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ABSTRACT

A COMPARISON OF SEVERAL ALGORITHMS FOR

MAXIMUM-LIKELIHOOD ESTIMATION OF PARAMETERS

IN UNRESTRICTED COMMON FACTOR ANALYSIS

September 1978

Michael Patrick Hagerty

B.A., Southern Illinois University

Ed . D
. , University of Massachusetts

Directed by: Professor Thomas E. Hutchinson

The purpose of this study was to compare a set of

nonlinear minimization routines within the context of the

unrestricted factor analysis model. It was anticipated that

the outcome of the study would provide researchers with

recommendations concerning the efficiency of the various

algorithms for minimization in this context.

To this end, eight routines which had either been used

in factor analysis before, or had demonstrated high levels

of efficiency in other problems, were collected and tested.
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The set included Joreskog and van Thillo's NWTRAP
, van der

Voort's MINIM, Powell's VA06A
, Fletcher's VA09A

, Shanno's

MINFUN, Browne's FACTOR, Gruvaeus and Joreskog's

STEDE/FLEPOW
,
and the author's reworking of NWTRAP. The

data used in the test procedure were matrices which had been

previously factor analyzed in published reports.

A program was written to serve as the environment for

the testing of the individual routines. The unrestricted

factor analysis model proposed by Joreskog and van Thillo

was implemented in the form of a standalone function to be

invoked by each of the routines under test. The resultant

solutions were compared against the solutions produced by

the widely-used UFABY3 program. Information was collected

on the robustness and accuracy of the routines, as well as

the CPU time, number of iterations and evaluations, and

amount of memory required.

The information collected by the test program was

tabled and examined to determine the parameters which would

allow the individual routines to be included as part of a

general factor analysis package.

In summary, the study indicated that the choice of a

minimization routine does make a difference. To select an

inefficient algorithm is to guarantee the needless waste of
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large sums of computer time. The

efficient algorithms for non-linear

the means by which efficient progr

increasingly complex factor analytic

recent availability of

minimization provides

ams can be produced for

problems

.
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CHAPTER I

INTRODUCTION

History of Maximum-likelihood Factor Analysis

Factor analysis is a statistical technique which
has been widely used, particularly in psychological
research. Many methods of estimating factor loadings
have been proposed, but the majority are of an
approximate and non-stat istical nature and little is
known of the property of the estimates. By contrast, a
statistically sound technique was first developed by
Lawley [1940], using the method of maximum likelihood.
These estimates of factor loadings are theoretically
preferable to other estimates which have been proposed,
as they are asymptotically efficient and there is a
corresponding likelihood ratio test for assessing the
fit of the
amount of
likelihood
procedures

factor analysis model
computation is

equations, and
suggested have

However a great

certain cases [Lord, 1956]
estimating
majority of

factor loadings

involved in
the earlier
been known to
so that other

have been

solving the
computational
break down in
methods for
used in the

reported studies. [Browne, 1968a]

Since the above passage was written, several major

advances have occurred that improve and refine the

computational procedures required to solve the likelihood

equations. However, these developments have gone virtually

unnoticed in the fields of education and psychology. Mulaik

[1972] points out that as a group, the early factor analysts

were "not statisticians concerned with questions of

1
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statistical inference," and were therefore reluctant to

become entangled in the exceedingly complex problems which

even mathematical statisticians were finding difficult to

solve. Even after Lawley [1940] developed the equations for

estimation of factor loadings using maximum-likelihood,

interest remained unkindled. In this instance hesitation

was not unwarranted, however, as the algorithm supplied by

Lawley was not practical for problems of the large size to

which psychologists were accustomed.

Mulaik further explains that when Howe [1955] first

demonstrated that maximum-likelihood estimates (MLE ) of the

loadings could be derived without imposing any

distributional assumptions on the variates and also provided

a Gauss-Seidel method far superior to Lawley's, no serious

attempt was made to implement the algorithm on the

newly-emerging electronic computers. (In personal

correspondence, Browne points out that this lack of effort

was due mainly to ignorance as Howe's procedure was never

formally published). The practitioners instead implemented

a method developed by Rao [1955], Jennrich and Robinson

[1969] explain that although Rao ’ s algorithm was better than

Lawley's, it was not much better, "requiring extensive

computing and many iterations with doubtful convergence."

[Mulaik, 1972]
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Mulaik concludes that psycholog

statisticians had not provided the soluti

while awaiting further developments,

popular) centroid method of computing and

of components analysis."

ists "felt the

ons needed, and so,

abandoned the (then

took up variations

Advantages of Maximum-likelihood Estimates

It might, at this point, be helpful to detail the

advantages of using MLE. Mulaik [ 1972 ] states that ML

estimators "are usually superior to other estimators in

estimating population parameters .

"

Jennri ch and Robinson

[1969] further explain that MLE is characterized by

"asymptotic efficiency,

and the existence of a

factors." Harman [1968

statistical consistency,

unbiasedness, states that

invariance under changes in scale

chi-square test for additional

,
after providing definitions of

efficiency, sufficiency, and

The method of maximum likelihood is a well-
established and popular statistical procedure for
estimating the unknown population parameters because
such estimators satisfy the first three of the above
(consistency, efficiency, and sufficiency) standards.
Not all parameters have sufficient estimators but if

one exists, the maximum-likelihood estimator is such a

sufficient estimator. However, a maximum-likelihood
estimator will generally not be unbiased. (While it is

of some advantage to devise an unbiased estimate, it is

not a very critical requirement.)
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Barriers to Utilizati on

With the many advantages to be gained by the

utilization of MLE
, the question may be asked, "Why are they

not more commonly used?" The answer is that for want of a

computationally efficient and mathematically accurate

technique for producing the estimates, Lawley's and Howe's

procedures never gained a large following. In order to

develop a technique that would satisfy these conditions it

would be necessary to identify a numerically efficient

method of minimizing the likelihood function. Basically,

the issue reduces to a rather complicated nonlinear

optimization problem, an area in which numerical analysts

generally show far greater interest than social scientists.

It is not surprising that years passed before an innovation

in optimization theory found application in factor analysis.

For example, it was not until Joreskog [1967], upon

Lawley's suggestion, used the algorithm developed by the

physicist William Davidon, later refined by the numerical

analysts Fletcher and Powell [1963] to minimize the function

of the ML criterion in the common factor analysis model,

that a relatively speedy convergence was obtained. Mulaik

[1972] hails this application of an innovation in numerical

analysis as the solution of the major computational obstacle

barring the way to further use of MLE as well as the first



computationally feasible method.



CHAPTER I I

THE MINIMIZATION PROCESS

Minimization Methods

It would be convenient if, for something so important

as the solution of a minimization problem there existed a

clearly superior computational method. Unfortunately this

is not the case. Fiacco and McCormick [1968] have described

four conceptually distinct types: derivative-free simple

search procedures; gradient techniques; quasi-Newton and

true Newton methods. An important method they do not

include is to solve the equations giving necessary

conditions for a minimum. In addition, there are a large

number of variations that do not fit neatly into any one of

the above categories.

The "search” and "conjugate direction" methods have the

principal advantage of not requiring the calculation of

derivatives, a difficult and time-consuming chore when the

function is particularly complex [Powell, 1970]. In

describing his implementation of Nelder and Mead's [1965]

Simplex method, O'Neill [1971] explains that it is

6



7

essentially opportunist

information. The underly

create an ( n+1 ) -dimensio

variables in the problem,

the objective function at

expanded, reflected (fl

all of the corners coinci

represents the minimum of

ic
, maki

ing strat

nal solid

and then

each of

ipped ove

de in s

the func

ng use only of current

egy of this method is to

, where n is the number of

to compute the value of

the corners. The solid is

r) and/or contracted until

pace at the point that

t ion

.

The gradient methods utilize the principle of "steepest

descent (or ascent)," and inasmuch as the principle was

first proposed by Cauchy in 1847
, these methods can hardly

be accorded the distinction of being recent advances.

Although the underlying premise remains the same, a number

of variations of this method exist. Instead of utilizing

information only pertaining to each corner as in Simplex,

these methods keep track of the direction that has been most

successful in past iterations to point them in the most

promising direction for the succeeding iteration. Using

this vector of pointers (the gradient) a series of steps is

taken until the minimum is reached.

only

order

At each iteration,

type of comput

to the Hessian (

these methods are t

successively closer

Because the third

an approximation

derivatives )

,

ational method uses

the matrix of second-

ermed "quasi-Newton."

approximations to the
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xnverse of the Hessian are computed to be used in the next

iteration. The original Davidon-Fletcher-Powell algorithm
is the most widely known of this category.

Lastly, there are pure Newton methods. On comparing

various minimization algorithms, Fiacco and McCormick [1968]

found this method, the Newton-Raphson
, to be the most

effective. To achieve the efficiency characteristic of this

category, it is necessary to compute the actual Hessian at

each iteration. Calculation of the Hessian increases in

difficulty rather dramatically with increased complexity of

the problem. Jennrich and Robinson [1969], Clarke [1971],

and Joreskog and van Thillo [1971] all have specified the

second derivatives for the classical unrestricted factor

analysis model and using the Newton-Raphson procedure,

achieved solutions. However, the manner in which the model

was specified precludes the possibility of extension to

other, more general models.

Joreskog and Goldberger [1971], prime champions of the

Fletcher-Powell algorithm until 1971, say: "It has been

found that the Newton-Raphson procedure is very efficient,

generally requiring only a few iterations for convergence."

Swaminathan [1971] explains that the success of the

Newton-Raphson scheme "hinges on the availability of the

matrix of second derivatives."
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Geometric Interpretation of Minimization

While minimization is usually described in terms of

calculus or algebra, a strong case can be made for adopting

a geometric interpretation. Simply stated, finding the

minimum of a function in several variables is analogous to

finding the bottom of an unfathomed pond. The minimizer is

analogous to a surveyor rowing a boat on the surface of this

pond. It is the surveyor’s responsibility, upon being

provided with specific tools and instructions, to locate the

coordinates of the deepest point.

In the case of direct search methods the surveyor is

given a plumb line to fathom the depth under his boat (the

value of the function at that point). The surveyor will

then row in a straight line, testing the depth at fixed

intervals until he begins to head into shallower water. As

most direct search algorithms dictate the selection of a

path perpendicular to the unsuccessful previous direction,

the surveyor will then make a 90 degree turn to continue his

search for deeper water.

In the case of the Simplex method, the surveyor is

joined by a number of compatriots equal to the number of

dimensions plus one (three surveyors in the two dimensional
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case). At each iteration, the boat over the deepest point

yet discovered is allowed to row a fixed distance

perpendicular to a line connecting his colleagues. This

strategy has the effect of expanding, contracting, or if the

surveyor crosses the connecting line, reflecting the solid

(triangle) formed by their positions. Assuming the bottom

of the pond to be concave and smooth, once the lowest point

has been encircled, convergence of the boats over this point

is guaranteed. The method’s only drawback to offset this

extremely desirable feature, guaranteed convergence, is the

large number of measurements which must be taken since only

one surveyor may move at a time.

The gradient methods utilize single surveyors but are

more successful than direct search methods because the

surveyor remembers the direction from which he has come and

has an indication of the most useful direction to take in

the future. Hence, the surveyor tends not to strike off in

directions which head into already explored shallow water.

Because the surveyor is going to row a fixed distance before

he is allowed to drop his line, he will have the greatest

success around the edge of the pond, where the water becomes

deep most rapidly, and will have the greatest difficulty in

the neighborhood of the true bottom, where the slope is

relatively flat. While above this flat area, the surveyor

may row back and forth a fixed distance over the deepest
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point without stopping, assuming the bottom to

reports coordinates of some point other than

bottom. This difficulty may cause the frustrat

crossing the deepest point over and over, each

the same distance and never stopping in the midd

up

.

be flat, he

the true

ed surveyor

time going

le, to give

The Newton approach involves remembering not only the

most productive direction, but also the distance necessary

to recognize a given increase in depth. So concerned are

Newton methods with this d istance/ decrease ratio that they

have difficulty at the outer edge, where the slope is most

steep. Near the bottom, the surveyor goes shorter and

shorter distances until the distance is practically zero,

signifying the end of the search. Quasi-Newton methods

attempt to approximate the Newton approach by varying the

distance the surveyor rows in response to changes in the

relative increase in depth. The major difference between

strategies is that the quasi-Newt ons determine step size

approximately, while the Newton-Raphson procedure computes

it directly.

Turning from the analogy to

find that search methods have onl

(drop line) available at each i

the current situation, we

y the value of the function

teration; the gradient and

quasi-Newton methods have function and gradient (direction
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of greatest

gradient and

depth); and the Newton methods have

Hessian (slope).

function

,

For convenience, these methods will be referred to by
category throughout the remainder of this paper: direct
search methods will be Category 0, gradient and quasi-Newton
will be Category 1, and the pure Newton methods, Category 2.



CHAPTER I I I

THE NECESSITY OF COMPARISON

Statement of the Probl em

While it is not the purpose of this paper to examine
the mathematical basis of either Maximum Likelihood
estimation in factor analysis or the specific algorithms
used in the minimization process, it is necessary to outline
the import of minimization in ML factor analysis in order to

bring the issue at hand into clearer focus. For a more

complete (or mathematical) explanation the reader is

referred to the outstanding books by Lawley and Maxwell

[1971], Mulaik [1972], Adby and Dempster [1974], and

Himmelblau [1972a]. The factor analysis problem ultimately

reduces to an attempt to produce a matrix with fewer columns

(factors) than rows (variables). When multiplied by its

transpose and added to a diagonal matrix of error, the

product should reproduce the original correlation matrix to

a specified number of decimal places. The justification is

simple parsimony: it is easier to understand what is

happening in a set of data when the dimensionality is

reduced

.

13
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In the current instance, this reduction ln
dimensionality is accomplished by beginning with some
initial estimate of this space (principal components is a

very common example), and adjusting the values of the matrix
(and/or error) until the initial correlation matrix is

reproduced. This result is achieved through the use of a

minimization procedure. Customarily, the initial estimate
IS computed and passed on to a minimizer which in turn has

access to a procedure which returns information about the

current estimate. Given that an initial estimate of the

factor loadings (the principal components of the correlation

matrix) is easily computable, and that a routine to evaluate

this estimate in terms of some model (e.g., function

generator) exists, the only remaining difficulty lies in

selecting a minimization algorithm which will accurately,

certainly and efficiently guide the estimate to a solution.

Presently there exists much disagreement over the

®ffi-C3-cy of the various methods; Fiacco and McCormick

[1968] and Joreskog and Goldberger [1971] claim greater

potential efficiencies with pure Newton methods, while

Shanno disagrees in a private communication to McDonald,

preferring instead gradient or quasi-Newton methods

[ Swaminathan
, 1971]. This conflict could be resolved by

comparing all of the methods and variations of solving

identical problems in action. As there are possibly
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hundreds of algorithms available,

be a task of herculean proportions

project of more manageable size was

comparing them all would

For this reason, a

undertaken

.

Refinements and Constr a i n t

s

A set of algorithms representative of the major

categories and subject to either of the following

constraints was selected for comparison:

1) The algorithm is

a) representative of its category,

b) reported as relatively efficient,

c) publically available, and

d) In common use (among numerical analysts);

or

2) The algorithm is of historical interest.

A thorough review of the literature, undertaken to

identify algorithms satisfying the above constraints

resulted in the selection of the following eight routines

for comparison:

NWTRAP - Joreskog and van Thillo's [1971] conditional
Newt on-Raphson

;

NEWTON - the author's reworking of the above algorithm;

MINIM - van der Voort's [1972] three-step Newton;
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VA06A - Powell '

s

[ 1970c] quasi-Newton

;

VA09A - Fletcher' s [1972
] quasi-Newton;

MINFUN - Shanno's
[ 1970] quasi-Newton

;

FACTOR - Browne's
[ 1968b] Gauss-Seidel

; and

SD/F-P - Gruvaeus
steepest-
combinat

i

and Joreskog's [1970]
descent and Fletcher-Powel

1

on .

Simultaneously, an examination of the literature on

algorithmic efficiency was initiated to select criteria for

comparing the various routines. The criteria for evaluation

taken from Himmelblau [1972a, 1972b] are as follows:

1) Robustness - success in obtaining a solution for arange of problems.

2) Accuracy - the degree of precision in the solution.

3) Number of f unct ion/gradient/Hessian evaluations.

4) Computer time to termination.

5) Amount of computer memory utilized by code and
arrays

.

In order to test the routines listed above using the

specified evaluation criteria, it was necessary to obtain

test data, preferably data which had already been subject to

factor analysis. In the past, computer codes using both

simulated and real data had been tested with mixed results.

Hillstrom [1977], describing an evaluation of algorithms

using simulated data, writes
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naturally m applications. — arising

In a private communication subsequent to reviewing the

prospectus for this paper, Browne (having used simulated
data in his 1968a study) suggested, "to obtain a fair

comparison between procedures, it would be advisable to vary

p (variables) and q (factors) using different sets of

empirical data .' 1 Therefore, a set of correlation matrices

that had already been factor analyzed in the literature were

sought. Given that computer memory requirements increase

rapidly with the size of the matrices, the solicited set was

to range from the smallest matrix from which multiple

factors could be extracted (i.e., five variables
) , to a

fourteen variable matrix. The set of ten matrices is shown

in Table 1.



CHAPTER I V

IMPLEMENTATION OF THE COMPARISON

Details of the Selected Rout in es

NWTRAP, the conditional Newt on-Raphson routine written

by Joreskog and van Thillo [1971] has achieved widespread

distribution since it was released. Originally the kernal

of a package known as UFABY3 (available from Educational

Testing Service), and later as JFACTOR in Northwestern

University's version of the widely-used statistical package,

SPSS, this routine is now licensed by National Educational

Resources as the core of EFAP, the Exploratory Factor

Analysis Package. This code is widely believed to be the

most efficient implementation of the unconditional factor

analysis method proposed by Joreskog [1967]. NWTRAP, the

driving routine of a collection of eight subroutines,

contains the code necessary to produce factor analytic

solutions by three different methods: Maximum Likelihood,

Least Squares, and Generalized Least Squares. For the

purposes of this analysis, only the ML portion of the code

was exercised.

18
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NWTRAP is organized in a rather curious form for a

minimization program. Instead of following the usual form

where the driving routine calls the minimizer which in turn

iteratively invokes the function, gradient and Hessian

generator, NWTRAP calls the generator which then invokes the

minimizer. The mathematical process followed in the code,

clearly defined in their 1971 Research Memorandum, is to

iteratively locate the minimum of the diagonal matrix of

error (referred to as uniqueness), computing a new

(conditional) factor matrix at each successive conditional

minimum. The final conditional factor matrix is the

solution. Except for the inclusion of several counters to

keep track of iterations and various evaluations, NWTRAP is

program listed in the 1971 Research Memorandum.

NEWTON is the author's implementation of the NWTRAP

model. In this code the minimizer/generator sequence is

organized in the conventional order, where the minimizer

calls the generator instead of vice-versa. The source

listing (Table 13), demonstrates the straightforward nature

of the N-R procedure. The routines INVS and MPYM are taken

from the ESL Matrix Package [Bock and Repp, 1970] now

available from National Educational Resources. MLF is the

generator written by the author and corresponds to the

function, gradient, and Hessian evaluator used in NWTRAP.

The specific details of MLF will be described later under
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Implementation Environment.

Adby and Dempster [1974] have described several
modifications to the N-R approach that increase the speed of

convergence. One modification is to precede the N-R
minimization process with several steepest descent
iterations. The benefit derived from the initial steepest
descent iterations is that the N-R algorithm is spared the

task of finding its way down the relatively steep sides of

the pond (to use the earlier analogy), which Category 1

routines do better anyway, and is allowed to search around

in the neighborhood of the minimum. MINIM is an

implementation of this idea by van der Voort and Dorpema

[ 1972]

.

MINIM contains another feature designed to prevent the

N-R algorithm from becoming completely disoriented when the

next likely place to look for a minimum is outside the

definition of the space. To use the pond analogy, the

bottom is located under a cliff which protrudes out over the

pond. Obviously the drop line is useless on dry land;

is therefore necessary to stop rowing and adopt

alternative strategy upon reaching the face of the cliff.

In mathematical terms, the method devised by Fiacco and

McCormick [1968] is to use directions that correspond to

negative eigenvalues to converge to an area where the

it

an
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Hessian is positive definite. The Hessian is non-positive
definite when pointing to an area outside the range of the
space (or surface of the pond). This situation occurs with
considerable frequency in general minimization. Adby and
Dempster [1974] provide examples designed to trap unwary
algorithms. Once again, with the exception of several
counters, the code is exactly as shown in the original
report [van der Voort & Dorpema, 1972],

VA06A is Powell's [1970c] version of the quasi-Newton
method. The "quasi" part of this method's name reflects the

fact that it does not actually have the Hessian available to

invert and use in the calculation of the next iteration's

correction to the vector being minimized. Instead, an

approximate to the inverse of the Hessian is built up using

only function value and gradient information. The major

benefit of this approach is that the Hessian need not be

evaluated. Because this calculation can be extremely

time-consuming, heightened efficiency is the result. Since

the release of this code, "which has the advantage that

convergence is guaranteed in theory, even if no good initial

estimate of the required vector of variables is available

[Powell, 1970], a number of numerical analysts have

evaluated it. In the broad range of problems analyzed,

VA06A appeared to perform as well or better than Fletcher's

1972 routine VA09A
,

and much better than the original
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Davidon-Fletcher-Powell routine [Adby and Dempster, 1974 ].

VA09A is Fletcher's 1972 version of the quasi-Newton
technique. The major reason for selecting this routine was
that Fletcher demonstrated it to be superior to Powell's

VA06A for locating the minimum in a number of standard test

problems. VA09A is occasionally referred to as Fletcher's

Switching Policy as it switches back and forth between the

original DFP formula and its complement to maintain positive

definiteness of the approximated Hessian [Dixon, 1972]. The

basic difference between the two routines, as reported by

Fletcher [1972] is that VA09A is superior to VA06A in both

efficiency and reliability; VA06A is more affected by the

presence of round-off errors. A complete listing of VA09A

is provided in Fletcher's 1972 AERE report.

MINFUN, Shanno's version of the quasi-Newton was

secured through private sources. The improvement implicit

in this code, an implementation of what is now referred to

as the BFS (Broyden-Fletcher-Shanno ) formula [Dixon, 1972],

is that a class of approximating matrices can be generated

as a function of a scalar which will speed up the

convergence process. In a broad range of test problems,

Dixon [1972] acknowledges that the BFS formula is somewhat

faster than the Fletcher Switching Policy, and greatly more

efficient than the original DFP algorithm. This improvement
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"effects

vector at

does very

toward an

only the

each step

little to

undefined

length, not the direction, of the search

[Shanno and Kettler, 1970],” and hence

redirect the code once it begins to head

region

.

FACTOR, Michael Browne’s [1968b] Gauss-Seidel driver
and subroutine package was installed without modification
since the theory under which it operates is, by and large,

not compatible with the other minimization schemes.

Forsythe, Malcolm and Moler [1977] describe this method,

known variously as the Liebman process , the Gauss-Seidel or

tQe —etbod———success ive displacements . as an iterative

solution of sets of equations in which all of the other

variables, save the one under consideration, participate. A

much more complete discussion of the the method is available

in Forsythe and Moler [1967], The rationale for including

this algorithm is that it was the first practical (and

published) use of ML in factor analysis.

SD/F-P is the steepest-descen t and Fletcher-Powel

1

(gradient and quasi-Newton) package developed by Gruvaeus

and Joreskog [1970], This combination is an early attempt

to use steepest descent and a quasi-Newton algorithm to do

what van der Voort and Dorpema [1972] accomplished with

MINIM. The important difference between the two approaches

is that MINIM uses the Newton-Raphson and modified N-R
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once the neighborhood of the minimum has been

le SD/F-P uses an early version of the DFP

Although tests by various authors have

that the original DFP algorithm does not

efficiency and guarantee of convergence so

a minimizer, it is included nevertheless

ts popularity.

Indeed, SD/F-P (a shortening of the original

STEDE/ FLEPOW name which separately identified its two

components) is a frequently used routine. Joreskog has

included the routine in his Analysis of Covariance

Structures (ACOVS) series of programs, his Simultaneous

Factor Analysis in Several Population (SIFASP) series, as

well as the two new products Confirmatory Factor Analysis

with Model Modification (COFAMM) and Linear Structural

Relations (LISREL III). Gruvaeus and Joreskog advocate

using the SD/F-P pair whenever exact second derivatives

(Hessian) cannot be provided, and recommended several

steepest descent iterations with STEDE before switching over

to FLEPOW for the final approach to the minimum. Unlike

MINIM, the mechanics of the switching are not performed

automatically, requiring intervention on the part of the

algorithms

located
, whi

formula

.

demonstrated

display the

desirable in

because of i

user

.
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The Function Generator

In order to compare the minimizers which were not
already provided with their own function, gradient and

Hessian generators, it was necessary to produce a routine
which, upon invocation, would return the desired values.

Using the unrestricted case ML formulae of Joreskog and van

Thillo [1971] three routines were coded: JMLFN
, the

function, gradient and Hessian generator (Table 18); CLAM,

the conditional lambda evaluator (Table 19); and FLAM, the

final lambda evaluator (Table 20). In Joreskog's notation,

the factor matrix extracted for a given uniqueness is

referred to as lambda. In the Joreskog and van Thillo

formulation of the unrestricted factor analysis problem,

only the elements of the error vector (uniqueness) are

manipulated by the minimization procedure. Lambda is

produced as a product of the eigenvalues and eigenvectors of

the uniqueness.

Since the conditional lambda must be computed within

the generator at each iteration to provide the function,

gradient and Hessian values, it was necessary to provide a

mechanism capable of passing the large number of parameters,

arrays and constants from the driver to JMLFN without going

through the minimizer. The final result was the creation of

MLF
,
shown in Table 17. By calling each of the minimizers
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with only the parameters which it needed directly (the
vector being minimized, the length of that vector, and the
scratch space needed within the minimizer itself) the risk
of introducing spurious errors was reduced. The minimizers
called MLF with the current vector and its length, receiving
on return the function value, the gradient, and/or the

Hessian. MLF added to this information the scratch arrays,

parameters and constants in a call to the real generator,

JMLFN . The amount of information returned was indexed by

MLEV, a parameter equal to the category of the minimizer

less one.

There are several interesting ideas buried within the

NWTRAP code which, deserve close inspection. The NWTRAP

model is designed to avoid those problems commonly

encountered in factor analysis, specifically Heywood

variables and boundary violations. A Heywood variable is

one that does not contribute to any specific factor and may

be visualized as a trench running across the pond in the

earlier analogy. Once the surveyor is located above this

trench, further progress toward the actual minimum is

halted. In the code, when a diagonal element of the Hessian

is found to be smaller than a certain value (EPSHEY), the

gradient element and the off-diagonal elements of the

Hessian are set to zero, and the diagonal element is set to

one. This procedure has the effect of removing that
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variable from the analysis entirely.

Boundary violations are attempts by the minimization
algorithm to solicit information about coordinates outside
of the space under investigation. They usually occur when
the minimum is near the edge of the space and the minimizer
takes a step beyond the edge. JMLFN

, CLAM and FLAM follow
the example provided by NWTRAP by adjusting the vector
passed from the minimizer if it is smaller than the

criterion. The statements which begin with BND=ALOG(

.

005 )

constitute the code for this adjustment.

The third interesting feature of the NWTRAP code also

represented in JMLFN is the fact that the exact Hessian is

computed only when the largest element of the gradient is

smaller than a specified criterion (EPSXCT). Until the

minimizer is in the neighborhood of the minimum, an

approximate to the Hessian is supplied. NWTRAP ' s reduction

in computational effort, achieved by decreasing the number

of times the full set of eigenvectors must be extracted, is

not realized in JMLFN. Since NWTRAP stores a flag

specifying whether the Hessian is to be computed or

approximated in the next iteration, the choice of number of

eigenvectors to use is made before any are extracted.

JMLFN, basing its decision on the current iteration's

gradient (evaluated after eigenvectors are extracted),
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requires the full set.

Ad Environment for Testing

In order to compare the e

convenient manner, they we

three-level overlayed package

which is depicted in Table 5.

routines was supplied with the

(timing, memory management,

an identical fashion. In gene

program calling a minimizer

generator

.

ight different routines in a

re arranged together in a

, the overall structure of

In this package, each of the

required support for testing

and communication routines) in

ral
,
the form was a driver

which, in turn, invoked the

The root level overlay contained the driver routine for

the package, FROG (Table 12); MEMORF, the memory management

routine from SPSS-6000; ALLOC, DPRNT
,
ADDM

,
INVS, and LOC,

from Bock and Repp's 1970 ESL subroutine package; ALLOCAT,

(Table 14); and PMSL and VARMAX, from Joreskog's UFABY3

.

FROG is responsible for reading in all of the parameters

concerning the size, number of factors, number of cases, the

value of the function evaluated at the minimum, the required

tolerance, and a number of routine specific adjustments

referred to as 'TWEAK' parameters. FROG, upon request,

invokes the specific suboverlay containing the minimizer to

be tested.
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The test matrices are read in by INITIAL, a suboverlay
unto itself. Here the initial solution is computed by
extracting the first q principal components from the input
correlation matrix. The initial estimate of the vector to
be minimized is computed using Joreskog and van Thillo's
[ 19711 f ° rmula (26) ‘ The se estimates were then stored on a

scratch file for later access by the various minimizers.

0V1 is a subroutine library used by minimizers which
call JMLFN, the author's version of Joreskog and van

Thillo's function generator. The routines included in this

library are JMLFN, CLAM, FLAM and the eigensystem package

from UF.4BY3. Nested within 0V1 are the routines NWTRAP,

MINIM, VA06A
, VA09A

, MINFUN, STEDE and FLEPOW, and their

drivers and associated subroutines. A sample driver, the

one used to control NEWTON, is shown in Table 15. The

routine issues a salutation to the console displaying the

time the test began and the size of the matrix being

analyzed. ALLOCAT (Table 14) is called to allocate the

arrays utilized by the function generator, and the various

scratch arrays needed by the minimizer are set aside by

calls to the entries in the ESL ALLOC routine. Once FIREUP

has read the initial solution from the disk (saved by

INITIAL) and initialized all of the allocated arrays to the

machine specific invalid data value, the minimizer under

test is called. The minimizer will iteratively invoke the
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generator until

maximum number

final lambda is

later analysis.

convergence is

of iterations is

computed and the

achieved or a specified

exhausted. On return, the

results are printed out for

The driver in 0V2 is organized the same as the drivers
in 0V1 ; but only NWTRAP is available to be tested within
this overlay. The subroutines called by NWTRAP constitute
the remainder of this overlay.

0V3 is similar to 0V2 in that only one minimizer,

Michael Browne's FACTOR, is present. This routine was

separated from the other minimizers as the equations on

which it is based are incompatible with the NWTRAP/JMLFN

model

.

Thus we find within each overlay a driver routine

responsible for the allocation and initialization of memory,

the starting of the timing clocks and the invocation of the

appropriate minimizer. Once the process has reached

convergence, the driver is responsible for stopping the

clocks and saving the results for later inspection.
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The Testing Procednrp

Once all of tbe various routines were assembled
together and the linkages verified to be error free, the
testing phase of the study began. The customary manner in

which minimization algorithms are compared is to specify an

identical convergence criterion (epsilon) for all of the

routines and let the minimizers run until convergence is

reported. The word "reported" is important in this

instance, as the minimizer is incapable of determining

whether the coordinates reported do in 'fact describe the

true bottom (global minimum). As suggested earlier, unless

precautions are taken to eliminate Heywood variables, the

minimizer could terminate in a trench located in a region

quite removed from the global minimum. Also, the gradient

methods could find the neighborhood of the bottom too flat

to provide sufficient guidance as to the direction and

distance of the true bottom. Without an external criterion

on which to compare the results, the process of evaluation

remains fuzzy.

An alternate strategy was therefore adopted in which it

was assumed that the results reported by NWTRAP (actually

UFABY3 ) were correct, and that the answers from this

algorithm would serve as a standard by which the others

could be measured. Although this compromise to a certain
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degree predestines the outcome of the anaiysis, the effect
is less deleterious than might be expected. The NWTRAP code
has, over a period of seven years, been exhaustively tested
by the author and found to be comparable in every instance
to other, correctly implemented factor analysis programs.
Given that the function generator used by all but one of the
other minimization codes would be JMLFN, the author's
implementation of the generator used in NWTRAP, this small
compromise appeared reasonable.

Thus the process used was first to run the matrix

through UFABY3, and using the likelihood ratio test within

it, determine the optimum number of factors. Using NWTRAP,

the matrix was then analyzed to ascertain those values that

described the minimum (i.e., function value, lambda and

uniqueness at the minimum). Using the function value thus

provided by NWTRAP as the termination criteria, the matrix

was reanalyzed by each of the remaining routines. When the

absolute difference between the function value calculated by

the running program and the one supplied from NWTRAP was

smaller than 1 . OE-7
, the routine was judged to have

converged to the true solution. The 1 . OE-7 value was

selected after the author discovered that when function

values produced by the different routines corresponded to

seven places, the lambdas and uniquenesses corresponded to a

minimum of five places. Thus the degree of comparability
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between two factor solutions was between one and

two decimal places shy of the match between the f

of the function. This serendipitous heurist

simplified the final evaluation. Because the fi

is supplied at the beginning and the individual r

until they are within the 1 . OE-7 band around the

minimum, information which would be useful in a

non-testing, situation must be collected. Ther

the routine has reached its termination point,

epsilon is computed and saved. This value,

element of the gradient computed during the final

would be specified as the stopping criterion

evaluated routines to be included

package

.

a half and

inal values

ic markedly

nal answer

outines run

identified

practical

,

efore, once

the local

the largest

iteration

,

were the

in a general analysis



chapter V

RESULTS OF THE COMPARISON

Interpretation of Tabular Results

After each of the matrices had been run through all of

the routines, the statistics collected by the driving
program were organized in tabular form. These statistics
included the value of the function and the epsilon at the

reported minimum, the number of CPU seconds expended, the

amount of memory used by program and arrays, the number of

reported iterations, and the actual number of function,

gradient and Hessian evaluations. The statistics are

organized into a set of routine-by-test matrix tables, where

the rows are the routines, and the columns are the matrices.

The only exception to this procedure is SD/F-P. Because

there are two distinct components to the SD/F-P package, the

two parts, STEDE and FLEPOW, are broken out as separate

lines. The lines identified as SD/F-P represent either the

final value or the sum of the values of the two, whichever

is appropriate.

Table 2 reports the value of the likelihood function,

34
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evaluated at the reported minimum. Since all of the
routines tested were to match the value given in the first
row to at least 6 places (the internal criterion was

.000001), values smaller than those given for NWTRAP
represent improvements upon NWTRAP ' s performance. The cells

which the value is larger than that shown for NWTRAP

represent failures by the routines to provide an adequate

solution. A surprising result, noticed by Himmelblau [1972]

as well, is that "the algorithms tended to cluster into

groups." The Newton algorithms, NWTRAP, NEWTON, and MINIM,

formed one group, while the quasi-Newtons
, VA06A, VA09A,

MINFUN and SD/F-P, formed another cluster. Browne's FACTOR

appears to be consistently closer to the Newton-Raphson

cluster. This tendency is most apparent in the 7X3
matrix, the SES Differences data. In this instance, it

appears likely that the solution is confused by a Heywood

variable which is filtered out by both the Newton techniques

and the Gauss-Seidel . Since the quasi-Newton routines did

not require the evaluation of the Hessian, the code for

which contained the correction for Heywood variables, these

routines were not notified of a condition which would

preclude convergence to global minimum.

Table 3 details

using RUN FORTRAN),

are all printing,

the actual CPU times (on a CDC 6400

Specifically excluded from these times

peripheral processing and system
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manipulation times, so that the times listed represent the
number of seconds required to obtain reported convergence
without interruption of any sort. It is here that the
differences among the routines becomes apparent with the
Newton procedures having a clear margin over all

competitors. Of the quasi-Newton group, although VA09A
appears to be the fastest, it should be remembered that it

did not achieve the same accuracy as VA06A in Table 2.

FACTOR turned in reasonably impressive times in these

trials, being no worse than an order of magnitude from the

best time. The poor performance of SD/F-P provides a ready

explanation of why the current releases of Joreskog's

programs incorporating SD/F-P allow the user to supply an

upper bound for CPU time as one of the termination criteria.

While usually terminating in less time than SD/F-P, MINFUN

was a little slower than the other quasi-Newton routines,

and much slower than the pure Newton procedures.

While the gradient and Hessian epsilon for NWTRAP
,

EPS

and EPSE, were preset at .005 and .1 respectively, the

values suggested by Joreskog and van Thillo [1971], the

value reported in Table 4 as the epsilon value for each of

the other routines is nothing more than the largest element

present in the gradient during the final iteration. Because

of the extreme variation in epsilon both within and across

routines, this statistic is meaningless. That this
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statistic was not consistent was extremely

for without a consistent criteria, the

implementing a stand-alone program using

routines are greatly compounded.

disappointing

,

problems in

one of these

Tables 5 and 6 must be examined together for it is the
sum of the value in the two tables that determines the

amount of memory required to analyze a specific size matrix.
Table 5 specifies the amount of physical memory required to

execute the various levels of the overlay tree in decimal

words (60 bit), and indicates that the difference among the

eight routines in this dimension is very small. Table 6

illustrates that FACTOR requires the least amount of scratch

space, while VA06A requires the most. This difference is

not great, amounting to little more than a two to one ratio.

Table 7 is a list of reported iterations, and

demonstrates one of the major obstacles in evaluating

competing routines. To interpret this table correctly, it

is necessary to look at the four tables which follow. The

answers range from slight over-reporting of the number of

evaluations to very great under-reporting. Keeping in mind

that the most expensive portion of the minimization process,

if the function is complicated to evaluate, is the

invocation of the various levels of the function generator,

it is necessary to count the actual number of times each
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level of this generator is exercised. The counts thus
collected that varied widely from the reported iterations
value were common. One explanation of this descrepancy is
the lnterior/exterior' iterations argument. The argument
contends that 'interior' (or sub-) iterations are made along
a vector that was selected by an 'exterior' iteration, and

only the latter was counted. While this counter is then

useful for estimating the interior/exterior iteration ratio,

it serves only to confuse the current analysis. Tables 8

and 9 give the actual function and gradient evaluation

counts for the problems. FACTOR has no numbers displayed as

the counters within it recorded entirely different processes

and the values were not comparable. Tables 10 and 11

display the number of approximate and exact Hessian

calculations. Obviously, only those procedures which used

this information were listed. Across all of the tables, it

is apparent that the difference among the Newton procedures

is not great, while the quasi-Newton procedures are spread

over a wide range.

Comments on Individual Routines

Examination

only a partial

routines. There

considered

of the results discussed thus far can give

view of the performance of the individual

are many more variables which might have

for tabling. However, there is an absencebeen
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of generally accepted criteria quantifying the r

of installation, testing and evaluation of

routines. Hence, the following series of commen

the more salient advantages or disadvantages o

elative ease

the various

ts point out

f the tested
routines

.

NWTRAP, the first routine evaluated, performed
excellently and without apparent failure. While the overall
size of the routine could be reduced by excising the code
for the two methods not utilized in the current study,

(unweighted and generalized least squares), the decrease in

size would not be sufficient to compensate for the loss of

generality in a very workable program. Were no other

criteria available, the speed with which NWTRAP achieves

convergence alone would suffice to recommend it.

NEWTON, being the equivalent of NWTRAP with the two

unused methods removed, performed almost as well as NWTRAP.

The difference between these two routines in CPU time is

almost entirely attributable to the inability of the CDC RUN

FORTRAN object compiler to produce efficient code for arrays

with multiple dimensions. NWTRAP addressed all arrays as

vectors with one subscript, and NEWTON used multiple

subscripts

.

Even though it was not written specifically for the
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current problem, MINIM ran consist

moving rapidly toward the minimum

two matrices. Of five general pur

evaluated, MINIM, VA06A
, VA09A

,

required the smallest amount of a

coincidently converged in the smal

ently well in time trials,

and even beating NEWTON on

pose minimization routines

MINFUN and SD/F-P, MINIM

rray scratch space, and

lest overall CPU time.

When compared to VA09A, the slightly poorer performance

of VA06A in both speed and memory requirement put it in

second place behind the routine written by Fletcher.

VA09A was the first of two routines that required some

intervention in what was designed to be an automatic

process. Specifically, upon switching from the DFP to its

complement near the predefined minimum, VA09A decided that

the minimum had been passed and exited. This occurrence

should not be considered a flaw as VA09A was not designed to

be informed externally that the minimum had been reached.

In initial testing of this routine, before the scheme using

the answer provided by NWTRAP was adopted, VA09A moved

swiftly and consistently to a minimum in the neighborhood of

the NWTRAP solution.

MINFUN was the other routine requiring outside

intervention, but on a larger scale. As MINFUN moved closer

toward the known minimum, the scalar used to adjust the
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metric of the process became progressively smaller,
eventually becoming zero. At this point a divide by zero
check was activated and the program halted. In order to

produce the results in the tables an alternative strategy
was adopted. First the routine was given a tolerance band

around the known minimum sufficiently large that the routine
could not fail to report convergence. Then this band was

tightened one decimal place at a time until the divide check

occurred. At this point the criterion was modified until a

decrease in the seventh place exceeded the bound beyond

which a divide by zero was attempted. This procedure

accounts for the differing values of the function reported

by MINFUN in Table 2.

FACTOR performed much better than the author had

anticipated or the literature had predicted. The actual

factor solutions produced by FACTOR were not inconsistent

with those produced by NWTRAP, although the handling of

Heywood variables resulted in differing values of the

function at termination. Unlike NWTRAP, which removes a

Heywood variable from any iteration in which it is detected,

FACTOR permanently discards a Heywood variable once it is

encountered. Considering the length of time this routine

has been available to factor analysts, it is surprising that

it has not received far greater use. FACTOR'S memory

requirements were the smallest of the entire set, and the
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CPU times were comparable to the quasi-Newton group.

The overali performance of SD/F-P was disappointing
beyond expectation. It was not anticipated that the set of
routines currentiy utilized by the most sophisticated factor
analysis software on the market would converge so slowly.
On first discovering the large number of iterations required
by SD/F-P, the author assumed that a criterion value had

been mis-specif led
, and all values were rechecked. When

manipulating the values of the criterion failed to improve
the performance, the routines were driven separately to

ascertain whether the steepest descent routine was

necessary. After several attempts in which FLEPOW

demonstrated clearly the necessity of having a few steepest

descent iterations to move it into the neighborhood of the

minimum, the effort was abandoned.



CHAPTER VI

IMPLICATIONS OF THE STUDY

General Conclusions

In reviewing the tables and the discussion presented
above, it becomes clear that there are major differences

among the various algorithms and among the routines which

implement those algorithms. These differences range from

small, in the case of computer memory requirements, to very

great, m the case of speed and accuracy of convergence. It

is therefore imperative for an analyst, upon deciding to

utilize a nonlinear minimization routine in a factor

analysis program, to select the desired routine with care.

In those instances in which the second order

derivatives can be evaluated directly, the appropriate

choice would be one of the Newton routines. The added

features present in MINIM make it an ideal candidate for

selection. When exact second derivatives cannot be

evaluated directly, the appropriate choice is one of the

quasi-Newton routines. In this study, Fletcher's VA09A was

demonstrated to be no worse than the other tested

43
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quasi Newton routines. In most problems, VA09A was shown to

be superior in both speed and memory requirements.

An interesting outcome of the current study is the

finding that Michael Browne's FACTOR routine, the first

publicly available ML factor analysis program, is equally

fast or faster than any quasi-Newton routine

.

NWTRAP,

Joreskog ' s success or to Browne's FACTOR, was demonst rated to

be the fastest of all routines tested on every problem

analyzed .

While the efficiency of NWTRAP was anticipated, the

slowness of SD/F-P was not. Programs that utilize the

relatively inefficient SD/F—P combination are widely

available, which implies large sums of computer time are

needlessly being wasted. In any environment where computer

time is not available without charge, this inefficiency

could discourage the general acceptance of these extremely

useful programs.

Recommendations for Future Research

As mathematical statisticians provide new models for

factor analysis such as multi-group longitudinal factor

analysis, and as numerical analysts continue to produce ever

more efficient minimization techniques, the need to evaluate
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the match between theory and tools Increases. It is
imperative that statisticians become aware of advances in
numerical analysis to select the optimal tools with which to
implement their models. Therefore, upon defining a new
model (and those constraints which are necessary to avoid
Heywood variables, etc.), the analyst would find it

beneficial to review the algorithms available, selecting an

appropriate routine from those that appear at least equal to

MINIM or VA09A in cost/performance

.
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Table 1 :
_ Matrices Analyzed

Variables Factors Source

5 2 Five Psychophysical Measurements,
Lawley and Maxwell [1971], p. 19 .

6 2 Six School Subject Correlations,
Lawley and Maxwell [1971], p. 66 .

7 3 SES Differences on Learning,
Green and Rohwer [1971], p. 606.

8 3 Eight Physical Variables,
Harmon [1967], p. 222 .

9 3 Emmett's Nine Variables,
Lawley and Maxwell [1971], p. 43 .

10 4 Maxwell’s Ten Variates,
Lawley and Maxwell [1971], p. 44 .

11 4 First 11 of 14 Rating Scales,
Mulaik [ 1972

] , p . 11 .

12 4 IQ and Achievement Tests on 5,495
Students, Crano, Kenny and Campbell
[1972], (1st 12), p. 264-5.

13 4 Last 13 of 24 Psychological Tests,
Harmon [1967], p. 125.

14 4 Seven Point Scale on 225 Trainees,
Mulaik [1972], p. 11 .

14
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Table 2: F at the Reported Minimum

5X2 6X2
NWTRAP . 026781 . 010867

NEWTON . 026781 . 010867

MINIM . 026781 . 010867

VA06A . 026781 . 010867

VA09A . 026785 . 010867

MINFUN . 026781 . 010867

FACTOR . 026687 . 010868

SD/F-P . 026781 . 010867

STEDE . 033960 . 011172

FLEPOW . 026781 . 010867

10 X 4 11 X 4

NWTRAP . 022848 .117335

NEWTON . 022848 .117342

MINIM . 022848 . 117342

VA06A . 022848 .117436

VA09A . 022877 .118189

MINFUN . 022893 .117435

FACTOR . 022799 .110718

SD/F-P . 022848 .117301

STEDE . 029125 . 128491

FLEPOW . 022848 .117301

7X3 8X3 9X3
. 034183 .076412 . 035017

. 034191 . 076412 . 035017

. 034183 . 076412 . 035017

. 026184 . 076412 . 035017

. 026619 .076611 . 035017

. 026185 . 076431 .035017

. 034016 . 075706 . 035017

. 026184 .076413 . 035017

. 036396 . 082789 . 035703

. 026184 . 076413 . 035017

12 X 4 13 X 4 14 X 4

. 045798 . 226498 . 225907

. 045798 . 226498 . 225907

. 045798 . 226498 . 225908

. 045798 . 226498 .225908

. 045800 . 226502 . 226732

. 045845 . 226517 . 226454

. 045797 .226397 . 220089

. 045798 . 226498 . 225909

.048988 . 233073 . 237522

. 045798 . 226498 .225909
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Table 3: CPU Seconds to Reported Conver gpnrp

5X2 6X2 7X3 8X3 9X3
NWTRAP

. 378 . 254
. 740

. 688 .790

NEWTON
. 444 . 326 1 . 106 .900 .884

MINIM .744 . 446 1.054 1 . 100 .978

VA06A 1 . 276 .870 22. 100 3.820 3.106

VA09A .994 .590 2.406 2.124 1.910

MINFUN 4.316 1 . 074 6.427 7.952 3.040

FACTOR .904 . 260 3.850 2.330 .902

SD/F-P 8.898 .888 58.976 25.620 2.726

STEDE 1.284 . 292 3.726 2.650 .852

FLEPOW 7.614 . 596 55 . 250 22.970 1.874

10 X 4 11 X 4 12 X 4 13 X 4 14 X 4

NWTRAP 1 . 592 3.424 2.650 2.258 3.030

NEWTON 2.204 4. 130 4.120 4.690 4.212

MINIM 2.456 3.956 4.358 4.842 4.254

VA06A 8.010 27.272 10.520 19.714 21 . 168

VA09A 5.170 3.058 5.512 7.064 4.498

MINFUN 13.648 14.612 6.316 12.028 6.300

FACTOR 10.718 6.126 5.268 9.930 4.348

SD/F-P 119.080 23.860 103.170 56.880 36.364

STEDE 3.476 8.996 6.616 6.008 15.492

FLEPOW 115.604 14.864 96.554 50.872 20.872
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Table 4: Epsilon at Reported Minimum

5X2 6X2 7X3 8X3 9X3
NWTRAP . 005000 . 005000 . 005000 . 005000 . 005000
NEWTON

. 000581 . 000004 . 005893 . 000011 . 000051

MINIM . 000501 . 000000 . 000656 . 000000 . 000011

VA06A . 000000 . 000000 . 000000 . 000000 . 000000

VA09A . 000000 . 000000 . 030367 . 002709 . 000000

MINFUN . 002550 . 000785 .838437 . 028934 . 002885

FACTOR . 000000 . 000000 . 000000 . 000000 . 000000

SD/F-P . 000095 . 000083 . 000030 . 000742 . 000031

STEDE . 500000 . 500000 . 500000 . 500000 . 500000

FLEPOW . 000095 . 000083 . 000030 . 000742 . 000031

10 X 4 11 X 4 12 X 4 13 X 4 14 X 4

NWTRAP . 005000 . 005000 . 005000 . 005000 . 005000

NEWTON . 000104 . 004389 . 000771 . 000019 . 000002

MINIM . 000003 . 000109 . 000402 . 000003 . 000001

VA06A . 000000 . 000027 . 000000 . 000000 . 000020

VA09A . 000538 . 177276 . 000032 . 000397 . 012474

MINFUN .098173 . 073181 .094060 . 406375 . 307275

FACTOR . 000000 .000000 . 000000 . 000000 .000000

SD/F-P .000049 .004183 . 000117 . 000102 .003797

STEDE . 500000 . 500000 . 500000 . 500000 . 500000

FLEPOW .000049 .004183 .000117 . 000102 . 003797
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Table_5j Memory Required for Program (Worr^l

ROUTINE

MAIN

INITIAL

0V1

NEWTON

MINIM

VA06A

VA09A

MINFUN

SD/F-P

0V2 - NWTRAP

LEVEL 0 LEVEL 1

10013

1855

1372

2627

2223

LEVEL 2 TOTAL

10013

11868

11385

665 12050

1305 12690

1326 12711

879 12264

1231 12616

1356 12741

12640

12236OV3 - FACTOR
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Table 6: Memory Required for Arravs

5X2 6X2 7X3 8X3 9X3
NWTRAP 116 151 197 241 289

NEWTON 126 166 218 269 325

MINIM 141 184 239 293 352

VA06A 181 241 316 393 478

VA09A 136 178 232 285 343

MINFUN 166 217 281 345 415

FACTOR 87 111 153 184 218

SD/F-P 136 178 232 285 343

STEDE 136 178 232 285 343

FLEPOW 136 178 232 285 343

10 X 4 11 X 4 12 X 4 13 X 4 14 X 4

NWTRAP 351 408 469 534 603

NEWTON 396 463 535 612 694

MINIM 426 496 571 651 736

VA06A 581 683 793 911 1037

VA09A 416 485 559 638 722

MINFUN 501 584 673 768 869

FACTOR 275 316 360 407 457

SD/F-P 416 485 559 638 722

STEDE 416 485 559 638 722

FLEPOW 415 485 559 638 722
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Table 7: Number of Iterations Reported

5X2 6X2 7X3 8X3 9X3
NWTRAP 10 4 9 6 5

NEWTON 9 4 11 6 4

MINIM 8 3 6 5 3

VA06A 30 14 281 35 22

VA09A 25 11 31 18 16

M INFUN 27 7 26 16 9

FACTOR 60 5 125 40 10

SD/F-P 44 9 100 40 13

STEDE 20 3 31 20 4

FLEPOW 24 6 69 20 9

10 X 4 11 X 4

NWTRAP 8 12

NEWTON 8 10

MINIM 7 9

VA06A 46 131

VA09A 31 11

MINFUN 22 15

FACTOR 130 150

SD/F-P 78 46

STEDE 14 39

FLEPOW 64 7

X 4 13 X 4 14 X 4

9 7 7

9 8 7

8 7 6

40 64 58

19 22 10

9 14 6

40 35 45

49 33 32

17 15 28

32 18 4
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Table 8: Actual Function Evaluations

5X2 6X2 7X3 8X3 9 X 3

NWTRAP 10 4 10 6 5

NEWTON 9 4 11 6 4

MINIM 9 4 8 6 4

VA06A 30 14 281 35 22

VA09A 31 11 37 24 16

MINFUN 152 22 78 102 28

FACTOR 0 0 0 0 0

SD/F-P 299 16 1051 331 23

STEDE 39 5 60 32 7

FLEPOW 260 11 991 299 16

10 X 4 11 X 4 12 X 4 13 X 4 14 X 4

NWTRAP 8 13 9 7 7

NEWTON 8 10 9 8 7

MINIM 8 11 9 8 7

VA06A 46 131 40 64 58

VA09A 36 17 25 27 14

MINFUN 105 93 30 49 21

FACTOR 0 0 0 0 0

SD/F-P 951 149 526 245 129

STEDE 26 56 33 24 55

FLEPOW 925 93 493 221 74
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Table 9: Actual Gradient Evaluati nnc

5X2 6X2 7X3 8X3 9X3
NWTRAP 10 4 10 6 5

NEWTON 9 4 11 6 4

MINIM 9 4 8 6 4

VA06A 30 14 281 35 22

VA09A 31 11 37 24 16

MINFUN 152 22 78 102 28

FACTOR 0 0 0 0 0

SD/F-P 299 16 1051 331 23

STEDE 39 5 60 32 7

FLEPOW 260 11 991 299 16

10 X 4 11 X 4 12 X 4 13 X 4 14 X 4

NWTRAP 8 13 9 7 7

NEWTON 8 10 9 8 7

MINIM 8 11 9 8 7

VA06A 46 131 40 64 58

VA09A 36 17 25 27 14

MINFUN 105 93 30 49 21

FACTOR 0 0 0 0 0

SD/F-P 951 149 526 245 129

STEDE 26 56 33 24 55

FLEPOW 925 93 493 221 74
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NWTRAP

NEWTON

MINIM

^-X_2 Q—X—2 7 X 3 8 X 3 9 X3
4

3

3

2

2

2

5

7

6

3

4

4

NWTRAP

NEWTON

MINIM

4
.

11 X 4 12 X 4 13 X 4

4

4

4

4

5

6

5

4

4

14 X 4

4

5

5

Table 11: Actual Exact Hessian Evaluations

NWTRAP

NEWTON

MINIM

5

6

6

6X2
1

2

2

7X3
3

4

2

8X3
2

2

2

9X3
2

2

2

NWTRAP

NEWTON

MINIM

10

X 4

3

4

4

11

X 4

7

5

5

12

X 4

3

5

5

13

X 4

1

5

5

14

X 4

2

2

2
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I:able 12

:

Source Listing of FROGS (Main Drivel

c

c
c
c

c
c
c
c
c
c

c
c
c
c
c

c
c
c
c

c
c
c
c

c
c
c

c

OVERLAY (FROG, 0, 0)
PROGRAM FROG ( INPUT , OUTPUT , PUNCH , TAPE1 , TAPE5=INPUT

TAPE6=0UTPUT )

U1)

A IS THE SPACE BEYOND THE
AS SCRATCH FOR THE ARRAYS

COMMON A ( 1

)

END OF A GIVEN OVERLAY, USED
NEEDED IN THAT OVERLAY.

POINTERS TO WHERE, RELATIVE TO THE FIRST WORD OF -A-IN BLANK COMMON, THE VARIOUS ARRAYS ARE LOCATED

Op
S
Y'

AI^nT ™E VALUES 0F THE LAST AVAILABLE* WORDOF -A-
,
AND THE AVAILABLE CM REGISTER FOR MEMORF...

COMMON /INDEX/ S , LAM , PSI , CLM , VAL , D1 , D2 , SI , S2 , S3 , VEC ,

G

1 H , FREEWDS , LAST , MINCM , CURCM
INTEGER S , LAM , PSI , CLM , VAL , D1 , D2 , SI , S2 S3 VEC G

1 H , FREEWDS , LAST , MINCM , CURCM

THE RUN TITLE
> THE NAME AND NUMBER OF THE

BEING teSTED, THE TIME AND FINAL F, AS WELL ASALL OF THE KOUNTERS...

COMMON /OUTPUT/ IHEAD( 8 ) , NAMER , NPROG , NPROB , ITERS TIME
1 FINALF ,F(4) ,JFMT(2)

PARAM DEFINES THE VARIOUS PARAMETERS (ORDER OF
NUMBER OF FACTORS TO BE EXTRACTED, ETC...)

MATRIX,

COMMON /PARAM/ N , IP , IP2 , IPP, IQ, IPQ, IPMO, EPSHEY EPSXCT
1 IPARAT

NAMES OF ALL OF THE AVAILABLE OVERLAYS, AND POINTERS
TO WHERE (NUMBERS) THEY ARE TO BE FOUND...

COMMON /NEEDED/ NOVL , NSEG , NOVLTAB ( 3 , 15

)

DEFINES THE INPUT AND OUTPUT UNITS

COMMON /UNITS/ IOCR,IOLP

DIMENSION LIST( 15

)

COMMON /MATCHF/ FTOBEAT , VARIOUS (4 ), TOLRNCE
COMMON /TWEAK/ NTWEAK , TWEAK ( 7

)

DATA (IOCR=5) , (IOLP=6)
DATA (JFMT=10H(5X, 15, 5X, ,8H10F11.5))
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C
c
c
c

c
c
c

c
c
c

c
c
c

data (novltab =

10HNEWTON ,1,02B,
1 0HVA06A

, 1 , 04B

,

1 OHFLEPOW
, 1 , 06B

1 0HVA09A
, 1 , 1 IB

1 OHNWTRAP
, 2 , OOB

\

1 OHFACTOR
, 3 , 02B

,

READ IN OVERALL PARAMETERS
EXERCIZE IN THIS RUN

10HMINIM
, 1 , 03B

10HMINFUN
, 1 , 05B

10HNELMIN ,i,iob’
10HVA10A ,1,12b!
lOHFACTORB ,3,013,
12 ( 0 ) )

AND NAMES OF ROUTINES TO

NPR0B=0
READ 5, LOOK , NLIST , MINCM , EPSHEY , EPSXCT IPARAT

1 (LI ST (I) ,1=1, NLIST)
'

5

FORMAT (II, 13,06, 2F10.0, I3/(8A10))
PRINT 8, LOOK, NLIST, MINCM, EPSHEY, EPSXCT, IPARAT

* (LI ST (I) , 1=1, NLIST)
’

8 FORMAT ( *1 INITIAL PARAMETERS:*//
1 * LOOK = *,11/
2 * NLIST = *,12/
3 * MINCM = *,06/
4 * EPSHEY = * , 1F10 . 6/
5 * EPSXCT = * , 1F10 . 6/
6 * IPARAT =. * , 13/
7 * ALGORITHMS: *,A10/
8 ( 13X, A10)

)

SET DEBUGGING FLAG IF NEEDED

IF ( LOOK . EQ . 1 ) CALL SLITE(4)

READ IN LIST OF ROUTINE SPECIFIC ADJUSTMENTS

READ 7, NTWEAK, TWEAK
7 FORMAT ( A10 , 7F10 . 0

)

PRINT 9, NTWEAK, TWEAK

9

FORMAT (//* TWEAKING * , A10 , *WITH* , 7F10 . 5)

MAIN LOOP - ONCE FOR EACH PROBLEM

10

NPR0B=NPR0B+1
READ (5,20) IHEAD , N , IP, 10, FTOBEAT , TOLRNCE

20 FORMAT (8A10/I 4 , 21 2 , 2F10 . 0

)

IF (EOF, 5) 80,30

CONSTANT INITIALIZATION FOR THIS MATRIX...

30 IP2=(IP*(IP+l))/2
IPQ=IP*IQ
IPP=IP*IP

C
C
C
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IPMQ=IP-IQ

thTStJH
o

REQUIRED AMOUNT OF MEMORY AND COMPUTE THEINITIAL SOLUTION (PRINCIPAL COMPONENTS)
liW,J ™ E

IF ( MEMORF ( 3 , CURCM ) .LT.MINCM)
CALL OVERLAY ( 4HFR0G ,4,0)

CALL MEMORF (0,MINCM)

CALL EACH OF THE
WERE SPECIFIED ON

ROUTINES DESIRED (IN
THE PARAMETER CARD)

THE ORDER THEY

40

DO 70 1=1 , NLIST
DO 40 J=l,ll
IF ( L I ST ( I ) . NE . NOVLTAB ( 1 , J )

)

NOVL=NOVLTAB ( 2 , J

)

NSEG=NOVLTAB ( 3 , J

)

IF (MEMORF (3, CURCM) .LT.MINCM
CALL OVERLAY ( 4HFROG , NO VL , 0

)

GO TO 70
CONTINUE

GO TO 40

) CALL MEMORF ( 0 , MINCM

)

DID NOT RECOGNIZE DESIRED ROUTINE...

50 PRINT 60, LIST ( I

)

60 FORMAT (*1UNKN0WN ROUTINE: *,A10)
70 CONTINUE

GO TO 10

ALL FINISHED - ISSUE A STOP

80 STOP 55
END
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T_ab 1 e—13: Source Listing of ini t I AL

C
C
C
C
C

C
c
c

c
c

c

c
c
c
c
c

c
c
c

SUBROUTINE INITIAL ( IP2 , IP , IQ , N , S , A , V , STORE

)

MAINTAINS THE RUN TITLE, THE NAME AND NUMRFR OF twitROUTINE BEING TESTED, THE TIME AND F^NAL f AS WELL ASALL OF THE KOUNTERS . . .

^ WELL As

COMMON /OUTPUT/ IHEAD ( 8 ), NAMER , NPROG , NPROB , ITERS , TIME1 FINALF , NF ( 4 ) , JFMT ( 2 )DIMENSION S(IP2) ,A(IP, IQ) ,V(IP) , STORE (1 ) , IFMT(8)

PRINT OUT THE HEADER AND INITIAL ESTIMATES

PRINT 10, IHEAD, N, IP, IQ
10 FORMAT ( 1H1 , 24X ,8A10//25X, 17HNUMBER OF CASES =,I5

i 8X
, 17HORDER OF MATRIX = ’l3,’z 8X , 19HNUMBER OF FACTORS =,I3)

READ INPUT FORMAT AND MATRIX

READ (5,20) IFMT
20 FORMAT (8A10)

READ (5, IFMT) (S(I ) , 1=1 , IP2

)

REWIND 1

WRITE (1) (S(I ) , 1=1 , IP2)
CALL PMSL ( IP , IP , S , JFMT , 21HMATRIX TO BE ANALYZED , 0 , 3 , 1

)

EIGENVECTORS AND EIGENVALUES FOR COMPONENTS SOLUTION
CHAR RETURNS ROOTS AND VECTORS FOR THE SPECIFIED
NUMBER OF VARIABLES

DO 33 1=1, IP2
33 STORE ( I ) =S ( I

)

CALL CHAR ( S , IP , V , A , 3 , IQ , 0 , 3 , IQ , 0

)

DO 40 1=1, IQ
40 V( I )=SQRT ( V ( I )

)

DO 50 1=1, IP
DO 50 J=1 , IQ

50 A ( I , J )=A ( I , J)*V(J)
CALL PMSL (IP, IQ, A, JFMT, 16HINITIAL SOLUTION , 0 , 2 , 0

)

COMPUTE COMMUNALITY ESTIMATES

CALL INVS (STORE, IP, DETS,V)
FT=1 . 0-FLOAT ( IQ ) / ( 2 . 0* FLOAT ( IP )

)

K=0
DO 70 1=1, IP
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K=K + I

70 V ( I )=ALOG(FT/ STORE (K)

)

PRINT 80, ( V( I ) , 1=1 , ip)
SO^FORMAT ( 1H0^0X^23HINITIAL ESTIMATE OF PSI//

SAVE THE INITIAL ESTIMATES ON DISK FOR ALL PROBLEMS

WRITE (1) A ,

V

WRITE (1) ( STORE (I ) , 1=1 , IP2)
RETURN
END
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Table 14: Source Listing of ai.T.OCAT

C
C
c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c

c
c
c
c

c
c
c

c
c
c

SUBROUTINE ALLOCAT (MLEV)

ALLOCATES CORE FOR JMLFN (AND MAKES CERTAIN THAT thfru

to work™
LYING AR0UND F0R nwtrap and browns routines

A IS THE SPACE BEYOND THE
AS SCRATCH FOR THE ARRAYS

COMMON A ( 1

)

END OF A GIVEN OVERLAY, USED
NEEDED IN THAT OVERLAY...

POINTERS TO WHERE, RELATIVE TO THE FIRST WORD OF -A-IN BLANK COMMON, THE VARIOUS ARRAYS ARE LOCATEDALSO MAINTAINS THE VALUES OF THE LAST AVAILABLE ’ WORDOF A
, AND THE AVAILABLE CM REGISTER FOR MEMORF...

COMMON /INDEX/ S , LAM , PSI , CLM , VAL , D1 , D2 , SI , S2 , S3 , VEC G
1 h,freewds,last,mincm,curcm

INTEGER S , LAM ,PSI ,CLM , VAL , D1 , D2 , SI , S2 , S3, VEC,G,
1 H,FREEWDS,LAST,MINCM,CURCM

MAINTAINS THE RUN TITLE, THE NAME AND NUMBER OF THE
ROUTINE BEING TESTED, THE TIME AND FINAL F, AS WELL ASALL OF THE KOUNTERS . .

.

COMMON /OUTPUT/ IHEAD( 8 ) , NAMER , NPROG , NPROB , ITERS TIME
1 FINALF , F(4) ,JFMT(2)

PARAM DEFINES THE VARIOUS PARAMETERS (ORDER OF MATRIX
NUMBER OF FACTORS TO BE EXTRACTED, ETC...)

COMMON /PARAM/ N,IP,IP2,IPP,IQ,IPQ,IPMQ, EPSHEY EPSXCT
1 IPARAT

GET SIZE OF AVAILABLE MEMORY...

CALL MEMORF (4,LWA)
FREEWDS=140000B-LWA
LAST=1

ALLOCATE THE SPACE FOR SIGMA, LAMBDA AND PSI...

CALL ALLOC ( 4 , LAST , FREEWDS

)

CALL ALLOC 4 (S , IP , IP , 1 , LAM , IP , IQ , 0 , PSI , IP , IP , 2 , LAST , 1

,

1 1,0)
IF (MLEV.LT.-l) RETURN
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C

ALLOCATE CORE FOR FUNCTION COMPUTATION

CALL ALLOC ( 7 , LAST , FREEWDS

)

^CALL ALL0C5 (CLM
, IP^IP , 1 , VAL , IP , 1 , 0 ,

D1
, IP , 1 , 0 , D2 , IP , 1

,

CALL ALL0C2 (S2 , IP , 1
*

0 * LAST ,1,1,0)
IF (MLEV.LT.O) RETURN

ALLOCATE CORE FOR GRADIENT COMPUTATION

CALL ALLOC (3 , LAST , FREEWDS)
CALL ALLOC3 (VEC , IP, IP , 0,G, IP , 1 , 0 , LAST, 1 , 1 , 0)
IF (MLEV.EQ.O) RETURN

ALLOCATE CORE FOR HESSIAN COMPUTATION

CALL ALLOC ( 2 , LAST , FREEWDS

)

CALL ALLOC2 (H , IP , IP , 1 , LAST , 1 , 1 , 0)

RETURN
END



Table 15; Source Listing of QV1S2

PROGRAM 0V1 32

A :tS THE SPACE BEYOND THE END OF A GIVEN OVFRT AY n^nAS SCRATCH FOR THE ARRAYS NEEDED IN THAT OVERLAy!.

COMMON A ( 1

)

POSTERS TO WHERE, RELATIVE TO THE FIRST WORD OF -A_IN BLANK COMMON, THE VARIOUS ARRAYS ARE LOCATED
° F THE last avmlaIle^ord01 -A-, AND THE AVAILABLE CM REGISTER FOR MEMORF...

COMMON /INDEX/ S , LAM , PS I , CLM , VAL , D1 , D2 , SI , S2 , S3 , VEC G1 H , FREEWDS , LAST , MINCM , CURCM
INTEGER S , LAM , PS I ,CLM,VAL,D1 ,D2,S1,S2,S3, VEC G

H , FREEWDS , LAST , MINCM , CURCM

^HE TITLE, THE NAME AND NUMBER OF THE“fT^uS D
:

raE TIME AND ™L F
. « -S2 AS

COMMON /OUTPUT/ IHEAD ( 8 ), NAMER , NPROG , NPROB , ITERS , TIME
1 FINALF ,F(4) , JFMT ( 2

)

PARAM DEFINES THE VARIOUS PARAMETERS (ORDER OF MATRIXNUMBER OF FACTORS TO BE EXTRACTED, ETC...)

COMMON /PARAM/ N , IP , IP2 , IPP , IQ , IPQ , IPMQ , EPSHEY , EPSXCT

,

1 IPARAT

NEWTON-RAPHSON - DIRECT SOLUTION

NPR0G=1
NAMER=10HNEWTON
CALL SAYHI (NAMER, IP, IQ)
EPS=. 0005
MAXIT=IP**3
MLEV=1
CALL ALLOCAT ( MLEV

)

CALL ALLOC ( 2 , LAST , FREEWDS

)

CALL ALL0C2 (LSCR , IP , 2 , 0 , LAST , 1 , 1 , 0

)

CALL FIREUP ( IP2 , IPQ , IP , A ( S ) , A (LAM ) , A (PSI ) , MLEV, LAST

)

CALL NEWTON ( IP , A (PSI ) , FINALF , A (G ) , A (H ) , A (LSCR ) , EPS

,

1 ITERS, MAXIT)
CALL FLAM ( IP , IP2 , IQ , A (PSI ) , A ( S ) , A (CLM ) , A ( VAL ) , A (LAM ) ,

1 A(D1) ,A(D2) ,A(S1) , A (S2 )

)
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RETURN
ESULTS ( 1 p

’ 1 Q ’ A ( LAM

}

- A ( PS I ) , A ( S ) , LAST

)

END
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Table 16: Source Listing of NEWTON

C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE NEWTON ( IP , PSI , F , G, H , XX, EPS , NIT , MAXIT

)

EXERCISES THE FUNCTION GENERATOR USING NEWTONS METHOD

IP - NUMBER OF VARIABLES

PSI - THE INITIAL ESTIMATE

F - THE FUNCTION VALUE

G - THE GRADIENT (LENGTH IP)

H - THE HESSIAN (MS=1 - LENGTH IP*(IP+l)/2

XX - SCRATCH VECTOR OF LENGTH IP*2

EPS - CONVERGENCE CRITERION

NIT - NUMBER OF ITERATIONS COUNTER

MAXIT - MAXIMUM NUMBER OF ITERATIONS

COMMON /MATCHF / FTOBEAT , VARIOUS (4 ), TOLRNCE
DIMENSION PSI (IP) , G ( I P ) ,H(1) , XX (IP, 2)

TRANSFER THE INITIAL ESTIMATE TO THE SWITCHING VECTOR

DO 1 1=1, IP
1 XX(I,1)=PSI(I)

11=1
JJ=2

MINIMIZATION LOOP - USING MLFN TO COMPUTE F, G AND H

2 NIT=NIT+1
CALL MLF (IP,XX(1,II),1,F,G,H)
CALL INVS (H , IP, DET , PSI

)

CALL MPYM (G, H, PSI, 1, IP, 0,1, IP)

CHECK FOR CONVERGENCE, COMPUTING NEW PSI IN PROCESS

ALARGE=0 .

0

DO 3 1=1, IP
IF (ABS(PSI(I)) .GT. ALARGE) ALARGE=ABS (PSI ( I )

)

3 XX ( I , JJ ) =XX ( I , 1 1 ) -PS I ( I

)

I = 1

1
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II=JJ
JJ = I

IF (NIT.GT.MAXIT) RETURN
VARIOUS ( 1 )=ALARGE
IF ( ABS ( F-FTOBEAT ) . GT . TOLRNCE ) GO TO 2

REACHED CONVERGENCE - TRANSFER
RETURN TO THE CALLING PROGRAM

RESULT BACK TO PSI AND

DO 4 1=1 , IP
4 PSI(I)=XX(I,II)

RETURN
END
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Table 17: Source Listing of MLF

C
C
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE MLF (NN , X , MLEV , F , G , H

)

A IS THE SPACE BEYOND THE
AS SCRATCH FOR THE ARRAYS

COMMON A ( 1

)

END OF A GIVEN OVERLAY, USED
NEEDED IN THAT OVERLAY. .

.

C

POINTERS TO WHERE, RELATIVE TO THE FIRST WORD OF _a_IN BLANK COMMON, THE VARIOUS ARRAYS ARE LOCATFDALSO MAINTAINS THE VALUES OF THE LAST^AVAI LABLE *

WORDOF -A-, AND THE AVAILABLE CM REGISTER FOR MEMORF...

COMMON /INDEX/ S , LAM , PSI , CLM , VAL , D1 , D2 , SI , S2 , S3 , VEC , G1 H , FREEWDS , LAST , MINCM , CURCM
INTEGER S , LAM ,PSI ,CLM , VAL , D1 , D2 , SI , S2 , S3 , VEC ,G

1 H, FREEWDS, LAST, MINCM, CURCM

MAINTAINS THE RUN TITLE, THE NAME AND NUMBER OF THE
time and as

COMMON /OUTPUT/ IHEAD( 8 ) , NAMER , NPROG , NPROB , ITERS TIME
1 FINALF , F(4) ,JFMT(2)

PARAM DEFINES THE VARIOUS PARAMETERS (ORDER OF
NUMBER OF FACTORS TO BE EXTRACTED, ETC...)

MATRIX,

COMMON /PARAM/ N, IP, IP2 , IPP, IQ, IPQ, IPMQ, EPSHEY, EPSXCT
1 IPARAT

CALL JMLFN
1

2

(IP, IP2, IQ, X, MLEV, F , G, H , A ( CLM ) ,A(S) ,A(VAL)

,

A (VEC) ,NF, EPSHEY, EPSXCT, A(D1) ,A(D2), A (SI)

,

A (32 )

)

C
RETURN
END
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T_able 18: Source Listing of JMT.FN

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE JMLFN
1

2

(IP, IP2, iq,x,mlev,f,g,h,a,sinv,
EIGVAL , EIGVEC , NF , EPSHEY , EPSXCT D1
D2 , S 1 , S2 )

’ ’

COMPUTES THE MAXIMUM-LIKELIHOOD FUNCTION THE GRADTFNTAND THE HESSIAN, AS REQUIRED BY THE VALUE OF MLEV

IP - NUMBER OF VARIABLES

IP2 - IP* ( I P+1 ) / 2 - THE LENGTH OF A, H AND S

IQ - NUMBER OF FACTORS

X PSI VECTOR OF LENGTH IP (TO BE MINIMIZED)

MLEV - FLAG INDICATING THE AMOUNT OF STUFF TO COMPUTE*-1 = COMPUTE ONLY FUNCTION. VALUE
0 = COMPUTE FUNCTION AND GRADIENT

+1 = COMPUTE FUNCTION, GRADIENT AND HESSIAN

F - THE LIKELIHOOD FUNCTION EVALUATED AT X

G - THE GRADIENT OF LENGTH IP

H - HESSIAN (SYMMETRIC MATRIX - IP*(IP*l)/2 - MS=1

)

A - THE CONDITIONAL LAMBDA

SINV - THE INVERSE OF THE ORIGINAL CORRELATION MATRIX

EIGVAL - VECTOR OF LENGTH IP TO HOLD EIGENVALUES

EIGVEC - MATRIX (IP, IP) FOR EIGENVECTORS AS COLUMNS

NF - VECTOR OF COUNTERS:
(1) - FUNCTION EVALUATIONS
(2) - GRADIENT COMPUTATIONS
(3) - APPROXIMATE HESSIAN COMPUTATIONS
(4) - EXACT HESSIAN COMPUTATIONS

EPSHEY - SMALLEST LEGAL DIAGONAL ELEMENT IN HESSIAN -
USED TO DETECT HEYWOOD VARIABLES

Dl, D2
,

SI, S2 - SCRATCH VECTORS OF LENGTH IP

DIMENSION X(IP) ,G(IP) ,H(IP2) ,A(IP2) ,SINV(IP2)
,
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1

2
EIGVAL (IP) ,EIGVEC(IP, IP) ,NF(4) ,D1 (IP)
D2 ( IP ) ,S1(IP) , S2 ( IP

)

LOGICAL QEXACT

INITIALIZE CONSTANTS

IQP1=IQ+1
FF=0 .

0

COMPUTE A CONDITIONAL LAMBDA AND EXTRACT
AND THE REQUIRED EIGENVECTORS

EIGENVALUES

CALL CLAM ( IP , IP2 , X , SINV , A , EIGVAL , MLEV , EIGVEC , D1 D2
1 S 1 , S2 )

’ ’ ’

FUNCTION IS THE SUM OF RECIPROCALS AND LOGS OF THE
LAST IP-IQ EIGENVALUES

DO 10 I =IQP1 , IP
10 FF=FF+1 . 0/ EIGVAL ( I ) +AL0G (EIGVAL ( I )

)

F=FF-FL0AT( IP-IQ)
NF ( 1 )=NF ( 1 )+l
IF (MLEV) 150,20,20

TRANSFORM THE EIGENVALUES FOR THE GRADIENT COMPUTATION

20 DO 30 1=1 , IP
30 D1(I)=1.0-1. 0/ EIGVAL ( I

)

ACCUMULATE PRODUCTS OF THE TRANSFORMED EIGENVALUES AND
THE LAST IP-IQ EIGENVECTORS AS THE GRADIENT
SET FLAG TO COMPUTE EXACT HESSIAN IF GRADIENT IS
SMALLER THAN THE SPECIFIED CRITERION

QEXACT= . TRUE

.

DO 45 1=1 , IP
G ( I ) =0 .

0

DO 40 J=IQP1 , IP
40 G(I)=G(I)+D1(J )*EIGVEC( I , J)**2

IF ( ABS (G ( I ) ) . GT . EPSXCT ) QEXACT= . FALSE

.

45 CONTINUE
NF ( 2 )=NF ( 2 ) +1
IF (MLEV) 150,150,50

DECIDE WHICH VERSION OF THE HESSIAN TO COMPUTE

50 IF (QEXACT) GO TO 80

COMPUTE APPROXIMATE TO THE HESSIAN - SAVES TIME
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L=0
DO 70 1=1, IP
DO 70 J=1,I
S=0.0
DO 60 M=IQP1 , ip

60 S=S+EIGVEC ( I , M ) *EIGVEC ( J , M

)

L=L + 1

70 H (L)=S*S
NF ( 3 )=NF (3 )+l
GO TO 120

C

c
COMPUTATION OF EXACT HESSIAN - NOT ALWAYS NECESSARY

80 L=0
DO 110 1=1 , ip
DO 110 J=1 ,

I

U=0.

0

DO 100 M=IQP1 , ip
T=0 .

0

90

100

DO 90 N=1 , IQ
S=(EIGVAL(M) +EIGVAL (N ) -2 . 0)/ (EIGV4LC
T=T+S*EIGVEC(I ,N)*EIGVEC(J,N)
IF (I.EQ.J) T=T+1 .

0

U=U+EIGVEC(I
, M ) *EIGVEC ( J , M ) *T

IF (I.EQ.J) U=U-G ( I

)

L=L +

1

M)-EIGVAL(N)

)

110 H(L)=U
NF ( 4 )=NF (4 )+l

CHECK AND CORRECTION FOR IIEYWOOD VARIABLFS
ZERO GRADIENT AND ROW AND COLUMN OF HESSIANSET DIAGONAL ELEMENT TO 1 .

0

ADJUST THE ORIGINAL VECTOR FOR UNDESIRED ONES

120 L=0
BND=ALOG( .005)
DO 140 1=1 , IP
D1 ( I )=1 .

0

IF (H(L + I).LT. EPSHEY ) D1(I)=0.0
DO 130 J=1,I
L=L + 1

IF (J.LT. I ) GO TO 125
IF (Dl(I).EQ. 1.0) GO TO 125
X ( I ) =X (I)-G(I)/H(L)
IF (X(I).LT.BND) X ( I )=BND
H (L ) = 1 .

0

GO TO 130
125 H(L)=H(L)*D1(I)*D1(J)
130 CONTINUE

G(I)=G(I)*D1(I)
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140 CONTINUE

RETURN TO MAIN ROUTINE

150 RETURN
END
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Table 19: Source Listing of CLAM

C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

^SUBROUTINE CLAM ( IP , IP2 , THETA , S , A , VAL , MLEV, VEC , D1 , D2

,

99^ T

U
r

TES A CONDITIONAL LAMBDA GIVEN A THETA(CONVERTED TO PSI FOR CALCULATION)

IP - NUMBER OF VARIABLES

IP2 - IP*(IP+l)/ 2 - THE LENGTH OF A AND S

THETA - THE VECTOR BEING MINIMIZED (LENGTH IP)

S - INVERSE OF THE ORIGINAL CORRELATION MATRIX (MS=1)

A - SCRATCH SPACE USED TO COMPUTE CONDITIONAL LAMBDA

VAL - EIGENVALUES OF A

MLEV - THE MINIMIZATION LEVEL - IMPLIES WHETHER OR NOTTO COMPUTE EIGENVECTORS (MLEV>0 MEANS COMPUTE
EIGENVECTORS)

VEC - EIGENVECTORS STORED AS COLUMNS

Dl, D2, SI, S2 - SCRATCH VECTORS OF LENGTH IP

DIMENSION THETA (IP) , S ( IP2 ) , A ( IP2 ) , VAL (IP) , VEC (IP IP)
1 Dl(IP) , D2 ( IP ) ,S1(IP) ,S2(IP)

TRANSFORM THETA INTO PSI FOR COMPUTATION

BND=ALOG ( .005)
L=0
DO 10 1 = 1, IP
IF (THETA (I ) .LT.BND) THETA ( I )=BND
D1(I )=SQRT ( EXP (THETA ( I ) )

)

DO 10 J=1 ,

I

L=L + 1

10 A(L)=D1(I)*S(L)*D1(J)

COMPUTE EIGENVALUES AND, IF NECESSARY, EIGENVECTORS

NEED=0
IF (MLEV.GE.O) NEED=IP
CALL HOUSE ( IP , IP2 , -1 , NEED , A , VAL , VEC , Dl , D2 , S 1 , S2

)



RETURN
END



74

Table 20: Source Listing of ft. am

C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c

c
c
c

c
c
c

c
c
c
c

^SUBROUTINE FLAM ( IP , IP2

,

IQ
, THETA , S ,

A

, VAL , VEC

,

D1 , D2 , SI

,

COMPUTES THE FINAL LAMBDA GIVEN A THETA(CONVERTS THETA TO PSI FOR CALCULATION^

IP - NUMBER OF VARIABLES

IP2 - IP*(IP+l)/2 - SIZE OF A AND S

IQ - NUMBER OF FACTORS

THETA THE VECTOR BEING MINIMIZED (LENGTH IP)

S - INVERSE OF THE ORIGINAL CORRELATION MATRIX (MS=1)

A - SCRATCH SPACE USED TO COMPUTE CONDITIONAL LAMBDA

VAL - EIGENVALUES OF A

VEC - EIGENVECTORS STORED AS COLUMNS

Dl, D2, SI, S2 - SCRATCH VECTORS OF LENGTH IP

DIMENSION THETA (IP) , S(1 ) ,A(D , VAL (IP) , VEC (IP, IQ)1 Dl(IP) , D2 ( IP ) , S 1 ( IP ) ,S2(IP)
^ ’

TRANSFORM THETA INTO PSI FOR COMPUTATION

BND=ALOG( . 005)
L=0
DO 10 1=1, IP
IF ( THETA ( I ) . LT . BND) THETA( I )=BND
THETA ( I )=SQRT (EXP (THETA ( I ) )

)

DO 10 J=1 ,

I

L=L + 1

10 A (L )=THETA ( I ) *S (L ) *THETA ( J

)

COMPUTE EIGENVALUES AND, IF NECESSARY, EIGENVECTORS

CALL HOUSE ( IP, IP2 , -1 , IQ, A, VAL , VEC ,D1,D2,S1,S2)

ORTHONORMALIZE THE FIRST IQ EIGENVECTORS AS THE FACTOR
SOLUTION AND SQUARE THE PSIS

DO 30 1=1 , IP
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C

20
30

DO 20 J=1 , IQ
VEC(I, J)=THETA(I)*VEC(I, J)
THETA ( I ) =THETA ( I ) *THETA ( I

)

*SQRT (1.0/VAL(J)-1.0)

RETURN
END
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