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Categorization of Destinations and Formation of Mental Destination Representations:  

A Parallel Biclustering Analysis 

 

Introduction 

Tourist segmentation is an important tool for both academicians and managers in the quest to 

better understand tourist behavior and plan marketing activities accordingly. Likewise, consumer 

segmentation is an important research topic within marketing research where value possessions, 

needs and wants of consumers are becoming increasingly heterogeneous within countries and 

increasingly homogeneous across countries (Steenkamp and Ter Hofstede 2002; Ter Hofstede, 

Steenkamp and Wedel 1999).  

According to Dolnicar, Kaiser, Lazarevski and Leish (2012), market segmentation has been 

studied by tourism researchers since its introduction in the 50’s (Clayclamp and Massy 1968; 

Smith 1956). One important challenge that Dolnicar et al. (2012) emphasizes is the high 

dimensionality of tourism data. Dolnicar (2002) empirically investigates this dimensionality 

issue by reviewing 47 studies that employ a posteriori segmentation method and points out that 

the number of variables included in the extant tourism literature is far higher than the number 

which is recommended by the segmentation literature (e.g. Formann 1984). To address the 

challenge for segmenting high dimensional data typically used in the tourism research, Dolnicar 

et al. (2012) introduces the biclustering approach (Kaiser and Leisch, 2008) which allows for 

simultaneous clustering of both variables and cases. 

Dolnicar et al. (2012) states that the algorithm chosen in their study has first been introduced in 

the bioinformatics literature by Prelic, Bleuler, Zimmerman, Wille, Bühlmann, Gruissem, 

Henning, Thiele and Zitzler (2006). However, a theoretical principle of the biclustering approach, 

a so-called “blockmodels”, has already been developed and applied in 1976 to the social science 

research by White, Boorman, and Breiger (1976). In White et al. (1976), the blockmodel extracts 

social structures by interpreting the relational patterns among types of ties (variables) found in a 

set of people (cases). The principle of the relational modeling approach used in the blockmodels 

has been extended as stochastic blockmodels (Wasserman and Anderson 1987; Anderson and 

Wasserman, 1992) and further advanced by a recent development of the nonparametric Bayesian 

relational modeling approach, a so-called Infinite Relational Model (IRM) (Kemp, Tenenbaum, 

Griffiths, Yamada and Ueda 2006; Xu, Tresp and Kriegel 2006) (see also Schmidt and Mørup 

2013; Mørup, Madsen, Dogonowski, Siebner and Hansen 2010), of which principle is highly 

relevant to the statistical segmentation approach employing the mixture model (Assaf, Oh and 

Tsionas 2015; Ter Hofstede, Steenkamp and Wedel 1999; Wedel and Kamakura 2005). As the 

IRM approach in Kemp et al. (2006) employs the Bayesian framework, the approach enables to 

design a more flexible clustering analysis with robust clustering performance (Albers, Mørup, 

Schmidt and Glückstad under review) compared to the conventional biclustering approaches 

such as Dolnicar et al. (2012) and the mixture models based on the maximum likelihood (Assaf, 

et al. 2015; Ter Hofstede, et al. 1999; Wedel and Kamakura 2000). This paper introduces an 

analytical segmentation method that employs the IRM tool developed by Mørup et al. (2010). 

For the first time in tourism research, the IRM, based on a Bayesian relational modeling 

framework, allows to design and conduct a segmentation analysis by simultaneously biclustering 

multiple datasets consisting of cases and variables in a parallel format.  



 

The next section elaborates the theoretical foundation of our segmentation analysis, i.e., mental 

representation and destination image. For demonstrating how the parallel biclustering method 

works for analyzing tourism data as it has been shown in the previous research in the neuro 

science (Mørup et al. 2010) as well as in the cognitive psychology and artificial intelligence 

(Glückstad, Herlau, Schmidt, Rzepka, Araki and Mørup 2013) disciplines, we conduct a pilot 

study that compares patterns of associations which five individuals hold about 23 European 

destinations. Subsequently, this paper elaborates potential contributions the Bayesian relational 

modeling framework makes to the tourism research discipline by outlining a conceptual idea of 

the segmentation analysis that enables the simultaneous biclustering of individuals (cases) and 

their associations (variables) for multiple destinations in a parallel format.  

Mental representation and destination image  

Understanding and measuring individuals’ mental destination representations is one of the most 

frequently studied topics in tourism research (Josiassen, Assaf, Woo and Kock 2016). Whereas 

understanding mental destination representations, often referred to as destination image, is 

crucial to explain tourists’ destination choices and a destination’s attractiveness in tourists’ 

minds, this research stream may also contribute to develop effective communication strategies 

directly towards identified and targeted tourist segments. Communication scholars suggest that 

communication is an inferential process (Grice 1989; Sperber and Wilson 1986). According to 

the relevance theory of communication (Sperber and Wilson 1986), a communicator must send a 

stimulus (e.g., words, images) that is “precise enough, and predictable enough, to guide hearer 

towards the speaker’s meaning. (Wilson and Sperber 2002, p250)” This implies that a tourism 

marketing manager (communicator) must develop a communication strategy providing a 

stimulus that is predictable enough for a target segment (hearers) to associate with and to evoke 

their motivations to visit a destination. The previous research on the destination image (e.g., 

Beerli and Martin 2004; Baloglu and McCleary 1999; Echtner and Ritchie 1991) focuses on 

hearer’s standpoint and argues that the personal factors (psychological values, motivations, 

personality and socio-demographic characteristics) and the stimulus factors (i.e. prior knowledge 

about a destination acquired through secondary or primary information sources) influence the 

formation of the cognitive and affective image of a destination thereby the overall destination 

image. The ultimate aim of the present study is to provide an understanding of: i) who are the 

hearers (target segments) whom a marketing manager communicates to; and ii) what they 

associate with a destination by assuming that the associations are highly influenced by their prior 

knowledge and experience about a destination.  

As mentioned above, the prior knowledge plays an important role in communication because 

hearer’s inference about a destination is based on individual’s prior knowledge and experience. 

The impact of the prior knowledge has long been studied among mental representation 

researchers in the discipline of cognitive psychology. Interestingly, among the researchers who 

investigated this issue are Charles Kemp and his colleagues who have developed the IRM 

algorithm that is applicable to the study of humans’ categorization and concept learning (Kemp, 

Tenenbaum, Niyogi and Griffiths 2010). Kemp et al. (2010) states “concepts are organized into 

systems of relations, and that the meaning of a concept depends in part on its relationships to 

other concepts (Block 1986; Carey 1985; Field 1977; Goldstone and Rogosky 2002; Quillian 

1968; Quine and Ullian 1978)”. This implies that humans’ categorization and concept learning 



 

process can be best described as the knowledge approach (Murphy and Medin, 1985; Keil 1989; 

Wisniewski and Medin 1994) that builds upon the well-known “prototype view (Rosch 1978)” 

and its opposing “exemplar view (Medin and Schaffer 1978)”. The main argument in the 

knowledge approach is:  

“When we learn concepts about animals, this information is integrated with our general 

knowledge about biology, about behavior, and other relevant domains. … This relation works 

both ways: Concepts are influenced by what we already know, but a new concept can also affect 

a change in our general knowledge. Thus, if you learn a surprising fact about a new kind of 

animal, this could change what you thought about biology in general. … and if something you 

learn about a new animal doesn’t fit with your general knowledge, you may have cause to 

question it or to give it less weight (Murphy 2002, p.60).”  

Contrasting this to the current study of tourist destination image, destination image is strongly 

connected to people’s prior knowledge acquired through their experience or secondary 

information about a place, a city, a country, a region, a political or a religious district and so on. 

Destination image can be modified if people experience or learn a new thing about a destination. 

From this viewpoint, the investigation of the present associations which individuals hold about 

destinations is equally important for targeting consumer segments and developing 

communication strategies as the research on behavioral intension and attitudes does. With this in 

mind, the next section explains how the IRM method developed by a group of cognitive 

psychologists can be applied to analyze patterns of associations which individuals hold about 

multiple destinations.   

Pilot study: methodology 

The main purpose of this pilot study is to demonstrate how the IRM tool enables to visualize 

patterns which individuals associate with multiple destinations. Hence our analysis is inherently 

explorative and inductive. Before collecting empirical data, we have created a list of common 

attributes characterizing 23 European and 11 Asian countries extracted from microblog postings 

in “Destination of the Week” of reddit.com, which systematically covers a wide range of 

destinations in a structured way and is suitable for a below mentioned concordance analysis. By 

use of a publicly available concordance tool (Anthony 2014), frequencies of words appearing in 

all comments describing about the 34 countries are computed. In total 13459 word types out of 

232853 word tokens appear in the text corpora consisting of these postings. Among the most 

frequent word types, we have selected nouns and adjectives relevant to describe these 

destinations, and created a common list of attributes (71 attributes generic for 34 destinations). In 

this pilot study, we have recruited three Japanese residing in Japan and two Danish/Japanese 

residing in Denmark. The demographics, prior travel experience and three major motivations 

expressed by these respondents are indicated in Table 1.  

A questionnaire is designed in a way that 71 attributes selected from the aforementioned 

procedure are presented for each of the 23 European destinations. Each of the five respondents 

are asked to tick attributes which the respective respondents associate with each of the 23 

respective European countries as a travel destination. The reason we only used the 23 European 

destinations without including 11 Asian destination is to reduce the workload of the five 

respondents who have in average spent 30-40 minutes to complete this questionnaire. The 



 

collected data has been organized in a two-dimensional matrix where 23 European destinations 

and 71 attributes are listed in X and Y axes, respectively. This implies that a respondent s has 

association with attribute y for x destination. Specifically, when a respondent (s) selects an 

attribute (y) associated to a destination (x), a link (binary {1, 0} - when association exits 1, 

otherwise 0) between the attribute and the destination is established. In this way the five matrices 

representing the respective five respondents are created. 

The two axes X and Y are simultaneously clustered for these five matrices in parallel by the IRM 

tool. The key algorithm of the IRM tool (Mørup et al. 2010) which is the extension of Kemp et al. 

(2006) is defined in the following generative model: 

𝑍(1) ~ 𝐶𝑅𝑃(𝛾(1))        first mode (destinations: 23 EU countries) 

𝑍(2) ~ 𝐶𝑅𝑃(𝛾(2))        second mode (attributes: 71 attributes) 

ƞ𝑎𝑏 
(𝑠)

~ 𝐵𝑒𝑡𝑎 (𝛽0   ,
+ 𝛽0 ,

− )   interactions  

𝑅𝑥𝑦
(𝑠)

 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (ƞ
𝑧𝑥

(1)
,𝑧𝑦

(2)
(𝑠)

)   links 

The first and second lines above respectively partition 23 destinations and 71 attributes into 𝑍(1) 

and 𝑍(2) clusters according to a distribution called Chinese Restaurant Process (CRP) (Pitman 

2002). The third line defines how a country cluster “a” identified for the first mode and an 

attribute cluster “b” identified for the second mode are interacted for each respondent sth, 

according to Beta distribution. Finally, the fourth line optimizes distributions of binary relation 

for each respondent sth between a destination “x” and an attribute “y” according to the Bernoulli 

distribution. In this way, the IRM tool identifies an optimal distribution of binary links by 

splitting both members in the first mode (X) and in the second mode (Y) given by five 

respondents in parallel.  

Table 1: Profiles of the five respondents 

 

 

Gender Age Nationality Residence Visit	Nordic
Visit	West	

EU

Visit	

Mediterran

ean

Visit	Post	

communist

Top	three	priorities	

when	selecting	a	

travel	destination

Subject1 Female 18	y.o. JP/DK DK Many	times
Several	

times

Several	

times
Never

Comfort&	security,	

Interests&	adventure,	

Cultural	distance

Subject2 Male 39	y.o. JP JP
Several	

times

Several	

times

Several	

times
Never

Interests	&	adventure

Resort	atmosphere	&	

climate

Cultural	distance

Subject3 Male 32	y.o. JP JP Once Once Once Once

Interests	&	adventure

Natural	state

Cultural	distance

Subject	4 Female 43	y.o. JP/DK DK Many	times Many	times
Several	

times

Several	

times

Interests	&	adventure

Natural	state

Cultural	distance

Subject5 Male 32	y.o. jp JP Many	times Many	times
Several	

times

Several	

times

Comfort&	security,	

Interests&	adventure,	

Cultural	distance



 

Pilot study: results and discussion 

As shown in Figure 1, the 23 European destinations and the 71 attributes are simultaneously 

clustered according to the associative relations (blue dots linking between them) expressed by 

the five individuals. Since response patterns of the five individuals are considered in parallel, the 

clusters identified for the destinations and attributes are identical for the all five individuals. For 

example, the 23 European countries are partitioned into five clusters: C1 (Baltic, Czech Republic, 

Hungary, Ireland, Poland, Romania, Slovenia); C2 (Austria, Belgium, Denmark, England, 

Germany, Netherland); C3 (Croatia, Greece, Portugal, Turkey); C4 (France, Italy, Spain); and C5 

(Norway, Sweden, Switzerland). Some commonalities are found in the respective five identified 

clusters, e.g. C1 seems to be the former Eastern Europe, C3 seems to be the medieval destination 

with warm and sunny weather, C5 seems to have rich mountainous nature and so on. However, 

the result clearly displays differences in individuals’ association patterns. For example, Subjects 

1, 3 and 5 associate the C1 countries with F6 associations (backpacking, rural, non-touristy), 

while Subjects 2 and 4 do not. This may be supported by Table 1 showing that Subjects 1, 3 and 

5 are younger than the other two subjects. While Subject 1 strongly associate the C3 and the C4 

countries with F2 (homeless, unsafe place, seafood, exotic, warm & sunny, beach), Subjects 2 

and 5 also indicate some degree of associations with F2 to the C3 and the C4. Table 1 displays 

that Subjects 1/5 and Subject 2 respectively selected “comfort & security” and “resort 

atmosphere & climate” as one of the most important travel motivations.  

Figure 2 depicts a simple biclustering analysis for two of the five individuals arbitrary selected. 

The results are obtained by running the IRM tool separately for each of the individuals. Figure 2 

shows that the clusters extracted for them are not identical. I.e., the 23 European countries are 

partitioned differently, since the association patterns of the two individuals are obviously 

different. For instance, Subject 1 grouped C2 (Czech, Hungary, Poland, Romania, Slovenia) 

having strong association with F5 (backpacking, rural) and C3 (Croatia, Greece, Portugal, Spain 

Turkey) associated with F3 (family-oriented, exotic, warm and sunny, medieval cities) and F6 

(unsafe, inexpensive). On the other hand, Subject 2 grouped C2 (Baltic, Croatia, Czech, Hungary, 

Romania) associated with F3 (inexpensive, local cuisine, medieval cities) and F5 (cultural, 

educational, historical), and C3 (Greece, Italy, Portugal, Spain, Turkey) associated with F4 

(friendly, unreliable transport, exotic, warm and sunny) and F5 (cultural, educational, historical). 

The results clearly demonstrate that two individuals having different patterns of associations 

categorize destinations in dissimilar ways. The mental representation scholars who support the 

knowledge view (Murphy and Medin 1985) argue that such differences in categorization occur 

because prior knowledge possessed by individuals is not identical. During the data collection, we 

have asked the respondents their travel motivations and prior travel experiences (see Table 1). 

Subject 1 prioritizes “Comfort& security”, “Interests& adventure” and “Cultural distance”, while 

Subject 2 “Interests & adventure”, “Resort atmosphere & climate” “Cultural distance. A short 

conversation with Subject 1 after the survey further reveals her generalization about C3 countries 

as “unsafe” countries closely connected with her travel motivations and her previous experiences 

in the C3. Although it is not obvious from the current results based on a small-size sample 

displayed above, the results of this pilot study imply that the individual differences in 

associations do most likely occur because of their personal factors (psychological values, 

motivations, personality and socio-demographic characteristics) and their prior knowledge 

acquired from secondary information source and from actual experience to visit or live in that 

country (Beerli and Martin 2004; Baloglu and McCleary 1999).  



 

 

Figure 1 



 

 

Figure 2 

 Conclusion and future research 

The pilot study presented in this paper demonstrated how the IRM tool can be applied to analyze 

and compare patterns of associations which individuals have of multiple destinations. The results 

highlighted that individuals have different associations with respective destinations, thereby 

categorization of destinations also differs according to individuals’ association patterns. The 

results are aligned with the argument that stimulus and personal factors influence the formation 

of destination image argued in the previous literatures (Beerli and Martin 2004; Baloglu and 

McCleary 1999). Our primary intention in this paper was to introduce a conceptual idea for 

identifying i) who are the hearers (target segments) whom a marketing manager communicates to; 

and ii) what they associate with a destination by assuming that the associations are highly 

influenced by their prior knowledge and experience about a destination. Our pilot study 

demonstrated that the Bayesian relational modeling framework is very flexible to design our 

future research by employing not only a simple biclutering design, but also a parallel biclustering 

(Mørup et al. 2010). Our future plan is to collect a larger size of data (e.g. 500 samples) that can 

be partitioned into segments according to patterns of destination image combined with the 

personal and stimulus factors for multiple destinations. Such function to segment and analyze 

people and associations for multiple destinations in parallel is unique but also highly useful to 

understand how people generalize about a destination by use of prior knowledge about other 

destinations when they do not know enough about a destination in question. Such analysis is 

valuable for marketing managers to develop a communication plan, e.g., to modify target 

segments’ negative association (e.g. unsafe, non-touristy) to a destination generalized as part of a 



 

specific region; or to differentiating a destination with neighboring competitive destinations 

when a segment expresses positive associations for a group of destinations.   
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