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ABSTRACT 

NANOPOROUS SOLID ACID MATERIALS FOR BIOMASS CONVERSION INTO 
VALUE-ADDED CHEMICALS: SYNTHESIS, CATALYSIS, AND CHEMISTRY 

 
MAY 2017 

 
HONG JE CHO, B.E., AJOU UNIVERSITY 

 
M.S., SEOUL NATIONAL UNIVERSITY 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Wei Fan 

 

Growing environmental concerns associated with diminishing reserves of fossil fuels has 

led to accelerated research efforts towards the discovery of new catalytic processes for 

converting renewable lignocellulosic biomass into value-added chemicals. For this 

conversion, nanoporous solid acid materials have been widely used because of their 

excellent hydrothermal stability and molecular sieving capability. 

In the thesis, hierarchical Lewis acid zeolites with ordered mesoporosity and MFI 

topology (three dimensionally ordered mesoporous imprinted (3DOm-i) Sn-MFI) were 

successfully synthesized within the confined space of three dimensionally ordered 

mesoporous (3DOm) carbon by a seeded growth method. The obtained 3DOm-i Sn-MFI 

showed at least 3 times higher catalytic activities for the biomass-derived sugar 

isomerization than conventional Sn-MFI zeolites. This is because the mesopores in the 

hierarchical zeolites greatly enhance molecular transport.  

In addition, Lewis acid Sn-MFI combined with Pt metal nanoparticles (Pt/Sn-MFI) 

could oxidize glycerol to produce lactic acid (LA) under base-free conditions. Glycerol is 
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a by-product in biodiesel synthesis. 80.5% selectivity of LA was achieved at 89.8% 

conversion of glycerol using a bifunctional Pt/Sn-MFI catalyst under base-free conditions. 

In the tandem reaction pathway, selective oxidation of glycerol to glyceraldehyde (GLA) 

and dihydroxyacetone (DHA) by using Pt catalysts was cascaded with Lewis acid 

catalyzed isomerization of GLA/DHA into LA. 

Moreover, morphology-tunable Lewis acid Sn-BEA with hydrophobicity was 

successfully synthesized by recrystallization of post-synthesized Sn-BEA (Sn-BEA-PS) 

using ammonium fluoride (NH4F) and tetraethylammonium bromide (TEABr). This 

recrystallization includes simultaneous procedures of dissolution-reassembly: i) the 

dissolution of Si-O bonds around silanol nests by fluoride ions, and ii) the reassembly of 

fragmented silica species into defect-free zeolite framework in the presence of TEA ions. 

The recrystallization also increased open Lewis acid Sn sites. These findings can explain 

why a 2.5 times higher rate of aqueous glucose isomerization was achieved on 

recrystallized Sn-BEA (Sn-BEA-RC), compared with Sn-BEA-PS. Moreover, in the 

isomerization of bulky lactose (C12 sugar) dissolved in MeOH, hierarchical Sn-BEA-RC 

showed a 3.2-fold higher activity than hydrothermally synthesized Sn-BEA (Sn-BEA-HF), 

due to the mesopores and enhanced organophobic character of the recrystallized 

catalyst. 

In the final part, renewable p-xylene synthesis was investigated. p-Xylene is a 

major commodity chemical used for the production of polyethylene terephthalate (PET) 

with applications in polyester fibers, films and bottles. Diels-Alder cycloaddition of 2,5-

dimethylfuran (DMF) and ethylene with subsequent dehydration of the cycloadduct 
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intermediate to produce p-xylene is an attractive reaction pathway for its production 

from biomass feedstocks. It was shown that phosphorous-containing zeolite BEA (P-BEA) 

is active, stable and selective for this reaction with an unprecedented p-xylene yield of 

97%. It can selectively catalyze the dehydration reaction from the furan-ethylene 

cycloadduct to p-xylene, without performing side reactions which include alkylation and 

oligomerization. This acid catalyst establishes a commercially attractive process for 

renewable p-xylene production. 
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CHAPTER 1 

 INTRODUCTION 

  

1.1 Lignocellulosic Biomass Conversion into Valuable Compounds 

Increasing demand for energy and commodity chemicals has led to accelerated 

research efforts towards the discovery of new catalytic pathways for converting 

renewable resource into value-added chemicals and fuels. Lignocellulosic biomass has 

been considered an ideal alternative to fossil resources, since biomass is the only 

sustainable source of organic molecules. The processing of lignocellulosic biomass, an 

inexpensive and abundant source of carbon, provides the promise of sustainable 

chemicals and carbon-neutral liquid transportation fuels.1-3 Many efforts have been 

devoted to the research of the conversion of lignocellulosic biomass into transportation 

fuels and value-added chemicals using nanoporous materials classified as microporous 

(< 2 nm), mesoporous (2-50 nm) and macroporous (> 50 nm) materials.4, 5 In particular, 

crystalline microporous zeolites have attracted significant attention because of their 

excellent hydrothermal stability, molecular sieving capability and acidity for various 

catalytic reactions in petrochemical and biomass processing.6,7 The acid property of the 

zeolites is associated with charge compensation with H+. Typically, zeolites composed of 

[SiO4] and [AlO4]- tetrahedra are neutralized by cations, in order to maintain electro-

neutrality. The use of H+ renders the zeolite Brønsted-acidic. In other words, the protons 

(H+) of bridging Si-OH-Al groups act as Brønsted acid sites on the zeolites. Recently, 

Lewis acid zeolites play an essential role for selectively activating functional groups of 
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the organic molecules involved in biomass conversion. By replacing Al atoms in 

aluminosilicate zeolites by other tetravalent metals (i.e. Sn4+, Zr4+, Ti4+, etc.), zeolites do 

not require additional cations and can possess Lewis acidity. For instance, transition 

metals such as Zr and Ti with incomplete d-block subshells are Lewis acid sites in zeolite 

frameworks able to accept an electron pair.8 In the case of a p-block Sn element, Lewis 

acidity of Sn sites in zeolites can come from the involvement of the unoccupied low-

lying d orbitals.8 It should be noted that aluminosilicate zeolites can also have Lewis 

acidity arising from the tri-coordinated Al sites on the framework and the 

extraframework Al and the charge-compensating cations except H+.9 Scheme 1.1 

illustrates the structures of Lewis acid Sn-MFI and Sn-BEA zeolites. Both materials 

composed of [SiO4] and [SnO4] tetrahedra have MFI topology with 10-membered ring 

(~0.56 nm of pore size) and BEA one with 12-membered ring (~0.74 nm of pore size), 

respectively. 

 

                    

Scheme 1.1 Representative Lewis acid zeolites: the structures of (a) Sn-MFI and (b) Sn-
BEA. 

 

Scheme 1.2 illustrates the conversion of lignocellulosic biomass into useful 

organic compounds to replace the existing chemicals related to crude oils. 

a b 
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Lignocellulosic biomass consists of three major components: 40-50% cellulose and 25-35% 

hemicellulose formed by polymerization of glucose and that xylose, respectively, and 

15-20% lignin formed with phenols and phenolic molecules. Among the three 

components, hemicellulose and cellulose are depolymerized to xylose (C5 pentose sugar) 

and glucose (C6 hexose sugar), respectively.4, 10 Xylose is further isomerized over Lewis 

acid catalysts to xylulose, which further undergoes retro-aldol condensation to form 

glycoaldehyde and dihydroxyacetone (DHA, C3 triose sugar).11 In the same manner, 

Lewis acid catalysts such as Sn-BEA zeolites perform glucose isomerization to fructose, 12 

which is further converted into glyceraldehyde (GLA, C3 triose sugar) and DHA via retro-

aldol condensation.1 These C3 sugars can be obtained from oxidation of glycerol using 

metal catalysts.13-15 Glycerol, a by-product generated by biodiesel synthesis, can serve as 

one of the major renewable building blocks.16, 17 DHA and GLA sugars become lactic acid 

and methyl lactate in water and methanol (MeOH) solvents, respectively, which is 

catalyzed by Lewis acid materials. Fructose is dehydrated to form hydroxymethylfurfural 

(HMF),18 hydrodeoxygenation of which produces 2,5-dimethylfuran (DMF).19, 20 These 

steps have been demonstrated individually at high efficiency with the highest selectivity 

to HMF of 80% and DMF of 98%.18-20 Brønsted acid or Lewis acid zeolites are capable of 

converting DMF into p-xylene via Diels-Alder cycloaddition and subsequent dehydration 

reactions.21-23 
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Scheme 1.2 The conversion of lignocellulosic biomass into value-added chemicals. 

 

1.2 Thesis Scope 

The thesis is constructed as follows. Hierarchical Lewis acid Sn-MFI zeolites were 

synthesized and have shown high reactivity for cellulosic sugar isomerizations, which is 

described in Chapter 2. In Chapter 3, the Lewis acid Sn-MFI combined with Pt 

nanoparticles exhibited high selectivity to lactic acid from glycerol oxidation under base-

free environment. Chapter 4 deals with the synthesis of morphology-tunable Lewis acid 

Sn-BEA having enhanced hydrophobicity for sugar isomerization reactions. In Chapter 5, 

Brønsted acidic phosphorous-containing BEA zeolites as a new class of materials, P-BEA, 

were investigated for p-xylene synthesis via the Diels-Alder reaction and dehydration of 

DMF with ethylene, and showed 97% yields of p-xylene. Chapter 6 gives conclusions for 
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the accomplished works, and suggested future directions for the researches are 

included in Chapter 7. 
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CHAPTER 2 

 HIERARCHICAL LEWIS ACID SN-MFI FOR CELLULOSIC SUGAR ISOMERIZATIONS 

  

2.1 Introduction 

The catalytic performance of zeolite catalysts can be hampered by slow diffusion 

of reactants and products in their microporous structures, in particular, when bulky 

molecules are involved. Hierarchical zeolites with mesoscale porosity superimposed on 

crystalline microporous structures offer a new class of porous materials allowing 

molecular sieving capability as well as fast mass transport.24-27 Fast transport of 

molecules in hierarchical zeolites could facilitate molecules to access the active sites 

located within micropores and reduce the residence time of molecules in catalysts, 

providing enhanced reaction rates and slower catalyst deactivation.26-28 Several 

strategies have been developed so far for the synthesis of hierarchical zeolites with 

mesopores, including dealumination and desilication of aluminosilicate zeolites, 

exfoliation and pillaring of layered zeolites, a supramolecular templating method, and a 

hard templating method.29-33 Despite a number of hierarchical zeolites synthesized by 

these methods, it is still a grand challenge to precisely control framework compositions 

and the size and shape of the formed mesopores. Recently, we reported that 

hierarchical zeolites with highly ordered mesoporous structures can be obtained by 

confining zeolite growth within three dimensionally ordered mesoporous (3DOm) 

carbon under hydrothermal conditions.34 With the combination of seeded growth and a 

confined synthesis, hierarchical aluminosilicate zeolites with tunable mesopores and 
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compositions were synthesized using the recipes for conventional hydrothermal 

synthesis of zeolites.35 The prepared hierarchical zeolites displayed three dimensionally 

ordered mesoporous imprinted (3DOm-i) structure. The precisely controllable 

mesoporosity in 3DOm-i zeolites allows for the fundamental understanding of the 

effects of mesopores on the catalytic performance of this new class of porous 

materials.36, 37 

Recently, Lewis acid catalysts have emerged and play an essential role for 

selectively activating functional groups of the organic molecules including biomass-

derived carbohydrates, as represented in Scheme 1.2. Sn-containing molecular sieves 

and mesoporous silica materials have shown promising Lewis activity for catalyzing the 

isomerization of cellulosic sugars (C3, C5 and C6 sugars),1, 38-40 the 

Meerwein−Ponndorf−Verley (MPV) reduction,41-43 several oxidation reactions such as 

the Baeyer−Villiger oxidation and Meerwein−Ponndorf−Verley−Oppenauer oxidation,43-

46 and Diels-Alder reaction of 2,5-dimethylfuran (DMF) with ethylene to produce p-

xylene which is used as a precursor of polyethylene terephthalate (PET).22, 47 Specifically, 

a molecular sieve with MFI framework containing tetrahedrally coordinated Sn atoms 

(Scheme 1.1a), Sn-MFI, has been used for carbohydrate-related reactions, revealing a 

promising catalytic result for the conversion of DHA into lactic acid and alkyl lactates.48-

51 In contrast, Sn-containing mesoporous silica catalysts, such as Sn-SBA-15 and Sn-

MCM-41, exhibited a low reactivity for these reactions, probably due to the different 

local environment of Sn and the amorphous nature of the silica wall.51, 52 Thus, 

hierarchical Sn-containing zeolites consisting of active Lewis acid sites and tunable 
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mesoporosity have promising implications for activating bulky substrates involved in the 

conversion of lignocellulosic biomass and fine chemical synthesis because the 

mesoporosity can lead to faster molecular access to the catalytic active sites spread over 

the external and internal surface of the catalysts. However, hierarchical Sn-containing 

zeolites are more challenging to synthesize than their aluminosilicate analogues, mainly 

because of the discrepancy in the reactivity of Sn and Si sources and the larger atomic 

size of Sn (Sn−O, ~1.9 Å; Si−O, ~1.7 Å). 

Herein, we demonstrated that hierarchical stannosilicate molecular sieves with 

MFI topology and three dimensionally ordered mesoporous imprinted (3DOm-i) 

structures were successfully synthesized. The obtained 3DOm-i Sn-MFI exhibited 

superior catalytic performances for cellulosic sugar isomerizations including DHA, xylose, 

and glucose in methanol. The combination of a seeded growth method with confined 

synthesis is a versatile and reliable approach for tailoring hierarchical Sn-MFI catalysts. 

 

2.2 Experimental  

2.2.1 Catalyst Preparation  

A seeded growth method was applied for the confined synthesis of 3DOm-i Sn-

MFI within a 3DOm carbon template. 3DOm carbon with a cage size of 35 nm was 

prepared according to a method reported in our previous literature.53, 54 The particle 

size of 3DOm carbon was 2−5 μm. A clear synthesis solution with a composition of 1 

SiO2 : 0.008 SnO2 : 0.43 TPAOH : 22.20 H2O was prepared using a published recipe.55 The 

synthesis procedure is displayed in Scheme 2.1. In a typical synthesis, 0.07 g of tin (IV) 
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chloride pentahydrate (SnCl4·5H2O, Alfa Aesar) was first mixed with 5.50 g of 

tetrapropylammonium hydroxide (40% TPAOH, Alfa Aesar) under stirring. Thereafter, 

5.20 g of tetraethylorthosilicate (TEOS, 98%, Alfa Aesar) was added into this mixture, 

followed by stirring for 30 min at room temperature. An additional 6.33 g of deionized 

water was added into the solution to reach the final composition. A transparent 

homogeneous solution was achieved after stirring for 24 h at room temperature. For the 

confined synthesis of Sn-MFI in the 3DOm carbon, 0.20 g of 3DOm carbon and 15 mL of 

the synthesis solution were mixed in a Teflon-lined autoclave and heated in an oven at 

170 °C for 24 h to form Sn-MFI seeds. The solid product was recovered by filtration, 

followed by extensively washing with deionized water before mixing into a freshly 

prepared synthesis solution for the second cycle of the seeded growth. The seeded 

growth process was repeated three times. Finally, the as-made product was washed 

thoroughly by filtration with about 2 L of deionized water and dried in a convection 

oven at 100 °C overnight. The 3DOm carbon and the structure-directing agent (TPAOH) 

were removed from the product by calcination at 600 °C for 24 h in air. 

 

 

Scheme 2.1 Synthesis procedure of hierarchical Sn-MFI (3DOm-i Sn-MFI). 
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For comparison, two more conventional Sn-MFI zeolites were prepared. Sn-MFI 

with a particle size of 300 nm, Sn-MFI_N, was prepared using the same synthesis 

solution as 3DOm-i Sn-MFI. Crystallization was performed at 170 °C for 2 days. Large Sn-

MFI with a particle size of 10 μm, Sn-MFI_L, was synthesized by following published 

methods.51, 55 A 0.125 g portion of SnCl4·5H2O was premixed with 5.00 g of deionized 

water and slowly added to an ammonium fluoride (NH4F, Alfa Aesar) aqueous solution 

made by dissolving 2.68 g of NH4F in 12.50 g of deionized water. Subsequently, 4.90 g of 

tetrapropylammonium bromide (TPABr, Sigma-Aldrich) dissolved in 28.0 g of deionized 

water was added to this mixture. Finally, 4.3 g of fumed silica (Sigma-Aldrich) was added 

into this solution, and the mixture was stirred for 3 h at room temperature. The molar 

composition of the gel was 1 SiO2 : 0.005 SnO2 : 0.26 TPABr : 1 NH4F : 35 H2O. The 

crystallization was carried out at 200 °C for 7 days. The obtained Sn-MFI_L and Sn-

MFI_N were washed with an excess amount of deionized water and dried at 100 °C 

overnight. Finally, the samples were calcined at 550 °C for 12 h in air. 

2.2.2 Catalyst Characterization 

Powder X-ray diffraction (XRD) patterns of the catalysts were recorded on an XRD 

diffractometer (X’Pert Pro, PANalytical) operated at an acceleration voltage of 45 kV and 

a current of 40 mA using Cu Kα radiation. The data were collected over a 2θ range of 

4−40°. XRD patterns at low angle were collected on a pinhole small-angle X-ray 

scattering system (S-ax3000, Rigaku) using monochromatic Cu Kα radiation with a 

diameter of ~0.4 mm. The SAXS intensity was measured by a two-dimensional gas-filled 
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wire array detector at a distance of ~1.5 m from the sample. The morphology of the 

products was examined by a scanning electron microscope (SEM, Magellan 400, FEI). 

Prior to the SEM measurement, the samples were coated with platinum. Both nitrogen 

(at 77 K) and argon (at 87 K) adsorption−desorption isotherms were measured by using 

an automated gas sorption analyzer (Autosorb iQ2, Quantachrome) after the samples 

were degassed at 300 °C under vacuum. Elemental analysis was conducted by 

inductively coupled plasma optical emission spectroscopy (ICP-OES, iCap 6500 Dual view, 

Thermo Scientific). DRIFT-IR study was performed on EQUINOX 55 (Bruker) equipped 

with a MCT detector. The samples were degassed at 550 °C for 1 h under He in a high-

temperature reaction chamber containing a Praying Mantis diffuse reflection 

attachment (Harrick). Small aliquots of deuterated acetonitrile (CD3CN) were carried by 

He and sample was exposed to CD3CN at room temperature for 15 min. Prior to the 

characterization, the physically adsorbed acetonitrile was removed by flowing He at 

room temperature for 1 h. For FT-IR spectroscopic study on the samples with adsorbed 

pyridine, the spectra were collected at 120 °C after removing the weakly adsorbed 

pyridine at 250 °C under He for 1 h.   

2.2.3 Catalytic Reaction 

All chemicals used in the reactions were purchased from Sigma-Aldrich and used 

without further purification. In a typical experiment for converting DHA into methyl 

lactate (ML), 0.3125 mmol of DHA and 1.00 g of methanol were mixed within a 4 mL 

glass vial (Fisher Scientific). A corresponding amount of Sn-MFI catalysts with a DHA-to-

Sn molar ratio of 127 was added to this mixture. The reactions were carried out at 70 °C. 
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The same reaction conditions were also applied for pyruvaldehyde (PA, a 40 wt % 

aqueous solution). Xylose isomerization to xylulose and lyxose was performed in MeOH 

in a 4 mL glass vial. Typically, 1 g of xylose solution (1 wt % xylose) and 20 mg of catalyst 

were mixed in the reactor (xylose/Sn = 27). The glucose isomerization reaction was 

carried out under the same conditions over the Sn-MFI catalysts (glucose/Sn = 23). All 

reactions were performed for regular intervals on a temperature-controlled aluminum 

heating block with 1000 rpm stirring. After each reaction, the reactor was cooled in an 

ice bath for 20 min. The reactors were weighed before and after the reactions to ensure 

no leaking occurred. Naphthalene was used as an internal standard for all reactions. 

2.2.4 Sample Analysis  

DHA, ML, PA, and glyceraldehyde (GLA) were analyzed on an Agilent 6890 

instrument equipped with an FID detector and a Restek RTX-VMS capillary column (30.0 

m length, 0.25 mm id and 0.25 μm film thickness). Analyses of isomerization reactions of 

pentose (C5) and hexose (C6) sugars were carried out using liquid chromatography (LC, 

Shimadzu LC-20AT) with a BIO-RAD HPX-87H HPLC column operated at 30 °C. The 

mobile phase is 0.005 M sulfuric acid with a flow rate of 0.6 mL min−1. The pentose and 

hexose sugars were quantified with a refractive index detector (RID-10A). In addition, a 

turnover frequency (TOF) value was calculated, which is defined as moles of product 

divided by moles of Sn per reaction time (h) when the product yield lies between 5 and 

20%. On the basis of the ICP analysis (wt % of Sn in the catalyst), moles of Sn were 

calculated according to the reaction conditions. 
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2.3 Results and Discussions 

Hierarchical stannosilicate molecular sieves with ordered mesoporosity and MFI 

topology (three dimensionally ordered mesoporous imprinted (3DOm-i) Sn-MFI) were 

successfully synthesized. This result was published in ACS Catalysis.56  

The morphology of synthesized samples was characterized by SEM (Figure 2.1). 

As shown in Figure 2.1c, Sn-MFI_L synthesized in fluoride media shows a large particle 

size, approximately 60 μm × 15 μm × 3 μm, and a typical coffin shape of the MFI crystal. 

Sn-MFI_N sample was synthesized in the presence of hydroxide ions (OH−) and has a 

particle size from 250 to 350 nm (Figure 2.1b). Different from conventional zeolites with 

MFI topology, 3DOm-i Sn-MFI with a particle size of around 1 μm is composed of 

spherical primary particles having a close packing arrangement. The primary particle size 

is around 30 nm, consistent with the value calculated from the low-angle X-ray 

diffraction measurement shown below (Figure 2.4b), revealing that a confined growth in 

the 3DOm carbon has been achieved in this synthesis. 

 

 

Figure 2.1 SEM images of (a) 3DOm-i Sn-MFI, (b) Sn-MFI_N, and (c) Sn-MFI_L. 

 

The sole presence of the framework Sn, the Lewis acid site, in the three Sn-MFI 

a b c 
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samples was evident by CD3CN FT-IR characterization. After the Sn-MFI samples were 

exposed to CD3CN vapors, the weakly adsorbed CD3CN was removed from the solid 

samples by flowing He at room temperature for 1 h. As displayed in Figure 2.2a, the FT-

IR spectra of all three Sn-MFI samples showed bands at around 2275 cm−1, consistent 

with the ν (C N) stretching mode of acetonitrile adsorbed on silanol groups.45, 46 The 

bands near 2308 cm−1 are associated with CD3CN bound to isomorphously substituted 

Sn Lewis acid sites, in good agreement with previous reports.46, 51, 57 The bands at both 

2275 and 2308 cm−1 show a shift for the Sn-MFI_L synthesized in the presence of F−, 

which might be related to changes in the packing structure of CD3CN within the pores of 

the sample with different morphology and hydrophobicity, as suggested in the previous 

literature.57 In addition, the Lewis acidity of the catalysts is confirmed by FT-IR 

spectroscopic analysis of the pyridine saturated samples after a heat treatment at 

250 °C for removing the weakly adsorbed pyridine. As shown in Figure 2.2b, Sn-MFI 

samples gave a strong absorption band at 1455 cm−1, corresponding to pyridine 

molecules bound with Lewis acidic Sn sites.52, 58 Owing to its Lewis acidity, the Sn site is 

able to adsorb pyridine at 250 °C, similar to other Sn-containing molecular sieves. 59 A 

very weak absorption band at 1546 cm−1 associated with Brønsted acid was also 

observed in the spectra.52, 58 Diffuse reflectance UV-Vis (DR-UV) spectroscopy was also 

used to show framework Sn Lewis acidity of the catalysts in Figure 2.3. The UV-Vis signal 

at around 200 - 205 nm is in good agreement with tetrahedrally coordinated Sn, as 

suggested in the previous literature.60-64 An absorption at ~220 nm can be assigned to 

charge transitions from O2- to Sn4+ in tetrahedral coordination.60 All samples exhibited 
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no band at 280 nm which arises from Sn-O-Sn type of species. All the three 

characterizations performed on the Sn-MFI samples clearly indicate that the prepared 

samples possess mainly framework coordinated Sn atoms, which are responsible for the 

Lewis acid sites. A small number of Brønsted acid sites might also be present in the 

samples as a result of silanol defects.  

 

 

Figure 2.2 FT-IR spectra of 3DOm-i Sn-MFI, Sn-MFI_N, and Sn-MFI_L after adsorbing (a) 

deuterated acetonitrile (CD3CN) and (b) pyridine. 

 

 

 

Figure 2.3 Diffuse reflectance UV-Vis (DR-UV) spectra of the Sn-MFI catalysts.  
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Figure 2.4 shows the XRD patterns of 3DOm-i Sn-MFI, Sn-MFI_N, and Sn-MFI_L 

synthesized in the study. Characteristic peaks corresponding to the MFI topology are 

observed for all three samples, indicating highly crystalline MFI zeolites have been 

synthesized without forming other impurity phases. The diffraction pattern of 3DOm-i 

Sn-MFI made from the seeded growth method exhibits broader peaks than the ones of 

Sn-MFI_N and Sn-MFI_L because of a small primary particle size. In the low-angle region 

of 2θ (0.2°−1.4°), four clear diffraction peaks were observed for the 3DOm-i Sn-MFI, 

revealing that the hierarchical Sn-MFI possesses a highly ordered mesoporous structure 

formed by a close-packing of primary particles.29, 54 These diffraction peaks can be 

indexed to the (111), (220), (311), and (420) planes according to a face-centered-cubic 

structure.29 The size of the unit cell calculated from the diffraction peaks is 41 nm, 

corresponding to a primary particle size of 29 nm, consistent with SEM images shown in 

Figure 2.1. On the contrary, the conventional Sn-MFI zeolites did not show diffraction 

peaks.  

 

Figure 2.4 (a) XRD and (b) SAXS patterns of 3DOm-i Sn-MFI, Sn-MFI_N, and Sn-MFI_L 

samples. 
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Ar adsorption−desorption isotherms and pore size analyses of the three Sn-MFI 

samples are shown in Figure 2.5. The sharp adsorption uptake in the low relative 

pressure range, P/P0 < 0.1, indicates the presence of microporosity in the samples. For 

3DOm-i Sn-MFI, a gradual increase is observed in the relative pressure range from 0.5 to 

0.8, corresponding to the imprinted mesoporous structure. Furthermore, pore size 

distributions of the three Sn-MFI samples were estimated from nonlocal density 

functional theory (NLDFT) (in Figure 2.5b). This result further confirms the presence of 

dual micro- and mesoporosity in the 3DOm-i Sn-MFI sample with micropores around 0.6 

nm and a relatively narrow mesopore distribution from 4 to 11 nm. The BET surface 

area, micropore volume, external surface area and total pore volume estimated by N2 

adsorption-desorption isotherms are summarized in Table 2.1. The micropore volumes 

for Sn-MFI_L, Sn-MFI_N and 3DOm-i Sn-MFI were 0.116, 0.117 and 0.119 cm3 g-1, 

respectively, clearly demonstrating that the MFI type crystal structure is well retained in 

the Sn-MFI samples. The BET surface area, external surface area and total pore volume 

also increased with reducing the particle size of the Sn-MFI samples. The molar ratio of 

Si to Sn in each sample was quantified by ICP analysis (Table 2.1). 
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Figure 2.5 (a) Argon adsorption−desorption isotherms and (b) pore size distributions 

using NLDFT for 3DOm-i Sn-MFI, Sn-MFI_N, and Sn-MFI_L samples. Pore size 

distributions were calculated by using a NLDFT (nonlocal density functional theory) 

adsorption model, which describes Ar adsorbed in cylindrical pores (AsiQwin 1.02, 

Quantachrome). 

 

 

Table 2.1 Textural Information of the Sn-MFI samples from N2 adsorption-desorption 
isotherms and composition information 
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Si/Sn 
(initial gel) 

Si/Sn 
(final product)

d 

Sn-MFI_L 330 0.116 62 0.185 200 256 

Sn-MFI_N 386 0.117 149 0.293 125 135 

3DOm-i Sn-MFI 459 0.119 191 0.402 125 133 

a Calculated from P/P
0
 range of 0.05-0.25 using BET equation. b Calculated by t-plot method.

  

c Calculated from the amount adsorbed at P/P
0
= 0.975. d Determined by ICP-OES. 
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evaluated using the isomerizations of C3, C5 and C6 sugars in MeOH. Scheme 2.2 

illustrates the proposed reaction pathway for the conversion of triose sugars, DHA and 

GLA, in the presence of MeOH. PA, an initial intermediate formed by the dehydration of 
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dimethylacetal (PADA) by Brønsted acids.1, 58 It has been shown that Sn-containing 

materials as highly active Lewis acid catalysts can activate the carbonyl and hydroxyl 

groups in PA, facilitating an intramolecular hydride shift similar to the MPV reactions 

catalyzed by Lewis acids.65 On the other hand, weak Brønsted acid sites can promote the 

initial dehydration step for producing PA from DHA or GLA, whereas strong Brønsted 

acids should be avoided because they can further catalyze the formed PA to produce 

PADA instead of ML in the second step of the reaction pathway.52, 66  

 

 

Scheme 2.2 Reaction pathway for the conversion of dihydroxyacetone (DHA) or 

glyceraldehyde (GLA) in Methanol (MeOH) into either methyl lactate (ML) or 

pyruvaldehyde dimethylacetal (PADA). 
 

For all three Sn-MFI samples, no PADA was detected during the reaction starting 

from DHA in MeOH at 70 °C, indicating that the Sn-MFI catalysts do not have strong 

Brønsted acidity. Figure 2.6 reveals that the 3DOm-i Sn-MFI catalyst produces the 

highest yield of ML. After 24 h, 93.8% yield of ML was achieved for the 3DOm-i Sn-MFI 

catalyst while the yields of ML for Sn-MFI_N and Sn-MFI_L were 86.3% and 47.5%, 
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respectively. As shown in Figure 2.7, 3DOm-i Sn-MFI and Sn- MFI_N gave a higher initial 

reactivity (TOF = 15.1 for 3DOm-i Sn-MFI and TOF = 13.9 for Sn-MFI_N) than Sn-MFI_L 

(TOF = 4.3) under the reaction conditions. Since it has been known that weak Brønsted 

acidity from silanol groups associated with the surface terminal groups and defects in 

zeolites can catalyze the dehydration reaction from DHA to PA,67-69 it is anticipated that 

different activities of the Sn-MFI catalysts might be due to the number of weak Brønsted 

acid sites located in these catalysts. 

 

 

    

Figure 2.6 Reaction profiles for (a) the conversion of DHA to ML and (b) ML yield on 
different Sn-MFI catalysts. The error bars in the figures are from three repeated 
reactions.  

 

a b 
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Figure 2.7 Initial catalytic activities of Sn-MFI catalysts for the conversions of DHA and 

PA in the presence of MeOH. The error bars in the figures are from three repeated 

reactions. 

 

Figure 2.8 shows FT-IR spectra collected from the samples after removing the 

adsorbed water by degassing at 550 °C. In this figure, the band at 3745 cm−1 comes from 

the silanol groups on the external surface of the samples. The features at 3726 and 3700 

cm−1 can be assigned to the silanol groups located inside the micropores of zeolites.70, 71 

The band around 3500 cm−1 is ascribed to silanol nests that occur at extended defects.70 

Sn-MFI_L shows weaker absorption for all three types of Si−OH groups and defects than 

Sn-MFI_N and 3DOm-i Sn-MFI, clearly indicating the use of F− in the synthesis led to 

fewer defects and lower external surface area. Notably, the 3DOm-i Sn-MFI exhibits the 

highest concentration of Si-OH groups among the measured samples. It is very likely the 

high concentration of weak Brønsted acids associated with silanol groups resulted in the 

superior catalytic performance of the 3DOm-i Sn-MFI catalyst for the conversion of DHA 

into ML (Figure 2.9).  
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Figure 2.8 FT-IR spectra in the OH-stretch region (3800 − 3000 cm−1) of the Sn-MFI 
catalysts. 

 

 

Figure 2.9 Plots of initial reaction rates against relative number of Brønsted acid sites 
for the conversion of DHA into ML. Due to the different types of silanol groups in these 
materials, it is difficult to directly quantify the concentration of silanol groups. Using 
pyridine FT-IR spectra in Figure 2.2b and Sn concentration measured by ICP, thus, 
relative number of Brønsted acid sites for each catalyst was obtained. At first, peak 
areas at 1455 cm-1 (Lewis acid sites) and 1546 cm-1 (Brønsted acid sites) in Figure 2.2b 
were calculated. The peak area at 1455 cm-1 is proportional to Sn content. Based on the 
peak area for Sn-MFI_L at 1455 cm-1, relative number of Brønsted acid sites was 
calculated by normalization. Initial reaction rates were plotted in terms of relative 
number of Brønsted acid sites. The result clearly indicates that dehydration of DHA to 
PA is linearly correlated to the number of Brønsted acid sites.  
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In addition, product distributions with reaction time for the conversion of DHA 

into ML (Figure 2.10) reveal that the concentration of intermediate PA remains lower 

than the one of DHA or GLA during the whole reaction, implying that the dehydration 

reaction from DHA to PA is a rate-limiting step for the conversion of DHA into ML. 

Because the rate-limiting step for the reaction from DHA to ML is the first step, 

dehydration reaction, the catalytic performance of the Sn-MFI catalysts is determined 

by the number of weak Brønsted acids in the catalysts. To further understand the 

effects of mass transport on the catalytic performance of the Sn-MFI catalysts, PA, the 

product from the dehydration of DHA, was used as a reactant to produce ML over the 

catalysts. In the reaction, PA is directly converted into ML over the Lewis acid sites of 

the Sn-MFI catalysts through an intramolecular 1,2 hydride shift. For the reaction, all 

three Sn-MFI catalysts possess similar initial activities, as shown in Figure 2.7, regardless 

of the crystal size or mesoporosity of the catalysts. The result strongly suggests that 

there is no diffusion limitation in the isomerization of PA for the tested Sn-MFI catalysts. 

Moreover, because the dehydration is the rate-limiting step in the two-step reaction 

from DHA to ML, the catalytic performance of Sn-MFI catalysts for the conversion of 

DHA to ML can be optimized by further enhancing the dehydration reaction through 

tailoring the number of defects and silanol groups on the catalysts.  
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Figure 2.10 Product distributions for the conversion of DHA into ML over Sn-MFI 
catalysts. Reaction conditions are as follows: 0.3125 mmol DHA; 1 g methanol (MeOH); 
a DHA to Sn molar ratio of 127; 70 °C. 

 

 

     

Scheme 2.3 Reaction pathway for the Lewis acid catalyzed isomerization of (a) xylose 

or (b) glucose, respectively. 

 

The isomerizations of pentose (C5) and hexose (C6) sugars in MeOH have also 

been evaluated over the three Sn-MFI catalysts (Scheme 2.3). Xylose, which is the most 

abundantly available pentose sugar in hemicellulose, undergoes isomerization to 

generate xylulose and lyxose via an intramolecular 1,2 hydride shift.38 On the other hand, 

when glucose is chosen as a starting substrate, the resulting products are fructose and 

mannose.39 Xylose isomerization to xylulose and lyxose was performed in MeOH in a 4 

mL glass vial. The test results are expressed in terms of TOF, as depicted in Figure 2.11. 

In both reactions, Sn-MFI_L was nearly inactive because of the large crystal size and 

small external surface area. 3DOm-i Sn-MFI results in a remarkable catalytic 

performance for the reactions, showing at least 3-fold higher activity than Sn-MFI_N. In 

b a 
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the case of xylose isomerization, the enhanced reaction rate on 3DOm-i Sn-MFI can be 

explained by the reduced diffusion limitation of xylose within the hierarchically 

structured catalyst. The ten-membered ring of MFI structure is composed of straight 

and sinusoidal channels, depending on the crystal orientation.72, 73 As a matter of fact, it 

has been suggested that molecules smaller than 0.63 nm should be able to sufficiently 

fit into the micropores of an MFI crystal.72, 74 Because of the slightly larger molecular size 

of xylose (0.65 nm, Stokes diameter; 0.68 nm, equivalent molar diameter) compared 

with the pore size of the MFI crystal,75 diffusion limitation might become critical for the 

reaction, giving rise to more pronounced differences in the performances between the 

hierarchical, 300 nm, and bulky Sn-MFI catalysts. 

For glucose (C6 sugar) isomerization, all TOF values appear to be very low, 

although better activity was observed for 3DOm-i Sn-MFI zeolite. Taking into account 

the Stokes diameter of glucose (0.73 nm),76 it is quite challenging for glucose to diffuse 

into the micropores of the MFI catalyst. This isomerization reaction for glucose is very 

likely to occur only on the exterior surface of the Sn-MFI catalysts. These results are in 

good agreement with earlier studies,39, 50 showing that Ti- or Sn-MFI zeolites are not 

active for glucose isomerization because glucose is too large to enter the micropores of 

the MFI crystal. The TOF values for the three Lewis acid catalyzed reactions are 

summarized in Table 2.2. When the substrate changes from C3 to C5, the Sn-MFI 

catalysts begin to show different catalytic activities because of the diffusion limitation of 

xylose compared to C3 sugars. For the reaction of an even larger sugar, glucose, it seems 

that the reaction happens only on exterior surfaces of the catalysts because glucose is 
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much larger than the MFI pore dimensions. The results clearly suggest that 3DOm-i Sn-

MFI provides a superior catalytic performance for cellulosic sugar isomerizations, 

compared to conventional Sn-MFI. The enhanced catalytic activity is very likely because 

the mesopores imposed in the zeolites can considerably enhance the molecular 

diffusion of the bulky molecules.  

 

 

 

Figure 2.11 Initial catalytic activities of Sn-MFI catalysts for isomerizations of xylose 

and glucose. The error bars in the figures are from three repeated reactions. 

 

 

Table 2.2 Summary of TOF for three Lewis acid catalyzed reactions 

Catalyst 
TOFa (h-1) 

PA in MeOH Xylose in MeOH Glucose in MeOH 

Sn-MFI_L 37.8 (+ 5.8) 0.37 (+ 0.05) 0.05 (+ 0.01) 

Sn-MFI_N 35.7 (+ 4.1) 2.23 (+ 0.42) 0.21 (+ 0.07) 

3DOm-i Sn-MFI 39.8 (+ 3.6)  6.76 (+ 0.43) 0.69 (+ 0.15) 
a 95% confidence interval in parentheses. 
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In addition to enhanced reaction rates, hierarchical zeolites with mesopores can 

also improve catalyst life time and reduce catalyst deactivation in various reactions.28, 77, 

78 During the course of triose isomerization, recent studies have reported that 

heterogeneous catalysts are deactivated due to coke accumulation on the catalyst 

surface.48, 58, 79 To gain insights into the effect of mesoporosity on catalyst deactivation, 

high conversion results from PA to ML were collected over the prepared Sn-MFI 

catalysts and are presented in Figure 2.12. At the beginning of the reaction, the reaction 

rate for all Sn-MFI catalysts was the same as shown earlier. With the further progress of 

the reaction, the catalytic activities of the catalysts exhibited distinct differences. 

Specifically, 3DOm-i Sn-MFI gave 94.1% of ML yield after 10 h, whereas 83.4% and 74.8% 

yields of ML were obtained for Sn-MFI_N and Sn-MFI_L, respectively. Because an excess 

amount of methanol was used, the isomerization reaction can be approximated as 

pseudo-first order in the limiting reactant PA. Plots of    (   ) against reaction time 

(x is the product yield for this reaction) suggest that the reaction over 3DOm-i Sn-MFI is 

in a good agreement with the pseudo-first order approximation. However, the reactions 

over Sn-MFI_N and Sn-MFI_L show evident discrepancy from the approximation at high 

conversion (Figure 2.13). This is a strong indication that catalyst deactivation occurred 

slowly on the 3DOm-i Sn-MFI catalyst because the highly interconnected mesoporous 

structures allow facile molecular diffusion into and out of the micropores of the catalyst. 

Consequently, it was inferred that the Sn-MFI catalyst with hierarchical porosity shows 

slower deactivation, leading to better catalytic performances. 
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Figure 2.12 Reaction profiles for (a) the conversion of PA to ML and (b) ML yield using 
different Sn-MFI catalysts. The error bars in the figures are from three repeated 
reactions.  
 

 

Figure 2.13 Plots of     (   ) against reaction time where x is the product yield for 
the conversion of PA into ML over Sn-MFI catalysts. In a constant-volume batch reactor, 
this reaction can be approximated as pseudo-first order in the limiting reactant PA, 
giving a straight line (green) in the figure. Among the catalysts, the reaction over 3DOm-i 
Sn-MFI agrees well with pseudo-first order reaction kinetics. The discrepancy shown in 
the Sn-MFI_N and Sn-MFI_L samples clearly implies the catalyst deactivation.  
 

The feasibility of the seeded growth method for the synthesis of hierarchical Sn-

MFI catalysts has been further explored using other commercially available carbon 

a b 
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materials. With the same approach used in the 3DOm-i Sn-MFI synthesis, hierarchical 

Sn-MFI was fabricated with carbon black BP2000 and activated carbon Norit SX Ultra, 

respectively. Cumulative pore volumes and pore size distributions estimated from 

NLDFT for the samples are presented in Figure 2.14. In these plots, hierarchical Sn-MFI 

materials synthesized within commercial carbon templates exhibit mesopores with a 

broad range from 3 to 20 nm. This is probably caused by disorderly interconnected 

carbon nanoparticles in the commercial carbons. Figure 2.15 displays a SEM image of 

Sn-MFI synthesized within carbon black BP2000. The Sn-MFI crystals seem to nucleate 

within the pores of the carbon template and grow up to outside of the carbon template 

during the repeated seeded growth process, leading to encapsulation of the carbon 

nanoparticles within the formed crystals. The results clearly indicate that the 

characteristics of hierarchical zeolite catalysts synthesized by the seeded growth 

method can be easily tailored by controlling the porous structures (e.g., pore size and 

interconnectivity) of the carbon templates. 
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Figure 2.14 Cumulative pore volumes (a) and pore size distributions (b) using NLDFT of 
hierarchical Sn-MFI zeolites made with BP2000 and Norit SX Ultra, respectively, 
derived from N2 adsorption-desorption isotherms. Pore size distribution and 
cumulative pore volumes were calculated by using NLDFT (nonlocal density functional 
theory) adsorption model which describes N2 adsorbed in cylindrical pores (AsiQwin 
1.02, Quantachrome). 
 
 

 

 

Figure 2.15 A SEM image of hierarchical Sn-MFI made with BP2000. 
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CHAPTER 3 

 BIFUNCTIONAL PT/SN-MFI CATALYSTS FOR ONE-POT CONVERSION OF GLYCEROL TO 

LACTIC ACID UNDER BASE-FREE ENVIRONMENTS 

 

3.1 Introduction 

Glycerol is an inevitable by-product from biodiesel production by the trans-

esterification of vegetable oils and animal fats.17 The rapid development of 

oleochemistry has lead to a dramatic increase in glycerol production from about 600 

000 tons in 1992 to 1.1–1.5 million tons in 2010 with an average increase of 3.75% per 

year.80 Glycerol can also be potentially obtained from non-edible biomass, such as 

microalgae, cellulose and its derivatives, in the near future.81, 82 For these reasons, the 

conversion of glycerol to high-value chemicals has attracted much attention from both 

academia and industry.83 Compared with hydrocarbons, glycerol is a highly 

functionalized molecule containing three hydroxyl groups. Selective hydrogenolysis, 

oxidation and dehydration of the hydroxyl group of glycerol have been extensively 

studied to synthesize numerous value-added compounds or intermediates.14, 83-85 

Particularly, the oxidation of glycerol produces a series of reaction pathways capable of 

generating various valuable oxygenated derivatives. However, due to the complex 

nature of these reaction pathways as shown in Scheme 3.1, controlling the selectivity to 

desired products is a grand challenge.  
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Scheme 3.1 General reaction pathways of glycerol oxidation. 

 

Lactic acid (LA) and alkyl lactates have been widely used in food, pharmaceutical 

and chemical industries as platform chemicals and green solvents.1, 5, 85 In particular, LA 

has been used as a precursor to synthesize polylactate or polylactic acid (PLA), the 

second most manufactured bioplastic in the world.86 LA can be produced from 

petroleum feedstocks in high yields using mineral acid catalysts. But, the use of toxic 

chemicals (e.g. hydrogen cyanide) and the high cost for product separation gave rise to 

significant environmental concerns. Therefore, currently LA is mainly manufactured by 

the fermentation of carbohydrates. However, the efficiency and productivity of the 

fermentation processes are still low and need substantial improvements because of the 
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high cost of enzyme catalysts and the need for precise control of operating conditions.58, 

87 There is thus a persistent demand to develop efficient thermochemical pathways for 

the production of LA from new starting materials.88, 89 

Although much research has been devoted to tailor the selectivity in glycerol 

oxidation, only a few reaction pathways can selectively convert glycerol into LA. Kishida 

et al. reported that LA is directly produced from the hydrothermal reaction of glycerol in 

the presence of NaOH at 300 °C.90 During the hydrogenolysis of glycerol in alkaline 

solutions at 200 °C and 4.0 MPa H2, LA has also been detected.91, 92 These studies 

highlighted the potential of the production of LA from glycerol although the efficiencies 

or harsh reaction conditions of the reaction pathways may cause significant hurdles to 

their commercialization. Recently, a tandem reaction pathway has been developed to 

selectively transform glycerol into LA. In this route, glycerol is first selectively oxidized to 

DHA and GLA on metal catalysts, and then undergoes base-catalyzed dehydration and 

benzilic acid rearrangement to produce LA. Shen et al. first reported that 85.6% of LA 

selectivity was achieved from this reaction pathway using the Au–Pt/TiO2 catalyst in the 

presence of NaOH, and confirmed that DHA and GLA were formed as intermediates 

during the reaction.93 Similar performances have also been achieved on Au/CeO2 and 

Au–Pt/nanocrystalline CeO2 catalysts under basic conditions.94, 95 The use of a base in 

the tandem reaction pathway is crucial because hydroxide ions not only facilitate H-

abstraction in the initial dehydrogenation of the hydroxyl group of glycerol but also 

catalyze the reaction of DHA/GLA to LA.84, 93, 96, 97 Although a high yield of LA can be 

obtained from this reaction pathway, the use of base catalysts causes the formation of 
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acid salts (i.e. lactate). Additional reaction and separation steps are required to isolate 

LA, which not only increase the cost of production but also produce a stoichiometric 

amount of salt wastes. Development of a base free reaction pathway for the production 

of LA from glycerol using heterogeneous catalysts is thus highly desirable. In this 

scenario, Xu and coworkers succeeded in attaining 66.6% of LA selectivity at 13.6% of 

glycerol conversion by employing Au-Pd/TiO2 in the presence of AlCl3, and proposed 

that the second step reaction of DHA/GLA to LA was catalyzed by AlCl3.98 Although no 

base catalyst was used in the reaction, separation of the AlCl3 catalyst and catalyst 

poisoning by chlorine were still issues for the catalytic process.  

In order to overcome the challenges, herein we developed an efficient base-free 

reaction pathway to selectively convert glycerol into LA in the aqueous phase using a 

bifunctional Pt/Sn-containing zeolite catalyst. In the reaction pathway, glycerol is first 

oxidized to DHA/GLA with O2 on Pt nanoparticles under mild oxidation conditions. The 

water tolerant Lewis acid catalyst, Sn-MFI, then catalyzes the isomerization of DHA/GLA 

to LA with high selectivity. In this study, Sn-containing zeolites were selected due to 

their outstanding Lewis acidity in the aqueous phase. Under optimized reaction 

conditions the bifunctional catalyst achieved over 80% selectivity to LA.  

 

3.2 Experimental  

3.2.1 Catalyst Preparation  

Sn-MFI with a Si/Sn molar ratio of 135 (confirmed by ICP) was prepared using the 

method reported previously,99 and this material is 300 nm sized Sn-MFI_N as shown in 
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Chapter 2. Silicalite-1, pure siliceous zeolite with MFI topology, was synthesized 

following the protocol reported by Watanabe et al.100 Typically, 2.44 g of 

tetrapropylammonium hydroxide (TPAOH, 40% Alfa Aesar) was mixed with 4 g of TEOS 

(98%, Alfa Aesar) and then 11.67 g of deionized water was added to this solution. The 

mixture was stirred at 80 oC for 24 h to obtain the final molar composition of 1 SiO2 : 

0.25 TPAOH : 38 H2O. The resulting gel was transferred to an autoclave for 

crystallization at 170 oC for 24 h. The solid product was washed with deionized water, 

dried at 100 oC overnight and calcined at 550 oC for 12 h. The detailed preparation 

procedures of Sn-BEA were described in previous literature.101 Briefly, 

tetraethylorthosilicate (TEOS, 98%, Alfa Aesar) was mixed with tetraethylammonium 

hydroxide (TEAOH, 35 wt%, Alfa Aesar) solution and stirred for 1 h until a homogeneous 

solution was formed. Tin (IV) chloride pentahydrate (SnCl4·5H2O, Alfa Aesar) dissolved in 

water was added into the above solution and the resulting solution kept stirring in a 

fume hood until ethanol (generated from hydrolysis of TEOS) and some water were 

evaporated. After required weight was achieved, a suspension of dealuminated zeolite 

beta crystal seeds were added into the gel and well mixed. Lastly, hydrofluoric acid (48%, 

Alfa Aesar) was added into the mixture by mixing with a plastic spatula. The final molar 

composition of the gel was SiO2 : 0.008 SnO2 : 0.54 TEAOH : 0.54 HF : 7.5 H2O. The solid-

like white gel was moved into an autoclave and heated at 140 oC for 4 days under 

rotation. The as-made product was washed thoroughly by filtration with 2 L of deionized 

water, dried in an oven at 100 oC overnight, and calcined at 550 oC for 12 h to obtain Sn-

BEA with a Si/Sn molar ratio of 126. 
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Bifunctional catalysts were prepared by impregnating Sn-MFI, silicalite-1, Sn-BEA 

and TiO2 (P25, Degussa), respectively, using an aqueous solution of H2PtCl6·6H2O (99.9%, 

Alfa Aesar). After the impregnation, the samples were dried at 100 oC overnight. For 

reduction, the impregnated sample was placed on a small beaker in the middle of a 

plastic bottle. Ethanol used as a reducing agent was placed at the bottom of the bottle 

without directly contacting with the sample. The reduction was performed in an oven at 

70 oC for 4 h. Obtained products were washed with deionized water by centrifugation 

and dried at 100 oC overnight. The Pt loading was fixed at 1.5 wt%, on the basis of the 

final product. 

3.2.2 Catalyst Characterization  

FT-IR spectroscopy was carried out on EQUINOX 55 (Bruker) with an MCT 

detector. The sample was degassed at 550 °C for 1 h under He in order to remove 

adsorbed water. After that, FT-IR spectra were collected on the sample at 120 °C. For 

pyridine adsorption, small aliquots of pyridine were subsequently exposed to the 

sample at 120 °C for 15 min. Prior to the characterization, the weakly  adsorbed pyridine 

was removed by flowing He at 250 °C for 1 h and the spectra were then collected at 120 

oC. Powder X-ray diffraction (XRD) patterns of the catalysts were collected on a X-ray 

diffractometer (X’pert Pro, PANalytical) operated at an acceleration voltage of 45 kV and 

a current of 40 mA using CuKα radiation. The XRD data for the prepared samples were 

recorded in a 2θ range of 4-60o. The nitrogen adsorption-desorption isotherms were 

measured using an automated gas sorption analyzer (Autosorb iQ2, Quantachrome) 

after the samples were degassed at 300 oC for 10 h under vacuum. Elemental analysis 
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for the samples was carried out using inductively coupled plasma-optical emission 

spectroscopy (ICP-OES, iCap 6500 Dual view, Thermo Scientific). The morphology of 

each catalyst was examined by transmission electron microscopy (TEM, JEOL 2000FX) 

with an accelerating voltage of 200 kV. The particle size distribution was calculated by 

counting over 60 particles. The average Pt particle size in this distribution was 

determined using the equation ∑  / ∑    where d (nm) is a size for each particle. Pt 

metal surface area was measured by H2 chemisorption using a chemisorption analyzer 

(ChemBET pulsar TPR/TPD, Quantachrome). In this experiment, the catalysts were 

reduced at 300 oC for 10 h under the flow of 5% H2/95%N2 gas and H2 chemisorption 

was then carried out at room temperature with a gas flow rate of 12 mL min-1. From this 

result, the average Pt crystallite diameter for each catalyst was estimated with the 

assumption of spherical geometry.  

3.2.3 Catalytic Test  

In a typical experiment for converting glycerol (99.5%, Alfa Aesar) to lactic acid 

(LA), Pt/Sn-MFI or Pt/AC catalyst and 80 mL of 0.2 M aqueous solution of glycerol 

(glycerol/Pt molar ratio = 350, glycerol/Sn molar ratio = 226) were put into a 160 mL 

Parr reactor. Initially, the reactor was pressurized with nitrogen at 0.62 MPa. After 

heating the reactor from room temperature to 100 oC, the oxidation was allowed to 

proceed under stirring at 1000 rpm by switching from inert gas to oxygen (0.62 MPa). 

Time course of glycerol oxidation was monitored by taking samples (0.5 mL) for analysis 

at specified time intervals. Under the same reaction conditions, Pt/Sn-BEA catalyst was 

tested with the glycerol to Sn molar ratio of 211. For Pt/silicalite-1 and Pt/TiO2 samples, 
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the same reaction conditions were also applied, except the Sn to glycerol molar ratio of 

0. In addition, a conversion of PA into LA has been performed over Pt/Sn-MFI, Sn-MFI, 

Pt/Sn-BEA and Sn-BEA catalysts. The catalyst, corresponding to 226 of PA to Sn molar 

ratio, was added into a 1.3 g of 0.2 M PA dissolved in water. The reaction occurred in a 4 

mL glass vial reactor which was placed in a temperature-controlled aluminum heating 

block set to 100 °C under 1000 rpm stirring. After the specified times of the reaction, the 

glass reactors were quenched in ice for 20 min, dried and weighed before opening to 

ensure no leaking occurred during the reaction.  

3.2.4 Sample Analysis  

After the reaction, glycerol, glyceric acid (20 wt% in water, TCI), PA (40 wt% in 

water, Aldrich), pyruvic acid (98%, Aldrich), LA (98%, Sigma Aldrich), glyceraldehyde 

(90%, Sigma Aldrich), acetic acid (99.9%, Fisher Scientific), DHA (dimer, 97%, Sigma 

Aldrich), oxalic acid (97%, Fluka), tartronic acid (98%, Alfa Aesar) and glycolic acid (99%, 

Sigma Aldrich) were quantified in the reaction vials. The quantitative analysis of these 

samples was conducted by Agilent 6890 gas chromatography equipped with an FID-

detector and a Restek RTX-VMS capillary column (30.0 m length, 0.25 mm id, 1.4 μm 

film thickness). Besides, the products were also cross-checked on HPLC (Shimadzu, LC-

20AT) using an HPX-87H column operated at 30 oC. In HPLC experiments, ultraviolet (UV) 

and refractive index (RI) detectors were utilized to determine the chemicals using 0.005 

M H2SO4 aqueous solution as a mobile phase. The flow rate of the mobile phase was 

fixed at 0.6 mL min-1. 
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3.3 Results and Discussions 

In this study, Sn-containing zeolites were selected due to their outstanding Lewis 

acidity in the aqueous phase. Under base free and mild reaction conditions, 80.5% 

selectivity of lactic acid (LA) was achieved at 89.8% conversion of glycerol using a 

bifunctional Pt/Sn-MFI catalyst. This work has been published in Green Chemistry.102 

Bifunctional Pt/Sn-containing zeolite catalysts were prepared by the reduction of 

Pt precursors deposited on Sn-containing zeolites with the MFI and BEA structures, 

respectively (Sn-MFI and Sn-BEA). Sn-containing zeolites were chosen in this study 

because of their outstanding Lewis acidity for catalyzing the isomerization of sugar 

molecules in the aqueous phase, in particular for C3 sugar derivatives, such as DHA, GLA 

and pyruvaldehyde (PA), as described in Chapter 2 of this thesis.  

 

 

Figure 3.1 XRD patterns of the prepared catalysts: (a) Pt/Sn-MFI, Sn-MFI, Pt/silicalite-1 

and silicalite-1, and (b) Pt/Sn-BEA, Sn-BEA, Pt/TiO2, TiO2 and Pt/activated carbon (AC). 

 

Figure 3.1 shows that the Pt on the Sn-MFI sample possesses a diffraction peak 

at 2θ = 39.8°, corresponding to the (111) plane of Pt crystals with a cubic close-packed 

a b 
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structure.103 It is evident that the formation of crystalline Pt nanoparticles on Sn-MFI 

does not influence the original crystalline structure of the MFI. The TEM image confirms 

that the Pt nanoparticles were well dispersed on the Sn-MFI catalyst surface (Figure 

3.2a). The particle size distribution of Pt calculated from TEM images is shown in Figure 

3.2b. The size of the Pt nanoparticles mainly lies between 4 and 7 nm with an average of 

6.7 nm, in good agreement with the size of 7.9 nm determined by H2 chemisorption 

(Table 3.1). Pt on silicalite-1, Sn-BEA (which is the same as Sn-BEA-HF in Chapter 4), and 

TiO2 were also synthesized using the method applied for Pt/Sn-MFI. The particle size of 

Pt on the samples is in the range of 6.4 nm to 9.5 nm, similar to the Pt/Sn-MFI sample 

(Table 3.1). The crystalline structure of these supports is also well retained during the 

loading of Pt (Figure 3.1). 

 

 

             

 

Figure 3.2 (a) A TEM image and (b) Pt particle size distribution estimated from TEM 

images for the Pt/Sn-MFI catalyst. The average Pt particle size was estimated using the 

equation Σd3/Σd2 where d is the size of each Pt particle. 
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Table 3.1 Pt metal surface area and crystallite diameter for each catalyst determined 
by H2 chemisorption 

 Pt metal surface area (m2 g-1) Crystallite diameter a (nm) 

Pt/Sn-MFI 0.18 7.9 

Pt/silicalite-1 0.15 9.5 

Pt/Sn-BEA 0.21 6.6  

Pt/TiO2 0.22 6.4 

Pt/AC b 6.01 0.8 
a Assumption of spherical crystallites. b Supplied from Sigma Aldrich. 

 

Table 3.2 shows the activities and selectivities of aerobic glycerol oxidation at 

0.62 MPa of O2 and 100 °C on the bifunctional catalysts prepared in this work. Pt/Sn-MFI 

catalyzed glycerol oxidation to LA with an activity of 1.95 h−1 and 80.5% selectivity to LA 

at 89.8% conversion of glycerol. To the best of our knowledge, it is the highest yield of 

LA achieved using heterogeneous catalysts in the absence of a base. Concentration 

profiles of reactants and various products as well as the selectivity to LA are shown in 

Figure 3.3. At the beginning of the reaction, the main product is DHA formed by the 

oxidation of the secondary hydroxyl group of glycerol and the isomerization of GLA. GLA 

was also detected in the reaction with a low selectivity. With increasing glycerol 

conversion, the DHA concentration decreased concurrently with an increase in the 

selectivity to LA, suggesting that DHA is an intermediate in the formation of LA. When 

the glycerol conversion is higher than 90%, the LA selectivity began to decrease with the 

formation of pyruvic acid (PyA) and acetic acid (AA) which is due to further oxidation of 

the produced LA.104 The reaction pathways were studied by starting the reactions from 

LA and PyA on the Pt/Sn-MFI catalyst, respectively (Table 3.2). It was found that PyA is 
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selectively converted into AA. LA oxidation produced PyA and AA at a reaction rate 

slower than PyA oxidation under the same reaction conditions. Moreover, as shown in 

Table 3.2, the TOF value for the oxidation of LA is 39 times lower than that for the 

oxidation of glycerol, which allows us to optimize the reaction conditions to achieve a 

high selectivity to LA. Other by-products formed during the course of the reaction were 

glyceric acid (GlyA) and tartronic acid (TarA), which are formed by the sequential 

oxidation of GLA.104, 105 The overall carbon balance obtained from the analyses is above 

94%. 

 

 

Table 3.2 Oxidation of glycerol and other substrates on the catalysts synthesized in the 
studya 

Catalyst 
Substrat

e 
TOFb   
(s-1) 

Conv.c 

 (%) 

Selectivity (%) 

DHA GLA PA LA PyA AA GlyA TarA 

Pt/Sn-MFI Glycerol 1.95 89.8 0.9 0.6 4.4 80.5 1.6 2.1 8.7 0.8 

Pt/Sn-MFId LA 0.05d 4.7     40.4 46.8 
 

 

Pt/Sn-MFId PyA 0.23d 22.5      94.7 
 

 

Pt/Sn-BEAe Glycerol 2.33 93.4 6.2   4.9 29.8 28.1 1.0 3.7 18.4 3.0 

Pt/silicalite-1 Glycerol 1.11 83.8 9.7 42.0 0.0 0.0 0.0 5.4 32.7 4.2 

Pt/AC + Sn-MFI Glycerol 0.07 53.6 0.0 0.0 0.0 80.8 0.0 0.9 7.8 0.9 

Pt/TiO2 Glycerol 2.21 92.3 3.6 
18.
6 

0.0 0.0 0.0 5.9 
55.
4 

7.8 

a Reaction conditions: 0.2 M substrate in H2O; substrate/Pt (mol mol−1) = 350; substrate/Sn (mol 

mol−1) = 226; pO2 = 0.62 MPa; 100 °C; 24 h. b TOF = moles of a converted substrate divided by 

moles of Ptsurface per reaction time; 0.5 h. c Substrate conversion. d Reaction time: 4 h. e 

Substrate/Sn (mol mol−1) = 211. 
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Figure 3.3 (a) Concentration profiles and (b) glycerol conversion and LA selectivity over 
Pt/Sn-MFI. Reaction conditions are as follows: 0.2 M glycerol in H2O; glycerol/Pt (mol 
mol−1) = 350; glycerol/Sn (mol mol−1) = 226; pO2 = 0.62 MPa; 100 °C. The error bars in 
the figures are from three repeated reactions. 
 

Although previous studies have suggested that Sn-BEA is a highly active Lewis 

acid catalyst for the isomerization of triose sugars in the aqueous phase,1, 50, 51, 59 the 

Pt/Sn-BEA catalyst provided much lower selectivity to LA (28.1%) compared with Pt/Sn-

MFI (Table 3.2). 29.8% selectivity to PA was observed at 93.4% conversion of glycerol, 

implying that the catalytic activity of the Pt/Sn-BEA catalyst is substantially lower than 

Pt/Sn-MFI for converting triose sugars into LA. Moreover, a large amount of GlyA was 

detected at the end of the reaction, indicating that the sequential oxidation of GLA 

significantly proceeded. To further understand the difference between the Pt/Sn-BEA 

and Pt/Sn-MFI catalysts, we studied the performance of these catalysts in the 

conversion of PA to LA. The reactions were first carried out over the Sn-BEA and Sn-MFI 

catalysts without Pt. Although the BEA zeolite with 12-membered-ring has larger pore 

sizes than MFI with 10-membered-ring (Table 3.3), Sn-MFI displays a 45% higher yield of 

a b 
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LA than Sn-BEA (Figure 3.4). The higher catalytic activity of Sn-MFI for PA conversion in 

water might be due to its relative hydrophilic surface compared with the Sn-BEA catalyst. 

It has been known that zeolites synthesized in fluoride medium contain fewer structural 

defects and silanol groups than the ones synthesized in caustic medium.68, 106 In this 

study, the Sn-MFI catalyst was synthesized using a conventional approach without using 

fluoride ions. In contrast, hydrofluoric acid (HF) had to be used in the synthesis of the 

Sn-BEA catalyst. The smaller amounts of defects and silanol groups in the Sn-BEA 

provide a more hydrophobic environment for the catalyst as shown in the previous 

literature.106, 107 This observation is also evidenced by FT-IR spectra of the samples in the 

OH stretch range of 3800 – 3000 cm−1 (Figure 3.5). It is believed that different 

hydrophobic/hydrophilic properties of the two catalysts may affect their adsorption and 

catalytic performances. Higher catalytic activity of Sn-MFI in the reaction of PA to LA 

should be due to the synergism between the structure of Lewis acid Sn sites and 

adsorption properties. After Pt nanoparticles were loaded, the catalytic activity of both 

catalysts decreased as listed in Table 3.4. In the case of loading Pt onto Sn-MFI, the 

reaction rate decreased by around 5.5%. The effect of loading Pt on the catalytic activity 

of Sn-BEA was more obvious and 41.5% decrease was observed. Overall, Pt/Sn-MFI 

provided a 2.3 times higher initial reaction rate than Pt/Sn-BEA for the conversion of PA 

to LA. This indicates that the loading of Pt might partially block the Lewis acid Sn sites in 

these two catalysts. Corma et al. reported that the Sn framework in the Sn-BEA sample 

can stabilize the nucleation of Pt nanoparticles inside the zeolite channels and form Pt0–

Sn4+ sites.108 We believe that a part of Pt precursors (H2PtCl6·6H2O) used in our synthesis 
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can diffuse into the zeolite BEA channels because of the large pore size of the BEA 

structure. The Pt0–Sn4+ sites might not be able to catalyze the reaction of PA to LA. In 

addition, the Pt nanoparticles within the zeolite channels could also block diffusion 

pathways of the chemicals involved in the reactions. In contrast, it is more difficult for 

the Pt precursors to diffuse into the MFI structure due to a smaller pore size. The 

activity of the Sn sites in Sn-MFI was affected by the loading of Pt to a lesser extent. As a 

result, the remarkable catalytic performance of Pt/Sn-MFI in the studied reactions can 

be attributed to the accessible Sn site, open framework structure and hydrophilic 

surface. 

 

 

Table 3.3 Textural information from N2 adsorption-desorption isotherms 

 
BET surface area 

a
  

(m
2
 g

-1
)

 
Micropore volume 

b 

(cm
3
 g

-1
) 

Total pore volume 
c 

(cm
3
 g

-1
)

 

Sn-MFI 386 0.12 0.29 

Pt/Sn-MFI 347  0.12  0.23 

Sn-BEA 511 0.19 0.38 

Pt/Sn-BEA 454  0.19  0.27  

Pt/silicalite-1 353  0.11  0.34 

Pt/TiO2 38  0  0.31  

Pt/AC 1375  0.10  1.20  

a Calculated from P/P
o
 range of 0.05 - 0.25 using BET equation. b Calculated by the t-plot method. 

c Calculated from the amount adsorbed at P/P
o
= 0.975. 
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Figure 3.4 Reaction profiles for (a) the conversion of PA into LA and (b) LA yield over 

Pt/Sn-MFI, Sn-MFI, Pt/Sn-BEA and Sn-BEA catalysts. Reaction conditions are as follows: 

0.2 M PA in H2O, PA/Sn (mol mol−1) = 226; 100 °C; batch reactor. 

 

 
Figure 3.5 FT-IR spectra in the OH-stretch region (3800 - 3000 cm-1) of Sn-MFI and Sn-

BEA zeolites. 

 

Table 3.4 TOF values for the conversion of PA into LAa 

 Sn-MFI Pt/Sn-MFI Sn-BEA Pt/Sn-BEA 

TOF (h-1)b 522 493 372 218 
a Reaction conditions: 0.2 M PA in H2O; PA/Sn (mol/mol) = 226; 100 °C; batch reactor.  b TOF = 
moles of converted PA divided by moles of Sn per reaction time (h); 15 min.  

 

To understand the reaction pathway and mechanism for the conversion of 

glycerol into LA over the bifunctional catalysts, additional control experiments were 

a b 
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performed. It was found that glycerol reaction does not occur at all on Sn-MFI and Sn-

BEA catalysts in the absence of Pt. On the other hand, Pt on siliceous MFI, Pt/silicalite-1, 

catalyzed the oxidation of glycerol predominantly to GLA (42.0%) and GlyA (32.7%, Table 

3.2). The fact that PA and LA were not formed in the absence of either a Lewis acid or Pt 

suggests that the combination of a selective oxidation catalyst and an isomerization 

catalyst is indispensable for the tandem reaction pathway. Interestingly, oxidation of 

glycerol over Pt/silicalite-1 mainly produced GLA and GlyA, not DHA. This result clearly 

indicates that Pt prefers to catalyze the oxidation of the primary hydroxyl group of 

glycerol to produce GLA. DHA, a thermodynamically stable isomer of GLA, is formed 

over the Lewis acid sites of the Pt/Sn-MFI catalyst. This finding is consistent with 

previous reports.58, 109, 110 The subsequent reaction of DHA to LA also occurs over the 

Lewis acid catalyst. A physical mixture of Pt catalysts supported on activated carbon 

(Pt/AC, 5 wt% Pt, Sigma Aldrich) and Sn-MFI was also examined for this reaction (Figure 

3.6). The catalytic activity of the mixture (TOF = 0.07 s−1) is much lower than the Pt/Sn-

MFI catalyst (TOF = 1.95 s−1) even though the surface area of Pt on AC is much larger 

than that of Pt on Sn-MFI (Table 3.1). After 20 h, the LA selectivity from the physically 

mixed catalysts exceeded 80%, which is similar to that from Pt/Sn-MFI. However, the 

Pt/AC catalyst was deactivated obviously faster than the Pt/Sn-MFI and was only able to 

convert 54% of glycerol over 24 h. It has been known that TiO2 is also an active Lewis 

acid catalyst.111 Au/TiO2, Pt/TiO2 and Au–Pt/TiO2 have been used for glycerol oxidation 

in the presence of NaOH.93 Under the reaction conditions in this study, the Pt/TiO2 

catalyst could not produce any LA due to the weak Lewis acidity, and the main products 



 48 

were GLA, GlyA and TarA (Table 3.2). The catalytic performance of Pt/TiO2 is similar to 

Pt/silicalite-1, indicating that the Lewis acidity of TiO2 is not capable of activating the 

functional groups of the intermediates, GLA and DHA, under the reaction conditions. On 

the basis of the results, it can be concluded that Sn-MFI acts not only as a Lewis acid 

catalyst but also as a superior support for the Pt catalyst as compared with the activated 

carbon and TiO2. 

 

 

Figure 3.6 (a) Concentration profile and (b) glycerol conversion and LA selectivity over 

a physical mixture of Pt/AC and Sn-MFI. Reaction conditions: 0.2 M glycerol in H2O; 

glycerol/Pt (mol/mol) =350; glycerol/Sn (mol/mol) = 226; pO2 = 0.62 MPa; 100 °C. 

 

Based on these reaction results, a tandem reaction pathway for selective 

oxidation of glycerol to LA is proposed in Scheme 3.2. In a base-free environment, Pt 

nanoparticles predominantly activate the primary hydroxyl group over the secondary 

one in glycerol, leading to the formation of GLA. The formed GLA can undergo 

sequential oxidations to GlyA and TarA. In the presence of the Lewis acid Sn-MFI catalyst, 

GLA is quickly converted into a thermodynamically more stable isomer, DHA, via 

intramolecular 1,2 hydride shift reaction.58, 109, 110 Previous studies have reported that 

a b 
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weak Brønsted acid catalyzed dehydration of DHA produces PA.58, 112 The formed PA 

undergoes another intramolecular 1,2 hydride shift after hydration of PA, to generate LA. 

The superior catalytic activity of Sn-MFI can facilitate the reaction of GLA to LA even if 

the competitive sequential oxidations of GLA can also occur. Moreover, further 

oxidation of LA on the catalyst is 39 times slower than oxidation of glycerol, which 

favors a cascade reaction stopping at LA. 

 

 

Scheme 3.2 Proposed reaction pathways for the selective oxidation of glycerol to LA 

over the Pt/Sn-MFI catalyst. 

 

The spent catalysts were regenerated by washing with deionized water, ethanol 

and acetone at room temperature. Unfortunately, a gradual decrease in catalyst activity 

was observed for the recycled catalysts (Figure 3.7). This trend has also been shown 
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over Pt/TiO2 catalyst for conversion of glycerol into lactate in the presence of base.113 

Further improvement on the reusability of the catalysts will be able to be achieved by 

using bimetallic Au–Pt on Sn-MFI catalyst, which is an on-going project in our group. 

 

 

 

Figure 3.7 Recycling of Pt/Sn-MFI catalyst after 24 h of reaction. Reaction conditions 
are as follows: 0.2 M glycerol in H2O; glycerol/Pt (mol mol−1) = 350; glycerol/Sn (mol 
mol−1) = 226; pO2 = 0.62 MPa; 100 °C. 
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CHAPTER 4 

 MORPHOLOGY-TUNABLE LEWIS ACID SN-BEA 

WITH HYDROPHOBICITY FOR CELLULOSIC SUGAR ISOMERIZATIONS 

 

4.1 Introduction 

Lewis acid Sn-BEA, a molecular sieve with BEA topology containing tetrahedrally 

coordinated Sn, has been demonstrated to be a promising heterogeneous solid catalyst 

for the Baeyer-Villiger (BV) reaction,43-45 reduction of carbonyl compounds with 

secondary alcohols through the Meerwein-Ponndorf-Verley (MPV) reaction,41-43 ring-

opening hydration of epoxides,114 Diels-Alder and dehydration reaction pathway for 

producing p-xylene from 2,5-dimethylfuran and ethylene,21, 22, 115-119 and the 

isomerization of cellulosic sugars.38-40, 50, 106, 120, 121  

The outstanding catalytic activity and selectivity of Sn-BEA are attributable to the 

Lewis acidity coming from isolated Sn atoms in zeolite framework and hydrophobic 

nature associated with a defect-free siliceous surface.1, 40, 48, 50, 51 This hydrophobic 

property arises from the use of hydrofluoric acid (HF) in the synthesis of Sn-BEA. 

Fluoride ions not only act as a mineralizing agent for silica sources, but also pair with the 

positive charges of organic structure-directing agents (OSDA), i.e., tetraethylammonium 

(TEA+). Therefore, the fluoride-assisted  synthesis can produce highly crystalline zeolites 

with low density of structural defects (silanol groups, Si-OH) compared with the zeolites 

synthesized using hydroxide ions (OH-) in caustic media. The application of HF-mediated 

Sn-BEA, however, encounters several obstacles. For example, Sn-BEA synthesized under 
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HF media usually possesses large micrometer sized crystals due to slow 

crystallization.122-124 It is difficult to control crystal morphology using this method (e.g., 

nanocrystalline Sn-BEA and mesoporous Sn-BEA). The mass transfer limitation imposed 

by the large crystal size of Sn-BEA can hinder its catalytic applications, in particular, 

when bulky reactants or products are involved. Furthermore, the use of HF in a material 

manufacturing process is strictly limited by safety regulation that can prevent the 

potential commercialization of this catalyst.  

Recently, alternative synthesis approaches such as dry gel conversion (DGC) and 

post-synthetic methods have been developed for Sn-BEA.125-131 In particular, the post-

synthetic methods have been extensively studied, due to the simplicity of the method. Li 

and coworkers revealed that Sn can be grafted onto dealuminated zeolite BEA via 

chemical vapor deposition with tin chloride (SnCl4) vapor.129 According to Hammond et 

al., a solid state ion-exchange (SSIE) route was proposed by mixing tin acetate with 

dealuminated BEA.127, 128 Dijkmans et al. employed a solution-based approach to 

incorporate Sn into dealuminated BEA.130, 131 These post-synthetic methods include an 

acid treatment to remove framework Al from the parent Al-containing zeolites, creating 

silanol (Si-OH) nests at the removed Al sites. Reacting various Sn sources with silanol 

nests generated by the dealumination leads to the formation of tetrahedrally 

coordinated Sn sites. This protocol makes it possible to tailor the Sn content of Sn-BEA 

by changing the amount of Sn source and allows Sn-BEA to possess various 

morphologies.  Nevertheless, the defect density in the post-synthesized Sn-BEA samples 

is high, likely because of the low mobility of Sn sources in the treatment and the little 
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control over the type and amount of silanol groups in dealuminated BEA. Therefore, the 

post-synthesized Sn-BEA showed much lower catalytic performances in a hydrophilic 

solvent than the conventional hydrophobic Sn-BEA made in the presence of HF.106, 126, 132  

It is a challenge to synthesize low defective Lewis acid Sn-BEA of varying crystal 

morphologies. Herein, we demonstrate that morphology-tunable Sn-BEA crystals with 

low defects can be readily achieved by a crystallization method. 

Recrystallization techniques have been used to prepare hollow structured 

zeolites through a concerted process including dissolution of crystalline zeolites and 

reassembly for recrystallization.133-138 The dissolution of parent zeolites was achieved 

using a basic solution. Meanwhile, the recrystallization of dissolved species was assisted 

with the use of an OSDA. Hollow MFI zeolites such as silicalite-1, ZSM-5 and TS-1 have 

been synthesized from conventional MFI crystals using tetrapropylammonium hydroxide 

(TPAOH) as an OSDA.134-138 In a similar recrystallization treatment, a hollow morphology 

of SAPO-34 with CHA topology was obtained using tetraethylammonium hydroxide 

(TEAOH).133 By tailoring the recrystallization parameters, hierarchical zeolites have also 

been fabricated by the method.139-143  

In this study, we modified the recrystallization approach to reduce the defects 

without changing the morphologies of the parent Sn-BEA samples. Sn atoms were 

incorporated into the dealuminated BEA via a post-synthetic route, followed by 

recrystallization of the resultant material with tetraethylammonium bromide (TEABr) as 

an OSDA and ammonium fluoride (NH4F). Bulky, 200 nm sized and hierarchical Sn-BEA 

zeolites with reduced defects were fabricated by this method, respectively. The catalytic 
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activity of the synthesized Sn-BEA samples was systematically evaluated using the 

isomerizations of glucose (C6 sugar) and lactose (C6 sugar dimer) dissolved in both water 

and MeOH solvents, respectively. 

 

4.2 Experimental  

4.2.1 Material Syntheses  

Sn-BEA-HF was synthesized according to the method reported by Chang and 

coworkers.101 Typically, 10.47 g of tetraethylorthosilicate (TEOS, 98%, Alfa Aesar) was 

mixed into 11.51 g of tetraethylammonium hydroxide solution (TEAOH, 35 wt%. Alfa 

Aesar or SACHEM), and stirred at room temperature until it became homogeneous. To 

this solution, 0.15 g of tin chloride hydrate (SnCl4·xH2O, 34.4 wt% Sn, Alfa Aesar) 

dissolved in 0.96 g of deionized water was added. The mixture was then stirred in a 

hood until ethanol generated from the hydrolysis of TEOS was completely evaporated. 

Then, 0.560 mL of dealuminated zeolite beta seed solution (0.224 g mL-1) was added 

into the solution (4.1 wt% with respect to the silica content) and mixed by a plastic 

spatula. Finally, 0.971 mL of hydrofluoric acid (HF, 48 wt%, Alfa Aesar) was added and 

homogenized by using a plastic spatula. The obtained gel with a molar composition of 1 

SiO2 : 0.008 SnO2 : 0.27 TEA2O : 0.54 HF : 7.5 H2O was then transferred into a Teflon-

lined stainless steel autoclave. For crystallization, the autoclave was heated at 140 °C 

with a rotation of 3 rpm for 4 days. The as-made product was collected by extensive 

washing with deionized water and then drying in a 100 °C oven overnight. The resulting 

solid was calcined in tube furnace by flowing air with a ramping rate of 1 °C min-1 to 



 55 

550 °C for 12 h, with the aim to remove the organic structure-directing agent and 

fluoride ions. The Si/Sn molar ratio of the final product was 126, as determined by 

inductively coupled plasma (ICP) analysis. 

In order to synthesize Sn-BEA-PS, three parent Al-BEA zeolites were prepared: (1) 

commercial Al-BEA (CP814E, Si/Al=12.5, denoted as Com_Al-BEA) from Zeolyst, (2) Al-

BEA with 200 nm of a particle size (denoted as 200nm_Al-BEA) synthesized from earlier 

literature,144 and (3) three-dimensionally ordered mesoporous imprinted Al-BEA 

(denoted as 3DOm_Al-BEA) synthesized by a previously reported method.34 The 

prepared Al-BEA zeolites were dealuminated by treatment with nitric acid (HNO3, 70 

wt%, Fisher Scientific). Typically, 0.5 g of the Al-BEA was mixed with 25 mL of HNO3 in a 

Teflon-lined stainless steel autoclave which was then put into 80 °C oven for 24 h under 

static conditions. The dealuminated zeolite BEA (DeAl-BEA) was washed extensively with 

deionized water, and subsequently dried overnight at 100 °C. To prepare post-

synthesized Sn-BEA (Sn-BEA-PS), solid-state incorporation was performed by grinding tin 

chloride hydrate (SnCl4·xH2O, 34.4 wt% Sn, Alfa Aesar) with DeAl-BEA for 10 min in a 

pestle and mortar, followed by calcination in tube furnace by flowing air with a ramping 

rate of 1 °C min-1 to 550 °C for 12 h.127 Each Sn-BEA-PS sample via post-synthesis was 

named Com_PS, 200nm_PS and 3DOm_PS, depending on the parent Al-BEA used. All Sn-

BEA-PS zeolites possessed a Si/Sn molar ratio of 125, confirmed by ICP analysis. 

Sn-BEA-RC was achieved by recrystallizing Sn-BEA-PS in the presence of 

tetraethylammonium bromide (TEABr, 98%, Alfa Aesar) and ammonium fluoride (NH4F, 

96%, Alfa Aesar). Typically, 0.1 g of Sn-BEA-PS powder was mixed with 0.189 g of TEABr 
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and 0.034 g of NH4F for 5 min using a pestle and mortar. The resulting solid with a molar 

composition of 1 SiO2 : 0.008 SnO2 : 0.54 TEABr : 0.54 NH4F was recrystallized via steam-

assisted crystallization (SAC). 0.1 mL of deionized water was dropped into a 50 mL 

Teflon-lined stainless steel autoclave, and a small glass vial containing the resulting 

powder was loaded in the autoclave, to avoid direct contact between the solid and 

water. Subsequently, the autoclave was placed in an oven set at 170 °C, and then 

heated for 1 day. After recrystallization, the as-made sample was washed by 

centrifugation with deionized water and dried at 90 °C overnight. The dried sample was 

calcined in a tube furnace by flowing air with a ramping rate of 1 °C min-1 to 550 °C for 

12 h, to remove the organic structure-directing agent and the ammonium and fluoride 

ions. Each Sn-BEA-RC sample prepared by recrystallization was denoted as Com_RC, 

200nm_RC and 3DOm_RC, depending on the parent Al-BEA used. All Sn-BEA-RC zeolites 

possessed a Si/Sn molar ratio of 125, confirmed by ICP analysis.  

4.2.2 Material Characterization 

Powder X-ray diffraction (XRD) patterns of the samples were measured on an 

XRD diffractometer (X’Pert Pro, PANalytical) using Cu Kα radiation generated at 45 kV 

and 40 mA in a 2θ range of 4−40°. A scanning electron microscope (SEM, Magellan 400, 

FEI) was used to investigate the morphology of the zeolites, and the samples were 

coated with platinum/palladium alloy prior to observation. Elemental analysis was 

performed on inductively coupled plasma optical emission spectroscopy (ICP-OES, iCap 

6500 Dual view, Thermo Scientific). 
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Lewis acidity of Sn-BEA zeolites were confirmed by Fourier transform infrared 

spectroscopy (FT-IR) on an Agilent Cary 660 FT-IR Spectrometer equipped with a MCT 

detector (128 scans at a spectral resolution of 2 cm-1). Typically, zeolite sample was 

loaded into a sample cell, followed by annealing at 450 °C for 1 h under vacuum of 0.01 

mTorr to completely remove adsorbed water from the sample. After cooling down to 

30 °C, the dehydrated solid was saturated with pyridine (99.8%, Sigma-Aldrich) or 

deuterated acetonitrile (CD3CN, 99.8%, Sigma-Aldrich). Then, FT-IR spectra were 

recorded every 10 °C while increasing the cell temperature at a ramp rate of 2.5 °C min-1. 

Water adsorption property of Sn-BEA was characterized by thermal gravimetric 

analysis (TGA) in a thermal analyzer (SDT600, TA instrument). 20 mg of zeolite was 

mixed with 0.4 mL of water and stirred at 90 °C for 1 h under 1000 rpm, followed by 

drying at 60 °C in an oven for 16 h. Around 10 mg of the sample was put into the TGA 

instrument, and the sample temperature was then increased with a ramping rate of 

10 °C min-1 to 700 °C while flowing helium at 100 mL min-1. Methanol (MeOH) 

adsorption property of the sample was also determined by the same TGA technique, 

except sample pretreatment. 20 mg of zeolite was mixed with 0.4 mL of MeOH and 

stirred at 50 °C for 1 h under 1000 rpm, followed by drying at room temperature for 16 

h.  

Water vapor adsorption isotherms were obtained using a VSTAR water vapor 

sorption analyzer (Quantachrome Instruments) at 25 °C. Before measurement, zeolite 

samples were degassed at 300 °C for 12 h.  
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4.2.3 Catalytic Activity Test 

The catalytic activity of the Sn-BEA zeolites was studied for sugar isomerizations 

including the conversion of glucose to fructose and conversion of lactose and lactulose 

in two different solvents i.e., water and MeOH (99.9%, Fischer Scientific). For glucose 

isomerization in water, 1 g of 1 wt% glucose in water was mixed with Sn-BEA in a closed 

glass vial. The molar ratio of glucose to Sn was 20. The reaction proceeded at 100 °C for 

15 min on an aluminum heating block. For glucose isomerization in MeOH, the reaction 

occurred at 70 °C for 15 min after 1 g of 1 wt% glucose in MeOH was mixed with Sn-BEA 

(glucose/Sn molar ratio = 20). After the reaction, the reaction mixture was cooled down 

in ice water and filtered by a 200 nm syringe filter. The filtrate was then analyzed on 

HPLC (LC029C Shimadzu) equipped with a refractive index (RI) detector and an HPX-87H 

column (BioRad) at 30 °C under 0.6 mL min-1 of 0.005 M sulfuric acid (Fisher Scientific). 

In addition, conversion of lactose was performed in both water and MeOH, respectively. 

The Sn-BEA catalyst was mixed with either 1 g of 1 wt% lactose in water or 1 g of 0.5 wt% 

lactose in MeOH. The molar ratio of lactose to Sn in the initial reaction mixture was 20 

for lactose isomerization in both solvents. The lactose reaction was carried out in water 

at 110 °C for 2 h, while the reaction occurred in MeOH at 90 °C for 16 h. HPLC (LC029C 

Shimadzu) was employed to quantify the sugar mixture using a refractive index (RI) 

detector and an HPX-87C column (BioRad) at 80 °C under 0.6 mL min-1 of water (for 

HPLC, Fisher Scientific).  
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4.3 Results and Discussions 

Sn-BEA-RC samples were synthesized by the recrystallization method, starting from 

three parent Al-BEA zeolites: bulky Al-BEA (denoted as Com_Al-BEA, Zeolyst, CP814E, 

Si/Al=12.5), 200 nm sized Al-BEA (denoted as 200nm_Al-BEA) and three-dimensionally 

ordered mesoporous imprinted Al-BEA (denoted as 3DOm_Al-BEA). For comparison, 

conventional Sn-BEA was also hydrothermally synthesized using HF, denoted as Sn-BEA-

HF (Figure 4.1a). As displayed in Figure 4.2, three Sn-BEA-PS zeolites showed similar 

morphology to their corresponding parent Al-BEA, indicating no significant change in 

morphology during the dealumination of Al-BEA and subsequent Sn incorporation into 

the framework. Moreover, the morphology of Sn-BEA-RC resembles that of their 

corresponding Sn-BEA-PS although Sn-BEA-RC samples likely have more rough external 

surfaces than the counterparts. This strongly suggests that the recrystallization 

treatment successfully retained the morphology of the sample.  

 

 

Figure 4.1 (a) A SEM image of Sn-BEA-HF, and (b) XRD patterns of Sn-BEA-HF and SnO2. 
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Figure 4.2 SEM images of (a) Com_Al-BEA, (b) Com_PS, (c) Com_RC, (d) 200nm_Al-BEA, 
(e) 200nm_PS, (f) 200nm_RC, (g) 3DOm_Al-BEA, (h) 3DOm_PS, and (i) 3DOm_RC. The 

samples were named X_Y. X means the morphologies: Com is for commercial bulky sized, 

200nm for 200 nm sized, and 3DOm for three-dimensionally ordered mesoporous imprinted. Y 

stands for either Al-BEA or Sn-BEA prepared by post-synthesis method (PS) and 

recrystallization method (RC), respectively. 
 

The crystalline structure of the BEA zeolites was well-preserved during the 

dealumination and recrystallization processes. The XRD patterns of different parent BEA 

zeolites, dealuminated and recrystallized samples are displayed in Figure 4.3. All the 

samples clearly represent two main features at 2θ = 7.5° and 2θ = 22.4°, which are 

characteristics of typical BEA zeolites with mixed polymorphs.101, 124, 127 No substantial 

decrease in intensity was observed for the samples after delaumination and Sn 
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incorporation, indicating the processes extracted the Al out from the framework 

structures and did not cause measureable crystal structure change. In addition, no other 

impurity phase was observed in the samples after the recrystallization. Moreover, Sn-

BEA-RC as well as Sn-BEA-PS did not have SnO2 clusters that show the diffraction peaks 

at 2θ = 26.7° and 2θ = 34° (Figure 4.1b), pointing to the formation of tetrahedrally 

coordinated Sn sites into BEA framework. 
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Figure 4.3 XRD patterns of (a) Com_Al-BEA, Com_PS and Com_RC, (b) 200nm_Al-BEA, 
200nm_PS and 200nm_RC, and (c) 3DOm_Al-BEA, 3DOm_PS and 3DOm_RC. 

 

The presence of the framework Sn sites in the Sn-BEA samples was confirmed by 

deuterated acetonitrile (CD3CN) FT-IR spectroscopy, since this probe molecule 

exclusively adsorbs on the isolated, tetrahedral Lewis acidic center and distinguishes 

between framework Sn sites and bulk SnO2. As highlighted in Figure 4.4a, three main 

bands were visible in the spectra. The feature at 2276 cm−1 is assigned to the ν (C N) 
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stretching mode of acetonitrile adsorbed on the silanol groups (Si-OH).45, 46 In contrast, 

two bands at 2310 cm-1 and 2316 cm-1 could originate from the closed Sn (four-fold 

coordinated to the siliceous framework) and the open Sn (three-fold coordinated to the 

zeolite framework with one Sn-OH group) sites, respectively.51, 56, 125, 128, 145 Sn-BEA-HF 

possessed more open Sn sites than closed ones, whereas closed Sn sites were more 

pronounced on Sn-BEA-PS (Figure 4.4a), in good agreement with previous reports.46, 51, 

126, 146 We emphasize that Sn-BEA-RC zeolites likely have more open Sn sites than Sn-

BEA-PS samples, indicating that fluoride ions during the recrystallization enhance open 

Sn environment, a similar role of these anions in a hydrothermal Sn-BEA synthesis. 

Several efforts have been made so far to investigate the nature of active Lewis acid sites 

on Sn-BEA materials. Boronat et al. suggested that catalytically active site of Sn-BEA is 

open Sn species for BV and MPV reactions.42, 147 In addition, open Sn sites were 

proposed as the dominant active sites for glucose isomerization.145, 148, 149 On the other 

hand, closed Sn sites of Sn-BEA can be catalytically active sites in MPV transfer 

hydrogenation of 5-hydroxymethylfurfural and various ketones.146, 150 Therefore, 

synthesis of Sn-BEA with different ratios of the open and closed sites is critical for 

controlling their catalytic activities.  

 The Lewis acidity of the zeolites is further confirmed by FT-IR spectra using 

pyridine as a probe molecule. Unlike CD3CN, pyridine used as a base titrant of Lewis acid 

sites does not distinguish open and closed Lewis acid sites.114, 118, 145 As shown in Figure 

4.4b, Sn-BEA-RC samples exhibited a strong absorption at 1452 cm−1, associated with 

the pyridine molecules bound with Lewis acidic Sn sites.52, 58 No significant absorption 
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signal at 1554 cm−1 associated with Brønsted acid was observed in the spectra.52, 58 

Furthermore, inductively coupled plasma (ICP) analysis gave the same Si to Sn molar 

ratio of 125 for all Sn-BEA-PS and Sn-BEA-RC samples, demonstrating no leaching of Sn 

atoms was detected in the recrystallization. All the above characterizations clearly 

indicate that the three Sn-BEA-RC zeolites provide mainly framework coordinated Sn 

atoms, which are responsible for the Lewis acid sites. 

 

 

Figure 4.4 FT-IR spectra of Sn-BEA-RC, Sn-BEA-PS and Sn-BEA-HF catalysts using (a) 
deuterated acetonitrile (CD3CN) and (b) pyridine as a probe molecule. The spectra 
were collected after desorbing CD3CN at 50 °C and pyridine at 200 °C, respectively. 

 

The proposed mechanism of Sn-BEA recrystallization is illustrated in Scheme 4.1. 

After grinding Sn-BEA-PS with NH4F and TEABr in a pestle and mortar, the mixture was 

put into a Teflon-lined stainless steel autoclave, followed by steam-assisted 

recrystallization at 170 °C for 1 day. Fluoride ions can destroy Si-O-Si bonds on the 

surface of Sn-BEA-PS to give fragmented silica species. It is very likely that this 

dissolution occurs on mainly silanol nests on the Sn-BEA-PS. To verify this hypothesis, 
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we performed FT-IR spectroscopy after removing the adsorbed water from the samples 

by degassing at 550 °C. In Figure 4.5, the band at 3745 cm−1 comes from the isolated 

silanol groups on the external surface of the samples, whereas the feature at 3735 cm−1 

is ascribed to the silanol groups located inside the micropores of zeolites.70, 71 The band 

around 3500 cm−1 corresponds to silanol nests that occur at extended defects.70 The 

results of the spectra strongly indicate that the recrystallization route causes significant 

reduction in mostly silanol nests of all three types of Si-OH groups. In the course of 

recrystallization process, the presence of TEA ions as an OSDA enables the leached silica 

fragments to be recrystallized. In this step, TEA cations can pair with fluoride anions, 

producing fewer silanol defects located in zeolites.56, 106, 130, 151 For a control experiment, 

the sole use of NH4F in the recrystallization resulted in complete collapse of the BEA 

framework, revealing that TEA ions play an essential role of preserving the crystalline 

BEA structure (Figure 4.6). In addition, the effect of recrystallization times on the Sn-

BEA-RC samples was investigated. From the XRD patterns of Com_RC synthesized with 

different recrystallization times (Figure 4.6 and Table 4.1), a relative loss in the intensity 

of the XRD peak at 2θ = 7.5°, compared with the peak at 2θ = 22.4°, was observed on 

the recrystallized samples with longer recrystallization times such as 4 days and 7 days. 

This is indicative of the partial collapse of BEA structures, which might be attributed to 

the decomposition of TEA molecules for long recrystallization times (Figure 4.7 and 

Table 4.2).  

It is believed that the partial dissolution of Sn-BEA-PS and the reassembly of 

etched silica species occur simultaneously, supported by no pronounced morphological 
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change during the entire process as shown Figure 4.2. If the dissolution rate by fluoride 

ions is much faster than the reassembly rate of the etched silica fragments into the 

zeolite framework, the morphology of Sn-BEA-RC would be quite different from that of 

Sn-BEA-PS. In this respect, this recrystallization method offers an advantage of tailoring 

crystal morphology of Sn-BEA that follows that of parent Al-BEA. 

 

 

Scheme 4.1 Proposed mechanism of a Sn-BEA recrystallization process. 
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Figure 4.5 FT-IR spectra in the OH-stretch region (3800 − 3000 cm−1) of the Sn-BEA 
catalysts. 

 

 

Figure 4.6 XRD patterns of Com_RC synthesized with different recrystallization times 
(1 day to 7 days) and Com_RC synthesized without TEABr. 
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Table 4.1 Peak ratio in XRD patterns of Com_RC synthesized with different 
recrystallization times 
 

Peak ratioa Com_RC1d Com_RC2d Com_RC4d Com_RC7d 

Peak area at 2θ = 7.5°/ 

Peak area at 2θ = 22.4° 
1.39 1.38 1.18 1.16 

a Peak area at 2θ = 7.5° divided by that at 2θ = 22.4° in the XRD patterns as shown in Figure 4.6. 

 

 

Figure 4.7 TGA curves of as-made Com_RC synthesized with different recrystallization 
times (1 day to 7 days). The weight decrease on the plot corresponds to the amount of 
TEA molecules occluded in the zeolite channels during the recrystallization. After 
recrystallization with specified times, as-made samples were collected by extensively 
washing with deionized water and drying at 90 °C oven overnight.  
 

 

 

Table 4.2 TEA molecules occluded within as-made Com_RC during the recrystallization  

Molar ratioa 
As-made 

Com_RC1d 

As-made 

Com_RC2d 

As-made 

Com_RC4d 

As-made 

Com_RC7d 

TEA (mol)/ 

Com_RC (mol) 
11.6 11.4 9.5 8.9 

a The molar ratio of TEA molecules (mol) to Com_RC zeolites (mol) in the as-made Com_RC 
samples.  
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The three Sn-BEA-RC catalysts were investigated using Lewis acid catalyzed 

glucose isomerization in water, and compared with Sn-BEA-PS as well as Sn-BEA-HF. 

Glucose, which is the most abundantly available hexose sugar in cellulose, undergoes 

isomerization to generate fructose and mannose via an intramolecular 1,2 hydride 

shift.39 As shown in Figure 4.8, Sn-BEA-HF produced 29.7% yields of fructose and 

mannose, whereas the three Sn-BEA-PS samples gave ~7.5% of the products, revealing 

that the post-synthetic approach reduced the reactivity in accordance with previous 

literature.106, 151 This result is mainly because of hydrophilic surrounding coming from 

the highly defective surface in the vicinity of active Sn sites on Sn-BEA-PS. Notably, Sn-

BEA-RC gave rise to ~18.5% yields of the product, which exhibits a 2.5 times higher 

activity than the Sn-BEA-PS despite the lower activity of Sn-BEA-RC than that of Sn-BEA-

HF. It is evident that Sn-BEA-RC is more hydrophobic than Sn-BEA-PS, due to the lower 

density of silanol defects on Sn-BEA-RC compared with that on Sn-BEA-PS (Figure 4.5). 

Moreover, as represented in Figure 6, similar initial catalytic activities were observed on 

the three Sn-BEA-RC as well as the three Sn-BEA-PS for glucose isomerization in water, 

regardless of the crystal size or mesoporosity of the catalysts. This result suggests that 

there is no diffusion limitation in the isomerization of glucose over the Sn-BEA catalysts. 

Besides, we attempted to further improve the catalytic activity of Sn-BEA-RC by varying 

recrystallization times. Nevertheless, prolonged recrystallization times after 2 days 

tended to decrease the catalytic performance of Com_RC for the aqueous glucose 

isomerization (Figure 4.9). This is mainly caused by the lower crystallinity of Com_RC 

zeolites with longer recrystallization times, as described earlier. 
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Figure 4.8 Initial catalytic activities of Sn-BEA-HF, Sn-BEA-PS and Sn-BEA-RC for 
isomerization of aqueous glucose. Reaction conditions are as follows: initial glucose 
concentration of 1 wt%; a glucose to Sn molar ratio of 20; 100 °C; 15 min. 
 

 

Figure 4.9 Initial catalytic activities of Com_RC with different recrystallization times (1 
day to 7 days) for isomerization of aqueous glucose. Reaction conditions are as follows: 
initial glucose concentration of 1 wt%; a glucose to Sn molar ratio of 20; 100 °C; 15 min. 
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To better understand the hydrophobic property of the catalyst, water vapor 

adsorption isotherms were obtained at 25 °C. As displayed in Figure 4.10a, Sn-BEA-HF 

showed strong hydrophobic characteristics and lower water uptake in the entire range 

of relative pressure (P/Po) than Com_RC and Com_PS. This is because of the low 

defected density of three types of silanol groups (i.e., internal and external Si-OH, and 

silanol nest) on Sn-BEA-HF derived from fluoride media, as shown in Figure 4.5. Com_RC 

exhibited a higher uptake of water in comparison with Com_PS, indicating the 

recrystallization can considerably increase the hydrophobicity of Sn-BEA. It is generally 

accepted that silica-based materials become more hydrophobic with decreasing 

numbers of silanol groups.106, 152, 153  

In addition to the water vapor isotherms, thermogravimetric analysis (TGA) also 

provided the hydrophilic property of Sn-BEA samples. Water-treated Sn-BEA zeolites 

were prepared by mixing 20 mg of Sn-BEA with 0.4 mL of water at 90 °C for 1 h, 

followed by drying at 60 °C oven for 16 h. Upon heating the water-treated Sn-BEA 

samples, weakly bound physisorbed water disappears immediately (Figure 4.10b), while 

some more strongly hydrogen-bonded water is gradually released from the sample in 

the temperature range from ~110 °C to ~400 °C.154-156 Apparently, the weight loss of Sn-

BEA-HF is lower than that of both Com_RC and Com_PS, which is caused by the 

hydrophobic nature of the Sn-BEA synthesized in the presence of HF. This Com_RC 

released a lower amount of water than the Com_PS in the temperature range from 

~110 °C to ~400 °C, suggesting no strongly hydrogen-bonded water in the Com_RC 

sample. This can be explained by the reduced silanol defects in the Com_RC.152, 157 The 
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desorption above ~400 °C accounting for 1-3 wt% of the zeolite was observed for 

Com_RC and Com_PS, which is associated with condensation of silanol groups at an 

onset temperature between 400 °C and 700 °C.154-156 Therefore, it can be concluded that 

the recrystallization method indeed improve the hydrophobicity of the Sn-BEA zeolite, 

however not all silanol defects can be eliminated by this method, which agrees well with 

the FT-IR spectra in the OH-stretch range (Figure 4.5).  

 

 

Figure 4.10 (a) Water vapor adsorption isotherms at 25 °C and (b) thermogravimetric 
analysis (TGA) of water adsorption on Sn-BEA-HF, Com_PS and Com_RC zeolites. Prior 
to TGA, 20 mg of samples was mixed with 0.4 mL of water and stirred at 90 °C for 1 h 
under 1000 rpm, followed by drying at 60 °C oven for 16 h. 

 

To gain further insight into the effect of surface properties of the Sn-BEA on its 

catalytic activity, methanol (MeOH) was chosen as a solvent in glucose isomerization. In 

this reaction, Lewis acid Sn-BEA catalyzes glucose isomerization to fructose via 

intramolecular 1,2 hydride shift, which further reacts with MeOH to form methyl 

fructoside.158 Three Sn-BEA-RC zeolites produced comparable product yields to Sn-BEA-



 73 

HF, and showed 2-fold higher performances than Sn-BEA-PS samples (Figure 4.11). This 

observation likely arises from the differences in the catalyst surface property and  

solvent polarity. Since the dielectric constant values are 80 and 32 for water and MeOH, 

respectively,159 the presence of a less polar MeOH solvent than water increases MeOH 

interaction with non-polar siloxane bonds (Si-O-Si) on Sn-BEA.106, 153 MeOH adsorption 

property on the catalysts was also evaluated using thermogravimetric analysis. Figure 

4.12 clearly shows that Com_RC has similar MeOH uptake to Sn-BEA-HF below ~90 °C of 

the temperature. Above ~90 °C, however, a lower amount of MeOH was released from 

Com_RC than Sn-BEA-HF, which might be due to strong interaction of MeOH with 

hydrophobic non-polar surfaces of Sn-BEA-HF. Although Com_RC has an advantage of 

catalytic activity regarding the solvent adsorption over Sn-BEA-HF, it should be noted 

that Com_RC is prone to possessing a lower amount of open Sn sites than the 

counterpart, confirmed by CD3CN FT-IR spectra (Figure 4.4a). Because open Sn sites 

have been found to be dominant active sites for glucose isomerization,145, 148, 149 there is 

likely a trade-off between the advantage (i.e., weaker solvent interaction) and 

disadvantage (i.e., lower open site density) of the Com_RC, in comparison with the Sn-

BEA-HF. Moreover, MeOH was highly adsorbed on Com_PS in the whole temperature 

region, which explains organophilic nature of Com_PS. This is probably because MeOH 

molecules are able to strongly bind at the silanol nest of Com_PS via hydrogen 

bonding.153, 160, 161 
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Figure 4.11 Initial catalytic activities of Sn-BEA-HF, Sn-BEA-PS and Sn-BEA-RC for 
glucose isomerization in MeOH. Reaction conditions are as follows: initial glucose 
concentration of 1 wt%; a glucose to Sn molar ratio of 20; 70 °C; 15 min. 
 

 

Figure 4.12 Thermogravimetric analysis (TGA) of MeOH adsorption on Sn-BEA-HF, 
Com_PS and Com_RC zeolites. Prior to TGA, 20 mg of samples was mixed with 0.4 mL of 
MeOH and stirred at 50 °C for 1 h under 1000 rpm, followed by drying at room 
temperature for 16 h. 
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Furthermore, catalytic activities of the Sn-BEA-RC zeolites were explored and 

compared with other Sn-BEA materials by using a bulky lactose reactant built of 

galactose and glucose units linked via a β (1-4) glycosidic bond (Scheme 4.2). Lactose 

serves as a precursor for sugar derivatives such as sugar acids and sugar alcohols in food 

and pharmaceutical industries.162  Lewis acid Sn-BEA zeolites convert lactose into 

lactulose composed of galactose and fructose.132, 162, 163 In aqueous lactose 

isomerisation, the three post-synthesized zeolites began to show different catalytic 

reactivities in the following order: 3DOm_PS > 200nm_PS > Com_PS (Figure 4.13a), 

demonstrating that Sn-BEA with higher surface area facilitates faster molecular diffusion 

of lactose to an active site and thus results in a greater catalyst performance. Likewise, 

Sn-BEA-RC materials performed higher catalytic activities with increasing surface area of 

the zeolites. Notably, the three RC zeolites produced higher lactulose yields than their 

corresponding PS ones by factors of 1.8-2.5. As a matter of fact, it is quite challenging 

for C12 lactose molecules to diffuse into the BEA micropores. In this case, molecular 

diffusion becomes critical for the reaction, giving rise to more pronounced differences in 

the performances between the hierarchical, 200 nm, and bulky Sn-BEA catalysts. 

Nevertheless, mesoporous 3DOm_RC and a few micron-sized Sn-BEA-HF catalyzed 

lactose isomerization to a similar extent. This can be attributable to catalytic inhibition 

associated with stronger adsorption of water on 3DOm_RC than Sn-BEA-HF whose 

surface mostly consists of non-polar Si-O-Si bonds. However, when switching solvent 

from water to MeOH in the isomerization, 3DOm_RC performed the reaction at a 3.2 

times higher rate than Sn-BEA-HF (Figure 4.13b). The enhanced reaction rate on 
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3DOm_RC can be interpreted by the reduced diffusion limitation of lactose within the 

hierarchically structured catalyst. On the basis of the results, hierarchical Sn-BEA 

prepared from the recrystallization strategy can achieve high reactivity by tailoring 

surface property and enhancing open Sn sites as dominant active sites.  

 

 

Scheme 4.2 Reaction scheme for the Lewis acid catalyzed isomerization of lactose into 

lactulose. 

 

 

Figure 4.13 Initial catalytic activities of Sn-BEA-HF, Sn-BEA-PS and Sn-BEA-RC for 

lactose isomerization in (a) water and (b) MeOH solvents, respectively. Reaction 

conditions are as follows: initial lactose concentration of 1 wt% and 0.5 wt% in water 

and MeOH, respectively; a substrate to Sn molar ratio of 20; 110 °C at 2 h (in water), and 

90 °C at 16 h (in MeOH). 
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CHAPTER 5 

 PHOSPHORUS-CONTAINING ZEOLITES FOR RENWABLE P-XYLENE PRODUCTION 

  

5.1 Introduction 

p-Xylene is a major commodity chemical and precursor in the production of the 

most widely used polyester, polyethylene terephthalate (PET). Due to the rapid growth 

in the global market of PET (6-8% per year),164 its replacement with a renewable 

feedstock is a highly desired goal,165 and  there are ongoing research and development 

efforts to produce p-xylene from biomass feedstocks.115-117, 166-170 Diels–Alder reactions 

of biomass-derived furans with subsequent dehydration have demonstrated the 

potential for producing renewable p-xylene and other aromatic derivatives with high 

stereospecificity.115-117, 166, 167 To date, the most selective catalysts reported are acidic 

zeolites with large micropores (7.5 Å), which primarily catalyze the dehydration reaction. 

However, they also catalyze the formation of alkylated and oligomerized by-products 

(Scheme 5.1).22 Due to these side reactions, the highest yield to p-xylene previously 

achieved was 75%.21, 22  

Scheme 5.1 depicts a reaction pathway for p-xylene synthesis. The Diels–Alder 

cycloaddition of DMF and ethylene was carried out, followed, in the same reactor, by 

the dehydration of the cycloadduct intermediate. This reaction offers a completely 

renewable pathway for p-xylene production since both DMF and ethylene can be 

obtained from glucose.85, 171 Increasing the efficiency of the reaction from DMF and 

ethylene to p-xylene is critical for ensuring the economic and technical feasibility for the 
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entire process. As suggested by a techno-economic analysis on the process of Scheme 

5.1, an increase in the yield substantially improves the economics of  renewable p-

xylene.172 

Conversion of DMF with ethylene to p-xylene in n-heptane has been 

demonstrated using acidic zeolite catalysts, including zeolite Y and Al-BEA.22, 117 There 

are three competing side reactions: (a) hydrolysis of DMF to form 2,5-hexanedione, (b) 

multiple additions of ethylene to form alkylated aromatic species, and (c) dimerization 

of the furan feedstock and/or aromatic products to form oligomers (Scheme 5.1). 

Density functional theory (DFT) calculations have emphasized the role of Brønsted acids 

catalyzing the main reaction pathway and enhancing the yield of p-xylene by reducing 

the cycloadduct dehydration barrier from ~60 kcal mol-1 to ~10-20 kcal mol-1.47, 117 

However, these Brønsted acid zeolites also catalyze the alkylation and isomerization 

reactions, which not only reduce p-xylene yield but also lead to fast catalyst 

deactivation.21 Lewis acid zeolites (e.g., Zr-BEA and Sn-BEA) also catalyze the production 

of p-xylene from DMF with an initial formation rate of p-xylene comparable to that of 

Brønsted acid zeolite, Al-BEA.21, 115, 116 In particular, Zr-BEA exhibited the highest 

reported p-xylene yield (75%) with much slower deactivation rates. The properties of Zr-

BEA were ascribed to the weaker adsorption of DMF and reduced formation of by-

products compared with Al-BEA.21  

Herein, we report that phosphorous-containing siliceous zeolites are highly 

selective and stable catalysts for this reaction with an unprecedented p-xylene yield of 

97%. Two phosphorous-containing siliceous zeolites, zeolite Beta (BEA) and self-pillared 
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pentasil (SPP) zeolite, were investigated, which were known to us to be inactive for 

alkylation and oligomerization reactions. The P-containing zeolites are not only excellent 

catalysts for p-xylene production but also highly selective, leading to unprecedented 

high yields.  

 

 

Scheme 5.1 Production of renewable p-xylene. The pathway for the synthesis of p-
xylene from the reaction of DMF with ethylene including major intermediates and by-
products is indicated in the highlighted block. The renewable route for the production of 
DMF from cellulose is also indicated. Renewable ethylene can be commercially 
produced from ethanol dehydration. It can also be obtained from natural gas or other 
non-renewable sources. 
 

5.2 Experimental   

5.2.1 Material Syntheses  

Commercial zeolite Al-BEA (Zeolyst, CP814E, Si/Al = 12.5) was dealuminated by 

treatment with 70 wt % nitric acid (HNO3, Fisher Scientific). Typically, 0.5 g of the Al-BEA 

was mixed with 25 mL of 70 wt % HNO3 in a Teflon-lined stainless steel autoclave. The 
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autoclave was then put into an oven at 80 °C for 24 h under static conditions. The 

dealuminated zeolite BEA (DeAl-BEA) was washed extensively with deionized water and 

dried overnight at 100 °C. In order to prepare P-BEA with Si/P = 27 (confirmed by ICP 

analysis), wet impregnation was performed by stirring 0.4 g of DeAl-BEA and 18.2 μL of 

85 wt % phosphoric acid (H3PO4, Sigma-Aldrich) in 3.33 mL of deionized water. The 

impregnated sample was dried at 90 °C overnight, followed by calcination in a tube 

furnace with dry air at 600 °C for 25 min.  

P-SPP with Si/P = 27 (confirmed by ICP analysis) was synthesized according to the 

literature.27 Typically, tetra(n-butyl) phosphonium hydroxide (TBPOH, 40 wt %, Sigma-

Aldrich) as an organic structure-directing agent (OSDA) was added dropwise into 

tetraethylorthosilicate (TEOS, 98%, Sigma-Aldrich) under stirring. Deionized water was 

then added to this mixture, and stirred for 24 h. The mixture became a clear sol with a 

composition of 1 SiO2 : 0.3 TBPOH : 10 H2O : 4 EtOH. The sol was sealed in a Teflon-lined 

stainless steel autoclave and heated for 3 days in an oven at 115 °C. Tetra(n-

butyl)ammonium hydroxide solution (TBAOH, 40 wt %, Sigma-Aldrich) can also be used 

to prepare Si-SPP. After crystallization, the solid product was extensively washed with 

deionized water by centrifugation and decanting of the supernatant. This process was 

repeated until the pH of the final supernatant was lower than 9. Subsequently, the 

collected sample was dried at 90 °C overnight and calcined in a tube furnace at 550 °C 

for 12 h under dry air.  

P-Celite with Si/P = 5.0 (confirmed by ICP analysis) was prepared through an 

impregnation method.173, 174 First, the Celite® S (Diatomaceous silica, Sigma-Aldrich) was 
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calcined at 500 °C for 5 h under air. Then, 1 g of the calcined Celite was ion-exchanged 

with 100 mL of 0.2 M NH4NO3 solution at 60 °C for 20 h. The resulting product was 

filtered and washed by deionized water thoroughly, followed by drying at 90 °C 

overnight. The solid was then calcined at 500 °C for 5 h under air.  Thereafter, 1 g of the 

calcined powder was mixed with 4 mL of 0.75 M H3PO4 solution, and then dried at 90 °C 

overnight. The dried mixture was calcined at 500 °C for 5 h under air.  

P-Al-BEA was prepared by impregnation of H3PO4 on zeolite Al-BEA (Zeolyst, 

CP814E, Si/Al = 12.5), according to the same procedure described in the preparation of 

P-BEA, without the dealumination step.  

Si-BEA was synthesized following a published method.175 Typically, 8.72 g of 

tetraethylammonium hydroxide (TEAOH, 35 wt %, Alfa Aesar or SACHEM) was mixed in 

1.24 g of deionized water. To this mixture, tetraethylorthosilicate (TEOS, 98%, Sigma-

Aldrich) was added and stirred for 7 h at room temperature. Thereafter, 0.86 g of HF 

(49%, Alfa Aesar) was added, and the mixture became white solid with a molar 

composition of 1 SiO2 : 0.54 TEAOH : 0.54 HF : 7.25 H2O. The resulting solid was sealed in 

a Teflon-lined stainless steel autoclave, followed by crystallization for 2 days in an oven 

at 140 °C. Subsequently, the solid product was extensively washed with deionized water 

by vacuum filtration. The collected sample was dried at 90 °C overnight and calcined in a 

tube furnace at 550 °C for 12 h under dry air. Zr-BEA with Si/Zr = 168 (determined by ICP) 

was synthesized by a seeded-growth method reported earlier.21 In a typical synthesis, 

23.72 g of tetraethylorthosilicate (TEOS, 99%, Alfa Aesar) was added to 27.39 g of 

tetraethylammonium hydroxide solution (TEAOH, 35 wt %, SACHEM). The mixture was 
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stirred for 1 h to form a silicate solution. After 0.3 g of zirconium(IV) oxychloride 

octahydrate (ZrOCl2 · 8 H2O, Sigma-Aldrich) was dissolved in 1.92 g water, this solution 

was added dropwise into the silicate solution. The resulting mixture was stirred in a 

fume hood until the desired amount of ethanol (generated from TEOS hydrolysis) was 

evaporated. To this mixture, 1.712 mL of dealuminated zeolite BEA seed suspension 

with 0.163 g of seed crystal per mL (corresponding to 4.0 wt% seed with respect to silica) 

was added and mixed by a plastic spatula. Subsequently, 2.36 mL of hydrofluoric acid 

(HF, 49%, Alfa Aesar) was added and mixed by a plastic spatula to become a hard gel. 

The final gel with a composition of SiO2 : 0.008 ZrO2 : 0.56 TEAOH : 0.56 HF : 7.5 H2O was 

transferred to a Teflon lined stainless steel autoclave and crystallized at 140 °C for 4 

days under 2 rpm rotation. The solids were extensively washed with deionized water by 

vacuum filtration, dried in an 80 °C oven overnight, and calcined at 550 °C for 12 h under 

flowing dry air. 

5.2.2 Material Characterization 

Powder X-ray diffraction (XRD) patterns of the samples were recorded on an XRD 

diffractometer (X’Pert Pro, PANalytical) operated at 45 kV of an acceleration voltage and 

40 mA of a current using Cu Kα radiation. The data were collected over 4−40° of a 2θ 

range.  

A scanning electron microscope (SEM, Magellan 400, FEI) was used to examine 

the morphology of catalysts. Prior to the SEM measurement, the samples were coated 

with platinum/palladium alloy. To take TEM images, aqueous suspensions of the zeolite 

samples were prepared. TEM specimens were made by placing droplets of the 
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suspension onto the copper grid coated with ultra-thin carbon film and holey carbon 

film (Ted Pella Inc.), followed by air-drying at room temperature. TEM imaging was 

performed using a CCD camera on an FEI Tecnai G2 F30 TEM operating at 300 kV. 

Elemental analysis was performed on inductively coupled plasma optical 

emission spectroscopy (ICP-OES, iCap 6500 Dual view, Thermo Scientific) in Analytical 

Geochemistry Lab, Department of Earth Sciences in University of Minnesota. Argon 

adsorption−desorption isotherms were measured at 87 K by using an automated gas 

sorption analyzer (Autosorb iQ2, Quantachrome) after the samples were degassed at 

300 °C under vacuum. 

Catalytically active sites on the catalyst were characterized by pyridine Fourier 

transform infrared (FT-IR) spectroscopy56, 176 on an Agilent Cary 660 FT-IR Spectrometer 

equipped with a MCT detector (128 scans at a spectral resolution of 2 cm-1). The solid 

sample was heated to 450 °C for 1 h under vacuum of approximately 10-5 Pa to 

completely remove adsorbed water and impurity from the sample. Thereafter, the 

dehydrated sample was cooled to the desired temperature and then, pyridine (>99%, 

Sigma-Aldrich) was introduced to the sample cell via the vacuum manifold for 30 min, 

allowing the sample to be fully saturated with the adsorbate. In the absence of further 

flowing the pyridine, FT-IR spectra were collected every 10 °C in the process of heating 

the zeolite at a ramp of 2.5 °C min-1. 

Temperature-programmed desorption (TPD) coupled with thermogravimetric 

analysis (TGA) experiments were carried out, according to earlier literature.118 The 

system consists of a Cahn 2000 microbalance mounted within a vacuum chamber at a 
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base pressure of approximately 10-5 Pa. The partial pressures during evacuation were 

monitored using an SRI quadrupole mass spectrometer (RGA100). The probe molecules 

of interest were 2-propanamine (99%, Alfa Aesar) and 2,5-hexanedione (97%, Acros 

Organics). Typically, 50 mg samples were heated under vacuum to 500 °C, prior to 

performing the adsorption experiments. Subsequently, the samples were saturated with 

adsorbates of interest at room temperature for 1 h. The TPD-TGA data were collected 

with 10 °C min-1 of a heating rate. 

For determination of Brønsted acid sites on Al-BEA (Zeolyst, CP814E, Si/Al = 12.5), 

2-Propanamine temperature-programmed desorption (TPD) coupled with 

thermogravimetric analysis (TGA) experiment was performed. After TPD-TGA data were 

collected from room temperature to 560 °C, Brønsted-site density was determined by 

the weight difference between 300 °C and 400 °C which is the temperature range where 

2-propanamine decomposes into propene and ammonia on the Brønsted acid sites. As a 

result, Al-BEA possessed 620 μmol g-1. On the contrary, Lewis acid site density of Zr-BEA 

came from the metal content of Zr that was quantified by ICP analysis, giving 98 μmol g-1 

of Lewis acid sites within Zr-BEA. 

Solid state 31P-NMR spectra were recorded using a Bruker DSX-500 spectrometer 

and a Bruker 4 mm MAS probe. The operating frequency is 202.5 MHz for 31P. Powder 

samples packed into 4 mm zirconia rotors were spun at ambient conditions. For MAS 

NMR experiments, an rf pulse of 4 μs-π/2 and strong 1H decoupling pulse with two pulse 

phase modulation (TPPM) were employed for signal averaging of 31P MAS NMR. 

Chemical shifts were externally referenced to concentrated H3PO4 for 31P NMR. 
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5.2.3 Catalyst Testing for Diels-Alder Cycloaddition and Subsequent Dehydration of 

2,5-Dimethylfuran (DMF) with Ethylene 

50 mL of 1.35 M DMF (>98%, Alfa Aesar) in n-heptane (99%, Alfa Aesar) including 

0.08 M n-tridecane (>98%, Alfa Aesar, internal standard) was mixed with the catalysts in 

a bench-top Parr reactor. The reactor was purged with nitrogen at room temperature 

and then heated to 250 °C by a 4848 temperature control unit (Parr). At 250 °C, 

ethylene gas (Airgas) with 38 bar partial pressure was introduced into the system, and 

the reaction was allowed to proceed. During the entire reaction, the total pressure of 

the reactor was maintained at 62 bar. Time course of the reaction was monitored by 

taking samples (0.5 mL) for analysis at specified time intervals. The quantitative analysis 

of the sample was performed by Agilent 6890 gas chromatography (GC) equipped with a 

flame ionization detector and a Restek RTX-VMS capillary column (30.0 m length, 0.25 

mm id, 1.4 μm film thickness). The products, DMF, p-xylene (>99%, Sigma-Aldrich) and 

2,5-hexanedione were identified by comparing the retention times of each standard 

chemical, and also cross-checked on a GC-MS system (7890B GC, Agilent). The alkylated 

products were quantified by using the response factor (RF) for 1-methyl-4-

propylbenzene while the oligomer contents were estimated using the additive RF of 

DMF and p-xylene. The concentration of cycloadduct, the intermediate produced from 

the Diels-Alder reaction of DMF and ethylene, was estimated by using the RF for p-

xylene, following the previous literature.21, 22  
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5.2.4 Catalyst Removal Test of P-BEA and P-SPP 

After 24 h of the reaction of DMF with ethylene at 250 °C, the reaction was 

stopped by cooling the reactor to room temperature. The spent catalyst was removed 

from the reaction mixture by centrifugation. 1.35 M DMF was added to this mixture to 

check if the reaction is heterogeneously catalyzed. The reaction of DMF with ethylene 

after removing the catalyst from the reactor was carried out using the procedure 

described above. 

5.2.5 Catalyst Reusability of P-BEA and P-SPP 

After 24 h of the reaction of DMF with ethylene at 250 °C, the reaction was 

stopped by cooling the reactor to room temperature. The spent catalyst was separated 

from the reaction mixture, washed with n-heptane 3 times by centrifugation, and dried 

at 90 °C overnight. The dried solid was calcined in a tube furnace with dry air at 550 °C 

for 12 h. In order to have the same amount of catalyst in the reactor during the recycling 

test, 20 wt % of fresh catalyst was mixed with the spent catalyst and used for the 

reactions.  

 

5.3 Results and Discussions 

P-containing zeolite Beta (P-BEA) was prepared using a post-synthetic route, by 

which P was incorporated within the dealuminated BEA micropores by calcining a 

phosphoric acid (H3PO4) impregnated sample. The synthesis procedure includes first the 

dealumination of Al-BEA (Zeolyst, CP814E, Si/Al = 12.5) using nitric acid, and second, the 

impregnation of the dealuminated zeolite BEA with H3PO4, followed by the 
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incorporation of P within the zeolite by calcination. The crystal structure and 

morphology of the zeolite BEA were preserved after the incorporation of P, as revealed 

by the XRD patterns of the initial and treated samples in Figure 5.1 and by the SEM/TEM 

images in Figure 5.2. The micropore volume and BET specific surface area of the zeolite 

suggest that the high surface area and microporous structure were retained during the 

P modification step (Figure 5.3 and Table 5.1).  

 

 

Figure 5.1 XRD patterns of Al-BEA (Zeolyst, CP814E, Si/Al = 12.5), P-BEA, P-SPP and P-
Celite.  
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Figure 5.2 SEM images of (a) Al-BEA (Zeolyst, CP814E, Si/Al = 12.5) and (b) P-BEA, and 
TEM images of (c) P-SPP and (d) P-BEA. 

 

 

Figure 5.3 Argon adsorption-desorption isotherms for (a) P-BEA, dealuminated BEA 
and Al-BEA and (b) P-Celite, Celite and P-SPP. The isotherms of dealuminated BEA 
(DeAl-BEA) and Celite were shifted upward by 200 and those of P-BEA and P-Celite by 
400. 
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Table 5.1 ICP analysis and textural properties of the samples 
Catalysts Si/P

 a 

(mol mol
-1

) 
Si/Al

 a 

(mol mol
-1

) 
Micropore 

volume
 c
 (cm

3
 g

-1
) 

Surface area
 d 

(m
2
 g

-1
) 

Total pore volume
 e 

(cm
3
 g

-1
) 

P-BEA  27.1 1471 0.10 499 0.801 
DeAl-BEA - 1465 0.07 508 0.946 
Al-BEA  -  12.5 

b 
0.15 563 1.069 

P-SPP  27.3 N.D. 
f 

0.08 598 1.114 
P-Celite 5.0 13.3 0.00 12 0.045 

a Determined by ICP. b Data from supplier. c t-plot method obtained from Ar Adsorption-
desorption isotherms. d BET surface area obtained from Ar Adsorption-desorption isotherms. 
e Calculated from the amount adsorbed at P/P0 = 0.97 in Ar Adsorption-desorption isotherms. 
f N.D. = Not detected. 

 

A second P-containing zeolite investigated is a hierarchical MFI zeolite called self-

pillared pentasil (SPP).27 P-containing self-pillared pentasil (P-SPP) was synthesized by a 

direct synthesis method using tetrabutylphosponium hydroxide (TBPOH) as OSDA.27 

After crystallization, the formed SPP zeolite containing the OSDA was calcined, resulting 

in the decomposition of the OSDA and incorporation of P within the zeolite, as 

evidenced by ICP (Table 5.1). In contrast, the use of tetrabutylammonium hydroxide 

(TBAOH) as the OSDA or extensive washing of TBPOH-synthesized SPP with water results 

in a SPP zeolite free of phosphorous active sites. The crystallinity and morphology of P-

SPP are the same as those of pure silica SPP displaying orthogonally connected single-

unit cell lamellae of MFI,27 as indicated by the XRD patterns, TEM images and Ar 

adsorption isotherms (Figures 5.1-5.3). For further comparison, a commonly used P-

based catalyst, P-Celite, was also examined. It is a solid phosphoric acid (SPA) catalyst 

synthesized by impregnation of H3PO4 on Celite (diatomaceous silica), a commercially 

available amorphous silica material (Figures 5.1-5.3 and Table 5.1).173, 177 
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Figure 5.4 Catalytic performance of various catalysts for the p-xylene production from 
the reaction of DMF with ethylene: (a) overall product distributions, (b) yield of 
alkylated by-products, (c) carbon balance versus DMF conversion and (d) yield of p-
xylene versus reaction time. Reaction conditions are as follows: 1.35 M DMF in n-
heptane; 250 °C; 62 bar ethylene; DMF/P (mol mol-1) = 100 for P-BEA, P-SPP, P-Celite 
and H3PO4; 4.0 mM acid for Al-BEA and Zr-BEA. Reaction times in (a) for all catalysts 
were 48 h, except 24 h for P-BEA and P-SPP. 

 

Figure 5.4 shows the results from reacting DMF with ethylene over the P-

containing solid catalysts, other Brønsted and Lewis acid zeolites and a homogeneous 

acid catalyst, H3PO4, under the same acid concentration (4.0 mM for both Brønsted and 

Lewis acid sites) or the same DMF/P molar ratio = 100 at 250 °C. All P-containing 

materials catalyze the reaction to some extent producing p-xylene (Figure 5.4a). In the 

absence of P, the same zeolites (siliceous zeolites; Si-SPP made using TBAOH, and Si-BEA) 
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did not exhibit detectable catalysis (Figure 5.5). Among the catalysts, P-BEA (Si/P = 27) 

and P-SPP (Si/P = 27) exhibited superior performances with an excellent yield (97%) of p-

xylene at 99% DMF conversion (Figure 5.4a). The remarkable properties of P-BEA and P-

SPP could be attributed to the large micropore of P-BEA and the highly branched 

hierarchical micro-/meso-porous structure of P-SPP, respectively, which provide 

efficient dispersion of the active sites and facile transport of reactants and products.21, 

117 The non-zeolitic P-based solid catalyst, P-Celite (Si/P = 5.0), showed a high p-xylene 

yield (about 90%), but lower than those obtained from P-BEA and P-SPP. The yields of p-

xylene from Brønsted acid Al-BEA and Lewis acid Zr-BEA were significantly lower (i.e., 65% 

and 72% at 99% DMF conversion, respectively). Homogeneous H3PO4 also catalyzed the 

reaction but with a much lower yield to p-xylene (i.e., 39% at 99% DMF conversion). A 

control experiment conducted over P-containing Al-BEA prepared by impregnation of P 

on Al-BEA, P-Al-BEA, using the same post-synthetic method as P-BEA showed a low yield 

to p-xylene, suggesting that the use of siliceous zeolites as P supports is essential for the 

high-yield production of p-xylene (Figure 5.6).  
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Figure 5.5 Catalytic activities for the DMF reaction with ethylene over P-SPP made 
using TBPOH, Si-SPP made using TBAOH, pure siliceous BEA and no catalyst: (a) DMF 
conversion and (b) p-xylene yield. Reaction conditions are as follows: 50 mL of 1.35 M 
DMF in n-heptane; 250 °C; 62 bar ethylene; 0.228 g catalyst. 

 

 

Figure 5.6 Catalytic performances of P-Al-BEA for the production of p-xylene: (a) DMF 
conversion and (b) p-xylene yield. Reaction conditions are as follows: 1.35 M DMF in n-
heptane; 250 °C; 62 bar ethylene. 
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The yield of alkylated by-products and carbon balance versus DMF conversion 

(Figure 5.4b and c), respectively, and the yield to p-xylene with reaction time (Figure 

5.4d) illustrate the excellent catalytic properties of the P-containing microporous silica 

materials for this reaction. Outstanding performance of the P-containing catalysts is due 

to the lower rate of formation of by-products, such as alkylated aromatics and other 

unidentified products formed during the reaction. Al-BEA, Zr-BEA and H3PO4, however, 

produced more alkylated and oligomerized by-products with rapid reduction of 

quantified carbon (i.e., lower carbon balance) (Figure 5.4b and c, Figure 5.7). Although 

DMF can be fully converted over Al-BEA, Zr-BEA and H3PO4 catalysts, the p-xylene yield 

did not increase after 6 h of reaction time (Figure 5.4d and Figure 5.7a); this is likely due 

to coke formation and blockage of the active sites. Compared to the Brønsted acidity of 

Al-OH-Si sites in Al-BEA, the active sites on the P-containing catalysts still catalyze the 

dehydration reaction to produce p-xylene, but only catalyze the side reactions at very 

slow rates.  
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Figure 5.7 Catalytic activities for the p-xylene production from the reaction of DMF 
with ethylene: (a) DMF conversion and (b-e) overall product distributions. Reaction 
conditions are as follows: 1.35 M DMF in n-heptane; 250 °C; 62 bar ethylene; DMF/P 
(mol mol-1) = 100 for P-BEA, P-SPP, P-Celite and H3PO4; 4.0 mM acid for Al-BEA and Zr-
BEA. 

 

Catalyst removal and recycle tests were conducted to verify that the reactions 

are heterogeneously catalyzed and not catalyzed due to the leaching of phosphorous 
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into the reaction mixture. In the catalyst removal test, the reaction of DMF was 

performed after separating the spent P-BEA catalyst from the reaction mixture. Upon 

removal of the catalyst the reaction showed almost the same reaction rate as a control 

experiment without a catalyst, indicating that the catalytic activity observed was fully 

attributed to the solid catalyst (Figure 5.8). In Figure 5.9a, the reusability of the P-BEA 

catalyst was tested showing high selectivity to p-xylene (94%) at 98% conversion of DMF 

after the third recycling test. There were no significant changes in structure of P-BEA 

catalyst during the recycling test, as determined by SEM and XRD measurement (Figure 

5.10). However, p-xylene yield from P-SPP was considerably reduced after sequential 

catalyst recycling (Figure 5.9b). By the third recycle, DMF conversion decreased to 76% 

with a p-xylene yield of only 65% (Figure 5.9c).  
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Figure 5.8 Heterogeneous nature of the DMF reaction with ethylene over P-BEA and P-
SPP (a-d). Reaction conditions are as follows: 50 mL of 1.35 M DMF in n-heptane; 250 °C; 
62 bar ethylene; DMF/P (mol mol-1) = 498 for P-BEA and P-SPP; 24 h. The spent catalyst 
was removed from the reactor after 24 h of reaction. Fresh DMF was filled at 0 h on the 
plots (a) and (b), followed by the reaction occurring for additional 24 h. The DMF 
conversion and p-xylene yield obtained from the experiments were similar to the blank 
experiments, indicating the reaction was heterogeneously catalyzed. 
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Figure 5.9 Catalyst reusability of P-containing catalysts: (a,b) DMF conversion and p-
xylene yield over P-BEA and P-SPP during catalyst recycling and (c) p-xylene selectivity 
over P-BEA and P-SPP during catalyst recycling. Reaction conditions are as follows: 50 
mL of 1.35 M DMF in n-heptane; 250 °C; 62 bar ethylene; DMF/P (mol mol-1) = 498 for P-
BEA and P-SPP; 24 h. For catalyst reusability, the spent catalyst was washed with n-
heptane, dried and calcined at 550 °C for 12 h.  
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Figure 5.10 SEM images (a-b) and XRD patterns (c) of fresh P-BEA and spent P-BEA 
after 3rd recycling test. 

 

31P solid state MAS NMR provided insights into the chemical interaction of P with 

the silicate frameworks of the P-containing catalysts. As displayed in Figure 5.11, P-BEA 

and P-SPP showed three main signals at 0 (Q0), -11 (Q1) and -24 (Q2) ppm that could be 

assigned to free H3PO4 not chemically bonded to silicate matrices, to O=P(OSi or 

OP)(OH)2 and to O=P(OSi or OP)2(OH), respectively.178, 179 The relative peak area for the 

P-BEA was 35% for Q0, 46% of Q1 and 19% of Q2 while P-SPP exhibited 68% for Q0, 26% 
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of Q1 and 6% of Q2. These spectra indicate that P binds more effectively in the 

micropores of the dealuminated BEA than with Si-SPP. P-Celite presented two main 

resonance peaks at -45 (Q4) and -54 ppm, corresponding to PO4 tetrahedra (oligomers of 

P) and silicon pyrophosphate (SiP2O7), respectively, in agreement with previous reports 

on phosphosilicate materials.180, 181 Although all the three P-containing materials 

catalyze the p-xylene production, P speciation detected by the MAS NMR is distinctly 

different. The enhanced catalytic performance of P-BEA and P-SPP (Table 5.2) could 

arise from the presence of isolated P sites, which are not dominant in the conventional 

solid phosphoric acid catalyst (i.e., P-Celite).  

 

 

Figure 5.11 31P solid state MAS NMR spectra of P-BEA, P-SPP and P-Celite. 
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Table 5.2 Comparison of catalytic activities for DMF reaction with ethylene in this 
studya 

Catalyst DMF/P 
(mol mol

-1
) 

Production rate 
of p-xylene

b,c 

(mM h
-1

)
 

DMF conv.
c
 at 

24 h (%) 
p-xylene yield

c 

at 24 h (%) 
p-xylene selectivity 

at 24 h (%) 

P-BEA 100  411 (± 21)  99 (± 0.7) 97 (± 1.1) 98 

P-SPP 100   357 (± 20)  100 (± 0.3) 97 (± 1.3) 97 

P-Celite 100  268 (± 17)  96 (± 1.1) 90 (± 1.5) 94 

H3PO4 100 67 96 41 43 

Al-BEA  4 mM
d 

214  98 64 65 

Zr-BEA  4 mM
d 

249 99 72 73 

P-BEA
e 

498 349 (± 12) 99 (± 0.6) 95 (± 1.3) 96 

P-SPP
e 

498 209 (± 10) 97 (± 1.1) 86 (± 1.6) 89 

Al-BEA 1 mM
d
 122 (± 11) 55 (± 3.7) 30 (± 0.5) 55 

Zr-BEA 1 mM
d
 129 (±  5) 84 (± 1.6) 65 (± 1.6) 77 

Si-BEA
e
 -

 
    6 (±  1.7)  12

f 
(± 2.3) 9

f 
(± 2.4)  75

f
 

Si-SPP
e
 -

 
14 13 9 69 

a Reaction conditions: 50 mL of 1.35 M DMF in n-heptane; 250 °C; 62 bar ethylene. b Reaction 
time: 30 min. c 95% confidence interval in parentheses. d Concentration of Brønsted acid sites on 
Al-BEA, and that of Lewis acid sites on Zr-BEA. e 0.228 g of catalyst. f Reaction time: 16 h. 
 

Temperature-programmed desorption coupled with thermogravimetric analysis 

(TPD-TGA) of 2-propanamine was used to characterize the active sites on the P-

containing solid catalysts. 2-Propanamine molecules that are protonated by Brønsted 

sites react via the Hoffman-elimination to form ammonia and propene, allowing easy 

quantification of Brønsted-site density.182 The results are shown in Figure 5.12. After P-

BEA, P-SPP and P-Celite were saturated with 2-propanamine at room temperature, 

initial coverage of 2-propanamine was around 1100 μmol g-1, 1200 μmol g-1 and 600 

μmol g-1, respectively. Physically adsorbed 2-propanamine was desorbed from the 

samples below 300 oC. No significant decomposition of 2-propanamine was observed 



 101 

over P-BEA and P-SPP, suggesting no Brønsted acid sites on either P-BEA or P-SPP. 

However, P-Celite possessed Brønsted-site density of 150 μmol g-1 evidenced by the 

formation of ammonia and propene between 300 °C and 380 °C. In the same 

experiment, Al-BEA showed Brønsted-site density of 620 μmol g-1. By this measurement, 

the observation that there are no significant Brønsted acid sites on P-BEA is consistent 

with the pyridine FT-IR measurement on the dehydrated P-BEA sample as seen in Figure 

5.13. A demonstration that the P-containing zeolites have catalytic sites was shown by 

the ability of P-BEA to catalyze dehydration of 2,5-hexanedione during the TPD-TGA 

measurement. The dehydration of 2,5- hexanedione into DMF and water occurred at 

moderate temperatures (around 180 °C), without catalyzing the oligomerization of DMF 

(Figure 5.14). Previous work has shown that the Brønsted acid sites in Al-BEA catalyze 

the dehydration of 2,5-hexanedione at low temperatures; however, the Brønsted acid 

sites also catalyzed the oligomerization of DMF during desorption.118  
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Figure 5.12 TPD-TGA of 2-propanamine on (a) P-BEA, (b) P-SPP and (c) P-Celite. The 
peaks correspond to ammonia (m/z = 17), propene (m/z = 41) and 2-propanamine (m/z 
= 44).  
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Figure 5.13 Pyridine FT-IR spectra of (a) P-BEA and (b) Al-BEA under dehydrated 
condition and (c) P-BEA under hydrated condition. After Al-BEA and P-BEA were 
evacuated at 450 oC for 1 h, they were saturated with pyridine at 50 oC and 150 oC, 
respectively under dehydrated condition. For collecting the spectra under hydrated 
condition, a 10% volume pyridine in water mixture was used. In the desorption stage of 
the adsorbate, FT-IR spectra were shown every 50 oC. The peak at 1545 cm-1 is 
associated with Brønsted acid sites, 1490 cm-1 is associated with Brønsted acid sites or 
Lewis acid sites, and 1453 cm-1 is associated with Lewis acid sites. For P-BEA, a very 
weak peak corresponding to Brønsted acid sites was observed at 1545 cm-1 in the FT-IR 
spectrum, and disappeared when the temperature was increased to 250 oC (Figure 
5.13a), much lower than Al-BEA.  
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Figure 5.14 TPD-TGA of 2,5-hexanedione on P-BEA. The peaks correspond to 2,5-
hexanedione (m/z = 99) and DMF (m/z = 96). P-BEA was exposed to 2,5-hexanedione 
with an initial coverage of 600 μmol g-1 at room temperature. The appearance of DMF at 
moderate temperature (100 – 200 °C) during the TPD-TGA measurement suggests the 
dehydration of 2,5-hexanedione to DMF can occur on P-BEA catalyst. Interestingly, no 
further oligomerization of DMF was observed over P-BEA catalyst. Previous study 
demonstrated that the Brønsted acid sites in Al-BEA catalyze the dehydration of 2,5-
hexanedione at low temperatures; however, the Brønsted acid sites also catalyzed the 
oligomerization of DMF during desorption.118 

 

 

 

 

 

 



 105 

CHAPTER 6 

CONCLUSIONS 

 

In the first part of the thesis, hierarchical Sn-MFI catalysts with mesoporous 

structures were successfully synthesized within the confined space of 3DOm carbon by a 

seeded growth approach. The obtained 3DOm-i Sn-MFI consisting of 30 nm spherical 

elements forming an opaline structure contains highly ordered mesopores ranging from 

4 to 11 nm. Compared with conventional Sn-MFI, this hierarchical catalyst exhibits 

superior catalytic performance for the isomerization of cellulosic sugars. No diffusion 

limitation was observed for the isomerization of a triose sugar, DHA, into methyl lactate 

(ML). 3DOm-i Sn-MFI offers significant improvements for the isomerizations of C5 and C6 

sugars, such as xylose and glucose, by greatly enhancing molecular transport. The 

reaction rate of xylose on 3DOm-i Sn-MFI is at least 20 times higher than that on 

conventional bulky sized Sn-MFI. The reaction rate for glucose is also enhanced by using 

3DOm-i Sn-MFI, but to a lesser extent as compared with the reaction of xylose, possibly 

because glucose cannot diffuse into the 10-membered-ring pore of MFI, and the 

reaction is catalyzed only on the external surface of the Sn-MFI catalysts. Moreover, the 

combination of seeded growth with confined synthesis allows us to synthesize 

hierarchical Sn-MFI, indicating that the synthesis strategy is a versatile and reliable 

method for tailoring the structure of hierarchical zeolites. 

In the second part of this thesis, we have developed a base-free one-pot reaction 

pathway to produce LA in high yields from the oxidation of glycerol over a bifunctional 
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Pt/Sn-MFI catalyst under mild conditions. In the cascade reaction route, the selective 

oxidation of glycerol to GLA proceeds on the Pt catalyst. Subsequently, Sn-MFI exhibits 

outstanding Lewis acidity for converting GLA into DHA and DHA into the final product LA. 

The superior performance is mainly due to its microporous structure, accessible Sn sites 

and Lewis acidity. 

In the third part of this thesis, hydrophobic Sn-BEA zeolites with different crystal 

morphologies were successfully synthesized by recrystallization of post-synthesized Sn-

BEA (Sn-BEA-PS) using NH4F and TEABr. The recrystallization includes simultaneous 

procedures of dissolution-reassembly. The dissolution of Sn-BEA-PS surface by fluoride 

ions occurs on mainly silanol nests. The etched silica species were reorganized in the 

presence of TEA ions, forming defect-free Si-O-Si bonds on the surface of recrystallized 

Sn-BEA (Sn-BEA-RC). Although this recrystallization could not fully eliminate silanol 

defects, the reduced density of silanol nests on Sn-BEA-RC mitigates the interaction with 

water, rendering Sn-BEA-RC more hydrophobic than Sn-BEA-PS. In addition, this method 

also increased open Lewis acid Sn sites. These findings can explain why Sn-BEA-RC 

achieved a 2.5 times higher activity for aqueous glucose isomerization, compared with 

Sn-BEA-PS. Moreover, similar catalytic activities of Sn-BEA irrespective of particle size 

and mesoporosity indicate no diffusion limitation of glucose into BEA micropores. In the 

isomerization of bulky lactose (C12 sugar) dissolved in MeOH, however, hierarchical Sn-

BEA-RC showed a 3.2-fold higher activity than hydrothermally synthesized Sn-BEA (Sn-

BEA-HF), due to the mesopores and enhanced organophobic character of the 

recrystallized catalyst. These unique properties of Sn-BEA-RC open new opportunities in 
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applications of catalysis, separation and adsorption. 

In the last part of the thesis, phosphorous-containing zeolite with BEA topology, 

P-BEA, exhibited an unprecedented p-xylene yield of 97% in the Diels-Alder 

cycloaddition and dehydration of DMF with ethylene, and establishes a commercially 

attractive process for renewable p-xylene production. This material is able to selectively 

catalyze the dehydration reaction from the furan-ethylene cycloadduct to p-xylene, 

without performing side reactions which include alkylation and oligomerization. This 

catalytic behavior is distinct from that of Al-containing zeolites and other solid 

phosphoric acid catalysts. The results presented here demonstrate that P-containing 

zeolite materials have intrinsically new catalytic properties and are a novel class of acidic 

zeolite catalysts, worthy of further investigation for other dehydration and acid 

catalyzed reactions. 
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 CHAPTER 7 

SUGGESTED FUTURE DIRECTIONS 

 

In Chapter 2, hierarchical Sn-MFI zeolites led to higher catalytic activities for C5 

and C6 sugar isomerization than conventional Sn-MFI zeolites because C5 and C6 sugar 

molecules are bigger than MFI pore dimension and thus, mesopores in the hierarchical 

zeolites likely facilitate the molecular diffusion. Also, three different Sn-MFI zeolites had 

the same initial catalytic activity for C3 sugar isomerization, indicating there is no 

diffusion limitation in MFI pore channels. Nevertheless, how such sugar substrates 

diffuse into Sn-MFI zeolites with different morphology remains unclear, in order to 

directly provide evidences on the molecular diffusion into Sn-MFI zeolites, apart from 

the chemical reactions. This study will include the adsorption of sugar molecules into 

the zeolite MFI pore. 

In Chapter 3, a bifunctional Pt/Sn-MFI catalyst has been shown to be very active 

for the conversion of base-free glycerol into lactic acid. But, as shown in Figure 3.7, the 

spent catalyst led to a gradual decrease in catalyst activity with recycling the catalyst. 

This trend has also been found over Pt/TiO2 catalyst for conversion of glycerol into 

lactate in the presence of base.113 Regarding catalyst deactivation in oxidation reactions 

over metal/support catalysts, it is generally believed that there are four main reasons 

for the deactivation:183 i) coke formation on the catalyst, ii) metal leaching from the 

support, iii) over-oxidation of metal during the oxidation (i.e., evolution from metal to 

metal oxide), and iv) metal sintering during the reaction. Thus, further study will be able 
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to focus on why the activity from Pt/Sn-MFI was partly lost during the recycling test and 

how to improve the catalyst reusability. 

In Chapter 4, Sn-BEA-RC obtained from the recrystallization possessed higher 

hydrophobicity than Sn-BEA-PS, by greatly reducing silanol nests of Sn-BEA-PS. 

Nevertheless, Sn-BEA-RC was still less hydrophobic than Sn-BEA-HF because higher 

silanol defects such as internal and external Si-OH groups were observed on Sn-BEA-RC, 

in comparison with the counterpart. Along this line, future research will focus on how to 

further decrease silanol defects by recrystallization. In addition, interestingly, this 

recrystallization enables Sn-BEA-RC to have more open Lewis acid Sn sites than closed 

ones. But, the transformation from closed Sn sites to open Sn ones has been poorly 

understood during the recrystallization. Another direction involves organophobic 

character of Sn-BEA-RC. Because Sn-BEA-RC shows higher organophobicity than Sn-BEA-

PS and Sn-BEA-HF, Sn-BEA-RC can be promising for other catalytic reactions in organic 

solvents. 

In Chapter 5, phosphorus-containing zeolites such as P-BEA were synthesized 

and exhibited remarkable performances of converting DMF into p-xylene. The high 

activities of P-BEA can arise from the Brønsted acid sites (P-OH) groups on the materials, 

which are distinct from that of Al-containing zeolites. Thus, it is inevitable to study how 

to quantify Brønsted acidic P-OH groups, in contrast to well-known studies on the 

titration of Brønsted acidic Al-OH-Si groups on Al-containing zeolites by 2-

propanamine.182, 184 In addition, as P-NMR data show in Figure 5.11, P-BEA has three 

different phosphorous structures (Q0 with three P-OH groups, Q1 with two P-OH groups, 
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and Q2 with one P-OH group). It is interesting to identify how P-OH groups in different P-

structures contribute to Brønsted acidity, since phosphoric acid H3PO4 with three P-OH 

groups shows different degrees of deprotonation. Besides, as shown in Figure 5.13c, the 

presence of water creates more Brønsted acid sites, which can be caused by hydrolysis 

of P-O-P or Si-O-P bonds on the catalyst into P-OH or Si-OH groups. Because water is 

generated as a result of 2nd step of cycloadduct dehydration (Scheme 5.1), systematic 

studies on the effect of water on the catalytic active sites are necessary. Moreover, 

because P-containing zeolite materials are a novel class of acidic zeolite catalysts, these 

are worthy of further investigation for other dehydration and acid catalyzed reactions.  
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