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ABSTRACT

CUSTOMIZING VEHICULAR AD HOC NETWORKS TO
INDIVIDUAL DRIVERS AND TRAFFIC CONDITIONS

MAY 2017

ALI RAKHSHAN

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor H. Pishro-Nik

This dissertation studies the ability to individualize vehicular ad hoc networks

(VANETs) in order to improve safety. Adapting a VANET to both its individual

drivers’ characteristics and traffic conditions enables it to transmit in a smart manner

to other vehicles. This improvement is now possible due to the progress that is being

made in VANETs.

To accomplish this adaptation, our approach is to use VANET data to learn

drivers’ characteristics. This information along with the traffic data, can be used to

customize the VANETs to individual drivers. In this dissertation, we show that this

process benefits all the drivers by reducing the collision probability of the network

of vehicles. Our Monte Carlo simulation results show that this approach achieves

more than 25% reduction in traffic collision probability compared to the case with

optimized equal vehicular communication access for each vehicle. Therefore, it has a

considerable advantage over other systems.

vi



First, we propose a method to estimate the distribution of a driver’s characteristics

by employing the VANET data. This is essential for our intended application in

accident warning systems and vehicular communications.

Second, this estimated distribution and the traffic information are used to adapt

the transmission rates of vehicles to each driver’s safety level in order to reduce

the number of collisions in the network. We derive the packet success probability

for a chain of vehicles by taking multi-user interference, path loss, and fading into

account. Then, by considering the delay constraints and types of potential collisions,

we approximate the required channel access probabilities and illustrate the collision

probability.

Third, since the packet success probability and thus communication interference

affect the collision probability noticeably, we examine various interference models

and their effect on the collision probability with more scrutiny. In our analysis,

two signal propagation models with and without carrier sensing are considered for

the dissemination of periodic safety messages, and it is illustrated how employing

more accurate interference models results in a higher level of safety (lower collision

probability)for the network.

Finally, there is an unclear relation between the intensity of an ad hoc network

(the number of vehicles in a certain area) and the performance of the system. Hence,

we study a reverse approach in which the geometry (intensity) of the unmanned

aerial vehicles varies and certain requirements such as safety and coverage need to be

satisfied. The numerical results show that safety and interference limits the coverage

of the network and there is only a relatively small range of intensities which satisfy

all three.
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INTRODUCTION

During the past decade, the automobile industry has seen a surge in the use of

advanced technologies, such as state-of-the-art electronic devices, in order to improve

automobile safety. However, the fatalities and injuries caused by automobile accidents

have remained at alarming levels. In particular, statistics from 2013 [1] report over

five million crashes in the U.S., causing over two million injuries and more than 30,000

fatalities.

To best explain our idea of this dissertation, let us consider a safety application of

a simple VANET. Fig. 1 depicts a scenario in which a chain of vehicles are following

another vehicle (V0) on a highway when the lead vehicle (V0) suddenly begins to

decelerate to avoid an unexpected obstacle, or due to a mechanical failure. Then, the

following vehicle (V1) must also brake to avoid a collision. However, the driver of the

following vehicle (V1) will take a certain amount of time to first perceive that he or

she must brake (perception time), and then another length of time to actually apply

the brake (reaction time).

Perception reaction time (PRT) 1 has undergone much scrutiny within the human

factors literature. This time could increase as a result of various factors such as

whether the driver is distracted or expecting a hazard. If the driver does not have

sufficient time to react, a collision could occur, resulting in damage to the vehicles,

or even injury or loss of life for the drivers or any passengers. Thus, any system that

could help the driver of the following vehicle to react more quickly would be greatly

1Hereafter, we use perception reaction time (PRT) and brake response time (BRT) interchange-
ably, but in general, BRTs are just a special case of PRTs.
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Figure 1: An example on how communications between vehicles can avoid a collision

beneficial. One such system is a simple warning. This could consist of both visual and

auditory cues such as a warning light flashing, and an alarm being sounded. After

receiving the warning, the driver could react more quickly, since the driver would

understand that the warning indicates that he or she must brake immediately, and

no thought will be required to assess the situation and decide on the best course

of action. Such a system must be used carefully. With time, drivers may come to

trust and rely on the warning system. Then, the system failing to provide a warning

when one is needed could prove disastrous, as the driver may not react in time and

collide with the leading vehicle. On the other hand, if the warnings that are given

turn out to be false alarms too frequently, drivers may begin to ignore them. This

would negate any safety benefit of the system, and could even reduce overall safety

if the warnings become a distraction. This means that the system must attempt to

minimize the frequency of false alarms while still maintaining a high level of safety.

Current efforts in the realm of intelligent transportation systems (ITS) typically

consider drivers that can show a wide variety of behaviors during a driving session.

Yet we all know that a specific driver has specific driving behaviors. He or she could

2



be vigilant or distracted; could perceive and react soon to an event or might have a

longer PRT; could be aggressive in acceleration/deceleration or could be smoother in

those. Since existing collision warning algorithms do not use the PRT distribution of

individuals, drivers with different PRT in the same scenario receive the same warnings.

Clearly, this approach is not the best for the design of safety systems.

A major cause of accidents is the slow response time of drivers to stopped traffic,

i.e., the average time a driver takes to hit the brake after a preceding car has stopped.

The cumulative response times for the leading vehicles are the critical element in the

collision probability 2 of the upstream vehicles, potentially resulting in domino-style

collisions. To reduce the drivers’ response time to accidents, recent research and

development in the automobile industry has introduced collision warning systems

to be installed on modern automobiles. Collision warning systems are capable of

cautioning about critical, time-sensitive incidents such as crashes or traffic jams.

With the advancements in VANETs (Fig. 2), recent research [2] suggests the use

of VANETs to improve the effectiveness of collision warning systems. VANETs allow

for cross-communication between cars within a close proximity of each other, which

can enable them to efficiently and reliably communicate sensitive traffic messages

such as crash-relevant information.

The Federal Communications Commission has allocated 75 MHz of spectrum in

the 5.9 GHz band for Dedicated Short Range Communications (DSRC). To serve

as the groundwork for DSRC, the IEEE 802.11p standard was published in the year

2010 for Wireless Access in Vehicular Environments (WAVE) [3]. Each vehicle in Fig.

2 is equipped with a wireless on-board equipment (OBE) which most importantly

includes a CPU, a transceiver, and a GPS receiver. Using DSRC antennas, these

vehicles are able to communicate with each other as well as with roadside equipment

2Hereafter, the term collision shall refer to vehicle collisions unless explicitly stated to denote
packet collisions.
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Figure 2: VANET: Vehicular Ad-hoc NETwork

(RSE). The transmitted data will be used in many applications such as providing the

traffic management centers with accurate data on local traffic to make them capable

of improving the mobility of the travelling vehicles. This data is more reliable than

what low-cost Global Positioning System (GPS) devices can estimate.

The 75 MHz spectrum of DSRC is divided into seven 10 MHz-wide channels.

One channel is called the control channel (CCH) and is used exclusively for safety

messages. The other channels are called service channels (SCH) and are reserved for

commercial applications. Safety messages are either event-driven or periodic. Each

vehicle sends periodic messages in a single hop regularly in order to inform other

vehicles inside its given neighborhood of important information such as location,

speed, and acceleration while it sends event-driven messages to warn other vehicles

of a collision.

In order to improve drivers’ safety using the personalized vehicular communica-

tions, first we need to know the delay requirements of the safety applications. In gen-

eral, the difference between the communication delay and the sum of PRTs of drivers
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Figure 3: Optimizing loop of VANET for Collision Warning Systems

in a chain is the most important factor in reducing the average collision probability

of the vehicles. Next, we need to know about the uncertainty of the packet delivery

between two specific vehicles while other vehicles might also transmit simultaneously,

thus interfering with the selected packet transmission. Deriving the probability of

successful packet delivery helps us with finding the communication delay to inform

each vehicle in a chain while employing vehicular communications. It is desirable to

reduce this delay as much as possible by lessening the interference caused by other

vehicles. Our proposed algorithm tunes this transmission probability of each vehicle

based on the individual characteristics of drivers and the traffic conditions around

the vehicles.

We also show that a safety index is needed for each driver and it must depend on

the collision probability of the vehicle. This index can be learned by the system in

real time as a function of the factors such as speed, acceleration, lane position and

distance from the neighbors to customize the communication. Vehicle sensors (such

as radars and cameras), installed on the vehicles, obtain this information. Radar sen-

sors employ radio waves to detect objects (vehicles and pedestrians) and to find their

position and velocity while cameras are usually combined with radars to provide a
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more accurate and reliable detection. We need to make it clear that we do not expect

to have access to information about the age of a driver, or any other demographic

information. Thus, the safety indices would apply to all drivers. We show that the

less safe a driver is, the more frequently the driver needs to transmit information to

the network. Furthermore, by adapting our communications algorithm for different

drivers varying needs, we send only the most critical packets, opening up more ca-

pacity for the dissemination of higher priority messages and hence further improving

safety of driving. Therefore, in our design, the transmission probabilities will be dic-

tated by the safety indices of the drivers on the roadway (Fig. 3). Both deriving

and employing the safety indices of drivers play key roles in the individualization

algorithms, which are required to be efficiently run using limited computing resources

on the vehicles.

Therefore, in this dissertation:

• We propose a method to estimate the PRT distribution of the drivers in Chapter

1.

• We propose an algorithm that reduces collision probability in the network by

tuning the vehicular communications to the drivers’ needs in Chapter 2.

• One of the most important factors in deriving the packet success is the assumed

wireless communication interference. Hence, different interference models for

VANETs and their effect on safety factors are studied in Chapter 3.

• At last, we analyze a similar type of ad hoc network (unmanned aerial vehicles)

in order to find the acceptable range of intensity in Chapter 4.
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CHAPTER 1

REAL-TIME ESTIMATION OF THE DISTRIBUTION OF
BRAKE RESPONSE TIMES FOR AN INDIVIDUAL

DRIVER USING A VANET

The effectiveness of warnings depends on how much time the driver needs to

react. Therefore, to be as effective as possible, accident warning systems should be

tailored to the specific characteristics of the driver. An important aspect of the specific

characteristics of the driver is her distribution of brake response times (BRT). The

BRT is the time elapsed between a stimulus such as a lead car braking or traffic signal

changing color and a braking response by the driver. Since existing accident warning

algorithms do not use the BRT distribution of individuals, drivers with different BRT

in the same scenario receive the same warnings. Clearly, this approach is not optimal

for the design of safety systems. The most important contributions of this chapter

are:

1. Proposing a method for real-time estimation of the distribution of brake re-

sponse times for an individual driver using data from a VANET system which

has information about the positions, velocities, and accelerations of cars on the

roads, road configurations, and the status and position of traffic signals.

2. Using the estimated distribution to customize warning algorithms to an indi-

vidual driver’s characteristics which leads to improvement in accident warning

systems. We also study the trade-off between the false alarm rate and the ac-

cident probability of a vehicle and illustrate that at the same false alarm rate,
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the accident probability may be lower by a factor of two when the estimated

distribution is employed.

The chapter is organized as follows. In section 1.1, we review the relevant literature

formally defining the BRT and related quantities, discussing factors that affect drivers’

BRTs, and outlining several methods that have been proposed to estimate a driver’s

BRT. Section 1.2 outlines methods that can be used to estimate BRTs and what the

distribution of a driver’s BRTs would be if she did not intentionally delay braking.

1.1 Related Work and Basic Ideas

The time required to respond to a stimulus can be divided into several distinct

phases. One such division is given by Koppa [39]. He defined the perception-reaction

time or brake reaction time as the time required to perceive and initiate a reaction to

the stimulus. In this chapter, we define the potential brake response time (PBRT) as

the time in which a driver could have braked if she did not choose to delay braking,

which is the relevant quantity for the purposes of an accident warning system. We will

use the term “brake response time” (BRT) to refer to the observed quantity, the time

elapsed between a stimulus such as a traffic signal color change and when the driver

applies pressure to the brake pedal. These definitions are illustrated in Fig. 1.1. The

estimation of BRT and PBRT both present technical difficulties. We review methods

that have been proposed to estimate these quantities by previous researchers in the

next subsections. Virtually every study to examine reaction times has found that the

population distribution of reaction times is skewed right and several have shown that

it is well approximated by a lognormal distribution [39], [24], [35]. We will make use

of this fact later in our data analysis. The main ideas we build upon in this chapter

were proposed by Zhang and Bham [35]. Their method is based on intuitive reasoning

about the relationships between the distances, speeds, and accelerations of two cars

when the following car reacts to an action taken by the lead car. The starting point
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Braking  Stimulus 
(e.g., traffic signal change 
or lead car brakes) 

Driver Perceives Stimulus Driver Could Initiate 
Response if He/She 
Chose Not to Delay 
(e.g., could begin moving 
foot to brake pedal) 

Driver Could Complete 
Response if He/She Chose 
Not to Delay 
(e.g., could apply pressure to 
brake pedal) 

Time 

Potential Brake Response Time 

Brake Response Time 

Driver Initiates 
Response 

Driver Completes 
Response 

Figure 1.1: An illustration of the potential brake response time and brake response
time.

in their algorithm is to identify two cars that go for a period of at least 4 seconds

in which they are separated by less than or equal to 250 feet and their speeds are

within 5 ft/s, or 1.52 m/s. These cars are said to be in a steady state. They then

observe a time A when the distance between the cars decreases or increases while the

follower has an acceleration rate of ≤ 0.5ft/s2. This change in distance between the

cars is caused by acceleration or deceleration of the leader. Next they find the time

B when the follower decelerates or accelerates at a rate > 0.5ft/s2. The difference

between times A and B is then an estimate of the follower’s BRT. The advantages

of this method are that it is intuitively reasonable, relatively easy to implement,

and it yields reasonable reaction time estimates. However, the requirement that the

cars be in a steady state is restrictive. To obtain more information about drivers’

reaction times, it would be helpful to extend this approach to estimate reaction times

in situations other than the steady state.

Another method for BRT estimation was proposed by Ma and Andréasson and

is based on techniques designed to find the lag between two linearly related time

series [42]. The basic idea of the method is to examine the covariance between the

time series in the frequency domain, as measured by the coherency. However, this
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method does not allow us to estimate separate BRTs to separate events in a natural

way.

A third approach was taken by Ahmed, who specified a reaction time distribution

as part of a larger model of car-following behavior, and estimated all parameters of

this model jointly through maximum likelihood techniques [43]. However, the maxi-

mum likelihood estimates had to be obtained numerically, which is computationally

intensive due to the complexity of the model. Therefore, this method would not be

practical to implement in an accident warning system where the BRT distribution

must be obtained with limited computing resources. Furthermore, one of the desired

requirements for the warning systems is to use the individual perception reaction

time data online. In other words, the model needs to become more accurate as more

information becomes available from VANET system. However, based on most of the

current methods we cannot update the algorithm in real-time. Three previous studies

have addressed the problem of estimating the distribution of “true” reaction times

based on observed brake response times. All of these studies examined this problem

in the context of traffic signals, and focused on estimation of population distributions

rather than distributions of response times for a particular individual. Goh and Wong

take a more sophisticated approach [24]. They define a transitional zone (TZ) based

on the time headway ( i.e. a measurement of the time in which the vehicle arrives at

the traffic signal without the reduction in the speed) between the driver and the traf-

fic signal at the time that it changes to yellow. This TZ is “an empirically calibrated

range of time headways suitable for identifying drivers with realistic stop-or-cross de-

cisions” [24]. Essentially, to estimate response times, they limit the sample to those

cars with a time headway of ≤ 4 seconds. Nearly all cars that chose not to stop at

the light were within the 4-second threshold; thus, this threshold includes cars with a

“real” choice between stopping and continuing on. However, by restricting the sam-

ple to those cars within the TZ, they lose the information contained in those other
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Figure 1.2: Plot from Goh and Wong [24] of observed brake reaction times (PRT in
their terminology), the dependent variable, vs. time headway to traffic signal, the
independent variable. Points above the diagonal line correspond to cars that did not
stop at the intersection. This figure shows a subset of the data later employed in this
chapter.

data points. This is a particularly critical problem in our application, where we wish

to learn about response times for a particular driver. We may not have the chance

to observe response times very frequently for a single driver; it would therefore be

helpful to be able to use all observed data points rather than just those with a time

headway of 4 seconds or less.

1.2 Estimating the Distribution of Potential Brake Response

Times

1.2.1 General Discussion

In this section, we discuss the construction of a statistical model for the dis-

tribution of brake response times and how this model can be used to estimate the

distribution of potential brake response times for a particular individual. We adopt

a lognormal model for brake reaction times, modeling the logarithm of the observed
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BRT as normally distributed conditional on the time headway. This lognormal model

also has the advantage of automatically correcting for some differences in the vari-

ance of the BRT distribution at different time headways and across individuals. Goh

shows that as the time headway increases, the mean BRT and the variance of the

BRTs both increase [24]. Similarly, it seems likely that some individuals have lower

or higher mean reaction times than other drivers, and that the variance in the BRT

distribution varies across individuals as well. Specifically, it is likely that individu-

als with a low mean reaction time also have a low variance in their reaction times,

whereas individuals with a high mean reaction time also have a high variance in their

reaction times. These differences in the variance of brake reaction times will be ap-

proximately corrected by modelling the logarithm of the BRT. It also seems likely

that the mean and variance of the brake response time distribution depend on several

other variables. An important factor that will be accounted for in our model is the

stimulus type (e.g. traffic signal vs. lead car decelerates). Reaction times also de-

pend on a large number of other factors such as weather conditions and demographic

characteristics of the driver. However, these variables will not generally be available

to the accident warning system, so their effects will be absorbed into the error term

of our model.

1.2.2 The Model

Using just the time headway as an explanatory variable, the general ideas above

can be formalized in the following model:

yd ∼ N(Xβ +Xγd, σ
2I)

γd ∼ N(0,Σγ) (1.1)

In this model,

• d indexes the driver
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• yd is a vector of the logarithms of observed reaction times for a particular driver.

• X is a matrix of covariates, detailed further below.

• β is a fixed vector of unknown coefficients.

• σ2 is an unknown scalar.

• γd is a random vector of unknown coefficients.

• Σγ is an unknown matrix.

The basic idea of this model is that, conditional on the time headway, the distribution

of BRTs for an individual driver has a mean which is given by an overall population

mean, Xβ, plus an offset due to the particular characteristics of that driver, Xγd.

This is illustrated in Fig. 1.3. It is assumed that the parameters γd determining the

individual’s offset to the overall mean follow a multivariate Normal distribution in the

population. This is a linear mixed effects model [44]. A key assumption made in this

model specification is that after the log transformation, the covariance matrix Cov[yd]

has the simple form σ2I. This assumption could fail to hold in a number of ways, but

it makes the calculations much easier. The final results (Fig. 1.5) show the estimation

is sufficiently accurate as long as sufficient number of samples are employed.

Since the logarithm is a monotonically increasing function, it follows that the

logarithm of the BRT is also an increasing function of time headway. For flexibility,

we allow the possibility that the log BRTs are a quadratic function of time headway.

We also allow for the possibility that the relationship between time headway and BRT

is slightly different for each of the different stimulus types. For instance, it could be

that drivers have a faster BRT at low time headways and the average BRT increases

more rapidly as a function of time headway when the stimulus is a lead car braking
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than when it is a traffic signal changing to yellow. These considerations lead to the

following possible form of the mean log-BRT as a function of time headway:

E[ydsi] = βs,0 + βs,1tdsi + βs,2t
2
dsi + γd,s,0 + γd,s,1tdsi + γd,s,2t

2
dsi (1.2)

In Equation (1.2), d indexes the driver, s indexes the stimulus type, and i indexes the

observation (so if we have 5 different BRT observations for a particular driver and

stimulus type, i will vary from 1 to 5). As before, ydsi is the log brake reaction time,

and tdsi is the time headway at the time of the stimulus. The subscript s on the β and

γ terms indicate that the values of those coefficients depend upon the stimulus type s.

To make this concrete, if this mean function is adopted and there are S = 3 different

stimulus types under consideration with nds observations for driver d under stimulus

type s, β and γd are 9× 1 vectors and the portion of the X matrix corresponding to

observations for driver d will be of the following form:



1 td11 t2d11 0 0 0 0 0 0

1 td12 t2d12 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...

1 td1nd1 t2d1nd1
0 0 0 0 0 0

0 0 0 1 td21 t2d21 0 0 0

...
...

...
...

...
...

...
...

...

0 0 0 1 td2nd2 t2d2nd2
0 0 0

0 0 0 0 0 0 1 td31 t2d31

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 1 td3nd3 t2d3nd3


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Figure 1.3: An illustration of the model based on a simulated data set provided by [24].
The plot shows simulated data for just one stimulus type. The black curve represents
the population-average relationship between time headway and brake reaction time,
Xβ. The red curve represents the relationship between time headway and brake
reaction time for one individual, X(β + γ). The red point is an observation for that
driver.

1.2.3 Training the Model: A Fit Using Data from Driving Simulations

For training the model, the data are gathered for D subjects in a driving simula-

tion. We prefered to gather data from real drivers on the road, but this was likely to

be too difficult to be feasible. This being the case, we took precautions to address con-

cerns about using results from a driving simulation to learn about response times for

drivers in real life driving situations. The subjects in the study were a representative

sample of the overall population of drivers who were using the accident warning sys-

tem. Brake responses for each subject were elicited at a variety of levels of expectancy.
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To improve the statistical analysis, responses were also collected at a range of time

headways for each stimulus type. To separate the effects of expectancy and any other

variables that may be included in the model, the combinations of these factors were

randomized (for example, we had some observations where the braking stimulus was

more and less surprising at different levels of the time headway variable). For each

driver, we have multiple observations of reaction times for each stimulus type. These

data can be used to estimate the unknown quantities β, σ2, and Σγ in this model

using standard statistical techniques implemented in the lmer function of the lme4

library in R. We will use a subscript of (tr) to indicate quantities obtained from this

training data set; in particular, let X(tr) be the covariate matrix obtained using data

from this data set and denote the estimates by β̂(tr), σ̂
2
(tr), and Σ̂γ(tr). β̂(tr) can be

written as

β̂(tr) = (X ′(tr)V
−1

(tr)X(tr))
−X ′(tr)V

−1
(tr)y(tr)

V(tr) = Cov(y(tr)) = X(tr)Σ̂γ(tr)X
′
(tr) + σ̂2

(tr)I. (1.3)

The superscript
′′−′′ denotes a generalized inverse. The estimates σ̂2

(tr) and Σ̂γ(tr)

were found through numerical maximum likelihood techniques by employing different

libraries (e.g. stats4) in R. A study conducted by McGehee et al. has found that

the population average brake response time was about 0.3 seconds faster in driving

simulations than it was in real life driving studies [45]. This difference was found at

time headways of approximately 2 seconds. It is difficult to account for this effect

in a rigorous way, especially since this observed difference may be due in part to

methodological differences between the simulator trials and the real car driving trials.

As an ad hoc solution, we increased the estimated value of β̂0,(tr) by an amount such

that the estimated population mean reaction time at a time headway of 2 seconds

was increased by 0.3 seconds.
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1.2.4 Real Time Estimation of the PBRT Distribution for One Driver

We estimate the distribution of PBRTs for a particular driver in two steps. First,

we establish the relationship between the covariates and BRT for that driver. Then

we use this relationship to estimate the distribution of PBRTs by using values of the

covariates at which the BRT does not include an intentional delay to braking.

1.2.4.1 Estimating the Relationship Between Time Headway and BRT

for One Driver

As data are gathered in real time for an individual driver d∗, our goal is to estimate

the driver’s offset γd∗ to the population-average regression coefficients β. This is

estimated by the Best Linear Unbiased Predictor (BLUP) [37], [38]. Intuitively, we

might expect that if a particular driver has a higher than average brake response time

in one stimulus type, they are likely to have a higher than average brake response time

in other stimulus types as well. Similarly, if they are particularly sensitive to the time

headway in one situation, they are more likely to be sensitive to the time headway

with other stimulus types. This intuition suggests that the covariance matrix Σγ

will have non-zero off-diagonal entries; that is, there is some degree of correlation

among the γd coefficients. Because of this correlation, observations from one stimulus

type can give us information about the coefficients in the other stimulus types. For

example, if we make some observations of driver brake response times in the traffic

light setting which give positive estimates of the γd coefficients for that stimulus, a

positive correlation between the coefficients might lead to positive estimates of the

coefficients for other stimuli as well. To reduce the computational complexity of

computing the BLUP, we assume that the information about the unknowns β, σ2,

and Σγ that is provided by the training data set from the driving simulator is much

greater than the information provided by the data from this individual driver. That

is, the estimates β̂(tr), σ̂
2
(tr), and Σ̂γ(tr) obtained from the training data set above
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are very similar to what we would obtain if we estimated them using the combined

training data set with the observations for this driver. If this assumption holds (i.e.

little information is obtained in real-time for the driver), we can approximate the

BLUP using the estimates of these quantities found with the training data set, which

saves the computational effort of re-fitting the model every time we observe a new

reaction time. Let Xd∗ be the covariate matrix X as in the full model, but formed

using only the data from driver d∗. The BLUP of γ̂d∗ is

γ̂d∗ = Σ̂γ(tr)X
′
d∗V̂

−1
d∗ (yd∗ −Xd∗ β̂(tr)), (1.4)

where V̂d∗ = Xd∗Σ̂γ(tr)X
′
d∗ + σ̂2

(tr)I. The covariance matrix of the BLUP γ̃d∗ is given

by

Cov(γ̃d∗) = ΣγX
′
d∗V

−1
d∗ (Vd∗ −Xd∗Cov(β̂(tr))X

′
d∗)V

−1
d∗ Xd∗Σγ (1.5)

To estimate the covariance matrix of γ̂d∗ , we plug our approximation (Equation 1.3),

to β̂(tr), and our estimates of σ2, Σγ, and Cov(β̂(tr)) into Equation 1.5. When no data

have been gathered yet, the best predictor is just the vector 0, with covariance matrix

Σγ. In this case, the estimated mean for the individual is equal to the estimated mean

for the population of all drivers.

1.2.4.2 Obtaining the Estimated PRBT Distribution

The final step is to estimate the distribution of potential brake response times for

an individual driver, not including any delays. For the suggested model form above

using a quadratic function of time headway, the intuitive idea is to pick a specific time

headway value t∗ at which the driver does not have enough time to delay braking,

and use that time headway value to evaluate the mean function. Based on the plots

in [24] (Fig.2), it appears that t∗ = 1.5 seconds might be an appropriate value (there

is no vehicle in this interval [0, 1.5] who delays the braking). We can then estimate the
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mean of the driver’s log-RTs by plugging t∗ = 1.5 seconds into the estimated mean

function: µ̂ = β̂0 + γ̂d∗,0 + t∗(β̂1 + γ̂d∗,1) + (t∗)2(β̂2 + γ̂d∗,2). This provides an estimated

mean for the log-reaction time. There are several options for estimating the variance

of the log-PBRT distribution. One simple idea would be to use the estimate σ̂2
(tr) of

the quantity σ2 in the model statement 1.1. However, this does not take into account

the uncertainty in our estimate µ̂. This uncertainty is captured by the prediction

error, (β̂(tr) + γ̂d∗)− (β + γd∗). It can be shown that Cov((β̂(tr) + γ̂d∗)− (β + γd∗)) =

Cov(β̂(tr)) + Cov(γ̂d∗ − γd∗)− Cov(β̂(tr), γ
′
d∗)− Cov(γd∗ , β̂(tr)), where

Cov(γ̂d∗ − γd∗) = Σγ − Cov(γ̂d∗) (1.6)

Cov(γ̂d∗) = ΣγX
′
d∗(V

−1
d∗ − V

−1
d∗ Xd∗Cov(β̂(tr))X

′
d∗V

−1
d∗ )Xd∗Σγ (1.7)

Cov(β̂(tr), γ
′
d∗) = Cov(β̂(tr))X

′
d∗V

−1
d∗ Xd∗Σγ (1.8)

This covariance can be estimated by plugging in estimates of the unknown quantities

Vd∗ , Cov(β̂(tr)), and Σγ. An estimate of the variance of the distribution of log-PBRTs

which takes into account our uncertainty about the value of the mean is then

[
1 t∗ t∗2

]
Ĉov((β̂(tr) + γ̂d∗)− (β + γd∗))

[
1 t∗ t∗2

]′
+ σ̂2

(tr)

When we do not yet have any data, the adjusted variance estimate is

[
1 t∗ t∗2

]
Σ̂γ

[
1 t∗ t∗2

]′
+ σ̂2

(tr). (1.9)

Fig. 1.4 shows the resulting distribution estimates obtained in a simulation when

these variance estimates are used as the parameters of the distribution of PBRTs. We

used the same samples available for Goh’s research to estimate the PBRT distribution

(e.g. for Fig. 1.2). From this plot we can see that the estimates taking into account

uncertainty in the coefficient estimates are more conservative. On the scale of these
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Figure 1.4: Estimates of the distribution of PBRTs for an individual obtained in a
simulation. The black curve represents the individual’s “true” response time distri-
bution. The blue curve is the estimated distribution when the variance is taken to
be σ̂2. The red curve is the estimated distribution when the variance estimate in-
cludes a term for uncertainty in β̂ and γ̂d∗ . The vertical lines are at the 10th and 90th

percentiles.

simulation results, the difference in the percentiles obtained from these estimates

is just a fraction of a second, but the difference could be more significant with real

data. We will use the more conservative value for the estimated variance since it more

accurately reflects what we know about the distribution of response times based on the

available data. Fig. 1.5 shows how the estimated reaction time distribution changes

with the sample size and the allocation of the sample among the different stimulus

types. These results are dependent upon the parameter values used in the simulation,

but they illustrate that observed reaction times for the stimulus type that is used in
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estimating the PBRT distribution contribute more information than observations in

other stimulus types.

We note that computation of the estimated PBRT distribution requires only the

operations of matrix inversion and matrix multiplication. The matrix which must be

inverted is V̂d∗ , which has dimension nd∗ × nd∗ , the number of observations for driver

d∗. The inversion operation has computational complexity O(n3
d∗). All of the matrix

multiplication operations are between matrices of dimension 9×1, 9×9, 9×nd∗ , nd∗×1.

Because multiplying an n ×m matrix by an m × k matrix has complexity O(nmk),

this implies that the complexity of the “worst” matrix multiplication operation is

O(9n2
d∗) (for the product X ′d∗V̂

−1
d∗ ). Therefore, the whole computation has complexity

O(n3
d∗).

1.2.5 Estimated PBRT Distribution vs Population Distribution

In this section, our goal is to relate the estimated individual distribution to the

distribution of BRTs for the population in order to show how accident warning al-

gorithms benefit from taking the estimated distribution into account. As discussed

earlier, researchers have consistently found that reaction times are skewed right and

are approximated well by a lognormal distribution. It is reasonable to assume that

brake reaction times are skewed right within individuals as well. As we mentioned, [39]

established that the distribution of BRTs of drivers reacting to surprise events fol-

lows a log-normal curve with parameters µ = 0.17 and σ = 0.44 (the population

distribution). We try to minimize the frequency of false alarms that the system gives

subject to this distribution. If the system detects that the driver has less than his

or her BRT to react to an obstacle, it should give the driver a warning. We can

only state the probability that any BRT is above or below a certain value. Thus,

the constraint states that we must calculate some threshold Tt above which there is

only small chance a BRT can be, and send a warning whenever a driver has less than
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Figure 1.5: Estimates of the distribution of PBRTs for an individual obtained in a
simulation with different sample sizes. n.1 and n.2 represent the number of obser-
vations for stop light and car braking stimuli for one driver respectively. The black
curve represents the individual’s “true” response time distribution. The purple curve
represents the distribution of reaction times in the population, which is used as an
estimate when the sample size is 0. The red curve is the estimated distribution. The
vertical lines are at the 10th and 90th percentiles.

this amount of time to react. Therefore, we can calculate the threshold to send the

warnings using the distribution for the entire population:
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P (Y ≤ Tt) = Φ

(
ln(Tt)− 0.17

0.44

)
= 1− prob. of accident (1.10)

Φ(x) =
1√
2π

∫ x

−∞
e
−t2

2 dt

Also, we can calculate the warning threshold using the distribution for an individual

driver (black curve in Fig. 1.4).

Now that we have established the thresholds for sending accident warnings, we

can calculate the false alarm rates that will result from employing these two different

systems. A false alarm occurs whenever a warning is sent, but it is not needed. To

best explain this problem, let us consider a scenario in which a vehicle is following

another vehicle on a one-lane roadway when the lead vehicle suddenly begins to

decelerate to avoid an unexpected obstacle. Suppose that the system has calculated

that the following driver has t seconds to react, and that t is less than Tt, therefore a

warning has been sent. Then, the false alarm rate is the probability that the driver’s

reaction time, X will be less than t. Therefore, FX(t), the cumulative distribution

function is the total false alarm rate. Fig. 1.6 illustrates false alarm rate versus

probability of accident for different errors in estimating the individual distribution

by using the real data. It is clear from Fig. 1.6 that when we use the population

brake reaction distribution, the false alarm rate can be higher by almost a factor of

two than when we use the individual driver’s distribution. Therefore, in this scenario,

safety applications could potentially take full advantage of being customized to an

individual’s characteristics.

1.3 Conclusion

Accident warning systems generally rely solely on the distribution of the en-

tire population of drivers, thereby ignoring the distinct characteristics of individual

drivers. They may frustrate the drivers with the overly high numbers of false alarms,

causing them to ignore warnings or even disable the system. If drivers are distracted
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Figure 1.6: Plotting Equation 1.10 using MATLAB. This figure shows the false alarm
rate (y axis) versus the probability of accident (x axis), the percentage of possible
accidents that the system fails to give warning about, using population and individual
PBRT distributions. Population distribution = lnN(0.17, 0.442), based on results
from [39]. SS represents the sample size equally considered for the two scenarios and
MSE shows the mean square error of the estimated distributions.

by overly frequent warnings, the safety benefits of the system are compromised or

even lost. In this chapter, we discussed the need to adapt accident warning systems

to drivers’ individual characteristics and proposed a method as the first step for doing

this customization by estimating the distribution of potential brake response times

for an individual driver in real time. We showed that at the same accident probability

for each driver, the false alarm rate can be reduced by at least 30% by employing the

estimated individual distribution instead of the population distribution.
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CHAPTER 2

PACKET SUCCESS PROBABILITY DERIVATION FOR
THE CUSTOMIZED DESIGN

Let us assume the scenario in which a chain of moving vehicles exists in one lane.

As we discussed, a major cause of accidents is the slow response time of drivers to

stopped traffic. In order to improve drivers’ safety using personalized vehicular com-

munications, first we need to know the delay requirements of the safety applications.

In general, the difference between the communication delay of the desired transmis-

sion and the sum of perception reaction times of drivers in a chain plays the main

role in reducing the average collision probability of the vehicles.

Next, we need to know about the success probability of the packet delivery between

two specific vehicles while other vehicles might also transmit simultaneously, thus

interfering with the selected packet transmission. Deriving this probability helps

us with finding the communication delay to inform each vehicle in a chain while

employing vehicular communications. It is desirable to reduce this delay as much

as possible by lessening the interference caused by other vehicles. Our proposed

algorithm tunes this transmission probability of each vehicle based on the individual

characteristics of drivers and the traffic conditions around the vehicles.

Our main contributions in this chapter are as follows:

1. We propose a customized MAC layer design in order to reduce the number of

collisions on highways.

2. We find the expression of packet success probability for two specific scenarios

regarding a chain of vehicles on a highway.
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3. We find the approximated required channel access probabilities equations.

4. We illustrate the collision probability reduction by at least 25% for the specified

models using Monte Carlo simulations.

The remainder of this chapter is organized as follows. Section 2.1 summarizes the

related work that has been done in the field of vehicular communications regarding

improving drivers’ safety and driver behaviour detection. We propose our novel MAC

level design with respect to personalized vehicular communications to avoid vehicle

collisions in section 2.2. Section 2.3 presents the algorithm for customizing channel

access probabilities in VANET. In section 2.4, the simulation and numerical results

are demonstrated to verify the effectiveness of the proposed scheme.

2.1 Background and Literature Review

We aim at customizing VANET by changing the communications parameters in

a smart way. None of the related works actually have proposed a MAC level design

to tune the VANETs to drivers and traffic conditions for safety applications. We

proposed a regression method to estimate drivers’ PRTs distributions using VANET

(Chapter 1). Also, Al-Sultan et al. [5] utilized Bayesian graphical models to detect

drivers’ behaviors and categorize them. However, these two papers only focused on

estimating the PRT of drivers and deriving an index for a driver, respectively. They

did not propose any algorithm to use the driver’s index or any other factor in indi-

vidualizing vehicular communications. Also, we showed in Chapter 1 how using an

individual driver’s PRT distribution in order to individualize warnings results in an

impactful reduction in the probability of the driver not being able to brake in time.

However, that paper only took the PRTs distribution of drivers into account to cus-

tomize warnings to the drivers. In other words, it employed the estimated perception

reaction time after the vehicle receives the safety messages. It does not analyze how
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channel access probabilities of vehicles and vehicular communications can be adapted

to drivers’ characteristics and traffic conditions. Besides, the vehicles’ collision proba-

bility were assumed to vary in a specific range in Chapter 1 because only the trade-off

between vehicles’ collision probabilities and the false alarm rates were discussed for

two types of collision warning systems. Jiafu et al. [7] presented context-aware ve-

hicular clouds in which vehicles act as cloud service providers and clients. However,

they did not propose any specific design to improve safety. Moreover, they discussed

their proposed methods briefly in theory without providing sufficient detail on the

implementability of them. In contrast, our context-aware approach takes advantage

of tuning MAC-level communication parameters to lower the vehicles’ collision prob-

ability. Haas et al. [8] simulated two vehicular safety applications and determined

the effect of various communication parameters on vehicle crash avoidance through

simulations. However, they did not develop any mathematical framework for safety

requirements of VANET. Also, they neglected the fact that different drivers face

different needs. Therefore, their simulation-based study both could not achieve the

potential decrease in the number of collisions and waste the communication resources.

Qian et al. [9] proposed a MAC protocol for vehicular communications with differ-

ent message priorities. However, their study was only focused on security aspects of

safety applications and does not attempt to reduce the number of collisions. Mughal

et al. [10] evaluated transmission rate or power control techniques which were em-

ployed to control congestion in dense traffic. There is no mathematical framework

presented in [10]. It suggested the combination of transmission rate and transmission

power control methods would be more efficient as a congestion control mechanism

only in theory. Chang et al. [11] proposed a series of repetition-based Media Ac-

cess Control (MAC) protocols to deliver periodic status updates within their useful

lifetime to within a specified range. For a scheme in which nodes transmit with a

given probability in each slot, Chang et al. [11] derived the Probability of Reception
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Failure (PRF) at the border of the range of interest. However, they only considered

the strongest interferer in their derivation and neglect fading. The authors did not

mention how their design meets the specific packet reception probabilities and de-

lay requirements that are associated with the different driver safety characteristics

in general or the specific safety information demands of a given situation in which a

collision may be imminent. Garcia-Costa et al. [12] developed a stochastic model in

which they derived the average number of collisions (when the leading vehicle stops

instantly) in a chain of vehicles that are equipped with a collision warning system.

The operation of the communications system was abstracted by a message delay vari-

able whose distribution was assumed given for any specific MAC scheme. Moreover,

it was assumed that all vehicles in the chain receive the warning message at the same

time. Neither of these assumptions seem realistic. Carbaugh et al. [13] compared the

safety of automated and manual highway systems with respect to rear-end collision

frequency and severity. Yet, they assumed a fixed communications delay of 300, 150,

and 120 milliseconds for autonomous, low-cooperative, and high-cooperative vehicles,

respectively, an assumption which might not be realistic. Furthermore, Darus et

al. [22] and Sattari et al. [23] both categorized and proposed different congestion con-

trol algorithms. Most of these algorithms were efficient based on message priorities.

They nevertheless ignored the drivers’ characteristics completely. In addition, it is

not well-specified how these priorities are defined. To wrap this section up, none of

the previous studies have actually proposed a MAC level design for employing both

the drivers’ behaviour and traffic information in order to improve safety.

In the next sections, we will show that by taking the estimate of drivers’ be-

haviours and traffic data into account, vehicular communications can be tailored to

the needs of drivers and the network (Fig. 3). Therefore, while each vehicle increases

its level of safety by obtaining additional information from the network, it transmits

valuable data to other vehicles especially before it causes danger to others. As a vital
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result, the number of fatalities on highways will be decreased.

2.2 Driver-based Adaptation of Vehicular Communications

Communications between vehicles can help decrease collisions in an N-lane high-

way. It can help drivers with making proper reactions to the deceleration events

especially when a driver cannot either observe or perceive the deceleration of other

vehicles due to low visibility, high unexpectedness of the incident, defective brake

lights, and many distractions that nowadays exist on the roads. In a network of ve-

hicles, each vehicle transmits with a specific probability in the transmission medium.

Large channel access probabilities lead the system to excessive interferences and con-

sequently low probability of packets being successfully received (success probability)

while very small values reduce the success probabilities since the probability of the

favorite transmission is low itself. Therefore, there is an optimized value given both

the physical data (distances, velocities, and deceleration rates) obtained by vehicular

networks and the communications protocol requirements, which results in lower col-

lision probability of vehicles than when the non-optimal access values are employed

for the vehicles. Now, can we achieve even lower collision probabilities by customiz-

ing the VANET communications? In section 2.4, it is shown that there could be

individualized channel access probabilities for different vehicles leading to even lower

collision probability. Our main idea is that unsafe vehicles need to inform other ve-

hicles of their perilous situation more frequently than safer vehicles, i.e, with higher

channel access probability. Our simulation results confirm this assumption which will

be discussed in the following section.
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Figure 2.1: Communications delay versus sum of PRTs. This figure illustrates the
time before a driver in a chain applies the brake.

2.2.1 Delay Requirements of the Safety Application

Consider a traffic stream where a chain of vehicles move with constant speed v

and randomly chosen inter-vehicle spacing. When V0 (the first vehicle in the chain)

brakes, the driver of V1 (the following vehicle), after her PRT, τ1, applies the brake.

Having no inter-vehicle communications employed, vehicle Vi (i > 1) applies the

brake after
∑i

j=1 τj, the sum of PRTs up to the driver i. With the communications,

this time will change to τi + tci in which tci is the communications delay to inform

vehicle Vi. Note that tci can be a result of direct communications from V0 to Vi or the

retransmission of V0’s signal by one of the vehicles in the middle. Understandably,

when tci <
∑i−1

j=1 τj , which is almost always the case especially in critical scenarios,

Vi has more time to react and as a result the collision probability is reduced (Fig.

2.1).

2.2.2 Analysis and Design

May et al. [14] states that the traffic of vehicles is more likely to follow Poisson

distribution under low flow conditions. Under near-capacity conditions, however, the

equal distance assumption between vehicles is justified. It is noted in [14] that in a
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dense and non-free traffic flow regime all drivers tend to maintain a constant spacing

with their leader. Therefore, our design is divided into two cases: 1. Equal distance

model 2. Poisson distribution model. We believe examining these two scenarios gives

us a thorough picture of how vehicular communications can affect collision probability

in general. The traffic model does not ignore congestion from intersecting roadways,

however, we assume as new vehicles enter a highway our model is still preserved.

Although the Media Access Control (MAC) protocol for DSRC communications is

a variation of the conventional CSMA/CA scheme, because of the short length of the

packet payload and the broadcast nature of communications, the 4-way handshake

anticipated by the standard is not efficient for the dissemination of periodic safety

messages. RTS/CTS and ACK message exchanges increase the hidden node prob-

lem thus resulting in higher probability of packet collisions [16]. Since the topology

of VANETs is highly dynamic, we need protocols which do not need a detailed de-

scription of the network topology to schedule packet transmissions. Repetition-based

protocols not only reveal this property, but also fight packet collisions due to the

problem of hidden nodes. Hence, in this section, we make use of repetition-based

protocols for the dissemination of periodic safety messages. A similar approach has

been used in other papers, e.g. in [17] and [16].

1. Equal distance:

The MAC scheme that we consider is SSP (Slotted Synchronous P-persistent)

where at each slot a node (vehicle) transmits with probability p and receives

with probability 1 − p independent of others. The important assumption is

that the slots are synchronized because of the on-board GPS devices. More-

over, since the vehicles are not faced with power constraints, the nodes can

increase the transmission power to overcome the interference. In this chapter,

we consider path loss and Rayleigh fading for formalizing the signal propaga-
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tion characteristics. If we assume that the nodes transmit with unit power, the

received power at distance r is hr−α, where α(> 1) is the path loss exponent

and h is the fading coefficient.

Theorem:

Assuming that a node transmits a packet, the probability that a receiver at

distance r on the same lane (one lane scenario) receives the packet successfully

is (E(hi) = E(h) = 1):

Ps = P

(
S1

I
> β

)
= P

(
hr−α∑∞

i=−∞ bihir
−α
i

> β

)
=

(1 + β)

1 + (1− ptr)β
·

+∞∏
i=−∞−{0}

1 + (1− pi)β
(
m
i

)α
1 + β

(
m
i

)α (2.1)

where β is the SIR decoding threshold, bi is a Bernoulli random variable with

parameter pi, node i transmits with probability pi (the specified transmitter

transmits with probability ptr), ri denotes the distance from the interferer i to

the receiver (Fig. 2.2), hi is the fading coefficient for each time slot (independent

slot to slot), and i and m denote the index of interferer i and receiver, respec-

tively. Also, S1 and I denote the transmitter signal and interference power

at the receiver, sequentially. Our assumption is that vehicles (interferers) are

located around the receiver to infinity symmetrically. In other words, we are

considering the worst case scenario to deal with the highest expected collision

probability for our customized approach. We also assume the network is in-

terference limited. Therefore, the nodes can increase their transmit power to

overcome the power of noise. The vehicles are not faced with power constraints,

hence, this is a realistic assumption for VANETs. Proof:
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If there is distance r between a transmitter and the desired receiver, the success

probability is

Ps = P (SIR > β)

= P

(
hr−α

I
> β

)
=

∫
P (h > βrαI|I = i)fI(i)di

=

∫
e−βr

αifI(i)di

= E
[
e−βr

αI
]

= E
[
e−βr

α
∑
i∈Φ bihir

−α
i

]
=
∏
i∈Φ

[E
[
e−βr

αhir
−α
i

]
pi + 1− pi]

=
∏
i∈Φ

[
pi

1 + βrαr−αi
+ (1− pi)

]
(2.2)

Assuming,

r = mx and ri = ix (2.3)

Equation 2.1 is obtained.

Theorem:

If the channel access probabilities, pi = p, ∀i, are constant, the closed-form

packet success probability is (α = 2):

Ps =
(1 + β)

(1− p)[1 + (1− p)β]
·

[
sinhπ

√
(1− p)βm

]2

(
sinh
√
βm
)2 (2.4)

α is normally in the range of 2 to 4 where 2 is for propagation in free space and

4 is for relatively lossy environments.

Proof:
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By plugging Euler’s product formula (Equation 2.5) into Equation 2.1, we can

obtain Equation 2.4.

sin(πz) ≡ πz
∞∏
i=1

(
1− z2

i2

)
(2.5)

If x denotes the distance between two adjacent nodes, mx represents the dis-

tance between receiver and transmitter. It is noteworthy to mention that Equa-

tion 2.1 and Equation 2.4 do not depend on the inter-vehicle distance.

There are two approaches for an N -lane highway. The first approach is called

the Single Lane Abstraction (SLA) model. In this model, all the traffic lanes are

mapped into one lane with the aggregated traffic intensity. Using this model,

Equation 2.1 and Equation 2.4 can still be employed to obtain packet success

probability. SLA model can be used only if d2 � mx2 in which d shows the

distance between two adjacent lanes.

Assume d is the distance between two specific lanes, x denotes the distance

between two adjacent vehicles, and the transmitter is located in the middle

lane. Let’s assume r specifies the distance between transmitter and receiver

(which is in a lane with distance d from the middle lane).

r = mx

√
1 +

(
d

mx

)2

(2.6)

≈ mx

(
1 +

(
d
mx

)2

2

)
(2.7)

= mx+
d2

2mx
(2.8)

Therefore, we have shown that if d2 � mx2, r ≈ mx.

Theorem:
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If the inequality does not hold, that approximation cannot characterize the

performance of vehicular networks on N-lane highways. If this condition is

not satisfied, we cannot ignore d. Therefore, packet success probability can be

obtained using:

Ps =
(1 + β)

1 + (1− ptr)β
·

+∞∏
i∈−∞−{0}

1 + (1− pi)β
(

mx

ix+ d2

2ix

)2

1 + β

(
mx

ix+ d2

2ix

)2 (2.9)

Proof:

In the proof of Equation 2.1, the last equation is modified with respect to the

new assumption that the inter-lane distance cannot be overlooked:

Ps =
∏
i∈Φ

 pi(
1 + β

(
mx

ix+ d2

2ix

)α) + (1− pi)



Then, Equation 2.9 is obtained.

If the time slots in which nodes transmit are not synchronized, this scheme

is named Slotted Asynchronous P-persistent (SAP). In this case, an interferer

can potentially interfere with at most two time slots of another transmission.

Hence, the transmission probability for the interferers is:

p′i = pi + pi − pi · pi ≈ 2pi (2.10)

Since the probabilities are small, the approximation is good.
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Figure 2.2: A chain of vehicles. Distance between the transmitter and the desired
receiver = r. Distance between interferer i and desired receiver = ri.

2. Poisson Point Process:

In this case, the nodes are distributed on a highway according to a Poisson point

process (PPP). Poisson point processes have been widely employed as a model

for wireless networks [19–21]. The packet success probability can be obtained by

considering the fact that the transmitter-receiver distance is a random variable,

not a constant value (E(h) = λ = 1).

PS = P (SIR > β) (2.11)

=

∫
r

P

(
P1hr

−α

k + I
> β

)
fR(r)dr (2.12)

=

∫
r

P

(
h >

β(k + I)rα

P1

)
fR(r)dr (2.13)

=

∫
r

e
−βkrα
P1 · EI

[
e

(
βrα

P1

)]
fR(r)dr (2.14)

=

∫
r

e
−βkrα
P1 · LI

(
βrα

P1

)
fR(r)dr (2.15)

if (k = 0, α = 4, P1 = 1)

=

∫
r

LI
(
βr4
)
fR(r)dr (2.16)
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where

• P1: transmitter signal power

• h: channel fading

• r: distance between transmitter and receiver

• α: path loss exponent

• k: noise variance

• I: interference power

• λ: exponential parameter of Rayleigh fading

• LI : Laplace transform with respect to I

• EI : Expectation with respect to I

Assuming the transmitter and receiver are located in the same lane, the distri-

bution of the distance between transmitter and receiver is Erlang:

fR(r) =
λnpr

n−1e−λpr

(n− 1)!
(2.17)

in which λp represents the intensity of vehicles in a lane. Also, n denotes the

number of nodes between transmitter and receiver plus one. Elsawy et al.

[15] obtains closed-form expressions for the Laplace transform of the aggregate

interference. For this specific scenario, this Laplace transform is equal to:

LI
(
βr4
)

= e
−πλM

[
b2(1−e−λpβK( r

b
)4 )+(λpβr4K)

1
2 Γ(0.5,0.5Kb−4)

]
(2.18)

in which

Γ(s, x) =

∫ ∞
x

ts−1 · e−tdt (2.19)

K =

(
c

4πfc

)2

(2.20)
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Also, b, c, fc represent the desired radius from the receiver node in which the

aggregate interference is considered, the speed of radio propagation, and the

carrier frequency.

Let’s assume Φ = {xi; i = 1, 2, 3, · · · } are the nodes in the network. Now,

we employ the concept of marked point processes [58] since we want to include

additional information about the points in the model. A marked point is selected

to be retained if and only if it has the lowest mark in a circle of radius L centered

at xi (HCPP-II model). L denotes the minimum distance between any two

simultaneously active transmitters. If we assume that the distribution of the

marks in one circle is uniform, then the probability of retaining a random point

can be written as:

P1 =
∞∑
n=1

1

n+ 1
P (having n points in the lane) (2.21)

=
∞∑
n=1

1

n+ 1

(λpL)ne−λpL

n!
(2.22)

=
1− e−λpL

λpL
(2.23)

λM denotes the intensity of the simultaneously active nodes from the parent

PPP which is equal to:

λM = P1 · λp =
1− e−λpL

L
(2.24)

It is often useful to include additional information about the points in the

model. Thus, in marked point processes each point xi is assigned a random

variable, the mark mi. It is necessary to choose mi in a smart way in order to

model the spatial distribution of the active set of interferers. We define mi as

the safety index of vehicle i which means the lowest mark represents the most

unsafe vehicle.
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Also, see Chapter 5 for additional information on an extension to the HCPP-II model.

2.2.3 Indexing

A number of general indices of driver safety have been suggested or developed

with the advent of relatively inexpensive in-vehicle sensors that can record, among

other things velocity, acceleration, and lane position. We need to make it clear at

the outset that we do not expect to have access to information on the age of a driver

or any other demographic information. We assume that the less safe a driver is, the

more frequently the driver needs to transmit information to the network. Moreover,

the driver safety index could be changed in real time. As an example, if a driver’s

brake reaction time is relatively long, the driver’s safety index will be relatively low,

so more data will be put on the air from the corresponding vehicle. In this chapter,

vehicles are simply divided into two categories: 1. unsafe vehicles, 2. safe vehicles.

Unsafe vehicles are the ones in which their drivers have long PRT and low distance

to the vehicle in front (Fig. 2.3). To put it differently, unsafe vehicles have higher

collision probability.

Providing the unsafe drivers with more access to the channel actually makes other

vehicles safer. In other words, the unsafe vehicles should transmit more frequently to

other vehicles. Since these messages help other vehicles avoid collisions, this design

awards every vehicle with additional crash avoidance probabilities.

Despite neither disclosing any private information to other vehicles nor imposing

a burdensome overhead, sharing safety indices with other vehicles will be of vital

importance in improving the safety of the network.

2.3 Customizing Channel Access Probabilities

This section proposes a new algorithm to individualize vehicular communications.

Algorithm 1 is a recursive algorithm which adapts channel access probabilities of all
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vehicles to the safety needs of drivers in the network. From a safety point of view,

three factors are of vital importance for a vehicle: 1. the PRT of the driver, 2. traffic

conditions, and 3. communications delay.

Algorithm 1 Algorithm for Customizing Channel Access Probabilities in VANET

Input: Vehicles: V1, V2, · · · , VN , VANET data
Output: Customized channel access probabilities for all vehicles
1: Derive all physical parameters from VANET

(Distances between vehicles, deceleration rates, and velocities)
Divide vehicles into safe and unsafe categories (compute collision probabilities).
Compute the channel access probabilities.

2: for i = 1 to N do
3: Estimate the response time distribution (τi).
4: end for
5: for i = 1 to N do
6: Determine if any type of collision can happen to vehicle i based on both equa-

tions of motion and the delay of receiving packets from other vehicles.
7: if yes then
8: pi = pu(channel access probability for unsafe vehicles)
9: else
10: pi = ps(channel access probability for safe vehicles)
11: end if
12: end for
13: return p1:N

In one iteration of Algorithm 1, these factors play roles in assigning channel access

probabilities to vehicles while the probabilities are being used in the next iteration to

compute the new delay of reception at vehicle Vi. Algorithm 1 is of polynomial time.

The most time-consuming part of the algorithm is the response time estimation. As

we proposed in Chapter 1, the whole estimation computation has complexity O(n3
d)

in which nd is the number of observations for driver d. we can use the approximated

ps and pu for a sufficient number of iterations in the algorithm. When new vehicles

arrive in the transmission range, those are labeled as safe until the algorithm verifies

whether they are causing any peril to other vehicles. Let’s assume there are N vehicles

on a highway and S vehicles among them are recognized as safe vehicles. A vehicle

identifies itself as safe with the probability S
N

. Clearly, this ratio can vary from time
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Table 2.1: Four classes of vehicular communications

Transmitter Receiver Percentage of the class

Safe Safe α1 = S(S−1)
N(N−1)

Safe Unsafe α2 = 2S×(N−S)
N(N−1)

Unsafe Safe α3 = 2S×(N−S)
N(N−1)

Unsafe Unsafe α4 = (N−S)(N−S−1)
N(N−1)

to time. Furthermore, after a while, any vehicle can move from one category to the

other one.

The design goal is to choose pis such that a sufficiently large Ps is guaranteed for the

vehicles and as a result the expected collision probability is minimized. Four classes

of communications can be established between any two vehicles (Table 2.1). Thus,

packet success probability for the network is stated in the following equation:

Ps = α1P1 + α2P2 + α3P3 + α4P4 (2.25)

Pi denotes the packet success probability for class i of communication and is obtained

by substituting pi = ps for any safe vehicle interfering the communication, and pi = pu

for any unsafe vehicle into a packet success probability equation (e.g. Equation 2.1).

For the PPP scenario, the marks represent the safety index of drivers. The vehicles

are sorted based on their safety index and S of them are labeled as safe vehicles. If

an unsafe vehicle exists in the disk of another unsafe vehicle, a lower mark will be

assigned to the more unsafe vehicle.

Now, we try to find the appropriate value for ps and pu by employing the communi-

cation and traffic data. Using the first-order Taylor approximation, taking derivative

leads us to two quadratic equations. The intersection point of the two ellipsis, de-

scribed by the following equations, in range [0,1] shows the desired values.
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(ps)2 (−α1CN−SBS−2DS−2)

+ ps (α1CN−SBS−2(DS−2 − 2) + α2CN−S−1BS−1DS−1)

+ (pu)2 (−α4CN−S−2BSDS)

+ pu (α2CN−S−1BS−1(DS−1 − 2) + α4CN−S−2BSDS)

+ pspu (−2α2CN−S−1BS−1DS−1)

+ (α1CN−SBS−2 + α2CN−S−1BS−1) = 0 (2.26)

(ps)2 (−α1BS−2CN−SDN−S)

+ ps(α1BS−2CN−SDN−S

+ α2BS−1CN−S−1(DN−S−1 − 2))

+ (pu)2(−α4BSCN−S−2DN−S−2)

+ pu(α2BS−1CN−S−1DN−S−1

+ α4BSCN−S−2(DN−S−2 − 2))

+ pspu(−2α2BS−1CN−S−1DN−S−1)

+ (α2BS−1CN−S−1 + α4BSCN−S−2) = 0 (2.27)

in which

B
(j)
S =

S∏
i=1

[
(ps)(j−1)

1 + βrαr−αi
+ (1− (ps)(j−1))

]
(2.28)

C
(j)
N−S =

N−S∏
i=1

[
(pu)(j−1)

1 + βrαr−αi
+ (1− (pu)(j−1))

]
(2.29)

DS =
S∑
i=1

[
1

1 + βrαr−αi

]
− S (2.30)
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Figure 2.3: Vehicle 3 needs to transmit more frequently than other vehicles because
it has higher collision probability.

The coefficients have to be computed carefully since it is important to know which

vehicles are included in the multiplications. After BS, CN−S, and DS are obtained

in each iteration (j is the iteration number - the intial values of the channel access

are 0.02), ps and pu will be computed in the next one. Our Monte Carlo simulation

results show that, on average, the optimized probabilities found by brute-force search

algorithm results in the expected collision probability that is only < 1% less than that

obtained from employing the optimized values of the channel access. This means the

approximated values are sufficiently close to the real values.

2.4 Numerical and Simulation Evaluation of Design

When vehicular communications are employed, communications delay is a main

factor that influences the vehicle collision probability on highways. Also, we know

that some of the vehicles are too far from the vehicle V0 (the leading vehicle) to

be able to receive the messages directly from it. Thus, when one of the vehicles in

the middle gets informed and reacts to the event, the message will be forwarded to

the vehicles at a greater distance from the leading vehicle. In other words, after

a vehicle in the middle starts decelerating, the new status will be included in the

new messages from this vehicle to further upstream vehicles. Therefore, we need to
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compute the time it takes for a message to be received by vehicle i. It is sufficient that

the message be received successfully only one time. The delivery of safety packets

is not generally independent time slot to time slot for the PPP model. However,

in our simulations, in order to calculate the collision probability in a network, we

assume ps and pu change only after the packet is received by the desired receiver

(not in each time slot). Therefore, delivery of the packets can be considered as

nearly independent events. Therefore, when this assumption holds, Ps(i) is given

by Equation 2.16. Fig. 2.5 shows if Algorithm 1 is employed in each time slot, the

independency approximation is good only when the traffic is light (PPP is an efficient

model to describe the light traffic). Also, Equation 3.8 is employed in order to plot

the non-independent curves. For the equal distance scenario, the successful reception

at vehicle Vi has a geometric distribution with parameter

Ps(i) · ptr · (1− pi) (2.31)

where Ps(i) is given in Equation 2.1, Equation 2.4, and Equation 2.9. Also, ptr and pi

represent the channel access probability for the transmitter and the desired receiver

(ith vehicle) respectively.

This gives us the number of required slots on average for vehicle Vi to receive

vehicle V0’s messages:

s(i) =
1

Ps(i) · ptr · (1− pi)
(2.32)

If SAP scheme is employed, we need to alter the equation:

s(i) =
1

P ′s(i) · ptr · (1− p′i)
(2.33)

in which p′i represents the channel access probability when the time slots are not syn-

chronized and P ′s(i) denotes Equation 2.1 using the new channel access probabilities.
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Table 2.2: Collision scenarios between V0 and V1 in a chain of vehicles. V1 follows
V0 in the chain. For example, collision type 1 happens when the leading vehicle V0

is decelerating and the driver of the following vehicle has not perceived the incident
yet.

Collision 1 Collision 2
Before V0 stops After V0 stops

Before V1 Reacts Before V1 Reacts
Collision 3 Collision 4

Before V0 stops After V0 stops
After V1 Reacts After V1 Reacts

The allowable number of transmission opportunities within the tolerable delay

period is:

D = bT (i)R

Lp
c (2.34)

where R represents the data rate which is chosen from Table 2.3 while Lp denotes the

packet length. T (i) denotes the maximum tolerable delay to inform vehicle Vi which

can be obtained from Fig. 2.4 and Table 2.2. Fig. 2.4 shows the time left for the

driver of the following vehicle to react to the braking of the leading vehicle enforced

by the mobility equations in a dense traffic. Different types of collisions are described

in Table 2.2. Vehicle V0 represents the leading vehicle in a chain while vehicle V1 is

the follower. Based on the amount of time available for the driver of V1 to apply the

brake, the collision may happen when each of these two vehicles have different status.

Let PD
s denote the success probability at Vj after D transmission opportunities:

PD
s = 1− (1− s(j)−1)D

This equation demonstrates the dependence of packet success probability on chan-

nel access probabilities and inter-vehicle distances. Fig. 2.5 illustrates the success
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Figure 2.4: An example of collision scenarios between vehicles V0 and V1 in dense
traffic. V1 follows V0 in a chain of vehicles. X, V , and b represent inter-vehicle
spacing, velocity, and deceleration rate respectively.

Table 2.3: IEEE 802.11P data rates and corresponding SIR decoding thresholds

R (Mbps) 3 4.5 6 9 12 18 24
β (db) 5 6 8 11 15 20 25

probability after D transmissions by employing the obtained equations for different

expected inter-vehicle distance. Clearly, it takes longer time for the vehicles far away

from V0 to receive the packets due to delay. However, those far vehicles (for example

Vj) receive the messages about the deceleration of V0 from the vehicles V1 · · ·Vj−2 as

well. Vj−1 is not included since Vj can see the brake lights of Vj−1 with no need of

vehicle-to-vehicle communications. Taking all of the above into account, the average

delay of reception at vehicle Vi is:

D(i) = min(min(j∈1,··· ,i−2)
Lp
R
s(j) + τj +

Lp
R
s(i− j), Lp

R
s(i),

Lp
R
s(i− 1) + τi−1), i > 2

(2.35)
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Table 2.4: Simulation parameters in a specific part of the highway. Data rate and
SIR decoding threshold are chosen based on [17]

Distribution Poisson
Equal distance

Velocity 30m
s

Deceleration rate [−4,−8]m
s2

Total number of vehicles 32
Total number of unsafe vehicles 4

SIR decoding threshold 11 dB
Data rate 9 Mbps

Packet length 250 Bytes
Poisson average 1

25m

Figure 2.5: Packet success probability after D transmissions at vehicle V2 for different
traffic models and different expected inter-vehicle distance(meters).

where s(1) = D(1) = 0 since there is no need for communications between two

adjacent vehicles. Also, for each retransmission of a safety packet, the PRT value of

the middle vehicle is added to the communication delays. Therefore, communicating

from the transmitter to the receiver by using more than two other vehicles always

takes longer time than one hop and two hop communications. If the distance between

a vehicle and the one ahead of it is short, and also the PRT of the following vehicle

is long enough, we consider the vehicle unsafe. Otherwise, the vehicle is a safe one.
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Figure 2.6: The X, Y, and Z axes represent channel access probability for safe vehi-
cles, channel access probability for unsafe vehicles, and collision probability average
over all vehicles respectively. Vehicles’ locations are randomly drawn from the Pois-
son distribution. The minimum collision probability in this case is 25% less than
the scenario in which equal channel access probabilities are assigned to all vehicles.
Therefore, we conclude that tailoring the channel access probabilities to unsafe and
safe vehicles leads the network to reduction of collision probability.

Figure 2.7: Vehicle collision probability versus channel access probability for safe and
unsafe vehicles. The inter-vehicle distance is assumed to be equal for all vehicles.

In other words, if the collision probability calculated based on only physical/traffic

parameters (without considering the vehicle-to-vehicle communication) is higher than

a threshold, the vehicle is unsafe. We can run algorithm 1 recursively such that the
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Figure 2.8: Collision probability versus channel access probability. Channel access
probability is assumed to be equal for all vehicles. Vehicles’ locations values are
generated from Poisson distribution.

Figure 2.9: Collision probability versus channel access probability. Channel access
probability is assumed to be equal for all vehicles. Also, the vehicles’ distances are
assumed to be equal.

channel access probability at a specific time depends on the collision probability at

the previous time.

We run Monte Carlo simulations to study vehicle collisions within a chain. The

simulation was carried out as follows. First, the vehicles are placed in a lane (with

the number generated from a Poisson distribution with the average shown in Table

2.4 for the PPP scenario). Next, a chain consisting of 32 vehicles were chosen and 4 of

them were considered as unsafe. Each vehicle was assigned ps if it was safe and pu if it

was unsafe. We consider the perception reaction time of drivers being independently

drawn from a log-normal distribution with parameters 1.31 and 0.61 [39]. Moreover,

we assume that each vehicle can decelerate with a rate chosen uniformly at random
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from the interval [−8−4]m
s2

. All the vehicles are moving in the same direction while the

first vehicle in the chain start decelerating and communicating to other vehicles. The

packet success probabilities are obtained by employing Equation 2.16 and Equation

2.1. Next, different types of collisions for any two adjacent vehicles are defined based

on Table 2.2. Therefore, we can obtain the collision probability of vehicles in the chain

by employing the motion equations of vehicles (Fig. 2.4) and repeating the experiment

for 1000 iterations. Algorithm 1 is run after each successful packet delivery with the

parameters shown in Table 2.4 to obtain the new channel access for the next time

slot.

In our model, the drivers can only avoid accidents by applying the brake. Fur-

thermore, most of the drivers tend to keep a minimum distance with the lead vehicle

which is ignored in our model because that is not always the case. In other words, we

actually calculate an upper bound for the collision probability which shows us to a

great extent how this probability really varies for the scenarios which lead to deadly

collisions.

Using simulation parameters in Table 2.4, Fig. 2.6 illustrates the collision prob-

abilities when different channel access probabilities are assigned to unsafe and safe

vehicles. Obtained collision probability values are greater than what we usually ex-

pect based on our life experience since these probabilities are computed conditional on

the scenarios in which a high number of collisions is expected (e.g. no maximum for

the PRTs and no minimum for the distance between vehicles are considered). This is

what we intend to do because these scenarios usually result in more deadly collisions.

Therefore, we aim at reducing the deadly collisions rather than the non-deadly ones.

In Fig. 2.6, X axis represents the channel access probabilities for safe vehicles,

Y axis shows the channel access probabilities for unsafe vehicles, and Z axis denotes

the collision probabilities. Assuming equal transmission probabilities (Fig. 2.8), the

minimum number of collisions happens at around p0 ≈ 0.05. However, 25% reduction
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Figure 2.10: Collision probability in the chain versus the number of vehicles. The
length of the specified part of highway is assumed to be 500 meters. The other
parameters are chosen from Table 2.4. The comparison is between four cases (Vehicle
locations, Communications): 1. Equal distance, equal channel access probability.
2. Equal distance, customized channel access probability. 3. Poisson distribution,
equal channel access probability. 4. Poisson distribution, customized channel access
probability.

in collision probability can be achieved when unsafe and safe vehicles transmit with

specific probabilities more and less than p0 respectively. In other words, the minimum

collision probability in Fig. 2.6 is located in a value greater than p0 on Y axis and

less than p0 on X axis. Here, we are actually comparing these customized commu-

nications (Fig. 2.6) to the communications with equal channel access probabilities

in its optimized range (Fig. 2.8). With this simulation, it becomes clear that using

the driver-based adaptation of communications in warning systems has a noticeable

advantage over these systems employing the most appropriate equal channel access

probabilities for all vehicles and therefore has a huge advantage over the currently

used warning systems. Similarly, Fig. 2.7 illustrates how the number of collisions is

reduced when the customized design is employed compared to Fig. 2.9.

Fig. 2.10 illustrates the advantage of employing the customized communications

in a 500-meter part of a highway, assuming a different number of vehicles are placed

on that part. The simulation is conducted as follows. The vehicles are placed in a

lane based on either Poisson distribution or equal distance scenario. They all move

in the same direction. We look at the vehicles in the 500 meters part of a highway in
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order to calculate the collision probabilities. By employing Table 2.2 and Table 2.4,

Fig. 2.10 is obtained.

If we use the same simulation parameters for the equal-distance scenario, even

greater reduction in collision probabilities are achieved. This seems to be justifiable

because the equal-distance model represents the dense traffic, thus more collisions

happen.

2.5 Conclusion

So far, we’ve shown not only how we can estimate individual driver’s character-

istics from vehicular ad hoc networks data, but also how we can use that estimate

to optimize the communications among vehicles of critical crash relevant informa-

tion. Drivers characterized as safe will place less of a burden on the communications

network because information from these drivers can be transmitted less often than

is information from drivers who are characterized as unsafe. Thus, by taking into

account the traffic and drivers’ characteristics one can potentially improve the deliv-

ery of timely warning messages to drivers while substantially reducing the collision

probability. Our research suggests that using this strategy the functioning of the rear-

end collision warning systems can be dramatically improved as compared to similar

systems which do not account for both the specifics of particular drivers and traffic.
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CHAPTER 3

THE EFFECT OF COMMUNICATION INTERFERENCE
ON SAFETY FACTORS IN A VANET

In Chapter 2, we proposed an algorithm to customize the vehicular communi-

cations to the drivers’ needs. We know the communication interference affects the

drivers’ safety noticeably. Rayleigh fading model was employed in Chapter 2, how-

ever, a number of other models exist to describe the statistics of the amplitude and

the phase of multi-path fading signals. The Nakagami-m distribution has some ad-

vantages over other models like Rayleigh fading and Rician fading. However, many

papers have considered the simpler models to analyze the interference at the expense

of losing the required accuracy. Carrier sensing has also been a neglected factor in

the safety packets’ delivery analysis. Our main contributions in this chapter are as

follows:

• We analytically study the delivery rate of safety packets by taking the multi-user

interference, path loss, and two different types of fading models into account.

• We also consider the scheme in which each node senses the channel at the

beginning of each slot.

• We compare the packet success probability and vehicle collision probability for

each discussed scheme.

Our goal is to examine how many transmissions on average are required for a

vehicle in order to receive the desired safety packet. There are major differences

between our work and others’. First, most of the studies which examine different
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interference models are only simulation-based (e.g. [74] and [75]). However, we want

to find insights on how different parameters can actually change the delivery of packets

and thus the vehicle collision probability. Clearly, the results obtained from both

different simulators and analysis are only an approximation of reality. Second, we

will demonstrate the effect of carrier sensing (or non-independent channel access of

vehicles) on the packet success probability which is usually neglected in the analysis.

Third, the channel access is assumed to be equal for different vehicles in the analysis.

Although this assumption seems realistic based on the current vehicles equipped with

DSRC antennas, in the near future this assumption may need to be relaxed. In

other words, as was discussed in Chapter 2, the channel access of different drivers

will depend on the safety of their vehicles in future designs. Hence, we assume the

vehicles can transmit at different rates.

3.1 Analysis

We need to know the communication interference of other vehicles’ signals in order

to find any other important safety factors in our design, factors such as packet delivery

success probability and vehicle collision probability.

Path loss and Nakagami-m fading are taken into account for formalizing the signal

propagation characteristics. If the nodes transmit with unit power, the received

power at distance r is hr−α where α(> 1) is the path loss exponent and h is the

fading coefficient. We assume that the magnitude of the signal that has passed

through the transmission medium will vary randomly according to the Nakagami-m

distribution. This is a valid assumption because the sum of multiple independent

and identically distributed (i.i.d.) Rayleigh-fading signals, which have a Nakagami

distributed signal amplitude, have been shown to be an efficient interference model

for multiple sources [55]. Since the amplitude of the received signal is a Nakagami-m

distributed random variable, h has gamma distribution with mean λ:
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fH(h) =
1

Γ(m)

(m
λ

)m
hm−1e

−mh
λ h ≥ 0

where Γ(m) is the gamma function for integer shape factorm. Assuming that a vehicle

transmits a packet, the per-hop transmission success probability can be calculated as

follows (E(hi) = λ = 1):

PS = P
(
S

I
> β

)
(3.1)

PS = P
(

hr−α∑n
i=1 bihir

−α
i

> β

)
=

∫
P (h > βrαI|I = i) fI(i)di

= EI

[
1− 1

Γ(m)
γ(m,mβrαI)

]
(3.2)

γ (m,mβrαI) =
1

Γ(m)

∞∑
k=0

(−mβrαI)k

k!(m+ k)

PS = 1− 1

Γ(m)
mm

∞∑
k=0

(−m)kβk+m

k!(k +m)
E[rαI](k+m) (3.3)

= 1− 1

Γ(m)

∞∑
k=0

(−1)kβk

k!(m+ k)[(m− 1)!]k
·
n∏
i=1

pi

·
∑

k1+k2+···+kn=k

 k

k1, k2, · · · , kn

 (m+ ki − 1)! · E

[(
n∏
j=1

(
r

rj

)αki)]
(3.4)

 k

k1, k2, · · · , kn

 =
k!

k1! · k2! · · · kn!

The definitions of the variables are given in Table 3.1. A fixed coding scheme is
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Table 3.1: Definitions of the variables in Equation 3.1, Equation 3.2, Equation 3.3,
Equation 3.4

S Desired signal power
I Interference power at the receiver
α Path loss exponent
β SIR decoding threshold
pi Transmission probability of node i
bi Bernoulli random variable with probability pi
ri Distance from the interferer i to the receiver
r Distance between the transmitter and the receiver
n Number of vehicles
hi Fading coefficient of interferer i

considered in Equation 3.1 that requires the SIR at the receiver to be greater than

some threshold which is chosen based on IEEE 802.11p tables [3] (e.g. Table 2.3). S

denotes the power of the main signal which faces interference from the other vehicles

with the accumulative power of I. Equation 3.2 is then obtained by substituting the

definitions of the transmitter signal strength and the interference signal strength in

Equation 3.1. Each of the vehicles is either in the transmitting mode with probability

pi or in the receiving mode with probability 1− pi. A Bernoulli random variable, bi,

represents this state of vehicle i. Equation 3.3 is resulted by employing the following

convergent series of the incomplete gamma function to cancel h.

γ (m,mβrαI) =
1

Γ(m)

∞∑
k=0

(−mβrαI)k

k!(m+ k)

Finally, the multinomial expansion and characteristic functions of fading random

variables leads us to Equation 3.4.

The obtained packet success probability equation clearly holds while there is no

constraint on any specific geometry. For m = 1, Equation 3.3 will be equal to:
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Figure 3.1: A chain of vehicles which employs SAP/CS MAC scheme.

PS =
n∏
i=1

1− pi +
pi

1 + β
(
r
ri

)α
 (3.5)

which is the packet success probability equation when the Rayleigh fading model is

employed [77].

Up to this point, we have assumed that each vehicle transmits independent of all

other vehicles. However, in order to reduce the probability of packet collisions, we

study a channel sensing scheme in which each vehicle transmits only if it finds the

channel idle. Our goal is to find the packet success probability under the Nakagami-m

fading model by employing the SAP/CS scheme. To make the analysis feasible, we

start with:

Ps = Pt · Ps|t

Pt represents the probability that node T accesses the channel, i.e. finds it idle and

transmits. Ps|t is the packet success probability at vehicle R, given that vehicle T

accesses the channel. We define the carrier sensing distance as rCS. A vehicle can
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transmit if and only if no other vehicle transmits within rCS distance of it. The

number of vehicles within this radius is called nCS:

Pt ≈ pT

nCS∏
i=1

(1− pi) (3.6)

in which pT represents the channel access probability of the transmitter vehicle. The

right-hand side of the Equation 3.6 is sufficiently close to the left-hand side because

transmission probabilities are small (despite the transmissions not being indepen-

dent). If the probabilities are not small, Equation 3.6 denotes a lowerbound for Pt.

Next, in order to find the packet success probability, we need to find the radius of

a disk centered at R in which any active node can cause interference at R. According

to the SIR-based reception model, there must be hr−α

hir
−α
i

> β where h and hi are the

respective Nakagami-m fading components of the interference model, and r and ri

are the distance between the transmitter and the receiver and the distance between

the interferer i and the receiver. Therefore, we have:

rI ≈ rβ
1
αE
[
h
−1
α

]
E
[
h

1
α
i

]

By employing the concept of fractional moments, we obtain:

rI ≈ r · β
1
α

Γ(m+ 1
α

)

Γ(m)

Γ(m− 1
α

)

Γ(m)

= r · β
1
α

π
α

Γ2(m)
csc(

π

α
)

For the Rayleigh fading scenario (m = 1),

rI ≈ r · β
1
α
π

α
csc(

π

α
)
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In the absence of fading, rI ≈ rβ
1
α . When vehicle T transmits, only the hidden nodes

whose activities are not sensed by node T can cause outage at node R (see Fig. 3.1).

If there are x hidden nodes and Ni represents the event that the ith hidden node does

not transmit, then Ps|t is equal to

Ps|t = P

(
x⋂
i=1

Ni

)
= 1−

x∑
i=1

P(N c
i ) (3.7)

The last equality is true when N c
i

⋂
N c
j = Ø. This condition holds true since the

MAC scheme does not allow the hidden nodes to transmit simultaneously for the

practical values of rCS and rI . For a one lane case, the packet success probability of

the transmitter T at the receiver R can be approximated as:

Ps ≈


pT
∏nCS

i=1 (1− pi)
[
1−

∑N(r+rI−rCS)
i=1 p

′
i

]
max

(
rI − r, r+rI2

)
≤ rCS < r + rI

pT
∏nCS

i=1 (1− pi) rCS ≥ r + rI

(3.8)

N(r+rI−rCS) represents the number of hidden nodes in the hidden area (r+rI−rCS).

The optimized carrier sensing distance is r∗CS ≈ r+ rI . Here, rI − r ≤ rCS represents

the scenario when there is no hidden node on the left side of node T . In order for

Equation 3.7 to hold, r+rI
2

, which is the maximum distance between the hidden nodes,

must be less than rCS to force the vehicles not to be transmitting together.

3.2 Numerical Results

In this section, we want to compare the performance of different models in a

highway scenario considering both discussed cases, with and without carrier sens-

ing. Table 3.2 shows all the values assigned to different parameters. In a chain of

vehicles, we assume transmissions across the chain are partially obstructed by some

vehicles that are chosen uniformly in our Monte Carlo simulations. In other words,
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Table 3.2: Simulation Parameters. Data rate and SIR decoding threshold are chosen
based on [17]

Vehicle Distribution Poisson(20)
Velocity 20m

s

Deceleration rate [−6,−9]m
s2

Total number of vehicles 25
SIR decoding threshold 8 dB

R=Data rate 6 Mbps
Number of Obstructive Vehicles 4

L=Packet length 250 Bytes
Reaction times of drivers lnN(0.17, 0.44)

Figure 3.2: The average collision probability of vehicles versus channel access prob-
ability. We have employed these equations to plot the figure: Equation 3.5 for
Nakagami-1 without carrier sensing, Equation 3.4 for Nakagami-3 without carrier
sensing, Equation 3.8 for the carrier sensing design.

the selected vehicles disrupt the line-of-sight environment for the specific scenario and

divide the chain into smaller chains. The collision probability is calculated based on

the equations of motion. The drivers can react to the deceleration of their leading car

with reaction time chosen randomly from the lognormal distribution with parameters

µ = 0.17 and σ = 0.44 (see [39]). The vehicles transmit with equal channel access

probability and the distance between vehicles is chosen from the exponential distri-

bution (see [14]) with a mean of 20 meters. Therefore, the packet success probability
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is obtained by employing Equations 3.8, 3.5, and 3.4. Also, each vehicle decelerates

as soon as it is informed with a rate chosen uniformly at random from the interval

[−6,−9]m
s2

(see Table 3.2). The average collision probability of vehicles (conditional

on the described scenario) is illustrated in Fig. 3.2. When the channel access prob-

ability is small, the communication with carrier sensing is almost the same as the

scenario without carrier sensing. Therefore, when the vehicles are sensing the chan-

nel, almost the same average collision probability is achieved at smaller channel access

than is the case without carrier sensing. Also, for large channel access the difference

between the schemes with and without carrier sensing shrinks. There is only a small

critical range for which at most around 10% reduction in the collision probability is

achieved. Since the Equation 3.6 represents a lowerbound for the success probability,

the resulting reduction achieved by employing the carrier sensing is the maximum

possible difference between the two curves. Therefore, it confirms that carrier sensing

could be relatively efficient only in a specific range. Fig. 3.2 also depicts that em-

ploying the more accurate model (Nakagami-3) results in lower collision probability

especially when carrier sensing is used.

3.3 Conclusion

In this chapter, we study the effect of Nakagami-m propagation model on the

delivery of safety packets in vehicular ad hoc networks. Also, we derived the approxi-

mated packet success probability for the scenario which vehicles sense if the channel is

idle. Our results illustrate how employing the Nakagami-3 fading for the design of the

safety systems leads to lower collision probability compared to Rayleigh fading while

carrier sensing is only useful in a small specific range of channel access for different

vehicles in a chain.
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CHAPTER 4

SIMILAR AD HOC NETWORKS TO VANET:
UNMANNED AERIAL VEHICLE NETWORKS

Drones, Unmanned Aerial Vehicles (UAVs), or Unmanned Aircraft Systems (UAS)

are all keywords to describe a system of aircrafts without a human pilot on board.

While the military usage of UAVs has started long ago, commercial applications

of UAVs is an emerging hot topic. Some examples of applications of UAS include

providing aerial photos and video at a fraction of the cost of traditional methods

that can be used in crop monitoring, construction site management, film-making,

fire-fighting, disaster management and avalanche control. Wireless communications

are of vital importance in order to improve the efficiency of performing the desired

applications. Several challenges such as coverage considerations and spectrum policy

are discussed in other publications [66], [67], [68]. The majority of the studies are

focused on air-ground communications between a single UAV and multiple ground

centers instead of analyzing the possible UAVs ad hoc networks [70], [71]. Building a

multi UAV network improves many required aspects of the described applications (see

Table 4.1). Constructing ad hoc networks of UAVs requires dealing with tradeoffs

which restrict the number of UAVs covering an area. In this chapter, we consider

one transportation measure (safety), one application measure (coverage), and two

communication measures (interference and connectivity) in order to find the needed

range of intensities by considering the specific characteristics of UAVs.
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Table 4.1: Comparison between a single UAV system and a multi-UAV network.
(Taken from [57])

Feature Single-UAV Multi-UAV
system system

Scalability Limited High
Survivability Poor High

Speed of mission Slow Fast
Cost Medium Low

Bandwidth High Medium
Antenna Omni-directional Directional

4.1 The Model

In the near future, there will be a large number of UAVs flying over many areas

by different public or private organizations as well by individuals. Since these UAVs

are operated by many different entities, we assume that the times, the locations, and

the directions of their flights are statistically independent. Also, since most of these

UAVs fly at about the same altitude, we can model the locations of these UAVs at

any time as a homogenous two-dimensional PPP:

Φ = {x1, x2, x3, · · · }.

The probability of having n UAVs in a compact set A ⊂ R2 is represented by:

P (|A ∩ Φ| = n) =
(λÃ)ne−λÃ

n!

where | · | denotes set cardinality and Ã is the Lebesgue measure of A. In addition, by

the displacement theorem ( [58] page 35), the locations of the UAVs will constitute a

PPP for all the future times (assuming their final destinations are different). The key

factor in the above model is the intensity parameter λ. It shows the average number
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of the UAVs in the corresponding area. Based on the transportation factors, we can

calculate the parameter λ in any time interval for the Poisson process as:

λ =
Take-off Rate× Flight Duration

Area of the Region

takeoffs

hectare
.

4.1.1 Safety

The current low intensity of UAVs in the sky means that there is little concern

regarding close encounters or collisions of the UAVs. That, however, will change as

both the number and thus the intensity of the UAVs increase drastically within the

next few years. As the intensity of UAVs in the sky increases, the probability of

close encounter between UAVs increases dramatically. Thus, the natural question

is what ranges of intensity (λ) are feasible when we want to have a certain level of

safety. Therefore, we need to mathematically define a safety measure. For any UAV

in the sky, we require that the probability that another UAV is closer than ds units of

distance to the UAV is less than ps (safety criteria). This is referred to as probability

of close-encounter. ps is not the collision probability; it is however, a measure that is

related to collision probability. The collision probability will be a value that is much

smaller than ps. Assuming the Poisson model and the safety criteria, we can write:

1− exp
(
−λπd2

s

)
< ps

so we obtain:

λ <
1

πd2
s

ln

(
1

1− ps

)
. (4.1)

Equation 4.1 shows that for safe operation, the intensity λ should be kept under the

above threshold.
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4.1.2 Coverage

In many applications, the UAVs are enabled to monitor a region of interest for

purposes such as search and rescue, surveying, and crop monitoring. Let’s assume

each UAV is capable of covering a region S and the area of S, shown by |S|, is

generally a random variable. What range of λ does ensure a network of UAVs cover

a certain region? If R is the region of interest and the vacancy, shown by V (R), is

defined as the area of the region that is not covered, then, we have ( [58] page 255):

E(V (R)) = |R| exp (−λE|S|) ,

where | · | shows the area. The coverage condition can be then stated as:

E(V (R)) < vth|R|,

where vth is the maximum allowable portion of the area that can be uncovered. Then,

we obtain:

λ >
1

E|S|
ln

(
1

vth

)
. (4.2)

Thus, to ensure the assumed coverage requirement, the intensity of the drones in

the region must be larger than the above threshold. Combining Equation 4.1 and

Equation 4.2, we conclude that the appropriate value for the intensity of drones must

be in the following range:

1

E|S|
ln

(
1

vth

)
< λ <

1

πd2
s

ln

(
1

1− ps

)
. (4.3)
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4.1.3 Interference

4.1.3.1 No Carrier Sensing

Wireless communications can be an important tool in a UAS. UAVs should be

able to communicate wirelessly to receive and transmit data from both the ground

and other UAVs to ensure appropriate and safe operation. An important requirement

in UASs is that the resulting interference should be kept under some threshold. Here,

we study this question for the above Poisson-based model. A common model for path

loss function is:

`(x) = min{1, ‖x‖−α}

where α is called the path loss exponent. Let’s assume α > 2. Then, our goal is to

compute the mean interference EI at each UAV when a portion aI of the UAVs are

transmitting. This problem can be solved with Campbell’s formula ( [58] page 83):

EI = aIλ

∫
R2

min{1, ‖x‖−α}dx

= λaI

∫ 2π

0

∫ ∞
0

min{1, r−α}rdrdϕ

= 2πaIλ

[∫ 1

0

rdr +

∫ ∞
1

r−αrdr

]
= 2πaIλ

[
1

2
+

1

α− 2

]
, α > 2.

Now, if the requirement is that the expected interference must be less than the

threshold Ith, we obtain the following condition:

λ <
(α− 2)Ith
απaI

. (4.4)
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4.1.3.2 CSMA

Next, we assume that each transmitter can transmit packets based on a CSMA

protocol and the transmission power is the same for all the transmitters, Pt. By

adding the deterministic channel gains between any two nodes in the network to the

set of assumptions, there will be an exclusion distance between any two simultaneously

active transmitters. This distance is equal to:

re = d0

(
PtGtGrk

Pth

) 1
α

(4.5)

in which Gt is the transmitter antenna gain, Gr is the receiver antenna gain, α is the

path loss exponent, Pth is the CSMA sensing threshold, and d0 is the normalizing

factor (=1m). k is:

k =

(
c

4πfc

)2

where fc is the carrier frequency and c is the speed of radio propagation. Next, we

uniformly assign a mark to each UAV. A UAV transmits if it has the lowest mark

within a disk (B) centered at itself with radius re. Therefore, the probability of having

a random point transmitting is equal to:

P1 =
∞∑
n=1

1

n+ 1
P (|B

⋂
Φ| = n)

=
∞∑
n=1

1

n+ 1

(λπr2
e)
ne−λπr

2
e

n!

=
1− e−λπr2

e

λπr2
e

Thus, the new intensity of UAVs transmitting simultaneously can be obtained by

using the Campbell’s theorem as follows:
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Ai = xi transmits

E[|A
⋂

Φ|] = λ

∫
R2

P (Ai)dx

=
1− e−λπr2

e

λπr2
e

· Ã

λ2 =
1− e−λπr2

e

πr2
e

Following the shot noise theory [59], the mean of aggregate interference from trans-

mitter nodes in a radius b from the receiver node is:

EI =
2k(1− e−λπr2

e)
(
R2−α
int − b2−α)

α− 2

where Rint denotes the distance between the desired receiver and the interferer next

to it. If transmission range is represented by R, Rint = re −R. Therefore,

λ <
1

πr2
e

ln

(
1− Ith(α− 2)r2

e

2k(R2−α
int − b2−α)

)
(4.6)

4.1.4 Numerical Results

By combining Equation 4.3 and Equation 4.4, we obtain

1

E|S|
ln

(
1

vth

)
< λ < min

{
1

πd2
s

ln

(
1

1− ps

)
,
(α− 2)Ith
απaI

}
. (4.7)

and by taking Equation 4.3 and Equation 4.6 into account:

1

E|S|
ln

(
1

vth

)
< λ <

min

{
1

πd2
s

ln

(
1

1− ps

)
,

1

πr2
e

ln

(
1− Ith(α− 2)r2

e

2k(R2−α
int − b2−α)

)}
(4.8)

Equation 4.7 and Equation 4.8 show that fundamental trade-offs exist between trans-

portation, application, and communication measures in UASs. That is, if we want

68



to increase the coverage, then the safety and interference measures suffer. Therefore,

we need to ensure that the minimum transportation, application, and communication

performance requirements are satisfied.

To get a better idea about these trade-offs, let’s assume that each UAV can on

average cover a region as large as 5 hectares, i.e., E|S| = 50000m2 and to avoid

collision, we require that the probability that the UAVs get closer than ds = 10m to

each other is as arbitrarily low as ps, referred to as close-encounter probability. The

maximum allowable interference, Ith is also fixed to −40dB. Moreover, we set α equal

to 3 and assume that at any time, half of the UAVs are transmitting, i.e., aI = 0.5.

Now for any value of ps, an upper bound on λ is imposed by Equation 4.7. If we pick

this value, again based on Equation 4.7, we come up with a value for vth, i.e., the

maximum allowable portion of the area that can be uncovered. It means that smaller

values of vth are desired.

Fig. 4.1 shows the coverage-safety-interference tradeoff by plotting vth versus

different values of ps from 0 to 0.02. We want to be as close as possible to the origin,

i.e., the ideal case will be when both vth and ps approach zero. However, we can only

achieve values that lie in the indicated achievable region. As ps decreases, vth goes

to 1. In other words, for extremely small close-encounter probability, the coverage is

very low. Nevertheless, for reasonable but still very small values of ps, e.g., 0.01, we

can have as large as 80% coverage if there is no interference. In this case, by increasing

the value of ps to .02, vth approaches zero (implying almost 100% coverage). However,

the coverage is limited to about 65% if we take the effect of interference into account.

In the proposed scenario, choosing ps = 0.007 and vth = 0.35 seems to present an

efficient trade-off between interference, coverage and probability of close-encounter.

Under this tradeoff, the intensity of the UAVs is 2.1 · 10−5 1
m2 .

In addition to the previous assumptions, we assume the transmission power is

1 watt, the transmission range is 200m, the antenna gains are 23dB, the carrier
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Figure 4.1: The coverage-safety-interference tradeoff. The top figure illustrates the
tradeoff when there is no sensing of other UAVs. The bottom one shows the CSMA
design.
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frequency is 5GHz [60] and the CSMA sensing threshold is −50dBm which are all

suitable for UAV communication. Fig. 4.1 illustrates that sensing the communication

of other UAVs results in a smaller value of vth. ps = 0.0092 and vth = 0.23 are

achievable under the new design. The new intensity is in the range [2.94 · 10−5, 2.97 ·

10−5] 1
m2 (obtained by using Inequality 4.8). This shows employing the carrier sensing

increases the acceptable intensity of the UAVs.

4.1.5 Connectivity

It has been shown that a 2-D PPP network remains fully connected if the expected

number of nearest neighbors of every transmitter grows logarithmically with the cov-

erage area [72]. If we assume the area is infinite, then πR2λ needs to be greater than

10.526 to have a connected component where R represents the transmission range.

Therefore,

max

{
1

E|S|
ln

(
1

vth

)
,
10.526

πR2

}
< λ <

min

{
1

πd2
s

ln

(
1

1− ps

)
,

1

πr2
e

ln

(
1− Ith(α− 2)r2

e

2k(R2−α
int − b2−α)

)}
(4.9)

However, the new added part in Equation 4.9 can be removed most of the times. In

addition, it does not really demonstrate how the connectivity of the network varies.

Hence, we need to assume the scenario with a finite number of UAVs in the network.

Each UAS ad hoc network with n UAVs is asymptotically connected with probability

one if the UAV is connected to more that 5.1774 log n nearest UAV neighbors [73].

Let’s assume Zk denotes the distance of the kth nearest UAV to the transmitter. Since

we assume the UAVs are randomly positioned according to Poisson distribution, and

each UAV can only transmit signals to receivers in its transmission range, then Zk

has the probability density function:
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f(z) =
2(πR)kz2k−1

(k − 1)!
e−πRz

2

k = b5.1774 log nc+ 1

Therefore, the probability of Zk being less than R needs to be maximized. This

probability equals:

P (Zk < R) =
γ(k, πλR)

Γ(k)

= 1− Γ(k, πλR)

Γ(k)

Γ(k, πλR), γ(k, πλR), and Γ(k) are upper incomplete gamma function, lower incom-

plete gamma function, and the ordinary gamma function which are defined as follows:

Γ(s, x) =

∫ ∞
x

ts−1e−tdt

γ(s, x) =

∫ x

0

ts−1e−tdt

Γ(s) = Γ(s, x) + γ(s, x)

Hence, the following fraction can be considered as a connectivity metric:

∫ πλR
0

tb5.1774 lognce−tdt∫∞
0
tb5.1774 lognce−tdt

It can be seen in Fig. 4.2 (for larger transmission ranges) and Fig. 4.3 (for smaller

transmission ranges) that for three obtained intensities {2.1 · 10−5, 2.94 · 10−5, 2.97 ·

10−5} 1
m2 the connectivity increases as the transmission range of UAV increases. More

importantly, both Fig. 4.2 and Fig. 4.3 show how a slight increase in the intensity

results in a drastic increase in the connectivity. In order to improve the efficiency of

packet routing in UAV ad hoc wireless networks, UAVs need to exchange messages to
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Figure 4.2: The connectivity of the UAV network based on their transmission range
for achieved intensities from coverage-safety-interference tradeoff.

Figure 4.3: The connectivity of the UAV network based on their transmission range
for achieved intensities from coverage-safety-interference tradeoff.
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make each other aware of the appearances or disappearances of other nodes. Although

this process will positively impact the performance of the network, it may lead to

packet collisions which may lower the benefits of employing wireless communications.

4.2 Conclusion

In this chapter, we have discussed the tradeoff between coverage, safety, and

interference. This combination and the parameters values used in the numerical

results section are only suitable for UAVs. This chapter tries to find the suitable

geometry (in terms of intensity) needed for those specific applications/requirements.

In other words, we bring those tools together to find a geometry which satisfies the

specific applications of the UAVs. The interference analysis consists of two parts:

with and without carrier sensing. The geometry, carrier frequency, and power sensing

threshold are chosen from appropriate values for UAVs based on recent studies. The

numerical results show that safety and interference limits the coverage of the network

and there is only a relatively small range of intensities which satisfy all three. At last,

we studied the connectivity of the network based on a defined metric. Our results

illustrate the connectivity of the network varies noticeably even by a very small change

in obtained acceptable range of intensities.
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CHAPTER 5

CONCLUSION

This dissertation studied the positive effects of customization on VANETs. There

are methods available to estimate individual drivers’ characteristics from VANETs.

In chapter 1, we proposed a regression method to estimate the PRT distribution of

a driver which can use all the data in real-time. In addition, we can obtain traffic

information (such as distance between vehicles) using vehicular communications. In

chapter 2, in order to compute the collision probability, we derived the equations

of packet success probability for two extreme cases. Furthermore, we derived the

required channel access probabilities for each category of vehicles which are tight

approximations of the actual values. If a vehicle has high probability of collision, it

needs to transmit more frequently in order to make other vehicles aware of its perilous

situation. Finally, we proposed an efficient algorithm to adjust transmission rates of

vehicles to safety needs of drivers using the aforementioned data. By employing this

algorithm in a network of vehicles, fatalities on highways will be reduced. In chapter

3, the effect of Nakagami-m propagation model on the delivery of safety packets in

VANETs was studied. Also, we derived the approximated packet success probability

for the scenario which vehicles sense if the channel is idle. In the next chapter, a

different approach was employed for a similar type of ad hoc networks. Up to this

chapter, our goal was to improve the network performance when the geometry of the

network was pre-assumed. In chapter 4, however, we aimed at changing the geometry

of the network while a certain level of performance needed to be maintained. Hence,

the tradeoff between coverage, safety, and interference was discussed. The numerical
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results showed that safety and interference limits the coverage of the network and

there was only a relatively small range of intensities which satisfied all three. At last,

we studied the connectivity of the network based on a defined metric. Our results

illustrated the connectivity of the network varies noticeably even by a very small

change in obtained acceptable range of intensities.
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APPENDIX

Extension to HCPP-II Model

Although Equation 2.24 leads to a considerable improvement compared to the

HCPP model, we can show that adding one condition to this model (we call it MHCPP

model) will enhance the system. Let’s assume Dxi(r) represents the disk of radius r

centered at xi. The point xi is retained in ΦF if

1. (Dxi(r)
⋂

Φ)\xi = {xj} such that mxi < mxj , ∀xj ∈ (Dxi(r)
⋂

Φ)\xi.

2. (Dxi(r)
⋂

Φ)\xi = xL
⋃
{xj} such that mxi > mxL and mxi < mxj , ∀xj ∈

(Dxi(r)
⋂

Φ)\{xi, xL} given that S(d)
⋂

Φ = {xk} such that mxL > mxk , ∃k ∈

S(d)
⋂

Φ. In other words, the set S(d) = DxL(r)\Dxi(r) contains at least one

point with lower mark than xL (Fig. 5.1).

where

• Φ represents the parent set of all the nodes.

• mxi denotes the mark of node xi which is chosen uniformly from [0, 1].

• \xi represents the exclusion of the node xi.

To put it differently, the point xi ∈ Φ is retained in ΦF :

• if it has the lowest mark in Dxi(r),

• or if it has a second lowest mark in Dxi(r) given that the point xL with the

lowest mark in Dxi(r) does not have the lowest mark in its own disc DxL(r).
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In Fig. 5.1, according to the HCPP-II model, the point A with mark 0.7 is not

retained because the point B with mark 0.6 exist in the point A’s disk. However,

in accordance with the modified HCPP, the point with mark 0.7 is retained since

the point with mark 0.5 does not permit the point with mark 0.6 to be retained.

Therefore, this model mitigates the node intensity underestimation problem of the

traditional HCPP. Deriving the probability of the second part, (P2), is similar to the

derivation of P1:

P2 =
∞∑
n=1

1

n+ 1

Nne−N

n!

∞∑
k=1

k

n+ k + 1

Mke−M

k!

=
Me−(N+M)

N

·

(
∞∑
n=1

Nn+1

(n+ 1)!

∞∑
k=1

1

n+ k + 1

(Mk−1)

(k − 1)!

)

=
Me−(N+M)

N

· [e
N+M − 1

N +M
+

(M −N)(1− eM)−NMeM

M2
]

Highway

0.5 0.7
S(d)

0.6
d

Figure 5.1: Figure explains the modified HCPP. S(d) is the set of points in the gray
region.
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where k is the number of nodes in S(d), n denotes number of nodes in Dxi(r), N

is the expected number of nodes in Dxi(r), and M is the expected number of nodes

in S(d). Let’s consider two different cases:

1. Single Lane: In a single lane scenario (length L), N = λpL, M = λpE(d). d

denotes the distance between two nodes xi and xL. The distribution of d can

be assumed to be the Erlang distribution with parameter λp.

2. General case: In this case, N = λpπr
2 and M = λpEd[S(d)] (Ed is the ex-

pectation over the random variable d). S(d) is equal to πr2 − 2r2cos−1( d
2r

) +

d
√
r2 − d2/4. Also, the distribution of d is given by f(d) = 2d

r2 , 0 < d < r [76].

Therefore, the probability of retaining a random point xi is:

Ptot = P1 + P2

=
1− e−N

N
+
Me−(N+M)

N

· [e
N+M − 1

N +M
+

(M −N)(1− eM)−NMeM

M2
]

The intensity can be obtained as follows:

λ = Ptot/λp

We compare the equal distance model, the HCPP-II model, and the modified HCPP

model via MATLAB simulations in order to compare different estimates of the colli-

sion probability. We place the vehicles on one lane using the appropriate distributions

and the collision probability is calculated when certain number of vehicles are located

in 1000m. Fig. 5.2 illustrates the vehicles’ collision probability versus the number of

vehicles. If we use the same simulation parameters for the equal-distance scenario,

more collisions happen compared to the other two models. Also, Fig. 5.2 shows the
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Table 5.1: Simulation Parameters

Distribution Poisson
Equal distance

Velocity 20m
s

Deceleration rate [−4,−8]m
s2

Distance 1000m
(Average) distance between vehicles 25m

SIR decoding threshold 8 dB
Data rate 6 Mbps

Packet length 250 Bytes

Figure 5.2: Collision probability versus the number of vehicles for three models of
vehicles in traffic. All the parameters are given in Table 5.1 except for the number of
vehicles which is an independent variable.

achieved improvement based on employing the modified HCPP model rather than

employing the HCPP-II model.
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