and postmeal glucose concentrations were not impaired. Most of the OGTT-

derived metrics for evaluating insulin supply and demand incorporate changes to blood 

glucose as a component, and it is possible that the lack of change in glucose 

concentrations may have obscured some of the underlying mechanisms responsible for 

regulating glycemia.  Future studies in breast cancer survivors that include women with 

prediabetes and/or evaluate insulin supply and demand via gold-standard techniques (e.g. 
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euglycemic clamp) are needed to help address these potential confounding effects of 

exercise training on cancer and cardiometabolic disease prognosis in this population. 

 Finally, it is possible that menopause induces physiological changes that blunt or 

abrogate many of the metabolic adaptations to exercise training, and this effect is 

exacerbated in postmenopausal breast cancer survivors.  Cardiometabolic health declines 

across the stages of the menopause (El Khoudary et al. 2012), and postmenopausal 

women have significantly impaired cardiovascular adaptations to both acute (Serviente et 

al. 2016) and chronic exercise training (Tenzi et al. 2013) compared to premenopausal 

controls. This cardiovascular response may be partially explained by the requirement of 

estrogen for exercise-induced improvements in endothelial function (Moreau et al. 2013), 

however the role of estrogen as a mediator/moderator of both diabetes pathophysiology 

and changes to glucoregulatory metabolism following exercise training is unclear. 

Postmenopausal women taking exogenous estrogen appear to have significantly reduced 

risk of diabetes and prediabetes development (van Genugten et al. 2006), and combining 

exogenous estrogen with exercise training appears to improve insulin sensitivity to a 

greater degree than exercise alone in postmenopausal women (Evans et al. 2001). It is 

therefore possible that the low circulating estrogen concentrations in postmenopausal 

breast cancer survivors, especially those on estrogen-lowering therapy (e.g. aromatase 

inhibitors), are directly increasing the risk of diabetes and blunting the improvements to 

insulin supply and demand following exercise training. While we observed a significant 

reduction in estrogen concentrations as a result of the exercise training, there were no 

significant associations between baseline or change in estrogen and any of the metrics of 

insulin supply and demand. Estrogen concentrations were very low (<15 pg/ml) however, 
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and OGTT-derived glucoregulatory metrics may not be precise enough to accurately 

reflect these relationships.   

As the number and longevity of breast cancer survivors increases, the potential 

role of estrogen to both increase the risk of cancer recurrence and decrease the risk of 

cardiometabolic disease may have wide-ranging clinical implications. Exercise training 

reduces the risk of both cancer recurrence and cardiometabolic disease, which may be of 

great importance in breast cancer survivors with high diabetes risk taking estrogen 

lowering medications. In order to develop personalized interventions for breast cancer 

survivors at risk for cardiometabolic disease, there is a pressing need to identify potential 

areas of overlap between cancer and cardiometabolic disease and their systematic and 

tissue-specific response to lifestyle interventions.  
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Tables 

Table 5.1: Participant characteristics 

N=15 Mean ± SD 
Age (yrs) 59.9 ± 9.2 
Years post diagnosis  4.0 ± 3.5 
Stage (1-3) 1.67 ± 0.62 
ER+ (%) 11 (73%) 
Endocrine Therapy (%) 7 (47%) 
Weight (kg) 75.5 ± 16.4 
Body Mass Index  (kg/m2) 27.6 ± 5.4 
Body Fat (%) 43.1 ± 9.9 
Estimated VO2peak (ml/kg/min) 25.2 ± 5.4 
Blood Pressure (mmHg) 124.5/75.5 ± 10.7/5.2 
Fasting Blood Glucose (mg/dL) 102.0 ± 13.7 
2 hour Blood Glucose (mg/dL) 120.6 ± 21.6 

Data presented as mean ± SEM 
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Table 5.2: Changes in fitness, body composition and cardiometabolic health 

 Baseline Post-training % Change Significance 
Fitness and body composition 
Weight (kg) 75.5 ± 16.4 74.5 ± 15.8* -1.4 p=0.04 
BMI (kg/m2) 27.6 ± 5.4 26.9 ± 5.2* -2.3 p=0.03 
Body fat (%) 43.1 ± 9.9 42.6 ± 9.7 -1.3 NS 
WC (cm) 91.2 ± 11.9 88.6 ± 10.1* -2.0 p=0.02 
Est. VO2peak 
(ml/kg/min) 

25.2 ± 5.4 27.7 ± 5.0* +12.9 p<0.01 

Cardiometabolic health 
Fasting glucose (mg/dl) 102.0 ± 13.7 99.1 ± 11.8 -2.8 NS 
2h glucose (mg/dl) 120.6 ± 21.6 115.5 ± 20.4 -4.2 NS 
Glucose AUC (mg/dl) 599.2 ± 134.5 569.0 ± 76.8 -7.9 NS 
Leptin (ng/mL) 30.8 ± 19.3 23.8 ± 13.0* -22.7 p=0.03 
E2 (pg/mL) 12.9 ± 6.3 10.2 ± 3.4* -20.9 p=0.04 
Free Fatty Acid (mmol) 0.92 ± 0.37 0.77 ± 0.40 -16.5 NS 
Triglycerides (mg/dl) 105.4 ± 34.9 98.5 ± 29.8 -6.6 NS 
Systolic BP (mmHg) 124.5 ± 10.7 120.2 ± 13.1* -3.6 p=0.03 
Diastolic BP (mmHg) 75.5 ± 5.2 73.8 ± 4.9 -3.0 NS 
     
     
BMI= Body Mass Index, WC=Waist Circumference, BMD=Bone Mineral Density, 
FFM=Fat Free Mass, E2= 17b Estradiol, BP=Blood Pressure, Data presented as Mean 
± SD (*) p<0.05 
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Table 5.3: Changes in metrics of glycemic control  

 Baseline Post-Intervention Change p-value 
Fasting PI (pmol) 11.3 ± 4.6 10.7 ± 3.6 -0.6 0.4 
PI AUC (pmol) 221.1 ± 93.8 210.6 ± 25.7 -10.5 0.4 
PI/C   2.2 ± 1.1 2.0 ± 0.9 -0.2 0.3 
IGI0-30  0.22 ± 0.4 0.21 ± 0.3 -0.1 0.9 
IGI60-120 0.37 ± 0.6 0.35 ± 0.7 -0.2 0.8 
HIE (%) 19.9 ± 4.1 20.3 ± 5.6 +0.4 0.7 
C-ISI 3.3 ± 1.8 3.4 ± 1.3 +0.1 0.8 
DI0-30 x C-ISI 0.73 ± 0.17 0.71 ± 0.15 -0.01 0.7 
DI60-120 x C-ISI 1.16 ± 0.24 1.19 ± 0.27 +0.03 0.6 
PI=Proinsulin, AUC=Area under the curve, IGI=Insulinogenic Index, HIE=Hepatic 
Insulin Extraction, DI=Disposition Index Data presented as Mean ± SD 
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Figures 

	
  

Figure 5.1: Metabolic glucose clearance rate (MCR) 

Skeletal glucose clearance rate based on five sample oral glucose tolerance test from the equation 
established by Stumvoll et al. Data presented as Mean ± SD (*) p<0.05 
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Figure 5.2: Subjective fatigue and quality of life 

Subjective fatigue (Piper Fatigue Scale) and quality of life (EORTC QLQ-C30) determined by 
subscale analysis. (A)- Fatigue severity subscale, (B) Subjective assessment of fatigue on 
cognition/mood, (C) Fatigue Duration and (D) overall health and quality of life. Data presented as 
mean ± SD. (*) p<0.05 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 The incidence and prevalence of both cancer and type 2 diabetes (T2D) are 

increasing at alarming rates in the United States as well as other developed countries.  

Physical activity decreases the risk of developing both diabetes and cancer (Kahn et al. 

1993, Moore et al. 2016) and improves prognosis for those individuals who have already 

received a diagnosis (Ballard-Barbash et al. 2012), however the exact mechanisms are 

still unclear. While the changes to insulin supply (i.e. insulin secretion) and demand (i.e. 

sensitivity) following lifestyle interventions or pharmacology in adults at risk for diabetes 

and cancer have been investigated independently, relatively little is understood regarding 

the effects of combined exercise training and pharmacology interventions.  A recent 

study from our lab suggested that adding metformin (a common anti-diabetes medication) 

to exercise training did not enhance, and may have even blunted, the improvements to 

insulin sensitivity derived from exercise training alone (Malin et al. 2012). While insulin 

sensitivity and secretion represent key contributors to glycemic control, several other 

factors that lie outside this systemic closed loop may play a role in the regulation of 

diabetes risk. These tissue-specific responses may be more responsive to medication than 

to exercise, and while the systemic response to exercise training and metformin may be 

non-additive, that may not be the case within specific tissues. The purpose of study one 

was therefore to investigate the independent and combined effects of exercise training 

and metformin on aspects of insulin supply and demand that exist outside the typical 

insulin supply and demand relationship.  
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 While this study was underway the consortium for the Transdisciplinary Research 

into the Energetics of Cancer (TREC) began a study that also investigated the effects of 

exercise training and/or metformin (Patterson et al. 2011). However instead of adults at 

risk for diabetes, this project was evaluating the impact of exercise training and/or 

metformin on cancer risk in a group of breast cancer survivors, in a four-arm approach 

similar to study one. While this study will likely contribute significantly towards the 

understanding of combined interventions on cancer recurrence, it may be limited by the 

use of fasting insulin as the primary measure of insulin supply and demand.  Given that 

postmeal insulin exposure can be 50-80% of daily insulin exposure (Reaven, 1979) and 

exercise training primarily reduces postmeal (not fasting) insulin concentrations in non-

diabetic adults (Jenkins & Hagberg, 2011), evaluating an exercise training intervention 

on the responses of fasting insulin alone may significantly underestimate the role of 

exercise-induced reductions in insulin. The purpose of study two was to evaluate the 

effects of exercise training on postmeal insulin concentrations in breast cancer survivors, 

and determine if there was any relationship between the changes in postmeal insulin 

concentrations and cancer-relevant biomarkers.   

 Finally, several aspects of breast cancer treatment may influence the mechanisms 

behind fasting and postmeal insulin concentrations, such as insulin sensitivity, secretion 

and beta cell function. As the number and longevity of breast cancer survivors increases, 

more and more postmenopausal breast cancer survivors are at risk for cardiometabolic 

disease. While significant contributions have been made to the understanding of exercise 

induced cardioprevention and recovery of cardiovascular function in cancer survivors 

following treatment, much less is understood regarding the recovery of metabolic 
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function, such as insulin supply and demand. The purpose of study three was therefore to 

evaluate the systemic and tissue-specific aspects of insulin supply and demand in breast 

cancer survivors, and evaluate their response to exercise training.  

Summary of study 1 

Study 1 used a combination of a fasting blood draw and hyperinsulinemic-

euglycemic clamp to evaluate several metrics of insulin supply and demand that lie 

outside the closed loop of insulin secretion and sensitivity prior to and following an 

exercise training and/or metformin intervention in adults with prediabetes. The three 

specific outcomes were proinsulin processing, hepatic first pass insulin extraction, and 

insulin clearance. Proinsulin concentrations are a reflection of how hard the beta cells of 

the pancreas are working to produce insulin. We found that circulating proinsulin 

concentrations were significantly reduced following combined exercise training and 

metformin intervention, but were not different in exercise alone or placebo. Metformin 

alone led to a decrease in proinsulin of approximately the same magnitude, however this 

did not reach significance. We found no influence of any treatment on hepatic insulin 

extraction, however there was a significant increase in the rate of insulin clearance during 

the hyperinsulinemic euglycemic clamp in both metformin groups (metformin alone and 

exercise plus metformin).  

Taken together, these results suggest that while exercise training may have wide-

ranging systemic effects on insulin supply and demand, metformin may work in a tissue-

specific manner to regulate glycemic control. This result has significant implications for 

researchers designing comparative efficacy studies as well as implications for clinicians 

attempting to personalize lifestyle and pharmacological interventions to adults at risk for 
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diabetes development. For example, it is possible that individuals with poor insulin 

production and/or clearance but normal insulin sensitivity would derive more benefit 

from metformin than they would from exercise training, whereas those adults with insulin 

resistance would not only respond more favorably to exercise training than metformin, 

but should possibly avoid the attenuating effects of metformin on exercise adaptations 

should they begin an exercise training program while on metformin.  

Summary of studies 2 and 3 

 Studies 2 and 3 investigated the impact of 12- weeks of personalized aerobic 

exercise training on postmeal insulin concentrations (Study 2) and metrics of insulin 

supply and demand (study 3) in postmenopausal breast cancer survivors. These two 

studies were designed to be viewed in conjunction with each other, with study two 

focused on the role of exercise-induced changes to insulin concentrations and their 

relationship with cancer risk and recurrence, while study 3 was focused on the 

cardiometabolic health of postmenopausal breast cancer survivors and the mechanisms by 

which cancer treatment may influence diabetes risk through the mechanisms that regulate 

insulin supply and demand. Participants significantly increased their physical activity 

levels as a result of the exercise training intervention, attending an average of 34 sessions 

over the 12 week period and engaging in 156 minutes/wk of supervised exercise. The 

progressive nature of the exercise program was adhered to by the majority of the 

participants, and both volume and intensity of exercise increased over the 12 week period 

as participants fitness improved. Aerobic fitness significantly increased and weight 

significantly decreased as a result of the exercise training program, suggesting that the 

dose of exercise was sufficient to induce beneficial physiological adaptations. 
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Additionally, participants had reduced levels of fatigue and improved quality of life. The 

exercise training program could therefore be considered successful for the participants 

based on those metrics alone, as quality of life and aerobic fitness represent areas where 

cancer treatment has large detrimental effects.   

 While the exercise training intervention led to significant reductions in several 

cancer biomarkers (e.g. leptin, 17b-estradiol) and a reduction in insulin concentrations 2 

hours following the administration of an oral glucose challenge, exercise training did not 

lower overall postmeal insulin concentrations or metrics of insulin supply and demand.  

This result was surprising as a reduction in postmeal insulin concentrations and increase 

in insulin sensitivity is often observed in exercise training interventions. A secondary 

analysis of contributing factors to this lack of effect of exercise training suggests that 

there was a significantly opposing effect of past/present aromatase inhibitor use on 

metabolic adaptations to exercise training. Given the primary role of aromatase inhibitors 

to reduce circulating estrogen concentrations in postmenopausal women, it is likely that 

estrogen plays a role in the metabolic adaptations to exercise training in breast cancer 

survivors. We observed a significant negative association between the change in peak 

estrogen concentrations and change in peak insulin concentrations following exercise 

training in women with past/present AI use, but not in those women who were not taking 

or who had never taken AIs. Additionally, the change in insulin sensitivity (C-ISI) in 

women who were not taking aromatase inhibitors was negatively correlated with percent 

change in estrogen concentrations, but this was not the case for women taking AIs. While 

this data presents a somewhat conflicting view of the role of estrogen in metabolic 

adaptations to exercise training, it is clear that estrogen concentrations, and by proxy the 
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use of estrogen lowering medications, may play a significant role in both cancer and 

cardiometabolic disease risk in breast cancer survivors.  

Conclusion 

When taken together, these studies appear to shed some light on the nature of 

exercise training as a means to modify two hormones that play opposing roles in the 

pathophysiology of diabetes and cancer. While insulin and estrogen contribute to better 

blood glucose control, the mitogenic properties inherent in both hormones likely make 

them detrimental towards the prevention of cancer recurrence. Results from this 

dissertation suggest that exercise training can reduce circulating concentrations of insulin, 

however this is specific to the postmeal state. This response appears to be blunted in 

individuals with a past or present history of aromatase inhibitor use. We also observed a 

significant reduction in estrogen as a result of exercise, however the clinical implications 

are unclear based on the relatively low levels at baseline. Exercise training may therefore 

represent an option for managing post-treatment concentrations of hormones that have a 

significant influence on cancer risk as well as diabetes development.  This may go a long 

way towards the idea of precision medicine, where the use of exercise, diet, and 

pharmacolology (e.g. metformin) would be optimally integrated and combined with the 

appropriate dose and duration of endocrine therapy in order to maximally reduce the risk 

of cancer recurrence with minimal impact on diabetes risk. While this dissertation sheds 

some light on the potential mechanisms behind the relationship between cancer 

recurrence and diabetes risk following exercise training, it raises far more questions than 

it answers. Future exercise training studies in postmenopausal breast cancer survivors that 

focus on populations at high risk for diabetes, use gold-standard measures of insulin 
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supply and demand and are designed to directly evaluate the role of estrogen and/or 

aromatase inhibitor use are required before the dream of personalized precision post-

treatment oncotherapy can become a reality.  
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APPENDIX 

INDIVIDUAL RESPONSES EXERCISE TRAINING IN BREAST CANCER 

SURVIVORS 

 One of the strengths of studies 2 and 3 is the personal supervision of all exercise 

training sessions. Because data was continuously collected throughout the exercise 

training intevention on each participant, we are able to examine the progression of fitness 

and evaluate whether these individual responses may have contributed to the overall 

changes observed in fitness, body composition and cardiometabolic health. Presented 

below are individual changes to exercise volume (Figure A1) and intensity (Figure A2) 

broken into weeks 1-4, 5-8 and 9-12, along with the total number of sessions (Figure A3) 

and the number of high intensity interval sessions (Figure A4).  
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Figures 

 

Figure A1: Exercise training volume  

Individual changes to supervised exercise volume over the course of the 12 week 
intervention period. 
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Figure A2: Exercise training intensity 

Individual changes to supervised exercise training intensity, reported as percent of age-
predicted maximum heart rate (%HRmax) per session during the exercise training 
intervention 
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Figure A3: Exercise sessions 

Total number of exercise sessions over the 12-week intervention period for each 
participant enrolled in the study.  
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Figure A4: High intensity interval sessions 

Total number of high intensity interval training (HIIT) sessions by each participant over 
the course of the 12-week intervention period 
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