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Frequency of invasive plant occurrence is not a suitable proxy
for abundance in the Northeast United States

TYLER CROSS, JOHN T. FINN, AND BETHANYA. BRADLEY�

Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts 01003 USA

Citation: Cross, T., J. T. Finn, and B. A. Bradley. 2017. Frequency of invasive plant occurrence is not a suitable proxy for
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Abstract. Measuring and predicting invasive plant abundance is critical for understanding impacts on
ecosystems and economies. Although spatial abundance datasets remain rare, occurrence datasets are
increasingly available across broad regional scales. We asked whether the frequency of these point
occurrences can be used as a proxy for abundance of invasive plants. We compiled both occurrence and
abundance data for 13 regionally important invasive plants in the northeast United States from herbarium
records and several contributed distribution datasets. We integrated all available abundance information
based on infested area, stem count, percent cover, or qualitative descriptions into abundance rankings
ranging from 0 (absent) to 4 (highly abundant). Within equal-area grid cells of 800 m, we counted numbers
of occurrence points and used ordinal regression to test whether higher densities of occurrence points
increased the odds of a higher abundance ranking. We compiled a total of 86,854 occurrence points in
34,596 grid cells, of which 26,114 points (30%) within 11,976 cells (35%) had some form of abundance
information. Eleven of the 13 species had a slight but significantly positive odds ratio; that is, more occur-
rence points of a species increased the odds that the species was abundant within the grid cell. However,
the predictive ability of the models was poor (j < 0.2) for the majority of species. Additionally, most grid
cells contained only one or two occurrence points, making it impossible to infer abundance in all but a few
locations. These results suggest that currently available occurrence datasets do not effectively represent
abundance, which could explain why many distribution models based on occurrence data are poor
predictors of abundance. Increased efforts to consistently collect and report invasive species abundance,
ideally estimating both infested area and average cover, are strongly needed for regional-scale assessments
of potential abundance and associated impact.
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INTRODUCTION

Invasive species abundance is recognized as an
important metric of potential impact on ecosys-
tems (Parker et al. 1999, Daehler 2003, Stohlgren
and Schnase 2006, Seabloom et al. 2013). Unfortu-
nately, spatial data available for invasive species,
such as museum/herbarium records and manage-
ment records, are typically limited to occurrences

only. Including all occurrences rather than just
abundant infestations in species distribution mod-
els leads to vast overestimation of invasion risk
(Bradley 2013), which is of limited use for guiding
control efforts aimed at reducing ecological and
economic impacts (Hulme 2006, McDonald et al.
2009). Hence, spatial data and associated spatial
models of invasive species abundance at land-
scape and regional scales are strongly needed for

 ❖ www.esajournals.org 1 May 2017 ❖ Volume 8(5) ❖ Article e01800

info:doi/10.1002/ecs2.1800
http://creativecommons.org/licenses/by/3.0/


understanding potential impact and for coordi-
nating monitoring and management.

Occurrence data alone are not typically effec-
tive for predicting abundance. Several studies
have tested whether habitat suitability models
based on presence-only or presence/absence data
can effectively predict abundance, with generally
poor results (Pearce and Ferrier 2001, Sakai et al.
2001, Jim�enez-Valverde et al. 2009, VanDerWal
et al. 2009). For invasive plants, presence-only
models were effective for differentiating presence
from absence, but could not predict increasing
abundance (Pearce and Ferrier 2001), particularly
when herbarium records were the source of data
(Bradley 2016). However, spatial models trained
with abundance data perform reasonably well
for predicting invasive species abundance (Kul-
hanek et al. 2011, Bradley 2016). Thus, in order
to effectively predict invasion risk associated
with invasive species abundance, better spatial
abundance data are needed, particularly at land-
scape to regional scales.

One approach for estimating abundance in the
absence of explicit abundance data uses the fre-
quency of individual occurrence as a proxy for
local abundance through occupancy modeling. It
is a well-accepted pattern in ecology that a spe-
cies’ abundance is positively correlated with the
frequency of its occurrence across a region (He
and Gaston 2000, Holt et al. 2002). Collection of
occurrence data for occupancy modeling requires
repeated observations to measure the frequency
of species occurrence using consistent levels of
search effort (Royle and Dorazio 2008). The
resulting occurrence frequency and absence data
are then used to model abundance. While con-
tributed occurrence datasets do not meet these
sampling criteria, it is possible that the increas-
ingly widespread and repeated collections by
research, monitoring, and management groups
could provide sufficient spatial occurrence infor-
mation to act as a proxy for local abundance.

In the United States, invasive plant occurrence
data are available through herbarium records like
those contained in the Global Biodiversity Infor-
mation Facility (GBIF; www.gbif.org) as well as
spatial data compilations like the Invasive Plant
Atlas of New England (IPANE; Mehrhoff et al.
2003), iMAP Invasive Species (imapinvasives.org),
or the Early Detection and Distribution MAPping
System (EDDMAPS; Bargeron and Moorhead

2007). The latter databases contain data compiled
from a range of sources, including both citizen sci-
entists and conservation professionals. In some
cases, invasive plant abundance data, either quali-
tative or quantitative, are included along with
occurrence locations.
Botanical records like GBIF have long been

accepted as an important source of occurrence
data for use in species distribution or habitat
modeling. For invasion ecology in particular,
management and citizen science databases are
also increasingly being used to model habitat suit-
ability (Dickinson et al. 2010, 2012). While there is
some concern that contributed datasets could con-
tain information recorded by under-trained indi-
viduals (Crall et al. 2015), recent research has
increasingly shown that data from citizen scien-
tists are reliable (Danielsen et al. 2005, Fowler
et al. 2013). Data are even more reliable when
contributors are trained and/or when data are
professionally verified, which is typical of inva-
sive species datasets. Thus, citizen science and
management records provide a robust dataset
that increases numbers of occurrence records and
broadens regional coverage (Fore et al. 2001,
Delaney et al. 2008). However, to date, the major-
ity of botanical and management records indicate
occurrence alone. Information about abundance is
often lacking and inconsistently reported.
Given the importance of abundance informa-

tion for modeling invasion risk across landscapes
and regions (Parker et al. 1999, Daehler 2003,
Stohlgren and Schnase 2006, Seabloom et al.
2013), we aimed to test whether the spatial fre-
quency of point occurrences can be used as an
effective proxy for invasive plant abundance.
Here, we compiled a comprehensive database of
occurrence and abundance data for 13 problem-
atic invasive plant species across the northeast
United States. We hypothesized that the number
of occurrences within equal-area grid cells will be
positively related to invasive plant abundance.
This analysis provides an empirical test of the
relationship between the frequency of invasive
plant occurrences and local plant abundance.

MATERIALS AND METHODS

Study species and area
We selected 13 non-native, invasive plants that

are of concern to regional managers and have
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negative environmental impacts in the northeast
United States (Table 1). These species are some of
the most common and widespread invaders
within the study area, which included 13 states
and the District of Columbia between Virginia
and Maine. As the most commonly reported spe-
cies, they provide a robust test of the relationship
between frequency of occurrence and abundance.

Compilation of existing data sources
We compiled existing distribution and abun-

dance data from four online databases that record
geolocations of invasive species: the GBIF (www.
gbif.org), the IPANE (Mehrhoff et al. 2003), the
EDDMAPS (Bargeron 2016), and iMapInvasives
(imapinvasive.org) for the states of Maine, New
York, Pennsylvania, Vermont, and West Virginia
(although Virginia also contributes to iMAP, they
did not have records for our target species). Addi-
tionally, we collected and included invasive species
occurrence and abundance information for selected
species from two smaller databases compiled by
researchers and managers in New England.

Ultimately, the included data ranged from
botanical records collected by professional scien-
tists, to citizen science efforts in which interested

individuals collect and enter occurrences of inva-
sive species into online repositories. All data
included geographic location, with a subset also
containing abundance information reported in a
variety of formats from qualitative to quantita-
tive. For databases containing polygons rather
than points, we assumed that the polygon
extents described the area of the invasive plant
infestation. We removed duplicate points as well
as points that fell outside of the study area and
points where the spatial precision was coarser
than one-thousandth of a decimal degree (equiv-
alent to about 100 m within the study area). We
also tested for points located at town or country
centroids, which would likely have poor loca-
tional accuracy, but found none. We combined
all available data in our analyses, but also calcu-
lated reporting differences between the datasets.
For all geographic locations also containing

abundance information, we standardized abun-
dance to a qualitative, ranked scale of 0–4
(Table 2) ranging from absent to highly abundant.
Both qualitative and quantitative bins were arbi-
trary, but based upon commonly reported values
within the management datasets for cover, stem
count, and descriptions of invasion. These values

Table 1. List of target invasive plants.

Name Growth habit Impact example Reference

Alliaria petiolata
(Garlic Mustard)

Forb/herb Disrupts mutualisms, reduces native diversity Stinson et al.
(2006)

Berberis thunbergii
(Japanese barberry)

Shrub Increases tick and Lyme disease prevalence Williams et al.
(2009)

Celastrus orbiculatus
(Oriental Bittersweet)

Vine Suppresses native plant growth Fike and Niering
(1999)

Cynanchum louiseae
(Black Swallow-wort)

Vine, Forb/herb Disrupts native communities, reduces native diversity DiTommaso et al.
(2005)

Elaeagnus umbellata
(Autumn olive)

Shrub Outcompetes native vegetation, increases nitrogen Munger (2003)

Euonymus alatus
(Burning bush)

Shrub Outcompetes native vegetation Mehrhoff et al.
(2003)

Frangula alnus
(Glossy Buckthorn)

Shrub, tree Alters nutrient cycling Stokdyk and
Herrman (2014)

Lonicera morrowii
(Morrow’s honeysuckle)

Shrub Shrub honeysuckles reduce growth of forest herbs Miller and
Gorchov (2004)

Lythrum salicaria
(Purple Loosestrife)

Subshrub, forb/herb Forms monocultures Yakimowski et al.
(2005)

Microstegium vimineum
(Japanese Stilt-Grass)

Graminoid Reduces native diversity Morrison et al.
(2007)

Polygonum cuspidatum
(Japanese Knotweed)

Forb/herb, subshrub Forms monocultures, alters nutrient cycling Aguilera et al.
(2010)

Rhamnus cathartica
(Common buckthorn)

Shrub, tree Alters nutrient cycling, eliminates leaf litter Knight et al.
(2007)

Rosa multiflora
(Multiflora rose)

Subshrub, vine Increases avian nest predation and nest failure Borgmann and
Rodewald (2004)
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are consistent with previous rankings of relative
invader abundance and importance (Rouget and
Richardson 2003). Our decision to use >25% cover
as the threshold for the highest bin was based on
discussions with local invasive plant managers,
who agreed that in the northeast >25% cover
would be considered “abundant.” Bins for quanti-
tative range extent estimates were also based on
commonly reported metrics of area (square
meters for small areas, acres for larger areas). The
break between ranks 3–4 (moderate vs. high
abundance) of 40 acres for range extent was cho-
sen to match the break in cover estimate of 25% of
a grid cell (see below); a grid cell was approxi-
mately 160 acres.

Archived data
The dataset used in this analysis (not including

iMAP invasives data, which are not public but can
be requested from individual states) can be down-
loaded from: https://doi.org/10.7275/r55t3hfj.

Point count vs. abundance comparison
In order to calculate frequency of occurrences,

we created an equal-area grid of 800 9 800 m
cells encompassing the study area. This spatial res-
olution approximates 30 arc seconds, which is a
typical gridded resolution for species distribution
modeling at regional to continental scales. Polygon
layers were transformed into point occurrences
with one point per grid cell. We then summed the
number of point occurrences within each grid cell.
All spatial analyses were performed using ArcGIS
10.2 (ESRI, Redlands, California, USA).

In order to calculate abundance for each grid
cell, we extracted the maximum abundance rank-
ing associated with all points falling within each
grid cell. We chose maximum abundance based

on the assumption that it was a better indicator
of potential invasion risk in a given cell than
mean abundance. Additionally, mean abundance
was problematic because ranks were based on
unequally spaced bins (nonetheless, maximum
and mean were highly correlated, R = 0.85). For
polygon data, the area of the polygon overlap-
ping each grid cell was calculated and grid cells
were ranked according to the area category in
Table 2.
In order to test whether frequency of point

occurrences was related to abundance, we com-
pared ranked abundance estimates at the 800-m
grid cell resolution to the number of points fall-
ing within each grid cell. Grid cells only con-
tained abundance information for a given species
if one or more occurrences within the cell had
associated abundance, or if polygon features
identifying the extent of an invasion overlapped
the grid cell. As a result, only grid cells contain-
ing both abundance and point occurrence infor-
mation were included in the model.

Statistical analysis
We used ordinal regression analysis to test the

hypothesis that frequency of occurrence points
was positively related to abundance. Ordinal
regression was appropriate in this case because
the abundance classification bins were not equally
spaced but increased with rank order. Ordinal
regression tests for an overall relationship between
occurrence frequency and ranked abundance
based on proportional odds ratios. If the overall
odds are not significantly different from 1 (i.e.,
1:1), then there is no relationship. A significant
odds ratio that does not overlap 1 can be inter-
preted as the odds that an increase of one occur-
rence will correspond to an increase of one

Table 2. Classification scheme used to combine quantitative and qualitative abundance estimates into abundance
rankings.

Abundance
ranking

Quantitative
cover

estimate (%)

Quantitative
stem
count

Quantitative
range
extents

Qualitative
cover/stem
estimate

Qualitative
range
extents

0 0 0 0 Absent Absent/not present
1 ≤1 1 ≤1 m2 Uncommon, trace, or single plant Rare
2 1–5 2–99 1 m2–1 acre Few or scattered plants Few or small patches
3 5–25 100–999 1–40 acres Common or scattered dense plants Moderate or several

patches
4 >25 >999 40 + acres Abundant or dense monoculture Many small or several

large patches
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abundance rank. For example, overall odds of 2
gives 2:1 odds that one additional occurrence cor-
responds to a higher abundance rank. Ordinal
regression was performed using the proportional
odds logistic regression (polr) function in the
MASS package in R (version 2.15.2, R Core Team
2014). We used the ordinal regression models to
plot occurrence frequency vs. the probability of
being in a given abundance rank (1–4) for each
species. For visualization, we also created box-
and-whisker plots for each study species showing
abundance ranking vs occurrence frequency.

The occurrence frequency data were skewed
toward single values; that is, most grid cells con-
tained only a single occurrence point. To test
whether the quantity of these single values
biased the results, we repeated the analysis for
the subset of grid cells with occurrence point fre-
quency greater than one.

Finally, we randomly split each species dataset
into 2/3 training and 1/3 testing and used the
proportional odds logistic regression to predict
abundance rank based on the occurrence fre-
quencies in the testing dataset. We compared
observed vs. predicted abundance ranks using
4 9 4 contingency tables and calculated Cohen’s

kappa (Cohen 1960) for each species. We inter-
preted kappa statistics using the benchmarks
presented by Landis and Koch (1977) where
0 = poor, 0.2 = slight, 0.4 = fair, 0.6 = moderate,
0.8 = substantial, and 1.0 = perfect agreement
between predicted and observed abundance
ranks.

RESULTS

Occurrence frequency vs. abundance
Numbers of occurrences ranged from the

smallest, Cynanchum louiseae, with 1088 points
(26% with abundance information) spread across
526 cells to the largest, Rosa multiflora, with
12,355 points (35% with abundance information)
spread across 5360 cells. Distribution and abun-
dance data for these two example species are
shown in Fig. 1. Maps of the remaining species
are presented in Appendix S1. After removing
duplicate and non-useable points, a total of
86,854 occurrence points remained within 34,596
grid cells across all 13 species (Table 3). Thirty
percent of these points had associated abundance
information based on quantitative or qualitative
estimates of area or cover (or both). In most

Fig. 1. Abundance maps for two example species Cynanchum louiseae and Rosa multiflora show that occurrence
and abundance data are widespread across the northeast but data from mid-Atlantic states and Virginia were
less well reported in the databases included in this analysis. Maximum abundance corresponds to rankings pre-
sented in Table 2.
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species studied, grid cells with and without
abundance information contained similar fre-
quencies of occurrence points. Across all species,
the mean frequency of occurrences in grid cells
with abundance information was 2.50 � 0.04
(SE) points per grid cell vs. 2.65 � 0.03 (SE)
points per grid cell in grid cells without abun-
dance information.

There was very little difference in frequency of
point occurrences across the abundance rankings
for any of the 13 species, with the possible excep-
tion of rank 4, which tended to have higher occur-
rence frequency (Fig. 2). However, even for rank
4, the median occurrence frequency values were
typically either one or two points (note the log
scale in Fig. 2). Indeed, of the 11,976 grid cells
with some abundance information, the vast
majority (9459, or 79%) contained only one or two
occurrence points. This same pattern of low num-
bers of occurrences across all abundance ranks
was still evident when we excluded all cells with
a single occurrence point (Appendix S2).

Ordinal regression revealed overall odds sig-
nificantly greater than one for 11 of the 13 study
species (Table 4). That is, having one more occur-
rence point within a grid cell significantly
increased the probability that the grid cell would
have a higher abundance rank. However, the
power of this predictive relationship was weak,
with all but one of the significant odds ratios
ranging from 1.13:1 to 1.31:1. In only one case,
Euonymus alatus, could more occurrences be rea-
sonably interpreted as higher abundance. When

we repeated these analyses including only grid
cells with more than one occurrence point, we
found a similar overall pattern (Appendix S2).
Probability plots based on the ordinal regres-

sion showed that there was little differentiation
between abundance ranks 1–3 (Fig. 3). For the
example species Alliaria petiolata, ordinal regres-
sion predicts that abundance rank 2 is most
likely at low occurrence frequency, while abun-
dance rank 4 is most likely once occurrence fre-
quency becomes greater than ~5 occurrences per
grid cell (Fig. 3). However, of the 229 A. petiolata
grid cells with abundance rank 4, only 50 (22%)
would have been predicted as high abundance
based on this criterion. Probability plots for all 13
species are shown in Appendix S3.
Contingency tables of predicted vs. observed

abundance rank showed that model predictions
were generally poor (Appendix S4). Cohen’s kappa
statistics were below 0.1 (poor agreement) for all
species except C. louiseae (j = 0.24, slight agree-
ment) and E. alatus (j = 0.16, slight agreement). As
expected from the probability plots (Appendix S3),
predicted ranks tended to fall entirely into rank 2
and rank 4, creating a false-negative prediction for
rank 1 and rank 3. An example contingency table
for A. petiolata (j = 0.04, poor agreement) is shown
in Table 5.

Abundance and occurrence across datasets
The plurality of our occurrence points came

from the five states contributing iMAP data,
which accounted for 44,943 data points. The

Table 3. Total numbers of occurrence and abundance points compiled for each target species.

Species
Total
points

Points
w/abundance

% Points
w/abundance

Total
cells

Cells
w/abundance

% Cells
w/abundance

Alliaria petiolata 7974 2182 27.4 3739 1037 27.7
Berberis thunbergii 10,915 3042 27.9 3497 1316 37.6
Celastrus orbiculatus 8325 2748 33.0 2708 1276 47.1
Cynanchum louiseae 1088 279 25.6 526 148 28.1
Elaeagnus umbellata 5842 1727 29.6 2406 921 38.3
Euonymus alatus 3278 1301 39.7 1279 566 44.3
Frangula alnus 4108 1526 37.1 1141 599 52.5
Lonicera morrowii 2524 1046 41.4 1403 601 42.8
Lythrum salicaria 7031 1251 17.8 3534 701 19.8
Microstegium vimineum 8988 1599 17.8 2350 592 25.2
Polygonum cuspidatum 11,305 3063 27.1 5262 1574 29.9
Rhamnus cathartica 3121 1188 38.1 1391 486 34.9
Rosa multiflora 12,355 4295 34.8 5360 2159 40.3
Total 86,854 26,114 30.1 34,596 11,976 34.6
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second largest dataset was the EDDMAPS, with
26,821 data points (Table 6). Only EDDMAPS
and GBIF targeted the full study region; the other
datasets were regionally focused on single states
or smaller portions of the northeast.

Among the databases, there was a range of
availability of abundance information, from none
in the GBIF herbarium records to 100% from
IPANE, where contributors used the same meth-
ods to conduct quantitative surveys of vegetation
(Mehrhoff et al. 2003). Records from iMAP and
EDDMAPS, the two largest datasets, contained
11% and 42% abundance information, respec-
tively (Table 6). This abundance information
came in a variety of forms. Most common was
percent cover; however, it was rare to find both
percent cover and extent in the same record.

Thus, it is likely that some records of 100% cover,
which suggests high abundance, could be
describing a small, localized patch. Similarly,
infested area was often reported, but typically
without any cover information. The most directly
interpretable quantitative metric was stem count,
because thousands of individuals (particularly
for woody species) can more readily be inter-
preted as “highly abundant” than either percent
cover or area of infestation. Stem count was most
often reported in the bins shown in Table 2.
Qualitative descriptions of cover and extent

were also useful, although it was time-consuming
to convert various unique comments into
abundance ranks. It would be easier to compile
qualitative descriptions if the data were
reported in a consistent format such as the ones

Fig. 2. Box plot of abundance ranking vs. the frequency of occurrences within grid cells. Most species show
increasing numbers of occurrences as abundance increases. However, the median number of occurrences per grid
cell typically only ranges from 1 to 2 between the lowest and highest abundance ranks.
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described in Table 2. Of lowest value (in fact,
uninterpretable) were qualitative descriptions
that did not clearly articulate whether they
referred to individuals, cover, or infested area
(e.g., “huge”).

DISCUSSION

Ordinal regression analysis revealed weak but
significant odds that an additional occurrence
would correspond to a higher abundance rank in
11 of 13 species (Table 4). While this finding sup-
ports the hypothesis that the frequency of occur-
rence points in a grid cell relates to abundance,
the model predictions overall were poor (Table 5;
Appendix S4). Moreover, most grid cells con-
tained only one or two occurrence points (Fig. 2),
meaning that occurrence frequency as a metric of
abundance could rarely be applied. Unfortu-
nately, occurrence frequency is currently unlikely
to provide a reliable means of distinguishing rare
from abundant invasions (Fig. 2).
With sufficient, regular sampling, it has often

been found that numbers of species occurrences
are positively related to species abundance (He
et al. 2002). Species with larger populations are
more frequently observed, and thus, higher rates
of observation indicate that more individuals are
occupying the habitat (Royle and Dorazio 2008).
However, effective occupancy modeling requires
consistent, widespread sampling and resampling
to measure occurrences (He et al. 2002). Although
the invasive plant database we compiled contains
substantial, widespread occurrences recorded by
citizen scientists, invasive plant managers, and
museum collectors, the occurrence data do not
appear to be consistent enough to infer abun-
dance. Regardless of the magnitude or extent of
infestation, invasions are likely to be recorded only
as a single point location. The majority of 800-m
grid cells (63%) contained one occurrence point.
Several studies have modeled habitat suitability

based on occurrence points and compared these
suitability values to measured abundance (Pearce

Fig. 3. Probability plot from ordinal regression
model for Alliaria petiolata shows low differentiation
between abundance ranks. At low occurrence fre-
quency (<5 records per grid cell), the model predicts
that abundance rank 2 is most likely. Above five
records per grid cell, abundance rank 4 is most likely.
Abundance ranks 1 and 3 are never the most likely.

Table 5. Contingency table for the example species
Alliaria petiolata showing the number of observations
in the testing dataset falling within each predicted
rank.

Predicted

Observed

TotalRank 1 Rank 2 Rank 3 Rank 4

Rank 1 0 0 0 0 0
Rank 2 49 123 84 62 318
Rank 3 0 1 1 11 13
Rank 4 0 3 4 8 15
Total 49 127 89 81 346

Table 4. Overall odds are the odds that an increase in
1 occurrence per grid cell will correspond to an
increase in the abundance ranking based on ordinal
regression analysis.

Species
Overall
odds CI (95%)

Model fit
(kappa)

Alliaria petiolata 1.16 1.11–1.21 0.04 (poor)
Berberis thunbergii 1.23 1.17–1.28 0.05 (poor)
Celastrus orbiculatus 1.19 1.14–1.24 0.00 (poor)
Cynanchum louiseae 1.08 0.98–1.21 0.24 (slight)
Elaeagnus umbellata 1.31 1.23–1.40 0.06 (poor)
Euonymus alatus 2.36 2.00–2.82 0.16 (slight)
Frangula alnus 1.14 1.09–1.19 0.03 (poor)
Lonicera morrowii 1.13 1.06–1.20 0.03 (poor)
Lythrum salicaria 1.15 1.09–1.22 0.01 (poor)
Microstegium vimineum 0.99 0.97–1.01 0.01 (poor)
Polygonum cuspidatum 1.22 1.16–1.29 0.00 (poor)
Rhamnus cathartica 1.14 1.08–1.20 0.07 (poor)
Rosa multiflora 1.25 1.21–1.30 0.08 (poor)

Note: Odds were significantly higher than 1:1 in 11 of 13
cases; however, although significant, the modeled relation-
ship (based on Cohen’s kappa) for all but C. louiseae and
E. alatus was poor.
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and Ferrier 2001, Sakai et al. 2001, Jim�enez-
Valverde et al. 2009, VanDerWal et al. 2009,
Bradley 2016). In most cases, the relationship has
been weak and models are only effectively able to
differentiate between presence and absence. Our
results, showing that the distribution of occur-
rences is poorly correlated with local abundance,
suggest an underlying cause for the lack of mod-
eled relationship. If frequency of occurrences only
weakly reflects abundance, then it is not surpris-
ing that models based on these occurrences do a
poor job of predicting abundance.

Previous research comparing abundance and
occurrence frequency of invasive species has
shown no relationship or even a negative relation-
ship, with more occurrences in areas of low abun-
dance (Marvin et al. 2009). Marvin et al. (2009)
hypothesized that point data collected by invasive
plant managers tended to focus on early detection
and rapid response (EDRR), which targets small
nascent infestations (Moody and Mack 1988). As
a result, EDRR data collection efforts might, coun-
terintuitively, tend to have more occurrences in
areas of low abundance. Our results do not show
evidence of this negative relationship at low
abundance ranks; but there is no differentiation
between abundance ranks 1–3 for most species
(Fig. 3; Appendix S3). It is possible that the wide
range of data sources we used includes the effect
shown in Marvin et al. (2009) as well as clustered
occurrences in areas of high abundance. For
example, EDDMAPS has a strong focus on early
detection, while IPANE conducted more system-
atic sampling. Additionally, our rankings merge
together multiple quantitative and qualitative
metrics of abundance, which are not necessarily
directly comparable. The use of bins, while neces-
sary to create sufficient data for sampling, adds

uncertainty to the analysis, and a more consistent
ranking could lead to better predictive relation-
ships. Asking scientists and managers to record
and report more occurrence points in areas with
abundant infestations would help to increase the
strength of the relationship observed with existing
data.
Data coverage and availability varied widely

between states (Fig. 1; Appendix S1). States and
agencies that archive to EDDMAPS make their
data easily accessible for research and manage-
ment applications. These types of free and open
source datasets are increasingly important for
supporting broad-scale invasion risk assessments.
Herbarium records from GBIF are also easily
accessible and used for a wide variety of applica-
tions in regional spatial modeling. For invasive
plants, EDDMAPS spatial coverage was a marked
improvement over GBIF. Within the study region,
EDDMAPS contained nearly 15 times as many
data points (Table 6). Additionally, 40% of EDD-
MAPS data included some form of qualitative or
quantitative abundance estimate.
Spatial models predicting invasive species

abundance have been shown to be more accurate
when created using abundance data rather than
simple occurrence information (Kulhanek et al.
2011, Bradley 2016). Habitat suitability models
are useful tools for regional- and landscape-scale
invasive species management; thus, there is a
clear need for data collectors, professionals, and
citizen scientists alike, to continue to collect and
report abundance information. The contributed
databases compiled here report a considerable
amount of abundance information (Table 6). As
yet, these abundance data are underutilized in
modeling efforts. Landscape ecologists and
biogeographers should consider including this

Table 6. Total numbers of occurrence and abundance points compiled for each of the primary data sources.

Databases
Total
points

Points
w/abundance

% of points
w/abundance

Total
cells

Cells
w/abundance

% of cells
w/abundance

EDDMAPS 26,821 11,159 41.6 5692 2564 45
GBIF 5108 0 0 2685 0 0
iMapInvasives 44,943 4856 10.8 8733 1275 14.6
IPANE 6203 6203 100 1765 1765 100
WISP 3779 2959 78.3 668 256 38.3
All databases 86,854 25,177 29 19,543 5860 30

Notes: EDDMAPS, Early Detection and Distribution MAPping System; GBIF, Global Biodiversity Information Facility;
IPANE, Invasive Plant Atlas of New England; WISP, Westfield Invasive Species Partnership. Cell sums are not the same as in
Table 3 because here we are summing across databases rather than across species.
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important source of data in predictive spatial risk
assessments.

While existing abundance information is an
excellent start, data collectors could consider
modifications of collection methods to better
inform spatial models. For example, abundance
data were most often reported as a single metric,
either by quantitatively or qualitatively describ-
ing cover, or by quantitatively or qualitatively
describing extent. The combination of cover and
extent information is much more informative for
estimating the magnitude of an invasion, and we
recommend that collectors report both pieces of
information. Although quantitative measure-
ments are preferable, we found that qualitative
estimates using consistent rankings (e.g., Table 2)
were very useful for interpreting relative
abundance. We urge scientists, managers, and
citizens collecting invasive plant occurrence data
to include extent and cover information when
archiving their data to online repositories.

CONCLUSIONS

Overall, we found significant positive relation-
ships between occurrence frequency and abun-
dance in 11 of 13 target invasive plants.
However, the model predictions had generally
poor agreement, making it unlikely that fre-
quency of occurrence could be used as an effec-
tive proxy for abundance in risk assessments and
management planning. Given the importance of
abundance for understanding invasion risk,
additional recording and reporting of abundance
is needed, particularly data that include esti-
mates of both cover and extent. A remarkably
large proportion (30%) of the compiled occur-
rences already contained some abundance infor-
mation, which could be a boon to regional-scale
invasion risk assessments.

ACKNOWLEDGMENTS

This research was supported by the National
Science Foundation Award BCS 1560925 and the
National Institute of Food and Agriculture, U.S.
Department of Agriculture, the Massachusetts Agricul-
tural Experiment Station, and the Department of Envi-
ronmental Conservation under Project Numbers
MAS00016 and MAS00410. We thank J. Allen, K. Stin-
son, and J. Richburg for helpful comments and advice.

We gratefully acknowledge the managers of the vari-
ous databases used in this research for their assistance
and for archiving these valuable spatial resources:
C. Bargeron, D. Farrell, A. Jewitt, H. Krahling, N. Olm-
stead, B. Rhodes, and R. Wallace. The authors declare
no conflict of interest. BAB conceived of the idea; TC
and BAB collected data; TC, JTF, and BAB analyzed
data; TC and BAB wrote the paper with help from JTF.

LITERATURE CITED

Aguilera, A. G., P. Alpert, J. S. Dukes, and R. Harrington.
2010. Impacts of the invasive plant Fallopia japonica
(Houtt.) on plant communities and ecosystem
processes. Biological Invasions 12:1243–1252.

Bargeron, C. T., and D. J. Moorhead. 2007. EDDMapS
—early detection and distribution mapping system
for the southeast exotic pest plant council. Wild-
land weeds 10:4–8.

Borgmann, K. L., and A. D. Rodewald. 2004. Nest
predation in an urbanizing landscape: the role of
exotic shrubs. Ecological Applications 14:1757–1765.

Bradley, B. A. 2013. Distribution models of invasive
plants over-estimate potential impact. Biological
Invasions 15:1417–1429.

Bradley, B. A. 2016. Predicting abundance with pres-
ence-only models. Landscape Ecology 31:19–30.

Cohen, J. 1960. A coefficient of agreement for nominal
scales. Educational and Psychological Measure-
ment 20:37–46.

Crall, A. W., C. S. Jarnevich, N. E. Young, B. J. Panke,
M. Renz, and T. J. Stohlgren. 2015. Citizen science
contributes to our knowledge of invasive plant
species distributions. Biological Invasions 17:2415–
2427.

Daehler, C. 2003. Performance comparisons of co-
occurring native and alien invasive plants: impli-
cations for conservation and restoration. Annual
Review of Ecology, Evolution, and Systematics
34:183–211.

Danielsen, F., N. D. Burgess, and A. Balmford. 2005.
Monitoring matters: examining the potential of
locally-based approaches. Biodiversity and Conser-
vation 14:2507–2542.

Delaney, D. G., C. D. Sperling, C. S. Adams, and
B. Leung. 2008. Marine invasive species: validation
of citizen science and implications for national mon-
itoring networks. Biological Invasions 10:117–128.

Dickinson, J. L., J. Shirk, D. Bonter, R. Bonney, R. L.
Crain, J. Martin, T. Phillips, and K. Purcell. 2012.
The current state of citizen science as a tool for eco-
logical research and public engagement. Frontiers
in Ecology and the Environment 10:291–297.

Dickinson, J. L., B. Zuckerberg, and D. N. Bonter. 2010.
Citizen science as an ecological research tool:

 ❖ www.esajournals.org 10 May 2017 ❖ Volume 8(5) ❖ Article e01800

CROSS ET AL.



challenges and benefits. Annual Review of Ecology,
Evolution, and Systematics 41:149–172.

DiTommaso, A., F. M. Lawlor, and S. J. Darbyshire.
2005. The biology of invasive alien plants in
Canada. 2. Cynanchum rossicum (Kleopow) Borhidi
[= Vincetoxicum rossicum (Kleopow) Barbar.]
and Cynanchum louiseae (L.) Kartesz & Gandhi
[= Vincetoxicum nigrum (L.) Moench]. Canadian
Journal of Plant Science 85:243–263.

Fike, J., and W. A. Niering. 1999. Four decades of old
field vegetation development and the role of Celas-
trus orbiculatus in the northeastern United States.
Journal of Vegetation Science 10:483–492.

Fore, L. S., K. Paulsen, and K. O’Laughlin. 2001.
Assessing the performance of volunteers in moni-
toring streams. Freshwater Biology 46:109–123.

Fowler, A., J. D. Whyatt, G. Davies, and R. Ellis. 2013.
How reliable are citizen-derived scientific data?
Assessing the quality of contrail observations made
by the general public. Transactions in GIS 17:
488–506.

He, F., and K. J. Gaston. 2000. Estimating species
abundance from occurrence. American Naturalist
156:553–559.

He, F., K. J. Gaston, and J. Wu. 2002. On species
occupancy-abundance models. Ecoscience 9:
119–126.

Holt, A. R., K. J. Gaston, and F. He. 2002. Occupancy-
abundance relationships and spatial distribution: a
review. Basic and Applied Ecology 3:1–13.

Hulme, P. E. 2006. Beyond control: wider implications
for the management of biological invasions.
Journal of Applied Ecology 43:835–847.

Jim�enez-Valverde, A., F. Diniz, E. B. de Azevedo, and
P. A. V. Borges. 2009. Species distribution models
do not account for abundance: the case of arthro-
pods on Terceira Island. Annales Zoologici Fennici
46:451–464.

Knight, K. S., J. S. Kurylo, A. G. Endress, J. R. Stewart,
and P. B. Reich. 2007. Ecology and ecosystem
impacts of common buckthorn (Rhamnus cathartica):
a review. Biological Invasions 9:925–937.

Kulhanek, S. A., B. Leung, and A. Ricciardi. 2011.
Using ecological niche models to predict the abun-
dance and impact of invasive species: application
to the common carp. Ecological Applications 21:
203–213.

Landis, J. R., and G. G. Koch. 1977. The measurement
of observer agreement for categorical data. Bio-
metrics 159–174.

Marvin, D. C., B. A. Bradley, and D. S. Wilcove. 2009.
A novel, web-based, ecosystem mapping tool using
expert opinion. Natural Areas Journal 29:281–292.

McDonald, A., A. Riha, A. DiTommaso, and A. DeGae-
tano. 2009. Climate change and the geography of

weed damage: Analysis of U.S. maize systems sug-
gests the potential for significant range transforma-
tions. Agriculture, Ecosystems & Environment
130:131–140.

Mehrhoff, L. J., J. A. Silander Jr., S. A. Leicht, E. S.
Mosher, and N. M. Tabak. 2003. IPANE: invasive
plant atlas of New England. University of Con-
necticut, Storrs, Connecticut, USA.

Miller, K. E., and D. L. Gorchov. 2004. The invasive
shrub, Lonicera maackii, reduces growth and fecundity
of perennial forest herbs. Oecologia 139:359–375.

Moody, M. E., and R. N. Mack. 1988. Controlling the
spread of plant invasions: the importance of nascent
foci. Journal of Applied Ecology 25:1009–1021.

Morrison, J. A., H. A. Lubchansky, K. E. Mauck, K.-M.
McCartney, and B. Dunn. 2007. Ecological compar-
ison of two co-invasive species in eastern decidu-
ous forests: Alliaria petiolata and Microstegium
vimineum. Journal of the Torrey Botanical Society
134:1–17.

Munger, G. T. 2003. Elaeagnus umbellata. in Fire effects
information system. U.S. Department of Agricul-
ture, Forest Service, Rocky Mountain Research Sta-
tion, Fire Sciences Laboratory. http://www.fs.fed.
us/database/feis/

Parker, I. M., et al. 1999. Impact: toward a framework
for understanding the ecological effects of inva-
ders. Biological Invasions 1:3–19.

Pearce, J., and S. Ferrier. 2001. The practical value of
modelling relative abundance of species for regio-
nal conservation planning: a case study. Biological
Conservation 98:33–43.

R Core Team. 2014. R: a language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria.

Rouget, M., and D. M. Richardson. 2003. Inferring pro-
cess from pattern in plant invasions: a semimecha-
nistic model incorporating propagule pressure and
environmental factors. American Naturalist 162:
713–724.

Royle, A., and R. Dorazio. 2008. Hierarchical model-
ing and inference in ecology: the analysis of data
from populations, metapopulations, and communi-
ties. Academic Press, Cambridge, Massachusetts,
USA.

Sakai, A., F. Allendorf, J. Holt, D. Lodge, and J. Molofsky.
2001. The population biology of invasive species.
Annual Review of Ecology and Systematics 32:
305–332.

Seabloom, E. W., et al. 2013. Predicting invasion in
grassland ecosystems: Is exotic dominance the real
embarrassment of richness? Global Change Biology
19:3677–3687.

Stinson, K. A., S. A. Campbell, J. R. Powell, B. E. Wolfe,
R. M. Callaway, G. C. Thelen, S. G. Hallett, D. Prati,

 ❖ www.esajournals.org 11 May 2017 ❖ Volume 8(5) ❖ Article e01800

CROSS ET AL.

http://www.fs.fed.us/database/feis/
http://www.fs.fed.us/database/feis/


and J. N. Klironomos. 2006. Invasive plant sup-
presses the growth of native tree seedlings by dis-
rupting belowground mutualisms. PLoS Biology
4:e140.

Stohlgren, T., and J. Schnase. 2006. Risk analysis for
biological hazards: what we need to know about
invasive species. Risk Analysis 26:163–173.

Stokdyk, J. P., and K. S. Herrman. 2014. Short-
term impacts of Frangula alnus litter on forest soil
properties. Water, Air, and Soil Pollution 225:
1–9.

VanDerWal, J., L. P. Shoo, C. N. Johnson, and S. E.
Williams. 2009. Abundance and the environmental
niche: Environmental suitability estimated from

niche models predicts the upper limit of local
abundance. American Naturalist 174:282–291.

Williams, S. C., J. S. Ward, T. E. Worthley, and K. C.
Stafford. 2009. Managing Japanese barberry
(Ranunculales: Berberidaceae) infestations reduces
blacklegged tick (Acari: Ixodidae) abundance and
infection prevalence with Borrelia burgdorferi
(Spirochaetales: Spirochaetaceae). Environmental
Entomology 38:977–984.

Yakimowski, S. B., H. A. Hager, and C. G. Eckert.
2005. Limits and effects of invasion by the
nonindigenous wetland plant Lythrum salicaria
(purple loosestrife): a seed bank analysis. Biological
Invasions 7:687–698.

SUPPORTING INFORMATION

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecs2.
1800/full

 ❖ www.esajournals.org 12 May 2017 ❖ Volume 8(5) ❖ Article e01800

CROSS ET AL.

http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1800/full
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1800/full

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2017

	Frequency of invasive plant occurrence is not a suitable proxy for abundance in the Northeast United States
	Tyler Cross
	John T. Finn
	Bethany A. Bradley
	Recommended Citation


	Frequency of invasive plant occurrence is not a suitable proxy for abundance in the Northeast United States

