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Explore the Spatial Relationship Between 

Airbnb Rental and Crime 

 

1 Introduction 

The sharing economy, defined as "the sharing of access to goods and services from peer-to-

peer/private-to-private coordinated through community-based online services" (UNWTO, 2017) 

has become a large contributor to many top-ranking destinations.1 One of the leading sharing 

lodging service provider, Airbnb, has an expected global market share of 10% out of the lodging 

industry in the next five years (Winkler, & MacMillan, 2015). Along with this rapid expansion is 

a wide concern of the security issues in Airbnb. The tourism and hospitality industry is extremely 

sensitive to criminal activities, frequent guests have a relatively high risk of victimization 

(Berger, 1992). Recent media attention has shown that guests of the Airbnb rentals have (1) been 

targets of crime, (2) had valuables stolen while staying at these properties and (3) may in fact be 

more exposed to a greater range of crimes due to not being in a tourist location.234
 Previous 

studies also proved that the crime rate in the tourist destination shows a significantly negative 

effect on the tourist industry. (Marshall, 1994; Ryan, 1993; Wagstaff, Lague, & McBeth, 2003). 

Moreover, despite the extent of crime against lodging sites, data from interviews has 

demonstrated that hoteliers do not perceive crime as a problem (Jones & Mawby, 2005). While 

the Airbnb wins the market with its lower cost and flexible operations, criminal activities can 

easily destruct the reputation due to a lack of safeguard awareness and pertinent crime prevention 

measures. The need for greater information on the relationship between crime and the sharing 

economy is unprecedented. 

In recent years, Airbnb providers are taking endeavors to adjust safety related regulations, 

various governments are also grappling with how to merge Airbnb into with regard to regulations 

(Gibbs, 2016). However, the current safety measures only prevent the harm from third parties, 

actions like setting registration requirements, implementing host protection insurance plays weak 

in preventing lodging safety from crime risks. Lately, broad discussions focused on topics like 

whether Airbnb has become the hotbed of danger, and how can different stakeholders take 

prevention measures, but few grounded researched were taken to explain the detailed 

relationships. Also, as the lodging sites and crime data carry spatial features, the relationships 

would vary by locations. Methods failed to consider in the spatial factors could result in biased 

conclusion. Therefore, it is timely and imperative to take an overall inspection on the spatial 

relationship between Airbnb and criminal activities. 

 

 
1 “The rise of the sharing economy”, EY website, http://www.ey.com/Publication/vwLUAssets/ey-the-rise-of-the-sharing-

economy/$FILE/ey-the-rise-of-the-sharing-economy.pdf, October 2017. 
2 “10 incredible Airbnb horror stories”, Fox News websit, http://www.foxnews.com/travel/2014/05/08/10-incredible-airbnb-

horror-stories.html, May 08, 2014 
3 Mike McPadden, AIRBN-BAD BEHAVIOR: 5 SEX CRIMES COMMITTED BY AIRBNB USERS, 

http://crimefeed.com/2016/09/airbn-bad-behavior-5-sex-transgressions-by-users-of-the-popular-travel-service/. September 28, 

2016 
4 Kristen V. Brown, How criminals use Uber, Tinder and Airbnb, http://fusion.net/story/241225/crime-in-the-era-of-sharing/, 

December 7,2015 

http://www.ey.com/Publication/vwLUAssets/ey-the-rise-of-the-sharing-economy/$FILE/ey-the-rise-of-the-sharing-economy.pdf
http://www.ey.com/Publication/vwLUAssets/ey-the-rise-of-the-sharing-economy/$FILE/ey-the-rise-of-the-sharing-economy.pdf
http://www.foxnews.com/travel/2014/05/08/10-incredible-airbnb-horror-stories.html
http://www.foxnews.com/travel/2014/05/08/10-incredible-airbnb-horror-stories.html
http://crimefeed.com/2016/09/airbn-bad-behavior-5-sex-transgressions-by-users-of-the-popular-travel-service/
http://fusion.net/story/241225/crime-in-the-era-of-sharing/
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This study firstly explores spatial relationships between Airbnb facilities and crimes, 

explains the general correlations and relationships varied by facility/crime subcategory. Then 

spatially varying relationships within the state of Florida were analyzed. The purpose of the 

study is to find out 1) the alternative relationships between crime type and lodging type 2) the 

spatial patterns of crimes impact on Airbnb industry, hoping to provide security suggestions to 

protect the safety of sharing lodging guests, hosts, and the property from being victims of crime. 

1 Literature Review 

1.1 Hospitality and Crime 

Relationships between hospitality industry and crime activity has been explored with 

traditional research methods before. Huang et al. (1998) discussed different external settings of 

hotels generate different extent of exposure to crimes, finding that levels of crimes were directly 

related to size of the hotel, target market of business travelers, access to public transportation, 

and an unsafe image of the environment surrounding the hotel. Zhao et al. (2004) examined the 

relationship between visitor demographics and types of criminal offenses in Miami-Dade County, 

Florida, demonstrated that hotel visitors’ demographic characteristics like gender and 

residency/country of origin are correlated with crimes of robbery and burglary. Ho et al. (2009) 

analyzed the effects of hotel guests' characteristics on criminal victimizations, addressing that 

most hotel crimes were property-related, burglary and theft were two major crimes committed 

against hotel guests. The studies above, from the angle of demographic and hotel location, 

gave well implications for the stakeholders to prevent personal and property damage from crime. 

However, there is still a lack of literature consider in the spatial factors of hotel and crimes. Also, 

sparse studies had investigated into the internal structure of homestaying lodging properties and 

their possibilities to attract the interest of criminals.  

In crime prevention, the Routine Activity Theory (Cohen and Felson, 1979; Felson, 1986, 

1994)5 and Crime Pattern Theory (Brantingham and Brantingham, 1993) believed that crime 

happens when the activity space of a victim or target intersects with the activity space of an 

offender, while the target and the offender must be at the same place at the same time. 

Additionally, three other types of controllers—intimate handlers, guardians and place 

managers—must be absent or ineffective. Based on the theory, several interrelated research 

topics on crime prevention had emerged in tourism and hospitality research. Tourism has been 

proved of having boost crimes, (Brunt, 2000; Altindag, 2014; Adam, 2015; Mehmood, 

2016; Montolio, 2016) this was largely due to the special signals tourists carries (Ryan, 1993) 

and their lifestyle that are particularly pertinent (Gottfredson, 1984; Maxfield, 1987) to criminal 

victimization. Some case studies also provide evidence to support the aforementioned causes of 

crimes (Dimanche.1999). In areas of criminology, spatial factors are more considered into 

analysis. Harper (2013) tested the spatial patterns of robbery at New Orleans and found that 

simple tourist’s robbery concentrates within tourist attraction areas while aggravated tourist 

robbery concentrates in primarily residential places without attractions and police presence. 

Maltz (1990) used mapping technology to explain the patterns crimes appears in communities. 

Some studies focused on relationships between crime and special places. Mauby (2014) created a 
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model to explain where and why offenses are committed in rural areas, fear of crime, and what 

crime reduction measures might be most effective. As for the factors alter the crime activeness, 

early studies show that crimes are more concentrated in high-density housing, or vertical 

communities (Healy & Birrell 2006; Newman & Kenworthy 1989). Recent studies revealed that 

crimes often concentrated on particular surrounding facilities John (2015). Yet there are rare 

detailed discussions based on the type of crime and facilities. 

1.2 Crime Pattern Theory 

The questions and assumption of this study is based on crime prevention theory. For a crime 

to occur in a lodging site, people who take care of the site such as janitors, apartment managers, 

lifeguards must be absent, ineffective or negligent (Eck, 1994). In this regard, Airbnb lodging 

type with less supervision are more likely to attract offenders. Moreover, criminal opportunities 

found at sites that come to the attention of offenders have an increased risk of becoming targets 

(Brantingham and Brantingham. 1993). While a few criminals may seek out uncharted areas, 

most will conduct their searches within the areas they become familiar with through noncriminal 

activities. In this regard, the Airbnb lodging sites are grouped by the level of accessibility to 

crime target, which was operationalized into different room type (shared room, private room and 

entire home). This grouping also matches the degree of absence of third-party supervisions. 

According to the definition of crime law, the criminal activities this study are going to discuss 

are divided into two types: (1) Violent crime, including murder, rape, robbery, aggravated assault. 

These offenses involve force or threat of force. (2) Property crime, including the offenses of 

burglary, larceny-theft, motor vehicle theft. The object of the theft-type offenses is the taking of 

money or property, but there is no force or threat of force against the victims. 

1.3 Spatial Heterogeneity 

Spatial dependence come from Tobler’s (1970) First Law of Geography, and is determined 

by similarities in position and attributes” (Longley et al., 2005, p. 517). It shows the extent of the 

similarity between variables that are spatially nearby, closer the distance is, higher dependency 

they might got (Mennis & Jordan, 2005). When using non-spatial andstatistical methods to 

analysis spatial data, Anselin (1988) found if variables are autocorrelated, large residuals are 

likely to occur. Spatial heterogeneity refers to the variations of the relationships between 

predicted and explanatory variables over space (Mennis & Jordan, 2005). It occurs under the 

effect of spatial dependency. Regression models lacking spatial heterogeneity would result 

biased parameter estimates and false significance tests (Anselin, 1988). Spatial regression 

explores the non-stationary spatial patterns between variables. Geographically weighten 

regression has become a popular method in modeling spatial heterogeneity data. By adding 

geographic coordinate into the regression model, it give rise to the model performance and 

explanatory power (Kim, 2016).  

There are previous researches explore the stationary relationships between lodging sites and 

crime data, yet seldom has taken the spatial factors in. Given that both lodging sites clusters and 

criminal activities carry strong spatial features, and their relationships could vary on destinations, 

there comes a great necessisty to discover the spatial pattern inside. 

Based on the discussions above, three interrelated questions frame this study:  
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Question 1: Is there a spatial relationship between the geographical locations of Airbnb 

rental sites and incidents of criminal activities?  

Question 2: Is there a spatial relationship between the geographical locations of Airbnb 

rental types (shared home, entire property, room in home) and incidents of criminal activities? 

Question 3: Is there a spatial relationship between geographical location of Airbnb rental 

sites and types of criminal activities (property, violent crime and different criminal categories)? 

Question 4: Is there any patterns of spatial heterogeneity regard to the relationships 

between Airbnb and crimes? 

2 Methods 

In this study, county was used as unit of analysis due to data availability. The state of 

Florida includes 67 counties. Figure illustrates the distribution of Airbnb (n=63,446) and the 

county boundaries in the state of Florida. 

Geographic data such as county boundaries were acquired from the Florida GIS data library 

(http://www.fgdl.org/metadataexplorer/explorer.jsp). Airbnb types and locations were collected 

from the AIRDNA (https://www.airdna.co/). Data of the criminal activity counts of 2015 in state 

of Florida were collected from Florida Department of Law Enforcement (FDLE) and the Simply 

Map (http://geographicresearch.com/simplymap/). The criminal activity counts were 

standardized into crime index, where 100 point stands for average crime level, points above 100 

stand for above average and vice versa. Two data sheet were splited and organized at the county 

level, serving the purpose for zonal-based spatial analysis. Control variables were obtained from 

North American Industry Classification System (NAICS)6. In total 19 variables were used for the 

study as Table 1. 

Table 1 Dependent Independent and Control Variables 

Variable Operational definition Abbreviation 

Total Crime Index (IV, DV) Total Crime Index TCI 

Crime Type: Property Crime Index(IV) Property Crime Index PROPTY 

Crime Type: Violent Crime Index(IV) Violent Crime Index VIOLENT 

Crime Type: Murder/Rape Crime Index(IV) Murder and Rape Crime Index MR 

Crime Type: Robbery Crime Index(IV) Robbery Crime Index ROBBERY 

Crime Type: Assault Crime Index(IV) Assault Crime Index ASSAULT 

Crime Type: Burglary Crime Index(IV) Burglary Crime Index BURGLARY 

Crime Type: Larceny Crime Index(IV) Larceny Crime Index LARCENY 

Crime Type: Motor Vehicle Theft Crime 

Index(IV) 

Motor Vehicle Theft Crime Index MVT 

Spatial location of all Airbnb sites(DV) KDE of all Airbnb sites ALL 

Room Type: Spatial location of shared 

rooms(IV) 

KDE of shared rooms SHARE 

Room Type: Spatial location of private 

rooms(IV) 

KDE of private rooms PRIVATE 

Room Type: Spatial location of entire KDE of entire homes ENTIRE 

 

 
6 https://www.census.gov/eos/www/naics/ 

https://www.airdna.co/
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homes(IV) 

Population Density(CV) KDE of population by county POPD 

The study applies geographically weighted regression (GWR) to explore the spatial 

relationships between the location of Airbnb facility and the criminal activities. It is assumed that 

(1) Violent crimes are less likely to occur in high Airbnb density area, where property crime has 

more chance to occur. (2) The leasing type that provides with more public space will attract more 

property crime, for there are more shared activity space between victims and offenders. Thus, 

prepositions were put forward in accordance with the research questions: 

1) Positive relationships exist between densities of Airbnb and crimes.  

2) Positive relationship exists between Airbnb density and density of property crime, negative 

relationship exists between densities of Airbnb and violent crime. 

3) The relationships between Airbnb and crimes are altered by crime categories (MR, MVT, 

ROBBERY, ASSAULT, BURGLARY and LARCENY). 

4) Airbnb listing type alters the relationship with crimes: shared room has higher correlations 

with crimes than private room than entire home. 

5) Spatially varying relationships exist between densities of Airbnb and crimes. 

For question 1, spatial autocorrelation was employed, a positive, significant was identified 

between Total Crime Index and ALL Airbnb sites. 

For question 2, Model 1 (Dependent Variable: ALL; Independent Variable: PROPTY, 

VIOLENT) and Model 2 (Dependent Variable: ALL; Independent Variable: MR, ROBBERY, 

ASSAULT, BURGLARY, LARCENY, MVT; Control Variable: POPD) was built based on 

geographic weighted regression (see Table 2 and Table 3). 

For question 3, Model 4 (Dependent Variable: TCI; Independent Variable: SHARE, 

PRIVATE, ENTIRE; Dependent Variable: TCI) was built. 

For question 4, mappings were conducted to visualize the levels of spatial relationships, 

based on which regional comparisons were made. Every local coefficient was calculated and 

grouped at county level. 

 

Table 2 Model Building 

 Dependent Variable Independent Variable 

Model 1 KDE of all Airbnb sites PROPTY, VIOLENT 

Model 2 KDE of all Airbnb sites MR,ROBBERY,ASSAULT, 

BURGLARY,LARCENY,MVT 

Model 3 Total Crime Index SHARE, PRIVATE, ENTIRE 

  

3 Results 

3.1 General relationships 

For question 1, significant correlations were found between the density of Airbnb and 

crimes.  

For question 2, the relationship is confirmed as varying by crime types, positive correlations 

were found in property crime, while negative correlations exist in violent crime. All variables 
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(PROPTY, VIOLENT, and TCI) showed evidence of significant spatial variation in parameter 

estimate values based on the rho value. The mean of the local coefficients for these variables 

were 1,366.82, PROPTY, -1,078.68, VIOLENT (see Table 3).  For the model fit, the range of 

local adjusted R2 was from a minimum of 0.05 (Baker, Nassau, and Pinellas Counties) to a 

maximum of 0.45 (Osceola) and with a mean of 0.24 (Figure 1). The model had the best 

explanatory power (> 0.34 [1 standard deviation above the mean]) in the Counties of Brevard, 

Indian River, Okeechobee, Orange, Osceola, Seminole, St. Lucie, and Volusia. However, the 

model had very low explanatory power (< 0.14 [1 standard deviation below the mean]) in the 

Counties of Alachua, Baker, Bradford, Columbia, Hamilton, Jefferson, Madison, Lafayette, Leon, 

Suwannee, Union, and St. Johns. 

Table 3 Results of Regression of by Crime Type (Model 1) 

Variable 
OLS coefficient GWR coefficients (  

Rho 

(spatial variability) 
Range 

 

Minimum Mean Maximum 

Intercept 1,330.51 998.27 1,348.12 1,593.47 0.42 595.2 

PROPTY 1,247.89 -17.95 -1,366.82 5,128.98 < 0.05 
5,146.9

3 

VIOLENT -998.96 -4,066.51 -1,078.68 -34.62 < 0.05 
4,031.8

9 

Adjusted R2    0.18 0.05 0.24 0.45  0.41 

Condition 

index 
 20.66 27.19 29.48  8.82 

n = 67; AICc (OLS) = 1,578.32; AIC (GWR) = 1,568.31; Neighbors = 23 

Note. Rho: Rho value by Monte Carlo analysis;  Regression coefficient; AICc: Corrected 

Akaike’s information criterion 

For the individual crimes categories, three variables (MR, ROBBERY and LARCENY) 

showed evidence of significant spatial variation in parameter estimate values based on the rho 

value. The mean of the local coefficients for these variables -814.25, MR, 900.66, ROBBERY, 

270.27, MVT. Positive correlations were found from ROBBERY and MVT, while negative 

correlations were recognized from MR (see Table 4).  For the model fit, the range of local 

adjusted R2 was from a minimum of 0.15 (Madison County) to a maximum of 0.60 (Brevard 

County) and with a mean of 0.37 ( 

Figure 2). The model had the best explanatory power (> 0.49 [1 standard deviation above the 

mean]) in the Counties of Brevard, Indian River, Lake, Martin, Okeechobee, Orange, Osceola, 

Polk, Seminole, St. Lucie, and Volusia. However, the model had very low explanatory power (< 

0.25 [1 standard deviation below the mean]) in the Counties of Bay, Calhoun, Gadsden, 

Hamilton, Holmes, Jackson, Jefferson, Lafayette, Leon, Liberty, Madison, Suwannee, Taylor, 

Wakulla, and Washington.  

Table 4 Results of Regression by Individual Crime Kind (Model 2) 

Variable 
OLS 

coefficient 
GWR coefficients (  Rho 

Range 
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Minimum Mean Maximum 

(spatial 

variability) 

Intercept 84.13 61.92 86.36 101.12 0.56 16.99 

MR -974.33 -1,768.31 -814.25 -57.76 < 0.05 1,710.55 

ROBBERY 709.50 -173.89 900.66 2,248.27 < 0.05 2,422.16 

ASSAULT -177.87 -994.03 -114.65 846.21 0.57 1,840.24 

BURGLARY 65.53 -1,299.43 -120.70 1,419.12 0.89 2,718.55 

LARCENY -255.80 -861.41 126.69 1,726.65 0.25 2,588.06 

MVT 865.47 -319.32 270.27 1,155.99 < 0.05 1,475.31 

Adjusted R2    0.25 0.15 0.37 0.60  0.45 

Condition 

index 
 21.58 24.09 29.19  7.61 

n = 67; AICc (OLS) = 1,577.81; AIC (GWR) = 1,552.35; Neighbors = 24 

For question 3, the regression result of Model 3 shows that SHARE is positively correlated 

with the crime occurrence, while the PRIVATE and ENTIRE carry negative correlations. All 

variables (SHARE, PRIVATE, ENTIRE) showed significant spatial variation in parameter 

estimate values based on the rho value. The respective means of the variables were 0.06537, 

SHARE, -0.0063, PRIVATE, and -0.000079, ENTIRE (see Table 5).  For the model fit, the 

range of local adjusted R2 was from a minimum of 0.17 (Flagler, Volusia, and Seminole 

Counties) to a maximum of 0.27 (Escambia County) and with a mean of 0.19 (Figure 3). The 

model had the best explanatory power (> 0.21 [1 standard deviation above the mean]) in the 

Counties of Bay, Escambia, Homes, Jackson, Okaloosa, Santa Rosa, Walton, and Washington. 

However, the model had very low explanatory power (< 0.175 [1 standard deviation below the 

mean]) in the Counties of Flagler, Volusia, and Seminole Counties.  

Table 5 Results of Spatial Regression by Room Types (Model 3) 

Variable 

OLS 

coefficient 
GWR coefficients (  Rho 

(spatial 

variability) 

Range 

 
Minimum Mean Maximum 

Intercept 116.9472 107.1532 116.0857 129.8248 0.28 22.6716 

SHARE 0.06334 0.05216 0.06537 0.09107 < 0.05 0.03891 

PRIVATE -0.0063 -0.0108 -0.0063 -0.0039 < 0.05 0.0069 

ENTIRE -0.000093 -0.000193 
-

0.000079 
-0.000008 

< 0.05 
0.00008 

Adjusted R2 0.15 0.17 0.19 0.27  0.10 

Condition 

index 
 13.68 16.59 29.98  16.3 

n = 67; AICc (OLS) = 627.77; AIC (GWR) = 641.50 ; Neighbors = 19 

 

3.2 Spatially varying relationships 

For question 4, the relationships between Airbnb clusters and criminal activities varies 

across the studied area. Figure 5-Figure 12 map the spatial distribution of local coefficients and 

local R2 for those independent variables that had significant rho values.  
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Model 1 TCI (Figure 5). Strong positive correlations (local coefficient > 785.79 [2 standard 

deviations above the mean]) were observed in the Counties of Brevard, Orange, Indian River, 

and Seminole. Strong negative correlation (local coefficient < -883.33 [2 standard deviations 

below the mean]) were observed in the Counties of Citrus, Hernando, Pasco, and Polk.  

Model 1 PROPTY (Figure 5). Strong positive correlations (local coefficient > 4,204.74 [2 

standard deviations above the mean]) were observed in east side counties like Brevard and 

Osceola. Negative correlations (local coefficient < 0.00) were observed in the middle north 

counties as Columbia, Hamilton, Lafayette, and Suwannee.  

Model 1 VIOLENT (Figure 6). Strong negative correlations (local coefficient < -3,077.56 

[2 standard deviations below the mean]) were observed in east side counties like Brevard and 

Osceola. Relatively less negative correlations (local coefficient > -144.9 [1 standard deviation 

above the mean]) were observed in the northern counties like Bay, Gulf and Columbia.  

Model 2 MR (Figure 7). Strong negative correlations (local coefficient < -1,314.63 [2 

standard deviations below the mean]) were observed in the middle north-east counties like 

Orange, Lake and Volusia. Relatively less negative correlations (local coefficient > -313.87 [1 

standard deviation above the mean]) were observed in the north-west counties like Santa Rosa, 

Walton, Madison.  

Model 2 ROBBERY (Figure 8). Strong positive correlations (local coefficient > 1,716.24 

[2 standard deviations above the mean]) were observed in the middle south-east counties like 

Palm Beach, Glades, Martin. Negative correlation (local coefficient < 0.00) were observed in the 

middle west and south counties like Sarasota, Miami-Dade, Monroe.  

Model 2 MVT (Figure 9). Strong positive correlations (local coefficient > 661.65 [1 

standard deviation above the mean]) were observed in the middle counties like Orange, Lake, 

Hernando. Strong negative correlation (local coefficient < -121.11 [1 standard deviation below 

the mean]) were observed in the south-east counties like Broward, Palm Beach, Martin.  

Model 3 SHARED (Figure 10). Positive correlations (local coefficient > 0.07413 [1 

standard deviation above the mean]) were observed in the north-west counties of Escambia and 

Santa Rosa. Relatively less positive correlation (local coefficient < 0.05663 [1 standard deviation 

below the mean]) were observed in the middle-east counties like Orange, Osceola, Brevard.  

Model 3 PRIVATE (Figure 11). Negative correlations ((local coefficient < -0.0086 [1 

standard deviation below the mean]) were observed in the north-west counties like Gulf, 

Escambia and Santa Rosa. Relatively less negative correlation ((local coefficient > -0.0042 [1 

standard deviation above the mean]) were observed in the south-east counties like Miami-Dade, 

Broward and Palm Beach. 

Model 3 Entire House/APT (Figure 12). Negative correlation (local coefficient < -

0.000127 [1 standard deviation below the mean]) were observed in the south-east counties like 

Miami-Dade, Palm Beach and Monroe. Relatively Negative correlations (local coefficient > -

0.000031 [1 standard deviation above the mean]) were observed in the middle-north counties like 

Hamilton, Columbia and Leon. 

The variability in the model parameters suggests that the relationship between entire 

house/apartment and crime index is not stationary. 
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4 Conclusions 

This study proved a significant, positive spatial relationship between Airbnb and crimes. 

Crime type(property/violent) act as a moderator which alters the direction of the relationship: 

Airbnb is positively related with property crime, and negatively related with violent crime. 

Individual crime kind also identified as a moderate factor: out of 6 selected crimes, robbery and 

motor vehicle theft have positive relations with Airbnb, murder and rape have negative 

correlation. The relationship pattern also varies by room type, shared rooms positively related 

with the crime, while the private rooms and entire home has negative correlations.  

All the above relationships have a spatial heterogeneity across the studied area. The middle-

east area of Florida, as Orange and Seminole county, has the highest crime and Airbnb 

correlations, property crime, robbery and motor vehicle theft in particular. Yet total violent crime, 

murder and rape in particular, has the strongest negative correlations in this area. Among all the 

coefficients distribution patterns, property crime occupies the largest area in the middle-east of 

Florida. When look into the spatially varying relationship of crime and Airbnb, room listing type 

also play an active role. Unlike private and entire home, shared rooms are higher related with 

crimes in north-west Florida. Meanwhile, entire homes are higher related with crimes in south 

Florida. Shared rooms in north-west Florida also need to take attentions on criminal activities.  

5 Implications 

Contrary to common theoretical assumptions, in less tourism intense areas, shared room 

type is the most solid crime-related listing type. Hosts and renters should take extra cautions 

when renting shared or share lodgings in less touristy areas. Also, pertinent crime precaution 

measures should be taken in different regions: In central Florida, where Disney park locates, 

motor vehicle theft, robbery are more likely to jeopardize the safety of Airbnb users. Even if 

robbery belongs violent crime, more frequently it is initiated from property looting purpose, 

though in a drastic manner. For other types of violent crime, less concerns need to be paid, since 

personal crimes are less likely to happen under massive supervisions. 

From this study, the destination administration section (DMO particularly) has the 

opportunity to gain greater insights. It is timely to create a targeted training programs as well as 

policy guidelines for home-sharing renters in their destination. The information garnered from 

this study also provide the industry with empirical support to demonstrate the need for greater 

cautions in running the home-sharing business and protect the safety of their visitors. 

6 Future Study 

To interpret the spatially varying strength of the correlations between crime and Airbnb, 

additional factors need to be introduced. Inferring from previous research, tourism intensity level 

may have a mediation effect on crime’s impact on Airbnb lodging. A linear combination of 

tourism tax percentage, rent rate, disparity in tourism sales, and percentage of hotel rooms to 

residential rooms can be introduced in future studies. 
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Appendix A: Heterogenous of local model fit

 
Figure 1 Spatial Distribution of R2 for 

Model 1 

 

Figure 2 Spatial Distribution of R2 for 

Model 2

 
Figure 3 Spatial Distribution of R2 for 

Model 3 
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Appendix B: Heterogenous of local relationship by crime type 

 

 
Figure 4 Local coefficients of Airbnb related 

with total crime 

 
  Figure 5 Local coefficients of Airbnb 

related with property crime 

 
Figure 6 Local coefficients of Airbnb related 

with violent crime 

 
 Figure 7 Local coefficients of Airbnb 

related with murder and rape 
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Figure 8 Local coefficients of Airbnb related 

with robbery 

 
Figure 9 Local coefficients of Airbnb related 

with motor vehicle theft 
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Appendix B: Heterogenous of local relationship by listing type

 

  
Figure 10 Local coefficients of crimes 

related with shared room 

 

 
Figure 11 Local coefficients of crimes 

related with private room

 
Figure 12 Local coefficients of crimes related with entire house 
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