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SUMMARY

One of the main building blocks and major challenges for 5G cellular systems is

the design of flexible network architectures which can be realized by the paradigm of

software-defined networking (SDN) and network function virtualization (NFV). Existing

commercial cellular systems rely on closed and inflexible hardware-based architectures

both at the radio frontend and in the core network. These problems significantly delay the

adoption and deployment of new standards, impose great challenges in implementing new

techniques to maximize the network capacity and coverage, and prevent provisioning of

truly-differentiated services for growing, uneven, and highly variable traffic patterns.

The objective of the thesis is to introduce an innovative software-defined architecture

for 5G cellular systems, called SoftAir, via SDN and NFV solutions. The SDN concept has

been proposed to efficiently create a centralized network abstraction with the programma-

bility provisioning over the entire network. The complementary NFV concept has been

also introduced to effectively virtualize functionality to run on cloud infrastructure by de-

coupling network functions and physical devices. Based on these two concepts, the SoftAir

architecture enables the next-generation cellular networks with the needed flexibility for

evolving and adapting to the ever-changing network context. In this thesis, first, a detailed

overview is provided for priori wireless SDN (W-SDN) work. Second, the architecture

design of SoftAir is introduced with key elements. Third, four essential management tools

for SoftAir are developed, including control traffic balancing, optimal network planning,

network virtualization, and traffic classifier. Fourth, the novel software-defined traffic en-

gineering solutions enabled by SoftAir are presented, including base station clustering,

throughput-optimal scheduling, and QoS-aware adaptive routing. Through the synergy of

SDN and NFV solutions, the developed SoftAir in this thesis lays out the foundation for

5G wireless software-defined cellular systems.
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CHAPTER 1

INTRODUCTION

Existing commercial wireless networks are inherently hardware-based and rely on closed

and inflexible architectural designs. Such inflexible hardware-based architectures typi-

cally lead to a 10-year cycle for a new generation of wireless networks to be standard-

ized and deployed, impose significant challenges into adopting new wireless networking

technologies to maximize the network capacity and coverage, and prevent the provision of

truly-differentiated services able to adapt to increasingly growing, uneven, and highly vari-

able traffic patterns. As shown in Figure 1, for 5G cellular system requirements, the ultra

high capacity should have 1000-fold capacity/km2 compared to LTE, the user-plane latency

should be less than 1ms over the radio access network, and the ultra high data rates should

provide 100-fold increase in user-experienced throughput (targeting 1Gbps experienced

user throughput everywhere). The challenges faced by the current network architectures

cannot be solved without a radical paradigm shift in the design of next-generation wireless

networks. Hence, in this thesis, we propose the utilization of software-defined networking

(SDN) and network function virtualization (NFV) concepts for next generation (5G) wire-

less networks, introduce a new architecture for wireless software-defined networks, called

SoftAir, and present challenges and solutions for related research in this domain.

Figure 1. Cellular system requirements evolved from 4G to 5G.
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Figure 2. Design specifications for 5G cellular systems.

1.1 Requirements for 5G Cellular Systems

In conventional cellular networks, mobile phones were practically the only type of device

expected to be supported. With the proliferation of Internet and its numerous applications,

there was the problem of handling several classes of traffic to meet the different QoS re-

quirements of diverse applications like video streaming, data, VoIP calls, etc. A similar

situation is arising now with the need to support several types of devices and applications

with drastically varying QoS requirement to provide better experience to the user. Unlike

previous generations of cellular networks, 5G cellular network is envisioned to support a

multitude of devices and applications like smartwatches, autonomous vehicles, Internet of

Things (IoT), and tactile Internet. The various types of devices and application scenar-

ios need more sophisticated networks that not only can support high throughput, but also

provide low latency in data delivery, efficient energy consumption scheme, high scalabil-

ity to accommodate a large number of devices, and ubiquitous connectivity for users. As

illustrated in Figure 2, we describe these requirements in the following.

• High Data Rates: the metric of data rate has been the most important evaluation fac-

tor over generations of wireless communication networks. With the advent of mobile

Internet and services such as HD video streaming, pervasive video and video sharing,
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virtual reality available on mobile phones, as well as the proliferation of tablets and

laptops which are accessible to wireless networks, increasing the data rate of cellu-

lar network is becoming an inevitable market driving force. Although the current

maximum data rates can support HD video streaming which requires 8∼15 Mbps,

there are applications like ultra-HD 4K video streaming, high definition gaming, and

3D contents, which require even higher data rates at around 25 Mbps to provide a

satisfactory experience to users. With these emerging applications demanding higher

data rates, 5G networks are expected to have the peak data rate of around 10 Gbps

which is a 100-fold improvement over current 4G networks [9]. Besides increasing

the maximum data rate, the cell-edge data rate, as the worst case data rate users ex-

perience, should also be improved to 100 Mbps, which is a 100 times improvement

over 4G networks at cell edge. The maximum data rate is an optimum estimate that a

user can experience. In fact, the affects of intercell interference and transmission loss

make the maximum value hardly achievable. Therefore edge data rate level becomes

more important from the perspective of network engineering, as this data rate must

support around 95% of users connected to the network. Another metric based on data

rate that characterizes the network is the area capacity, which specifies the total data

rate the network can serve per unit area. According to its definition, the unit of area

capacity is normally bits per second per unit area. This metric is expected to increase

100 times in 5G compared to 4G network.

• Low Latency: the round-trip latency of data plane in the LTE network is around

15 milliseconds (ms) [10]. However, for the recently emerging applications such

as tactile Internet, virtual reality, and multi-player gaming that 5G networks are ex-

pected to support, the latency should be upgraded to an order of magnitude faster

than current network, at around 1 ms [11]. For instance, tactile Internet is a recently

developed application where the wireless network is used for real-time control appli-

cations [12]. The latency required for such applications is determined by the typical
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interaction for steering and control of real and virtual objects without creating cyber-

sickness. The expected latency that would make these applications feasible is around

1 ms [12]. Although current smartphones have touch screens as the main interface,

future devices will integrate various other interfaces like haptic, visual and auditory

input and feedback, which will provide a new way of interacting with online envi-

ronment for applications in virtual reality, healthcare, gaming, and sports, etc. These

applications require real-time interactions with the user and any delay in the system

will cause degradation to the user experience.

• Low Energy Consumption: the 5G networks are expected to support the IoT devices

[13] which are basically some sensors that gather information about an environment

and transmit it to a central server. These devices are mostly low-power, low-cost

devices with lifespans as long as several years. Since these devices are not always

connected to the base station and are only switched on occasionally, their battery

life cannot afford the process of synchronization with the base station every time,

as the synchronization step costs more energy than that of actual data transmission.

This specific case in IoT requires that the radio access technique for 5G support

loose or no synchronization. Moreover, this type of service also puts constraints on

the computational power for decoding, the length of header, and packet forwarding

scheme, etc. With the increasing number of connected smart devices, the number

of base stations required to support these devices will also escalate. Because of the

deployment of small cells, the base station will be densified. This foreseeable trend

demands the base stations to be energy efficient since even a small improvement in

energy efficiency will translate to huge energy savings in large scale.

• High Scalability: to support increasing amount of mobile devices that connect to the

wireless network and communicate with each other, network scalability becomes an

important factor in design of the next generation wireless communications network.
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The increase in number of devices is further aggravated by the myriad of IoT devices

and vehicle-to-vehicle communication technologies that are expected to surge in the

5G cellular network. Fueled by this smart equipment proliferation, it is expected that

the number of devices connected to the cellular network will grow to 50 billion by

2020 [14]. Consequently, a highly scalable network that can efficiently accommodate

this upsurge in number of devices is required. High scalability is also critical to per-

formance of current and emerging applications, such as the IoT services, autonomous

vehicles, etc. In the case of autonomous vehicles, prompt communications among

them at high traffic densities necessitate the scalability of cellular network [15].

• Improved Connectivity and Reliability: apart from the aforementioned require-

ments, coverage and handover efficiency should also be improved for a better user

experience, particularly when millimeter wave spectrum is exploited. With the in-

crease in density of the base stations and the number of devices connected, as well as

the introduction of femtocells and picocells, the number of handovers that the base

station should handle will increase by at least two orders of magnitude. To support

this demand, novel handover algorithms and techniques that provide improved cov-

erage in cell edge areas are required. Another related issue is the authentication and

privacy concerns related to the handover [16]. The delay to contact the authenti-

cation server for each handover will be hundreds of milliseconds which would be

intolerable for 5G applications. Also, given the use of higher frequency bands in

millimeter wave, the transmission range of signals is greatly reduced. Hence, main-

taining connectivity becomes a great challenge for 5G. For mission-critical services,

the requirements on high reliability and connectivity should always be guaranteed.

• Improved Security: the security aspect of wireless network recently attracts high at-

tention, especially after 2015, when the applications of mobile payments and digital

wallet became popular [17]. In retrospect of the previous generations of systems, the
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Figure 3. SDN operation.

general purpose of security is to protect basic connectivity and maintain user privacy.

However, since the 5G system will ultimately face the dramatically increasing data

traffic in the entire network, the requirement of security of 5G should not only be lim-

ited to providing trustworthy connectivity to users, but also improving the security

on the whole network, addressing concerns on authentication, authorization as well

as accounting, developing novel encryption protocols, and safeguarding cloud com-

puting and management activities. For example, the security concerns are increasing

since the introduction of near field communication (NFC) technique, which not only

enables close proximity data transmission, but also may cause identity leaks. The

4G networks were not able to develop a unified standard to protect users’ personal

information, which will be fully addressed in the 5G networks.

1.2 Software-defined Networking and Network Function Virtualiza-
tion

Software-defined networking (SDN) has been recently introduced primarily for data center

networks and for the 5G Internet [18]. The main ideas are (i) to separate the data plane

from the control plane and (ii) to introduce novel network control functionalities based on
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Figure 4. Overall architecture of NFV.

an abstract representation of the network. These are realized by (i) removing control de-

cisions from the hardware (e.g., switches), (ii) enabling the hardware to be programmable

through an open, standardized interface (e.g., OpenFlow [19]), and (iii) using a network

controller to define the behavior and operation of network forwarding infrastructure. The

SDN operation is shown in Figure 3. Specifically, when a flow arriving at switch does not

match any rules in the flow table, it will be processed as follows: (1) the first packet of the

flow is sent by the ingress switch to the controller, (2) the forwarding path for the flow is

computed by the controller, (3) the controller sends the appropriate forwarding entries to

install in the flow tables at each switch along the planned path, and (4) all subsequent pack-

ets in the flow or even different flows with matching (or similar) attributes are forwarded

in the data plane along the path and do not need any control plane action. SDN makes it

easier to introduce and deploy new applications and services; however, the effectiveness

and great potential of SDN for 5G networking come with many new technical challenges,

which need to be addressed by the new research advances [2].

Network function virtualization (NFV) enables the virtualization of entire network
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functions (e.g. routing decisions) that were tied to hardware before to run on cloud in-

frastructure [20]. In conventional architectures, operators purchase and install proprietary

devices to deploy each network function, while specialized hardware is usually very ex-

pensive but barely configurable. NFV, emerging as a breakthrough in 5G cellular systems,

reduces CAPEX, OPEX, and power consumption through consolidating equipment and

exploiting the economies of the IT industry scale [3]. According to ETSI [21], the over-

all architecture of NFV consists of four key elements: NFV infrastructure (NFVI), virtual

network functions (VNFs), hypervisors, and NFV management and orchestration (NFV

MANO), as shown in Figure 4. The main component here is VNFs which are software

implementations of network functions, running on a generic cloud infrastructure. VNFs

are deployed upon the NFVI that includes virtual computation, virtual storage, and virtual

network resources. These virtual resources, created by hypervisors, bring virtualization

over physical hardware resources within the network. Hardware resources might include

networking (e.g., switches and RRHs), computing (e.g., server), and storage (e.g., data cen-

ters) infrastructures. The NFV MANO framework controls the provisioning of VNFs, the

configuration of VNFs, and the infrastructure they run on. MANO can also chain several

VNFs to activate an end-to-end service. NFV provides the availability of network appli-

ance multi-version and multi-tenancy, allowing usages of a single platform for different

applications, users, and tenants and enabling a wide variety of eco-systems with openness.

However, the NFV development for wireless systems is still under-explored.

1.3 Research Objectives and Solutions

In this thesis, we propose the utilization of SDNs for next generation (5G) wireless net-

works and present a new architecture for wireless SDNs, called SoftAir, and the solutions

and challenges for related research in this domain. In our proposed SoftAir architecture,

the control plane consists of network management and optimization tools and is imple-

mented on the network servers. The data plane consists of software-defined base stations
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(SD-BSs) in the radio access network (RAN) and software-defined switches (SD-switches)

in the cellular core network. Their control logic, e.g., physical/MAC/network functions,

are implemented in software on general purpose computers and remote data centers.

Our proposed SoftAir architecture offers five core properties: (i) programmability, i.e.,

SDN nodes (e.g., SD-BSs and SD-switches) can be reprogrammed on-the-fly by dynam-

ically associating with different network resources and networking algorithms; (ii) coop-

erativeness, i.e., SDN nodes can be implemented and aggregated at data centers for joint

control and optimization to enhance the global network performance; (iii) virtualizability,

i.e., multiple virtual wireless networks can be created on a single SoftAir, each of which op-

erates under its own independent network protocols with network resources allocated based

on demand; (iv) openness, i.e., data plane elements (i.e., BSs and switches), regardless of

the underlying forwarding technologies and vendors, have unified data/control interfaces,

e.g., CPRI and OpenFlow [19, 22], thus significantly simplifying the data plane monitor-

ing and management; and (v) visibility, i.e., centralized controllers have a global view of

the network status collected from BSs and switches. In the following, the challenges and

developed solutions for SoftAir are briefly discussed.

1.3.1 Priori Art

There is an urgent need to study the fundamental architectural principles underlying a new

generation of software-defined cellular network as well as the enabling technologies that

supports and manages such emerging architecture. The first contribution of this thesis

(Chapter 2) is an overview of the state-of-the-art W-SDNs solutions along with their asso-

ciated NFV techniques. Specifically, we give the major problems of scalability challenges

and vendor-specific device configuration, facing by the current cellular architectures. We

also highlight the key differences among the existing W-SDN and NFV solutions, includ-

ing SD-Wifi, programmable data plane, SD-MAC in WANs, SD-CN, SD-RAN, integrated

SD-CN & SD-RAN, and their limitations.
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1.3.2 Architecture Design

To the best of our knowledge, SoftAir is the first comprehensive solution suite for 5G cel-

lular systems that accelerates the innovations for both hardware forwarding infrastructure

and software algorithms, enables efficient and adaptive resource sharing, achieves max-

imum spectrum efficiency, encourages the convergence of heterogeneous networks, and

enhances energy efficiency. The overall architecture of SoftAir for W-SDN in 5G systems

composes of a data plane and a control plane. The data plane, which includes SD-RANs

and a SD-CN, is an open, programmable, and virtualizable forwarding infrastructure. The

control plane mainly consists of two components, which are network management tools

and customized applications from service providers or virtual network operators.

The second contribution of this thesis (Chapter 3) is that we introduce SoftAir architec-

ture and provide a completed qualitative comparison between SoftAir and existing architec-

tures. In particular, we consider four key design elements of scalable SoftAir architecture as

listed in the following. (1) Scalable software-defined planning that SoftAir decouples con-

trol and data planes for both SD-RANs and the SD-CN. (2) Fine-grained fronthaul network

decomposition that SoftAir simultaneously realizes the physical-, MAC-, and network-

layer function virtualization for RAN and adopts a new fine-grained fronthaul network

decomposition architecture by leaving partial baseband processing at the RRH (e.g., mod-

ulation/demodulation), while implementing the remaining baseband functions (e.g., source

coding and MAC) at the BBS. (3) Seamless OpenFlow incorporation that SoftAir incor-

porates OpenFlow protocol into SD-BSs and promises the transparent interconnections be-

tween SD-CNs and SD-RANs for the unified management over the entire network. (4)

Network virtualization capacity that SoftAir enables the end-to-end network virtualization

traversing both SD-RAN and SD-CN, realizing a truly multi-service converged network

infrastructure. Moreover, we also provide a qualitative comparison of existing W-SDN

solutions and SoftAir in terms of architecture, scalability, network virtualization, traffic

engineering solutions, and research community.
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1.3.3 Management Tools

Cloud orchestration aims to automate the configuration, coordination and management of

software and software interactions in the cloud environment. To support cloud orchestration

in SoftAir, to enable the promising features and to maximize the overall performance of

SoftAir, several essential and general management tools need to be developed.

The third contribution of this thesis (Chapter 4) is that we propose four essential man-

agement tools to realize the promising properties of SoftAir, as listed in the following.

(1) In-band control traffic balancing that finds the optimal control traffic forwarding paths

for each SD-switch/SD-BS in such a way the average control traffic delay in the whole

network is minimized. (2) Traffic-driven optimal network planning that jointly optimizes

control traffic balancing and controller placement so that the required controllers and the

control traffic delay are minimized. (3) Resource-efficient network virtualization that en-

ables the jointly optimized design of QoS-aware virtualization and routing by tenant iso-

lation and prioritization as well as flow allocation, fulfilling QoS requirements of tenants’

applications. (4) QoS-aware traffic classifier that jointly exploits deep packet inspection

and semi-supervised machine learning so that accurate traffic classification can be realized,

while requiring minimal communication between the network controller and SD-switches

(or SD-BSs).

1.3.4 Software-defined Traffic Engineering

Several new traffic engineering solutions are designed to leverage the full potential of the

SoftAir architecture. Specifically, BS clustering, throughput-optimal scheduling, and QoS-

aware routing solutions are proposed, which directly supported by the enabling tools dis-

cussed in Chapter 4.

The fourth contribution of this thesis (Chapter 5) is that we develop four novel software-

defined traffic engineering solutions for SoftAir, as listed in the following. (1) Dynamic BS

formation that treats the NLOS problem in millimeter-wave systems from SoftAir (a wire-

less software-defined networking architecture) perspective and adaptively coordinates BSs

11



and their multiple antennas to always satisfy UEs’ QoS requirements in NLOS cases. (2)

Delay-based maximum power-weight scheduling that brings throughput optimality (with

respect to moment stability) for single-hop flows with heavy-tailed traffic. (3) Delay-based

maximum-weight scheduling policy with the last-in first-out (LIFO) service discipline that

lets a networked system can support the largest set of incoming traffic flows, while guar-

anteeing bounded queueing delay to each queue, no matter the queue has HT or LT traf-

fic arrival. (4) QoS-aware adaptive routing as network service that supports diverse QoS

requirements from user applications in packet delay, loss, and throughput in the same for-

warding infrastructure.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. An overview of priori wireless software-

defined networking (W-SDN) work is provided in Chapter 2. Then, the architecture de-

sign of SoftAir is introduced in Chapter 3. Moreover, the essential management tools for

SoftAir are developed in Chapter 4. In addition, the software-defined traffic engineering

solutions enabled by SoftAir are presented in Chapter 5. Finally, the research contributions

are summarized in Chapter 6.
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CHAPTER 2

STATE-OF-THE-ART WIRELESS SOFTWARE-DEFINED
NETWORKING

In literature, the software-defined architectures are well-studied in wired networks. For

example, in data center networks and campus local area networks (LANs) [19, 23, 24],

these architectures mainly support centralized and adaptive manipulation of flow tables

at switches and routers. Furthermore, considering wired network virtualization, cloud

computing and computer virtualization have maintained strong foothold for the past few

years. In particular, the virtualization of routers and switches has been adopted, such

as virtual private networks (VPNs) over wide area networks (WANs) and metropolitan

area network (MANs) as well as virtual LANs in enterprise networks. This is achieved

by logically partitioning a physical network into virtual networks that share the physical

routers/switches/crossconnects, physical links, and bandwidth on each link. The utilization

of the physical resources needs to be carefully managed to maintain the QoS and security

needs of the users of each virtual network. However, SDN’s effectiveness and great poten-

tial for 5G data networking come with many new technical challenges, which need to be

addressed by the new research advances.

2.1 Major Problems with Current Cellular Architectures

Figure 5 shows the current LTE network architecture and the corresponding data plane,

which includes three components: cellular RAN, cellular CN, and the Internet. In particu-

lar, user equipment (UE) connects to eNodeB, i.e., base stations, and directs traffic through

serving-gateway (S-GW) over a GPRS Tunneling Protocol (GTP) tunnel. S-GW serves as

a local mobility anchor that enables seamless communication when the user moves from

one BS to another. Towards this, S-GW must handle frequent changes in users’ location,

and store a large amount of user states since users retain their IP addresses when they move.
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Figure 5. LTE network architecture and data plane. [1]

In addition, S-GW tunnels traffic to the packet-gateway (P-GW) which enforces QoS poli-

cies and monitors traffic to perform billing. P-GW also connects to the Internet and other

cellular data networks, and acts as a firewall that blocks unwanted traffic. The bottomline

here is that besides data plane functionalities, eNodeBs, S-GWs, P-GWs also participate

in several control plane protocols. Specifically, with mobility management entity, these

devices perform hop-by-hop signaling to handle session setup, tear-down & reconfigura-

tion, and mobility, e.g., registration, paging, and handoff. Moreover, S-GW and P-GW are

also involved in routing such as OSPF. The policy control and charging function (PCRF)

manages flow-based charging in the P-GW. It also provides the QoS authorization that de-

cides how to treat each traffic flow, based on the user profile. The home subscriber server

(HSS) contains subscription information for each user In case of cell congestions, a BS in

coordination with P-GW reduces the max rate.

The major problems with the current cellular architectures lie as follows: (1) Scalabil-

ity challenges and (2) Vendor-specific device configuration. First, centralizing data-plane

functions such as monitoring, access control, and QoS functionality at P-GW introduces

scalability challenges. It cause the equipment becomes very expensive, e.g., more than

6M for a Cisco P-GW. Moreover, centralizing data-plane functions at the cellular-Internet

boundary forces all traffic through the P-GW. It becomes difficult to host popular content

inside the cellular network. Second, network equipment has vendor-specific configuration
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Figure 6. W-SDN relationship with NFV. An example of open innovation, e.g., network virtualization.

interfaces, and communicate through complex control-plane protocols, with a large and

growing number of tunable parameters (alone several thousands parameters for base sta-

tions). Hence, carriers (operators) have (at best) indirect control over the operation of their

networks, with little ability to create innovative services. In short, existing commercial cel-

lular systems rely on closed and inflexible hardware-based architectures both at the radio

frontend and in the CN. These problems significantly delay the adoption and deployment

of new standards, impose significant challenges in implementing and innovation of new

techniques to maximize the network capacity and accordingly the coverage, and prevent

provisioning of truly-differentiated services which are able to adapt to growing and uneven

and highly variable traffic patterns. To tackle these problems, in the following, we summa-

rize the design of flexible network architectures for 5G cellular systems, which are realized

by the SDN paradigm with NFV.

2.2 Trends to W-SDN and NFV

As 5G cellular systems will be driven by software, the new architecture solutions heavily

rely on two emerging technologies, i.e., SDN and NFV as shown in Figure 6. In particular,
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the benefit of SDN lies in its ability to provide an abstraction of the physical network infras-

tructure. Through network-wide programmability, the capability to change the behavior of

the network as a whole, SDN greatly simplifies the management of networks. The level of

network programmability provided by SDN allows several network slices to be customized

and optimized for different service deployments, while using the same physical and logical

network infrastructure. Furthermore, by separating network function from underlying hard-

ware devices, NFV allows a network function to be implemented in software either locally

or on the remote clouds. This capability can enhance network scalability, which allows the

optimal organization and easy management of network control and monitoring tools over

the whole network. The most significant benefit brought about by NFV is the flexibility

to execute and improve network management functions timely and independently of the

underlying physical network forwarding infrastructure.

Recently, few SDN architectures [1, 25–34] are exploited in wireless networks. Open-

Roads [25] is mainly targeted at WiFi networks with little support for cellular networks.

OpenRadio [26] proposes a novel programmable wireless data plane that provides modular

programming capability for the entire wireless stack. However, OpenRadio does not pro-

vide any network controller that take advantage of such programmable data plane. Cloud-

MAC [27] is a distributed network architecture that has a programmable MAC layer for

802.11 WLAN without resorting to software radios and partially performed MAC process-

ing in data centers on virtual machines connected by an OpenFlow controlled network.

Odin [28] is an SDN framework that proposes to simplify the implementation of high level

enterprise WLAN services, such as authentication, authorization and accounting, by in-

troducing light virtual access points. This approach is similar to the virtual access points

used in CloudMAC. However, OpenRoads, OpenRadio, CloudMAC, and Odin are all par-

tial solutions that exploit SDN concept in wireless networks and do not provide a com-

pleted/integrated architecture/platform for 5G cellular systems.
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2.3 Integrated W-SDN & NFV Solutions

Integrated SDN solutions [1,29–34] have also been introduced for practical 5G system im-

plementations. CellSDN [1] aims to achieve a centralized control plane for cellular core

networks. ADRENALINE [29] provides an industrial solution of software-defined core

network (SD-CN) for 5G cellular systems with optical OFDM. However, these architec-

tures neither consider the scalability issue of SD-CN nor the incorporation of CN with

RAN. On the other hand, SoftRAN [30] attempts to restructure the control plane of RAN

in a software-defined manner. An emerging distributed RANs, called Cloud-RAN [31],

proposes software-defined radio access network (SD-RAN) architecture that connects SD-

RANs to virtual BS pool through fibers and provides centralized control solution upon the

BS pool. However, its coarse-grained BS decoupling limits the scalability and evolvability

of such distributed RANs due to excessive, redundant I-Q transmissions. DOCOMO [32]

and SK Telecom [33] also provide their own industrial SD-RAN solutions for 5G systems,

respectively. CONTENT [34] is a 3-years European co-funded (FP7) project, which aims

at offering a network architecture and overall infrastructure solution to facilitate the cross-

technology virtualization in support of optimized, seamless and coordinated cloud, and

mobile cloud service provisioning across heterogeneous network domains. However, sim-

ilar to Cloud-RAN, these solutions (i.e., DOCOMO, SK Telecom, and CONTENT) adopt

coarse-grained decoupling and thus bring bottlenecks to fronthaul fiber networks.

What is more important, all of the above architectures lack a coherent framework that

fully integrates cellular CN and RAN in a software-defined manner. To this end, we pro-

pose a new W-SDN architecture that incorporates SDN and NFV and brings a coherent

integration of SD-CN and SD-RANs for 5G cellular systems [2].
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Figure 7. Network architecture of SoftAir [2].

CHAPTER 3

SOFTAIR ARCHITECTURE DEISGN

In this chapter, we introduce SoftAir architecture for 5G cellular systems. As shown in

Figure 7, the architecture of SoftAir consists of a data plane and a control plane. The

data plane is an open, programmable, and virtualizable network forwarding infrastructure,

which consists of SD-RANs and a SD-CN. The SD-RAN consists of a set of SD-BSs,

while the SD-CN is composed of a collection of SD-switches. The control plane mainly

consists of two components: (i) network management tools and (ii) customized applications

of service providers or virtual network operators. Four key elements of scalable SoftAir

architecture are introduced.

3.1 Scalable Software-defined Planning

As shown in Figure 8, to increase network scalability, SoftAir decouples control and data

planes for both SD-RANs and the SD-CN, and establishes an ubiquitous software-defined
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Figure 8. Scalable software-defined planning of SoftAir.

planning from RANs, the CN, to the Internet, effectively realizing multi-controller scenar-

ios and optimum managements for large-scale wireless systems. In particular, SD-RAN

consists of SD-BSs that jointly form a baseband server (BBS) and connect with numer-

ous remote radio heads (RRHs). Moreover, by interconnecting physical links, the SD-CN

contains SD-switches that have flow tables to route traffic. The control logic of SD-RANs

(e.g., physical/MAC/network functions) and the SD-CN (e.g., network management and

optimization tools) is implemented in software on general purpose computers, network

servers, and remote data centers as high-performance controllers. Specifically, the network

operating system in the control plane collects information about network states such as de-

vice status, link utilization, link delays, etc. The information collected is used to create

a high-level network abstraction that helps the computation of optimum forwarding rules

and efficient resource allocations. These control policies are then fed back to SD-BSs and

SD-switches for execution through standard (south-bound) interfaces, e.g., OpenFlow and

SNMP (Simple Network Management Protocol). Also, the control plane (or controllers)

provides the network abstraction to applications, such as mobility management, security,
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Figure 9. Fine-grained fronthaul network decomposition of SoftAir.

load balancing, etc., running upon it through (northbound) interfaces.

3.2 Fine-grained Fronthaul Network Decomposition

SoftAir supports fine-grained fronthaul network decomposition through dedicated base sta-

tion NFV, and offers excellent cooperative gain and evolvability by allowing the aggrega-

tion of a large number of technology-evolving RRHs at BBS through the diverse, cost-

efficient, CPRI (Common Public Radio Interface)-supported fronthaul network topologies,

and over different fronthaul mediums. In particular, as in Figure 9, to enhance network

flexibility, SoftAir simultaneously realizes the physical-, MAC-, and network-layer func-

tion virtualization for RAN and thus forms SD-RAN. Here, the proposed SD-RAN follows

a distributed RAN architecture, and each SD-BS is split into hardware-only radio heads and

software-implemented baseband units. These RRHs are connected to the baseband units on

BBS through fronthaul network (fiber or microwave) using standardized interfaces, such as

CPRI or OBSAI (Open Base Station Architecture Initiative) interface. What is more im-

portant, SoftAir adopts a new fine-grained fronthaul network decomposition architecture

by leaving partial baseband processing at the RRH (e.g., modulation/demodulation), while
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Figure 10. Seamless OpenFlow incorporation of SoftAir.

implementing the remaining baseband functions (e.g., source coding and MAC) at the BBS.

Hence, the decomposition not only preserves sufficient flexibility offered by the distributed

RAN architecture, but eliminates fronthaul network bottlenecks as well.

3.3 Seamless OpenFlow Incorporation

Different from the existing distributed RAN architecture, SoftAir incorporates the Open-

Flow protocol into SD-BSs, and promises the transparent interconnections between SD-

CNs and SD-RANs for the unified management over the entire SoftAir. Specifically, as

in Figure 10, SD-RANs implement an OpenFlow interface for each SD-BS by utilizing

Open vSwitch (OVS), which is an OpenFlow-capable software that can easily be realized

in BBS. With OVS, each SD-BS can interpret, exchange, and respond to OpenFlow proto-

col messages. Equipping SD-BSs with OpenFlow capabilities provides an unified interface

to control and manage base stations with different wireless standards, thus leading to a

multi-technology converged RAN that allows smooth transitions among different radio ac-

cess technologies.
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Figure 11. Network virtualization capacity of SoftAir.

3.4 Network Virtualization Capacity

SoftAir has the capability to enable the end-to-end network virtualization traversing both

SD-RAN and SD-CN, thus realizing a truly multi-service converged network infrastruc-

ture. Specifically, as in Figure 11, the network virtualization enables multiple isolated

virtual networks (e.g., M2M, smart-grid, over-the-top service provider, cellular provider)

to share the same physical network infrastructure. That means it focuses on slicing net-

work resources for multiple virtual networks so that they can simultaneously share the

same physical network architecture. More specifically, each virtual network can adopt its

customized physical-/MAC-/network-layer protocols, without interrupting the operations

and performance of other virtual networks. These virtual networks can also be deployed

on demand and dynamically allocated. To realize these isolated virtual networks, Soft-

Air implements three functions: network hypervisor for high-level virtualization; wireless

hypervisor at SD-BSs and switch hypervisor at SD-switches for low-level virtualization.

Remark: The detailed qualitative comparison of state-of-the-art W-SDN solutions and

SoftAir is summarized in Figure 12.

22



7
8

I.
F.

A
k

y
il

d
iz

et
a

l.
/C

o
m

p
u

te
r

N
et

w
o

rk
s

9
3

(2
0

15
)

6
6

–
7

9

T
a

b
le

1

T
h

e
co

m
p

a
ri

so
n

o
f

e
x

is
ti

n
g

W
-S

D
N

so
lu

ti
o

n
s.

W
S

D
N

S
D

N
A

rc
h

it
e

ct
u

re
S

ca
la

b
il

it
y

N
e

tw
o

rk
v

ir
tu

a
li

za
ti

o
n

S
D

T
ra

ffi
c

e
n

g
in

e
e

ri
n

g
R

e
se

a
rc

h
co

m
m

u
n

it
y

O
p

e
n

R
o

a
d

s
S

D
-W

iF
i

n
e

tw
o

rk
H

ig
h

F
lo

w
V

is
o

r 
&

N
o

sp
e

ci
fi

c
so

lu
ti

o
n

A
ca

d
e

m
ia

/I
n

d
u

st
ry

S
N

M
P

V
is

o
r

O
p

e
n

R
a

d
io

P
ro

g
ra

m
m

a
b

le
Lo

w
N

o
sp

e
ci

fi
c

so
lu

ti
o

n
N

o
sp

e
ci

fi
c

so
lu

ti
o

n
A

ca
d

e
m

ia

d
a

ta
p

la
n

e

C
lo

u
d

M
A

C
S

D
-M

A
C

Lo
w

-
D

y
n

a
m

ic
sp

e
ct

ru
m

u
se

S
e

a
m

le
ss

A
P

sw
it

ch
-o

ff
sy

st
e

m
A

ca
d

e
m

ia

in
W

A
N

s
-

O
n

-d
e

m
a

n
d

A
P

-
D

o
w

n
li

n
k

sc
h

e
d

u
li

n
g

O
d

in
S

D
-M

A
C

Lo
w

H
id

d
e

n
te

rm
in

a
l

m
it

ig
a

ti
o

n
-

S
e

a
m

le
ss

m
o

b
il

it
y

A
ca

d
e

m
ia

in
W

A
N

s
-

Lo
a

d
b

a
la

n
ci

n
g

C
e

ll
S

D
N

S
D

-C
N

Lo
w

N
o

sp
e

ci
fi

c
so

lu
ti

o
n

A
ca

d
e

m
ia

/I
n

d
u

st
ry

A
D

R
E

N
A

LI
N

E
S

D
-C

N
Lo

w
S

D
O

p
ti

ca
l

O
F

D
M

sy
st

e
m

In
d

u
st

ry

S
o

ft
R

A
N

S
D

-R
A

N
Lo

w
B

ig
-b

a
se

st
a

ti
o

n
A

ca
d

e
m

ia
/I

n
d

u
st

ry

C
lo

u
d

-R
A

N
S

D
-R

A
N

Lo
w

C
o

ll
a

b
o

ra
ti

v
e

P
H

Y
o

p
e

ra
ti

o
n

s
A

ca
d

e
m

ia
/I

n
d

u
st

ry

S
K

 T
e

le
co

m
S

D
-C

N
&

Lo
w

C
o

ll
a

b
o

ra
ti

v
e

P
H

Y
o

p
e

ra
ti

o
n

s
In

d
u

st
ry

S
D

-R
A

N

D
O

C
O

M
O

S
D

-R
A

N
Lo

w
C

o
ll

a
b

o
ra

ti
v

e
P

H
Y

o
p

e
ra

ti
o

n
s

In
d

u
st

ry

C
O

N
T

E
N

T
 

S
D

-C
N

&
Lo

w
S

e
rv

ic
e

o
rc

h
e

st
ra

ti
o

n
la

y
e

r
E

U

S
D

-R
A

N

B
a

si
c 

co
n

ce
p

t

O
p

e
n

S
ta

ck
 

(c
u

st
o

m
e

r 
S

D
N

 c
o

n
tr

o
ll

e
rs

) 
N

o
 s

p
e

ci
fi

c 
so

lu
ti

o
n

 
Li

m
it

e
d

 e
x

p
lo

ra
ti

o
n

N
o

t s
u

p
p

o
rt

e
d

Li
m

it
e

d
 s

ch
e

m
e

,

e
.g

., 
N

O
M

A

In
fr

a
st

ru
ct

u
re

m
a

n
a

g
. l

a
y

e
r

S
o

ft
A

ir
 

S
D

-C
N

&
H

ig
h

-
N

e
tw

o
rk

h
y

p
e

rv
is

o
r

-
C

o
ll

a
b

o
ra

ti
v

e
&

co
o

rd
in

a
te

A
ca

d
e

m
ia

/I
n

d
u

st
ry

S
D

-R
A

N
-

W
ir

e
le

ss
h

y
p

e
rv

is
o

r
p

ro
ce

ss
in

g
(P

H
Y

)

-
S

w
it

ch
h

y
p

e
rv

is
o

r
-

C
o

ll
a

b
o

ra
ti

v
e

sc
h

e
d

u
li

n
g

(M
A

C
)

-
S

D
m

o
b

il
it

y
m

a
n

a
g

e
m

e
n

t
(N

W
)

T
a

b
le

2

Q
u

a
li

ta
ti

v
e

e
v

a
lu

a
ti

o
n

o
f

N
F

V
o

f
e

x
is

ti
n

g
W

-S
D

N
so

lu
ti

o
n

s.

W
-S

D
N

N
F

V
(C

lo
u

d
ifi

ca
ti

o
n

)
C

/U
-P

la
n

e
d

e
co

u
p

li
n

g

O
p

e
n

R
o

a
d

s
[1

0
]

S
im

p
li

fi
e

d
d

e
co

u
p

li
n

g
v

ia
O

p
e

n
F

lo
w

S
im

p
le

e
x

te
n

si
o

n
to

W
iM

A
X

A
P

O
p

e
n

R
a

d
io

[1
1

]
E

n
a

b
le

m
u

lt
i-

co
re

D
S

P
a

rc
h

it
e

ct
u

re
s

Fo
cu

s
o

n
h

a
rd

w
a

re
d

e
si

g
n

w
it

h
o

u
t

co
n

tr
o

l
p

la
n

e

C
lo

u
d

M
A

C
[1

2
]

V
A

P
s

fo
r

IE
E

E
8

0
2

.1
1

st
a

ti
o

n
s

V
A

P
s

w
it

h
in

v
ir

tu
a

l
m

a
ch

in
e

s
v

e
rs

e
d

u
m

b
W

T
P

s

O
d

in
[1

3
]

LV
A

P
s

fo
r

IE
E

E
8

0
2

.1
1

st
a

ti
o

n
s

N
o

co
n

cr
e

te
so

lu
ti

o
n

fo
r

ra
d

io
h

e
a

d
s

C
e

ll
S

D
N

[9
]

A
b

st
ra

ct
co

n
ce

p
t

E
x

te
n

si
o

n
fr

o
m

S
D

N
to

W
-S

D
N

(O
n

ly
C

N
)

A
D

R
E

N
A

LI
N

E
[1

5
]

S
D

N
in

te
g

ra
te

d
IT

a
n

d
n

e
tw

o
rk

o
rc

h
e

st
ra

to
r

(S
IN

O
)

D
e

p
lo

y
e

n
d

-t
o

-e
n

d
v

ir
tu

a
li

ze
d

n
e

tw
o

rk
fu

n
ct

io
n

s

S
o

ft
R

A
N

[1
6

]
R

o
u

g
h

N
F

V
w

it
h

b
ig

-b
a

se
st

a
ti

o
n

a
b

st
ra

ct
io

n
N

o
co

n
cr

e
te

so
lu

ti
o

n
fo

r
ra

d
io

h
e

a
d

s

C
lo

u
d

-R
A

N
[1

7
]

R
o

u
g

h
N

F
V

;
su

ff
e

r
g

re
a

t
I-

Q
tr

a
n

sm
is

si
o

n
s

Fu
ll

y
&

p
a

rt
ia

l
ce

n
tr

a
li

ze
d

a
rc

h
it

e
ct

u
re

S
K

Te
le

co
m

[1
9

]
R

o
u

g
h

N
F

V
;

su
ff

e
r

g
re

a
t

I-
Q

tr
a

n
sm

is
si

o
n

s
Fo

cu
s

o
n

h
a

rd
w

a
re

a
n

d
so

ft
w

a
re

d
e

co
u

p
li

n
g

D
O

C
O

M
O

[1
8

]
R

o
u

g
h

N
F

V
;

su
ff

e
r

g
re

a
t

I-
Q

tr
a

n
sm

is
si

o
n

s
V

a
ri

a
n

t
C

-R
A

N
;

u
se

d
e

co
u

p
li

n
g

in
p

h
a

n
to

m
ce

ll

C
O

N
T

E
N

T
[2

0
]

N
o

t
m

u
ch

d
e

ta
il

e
d

N
F

V
;

In
fr

a
st

ru
ct

u
re

m
a

n
a

g
e

m
e

n
t

la
y

e
r:

d
e

co
u

p
le

a
cr

o
ss

su
ff

e
r

g
re

a
t

I-
Q

tr
a

n
sm

is
si

o
n

s
h

e
te

ro
g

e
n

e
o

u
s

p
h

y
si

ca
l

in
fr

a
st

ru
ct

u
re

S
o

ft
A

ir
[3

]
F

in
e

-g
ra

in
e

d
N

F
V

;
F

le
x

ib
le

p
la

tf
o

rm
fo

r
fu

ll
y

&
p

a
rt

ia
l

ce
n

tr
a

li
ze

d
a

rc
h

it
e

ct
u

re

so
lv

e
re

d
u

n
d

a
n

t
I-

Q
tr

a
n

sm
is

si
o

n
s

(t
h

ro
u

g
h

so
ft

w
a

re
lo

ca
l

co
n

tr
o

l
a

g
e

n
ts

)

th
e

B
S

a
n

d
th

e
n

e
tw

o
rk

le
v

e
l.

T
h

e
p

ro
p

o
se

d
sy

st
e

m
co

n
si

st
s

o
f

tw
o

co
m

p
o

n
e

n
ts

:
(i

)
th

e
lo

ca
l

tr
a

ffi
c

cl
a

ss
ifi

e
rs

in
S

D
-B

S
s

a
t

th
e

n
e

tw
o

rk
e

d
g

e
a

n
d

(i
i)

th
e

g
lo

b
a

l
tr

a
ffi

c
le

a
rn

e
r

a
t

th
e

n
e

t-

w
o

rk
co

n
tr

o
ll

e
r

lo
ca

te
d

a
t

th
e

C
N

.T
h

e
re

fo
re

,S
o

ft
A

ir
w

il
l

ta
k

e

a
d

v
a

n
ta

g
e

s
o

f
th

e
ce

n
tr

a
li

ze
d

a
n

d
co

m
p

u
ta

ti
o

n
a

ll
y

p
o

w
e

rf
u

l

n
e

tw
o

rk
co

n
tr

o
ll

e
r

to
jo

in
tl

y
e

x
p

lo
it

th
e

a
d

v
a

n
ta

g
e

s
o

f
d

e
e

p

p
a

ck
a

g
e

in
sp

e
ct

io
n

(D
P

I)
[3

2
]

a
n

d
se

m
i-

su
p

e
rv

is
e

d
m

a
ch

in
e

le
a

rn
in

g
[3

3
].

R
e

m
a

rk
.

T
h

e
d

e
ta

il
e

d
co

m
p

a
ri

so
n

o
f

st
a

te
-o

f-
th

e
-a

rt
W

-

S
D

N
so

lu
ti

o
n

s
a

n
d

S
o

ft
A

ir
a

n
d

th
e

q
u

a
li

ta
ti

v
e

e
v

a
lu

a
ti

o
n

o
f

N
F

V
a

re
su

m
m

a
ri

ze
d

in
T

a
b

le
s

1
a

n
d

2
,r

e
sp

e
ct

iv
e

ly
.

4
.

C
o

n
cl

u
si

o
n

W
-S

D
N

s
p

ro
v

id
e

ce
ll

u
la

r
n

e
tw

o
rk

s
w

it
h

th
e

n
e

e
d

e
d

fl
e

x
i-

b
il

it
y

to
e

v
o

lv
e

a
n

d
a

d
a

p
t

a
cc

o
rd

in
g

to
th

e
e

v
e

r-
ch

a
n

g
in

g
n

e
t-

w
o

rk
co

n
te

x
t

fo
r

5
G

ce
ll

u
la

r
sy

st
e

m
s.

A
n

o
v

e
rv

ie
w

a
n

d
q

u
a

li
-

ta
ti

v
e

e
v

a
lu

a
ti

o
n

o
f

th
e

st
a

te
-o

f-
th

e
-a

rt
W

-S
D

N
so

lu
ti

o
n

s
a

n
d

th
e

p
ro

p
o

se
d

S
o

ft
A

ir
a

re
d

e
e

p
ly

in
v

e
st

ig
a

te
d

w
it

h
th

e
h

ig
h

-

li
g

h
te

d
k

e
y

d
if

fe
re

n
ce

s
b

e
tw

e
e

n
th

e
se

so
lu

ti
o

n
s.

W
h

il
e

th
e

cu
rr

e
n

t
re

se
a

rc
h

e
s

h
av

e
fo

cu
se

d
o

n
e

n
a

b
li

n
g

ch
o

ic
e

in
d

if
fe

r-

e
n

t
d

e
si

g
n

a
x

e
s,

th
e

q
u

e
st

io
n

o
f

h
o

w
to

m
a

k
e

u
se

o
f

S
D

N
a

n
d

N
F

V
co

n
ce

p
ts

o
p

ti
m

a
ll

y
fo

r
d

if
fe

re
n

t
sc

e
n

a
ri

o
s

st
il

l
re

m
a

in
s

o
p

e
n

.

A
ck

n
o

w
le

d
g

m
e

n
t

T
h

is
w

o
rk

w
a

s
su

p
p

o
rt

e
d

b
y

th
e

U
S

N
a

ti
o

n
a

l
S

ci
e

n
ce

Fo
u

n
d

a
ti

o
n

(N
S

F
)

u
n

d
e

r
G

ra
n

t
n

o
.1

5
4

7
3

5
3

.

R
e

fe
re

n
ce

s

[1
]

I.
F.

A
k

y
il

d
iz

,
A

.
Le

e
,

P.
W

a
n

g
,

M
.,

Lu
o

,
W

.
C

h
o

u
,

A
ro

a
d

m
a

p
fo

r
tr

a
ffi

c
e

n
g

in
e

e
ri

n
g

in
sd

n
-o

p
e

n
fl

o
w

n
e

tw
o

rk
s,

C
o

m
p

u
t.

N
e

tw
.

(E
ls

e
v

ie
r)

J.
7

1

(2
0

1
4

)
1

–
3

0
.

[2
]

S
.

Ja
in

,
A

.
K

u
m

a
r,

S
.

M
a

n
d

a
l,

J.
O

n
g

,
L.

P
o

u
ti

e
v

sk
i,

A
.

S
in

g
h

,
S

.
V

e
n

k
a

ta
,

J.
W

a
n

d
e

re
r,

J.
Z

h
o

u
,

M
.

Z
h

u
,

e
t

a
l.

,
B

4
:

E
x

p
e

ri
e

n
ce

w
it

h
a

g
lo

b
a

ll
y

-

d
e

p
lo

y
e

d
so

ft
w

a
re

d
e

fi
n

e
d

w
a

n
,

P
ro

ce
e

d
in

g
s

o
f

th
e

A
C

M
S

IG
C

O
M

M
C

o
n

fe
re

n
ce

,S
IG

C
O

M
M

’1
3

,A
u

g
u

st
2

0
1

3
,p

p
.3

–
1

4
.

[3
]

I.
F.

A
k

y
il

d
iz

,
P.

W
a

n
g

,
S

.C
.

Li
n

,
S

o
ft

a
ir

:
A

so
ft

w
a

re
d

e
fi

n
e

d
n

e
tw

o
rk

in
g

a
rc

h
it

e
ct

u
re

fo
r

5
g

w
ir

e
le

ss
sy

st
e

m
s,

C
o

m
p

u
t.

N
e

tw
.8

5
(2

0
1

5
)

1
–

1
8

.

Fi
gu

re
12

.T
he

co
m

pa
ri

so
n

of
ex

is
tin

g
W

-S
D

N
so

lu
tio

ns
[3

].

23



CHAPTER 4

SOFTAIR MANAGEMENT TOOLS

Cloud orchestration aims to automate the configuration, coordination and management of

software and software interactions in the cloud environment. To support cloud orchestration

in SoftAir, to enable the promising features and to maximize the overall performance of

SoftAir, four essential and general management tools need to be developed: (1) in-band

control traffic balancing, (2) traffic-driven optimal network planning, (3) resource-efficient

network virtualization, (4) distributed and collaborative traffic classifier.

4.1 Control Traffic Balancing

We develop an in-band control traffic balancing for a centralized controller with an objec-

tive to find the optimal control traffic forwarding paths for each switch/BS in such a way

the average control traffic delay in the whole network is minimized [35]. An efficient algo-

rithm, called polynomial-time approximation algorithm (PTAA), is proposed to yield the

fast convergence to a near optimal solution of in-band signaling paths.

4.1.1 Motivation and Related Work

With decoupled networking architecture, the timely delivery of control messages for each

SD-switch or SD-BS largely impacts the efficiency and effectiveness of SDNs, especially

when in-band mode [36] is used for control traffic that could significantly affects the sys-

tem performance with the combined traffic of the original data and the control messages.

Thus, it becomes a great challenge to support the load-balancing of in-band control traf-

fic for the minimum network delay via a centralized controller in SDNs. We foresee that

SDN technologies would be gradually adopted in enterprises in in-band mode, as we start

to address and resolve remaining technical issues. However, existing work all focuses on

balancing data traffic in data plane, such as prioritizing the interactive, elastic, and back-

ground traffic in [37]. Different from data traffic balancing which aim to evenly distribute
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data traffic flows among network links, control traffic balancing is much more challenging

particular for in-band control [2]. It aims to find the control message forwarding paths

of each switch in such a way that the control message delay can be minimized subject to

acceptable performance for the original data traffic. This control traffic forwarding prob-

lem is extremely critical in SDNs because the timely delivery of control traffic initiated by

Openflow switches, e.g, the first packet of every new flow and the traffic/congestion status,

directly impacts the effectiveness of the routing strategies determined by the controller.

In this section, by using queueing network theory [38], we address the control traffic

forwarding issue by formulating it as a nonlinear optimization problem. However, the com-

plexity of such a formulation is extremely high due to (i) its nonlinearity and (ii) massive

variables of link traffic assignments for large-size networks. As a result, the conventional

methods for nonlinear optimization problems, such as interior point methods [39], become

impractical both in terms of computation time and storage. Therefore, the principle solv-

ing method for these large-scale nonlinear problems is to find an approximate and near

optimal solution in the solution space [40]. Towards this, we design a fast convergent algo-

rithm for the control traffic balancing problem, based on the alternating direction method

of multipliers (ADMM) [41], which is an emerging parallel and fast first-order method for

solving large-scale convex optimization problems. In particular, we propose a polynomial-

time approximation algorithm (PTAA) that applies the primal-dual update rules of ADMM

approach to solve the formulated large-scale convex optimization problem. In particular,

PTAA is an iterative algorithm that accurately approximates the optimal solution with fast

convergence. We prove that PTAA follows the rapid convergence rate O(1/cm) with a

constant c > 1 and iteration number m. Such fast convergence property is extremely im-

portant for SDNs because the time-varying traffic pattern in both data plane and control

plane may require the fast re-planning of forwarding paths between switches and con-

troller. Performance evaluation confirms that the proposed PTAA provides network delay

for control traffic similar to the benchmarks from brute force algorithms, and outperforms
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Figure 13. In-band control traffic over SoftAir.

the conventional single- and multi-path solutions with at least 80% delay reduction that is

time-efficient and could be executed in parallel. To the best of our knowledge, this work

is the first to address control traffic balancing problem in SDNs along with the provably

fast-convergent algorithm to yield the near optimal solution.

4.1.2 System Model and In-Band Control Traffic

Given SoftAir architecture, one key SDN feature is to separate the data plane from the

control plane. With such decoupled networking architecture, the timely delivery of con-

trol messages for each SD-switch or SD-BS (i.e., BBS) largely impacts the efficiency and

effectiveness of SoftAir. Moreover, it is cost-prohibitive to deploy large-scale SDN with

out-band signaling where each hardware device is directly connected to the controller with

a separate control channel. We foresee that SDN technologies would be gradually adopted

in enterprises in in-band mode [36] with the combined traffic of the original data and the

control messages. Hence, we aim to support the load-balancing of in-band control traffic

for the minimum network delay via a centralized controller in SoftAir. A typical network
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topology of SoftAir as shown in Figure 43 generally consists of multiple Openflow en-

abled switches or BSs, which constitutes data plane, and a centralized network controller.

It is modeled by a network graph G = (V, J) in Figure 13(b), where V is a set of SD-

switches/SD-BSs with total n devices (i.e., |V | = n) and J is a set of links with total |J|

links. Moreover, the traffic model for the in-band signaling is considered. Without loss of

generality, both control and data flows are modeled by regenerative traffic with the regener-

ative service processes for both link transmission and the controller’s serving capability. In

particular, the control traffic of each switch i is modeled by a regenerative arrival process Ai

with the mean value σi. For the jth link and j ∈ J, the existing data flow follows a regener-

ative arrival process B j with the mean value λ j and the link serving time S j follows another

regenerative process with the mean time 1/µ j. Moreover, the optimal centralized controller

i∗, whose location can be determined as the one that minimizes the control message delay,

has the serving capability with the mean time 1/µC.

4.1.3 Control Traffic Balancing Problem

With traffic models of data and control flows, we provide a load-balancing scheme that bal-

ances link traffic loads of the additional in-band control flows to minimize the link trans-

mission delay. Specifically, the traffic assignment matrix x = [xi j]i∈V, j∈J, where xi j denotes

the amount of control traffic that the ith device (i.e., switch or BS) contributes to the jth

link, is obtained with respect to minimizing the average network delay over the network.

To achieve load balancing, multi-path routing is adopted, where given Pi as a set of avail-

able paths for the ith device and i ∈ V , this device can forward the control messages to the

controller via |Pi| available paths. To characterize possible multi-path routings of control

flows, for the flow from the ith device, we define a topology matrix Ti of size |J| × |Pi| as

follows:

Ti[ j, p] =


1, if the jth link lies on the pth path;

0, otherwise.
(1)
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The matrix Ti maps the traffic from paths to links and should always be full column-rank

to avoid redundant paths. Its left-inverse matrix T−1
i = [ti1, ti2, ..., ti|J|] exists and has the

size |Pi| × |J|, where ti j is the column vector that maps the jth link to all possible paths of

the ith device’s flow. ti j is obtained by multiplying T−1
i with the jth standard basis e j, i.e.,

ti j = T−1
i e j. While each device i brings a control flow with the mean value σi, the device

i∗, where the controller is directly attached, can send its flow to controller without going

through the network (i.e., xi∗ j = 0, ∀ j ∈ J). We set up the equalities for the control flow

conservation of devices as ‖T−1
i [xi1, ..., xi|J|]T ‖1 = σi, ∀i ∈ Ṽ := V \{i∗}, where ‖ · ‖T and ‖ · ‖1

denote the transpose and 1-norm of vector, respectively. Let di j = ‖T−1
i e j‖1, such equalities

can be further simplified as

∑
j∈J

di jxi j = σi ∀ i ∈ Ṽ , (2)

which is the flow conservation constraint, implying that the control flow initiated by each

device is split into multiple outgoing flows on the selected transmission links. Furthermore,

with the aid of Little’s law [38], the average network delay D over the network for the

control messages is obtained as

D =
1∑

i∈Ṽ
σi +

∑
j∈J
λ j

∑
j∈J

∑
i∈Ṽ

xi j + λ j

µ j − (
∑
i∈Ṽ

xi j + λ j)
. (3)

In particular, for link j ∈ J, new packets arrive with rate (
∑

i∈Ṽ xi j + λ j) and stay an average

time of 1/[µ j−(
∑

i∈Ṽ xi j+λ j)]. Summing queue backlogs over all links, the average network

delay is thus yielded, as the total external arrivals of control and data traffic into the network

are (
∑

i∈Ṽ σi +
∑

j∈J λ j). In addition, to balance the traffic loads among all links, every link

should have finite transmission delay. From the formulation in (3), such finite link delay

conditions are equivalent to

∑
i∈Ṽ

xi j < µ j − λ j ∀ j ∈ J, (4)
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which ensure the incoming traffic rates are less than the link service rates and link delays

remain nonnegative. Therefore, with the above accomplishments, we define the Control

Traffic Load-Balancing Problem as follows.

Definition 1 [Control Traffic Load-Balancing Problem.] Given a SoftAir system modeled

by G = (V, J) with the controller location i∗ ∈ V, control traffic arrival rates σi, a set of

topology matrices Ti, ∀i ∈ V, data traffic rates λ j, and link serving rates µ j, ∀ j ∈ J, the

load-balancing optimization problem to be solved by the controller is

Minimize D
(
xi j;∀ i ∈ Ṽ = V \ {i∗}, j ∈ J

)
Subject to (2) and (4)

. (5)

4.1.4 Polynomial-Time Approximation Algorithm (PTAA)

To exploit ADMM [41] for the proposed load-balancing optimization problem, there are

two steps as follows. We first formulate the dual problem from the given primal problem.

We then alternatively solve both problems for the optimal solution.

Theorem 1 The dual problem of (1) is as follows:

Find: xi j and βi j ∀ i ∈ Ṽ , j ∈ J

Maximize −1∑
i∈Ṽ

σi+
∑
j∈J
λ j

∑
j∈J

∑
i∈Ṽ

βi j+λ j

µ j−(
∑
i∈Ṽ

βi j+λ j)

Subject to


βi j = xi j ∀ i ∈ Ṽ , j ∈ J∑

j∈J
di jβi j = σi ∀ i ∈ Ṽ

(4)

. (6)

Given (6) and the penalty parameter ρ > 0 for the augmented Lagrangian [41], we

consider the update rules for primal variables xi j, βi j and dual variables γi j, ∀i ∈ Ṽ , j ∈ J.

For x-update, the following iteration is obtained: x(m+1) := arg min
(4)

ρ

2

∑
i∈Ṽ

∑
j∈J

(xi j−β
(m)
i j +γ(m)

i j )2.

To simplify the calculation, let x̂ j =
∑

i∈Ṽ xi j/(n − 1), β̂(m)
j =

∑
i∈Ṽ β

(m)
i j /(n − 1), and γ̂(m)

j =∑
i∈Ṽ γ

(m)
i j /(n − 1). Then, xi j = β(m)

i j − γ
(m)
i j + x̂ j − β̂

(m)
j + γ̂(m)

j and the x-update of ADMM for
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the primal problem (1) and the corresponding dual problem (6) is

Find: x̂ j ∀ j ∈ J

Minimize (n−1)ρ
2

∑
j∈J

(x̂ j − β̂
(m)
j + γ̂(m)

j )2

Subject to (n − 1)x̂ j < µ j − λ j ∀ j ∈ J

. (7)

For β-update, the iteration of βββ(m+1) is arg min∑
j∈J

di jβi j=σi ∀ i∈Ṽ

1∑
i∈Ṽ

σi+
∑
j∈J
λ j

∑
j∈J

∑
i∈Ṽ

βi j+λ j

µ j−(
∑
i∈Ṽ

βi j+λ j)
+

ρ

2

∑
i∈Ṽ

∑
j∈J

(βi j −

x(m+1)
i j − γ(m)

i j )2, and βi j = x(m+1)
i j + γ(m)

i j + β̂ j − x̂(m+1)
j − γ̂(m)

j . To rewrite β-update in terms of β̂ j,

∀ j ∈ J as usual, we deal with the constraint functions by matrix operation and parameter

rearrangement:
∑
j∈J

di jβi j = σi ⇒ (n−1)
∑
j∈J

di jβ̂ j = σi +
∑
j∈J

(di j
∑

l∈Ṽ ,l,i
βl j)⇒ (n−1)

∑
j∈J

di jβ̂ j =

σi +
∑

l∈Ṽ ,l,i
f l
iσl ∀ i ∈ Ṽ , where f l

i = ( di1 · · · di|J| )( dl1 · · · dl|J| )† and (·)† denotes

the pseudo-inverse of matrix. The β-update of ADMM is then obtained by

Find: β̂ j ∀ j ∈ J

Minimize 1∑
i∈Ṽ

σi+
∑
j∈J
λ j

∑
j∈J

(n−1)β̂ j+λ j

µ j−((n−1)β̂ j+λ j)
+

(n−1)ρ
2

∑
j∈J

(β̂ j − x̂(m+1)
j − γ̂(m)

j )2

Subject to
∑
j∈J

di jβ̂ j =

σi+
∑

l∈Ṽ ,l,i
f l
i σl

n−1 ∀ i ∈ Ṽ

. (8)

Finally, the iteration of dual-update of ADMM is obtained:

γ(m+1)
i j := γ(m)

i j + x(m+1)
i j − β(m+1)

i j ⇒ γ̂(m+1)
j = γ̂(m)

j + x̂(m+1)
j − β̂(m+1)

j ∀ i ∈ Ṽ , j ∈ J (9)

With the above accomplishments, we propose PTAA in Algorithm 1 through update rules

of ADMM to solve the control traffic balancing problem. Given that the objective function

of (1) is strictly convex, the linear convergence of proposed PTAA can also be obtained as:

the proposed PTAA in Algorithm 1 converges to the optimal solutions with rate O(1/cm),

where c > 1 is a constant and m is the number of iterations.

4.1.5 Performance Evaluation

We evaluate the proposed PTAA and compare it with single- and multi-path forwarding

as well as the benchmark. The rapid convergence rate of PTAA follows our analytical
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Algorithm 1: Polynomial-time Approximation Algorithm (PTAA)
Input : Primal (1) and dual (6) problems.
Output: xi j,∀ i ∈ Ṽ , j ∈ J

1 Set x̂(0)
j = 0, β̂(0)

j = 0, γ̂(0)
j = 0,∀ j ∈ J

2 for m = 0, 1, . . . do
3 Compute x̂(m+1)

j ,∀ j ∈ J according to (7)
4 Compute β̂(m+1)

j ,∀ j ∈ J according to (8)
5 Compute γ̂(m+1)

j ,∀ j ∈ J according to (9)
6 Set x(m+1)

i j from x̂(m+1)
j ,∀ i ∈ Ṽ , j ∈ J

7 end

derivation as O(1/cm) shown in Figure 14(a). It provides the satisfactory values after 300

iterations which serves as a desired stopping point. Regarding traffic statistics in Internet2

OS3E [4], the data arrival rate λ j and serving rate µ j over links j ∈ J are set as 200 and 1000

[packets/slot], respectively. Figs. 14(b)-14(c) shows that PTAA always has lower delay than

single- and multi-path solution, and closes to the benchmark. With increasing control traffic

from switches, both single- and multi-path solutions bring dramatic delay increase due to

the occurrence of link overflow; however, PTAA can tolerate such higher loads through dis-

tributing extra control traffic over links with lighter data loads. Figure 14(c) further shows

that PTAA can maintain network delay lower than the latency of switch processing for less

control traffic, and has slightly increased delay for increasing traffic. These confirm that

PTAA achieves remarkable delay reduction via a fast and parallel computation approach,

thus favored by practical implementation in large-scale SoftAir.

4.1.6 Highlights

Load-balancing of in-band control traffic is addressed and the proposed PTAA solves the

balancing problem in an efficient and parallel manner. Performance evaluation confirms

that PTAA successfully demonstrates communication efficiency with at least 80% delay

reduction via a fast and low complexity approach. We have presented a novel paradigm to

facilitate on-line configurations of centralized controller in practical SDN implementations.
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Figure 14. (a) Linear-fast convergence of the proposed PTAA in Algorithm 1 with rate O(1/cm). (b)-(c)
Average network delay in Internet2 OS3E with 27 nodes and 36 links [4] with respect to control traffic.
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4.2 Optimal Network Planning

We investigate an optimal network planning with multiple controllers that jointly optimizes

controller placement and control traffic forwarding [42]. By partitioning the NP-hard plan-

ning into two sub-problems, i.e., multi-controller placement (MCP) and control traffic bal-

ancing for multiple controllers (CTB-MC), we solve them with fast-convergent algorithms.

4.2.1 Motivation and Related Work

Because of limited computational capacity of a controller, creating scalable and efficient

SDN with a single controller in SoftAir is challenging for large-scale networks. The place-

ment of multiple controllers across the entire network can address the performance limita-

tion while retaining control centralization. In this case, several fundamental network plan-

ning problems have to be solved: the minimum number of controllers and their optimal

deployment locations, control domain assignments between switches/BSs and controllers,

and the corresponding optimal forwarding paths for control traffic. However, existing so-

lutions all concern controller placement alone without involving control traffic forwarding.

Lately, novel work in fast failover [43] considers both resilience-aware controller placement

and control traffic routing to improve the resiliency of SDNs. In particular, exhaustive and

greedy search algorithms are provided for controller placement; conventional routing tree

in which each switch has only one path to the controller is adopted for control traffic for-

warding. However, single-controller SDNs with in-band connections in [43] are limited for

a large amount of control traffic. Moreover, no load balancing on control traffic exists in

the literature, losing the capability of multi-path control traffic forwarding. Towards this,

different from all existing solutions, we jointly investigate multi-controller placement and

control traffic balancing for the design of optimal network planning and develop an effi-

cient, adaptive control scheme that guarantees the optimum solution with fast replanning

of controller placement and forwarding paths over time-varying QoS requirements, traffic

statistics, and network topology in SDNs.
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4.2.2 System Model

Given a network topology of SoftAir as G = (V, J), we denote the set of SDN controllers

K ⊆ V with total C controllers, and the serving time capability of the kth controller is mod-

eled as an exponential distribution with mean time value 1/µk
C. The control traffic of each

device i is modeled by a regenerative arrival process Ai with mean σi. For the jth link, the

existing data flow follows a regenerative arrival process B j with mean λ j, and link serving

time S j follows another regenerative process with mean time 1/µ j. We address the traffic-

driven design of multi-controller planing with two objectives: (i) minimize the required

controllers to reduce infrastructure cost via an efficient placement and (ii) minimize the

link transmission delay via an optimized traffic scheduling. {yk,∀k ∈ V} denotes the con-

troller locations as yk equals one if a controller picks device k’s location, and the number of

total controllers C becomes
∑

k∈V yk. {zik,∀i ∈ V, k ∈ V} denotes the control domain assign-

ments between devices and controllers as zik equals one if device i is assigned to controller

k. To avoid the long-distance assignments for inefficient control message transmissions,

indicator variables {Iik,∀i ∈ V, k ∈ V} are introduced to enable the localized domain as-

signments. Iik equals one if Distance(i, k) ≤ dist, where Distance(i, k) denotes the distance

between device i and controller k, and dist is the predetermined value. From these variable

definitions, yk = 1 −
∏

i∈V(1 − zikIik) and

yk ≥ zikIik ∀ i ∈ V, k ∈ V. (10)

To let each device be assigned to a dedicated controller, the following constraint is given as

∑
k∈V

zikIik = 1 ∀ i ∈ V. (11)

Moreover, to avoid the infinite delay over controllers’ incoming queues, serving capability

of each controller should be enough for the arrival control messages of the assigned devices:

∑
i∈V

σizikIik < µ
k
C ∀ k ∈ K ⊆ V. (12)
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Regarding multi-controller scenarios, the traffic assignment matrix x = [xk
i j]i∈V, j∈J,k∈V , where

xk
i j denotes the amount of control traffic on link j that originates from device i to controller

k, is obtained with respect to minimizing the network delay. Similarly, flow conservation

and finite link delay conditions can be respectively obtained for multiple controllers as∑
j∈J

dk
i jx

k
i j = σizikIik ∀ i ∈ Ṽ , k ∈ K, (13)

∑
i∈Ṽ

∑
k∈K

xk
i j < µ j − λ j ∀ j ∈ J, (14)

where dk
i j = ‖T−1

ik e j‖1 from the corresponding topology matrix Tik. We have the following.

Definition 2 [Optimal Network Planning Problem.] Given SoftAir modeled by G = (V, J)

with multi-controllers k ∈ K ⊆ V, control traffic rates σi, topology matrices Tik, ∀i ∈ V, k ∈

K, data traffic rates λ j, and link serving rates µ j, ∀ j ∈ J, the planning optimization is

Find: xk
i j, yk, zik ∀ i ∈ V, j ∈ J, k ∈ V

Minimize C =
∑

k∈V yk

Minimize Dave(xk
i j)

Subject to (10), (11), (12), (13), (14)

. (15)

where Dave denotes the average network delay. This planning problem belongs to a mixed

integer and continuous two-objective optimization, and the optimal values is very compli-

cated to solve in a time-efficient manner. To provide fast solving strategy for this complex

framework, we divide the original problem into two successive sub-problems as follows:

MCP Problem CTB-MC Problem

Find: yk, zik ∀ i ∈ V, k ∈ V Find: xk
i j ∀ i ∈ Ṽ , j ∈ J, k ∈ K

Minimize C =
∑

k∈V yk Minimize Dave(xk
i j)

Subject to (10), (11), (12) Subject to (13), (14)

. (16)

4.2.3 Optimal Multi-Controller Placement via Randomized Rounding

Considering MCP problem, this integer programming problem IPMCP is also linear [44]. By

relaxing variables yk, zik ∈ {0, 1} to yk, zik ∈ [0, 1], we get the relaxed linear programming
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Algorithm 2: Randomized Rounding for MCP
Input : MCP problem in Eq. (16).
Output: (C̄; ȳk, z̄ik) % Optimal controller placement

1 Solve LPMCP. Let (y′k, z
′
ik) be the optimum solution.

2 z̄ik ← 0,∀i ∈ V, k ∈ V
3 while t ≤ log(n) + 2 do
4 z̄ik ← 1 with probability p̄ik = z′ik
5 t ← t + 1
6 end
7 repeat
8 line 3-6
9 until

∑
i∈V σizikIik < µ

k
C,∀ k ∈ V and C̄ ≤ αC′, where y′max := maxk∈V y′k and

α = log1/y′max
4C′;

problem LPMCP. That is, it follows IPMCP along with yk, zik ∈ [0, 1], ∀i ∈ V, k ∈ V . The

solution of LPMCP provides the optimal solution of IPMCP. Given an MCP instance modeled

by IPMCP, Algorithm 9 is proposed to solve such an integer programming problem.First, the

relaxed linear programming problem LPMCP is solved to get an optimal fractional solution

(OPT), denoted as y′k, z
′
ik, ∀i ∈ V, k ∈ V . Next, these fractional solutions are rounded to inte-

ger values, denoted as ȳk, z̄ik, ∀i ∈ V, k ∈ V , via a randomized rounding procedure [45]. The

result of proposed algorithm for IPMCP is given as follows: Algorithm 9 yields a solution of

O(log n)OPT with high probability, given OPT as the optimal solution of MCP problem.

4.2.4 Control Traffic Balancing for Multiple Controllers

Similarly, we adopt ADMM [41] to exploit a fast solving approach for CTB-MC problem.

Theorem 2 Base on the results of MCP (i.e., (C̄; ȳk, z̄ik)), the dual problem of CTB-MC is

Find: xk
i j and βk

i j ∀ i ∈ Ṽ , j ∈ J, k ∈ K

Maximize −1∑
i∈Ṽ

σi+
∑
j∈J
λ j

∑
j∈J

∑
i∈Ṽ

∑
k∈K

βk
i j+λ j

µ j−(
∑
i∈Ṽ

∑
k∈K

βk
i j+λ j)

Subject to


βk

i j = xk
i j ∀ i ∈ Ṽ , j ∈ J, k ∈ K∑

j∈J
dk

i jβ
k
i j = σiz̄ikIik ∀ i ∈ Ṽ , k ∈ K

(14)

. (17)
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Given Eq. (17) and the penalty parameter ρ > 0, we consider the update rules for primal

variables xk
i j, β

k
i j and dual variables γk

i j, ∀i ∈ Ṽ , j ∈ J, k ∈ K. For x-update, the following

iteration is obtained: x(m+1) := arg min
(14)

ρ

2

∑
i∈Ṽ

∑
j∈J

∑
k∈K

(xk
i j − β

k(m)
i j + γk(m)

i j )2. To simplify the cal-

culation, let ñ = n − |{zkk = 1,∀k ∈ K}|, x̌ j =
∑

i∈Ṽ
∑

k∈K xk
i j/̃nC̄, β̌(m)

j =
∑

i∈Ṽ
∑

k∈K β
k(m)
i j /̃nC̄,

γ̌(m)
j =

∑
i∈Ṽ

∑
k∈K γ

k(m)
i j /̃nC̄. Then, xk

i j = βk(m)
i j − γ

k(m)
i j + x̌ j − β̌

(m)
j + γ̌(m)

j and the x-update of

ADMM for the primal CTB-MC problem and the corresponding dual problem (17) is

Find: x̌ j ∀ j ∈ J

Minimize ñC̄ρ
2

∑
j∈J

(x̌ j − β̌
(m)
j + γ̌(m)

j )2

Subject to ñC̄ x̌ j < µ j − λ j ∀ j ∈ J

. (18)

For β-update, the iteration ofβββ(m+1) is arg min∑
j∈J

dk
i jβ

k
i j=σi z̄ik Iik ∀ i∈Ṽ ,k∈K

∑
j∈J

∑
i∈Ṽ

∑
k∈K βk

i j+λ j

µ j−(
∑

i∈Ṽ
∑

k∈K βk
i j+λ j)∑

i∈Ṽ σi+
∑

j∈J λ j
+
ρ

2

∑
i∈Ṽ

∑
j∈J

∑
k∈K

(βk
i j−

xk(m+1)
i j − γk(m)

i j )2, and βk
i j = xk(m+1)

i j + γk(m)
i j + β̌ j − x̌(m+1)

j − γ̌(m)
j . We deal with the constraint

functions by matrix operation and parameter rearrangement as follows. Given the inter-

mediate variable β̂ j =
∑

i∈Ṽ
∑

k∈K dk
i jβ

k
i j/̃nC̄, the following equations hold

∑
i∈Ṽ

∑
k∈K

dk
i jβ

k
i j =

ñC̄β̂ j;
∑
i∈Ṽ

∑
k∈K

βk
i j = ñC̄β̌ j. We further have β̌ j = g1

j β̂ j + g2
j β̌ j, where g1

j and g2
j is from

( g1
j g2

j
) = ( [1 · · · 1] · · · [1 · · · 1] )

 [d1
1 j · · · d

C̄
1 j] · · · [d1

ñ j · · · d
C̄
ñ j]

[1 · · · 1] · · · [1 · · · 1]


†

and (·)† de-

notes the pseudo-inverse of matrix. The β-update of ADMM is then obtained by

Find: β̌ j ∀ j ∈ J

Minimize 1∑
i∈Ṽ

σi+
∑
j∈J
λ j

∑
j∈J

ñC̄β̌ j+λ j

µ j−(̃nC̄β̌ j+λ j)
+

ñC̄ρ
2

∑
j∈J

(β̌ j − x̌(m+1)
j − γ̌(m)

j )2

Subject to
∑
j∈J

1−g2
j

g1
j
β̌ j =

∑
i∈Ṽ

∑
k∈K

σi z̄ik Iik

ñC̄

. (19)

Finally, the iteration of dual-update of ADMM is obtained:

γk(m+1)
i j := γk(m)

i j + xk(m+1)
i j − βk(m+1)

i j ⇒ γ̌(m+1)
j = γ̌(m)

j + x̌(m+1)
j − β̌(m+1)

j ∀ j ∈ J. (20)

We propose PTAA for multi-controllers in Algorithm 3 to solve CTB-MC problem.
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Algorithm 3: Polynomial-Time Approximation Algorithm (PTAA) for CTB-MC
Input : CTB-MC problem in Eq. (16).
Output: xk

i j,∀ i ∈ Ṽ , j ∈ J, k ∈ K
1 Set x̌(0)

j = 0, β̌(0)
j = 0, γ̌(0)

j = 0,∀ j ∈ J
2 for m = 0, 1, . . . do
3 Compute x̌(m+1)

j ,∀ j ∈ J according to Eq. (18) for Dave

4 Compute β̌(m+1)
j ,∀ j ∈ J according to Eq. (19) for Dave

5 Compute γ̌(m+1)
j ,∀ j ∈ J according to Eq. (20)

6 Set xk(m+1)
i j from x̌(m+1)

j ,∀ i ∈ Ṽ , j ∈ J, k ∈ K
7 end

4.2.5 Performance Evaluation

We evaluate the proposed solving algorithms, including Algorithm 9 for the MCP sub-

problem and Algorithm 3 for the CTB sub-problem for the network replanning problem in

both Internet2 OS3E network [4] and Sprint GIP backbone network [5]. As our objective

is to minimize the control traffic latency (e.g., either average or maximum delay), we focus

on evaluating average delay Dave, while maximum delay Dmax can be examined in a similar

way. Also, we average over 30 samples for each evaluation point. In the following, we

first evaluate Algorithm 9 for MCP in Internet2 OS3E and Sprint GIP backbone. On top of

that, we compare Algorithm 3 with several control traffic forwarding schemes, including (i)

shortest-path routing [46], (ii) the multi-path forwarding, and (iii) the benchmark. Specif-

ically, (i) shortest-path solution [46] adopts hop-counts as routing metric and employs the

shortest path strategy to guide control traffic from a switch to the controller. While adopt-

ing hop-count metric as well, (ii) the multi-path solution equally splits control traffic loads

among all available next-hops of a switch and applies the shortest path strategy to guide the

corresponding multiple routes. (iii) The benchmark solution is implemented that solves the

CTB problem through the brute-force exhaustive search.
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Figure 15. Optimal MCP in Houston and Atlanta; two switch groups (i.e., in red and blue) with given
controller serving capability as listed.
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Figure 16. Average delay in Internet2 OS3E under optimal MCP in Figure 15 with respect to existing
data traffic. Link serving rate µ j = 600 [pkts/ms], ∀ j ∈ J and control traffic arrival σi = 10 [pkts/ms],
∀i ∈ V .

Internet2 OS3E: Internet2 OS3E [4] is launched to support research and network-

ing in the United States. Being the next-generation innovation platform, it has been se-

lected as a representative setup for evaluating controller placement in SDNs by many stud-

ies [35, 43, 46–48]. As shown in Figure 15, this common platform has 27 nodes and 36

links and is adopted for our MCP and CTB evaluations. In particular, by first applying Al-

gorithm 9 with given controller serving capability, Figure 15 shows that two controllers in

Houston and Atlanta are selected with two switch groups. These results come from the joint

consideration of traffic and topological attributes when solving MCP problem. On the other

hand, in [46], hop-count is the only concerned attribute in single-controller placement, and
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Figure 17. Average delay in Internet2 OS3E under optimal MCP in Figure 15 with respect to control
traffic arrivals. Link serving rate µ j = 800 [pkts/ms] and existing data traffic rate λ j = 600 [pkts/ms],
∀ j ∈ J.

Chicago is selected as the optimal location in regard to average hop number. However, this

work does not consider traffic statistics and the obtained location will no longer be optimal

regarding time-varying control and data traffic.

Moreover, according to the acquired controller placement, we execute Algorithm 3 for

CTB in Internet2 OS3E. Specifically, given control traffic rates 10 [pkts/ms] from switches,

Figure 16 shows the average delay for CTB solutions with respect to existing data traf-

fic. With increasing data traffic, PTAA does not occur link overflowing and outperforms

shortest- and multi-path solutions with at least 73% delay reduction. Alternatively, given

fixed data traffic rates 600 [pkts/ms] and increasing control traffic, Figure 17 shows that

PTAA significantly reduces the delay and supports the performance close to the bench-

mark. The capability of balancing control traffic via the proposed PTAA is then validated.

Sprint GIP Backbone: in addition to examining the proposed algorithms in a research-

intensive setup, we also evaluate our algorithms in a practical network scenario: Sprint GIP

backbone network [5]. Specifically, Sprint Corporation provides the real backbone network

topology and the actual link delay of data traffic. Such delay information is utilized to es-

timate the corresponding data traffic arrival and serving rates. As shown in Figure 18(a),

the GIP network topology of North America with 38 nodes and 66 links is adopted for
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our evaluations. Given control traffic rate σi from switches, Figure 18(b) and Figure 18(c)

show the optimal multi-controller placement in Sprint GIP network with respect to con-

troller serving capabilities, in which rand denotes an uniformly distributed random variable

between 0 and 1. Note that to enable localized control domain assignments, i.e., Iik in Eq.

(35), it is assumed that each controller can regulate its three-hop switch neighbors. With

better controller-serving capability, Figure 18(b) shows that two controllers in Roachdale

and Fort Worth are selected with their respective switch groups. Controllers with greater

capabilities are not selected in optimal MCP, as not only controller computation capabili-

ties but their topological attributes are concerned with the minimum controller requirement.

Moreover, Figure 18(c) further shows the optimal MCP with less controller serving capa-

bility, in which three controllers in Roachdale, Lee’s Summit, and Rialto are selected with

their respective switch groups. Similarly, these controllers are favored to serve as traffic

hubs because of their great serving capabilities and their central locations with many direct

links to switches.

Based on the obtained controller placement via MCP, we further examine the transmis-

sion delay of control traffic under the proposed CTB solution in Algorithm 3. Apart from

comparing with shortest-path scheme [46] and multi-path forwarding as before, two delay

bounds relevant to today’s networks [49] are considered. Specifically, (i) ring protection,

50 [ms], concerns the target restoration time of a ring topology (e.g., SONET ring). It

covers the time from fault detection to when flowing traffic in the opposite direction along

the ring. (ii) Shared-mesh restoration, around 200 [ms], serves as the point at which voice

calls start to drop, or ATM circuit rerouting may be triggered. Given link serving rate 1000

[pkts/ms], Figure 19 shows the average delay of the proposed PTAA and of several possible

solutions in the log scale. Specifically, with increasing control traffic from switches, PTAA

always has lower delay, close to the benchmark delay, than other solutions. While shortest-

or multi-path scheme brings a dramatic delay increase from link overflow, our solution can

tolerate such high loads by distributing control traffic over links with lighter data loads.
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Figure 18. (a) Sprint GIP network of North America with 38 nodes and 66 links [5]. (b) Optimal MCP
in 13 Fort Worth and 22 Roachdale and two respective groups with better controller-serving capability.
(c) Optimal MCP in 9 Rialto, 19 Lee’s Summit, and 22 Roachdale and three respective groups with less
controller-serving capability.

Moreover, with better link-serving capability (i.e., serving rate 1200 [pkts/ms]), Figure 20

shows that the proposed PTAA greatly surpasses other solutions with the delay close to the

benchmark performance. In this case, our solution greatly reduces the delay, particularly
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Figure 19. Average delay in Sprint GIP backbone under optimal MCP in TABLE 18(b) with respect to
control traffic arrivals. Link serving rate µ j = 1000 [pkts/ms], ∀ j ∈ J.
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Figure 20. Average delay in Sprint GIP backbone under optimal MCP in TABLE 18(b) with respect to
control traffic arrivals. Link serving rate µ j = 1200 [pkts/ms], ∀ j ∈ J.

for large arrivals, while shortest- or multi-path routing induces link overflow even for lim-

ited control traffic volume. Also, similar to Figure 19, Figure 20 indicates that PTAA leads

to the delay performance lower than the latency of ring protection, and retains the slightly

increased delay for increasing traffic. In short, all of the above observations suggest that by

employing information of traffic statistics, our solution brings better controller placement

and link resource utilizations and outperforms existing schemes with at least 73% delay

reduction. Yielding optimal controller placement and traffic balancing, the above results
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confirm that the proposed randomized rounding provides suitable MCP in a timely man-

ner, and the proposed PTAA significantly reduces delay via a fast and parallel computation

approach, thus favored in practical implementation for multi-controller SoftAir.

4.2.6 Highlights

This study addressed traffic-driven SDN planning of in-band control traffic as a nonlinear

multi-objective (mixed integer and continuous) optimization problem. This complex opti-

mization was solved in a timely manner by partitioning the original problem into two sub-

problems (the placement and traffic balancing). Performance evaluations confirmed that the

proposed control scheme, based on the minimum number of required controllers, demon-

strated communication efficiency via a fast and low complexity approach with at least 73%

delay reduction, close to the benchmark performance. Thus, a novel paradigm was suc-

cessfully presented that facilitated on-line configurations of centralized multi-controllers in

practical SDN implementations.

4.3 Network Virtualization

The network virtualization layer of SoftAir is designed to create a set of virtual (or logic)

networks on the shared network infrastructure. The virtual networks can be dedicated (i) to

different network services/applications so that each service/application can be treated with

customized and independent resource provisioning algorithms, (ii) to different network op-

erators so that multiple operators can dynamically share the same network infrastructure

along with the associated spectrum and infrastructure sharing, and (iii) to facilitate the co-

operation and coexistence of different technologies, e.g., multi-radio access technologies.

To realize these isolated virtual networks, two functions are introduced: the network hy-

pervisor for high-level virtualization, and the wireless hypervisor and the switch hypervisor

for low-level virtualization.
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4.3.1 Motivation and Related Work

During the past decade, the increment and complexity of tenants’ application demands

and requirements motivate the reconsideration of better traffic engineering solutions. In

particular, as applications dramatically increase with various types and thus become more

challenging to address, network operators in commercial clouds and data centers have been

trying to improve network performance while fulfilling application requirements. How-

ever, this objective is almost impossible to accomplish with the current closed/fixed net-

work architectures [50]. Exploiting the novel SDN architecture by cloud computing and

data centers, a multi-tenant and resource sharing scheme is widely considered due to its in-

frastructure and maintenance cost-effectiveness, simplification, lower system requirements

and flexibility. Specifically, in single tenant solutions, tenants’ applications have their own

dedicated resource and nearly 45% of these resources are idle for most of the time. On the

other hand, in multi-tenant solutions, resources are shared among tenants, which implies the

efficient resource utilizations. However, under such multi-tenancy scenarios, the resource

assignments might be overlapped due to the sharing, and high-demanded tenants can mo-

nopolize all the shared resources, thus greatly affecting other tenants’ operations [51, 52].

In that case, while SDN’s global network view might allow the supervision of tenants’ re-

source consumption to detect the high-demanded tenants, there is still a need of virtualiza-

tion mechanism that isolates and prioritizes tenants’ resource usages from each other, thus

allowing customized performance and security level. Moreover, the existing work of traffic

engineering in SDNs [50, 53] neither consider multi-tenancy scenarios with virtualization

nor examine the QoS provisioning in flow allocation for various tenants’ applications.

Leveraging SDN’s new system architecture, it is possible to develop a routing frame-

work in multi-tenancy environments with the provisioning of QoS-aware flow allocation

and tenant isolation and prioritization, which is significant for cloud computing and enter-

prise data centers [54]. Therefore, in this section, a jointly optimized design of virtualiza-

tion and routing is addressed and an adaptive solution is proposed to react time-varying
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QoS requirements, network topologies, and traffic statistics in a real-time manner. Specif-

ically, a fine-grained network virtualization is first proposed to slice the physical network

infrastructure into several isolated subnets for multiple tenants. Ideally, the infrastruc-

ture slicing should support 100% independence among multi-tenants, i.e., no shared edges

among tenants’ subnets, in such a way each tenant’s preference can be satisfied. Towards

this, the network and switch hypervisors are introduced to efficiently give a feasible solu-

tion to the NP-complete problem of network graph partitioning [55], supporting network

slicing for tenants isolation and prioritization. Furthermore, a QoS-aware dynamic flow

allocation is proposed to enable fast flow allocation with regards of traffic variations and

end-to-end QoS requirements. The management tool of QoS-aware Virtualization-enabled

Routing (QVR) algorithm is further proposed to facilitate an adaptive feedback control of

network virtualization and flow allocation and to improve service performance for achiev-

ing tenant’s satisfaction, thus providing a customized solution for multi-tenancy SDNs.

Performance evaluation confirms that QVR outperforms conventional approaches with less

shared edges to ensure resource isolation of infrastructure usages and traffic delay for multi-

tenants, successfully enabling a virtualization-enabled traffic engineering with reliable and

efficient transmissions in practical implementations of multi-tenancy SDN. To the best of

our knowledge, this work is the first to provide a joint consideration of network virtualiza-

tion and routing decision with QoS provisioning in centralized controller SDN.

4.3.2 Joint Virtualization and Routing Decision Problem

As shown in Figure 21, our objective is to develop a routing algorithm that provides com-

plete isolation of resource usages by multi-tenants upon the same SDN infrastructure, in

such a way QoS requirements of all tenants’ applications are fulfilled at the same time.

Towards this, it consists of two phases designs, i.e., network virtualization and QoS-aware

flow allocation, and a management tool, i.e., QVR algorithm. In particular, the first phase

of network virtualization sites between data and control planes, and divides the network re-

sources and infrastructure into isolated portions to separate application flows from different
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Figure 21. SDN system architecture with network virtualization.

tenants. This virtualization maintains the isolated resource portions unchanged regardless

of the new flow arrivals. Furthermore, for the second phase of flow allocation, it sites at

application layer, allocates flows according to their respective QoS demands, and calculates

and adjusts flow paths for every new flow. Moreover, the QVR management tool combines

these two phases to determine the suitable pathes for new flows as well as to decide the

optimal resource allocation according to current network status. In addition, if the flow

allocation phase fails to provide the required QoS performance, QVR will further feedback

the operations to virtualization phase in order to enable a better network slicing. Therefore,

this joint design indeed facilitates the jointly optimized virtualization and routing in SDNs.

Network Model: the SDN is modeled by a undirected network graph G = (V, E) as

shown in Figure 21, where V is the set of OF switches with total |V | switches (more com-

plicated models can be considered through the assumption that each node in V can be an

aggregated node grouping multiple physical switches) and E is the set of links with total

|E| links. Let N denote the set of tenants that shares the same SDN with total |N | tenants.

While our objective aims to virtualize the physical network into multiple separated subnets
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for isolated resource usages among tenants, we introduce some useful notations and defi-

nitions as follows. A graph G′ = (V ′, E′) is a subgraph(subnet) of graph(network) G, i.e.,

G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. A connected graph G is a nontrivial graph that any two

vertices in graph can be connected by at least one path in G. Moreover, the complement of

a graph G, denoted as Ḡ = (V, Ē), has the same node set as G and the edges that are not

included in G. A minimum spanning tree of a connected undirected graph G is a tree that

includes every node using the minimal set of edges in terms of the given weight function.

Note that as it might always exists a direct physical link between each source-destination

pair, it is assumed that there are more than one feasible routes for each pair.

Network Resource Slicing: given multiple tenants sharing a SDN infrastructure, the

goal of network resource slicing is to divide the topological resources among multi-tenants

wisely, in such a way the resource usages can be isolated and each tenant’s preference

can be satisfied. Specifically, for |N| tenants upon a SDN G, the subnets for each tenant

Gn = (Vn, En),∀n ∈ N, where Vn ⊆ V and En ⊆ E, should be decided to minimize the

overlapped edges (i.e., |En ∩ Em| → 0,∀1 ≤ n < m ≤ |N|) and tenants’ satisfactions in

terms of weights wmax
n ,∀n ∈ N are achieved. These weight parameters can be considered

either from graph-centric perspective (e.g., the subnet diameter or size) or QoS-centric

perspective (e.g., the largest allowable path delay or packet loss). In particular, we consider

W(Gn) < wmax
n , ∀n ∈ N (21)

where wmax
n denotes the largest allowable path weight of the subnet n and W(Gn) denote the

weight supported by the subnet with respect to all existing paths. Eq. (46) indicates the

constraints of weight satisfactions for all tenants. Note that all subnet must be connected

graphs, as every pair of nodes in a subnet should be able to communicate with each other.

To provide complete resource isolation among tenants, each subnet should better be the

subset of the complement of the other |N | −1 union graph, i.e., Gn ⊆ ∩
N
k=1,k,nḠk. In general,

this edge-disjoint requirement is hard to achieve, especially when there are many tenants

sharing few edges of a SDN. Hence, a practical approach is to allow a certain degree of
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dependent resource utilization by limiting the number of shared edges among tenants. In

particular, an appropriate network slicing should support the following:

min
{Gn;∀n∈N}

∑
1≤n<m≤|N|

|En ∩ Em|. (22)

Regarding these shared edges, a flow allocation scheme, e.g., the one explained later,

should be proposed to ensure each dependent tenant’s application requirements are ful-

filled. Specifically, the centralized controller of SDN has the capability to monitor and

regulate tenants’ traffic by implementing routing and resource allocation decision made by

the proposed management tools; thus it can adaptively rearrange the shared edges and link

capacities accordingly among dependent tenants. Moreover, to further provide the serving

differentiation among multiple tenants, it is assumed that tenants’ demands are less imper-

ative as the order of tenant n ∈ [1,N] grows. It implies tenant 1 has the highest serving

priority while tenant N has the lowest.

Flow Allocation: to characterize the packet forwarding of application flows upon the

given network slicing of multi-tenants, Xn
f ,i, j denotes the achievable packet data rate of link

(i, j) ∈ E f
n for the flow f in subnet n, and λn

f denotes the packet arrival rate to the source

node sn
f , where f ∈ Fn and n ∈ N. Therefore, the routing constraint becomes

Xn
f ,i, j = 0,∀(i, j) < E f

n , f ∈ Fn, n ∈ N. (23)

It implies that if a link is not sliced to a flow in subnet, the link packet rate should be set

to zero for that specific flow. Moreover, given the link capacity ci j for link (i, j) ∈ E, the

corresponding capacity constraint is provided as

∑
n∈N

∑
f∈Fn

Xn
f ,i, j ≤ ci j. (24)

Also, the flow conservation can be considered as the following:

∑
j;(i, j)∈E f

n

Xn
f ,i, j −

∑
j;( j,i)∈E f

n

Xn
f , j,i = λn

f I{i=sn
f }
,

∀i , dn
f , f ∈ Fn, n ∈ N, (25)
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where dn
f denotes the destination of flow f in subnet n and I{·} is an indicator function that

gives 1 when the event occurs and 0 otherwise. This implies that the outgoing flows of node

should be equal to the incoming flows from neighbors plus flow arrival rate, if the source

node is concerned. In addition to the above constraints, the objective of flow allocation is

to decide an effective resource utilization for multi-tenants’ applications with respect to the

given link capacities. Specifically inspired by the work in [53, 56, 57], for each tenant, the

minimum arrival rate among flows should be maximized from the flow allocation; thus,

∑
n∈N

max
{Xn

f ,i, j;∀(i, j)∈E f
n , f∈Fn}

min
f∈Fn

λn
f (26)

provides the total achievable data rate accordingly.

End-to-End QoS Provisioning: aiming at supporting a great variety of QoS require-

ments for tenants’ applications, the four major end-to-end QoS are considered as fol-

lows. First, given the maximum tolerable delay, jitter, and packet loss for a specific flow

(i.e., Dmax
n, f , Jn, f , pmax

n, f ∀ f ∈ Fn, n ∈ N), the QoS constraints are provided respectively as

∀ f ∈ Fn, n ∈ N,

Dn
f =

∑
(i, j)∈E f

n

( 1
Xn

f ,i, j
+ Dq,n

f ,i ) < Dmax
n, f ; (27)

var(Dn
f ) < Jn, f ; (28)∏

(i, j)∈E f
n

pn
f ,i, j < pmax

n, f , (29)

where 1/Xn
f ,i, j and Dq,n

f ,i denote the transmission and queueing delay, respectively, var(·)

gives the variance of the delay, and pn
f ,i, j denotes the link packet loss. Moreover, to en-

sure sources’ arrival rates are supportable by the links of forwarding paths, it implies that

∀(i, j) ∈ E f
n , f ∈ Fn, n ∈ N,

Xn
f ,i, j > λ

n
f . (30)

Note that considering various tenants’ applications, Eq. (44(e))-(30) may give different

degrees of QoS requirements according to the applications. For example, in interactive
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Table 1. Formulation for Jointly Virtualization and Routing.
Objective:

min
{Gn;∀n∈N}

∑
1≤n<m≤|N |

|En ∩ Em| (22)∑
n∈N

max
{Xn

f ,i, j;∀(i, j)∈E f
n , f∈Fn}

min
f∈Fn

λn
f (44(d))

Subject to:
Subnet weight constraint:

W(Gn) < wmax
n ,∀n ∈ N (46)

Routing constraint:
Xn

f ,i, j = 0,∀(i, j) < E f
n , f ∈ Fn, n ∈ N (44(a))

Link capacity constraint:∑
n∈N

∑
f∈Fn

Xn
f ,i, j ≤ ci j,∀(i, j) ∈ L (44(b))

Flow conservation constraint:∑
j;(i, j)∈E f

n

Xn
f ,i, j −

∑
j;( j,i)∈E f

n

Xn
f , j,i = λn

f I{i=sn
f }
,

∀i , dn
f , f ∈ Fn, n ∈ N (44(c))

End-to-end delay constraint:

Dn
f =

∑
(i, j)∈E f

n

(
lnf

Xn
f ,i, j

+ Dq,n
f ,i ) < Dmax

n, f ,∀ f ∈ Fn, n ∈ N (44(e))

Jitter constraint:
var(Dn

f ) < Jn, f ,∀ f ∈ Fn, n ∈ N (28)
Packet loss constraint:∏

(i, j)∈E f
n

pn
f ,i, j < pmax

n, f ,∀ f ∈ Fn, n ∈ N (29)

Data rate constraint:
Xn

f ,i, j > λ
n
f ,∀(i, j) ∈ E f

n , f ∈ Fn, n ∈ N (30)

applications, the latency is more effective to the need of real-time responses, and thus the

delay and jitter constraints are more stringent than the loss constraint. On the other hand,

for web browsing or emails, the jitter constraint is not applicable due to its little perfor-

mance impact, whereas the throughput and loss constraints are of considerable significance.

Therefore, the entire formulation for jointly virtualization and routing is well-established

and TABLE 1 summarizes all the details.

4.3.3 Fine-Grained Network Virtualization

In this section, a fine-grained network virtualization is proposed to manage topological

resources among multiple tenants. In particular, the high-level resource management and

low-level resource scheduling are introduced by the designated network hypervisor and
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switch hypervisor, respectively.

Network Hypervisor: the network slicing should be an efficient resource management

that aims to minimize the number of shared edges among tenants, i.e., |En ∩ Em| → 0. It

thus provides isolated resource usages and minimizes the interference for the multi-tenants’

applications. Towards this, the proposed network hypervisor in Algorithm 4 perfectly suits

the need of network virtualization, and the details are explained as follows. Given the

serving priorities among tenants, i.e., tenant 1 (N) has the highest (lowest), Algorithm 4

first deals with tenant 1 subnet, then tenant N subnet, and finally the remaining tenant

subnets. Specifically, first of all, for tenant 1, a minimum spanning tree is searched within

the SDN graph G using Kruskal’s algorithm [58], and the found edges are added to the

highest priority subnet G1. Then, tenant 1’s satisfaction is evaluated for Eq. 46 such that all

source-destination pairs of application flows should have at least one path with path weight

less than wmax
1 . This path weight can be determined through a shortest path algorithm,

e.g. Dijkstra’s algorithm [59]. In particular, all source-destination pairs that do not satisfy

the wmax
1 constraint are first found. For each discovered pair, Dijkstra’s algorithm is run

over G1, and new edges are added to guarantee the corresponding route has a weight less

than wmax
1 . The iteration continues until wmax

1 is fulfilled in all source-destination pairs

inside subnet G1. Next, for tenant N, similar procedures are executed, except that the

maximum spanning tree is considered. In particular, Kruskal’s algorithm is applied over

the graph Ḡ for a maximum spanning tree and the found edges are added to the lowest

priority subnet GN . Then, tenant N’s satisfaction is evaluated with respect to wmax
N . Finally,

the remaining subnets Gn, where 2 ≤ n ≤ N − 1 are constructed. In particular, Kruskal’s

algorithm is run over the graph G \ (∪n−1
k=1Gk ∪ GN), the isolated nodes are found, and the

edges from these isolated nodes to subnet Gn are added. If more than one possible edge

for an isolated node is found, network hypervisor will choose the edge with less weight.

Then, tenant’s satisfaction is evaluated with wmax
n . Note that there might be some edges that

are already included in the higher priority subnets, and these edges become shared edges
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Algorithm 4: Network Hypervisor
Input : Topology G; subnet weights wmax

1 , . . . ,wmax
N

Output: Subnets G1, . . . ,GN

Tenant 1 subnet
1 Run Kruskal’s alg. over G % Obtain the min. spanning tree over G
2 Add found edges into G1

3 Find source-destination pairs (u,v) with path weight larger than wmax
1

4 for each discovered pair (u,v) do
5 while path weight between (u,v) > wmax

1 do
6 Run Dijkstra alg. over G1 for pair (u,v)
7 Add new found edges into G1

8 end
9 end

Tenant N subnet
10 Run Kruskal’s alg. over Ḡ % Obtain the max. spanning tree over G
11 Add found edges into GN

12 Find source-destination pairs (u,v) with path weight larger than wmax
N

13 for each discovered pair (u,v) do
14 while path weight between (u,v) > wmax

N do
15 Run Dijkstra alg. over GN for pair (u,v)
16 Add new found edges into GN

17 end
18 end

Tenant 2, . . . ,N − 1 subnet
19 for each tenant n ∈ {2, . . . ,N − 1} do
20 Run Kruskal’s alg. over Gn = G \ (∪n−1

k=1Gk ∪GN)
21 Find isolated nodes
22 Add edges from isolated nodes into Gn % Transform Gn into a connected graph
23 Find source-destination pairs (u,v) with path weight larger than wmax

n
24 for each discovered pair (u,v) do
25 while path weight between (u,v) > wmax

n do
26 Run Dijkstra alg. over Gn for pair (u,v)
27 Add new found edges into Gn

28 end
29 end
30 end
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among tenants’ subnets. Therefore, through Algorithm 4, a single SDN can be well-sliced

into multiple subnets while minimizing the number of shared edges.

Switch (Wireless) Hypervisor: while network hypervisor provides the sophisticated re-

source management among tenants, there is a need of an executor to fulfill such a manage-

ment. Towards this, switch hypervisor is proposed to perform the resource scheduling and

consists of two elements, i.e., queue-length based generalized processor sharing (GPS) and

Flowvisor [60]. First, while the conventional GPS can easily enable each subnet to oper-

ate independently, it does not provide throughput efficiency in reallocating unused network

resources (i.e., links) when some subnets are temporally idle, i.e., having all flow queues

empty. This is because the sharing time calculation of conventional GPS is insensitive to

the queue-length conditions. Instead, we propose a queue-length based GPS that assigns

time portions proportional to queue lengths as follows. Consider for link (i, j) ∈ E, there

are sets of Ac
i, j,Ai, j ⊆ N, i.e., inactive and active subnets respectively, and there are Fn

application flows with Qn
f ,i, j as the queue length of flow f in subnet n. Then, the sharing

time of the subnet n ∈ Ai, j over link (i, j) ∈ E is obtained by

t̂n
i, j = tn

i, j +
∑

k∈Ac
i, j

∑
f∈Fn

Xn
f ,i, jQ

n
f ,i, jI{(i, j)∈E f

n }∑
l∈Ai, j

∑
f∈Fl

Xl
f ,i, jQ

l
f ,i, jI{(i, j)∈E f

l }

tk
i, j, (31)

where tk
i, j,∀k ∈ Ac

i, j indicate unused time portions of inactive subnets. Next, a well-known

software program, Flowvisor [60], is exploited to virtualize the network according to our

designated of network and switch hypervisors. In particular, there are three modes of

Flowvisor that can be utilized such as slicing by host IP or MAC address, by port number,

and by the protocol type. An example of slicing by IP address is shown in Figure 22 with

the original physical infrastructure and two subnets. The key idea is to determine the source

and destination IP address for each shared switch. Moreover, regarding the better design

flexibility, Figure 23 shows a more complicated example for a combined multi-slicing with

five respective subnets. In particular, the original network is first sliced twice according

to IP address of hosts connected to the switches, and then is sliced according to proto-

cols such as SSH, HTTP, and Telnet. Hence, we have successfully provided a fine-grained
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Original network topology.
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Figure 22. An example of network slicing by host IP address with two subnets.
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IP slice 1. IP slice 2.
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SSH slice. HTTP slice.

Slice 5

Telnet slice.

Figure 23. An example of combined multi-slicing with five subnets.

network virtualization that allows slices of multiple subnets to be defined and configured

independently, facilitating the resource isolation and serving priority among tenants.
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4.3.4 QoS-aware Virtualization-enabled Routing (QVR)

In this section, a management tool of QoS-aware virtualization-enabled routing (QVR) is

proposed. In particular, based on the results of network virtualization, a dynamic flow

allocation is first introduced to guide packet flows in such a way the flow allocation and

end-to-end QoS provisioning are supported. Moreover, QVR algorithm is then proposed

to combine the designated network hypervisor and QoS-aware dynamic flow allocation,

thus enabling an adaptive control for a completed solution for multi-objective optimization

problem in TABLE 1.

Dynamic Allocation Framework with QoS Provisioning: QoS-aware Dynamic Flow

Allocation in Algorithm 5 provides a dynamic solution to maximize the minimum flow

arrival rates for multiple tenants. First of all, for each application flow in subnets, all

available paths between flow source and destination are found. Next, with respect to these

paths, the constraints of flow allocation and end-to-end QoS provisioning are evaluated,

and the maximum achievable arrival rates are yielded accordingly. In particular, NSQP

function in line 6 in Algorithm 5 enables the QoS constraint evaluations that gives the true

value if the QoS provisioning is not satisfied with the given arrival rate in the current round.

In that case, the algorithm enables the successive round to reduce the arrival rate and finds

the suitable flow allocation accordingly via line 8; otherwise, the algorithm stops and the

optimal solution is reached. Finally, the maximum rate among available paths of a flow is

selected as the flow arrival rate, and the minimum flow rate in a subnet and the total rates

over multi-tenants can be obtained accordingly. Therefore, due to the simple operations of

Algorithm 5, it provides a feasible solution in a timely manner, facilitating dynamic flow

allocation for all tenants’ applications.

QoS-aware Virtualization-Enabled Routing (QVR): QVR algorithm in Algorithm 6

provides an adaptive feedback control between network hypervisor in Algorithm 4 and
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Algorithm 5: QoS-aware Dynamic Flow Allocation
Input : G1, . . . ,GN; link capacity {ci j}; QoS indices {Dmax

n, f , Jn, f , pmax
n, f }

Output: Total data rate λ∗; flow allocation {Xn
f ,i, j}

1 for each subnet Gn do
2 for each flow f ∈ Fn do
3 Find all paths between (sn

f ,d
n
f )

4 for each path k do
5 Initialize λn

f ,k = ∞

6 while NSQP(Eq. (7)-(10),λn
f ,k) do

7 λn
f ,k ← λn

f ,k − 1
8 Find {Xn

f ,i, j} for path k satisfying Eq. (4)-(6)
9 end

10 end
11 λn

f = maxk λ
n
f ,k

12 end
13 Find λn = min f∈Fn λn

f

14 end
15 λ∗ =

∑
n∈N λ

n

dynamic flow allocation in Algorithm 5, yielding a completed solution for jointly opti-

mized virtualization and routing decision. In particular, network hypervisor is first ex-

ecuted to partition the SDN infrastructure into several subnets for multi-tenants. Once

the network slicing is finished, dynamic flow allocation is applied to provide the optimal

network throughput and the corresponding flow assignments. Normally, dynamic flow al-

location can resolve all impacts from time-varying QoS requirements, network topologies,

and link capacities by re-running the allocation accordingly, and network hypervisor only

needs to run once and for all. However, if the allocation cannot provide a feasible solu-

tion, i.e., λ∗ remains zero, QVR will feedback to network hypervisor and enable a better

network slicing as well as the achievable flow allocation. Therefore, upon this stage, we

have successfully presented an adaptive solution that completely solve the joint virtualiza-

tion and routing problem in a timely manner, facilitating the practical implementations of

multi-tenants’ applications in SDNs.
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Algorithm 6: QoS-aware Virtualization-Enabled Routing (QVR)
Input : G; {wmax

n }; {ci j}; {Dmax
n, f , Jn, f , pmax

n, f }

Output: {Gn}; λ∗; {Xn
f ,i, j}

1 while λ∗ == 0 do
Network Virtualization Phase

2 {Gn} ←Algorithm 1(G, {wmax
n })

Flow Allocation Phase
3 (λ∗; {Xn

f ,i, j})←Algorithm 2({Gn}, ·)
4 end

4.3.5 Performance Evaluation

To evaluate the proposed QVR algorithm in Algorithm 6, a Sprint network topology [5] is

considered as the SDN infrastructure. It is assumed that there are three tenants, operating in

the infrastructure. In particular, tenant 1 generates traffic from real-time applications, which

is modeled with Pareto arrivals due to traffic burstiness; tenant 2 and tenant 3 generate

traffic from non-real-time applications, which are modeled with exponential arrivals. A

random variable X ∈ PAR(α, xm) if it follows Pareto distribution with parameters α and

xm, i.e., P(X > x) = (xm/x)α. A random variable X ∈ EXP(λ) if it follows exponential

distribution with parameter λ, i.e., P(X > x) = e−λx. Towards this, we have PAR(1.5, 10)

for tenant 1, EXP(0.2) for tenant 2, and EXP(0.4) for tenant 3. The link service time

follows an exponential distribution. Moreover, the highest allowable path delay is selected

as the maximum path weight, and the values for three tenants are set as 100ms, 400ms,

and 500ms, respectively, according to their specific applications. In the following, we first

evaluate the network slicing capability of QVR, and then examine the QVR performance.

Network Slicing: Figure 24 shows the tenant isolation by QVR algorithm, particular

from network hypervisor. Specifically, Figure 24(a)-24(c) provide the subnets for tenant 1-

3, respectively, and Figure 24(d) further provides the superposition of three tenants, where

the shared links are highlighted by the dotted lines. The results imply that after executing

the network hypervisor, three subnets are obtained from the original physical network, and

the subnets are built to have the minimum shared links. Regarding these few shared links,
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(a) Tenant 1 subnet. (b) Tenant 2 subnet.

(c) Tenant 3 subnet. (d) Shared and dedicated links.

Figure 24. Tenants’ subnets and shared links.

the slicing of link capacity among sharing subnets will be taken care by the dynamic flow

allocation, fulfilling fine-grained network virtualization. Given the subnets of three tenants

in Figure 24, in the following we compare the performance of QVR upon this network

slicing with the conventional flow allocation solutions.

Performance of QVR: the number of shared links and the latency from congested links

are first examined through the perspectives of time evolution and multiple experiments

for three approaches: OSPF [61], random flow allocation, and QVR. In particular, OSPF

decides the flow allocation and corresponding network slicing through shortest-path algo-

rithm, whereas random flow allocation determines those through random path selections.

Figure 25 shows the results of shared links, and indicates that under both OSPF and ran-

dom approach, the link number reaches the maximum value in an early stage. However,

QVR can maintain the number of shared link as a constant value due to its network hy-

pervisor, thus achieving better tenant isolation. Moreover, Figure 26 shows the congestion
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(a) Time evolution of a single evaluation. (b) Results of 20 experiments.

Figure 25. Number of shared links with respect to different flow allocations.
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(a) Time evolution of a single evaluation. (b) Results of 20 experiments.

Figure 26. Number of congested links with respect to different flow allocations.

latency, and indicates that QVR performs much better with less latency than OSPF and

random solution. The reason for QVR’s superiority comes from the optimized route se-

lections that wisely utilizes the link capacity for current flows and thus can provide more

bandwidths upon bottleneck links for future flow arrivals. In short, the above results show

that QVR accomplishes tenant isolation while improves the congestion latency, allowing

more incoming flows from tenants.

The delay perceived by new flow arrivals of three tenants are provided in Figure 27.

In particular, tenant 1 considers real-time applications that brings more bursty traffic and

requires much less delay than the non-real-time traffic of tenant 2 and tenant 3. The results
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(c) Tenant 3 subnet.

Figure 27. End-to-end packet delay with respect to three tenants.

show that OSPF and random solution cannot fulfill tenant 1’s requirements due to the large

and highly fluctuated delay, and provides much greater delay for both tenant 2 and tenant 3.

On the other hand, QVR provides little delay with less fluctuation for all three tenants, thus

confirming its efficacy. In short, QVR meets the need of joint virtualization and routing,

facilitating reliable and efficient transmissions for multi-tenants’ applications.
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4.3.6 Highlights

Network virtualization capacity is essential to support IaaS, thus enabling a wide range of

emerging applications. In this section, a joint design of optimized QoS-aware virtualiza-

tion and routing is addressed as a multi-objective optimization problem. This complex op-

timization is completely solve in a timely manner through the proposed management tool

of QVR in SDN controller. Specifically, with the aid of incorporation between network

virtualization and flow allocation, QVR enables an adaptive solution with respect to time-

varying QoS requirements, network topologies, and traffic statistics that slices the network

resource among multi-tenants’ applications and decides the optimal flow routes to fulfill

the QoS guarantees for applications. Performance evaluation confirms QVR outperforms

the conventional approaches with less shared edges, congestion latency, and traffic delay

for multi-tenants. We have presented a novel paradigm to facilitate a virtualization-enabled

traffic engineering for centralized controller in practical SDN implementations.

4.4 Traffic Classifier

The last enabling tool is a QoS-aware traffic classifier. Traffic classification is the task of

associating network traffic flows with the application that generated it, or of categorizing

network traffic flows into different QoS classes (e.g., interactive, bulk data transfer, stream-

ing, and best effort). It is an essential function to enable differentiated resource provisioning

and service-based pricing in future broadband mobile systems.

4.4.1 Motivation and Related Work

As SDN manages the network traffic on the basis of ”flows”, the accuracy and efficiency of

the traffic classification (TC) engine plays a crucial role in SDN. Different from the most

of the existing work which focuses on identifying the applications that generate the traffic

flows, we aim to propose a novel QoS-aware TC framework capable of identifying the QoS

class, such as interactive video gaming or bulky data transfer, for different traffic flows in

a real-time and cost-efficient fashion. On one hand, providing desired QoS for different
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traffic flows is an essential part of the traffic engineering in SDN. Thus, the TC engine has

to identify the QoS class for the particular traffic flows so that the suitable routing paths can

be chosen. On the other hand, the conventional traffic classification solutions, which aim to

identify the exact application of every traffic flow, is not an effective way to identify the QoS

class of the traffic flows because many different applications may belong to the same QoS

class, which demands the similar QoS requirements. Moreover, as many new applications

appear every day, it is time-consuming and impractical to maintain the real-time update of

the list of all applications existing within the Internet.

To counter the above-mentioned challenge, we jointly apply machine learning with

DPI, in a novel framework that can be fully implemented in a SDN controller. The pro-

posed framework consists of two components: (i) the local traffic identification component

at SD switches at the network edge and (ii) the global traffic classifier at the network con-

troller. The former one aims to detect the long-lived, i.e., “elephant” flows among the new

incoming ones, while the latter part performs the QoS-aware traffic classification for iden-

tifying the QoS class of the traffic flow through a mapping function. The mapping function

is simply a function that takes a few features of the traffic flow, e.g., the average packet

interarrival time, Hurst parameter and port number, as the inputs and gives the QoS class

of the traffic flow as the output. The global traffic classifier at the controller is responsi-

ble for learning, building and refining the mapping function based on the historical traffic

information. The proposed traffic classification system has three advantages. First, the SD-

switches are kept as simple as possible by only incorporating light-weight elephant flow

identification module. Second, the network controller is utilized to guarantee the accuracy

and the adaptability of the QoS traffic classifier. This is achieved by exploiting the global

view of the network flows to build the accurate mapping functions through time-consuming

but accurate DPI along with the semi-supervised machine learning that only requires lim-

ited information, e.g., first 20 packets, from the elephant flows detected at the SD switches.

Third, the whole framework follows a modular design principle so that every component
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Figure 28. Traffic classification framework scheme.

in the framework can be improved at any time.

4.4.2 QoS-aware Traffic Classification Framework

To conform the SDN architecture, our TC engine is located within the centralized SDN

controller. The purposed TC engine performs: (1) efficient network monitoring with low-

overhead and minimal switch changes; (2) detection of QoS-significant (i.e., “elephant”)

flows; (3) QoS-aware traffic classification, and (4) enables services such as application de-

tection using DPI ruining in the network controller. As shown in Figure 28, the system con-

sists of two main parts. The first component is responsible of detecting the QoS-significant

flows in the new incoming flows. The second component performs the QoS-aware traffic

classification and the related network management tasks. The main process of the operation

of the system is explained as follow:

Elephant Flow Detection: after the network flows go through the edge switches, those

switches detect the QoS-significant elephant flows. Several approaches have been proposed

to detect elephant flows in literature. Since the SDN controller can monitor the network,

the detection criterion used is that if a flow uses more that K% of the link bandwidth, it

is recognized as an elephant flow, where K could go from 1% to 10% depending on the

bandwidth of that link. The OpenFlow defaultly supported pull-based statistics can be

utilized in this detection process. By receiving the traffic statistics sent from the switch, the

controller gets to know the existence of ”elephant” flows.

Statistic Collection and Feature Extraction: in network controller, the ML algorithms
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build a mapping function g(~x) = y where ~x corresponds to measurable statistical properties

of an elephant flow while y refers to the most likely QoS that flow needs. Therefore, before

classifying a flow, two steps need to be done. One is to obtain the measured vector~x, and the

other is to train the ML-based classifier. As long as an elephant flow is detected by a SDN

switch, the flow information needs to be sent to the controller through the least congested

path immediately. Once the controller gets the flow information, it starts to calculate the

statistical properties and group them in ~x. Information is firstly gathered from the packet

trace of the flow and then the statistical features are extracted out from that information.

The features used to train the ML algorithm and to classify the flows are categorized into

the following classes:

• Time information: inter-arrival period;

• Packet information: packet length and direction of the packet;

• Protocol information: IP/Port of source/destination and transport protocol;

• stochastic information: Hurst parameter

To build a real-time classifier only the information of first N (N = 20 in our work) packets

in a flow is used to calculate ~x. The simulation results proof that using only 20 packets is

enough to have a good classification. As the socket information is always the same, the

information of the packet belonging to the same socket should be gathered only once.

QoS-aware Traffic Classification: the QoS classifier exploits the semi-supervised ML

algorithm, e.g., Laplacian SVM which is hosted inside the centralized SDN controller.

Before performing the actual traffic classification, the classifier needs to be trained by fol-

lowing the steps below:

1. Setting up a database storing network traffic traces;

2. Filtering out the ”elephant” flows from the database;
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3. Applying DPI to find out the application of each remained ”elephant” flows (i.e.,

labeling the flows). Note that a significant portion of all flows are still unlabeled due

to limited information;

4. Defining QoS classes based on the applications found. Delay, jitter, and loss rate are

mainly concerned factors. The corresponding detected applications are assigned to

each class as its representative applications. For instance,

• Voice: GoogleVoice

• Video conference: Skype, GoogleTalk

• Streaming: USstream, Sopcast

• Bulk data transfer: FTP, Mega

• Interactive data: SSH, Telnet

• Best-effort traffic: default class

Notice that not all kinds of application are considered in the QoS class definition,

because the only elephant flows enters our TC engine ;

5. Labelling all flows with their corresponding QoS classes to complete the ”labeling”

process;

6. Measuring the statistical parameters of each flow and calculating the feature vector ~x

used in the ML algorithm;

7. Training the classifier using semi-supervised learning. In particular, Laplacian SVM

is adopted.

Instead of performing fine-grained application classification, coarse-grained classification

with better generalization properties is used here. It is assumed that applications that re-

quire the same QoS, tend to exhibit similar statistical properties. This is a typical semi-

supervised learning assumption [62], called the cluster assumption.
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Figure 29. Data structure for semi-supervised learning.

Semi-supervised ML algorithms use labeled, XL, and unlabeled, XU , data to infer the

classification model. In semi-supervised learning, the data set consists of n vectors X =

(xi)i∈[n] and two subsets depending on the label. The first oneXL = (x1, x2, ..., xl) are labeled

data set with the labels YL = (y1, y2, ..., yl). The second one XU = (xl+1, xl+2, ..., xl+u) are

unlabeled ones. ConsideringX = XL∪XU and l+u = n, on one hand, when l = 0 we do not

have labeled data and X is used for unsupervised learning. On the other hand, when u = 0

all samples are labeled and X is used for supervised learning. Each element xi is composed

of a series of features. Specifically, each xi has m features fi so that xi = (f1, f2, ..., fm).

Figure 29 summarizes the structure of the data.

In our scheme, the graph-based semi-supervised learning [63] is adopted which utilizes

a graph representation of the data, with each node corresponding to a labelled or unlabelled

sample. The graph may be constructed using domain knowledge or similarity of examples,

while two common methods are used, which connect each data point either to its k nearest

neighbours or to nodes within some distance ε. The weight Wi j of an edge between xi and

x j is typically set to e
−||xi−x j ||

2

σ . Using the principles behind manifold regularization [64] and

the regularization formulation of SVM [65], the SVM can be formulated with the manifold
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regularaizer as:

f = arg min
f∈H

C
n∑

i=1

max(0, 1 − y f (x)) + γH‖ f ‖2H + γI‖ f ‖2I

 (32)

We adopt the similar methods in [66] to solve the The procedure of solving above problem.

The detailed procedures are omitted for brevity. The training phase of the ML-based clas-

sifier is usually done offline. With the labeled traffic traces obtained through DPI in 3)-5),

when a calculated feature vector ~x is fed into the classifier, the coefficients of the ML algo-

rithm will be adjusted based on the difference (i.e., error) between the temporary outcome

and the actual labeled result. After training with a number of the labeled traces, the coeffi-

cients are adjusted well enough to stop the training phase (i.e., the temporary outcome and

the actual labeled result match well).

Ground Truth Update and Classifier Re-training: it is known that machine learning

learns from the big data and builds a mapping function g(~x) = y. Thus, having good and

meaningful data traces as references is important to build classifiers with good accuracy

and generality. However, different types of applications and traffic patterns arise depending

on the specific purpose of a network; for example, the applications used in residential

networks are different from those used in research networks or data enterprise networks.

Furthermore, new applications keep emerging every day and even the current ones may

be experiencing updates which change their functionalities and consequently change the

statistical properties. Therefore, it is necessary to deploy a policy to gather new data from

the network and update the ground truth database periodically, so that it can be used to

re-train the QoS classifier after a duration of tupdate. Basically, it is required to save N (e.g.,

N = 20) packets of various elephant flows flowing through the network so that later we can

update the classifiers used. For real-time requirement, it is desirable that a small number

of packets is needed to estimate the statistical features because the parameter estimation

should be fast. The following method is proposed to gather the data needed:

• When an elephant flow is detected, its information will be stored with a probability
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Figure 30. Data structure used for flows in the .info file.

of p, the value of which depends on the network state;

• If an elephant flow is selected to be stored, then one of the intermediate SDN switch

along the path of the flow will be randomly selected and send the information (i.e.,

N packets) of the flow to the controller. Those packets received by the controller will

be stored in a historical database.

4.4.3 Performance Evaluation

We conducted traffic classification simulations on the real internet data, which was captured

by the Broadband Communication Research Group in UPC, Barcelona, Spain. The data set

is a 59GB traffic trace file in which the packets of the internet traffic flows on the campus

were stored. Note that, the payload of most packets are not stored for the consideration

of storage space and privacy issues. Before starting the traffic classification engine, several

preprocessing stages need to be done in order to trim the traffic trace file into a set of feature

vectors of the traffic samples, which are fed into the classifier.

First, for the data set in use, the flow information was also collected during its capturing

process. The packets in the data set has already been categorized into more than 760000

traffic flows. The flow information is stored in a .info file with a format shown in Figure 30.

After going through all the flows, we found that more than half of the flows were torrent

traffic, so that from the perspective of building a more diverse data set, 440000 torrent flows

were removed which finally produced the 59GB .csv file. Second, based on the design of
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QoS Class Applications
Voice/Video Conference Skype, QQ, Google Hangout, ...
Interactive Data Gaming, Web, Http Services, ...
Streaming PPStream, Vimeo, SopCast, Putlocker, ...
Bulk Data Transfer FTP, Torrent, Dropbox, ...

Table 2. Example of QoS classes and corresponding applications.

Total Flows Training Set Testing Set
L U L U L U

1869 1508 1486 1508 383 0
C1 C2 C3 C4
11 29 141 202

Table 3. The ingredients of the data set used.

our traffic classification framework, elephant flow detection/filtering was conducted on all

the flows in the data set to extract all elephant flows which were the objective flows in our

classification simulation. As a result, there are 3377 flows satisfying the requirement.

The third step was to label each flows selected in the previous step. All the flows went

through a DPI module which outputs the label of each flow. The labeled flows were then

categorized into 4 QoS classes including voice/video conference, interactive data, stream-

ing, and bulk data transfer. Examples of the mapping policy between the application and

the QoS class is shown in TABLE 2. Because it is hard for us to put all the existing ap-

plications on our list, there exist a large number of unlabeled flows within all the flows.

Moreover, as new applications appear every day, it is not possible to have all flows labeled

in a real traffic classification application. In the data set used, there were 1508 unlabeled

flows among all 3377 flows. And the data set was further cut into two groups, the training

set and the testing set as in TABLE 3. The ratio between the size of the training set and the

size of the testing set is 7.82:1. Note that, to correctly run the testing process, all the flows

in the testing set should be labeled, becasue the unlabeled flows cannot be verfied with an

unknown application after going through the classifier.

The fourth step was extracting features from each flow. In the evaluation process as
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Feature Explaination
HPktLenSD Entropy of the packet length from Src. to Dst.
dstPort Dst. port
srcPort Src. port
HPktLenDS Entropy of the packet length from Dst. to Src.
avgPktLenDS Average length of packets from Dst. to Src.
avgPktLenSD Average length of packets from Src. to Dst.
rspndPkt Packets to respond from Src. to Dst.
minPktLenDS Minimum length of packets from Dst. to Src.
pktIntDegree Packet interactivity degree from Src. to Dst.
medPktLenSD Median of the packet length from Src. to Dst.

Table 4. Final subset of features used.

in Figure 31(a), 60 features were extracted from the raw flow data, and as we mentioned

before, these 60 features can be categorized into four groups, including time information,

packet information, protocol information, and Hurst parameters. However, as a general is-

sue existing in all machine learning based traffic classification research, 60 features are way

too many for all being used in the training process of the classifier, because the dimension is

too high while the training set is too small as compared with the level of the dimension. This

would lead to the severe overfit of the classifier and make the classifier with a bad general-

ization ability, which means both the accuracy (bias) and the variance would not be good.

So that we conducted a feature selection algorithm (i.e., Wrapper) in which the forward se-

lection was employed. Since the Laplacian SVM classifier used has two parameters (i.e.,λ

and σ) affect the performance of the classifier a lot, a semi-greedy search on (λ, σ) pairs

with two steps (i.e., coarse search and fine search) was used to find the classifier with the

best performance. Firstly, in coarse search, the log spaces of the two parameters were used,

and the result could provide a small region of (λ, σ) where the accuracy of the classifier is

better than elsewhere. Based on our simulation, the area around (λ = 0.00005, σ = 0.25)

was expected. Secondly, a fine search among λ = 0.00001 : 0.0001, σ = 0.21 : 0.23 was

conducted to search the classifier with the highest accuracy.

Based on the accuracy of the test results on different subset of features, we finally chose
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(a) The distribution of 60 features. (b) The accuracy of the classifier with 60 features.

Figure 31. The comparison of traffic classifiers.

a subset of 9 features among all 60 features, considering the complexity of the classification

system. The 9 features are listed in TABLE 4. The comparison between the performance

of our classifier and the existing K-means algorithm based classifier in terms of testing

accuracy is shown in Figure 31(b). Our TC framework using Laplacian SVM as the semi-

supervised machine learning algorithm outperforms the previous semi-supervised machine

learning scheme using K-means algorithm [67]. In addition, it can bee seen that when

the number of features selected into the subset reaches 7-9, the test accuracy exceeds 90%

which is an acceptable value in the traffic classification area.

4.4.4 Highlights

In this section, a QoS-aware traffic classification framework for SDN is proposed, where

traffic flows are categorized into different QoS classes. The QoS parameters inferred could

be used to re-route efficiently elephant flows to meet the resource utilization goals. In

particular, semi-supervised machine learning is employed in the QoS classifier to deal with

the traffic with unknown applications. Since the feature extraction only uses the first several

packets of a flow, the engine runs in a real-time fashion. Also, the traffic classification

framework is adaptive to different kinds of networks by periodically re-training the ground

truth database and the QoS classifier.
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CHAPTER 5

SOFTWARE-DEFINED TRAFFIC ENGINEERING FOR SOFTAIR

In this chapter, we propose new traffic engineering solutions designed to leverage the

full potential of the SoftAir architecture. Specifically, BS clustering, throughput-optimal

scheduling, and QoS-aware routing solutions proposed in this chapter are directly sup-

ported by the enabling tools discussed in Chapter 4. In particular, the distributed traffic

classification solutions in Chapter 4.4 provide fine-grained, accurate, and fast QoS classifi-

cation for incoming traffic. By leveraging this feature, differentiated treatments, e.g., clus-

tering, scheduling, and routing solutions proposed in this chapter, can be provided to dif-

ferent network applications, service providers, and virtual operators. Moreover, the control

traffic balancing and optimal network planning algorithms in Chapters 4.1-4.2 make collab-

orative gain through a large number of RRHs possible, and enable dynamic BS clustering.

The delay-based throughput-optimal scheduling algorithms in this chapter can achieve the-

oretical performance limits, since the largest possible network capacity region is provided

by dynamic SD-BS formation. Last but not the least, the network virtualization algorithms

in Chapter 4.3 enable adaptive routing algorithms, e.g., QoS-aware routing, that can simul-

taneously offer the best QoS performance for fundamentally different traffic flows.

5.1 Dynamic Base Station Formation for Solving NLOS Problem in
5G Millimeter-wave Communication Systems

Millimeter-wave communication is one of the enabling technologies to meet high data-rate

requirements of 5G wireless systems. Millimeter-wave systems due large available band-

width enable gigabit-per-second data rates for line-of-sight (LOS) transmissions in short

distances. However, for non-line-of-sight (NLOS) transmissions, millimeter-wave systems

suffers performance degradation because the received signal strengths at user equipments
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(UEs) are not satisfactory. In this section, the NLOS problem in millimeter-wave sys-

tems is treated from SoftAir perspective. In particular, a so-called dynamic base station

(BS) formation is introduced, which adaptively coordinates BSs and their multiple anten-

nas to always satisfy UEs’ QoS requirements in NLOS cases. First, the architecture for

software-defined millimeter-wave system is introduced, where RRHs coordination is ex-

plained and millimeter-wave channel model between RRHs and UEs is analyzed. A ubiq-

uitous millimeter-wave coverage problem is formulated, which jointly optimizes RRH-UE

associations and beamforming weights of RRHs to maximize the UE sum-rate while guar-

anteeing QoS and system-level constraints. After proving the np-hardness of the cover-

age optimization problem with non-convex constraints, an iterative algorithm is developed

for dynamic BS formation that achieves ubiquitous coverage with high data rates in LOS

and NLOS cases. Through successive convex approximations, the proposed dynamic BS

formation algorithm transforms the original mixed-integer nonlinear programming into a

mixed-integer second-order cone programming, which is efficiently solved by convex tools.

Simulations validate the efficacy of our solution that completely solves NLOS problem by

facilitating ubiquitous coverage in 5G millimeter-wave systems.

5.1.1 Motivation and Related Work

Millimeter-wave communication at 30-300 [GHz] is one of the enabling technologies to

meet high data-rate requirements (10 [Gbps] peak rate and 100 [Mbps] cell-edge rate) of

5G wireless systems [68, 69]. This new-type communication brings much wider transmis-

sion bandwidths (500 [MHz] or more per channel as compared with 5-20 [MHz] in current

microwave communication), and the small wavelength facilitates large antenna array and

antenna technology at BSs. However, experiments [70] show that millimeter-wave com-

munication suffers from several limitations (e.g., short-range distances, inevitable blockage

effects, and sparse-scattering radio patterns). At this high band [71], energy consumption

dramatically increases due to air absorption and shortens communication distances even for

LOS transmissions. Moreover, obstacles (like buildings, vehicles, tree branches, foliage)
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Figure 32. Network architecture of SoftAir [2] for 5G millimeter-wave cellular systems.

may block signals and cause NLOS transmission problems. Also the sparse scattering

induces increased channel correlation and narrow beams with less side lobes. These prob-

lems jointly impede millimeter-wave transmissions with obstacles and directional beams,

causing the NLOS problem.

To overcome the NLOS challenge in millimeter-wave communication, the coordination

among multiple BSs and their multiple antennas [72–74], such as coordinated multi-point

(CoMP), might serve as a possible solution that enables dynamic coordination between

BSs to guarantee good received signal strengths at the UEs. However, in current cellular

network architectures, such a coordination of BSs is very limited. In the current architec-

tures, control signaling for BS coordination needs to traverse the access network gateways

and costly backhaul links, where the very high latency and limited transmission capacity

among BSs can be the reasons for the infeasibility of BS coordination [2].

Our objective is to solve the NLOS problem of millimeter-wave communication by

using SoftAir architecture, and consequently facilitate ubiquitous millimeter-wave cover-

age by the newly introduced dynamic base station formation, which adaptively coordinates

BSs and their multi-antennas to always satisfy the QoS requirements of UEs. As shown in

Figure 32, SoftAir architecture using low-latency high-bandwidth fronthaul links to realize
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accurate, high-resolution synchronization among RRHs and enable flexible RRH coordi-

nations. Moreover, we investigate the millimeter-wave channel model between UEs and

RRHs to show the unique characteristics of millimeter-wave transmissions. The channel

effects are studied with respect to three link-states: LOS, NLOS, or Outage. Further, we

analyze the millimeter-wave coverage problem that jointly optimizes associations between

RRHs and UEs as well as the beamforming weights of millimeter-wave RRHs. The ob-

jective function is how to maximize the achievable UE sum-rate while guaranteeing UEs’

QoS requirements and system-level constraints with respect to (i) RRH-UE associations,

(ii) fronthaul link capacity between the baseband server (BBS) pool and RRHs, and (iii)

beamforming weights of RRHs.

We prove that the underlying coverage optimization problem with non-convex con-

straints is np-hard. Thus, we propose an iterative algorithm for dynamic BS formation to

obtain optimal solutions in RRH-UE associations and beamforming vectors. By exploiting

successive convex approximations [44, 75], we transform the original mixed-integer non-

linear programming (MINLP) of the coverage problem into a mixed-integer second-order

cone programming (MISOCP). The final iterative convex programming is efficiently solved

by commercial convex tool, i.e., CPLEX [76] or MOSEK [77]. Simulation results confirm

that the proposed dynamic BS formation algorithm completely overcomes the NLOS prob-

lem, satisfies all UEs’ QoS requirements, and outperforms conventional millimeter-wave

association and suboptimal beamforming schemes. To the best of our knowledge, this work

is the first to propose dynamic millimeter-wave base station formation through software-

defined system design, which effectively optimizes UE sum-rate and achieves ubiquitous

millimeter-wave communication coverage for 5G wireless systems.

Notations: bold uppercase and lowercase letters denote matrices and vectors, respectively. C denotes
the set of complex numbers. E[·] and Pr[·] denote the expectation and probability operator, respectively. x∗,
Re{x}, Im{x}, and |x| respectively represent the complex conjugate, real part, imaginary part, and absolute
value of complex variable x ∈ C. xT , xH , and ‖x‖2 represent the transpose, Hermitian, and two-norm of vector
x, respectively.
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5.1.2 Software-defined Millimeter-wave Communication Systems

In this section, we introduce 5G millimeter-wave communication system, which consists

of software-defined cellular systems and millimeter-wave communication.

Software-Defined Cellular System: we consider a multi-user, multi-cell SoftAir [2]

downlink system as in Figure 32. Specifically, SoftAir comprises three main parts: (i) the

centralized BBS pool, which connects to the core network via backhaul links and consists

of software-defined BSs (SD-BSs), (ii) RRHs equipped with antennas, which are remotely

controlled by SD-BSs and serve UEs’ transmissions, and (iii) low-latency high-bandwidth

fronthaul links (fiber or microwave) using common public radio interface (CPRI) for an

accurate, high-resolution synchronization among RRHs. Thus, SoftAir can provide accu-

rate channel state information of the entire network to the BBS pool through the flexible

design of SD-BSs and RRHs as well as control traffic forwarding technique [35, 78], and

consequently enhance significantly the evolvability, scalability, and cooperativeness of dis-

tributed RANs. As shown in Figure 32, letK = {1, . . . ,K} and I = {1, . . . , I} denote the set

of RRHs and UEs in the SoftAir system, respectively. We assume that the kth RRH (k ∈ K)

equips with Mk antennas and each UE has a single antenna. All the RRHs are connected

to the BBS pool via the fronthaul links, where the kth link between the kth RRH and the

pool has a predetermined capacity Ck. Suppose that each UE is served by a specific group

of associated RRHs, and a RRH can serve multiple UEs at the same time. To express the

association status between RRHs and UEs, we introduce the following binary variables as

the indicators. In particular, while RRHs can be active to serve UEs or shutdown to save

the energy consumption, {ak, k ∈ K} denotes the activity of RRHs as

ak =


1, the kth RRH is in active mode;

0, otherwise.
(33)

Also, {bik, i ∈ I, k ∈ K} denotes the association between RRHs and UEs as

bik =


1, the ith UE is served by the kth RRH;

0, otherwise.
(34)
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Furthermore, in order to characterize the group (cluster) serving of RRHs, the clustering

indicators {Nik, i ∈ I, k ∈ K} are introduced as

Nik =


1, (i, k) ∈ L;

0, (i, k) < L,
(35)

where L = {(i, k)|i ∈ I, k ∈ Ni} denotes the predetermined set of feasible association and

Ni denotes the set of near RRHs for the ith UE, which can be determined based on the

distance or channel gain from RRHs to each UE. From these variable definitions, we can

obtain the equality ak = 1−
∏I

i=1(1−bikNik),∀k ∈ K and two sets of association constraints

between RRHs and UEs as follows:

ak ≥ bikNik,∀i ∈ I, k ∈ K ; (36)
K∑

k=1

bikNik ≥ 1,∀i ∈ I. (37)

Eq. (36) implies that a RRH is in active mode if it is associated with at least one UE. Eq.

(37) ensures that each UE is served by at least one RRH.

Millimeter-Wave Communication: in SoftAir downlink system, we introduce the pre-

code vectors (i.e., beamforming weights) at RRHs that realize multi-antenna millimeter-

wave transmissions from RRHs to UEs. Let wk
i ∈ C

Mk×1 be the linear downlink beamform-

ing vector at the kth RRH corresponding to the ith UE, wi , [w1T
i , . . . ,wKT

i ]T ∈ CM×1 with

M =
∑

k∈K Mk be the set of beamforming vectors to the ith UE, and W , {w1, . . . ,wI} ∈

CM×I be the network beamforming design. Let si ∈ C denote the signal intended for

the ith UE with unit power (i.e., E[s∗i si] = 1.) Then, the kth RRH transmits the signal

xk =
∑I

i=1 wk
i si to UEs, and the ith UE receives the signal yi ∈ C as

yi =

K∑
k=1

hkH
i xk + ηi = hH

i wisi +

I∑
j=1,,i

hH
i w js j + ηi, (38)

where hi , [h1T
i , . . . ,hKT

i ]T ∈ CM×1, hk
i ∈ C

Mk×1 denotes the channel coefficient vector from

the kth RRH to the ith UE, and ηi ∼ CN(0, σ2) is the zero-mean circularly symmetric Gaus-

sian noise with the noise power σ2. Different from conventional microwave communica-

tion, millimeter-wave transmissions have the following special characteristics: short-range
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communication, inevitable blockage effects, and sparse-scattering radio patterns [70, 74].

These jointly affect the downlink channel modeling (more specifically, channel coefficient

vectors from RRHs to UEs) and necessitate the rigid analysis of (i) LOS, NLOS transmis-

sions (i.e., blockage) as well as (ii) directional beams (i.e., the directivity). Specifically, we

model the channel vector hk
i as

hk
i =

(
lk
i Dk

i Φ
k
i

)1/2
ξk

i ∈ C
Mk×1 (39)

where lk
i is the large-scale path loss in power (which might also include lognormal shad-

owing), Dk
i is the directivity gain at the ith UE, Φk

i ∈ C
Mk×Mk is the covariance matrix for

antenna correlations in small-scale fading, and ξk
i ∼ CN(0, IMk) is the fast-fading channel

vector.

We further investigate the millimeter-wave channel effects in Eq. (39) with respect to

the feasible blockage information. Specifically, if the obstacles (e.g., buildings, vehicles,

tree branches, foliage) are well understood in the geographic area, the transmissions be-

tween each RRH-UE pair can be categorized into one of the three link-states: LOS, NLOS,

or Outage. First, a LOS state occurs when there is no blockage between the RRH and

the UE. Assume that in each LOS link, there is no beamforming alignment errors (e.g., the

RRH and the UE estimate the angles of arrival and adjust their antenna steering orientations

accordingly), and the covariance matrix Φ has rank one for all RRH antennas (due to few

multi-paths for LOS millimeter-wave channels). This implies that for the LOS link between

the kth RRH and the ith UE, the eigenvalue decomposition of the covariance matrix can be

modeled as Φk
i = Mkuk

i u
kH
i with a unit vector uk

i ∈ C
Mk×1. We model the corresponding

channel vector as

{hk
i ; LOS link} =

√
Mklk

iLuk
i (40)

where lk
iL is the path-loss modeling for a LOS link. Second, a NLOS state occurs when the

RRH-UE link is blocked, and the covariance matrix in a NLOS link is similar to the case
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for microwave communication. We then model the NLOS channel vector as

{hk
i ; NLOS link} =

(
lk
iNΦk

i

)1/2
ξk

i (41)

where lk
iN is the path-loss modeling for a NLOS link. Third, an outage state occurs when no

millimeter-wave communication link can be established as the path loss between the RRH

and the UE is so high [79]. In practice, this outage implies the case when the path loss

in either a LOS or a NLOS state is sufficiently large, and it is a more accurate modeling

at millimeter-wave frequency from experimental results [70]. In particular, we have the

outage channel vector as

{hk
i ; Outage link} = 0Mk×1. (42)

Finally, we formulate the path loss with respect to these three states for the link between

the kth RRH and the ith UE as

lk
iL = (αLdk

i )−βL ; lk
iN = (αNdk

i )−βN ; lk
iO = 0, (43)

where dk
i denotes the RRH-UE distance, αL (αN) can be interpreted as the path loss of the

LOS (NLOS) link at a 1 [m] distance, and βL (βN) denotes the path-loss exponent of the

LOS (NLOS) link. From experimental results, βN value (can be up to 4) is normally much

higher than βL value (i.e., 2). The parameter values used in the path loss and the occurred

probability of three-state modeling can be found in [80, TAIBLE I].

5.1.3 Problem Formulation for Ubiquitous Millimeter-wave Coverage

In this section, our objective is to efficiently realize ubiquitous millimeter-wave coverage

of RRHs that supports satisfactory received signal strengths to all geo-distributed UEs.

Specifically, we jointly optimize associations betweens RRHs and UEs and beamforming

weights of RRHs so that the UE sum-rate is maximized, and UEs’ QoS requirements and

system-level constraints are satisfied simultaneously. This implies that the degradation of

signal strengths due to NLOS transmissions can be completely solved by the solutions
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of the coverage optimization problem, particularly when the dense RRH deployment is

considered. In the following, we first investigate the constraints with respect to (i) QoS

requirements, (ii) beamforming weights, and (iii) fronthaul capacity. Combining these with

the association constraints, we then formulate the ubiquitous millimeter-wave coverage

problem.

UEs’ QoS Requirements: based on the channel modeling of millimeter-wave commu-

nication, we formulate the QoS requirements of UEs according to the associated SINR

derivations. Let γ̄i(W) and γmin
i denote the received SINR and the minimum SINR re-

quirement of the ith UE, respectively. Following the study in [81, Theorem 1], the SINR

constraints of UEs can be formulated as ∀i ∈ I,

γ̄i(W) =
|E[hH

i wi]|2

σ2 + var[hH
i wi] +

∑I
j=1,,i E[|hH

i w j|
2]
≥ γmin

i . (44)

Moreover, when only LOS transmissions (without shadowing) are concerned for the ith

UE, the corresponding deterministic channel effects can further simplify the SINR of the

UE as

γi(W) =
|hH

i wi|
2∑I

j=1,,i |hH
i w j|

2 + σ2
. (45)

Beamforming Weights of RRHs: given {si,∀i ∈ I} and wk
i as UEs’ signals with unit

power and the precoding vector at the kth RRH for the ith UE’s signal, respectively, the

transmit power used by this RRH to server the UE is wkH
i wk

i . Let Pmax
k denote the maximum

power of the kth RRH. We impose the constraints on beamforming weights of RRHs as

follows:

I∑
i=1

wkH
i wk

i ≤ akPmax
k ,∀k ∈ K ; (46)

wkH
i wk

i ≤ bikNikPmax
k ,∀i ∈ I, k ∈ K , (47)

where Eq. (46) limits the total transmit power of RRHs and Eq. (47) ensures that the

transmit power from the kth RRH to the ith UE is set to zero if there is no association

between them. Furthermore, as the predetermined set L shows the feasible associations
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between RRHs and UEs in Eq. (35), the complexity of computing precoding vectors can

be significantly reduced by imposing additional transmit power constraints with respect to

RRH-UE association [82]. Specifically, by only allowing RRH-UE links in L, we set the

beamforming weights of millimeter-wave communication links as

wkH
i wk

i = 0 if Nik = 0,∀i ∈ I, k ∈ K . (48)

Note that Eq. (48) reduces all possible RRH-UE links from IK between K RRHs and I

UEs to |L| links (given that |L| << IK), which in turns dramatically shrinks the possible

solution sets of precoding vectors for lower computation complexity.

Fronthaul Capacity With RRH-UE Associations: in SoftAir, the BBS pool directly

forwards the compressed precoding vectors and UEs’ data streams to the corresponding

RRHs; RRHs then precode the baseband signals and transmit to UEs. Specifically, af-

ter the BBS pool optimally determines the beamforming vector wi for the ith UE, only

nonzero weights in wi are actually forwarded to the RRHs through the corresponding fron-

thaul links. More specifically, wkH
i wk

i = 0 implies that the kth RRH does not serve the ith

UE, and the data stream of the ith UE is not routed from the BBS pool to the kth RRH (via

the kth fronthaul link). Given the received SINR of the ith UE γ̄i(W) from RRHs in Eq.

(44), we can formulate the corresponding ergodic achievable data rate for the UE as

Ri(W) = B(1 − κ) log2 (1 + γ̄i(W)) , (49)

where B denotes the wireless transmission bandwidth and κ accounts for the spectral effi-

ciency loss due to signaling at RRHs. By neglecting the fronthaul capacity consumption for

transferring compressed beamforming vector (as compared to major consumption for data

streams) and considering the RRH-UE associations in Eqs. (34)-(35), the per-fronthaul

capacity constraints are formulated as
I∑

i=1

bikNikRi(W) ≤ Ck,∀k ∈ K . (50)

This indicates that the total data rate transmitted at the kth RRH should be less than or equal

to the rate forwarded by the kth fronthaul link.
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Optimization Problem of the Millimeter-Wave Coverage: so far, we have successfully

characterized the QoS and system-level constraints for the millimeter-wave coverage prob-

lem. To further realize a spectral-efficient coverage design, we aim to maximize the total

achievable data rates at UEs as the objective function of the optimization problem. Specif-

ically, given Ri in Eq. (49) as the ergodic achievable rate of the ith UE, the UE sum-rate is

provided as
∑I

i=1 Ri; hence, we define the millimeter-wave coverage problem in software-

defined millimeter-wave systems as follows.

Definition 3 [Ubiquitous Millimeter-Wave Coverage Problem.] Given a software-defined

millimeter-wave system with the RRH set K and the UE set I, and the precoding matrix

W, the millimeter-wave coverage optimization problem is

Find: ak ∈ {0, 1}, bik ∈ {0, 1},wk
i ,∀i ∈ I, k ∈ K

Maximize
∑I

i=1 Ri(W)

Subject to (36), (37), (44), (46), (47), (48), (50)

. (51)

5.1.4 Dynamic Base Station Formation via Successive Convex Approximation

Aiming to solve the millimeter-wave coverage problem, in this section, we propose a dy-

namic base station (i.e., RRHs) formation that optimally determines the following: (i)

the association assignments between RRHs and UEs; (ii) the corresponding beamforming

weights of millimeter-wave RRHs. In particular, we first prove that the millimeter-wave

coverage problem is np-hard. Next, by showing that this coverage problem belongs to

mixed-integer nonlinear programming (MINLP) [44], we propose an iterative algorithm

of the dynamic BS formation that yields feasible optimal solutions by exploiting convex

approximation technique.

Theorem 3 ( [80]) The millimeter-wave coverage problem in Eq. (51) is np-hard.

SCA-based Dynamic BS Formation: as shown above the millimeter-wave coverage

problem is np-hard, this coverage problem is a MINLP problem. Specifically, since Eq.
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(50) is non-convex, the coverage problem in Eq. (51) is classified as a non-convex mixed

integer programming. It implies that an optimal solution for this problem is very difficult

to compute and that the solution would be of little practical interest even if it is possible to

obtain. Hence, in this section, we transform the original coverage problem into a tractable

formulation so that advanced optimization tools can be used for satisfactory solutions. In

particular, we adopt the successive convex approximation (SCA) method [44,75] to approx-

imate non-convex continuous constraints (i.e., Eq. (50)) with series of second-order cone

(SOC) constraints and arrive at a MISOCP problem, which can be solved by commercial

tools, such as CPLEX [76] or MOSEK [77].

Successive Convex Approximation (SCA): first of all, given the power constraints in

Eqs. (46)-(47), we can easily rewrite these hyperbolic constraints into MISOC forms as

‖[wkT
1 , . . . ,w

kT
I ,

ak − Pmax
k

2
]T ‖2 ≤

ak + Pmax
k

2
,∀k ∈ K .

(52)

‖[wkT
i ,

bikNik − Pmax
k

2
]T ‖2 ≤

bikNik + Pmax
k

2
,∀i ∈ I, k ∈ K .

(53)

Next, due to the fact that var[hH
i wi] = E[|hH

i wi|
2] − |E[hH

i wi]|2, the constraints of QoS

requirement in Eq. (44) can be transformed as

(1 +
1
γmin

i

)|E[hH
i wi]|2 ≥

I∑
j=1

E[|hH
i w j|

2] + σ2. (54)

Similar to the consideration in [72], these beamforming vectors wk
i ,∀i ∈ I, k ∈ K are

phase-invariant, which implies that wk
i is feasible for QoS requirements if and only if its

rotated version wk
i e
√
−1θk

i is. Combing this with the fact that wk
i and wk

i e
√
−1θk

i bring the same

energy consumption in the objective function of the coverage problem in Eq. (51), we can

rewrite the SINR constraints into the following SOC forms:√
1 + 1

γmin
i
Re{E[hH

i wi]} ≥ ‖[
√
E[|hH

i w1|
2], . . . ,

√
E[|hH

i wI |
2], σ]‖2,∀i ∈ I; (55)

Im{E[hH
i wi]} = 0,∀i ∈ I. (56)
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In particular, if the SINR constraints follow the deterministic channel effects (e.g., LOS

transmission without considering shadowing) as in Eq. (45), the corresponding SOC forms

can also be rewritten as
√

1 + 1
γmin

i
Re{hH

i wi} ≥ ‖[hH
i W, σ]‖2 and Im{hH

i wi} = 0.

Finally, we employ SCA to approximate the non-convex fronthaul capacity constraint

into a more tractable form. Specifically, Eq. (50) can be first transformed as

I∑
i=1

bikNik log2 (1 + γ̄i(W))B(1−κ)
≤ Ck. (57)

Then, by introducing a set of new variables {αik, βi, δi; i ∈ I, k ∈ K}, we rewrite the capacity

constraints into several related inequalities as follows:

∑I
i=1 αik ≤ Ck,∀k ∈ K ; (58a)

(bikNik)2 ≤ αikβi; (58b)

log2 (1 + δi)B(1−κ)
≤ 1

βi
; (58c)

|E[hH
i wi]|2

σ2+var[hH
i wi]+

∑I
j=1,,i E[|hH

i w j |2]
≤ δi, (58d)

where inequalities in Eq. (58a) are in MISOC forms and Eq. (58b) comes from the fact

that (bikNik)2 = bikNik. Following the similar approach in Eqs. (52)-(53), Eq. (58b) can be

further rewritten into MISOC constraints as

‖[bikNik,
αik − βi

2
]‖2 ≤

αik + βi

2
,∀i ∈ I, k ∈ K . (59)

Furthermore, adopting similar procedures in [73], we apply the first-order Taylor series

expansion as an iterative convex approximation with respect to Eq. (58c) and Eq. (58d) as

follows. Specifically, by transforming Eq. (58c) into 1+δi ≤ 2
1

βiB(1−κ) and approximating the

exponential function around the (t + 1)th updated point β(t)
i , we can rewrite the inequalities

in Eq. (58c) as the following series of SOC constraints:

1 + δi ≤ F
(t)
i (βi),∀i ∈ I (60)

where F(t)
i (βi) , 2

1
β

(t)
i B(1−κ) − 2

1
β

(t)
i B(1−κ)

(β(t)
i )2B(1−κ)

(βi − β
(t)
i ). Moreover, by transforming Eq. (58d) into

|E[hH
i wi]|2 ≤ (1− 1

δi+1 )(σ2 +
∑I

j=1 E[|hH
i w j|

2]), we approximate these non-convex constraints
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with another SOC series as

|E[hH
i wi]|2 +

|E[hH
i wi]|2

δi
≤ G

(t)
i (W),∀i ∈ I (61)

where G(t)
i (W) , σ2 +

∑I
j=1(2Re{E[w(t)H

j hihH
i w j]} − E[|hH

i w(t)
j |

2]). In particular, if the de-

terministic channel effects are considered, the corresponding formulation becomes |h
H
i wi |

2

δi
≤

σ2 +
∑I

j=1,,i(2Re{w
(t)H
j hihH

i w j} − |hH
i w(t)

j |
2). Combining these with the monotonicity of log-

arithmic function and δi ≥ 0, we can approximate the non-convex coverage problem in

Eq. (51) at iteration t + 1 by the following upper-bounded convex programming with Eqs.

(60)-(61) as

Find: ak, bik,wk
i , αik, βi, δi,∀i ∈ I, k ∈ K

Maximize
∏I

i=1 (1 + δi)B(1−κ)

Subject to (36), (37), (48), (52), (53), (55),

(56), (58a), (59), (60), (61)

ak ∈ {0, 1}, bik ∈ {0, 1},∀i ∈ I, k ∈ K

. (62)

Note that as the objective and all constraint functions in Eq. (62) follow SOC representa-

tion, Eq. (62) becomes a mixed-integer second-order cone programming (MISOCP) prob-

lem. This implies that at each iteration, Eq. (62) can be optimally solved through standard

MISOCP tools as mentioned. Algorithm 8 summarizes the proposed iterative algorithm.

Algorithm 7: SCA-based Dynamic BS Formation
1 initialize β(0) and W(0);
2 set t = 0;
3 repeat
4 solve the MISOCP problem in Eq. (62) with β(t) and W(t) for optimal solution

{w̄k
i , āk, b̄ik, ᾱik, β̄i, δ̄i};

5 set t := t + 1;
6 update β(t) = β̄ and W(t) = W̄;
7 until convergence or the maximum number of iterations is reached;
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Figure 33. An urban environmental model of the Madrid grid from METIS [6] with 13 RRHs deployed.

5.1.5 Performance Evaluation

In this section, we present simulation results to evaluate the performance achieved by the

dynamic BS formation. Considering practical obstacles in 5G networks, we build software-

defined millimeter-wave systems upon METIS [6], which aims to lay the 5G foundation for

year 2020 and beyond with realistic consideration of different environments of buildings,

roads, park, etc. As shown in Figure 33, the urban environmental model is established,

based on observations regarding the city structure of Madrid, and captures more aspects

than Manhattan grid. Following the deployment baseline of a three-sector macro station

and 12 pico stations for network infrastructure [6], we design 13 RRHs with different spec-

ifications: RRH 1, indicated by magenta rectangles, mimics the powerful macro station

and has four equipped antennas on the roof of building 6 with maximum transmit power

43 [dBm]; RRHs 2-13, indicated by blue stems to simulate pico stations, has two equipped

antennas of 10 [m] height and maximum power 36 [dBm]. We further set the fronthaul

capacity as 10 [bits/s/Hz] for each RRH and the carrier frequency as 28 [GHz], and all

UEs are randomly-distributed in the street. The three-state path-loss model with lognormal

shadowing is considered, and the thermal noise power is set as -101 [dBm/Hz].

Convergence Behavior of Dynamic BS Formation: to illustrate the fast convergence of
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lected RRHs.

Figure 34. Fast convergence of the dynamic BS formation in Algorithm 8.

dynamic BS formation in Algorithm 8, Figure 40 shows the convergence behavior of down-

link system sum-rate and the beamforming power of 7 selected millimeter-wave RRHs with

10 UEs randomly-distributed, where the required minimum SINR for each UE is γmin
i =6

[dBW]. The results imply that by exploiting SCA, our proposed Algorithm 8 converges

very fast after only 4 iterations, which serves as a desired stopping point. Moreover, with

the maximum achievable sum-rate around 90 [bits/s/Hz], the average rate per UE can be

easily achieved to 4.5 [Gbps], given 500 [MHz] transmission bandwidth from millimeter-

wave communication. We demonstrate the efficiency of our proposed BS formation that

quickly makes the decision for RRH-UE associations and beamforming weights, facilitat-

ing millimeter-wave coverage upon time-varying channels.

Performance Comparison of Dynamic BS Formation and Conventional Millimeter-wave

Cell Association: as in [79], two schemes for cell association are commonly studied in con-

ventional millimeter-wave communication.

• Highest received power association: Like in microwave communication, the UE-BS

association is based on downlink reference signals, which undergo both path-loss

and shadowing. Hence, a UE will be served by the BS providing the highest received

power to it.
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Figure 35. UE sum-rates achieved by the proposed dynamic BS formation and two conventional
millimeter-wave association schemes, with respect to UEs’ SINR requirements. The percentage shows
the ratio of supported UEs to total UEs.

• Smallest path-loss association: As millimeter-wave communication has less slowly-

varying shadowing due to pronounced blockage impact on received signals, UEs

might be unable to consider random fluctuations by shadowing. Thus, in this case, a

UE will be served by the BS with the smallest path-loss to it.

We evaluate the achievable sum-rates from Algorithm 8 and the above two schemes with

respect to UEs’ SINR requirements in Figure 41. To realize conventional association

schemes, the matched filtering precoding method is exploited as wk
i = hk

i /‖h
k
i ‖2, the trans-

mit power is equally allocated among the UEs in the same BS’s coverage, and the greedy

algorithm is used for UE scheduling [83]. Figure 41 shows that the proposed dynamic BS

formation significantly outperforms conventional millimeter-wave association with ubiqui-

tous UE coverage and high data rates. This is because our solution accounts the global net-

work conditions by centralized, software-defined system architecture and jointly optimizes

the association and precoding decision. The decreasing data-rate trend of our solution is

due to fixed-power concern of RRHs. On the other hand, classical solutions rather ex-

ploit static and suboptimal designs and thus barely support high UEs’ SINR requirements.

The results from the smallest path-loss and the highest received power schemes have close
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Figure 36. Achievable UE sum-rates by the dynamic BS formation with respect to increasing UEs.

performance. These confirm the efficacy of our solution to solve the NLOS problem and

achieves ubiquitous millimeter-wave coverage.

Impact of UE Density: Figure 42 shows the achievable UE sum-rates by Algorithm 8

with respect to the UE density. Specifically, as the number of served UEs increases, both

the sum-rates and the average rate per UE decrease, due to lower signal power for the UEs

sharing same RRHs’ power resources and increasing downlink interferences. Moreover,

while the achievable data rate per UE decreases with the increasing UE number, the dy-

namic BS formation can always support each UE with at least 500 [Mbps] rate through

millimeter-wave transmissions, meeting the high data-rate requirements in 5G. The above

results validate the adaptiveness of dynamic BS formation, which can be used for the design

of 5G millimeter-wave communication.

5.1.6 Highlights

Through W-SDN SoftAir architecture, we develop a dynamic BS formation that achieves

a joint optimal design of RRH-UE associations and beamforming weights of millimeter-

wave RRHs to facilitate ubiquitous millimeter-wave coverage. The coverage optimization
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as a MINLP problem is proved to be np-hard; an iterative algorithm of the dynamic BS for-

mation is proposed through SCA to yield optimal solutions. Simulations show that our so-

lution can always satisfy UEs’ QoS requirements with millimeter-wave transmissions and

significantly outperforms conventional association schemes with suboptimal beamforming.

Our solution can be used to solve the NLOS problem in 5G millimeter-wave systems.

5.2 Delay-based Throughput-optimal Scheduling with Heavy-tailed Traf-
fic for 5G SoftAir: Traffic-awareness

HT traffic (e.g., the Internet and multimedia traffic) fundamentally challenges the validity

of classic scheduling algorithms, designed under conventional LT assumptions. To ad-

dress such a challenge, this section investigates the impact of HT traffic on delay-based

maximum weight scheduling (DMWS) algorithms in SoftAir, which have been proven to

be throughput-optimal with enhanced delay performance under the LT traffic assumption.

First, it is proven that the DMWS policy is not throughput-optimal anymore in the presence

of hybrid LT and HT traffic by inducing unbounded queueing delay for LT traffic. Then,

to solve the unbounded delay problem, a delay-based maximum power-weight schedul-

ing (DMPWS) policy is proposed that makes scheduling decisions based on queueing de-

lay raised to a certain power. It is shown by the fluid model analysis that DMPWS is

throughput-optimal with respect to moment stability by admitting the largest set of traffic

rates supportable by the network, while guaranteeing bounded queueing delay for LT traf-

fic. Moreover, a variant of the DMPWS algorithm, namely the IU-DMPWS policy, is pro-

posed, which operates with infrequent queue state updates. It is also shown that compared

with DMPWS, the IU-DMPWS policy preserves the throughput optimality with much less

signaling overhead, thus expediting its practical implementation.

5.2.1 Motivation and Related Work

Link scheduling is a critical and even most challenging resource allocation functional-

ity in general queueing networks, such as wireless downlinks and uplinks, input-queued
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switches, wireless sensor networks, ad-hoc networks, and cloud computing facilities among

many others. In all these systems, not all queues can be served simultaneously, due to

the constraints from wireless interference or switch matching. To fully utilize the lim-

ited network resources, throughput-optimal scheduling policies [84], often referred to as

maximum weight (MaxWeight) policies, have been extensively exploited. The throughput-

optimal policy can stabilize the network by guaranteeing bounded queueing delay under

any feasible loads, without requiring any explicit statistical information of the arriving

traffic flows and serving rates. Throughput-optimal scheduling was first introduced in the

seminal work [84], which proposes queue length-based MaxWeight scheduling (QMWS),

where the flow with the largest queue length is served first. Since then, numerous work has

been focused on the variations or extensions of this policy in different settings. However,

while these queue length-based policies have been shown to achieve excellent throughput

performance, they suffer a substantial queueing delay because the long waiting time of

building up large queue lengths [85] is required for a flow to be served eventually. More-

over, the queue length-based MaxWeight scheduling policies even lose the throughput op-

timality under flow dynamics, where certain flows only have a finite number of packets to

transmit and thus cannot bring a sufficiently large queue length to establish desired queue-

ing dynamics [86].

In this section, we aim to analyze the impact of hybrid HT and LT traffic on the through-

put optimality of DMWS policies for switch/wireless hypervisors. We propose the delay-

based maximum power-weight scheduling (DMPWS). In particular, by jointly exploiting

fluid model-based stability and moment analysis, we prove that DMPWS is throughput-

optimal with respect to moment stability by admitting the largest set of traffic rates that

is supportable by the network, while guaranteeing bounded queueing delay for LT traffic.

Intuitively, this feature is achieved by giving higher priorities (i.e., larger power-weight)

to LT traffic flows, which provide them sufficient serving opportunities when competing

with HT traffic flows. To further enhance the practicability of DMPWS, we propose a
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variant DMPWS policy, called infrequent updating-DMPWS (IU-DMPWS), which only

needs the infrequent queue-state (i.e., HoL packet delay) measurements. While such infre-

quent updates of queue information have been exploited for conventional QMWS [87, 88],

the impact on the proposed DMPWS is unknown and quite involved to analyze. To this

end, we prove that the IU-DMPWS policy still preserves the throughput optimality as its

original DMPWS scheme, but is more favored in system implementation, such as uplink

scheduling in cellular networks, due to less signaling overhead. There is a clear tradeoff

with IU-DMPWS that infrequent updates and lower overhead (or computational cost) come

at the expense of larger delay, as verified by simulation results. To the best of our knowl-

edge, this work is the first rigorous analysis for the throughput performance of delay-based

scheduling policies with HT traffic. We summarize our main contributions as follows:

• We show that the existing DMWS policy fails to achieve throughput optimality in the

presence of HT traffic.

• We prove that the proposed DMPWS policy can achieve the throughput optimality

with respect to moment stability, under hybrid HT and LT traffic.

• We further demonstrate that the proposed IU-DMPWS policy preserves the good

merits from its original scheme with less signaling cost.

5.2.2 System Model for Switch & Wireless Hypervisors

We consider a multi-queue single-server, time-slotted queueing system, where F queues

share a single server. A traffic flow f ∈ {1, . . . , F} is a discrete-time stochastic arrival

process {A f (t); t ∈ Z+}, which represents the total number of packets that arrive at a queue

at the beginning of the time slot t and is i.i.d. from time slot to time slot. The arrival

processes or traffic flows are mutually independent. Let λ f = E[A f (0)] > 0 be the rate of

traffic flow f and λ = (λ1, . . . , λF) be the rate vector. Let stochastic processes {Q f (t); t ∈ Z+}

and {D f (t); t ∈ Z+} be the number of packets and the queueing delay, respectively, in queue

f at the beginning of time slot t. Q(t) = (Q1(t), . . . ,QF(t)) captures the queue backlog
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at time slot t, and its initial state Q(0) can be an arbitrary element of ZF
+ . A set of flows

that can be served simultaneously is called a feasible schedule. In our network model, each

feasible schedule only contains one flow because only one queue can be served during each

time slot. Let S denote the set of all feasible schedules. Then, for each feasible schedule

π ∈ S , let π f (t) denote the number of packets transmitted from queue f under schedule π

at time t. For simplicity, we assume that the service rate is one packet per time slot. Thus,

the average service rate of queue f under schedule π is E[π f (t)] = π f ≤ 1. Accordingly,

the time-varying scheduling vector S (t) = (π1(t), . . . , πF(t)), π ∈ S is determined by the

proposed scheduling policy. Let Y(t) = (Y1(t), . . . ,YF(t)) denote the idling service at time

t. Hence, the set of processes {Q(t),D(t),Y(t), S (t)} with Q(0) completely captures the

dynamic of an entire stochastic queueing system. Mathematical preliminaries are provided.

Definition 4 (Heavy Tail) A random variable (r.v.) X is HT, if for all θ > 0, limx→∞ eθx Pr(X >

x) = ∞, or equivalently, E[ezX] = ∞, ∀z > 0. A r.v. is LT, if it is not HT, or equivalently, if

there exists z > 0 so that E[ezA f (0)] < ∞.

From the existence of the moments, we define the tail index of a nonnegative r.v. X as

κ(X) := sup{k ≥ 0 : E[Xk] ≤ ∞}, (63)

which defines the maximum order of finite moments that X can have. Moreover, to show

the sufficient condition for finite tail indexes [89], we have the following: a nonnegative r.v.

X has κ(X) if and only if the tail distribution of X satisfies limt→∞
log Pr(X>t)

log t = −κ(X).

Definition 5 (Steady-state Stability) Given the queueing system, if there exists a schedul-

ing policy under which the Markov chain of queue lengths is positive Harris recurrent (i.e.,

{Q(t); t ∈ Z+} converges in distribution), then the queueing network is steady-state stable.

We further consider moment and strong stability to characterize the delay performance.

Definition 6 (Moment Stability) Given the single-hop queueing system described above

under a specific scheduling policy, if LT traffic flow have bounded average packet delay

(i.e., E[W f ] < ∞,∀ f ∈ LT), then the queueing system is moment stable.

94



Definition 7 (Strong Stability) A queueing system is strongly stable if all traffic flows ex-

perience bounded average queueing delay (i.e., E[W f ] < ∞,∀ f ∈ F).

5.2.3 Delay-based Maximum Power-weight Scheduling (DMPWS)

Intuitively speaking, the key problem of MWS is that both LT and HT traffic flows are

assigned with the same priority or weight. In this case, the HT traffic flow may receive

more services because it has the higher probability to have long queues and high delay,

which leads to long waiting time in the queue for the LT traffic. To solve this problem,

we propose delay-based maximum power-weight scheduling (DMPWS) [90] that assigns

different weights with respect to HT and LT traffic flows. The power-weight of a feasible

schedule is the sum of the head-of-line (HoL) packet delay W f (t) up to α f order, and the

DMPWS policy activates a schedule that has maximum power-weight at any given time

slot. Specifically, under the DMPWS policy, it implies that the queue f will be served

given that

Wα f

f (t) = max
j∈F

Wα j

j (t), ∀ f ∈ F. (64)

The power-weight assigned to each flow should be set to be proportional to the maximum

order of the finite moments of the arrival processes A(t) to ensure the network stability. In

particular, we set the power-weight of flow f ∈ F as follows:

α f =


κ(A f (t)) − 1, ∀ f ∈ HT ;

c f > 2, ∀ f ∈ LT,
(65)

where κ(·) is the tail coefficient defined in Eq. (63) and c f is an arbitrary constant larger

than two. To prove throughput optimality of DMPWS, it is equivalent to show DMPWS

can achieve moment stability, i.e., all the LT traffic flows have bounded average queueing

delay, as long as the incoming traffic flows are within the network capacity region. With

the aid of fluid-limit approximations [91], we first show that DMPWS can achieve steady-

state stability by proving that the corresponding fluid model is stable. The key idea is to

establish the linear relationship between queueing delay and queue length through fluid
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model solutions. With such condition satisfied, we then show that DMPWS can achieve

moment stability by exploiting fluid model-based moment analysis under the condition that

the incoming traffic flows are within the network capacity region.

Theorem 4 ( [91]) The queueing network is steady-state stable (i.e., positive Harris recur-

rent) whenever an associated fluid model is stable (i.e., there exist time T > 0 such that

q f (t) = 0 for all f ∈ F and t ≥ T).

We prove the steady-state stability in Theorem 5 by the Lyapunov technique in fluid domain

and by exploiting Theorem 4.

Theorem 5 (Steady-state Stability [90]) If the incoming traffic rates reside in the network

capacity region, the corresponding queueing system is steady-state stable with the DMPWS

policy under hybrid HT and LT traffic.

We further show that the DMPWS policy is throughput-optimal, which ensures that the

queue length and queueing delay of all LT traffic flows are of finite mean as long as the

traffic rates are within network capacity region.

Theorem 6 (Throughput Optimality [90]) Consider the DMPWS policy under the hy-

brid HT and LT traffic. The corresponding queueing system is throughput-optimal with

respect to moment stability by ensuring that all LT traffic flows have bounded average

queue length and queueing delay (i.e., E[Q f ] < ∞ and E[W f ] < ∞, ∀A f (t) ∈ LT).

Infrequent Queue State Measurements: let the time slots be grouped into interval of

time T I . It implies that the (k + 1)th interval consists of slots kT I , . . . , (k + 1)T I − 1.

Although queue states can change in each slot, these are measured only at the beginning

of each interval (i.e., at the beginning of slot kT I , for k = 0, 1, . . . ). Therefore, the interval

length T I denotes the duration between successive sampling instances of the HoL packet

delay, and the IU-DMPWS policy follows the DMPWS and only updates the schedule at
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each time interval T I . Specifically, under the IU-DMPWS policy, the scheduling vector

S (t) belongs to the set:

S (kT I + l) = argmax
π∈S

{
∑
f∈F

Wα f

f (kT I)π f (t)}

where k = 0, 1, . . . and l = 0, 1, . . . ,T I − 1. If the set on the right-hand side includes

multiple schedules, one of them is chosen uniformly at random. Moreover, the queue

dynamic equation is also rewritten as

Q((k + 1)T I) = Q(kT I) + A(kT I) − T I[S (kT I) − Y(kT I)]. (66)

Therefore, given the IU-DMPWS policy, we prove the throughput optimality of IU-DMPWS

under the hybrid traffic in the following Theorem 7. It is easy to see that the DMPWS policy

is a special case of the IU-DMPWS policy, by considering the case T I = 1.

Theorem 7 ( [90]) The IU-DMPWS policy is throughput-optimal.

5.2.4 Performance Evaluation

We show that the throughput optimality and bounded delay can be achieved with hybrid

traffic by applying the DMPWS policy with Eq. (65). We choose Pareto and Poisson dis-

tributions to represent HT and LT distributions, respectively. We assign the queues of HT

flows and LT flows with weight 0.5 and 2, respectively. As indicated by Theorem 5 and

Theorem 6, under such settings, the DMPWS policy can guarantee that LT traffic flows

have bounded average queue lengths and delay, which cannot be achieved by applying the

DMWS policy. In particular, Figure 37(a) shows that there is no large queue length for

LT flows during the evolution. Figure 37(b) and Figure 37(c) further indicate that for both

the tail distributions of queue length and delay of LT flows have a slope or decaying rate

greater than one, which implies the queue lengths and packet delay of LT flows have finite

mean and thus brings the stable queueing network.

Performance of Infrequent Measurement Update: while we successfully demonstrate

the superiority of DMPWS, in the following, we evaluate the impact of infrequent update
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Figure 37. Queue length and packet delay under DMPWS, where the queueing system is stable.
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Figure 38. Queue lengths and packet delay under the IU-DMPWS policy with T I = 2.
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Figure 39. Packet delay of LT traffic under the IU-DMPWS policy with various update frequencies T I .

of state measurements (i.e., from T I = 1 to T I > 1) by simulating the IU-DMPWS policy.

Figure 38 shows the performance of IU-DMPWS policies with T I = 2. IU-DMPWS can

provide bounded queue lengths and delay for LT flows and achieve the stable network. It

is consistent with Theorem 7 that such an infrequent update will not affect the throughput

optimality and network stability. Moreover, we further compare the packet delay under

IU-DMPWS policies with various update frequency in Figure 39. It is shown that as the

update frequency increases, the delay of LT flows will also slightly increase but still have

finite mean, which confirms our theoretical finding. These outstanding performances ac-

companied with infrequent updating facilitate practical implementation of IU-DMPWS.

5.2.5 Highlights

This section develops a throughput-optimal and delay-based maximum power-weight schedul-

ing in switch/wireless hypervisors for single-hop flows with heavy-tailed traffic. Delay-

based scheduling provides a simple way to reduce packet delay that plagues its queue

length-based counterpart. We propose a DMPWS and its variant IU-DMPWS and prove

their throughput optimality with respect to moment stability. The IU-DMPWS policy is

favored among these scheduling algorithms for practical implementation because of its im-

munity to the impact of HT traffic along with limited signaling overhead.
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5.3 Delay-based Throughput-optimal Scheduling with Heavy-tailed Traf-
fic for 5G SoftAir: LIFO Policy

This section aims to develop novel throughput-optimal scheduling algorithms under hybrid

HT and LT traffic flows, where classic optimal policies (e.g., maximum-weight/backpressure

schemes), developed under LT assumption, are not throughput-optimal anymore. To counter

this problem, a delay-based maximum-weight scheduling policy with the last-in first-out

(LIFO) service discipline, namely LIFO-DMWS, is proposed with the proved throughput

optimality under hybrid HT and LT traffic. The throughput optimality of LIFO-DMWS

gives that a networked system can support the largest set of incoming traffic flows, while

guaranteeing bounded queueing delay to each queue, no matter the queue has HT or LT

traffic arrival. Specifically, by exploiting asymptotic queueing analysis, LIFO-DMWS is

proved to achieve throughout optimality without requiring any knowledge of traffic statis-

tic information (e.g., the tailness or burstiness of traffic flows). Simulation results validate

the derived theories and confirm that LIFO-DMWS achieves bounded delay for all flows

under challenging HT environments.

5.3.1 Motivation and Related Work

Because of the emerging multimedia, data center, and the Internet applications over mobile

devices, network traffic in both radio access networks and wired core networks has tremen-

dously grown in past few years while the network capacity is rather limited. To address

such a challenge, throughput-optimal scheduling is highly demanding, which determines

the optimal transmission time for traffic flows, supports the largest set of traffic rates, and

maintains the desired network stability. As being an important class of throughput-optimal

scheduling, the maximum-weight scheduling (MWS) policy and many of its variants [84]

are of great interests. However, it is proved that the celebrated MWS policies are not

throughput-optimal anymore in the presence of HT traffic flows because MWS can lead

to unbounded average queueing delay even if the arrival traffic rates are within network

capacity region [92].
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To counter above challenges, in this section, we propose a delay-based maximum-

weight scheduling policy with LIFO service discipline (LIFO-DMWS) and prove its through-

put optimality in the presence of HT traffic. Specifically, rather than adopting queue back-

log as link weight, we focus on delay-based scheduling, which exploits the head-of-line

(HoL) delay metric in inter-queue scheduling decisions (i.e., determining the serving order

for the packets from different queues). Moreover, instead of using the classic FIFO service

discipline, we exploit LIFO service discipline for intra-queue scheduling (i.e., determining

the serving order for the packets within each queue). Furthermore, by exploiting asymp-

totic queueing delay analysis along with moment theory, we prove that LIFO-DMWS is

throughput-optimal with respect to strong stability in the presence of heavy tails. That

is, we show that with LIFO-DMWS, no matter the incoming traffic flows are HT or LT,

all queues will experience bounded average queueing delay as long as the incoming traf-

fic rates are within the network capacity region. Such a throughput optimality feature is

of great importance, since it prevents the QoS performance of LT traffic from being sig-

nificantly degraded by the bursty HT traffic. Simulation results confirm the throughput

optimality of LIFO-DMWS and show that LIFO-DMWS brings considerable delay reduc-

tion as compared to classic maximum-weight scheduling policies [7]. To the best of our

knowledge, this work is the first throughput-optimal scheduling for bounded delay with

emerging HT traffic.

5.3.2 LIFO Delay-based Maximum Weight Scheduling (LIFO-DMWS)

The queueing system model follows the details in Chapter 5.2.2. Moreover, by properly

selecting α to allocate more service opportunities to LT queues, DMPWS in Chapter 5.2

can guarantee that all LT queues experience bounded average queueing delay, completely

shielding those LT queues from the destructive impact of HT traffic. However, DMPWS

cannot ensure the delay boundness of the HT queues and is still not a throughput-optimal

scheduling policy with respect to strong stability. Moreover, DMPWS policy requires the

statistical tailness information, which is difficult to estimate. To counter above challenges,
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we propose LIFO delay-based maximum weight scheduling (LIFO-DMWS) policy [93].

Different from the classic MWS policies, the proposed LIFO-DMWS exploits LIFO service

discipline for intra-queue scheduling and employs the HoL delay as the weight for inter-

queue scheduling. At each time slot, the LIFO-DMWS policy serves the queue f with the

maximum HoL delay, i.e.,

WLIFO
f (t) = max

j∈F
WLIFO

j (t), ∀ f ∈ F. (67)

where ties are broken randomly.

Theorem 8 (Throughput Optimality of LIFO-DMWS [93]) LIFO-DMWS is throughput

optimal by ensuring that all queues have bounded average queueing delay E[D f ] < ∞,∀ f ∈

F whenever (1) all arrival traffic flows have bounded mean λ f = E[A f (t)] ∈ ∞,∀ f ∈ F.

That is, all arrival traffic flows have a tail index larger than 1, i.e., min f∈F κ(A f (t)) > 1; (2)

the incoming traffic rates are within the network capacity region.

Intuitively speaking, the promising feature of LIFO-DMWS comes from the optimal asymp-

totic delay performance of the HT queues under LIFO service discipline, which can guar-

antees that HT queues experience sufficiently reduced delay, which are of bounded mean.

Then, by adopting HoL delay as the weight metric, we can ensure that the delay of LT

queues is at least of the same order as the delay of HT queues. This implies the queueing

delay of LT queues is also of the bounded mean. Accordingly, we can show that LIFO-

DMWS is throughput-optimal. What is more important, LIFO-DMWS does not require

any knowledge of the statistical information of traffic arrivals.

Despite the intuitive advantage of LIFO-DMWS, proving its throughput optimality with

respect to strong stability is very challenging. We adopt asymptotic queueing analysis [94].

We first investigate the asymptotic queueing delay performance under the general work-

conserving scheduling policies in Lemma 3, which gives the upper bound of the tail index

for queueing delay under LIFO-DMWS. In Lemma 2, we derive the asymptotic delay per-

formance under LIFO-DMWS, which yields the lower bound of the tail index for queueing
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delay. Then, we prove the throughput optimality of LIFO-DMWS by showing that the up-

per and lower bounds coincide and are larger than 1 as long as the arrival traffic has tail

index larger than 1. This indicates that all queues are of bounded average queueing delay

under LIFO-DMWS. Before going to the main theorems, we first introduce Lemma 1.

Lemma 1 ( [93]) For any work-conserving scheduling with single-hop hybrid traffic, we

have the following: under LIFO, κ(max f∈F D f ) ≥ min f∈F κ(A f (t)).

Lemma 2 ( [93]) Consider any work-conserving scheduling with arrival traffic satisfying

min f∈F κ(A f (t)) > 1. Under LIFO, the steady-state delay D f follows κ(A f (t)) ≥ κ(D f ) ≥

min f∈F κ(A f (t)) whenever incoming traffic rates are within the network capacity region.

Now, we derive the upper bound of the tail index of queueing delay.

Lemma 3 ( [93]) Under LIFO-DMWS, the tail index κ(D f ) of the steady-state queueing

delay D f is upper bounded by κ(D f ) ≤ min f∈F κ(A f (t)).

Upon this stage, the throughput optimality of LIFO-DMWS is presented.

Proof of Theorem 8 [93]: Given that incoming traffic rates are within the network capacity

region, this implies that the network is steady-state stable. Hence, we are ready to apply the

asymptotic queueing analysis for LIFO-DMWS as follows. First, the upper bound of κ(D f )

under LIFO-DMWS is given by Lemma 3. Since LIFO discipline is work-conserving,

by Theorem 2, the lower bound of κ(D f ) under LIFO-DMWS is obtained, i.e., κ(D f ) ≥

min f∈F κ(A f (t)). Therefore, it follows that the upper and lower bounds of κ(D f ) coincide

under LIFO-DMWS, i.e., κ(D f ) = min f∈F κ(A f (t)). This, combing with the given condition

min f∈F κ(A f (t)) > 1 and Eq. (63), completes the proof.

5.3.3 Performance Evaluation

We show that bounded delay and throughput optimality can be achieved for hybrid HT and

LT traffic by applying LIFO-DMWS. We choose Pareto and Poisson distributions to depict

HT and LT distributions, respectively, as before. We consider a scenario where a HT flow
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Figure 40. Queueing delay of a HT flow, i.e., Ah(t) ∈ PAR(1.5, 1), and a LT flow, i.e., Al(t) ∈ Poiss(3),
under (FIFO-)DMWS [7].

and a LT flow sharing a single channel, i.e., Ah(t) ∈ PAR(1.5, 1) and Al(t) ∈ Poiss(3).

All the following tail distribution results are plotted on log-log coordinates, by which a

HT distribution with tail index κ manifests itself as a straight line with the slope equal to

−κ. We first examine the performance of hybrid traffic under the classic MWS policy. To

enable a fair comparison, we also adopt delay as the weight metric for MWS instead of

queue length and denote it by (FIFO-)DMWS. Figure 40(a) shows that during 105 time

slots, only around 10% of packets (as compared to HT traffic) from LT traffic leave the

scheduler and contribute to the cumulative packet delay, given the same packer arrival rate

for both LT and HT flows. The reason is that most of packets from LT traffic are stuck in

the queue due to the competitions with the HT flows. Moreover, Figure 40(b) shows that

under the DMWS policy, the queueing delay of LT flow follows heavy tailed distribution

with a tail index smaller than one, as its tail distribution decays slower than the reference

Pareto distribution with tail index one. This means that the LT traffic also has unbounded

average delay as that of HT traffic. Hence, under the DMWS policy with hybrid traffic,

the LT flow necessarily has infinite average queueing delay, and DMWS is not throughput

optimal.

We next show that the bounded delay and thus throughput optimality can be achieved
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Figure 41. Queueing delay of a HT flow, i.e., Ah(t) ∈ PAR(1.5, 1), and a LT flow, i.e., Al(t) ∈ Poiss(3),
under LIFO-DMWS.

for hybrid traffic by applying the LIFO-DMWS policy. Figure 41(a) shows that LT traffic

can receive sufficient service opportunities to sent a comparable number of packets as HT

traffic flows. Moreover, as shown in Figure 41(b) that under the LIFO-DMWS policy, the

queueing delay of LT flow has a tail index greater than one, as their tail distributions decay

faster than the reference Pareto distribution with tail index one. This means the LT traffic

has bounded queueing delay. Furthermore, while the queueing delay of HT flows are also of

bounded mean. Finally, a more complicated scenario under LIFO-DMWS is studied with

three hybrid flows in Figure 42, i.e., Ah(t) ∈ PAR(1.5, 1), Al1(t) ∈ Poiss(3), and Al2(t) ∈

Poiss(2), and the same conclusion is reached accordingly. In particular, Figure 42(a) shows

that most of packets from LT flows can exit the system. Figure 42(b) further indicates that

for the tail distributions of queueing delay of all LT and HT flows have a slope or decaying

rate greater than one, indicating the average bounded delay for all traffic flows. Above

results are consistent with Theorem 8, which implies that under hybrid HT and LT traffic,

LIFO-DMWS is throughput-optimal by achieving strong stability.

5.3.4 Highlights

LIFO-DMWS is proposed to achieve throughput-optimality with heavy-tailed traffic. In

particular, LIFO-DMWS guarantees bounded average delay for hybrid HT and LT flows

106



Number of Packets ×105
0 1 2 3 4 5

C
um

ul
at

iv
e 

P
ac

ke
t D

el
ay

×106

0

0.5

1

1.5

2

D
h

D
l1

D
l2

(a) Dynamics of cumulative packet delay.

x
100 101 102 103

1-
F

(x
)

10-5

10-4

10-3

10-2

10-1

100

Reference (Tail Index = 1)
Packet Delay: D

h

Packet Delay: D
l1

Packet Delay: D
l2

(b) Tail distribution of packet delay.

Figure 42. Queueing delay of a HT flow, i.e., Ah(t) ∈ PAR(1.5, 1), and two LT flows, i.e., Al1(t) ∈ Poiss(3)
and Al2(t) ∈ Poiss(2), under LIFO-DMWS.

under any admissible traffic arrivals without any knowledge of statistical information of the

arrivals. Performance evaluations validate our theoretical findings. The future research will

be the extension of LIFO-DMWS to multi-hop traffic flows with possibly feedback loops.

5.4 QoS-aware Adaptive Routing in Distributed Hierarchical SoftAir
Systems

SDNs have been recognized as a next-generation networking paradigm that decouples data

forwarding and control command. These decoupled SDNs bring centralized control over

the entire system, and enable dedicated QoS provisioning and fast route (re-)configuration

services. To this end, diverse QoS requirements from user applications in packet delay,

loss, and throughput should be supported by an efficient data transportation. In this section,

a QoS-aware adaptive routing (QAR) algorithm is proposed as network service in the desig-

nated multi-layer hierarchical SDNs. The distributed hierarchical control plane architecture

is first exploited to minimize signaling delay in large SDNs, through three-levels design of

controllers (i.e., the super, domain or master, and slave controllers). Furthermore, upon the

hierarchical control plane, the QAR algorithm is proposed with the aid of reinforcement

learning and QoS-aware rewards, achieving time-efficient, adaptive, and QoS-provisioning
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packet forwarding. Numerical results show that QAR outperforms the existing Q-learning

solution and provides fast convergence with guaranteed QoS, thus facilitating the practical

implementation in large-scale SDNs or software service-defined networks.

5.4.1 Motivation and Related Work

SDNs have the promise to dramatically improve network resource utilization, simplify net-

work management, reduce operating cost, and promote innovation and evolution [2, 3, 19].

However, despite of their “advertised” promising features, a reliable end-to-end data trans-

portation upon SDNs is hard to design due to the requirements of diverse quality-of-service

(QoS) provisioning and fast route (re-)configuration. In particular, aiming at upholding a

great variety of applications, SDNs should fulfill various QoS requirements such as in

packet delay, packet loss, and throughput. Moreover, as users and multi-tenancy applica-

tions greatly increase as well as network topology and traffic statistic change over time,

SDNs should also provide a fast and adaptive data transportation in order to react such

events in a real-time manner. Thus, it becomes a great challenge and also an urgent need

to support a time-efficient and QoS-aware routing service in large-scale SDNs or software

service-defined networks.

While the specification of OpenFlow [36] requires the logically centralized control

plane in SDNs, single controller scheme faces several crucial issues such as network scal-

ability, single-point failure, and frequent reporting control tasks, per-flow data supervision.

Recent work [95–97] focuses on distributed multi-controller platforms. In Onix [95], a

horizontally flat structure of all controllers is proposed and a general management API

is implemented to connect multi-controllers. In [98], a scalable clustering approach and

a self-learning adaptive mechanism are proposed to design and implement SDN controller

clusters. In Kandoo [96], a completely hierarchical model is proposed, including a logically

centralized root controller and local controllers, and local controllers can directly offload

the applications that do not need network-wide information to the underlying switches.

In Xbar [97], a recursive hierarchy design is proposed among multiple controllers that a
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lower-level controller is recognized as a switch by its upper controller. Facing these dis-

tributed SDN systems, an adaptive routing that exploits the system advantages and fulfills

QoS requirements in a timely manner is still unexplored.

In this section, we propose a QoS-aware adaptive routing (QAR) algorithm in our des-

ignated multi-layer hierarchical SDNs. First, inspired by the work of Kandoo [96] and

Xbar [97], a distributed hierarchical control plane architecture is introduced that combines

the advantages of both work and is complied with OpenFlow 1.2+. Specifically, the three

hierarchical levels of distributed controllers, including the super, domain (or master), and

slave controllers, and the switch subnets (i.e., clustering) are proposed. Exploiting such

a novel architecture, the control loads are shared and the signaling delay can be largely

reduced. Furthermore, with the aid of reinforcement learning (RL) [8] and our preliminary

study [99], QAR algorithm is proposed through the examination of an action rule, quality

function, long-term revenue, and system model with a reward function. Specifically, the

softmax action selection rule, state-action-reward-state-action (SARSA) [100] method for

quality update, and Markov decision process (MDP) with QoS-aware reward function are

introduced to realize an efficient, adaptive, and QoS-provisioning routing algorithm.

Inherited from RL, QAR enables four crucial features:

• It has fast adaptation to the current network and traffic states for the time-varying

multi-tenancy environment as well as network topology.

• It well distributes the traffic loads from QoS-aware rewards, avoiding congestions as

in shortest-path algorithms.

• It has great scalability due to scalable learning, easily including new devices in next

learning iteration.

• It supports customized requirements from its tunable parameters in and generic de-

sign of rewards.
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Figure 43. Multi-layer hierarchical control plane.

A rigid convergence analysis shows that QAR, based on the RL framework, has a sublin-

ear convergence rate, verifying fast adaptation of QAR to network dynamics. Moreover,

performance evaluation confirms that QAR outperforms the conventional Q-learning [8]

approach with great time-convergence and QoS provisioning in real backbone networks.

To the best of our knowledge, this work is the first to provide a QoS-aware adaptive routing

algorithm with preferred fast-convergence, through RL, in multi-layer hierarchical SDNs.

5.4.2 Multi-layer Hierarchical Control Plane Architecture

Based on the architecture designs of Kandoo [96] and Xbar [97], we propose a multi-

layer hierarchical control architecture that combines the advantages of these two existing

solutions and is complied with OpenFlow protocol [36]. The details of the proposed hierar-

chical control solution are explained as follows. The proposed architecture consists of a re-

cursive hierarchical control plane with three levels of controllers as shown in Figure 43(a).

While switches take charge of data forwarding and information collection of network sta-

tus, the slave controllers provide read-only access to switches and receive port-status mes-

sages from them. These slave controllers not only serve as the message dispatchers as

in [98] that ease the bottleneck of excessive control messages in the I/O frontend, but also

can provide some simple control functions, such as traffic admission control, flow or con-

gestion control, to share control workloads with domain controllers. Moreover, the domain

(or master) controllers, having full accesses to switches, receive asynchronous messages
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(e.g., Packet-IN [36]) for flow-setup requests and are capable to modify switches’ states

by sending control messages. Finally, the only one super controller, connecting to domain

controllers, also has full accessibility to switches and regulates the entire network func-

tionalities. The interaction between super controller and domain controllers fulfills global

flow setup and responds to every control action, including actions for switches’ or con-

trollers’ failures, migrations, load-balancing, etc. Furthermore, the slave controllers only

aim to offload control messages for various applications and do not require network-wide

information, largely saving the signaling overheads. Towards this, the logically centralized

control plane with global visibility is established by a physically distributed system. All

applications running upon SDN are unaware of the underlying distributed architecture.

A deployment example in a real backbone system of Sprint GIP network [5] is illus-

trates in Figure 43(b), where a red spot denote a slave controller with a group of switches

underneath, a blue device denotes a domain controller serving a switch subnet and possibly

more than one slave controller, and the green device denotes the super controller to super-

vise the entire system. Specifically, in [42], we provide an effective mechanism to choose

how many and where to place those controllers and how control messages should be routed

over the same in-band network such that there is minimum acceptable interference to data

traffic. One advantage of the design is that this architecture decouples the failure recovery

from path computation. In particular, the super controller designates a domain controller

whenever a failure occurs, and the domain controller computes the corresponding recovery

path to resolve the failure. What is more important, to ensure reliability and robustness

upon controllers’ failure, switches at the edge of a subnet can establish communication

with more than one domain controller. In that way, it allows easy control handover between

switch subnets with respect to their domain controllers. Furthermore, with full accessibil-

ity to switches, the super controller and domain controllers have the ability to identify the

cause of switch asynchronization and enable/disable the warning notification.

In spite of these considerable advantages, to realize an efficient adaptive routing upon
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the proposed architecture, the hierarchical structure is exploited to greatly minimize the

signaling delay between controllers and switches. The idea comes from (i) the signaling-

load distribution and (ii) parallel path computation. Specifically, each domain controller

is in charge of the signaling within its own switch subnet in such a way when the first

packet of a flow arrives into a specific subnet, the optimal route is solely computed by

the corresponding domain controller. Only when the destination switch of arriving flow

is outside the source switch’s subnet, the packet is then forwarded to the super controller

and multiple subnets (and domain controllers) will be involved in the path computation. In

particular, the super controller exclusively calculates the subnet-path, i.e., the set of subnets

that the packet flow will go through to reach its destination, with the aid of its global

visibility. Once the subnet-path is calculated, the super controller forwards the control

messages to the involved domain controllers in order to active their own path computations

within the respective subnet. As the optimal paths in different subnets can be computed

in parallel, the flow does not need to wait whenever it enters the next subnet along the

calculated subnet-path, thus minimizing the entire signaling delay.

5.4.3 QoS-aware Adaptive Routing (QAR)

Based on the designated distributed hierarchical control plane, we propose the QAR algo-

rithm with the aid of RL technique. We first introduce the learning framework, provide our

design of QoS-aware reward functions, and finally propose QAR.

Reinforcement Learning Framework: reinforcement learning (RL) [8], as a field of

machine learning, captures the problem that an agent/decision maker tries to learn the be-

havior of dynamic system through the interactions with the system. Specifically, at each

iteration, the agent receives the current state and the reward from the dynamic system, and

then performs the respective action according to its pat experience in order to increase the

long-term revenue via state transitions. The state and the reward are the two values that the

agent will receive from the system, whereas the action is the only input that the system will

receive from the agent. Different from the supervised learning techniques with an external
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knowledge supervisor, in RL, the agent must discover the best action that maximizes the

reward itself. This reward value indicates the success of agent’s action decisions, and the

agent learns which actions to be selected to provide the highest accumulated reward over

time, i.e., the long-term revenue. While agent’s actions affect not only the immediate re-

ward but also the subsequent one, the key feature of RL is to perform incentive solution

searching regarding system rewards. To realize this searching in an efficient way, the de-

sign challenge comes from the balance between action exploration and action exploitation,

where such a trade-off is well studied in [101]. In particular, the agent has to exploit the

past actions with great rewards, and to explore the system for better unknown actions at the

same time. It means both the exploitation and exploration needs to be pursued conjointly

for the optimal system performance. As there are many sophisticated algorithms that de-

tail this joint consideration into their trial-and-error designs, the RL only characterizes the

interaction procedures instead of providing another learning methods. In other words, any

learning algorithm can be seen and transformed into RL. In the following, based on the

learning technique, we provide several design ingredients that are used by our adaptive,

time-efficient, and QoS-aware routing.

Markov Decision Problem: States, Actions, and Rewards. In addition to an agent/decision

maker and the dynamic system, there are four main ingredients for the RL design: (i) the

action rule, (ii) the quality function, (iii) the long-term revenue, and (iv) the system model

with reward functions. Specifically, the action rule is the decision that will be taken by

the agent. It is the mapping from the perceived system states to the corresponding ac-

tions, and guides RL behaviors. Moreover, the quality function characterizes the quality of

each state-action pair that indicates the differences between current state and steady state.

Furthermore, the long-term revenue indicates the total rewards an agent can expect to accu-

mulate over time with respect to each system state. Whereas the reward is given after each

agent’s current action, this revenue shows the long-term desirability of states regarding the

future states that will be followed and their respective rewards. Last, the system model
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mimics the behavior of the real environment system, and gives a good reward prediction of

the next state and quality from the current ones. To this end, the MDP provides a systematic

modeling for the RL design. A MDP is denoted by the quadruple (S , A, P,R), where S de-

notes the finite state set, A the finite action set, P the set of state transition probabilities, and

R the reward set. We have exploited this MDP framework into our routing system with the

context of learning a routing strategy. We consider each switch along the routing path as a

state and each link emerging from a switch as an action to choose. The routing mechanism

then corresponds to the control policy that the agent will learn. Regarding QoS-awareness,

we further propose QoS-aware rewards that will be evaluated for all links and facilitate

RL with the optimal routing path over the network. The proposed routing mechanism in a

switch subnet is illustrated as follows:

• The source switch sends a new data flow to the destination switch. For each link

transmission, the controller (i) calculates the QoS-aware reward, (ii) executes the ac-

tion selection process for the next-hop, and (iii) updates the Q-value of the current

link. According to the selected routing path, the controller then installs the forward-

ing rules in the flow tables of intermediate switches. These rules will be followed by

the switches for their next-hop transmissions, up to the destination switch.

Note that in [102], while an end-to-end QoE model is also investigated with the designed

RL-based routing, two sets of flow transmissions (i.e., data and ACK flows) are needed to

complete the learning process. This easily causes great signaling overheads (i.e., ACK mes-

sages for QoE values) and possibly divergent routing strategies (e.g., the data path might

be unavailable for ACK transmissions due to node or link failure.) On the other hand, with

the aid of centralized control and global information accessibility in SDNs, we are able to

not only achieve one-way (i.e., data flow) RL-based routing, but also retain optimal routing

decisions by real-time adjusting route selection in regard to dynamic network conditions.

In the following, we examine the details of selection rules, the learning process with quality

functions, and reward designs for our routing mechanism.
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Action Selection Rule: the selection rule specifies an agent’s action selection and maps

the state to the action. It balances the trade-off between action exploitation and exploration

to maximize the quality value, as the agent aims to explore the state space in the beginning.

Three policies are widely-used, i.e., the greedy, the ε-greedy, and the softmax [103]. For

the greedy rule, the agent takes the action with the highest quality at every step. It simply

exploits the current agent’s knowledge base of state and quality function, and does not ex-

plore unknown states for possibly higher quality. This makes the rule undesirable when the

quality function is non-stationary, which changes over time. Moreover, ε-greedy balances

the current knowledge exploitation with action exploration that follows the greedy rule with

probability 1− ε and takes a random action with probability ε. It serves as an effective rule

when there are a great variety of possible actions. However, the drawback of ε is that when

it explores it chooses equally among all actions. This implies that it is as likely to choose

the worst-appearing action as it is to choose the next-to-best action, which is unsatisfactory

when the worst actions are very bad.

Towards this, we consider softmax and adopt it in our designated routing. Specifically,

regarding softmax, the probability π(i, j)
t (s, a) of choosing an action a(i, j)

t (i.e., switch i selects

switch j as the next-hop) with the current state s(i, j)
t (i.e., switch i along the routing path)

follows

π
(i, j)
t (s(i, j)

t , a(i, j)
t ) =

exp
(

Q(i, j)
t (s(i, j)

t ,a(i, j)
t )

τt

)
∑A(i)

b=1 exp
(

Q(i, j)
t (s(i, j)

t ,b(i, j)
t )

τt

) ,∀1 ≤ j ≤ A(i) (68)

where A(i) denotes the number of switch i’s neighbors, Q(i, j)
t (s(i, j)

t , a(i, j)
t ) denotes the cor-

responding quality function, and τt is a parameter called temperature. This time-varying

temperature controls the trade-off (balance) between exploitation of current states and ex-

ploration of future states. High temperature causes all actions to be equally probable (i.e.,

exploration), while low temperature favors the action with the maximum quality (i.e., ex-

ploitation of current knowledge base) that skews the rule toward a greedy one. In this way,

the temperature parameter is annealed over the training phase that has greater exploration
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in the beginning and greater exploitation near the end. It means τt remains a high value in

highly dynamic environments while decreases towards a low value in static environments

where the convergence is assured. To achieve the learning convergence in finite time, the

temperature is thus set as a linear function over time as

τt = −
(τ0 − τT )t

T
+ τ0, t ≤ T, (69)

where T denotes the time to reach the convergence, and τ0 and τT are the initial temperature

and last temperatures at time T , respectively. It implies that τt , 0 for all time and τt =

τT ≈ 0 for t ≤ T until any system-parameter change.

State-Action Quality Function: in addition to estimate the outcome quality solely by the

possible next system state, the agent can set up its quality function based on both the state

and action. Specifically, the quality function Q(s, a) is introduced that shows the quality

for taking action a at current state s. When the agent needs to choose an action for current

state, it simply calculates the quality function for each possible action and chooses the next

action according to these quality values. With the context of learning the routing strategy,

once the QoS-aware reward of a link is calculated, the controller will update the Q-value of

the link according to the policy. In the following, two methods for setting quality function

are provided as the conventional Q-learning [8] and SARSA [100], and SARSA is adopted

in our designated routing.

First, the well-known Q-learning, being as off-policy RL (i.e., a learner learns the value

of the optimal policy independently of the agent’s actions), updates Q-function as follows

Q(i, j)
t+1 (s(i, j)

t , a(i, j)
t ) := (1 − α)Q(i, j)

t (s(i, j)
t , a(i, j)

t ) + α
[
R(i, j)

t+1 + γmax
a

Q(i, j)
t (s(i, j)

t+1 , a)
]

(70)

where γ ∈ [0, 1) is the discount factor that determines the importance of future rewards,

α ∈ [0, 1) is the learning rate that determines the override extent of the newly acquired

information to the old one, and R(i, j)
t+1 is the immediate reward from selecting link i → j at

time t + 1. Parameters α and γ should be designed wisely according to specific applications

for preventing learning diverges. In Eq. (70), the agent updates the quality based on the
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maximum possible quality value among its actions. Specifically, the agent chooses and

takes action a(i, j)
t for current state s(i, j)

t via action selection rule, observes R(i, j)
t+1 and state s(i, j)

t+1 ,

and Q-function can be updated accordingly. The shortage of Q-learning comes from the

updating assumption that the optimal action with the maximum Q-value is always selected,

no matter what the agent actually does. This ignorance of agent’s actual actions might

danger the system operation due to possibly great negative rewards. On the other hand,

regarding on-policy RL (i.e., a learner learns the value of the policy being carried out by

the agent, including the exploration steps) of SARSA, the quality function is updated by

Q(i, j)
t+1 (s(i, j)

t , a(i, j)
t ) := (1 − α)Q(i, j)

t (s(i, j)
t , a(i, j)

t ) + α
[
R(i, j)

t+1 + γQ(i, j)
t (s(i, j)

t+1 , a
(i, j)
t+1 )

]
. (71)

In this time, the agent updates Q-function strictly on the knowledge base from the ex-

perience and iteratively improves the Q-value. Specifically in Eq. (71), different from

Q-learning, the agent uses the action and the state at time t + 1 to update quality value.

Thus, the only difference between these two methods is the way they set up for the future

reward. That is, whereas Q-learning utilizes the highest quality function at state s(i, j)
t+1 re-

garding all possible actions, SARSA adopts the quality function at state s(i, j)
t+1 with action

a(i, j)
t+1 . General speaking, Q-learning simply assumes an optimal action rule will be followed

in the future; SARSA utilizes the rule that the agent indeed follows in the future. It implies

that the agent with SARSA explicitly adopts the future reward that is really obtained, rather

than assuming the optimal action with highest reward will be taken.

QoS-aware Reward Design: we propose QoS-aware reward functions that suits our

design of QoS-aware routing. Specifically, based on RL, the agent finds the routing path

with the maximum QoS-aware reward with regard of traffic types and users’ applications.

TABLE 5 summarizes diverse QoS requirements of widely-applied traffic and applications.
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Table 5. QoS Requirements With Respect to Traffic Types and Applications.
Traffic Type Application QoS-awareness

Elastic

Telnet connection;
Delay, losses

FTP session
Simple web page

Delay
(HTTP)

Heavy web page
Throughput

(HTTP)
STMP/POP3/IMAP Losses
FTP data connection Throughput

Data with Telnet Losses

Inelastic
Real-time multimedia

Delay, throughput,
jitter

Control message Delay

For example, real-time traffic, inelastic to adapt packet transmission rates, has great QoS-

awareness among others. A QoS-aware reward function is proposed as follows:

R(i, j)
t+1 := R(i→ j|st ,at)

= −g(a(i, j)
t ) − β1(θ1delayi j + θ2queue j) + β2loss j + β3(φ1B1i j + φ2B2i j), (72)

which shows that the system at state st, receiving action at, forwards packets from switch i

to switch j. In Eq. (72), g(·) denotes the cost to take action at that reveals the action impact

to switch operations, and β1, β2, β3, θ1, θ2, φ1, φ2 ∈ [0, 1) are tuneable weights, determined

by the QoS requirements of flow. Aiming at QoS provisioning, the cost g is set to a constant

value over actions, and the QoS-aware functions in Figure 44 are defined as follows:

delayi j =
2
π

arctan(dl
i j −

∑A(i)
k=1 dl

ik

A(i)
); (73a)

queuei j =
2
π

arctan(dq
i j −

∑N
k=1 dq

ik

N
); (73b)

lossi j = 1 − 2%lossi j; (73c)

B1i j =
2BWA

i j

BWT
i j

− 1; (73d)

B2i j =
2
π

arctan(0.01(BWA
i j −

∑N
k=1 BWA

ik

N
)), (73e)

where dl
i j and dq

j are link transmission delay and packet queueing delay from switch i to
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Figure 44. QoS-aware reward functions.

switch j, respectively, N is the number of switches in the considered switch subnet, and

%lossi j, BWA
i j, and BWT

i j characterizes the packet loss, available bandwidth, and total band-

width of link i → j, respectively. Eq. (73a) considers the link delay of link i → j com-

paring to other possible next hops, Eq. (73b) considers the queueing delay with respect to

the average delay over the subnet, and Eq. (73c) characterizes the loss rate. Note that the

different comparisons in Eq. (73a) and Eq. (73b), i.e., the neighbors A(i) and the switches

N in a subnet, respectively, indeed provides the thorough consideration of packet latency

over the hierarchical structure and switch subnets. Eq. (73d) and Eq. (73e) indicate the

available bandwidth of link i→ j and that with respect to the average link bandwidth over

the subnet, respectively. From Figure 44, all these QoS functions have the values within

[−1, 1], where the value closes to one means the link selection is preferred by the respective

parameter and otherwise the value closes to negative one as the penalty.

QoS-aware Adaptive Routing (QAR): inspired by our previous study of adaptive com-

putation framework for routing paths [104], we propose a QoS-aware adaptive routing
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Figure 45. Flow diagram of QAR.

(QAR) in Algorithm 8 with a flow diagram in Figure 45 through reinforcement learning

and designated QoS-aware rewards in multi-layer hierarchical SDNs. Specifically, as men-

tioned in Section 5.4.2, this distributed SDN system consists of various switch subnets, and

each subnet has a domain controller, one or many slave controllers, and many underlying

switches. Moreover, domain controller takes charge of path calculation for each incoming

flow, while slave controllers gather the network state and send the information updates to

the domain controller shown in Figure 45. Thus, QAR determines the forwarding path in-

side each subnet for the respective domain controller and the global forwarding direction

among subnets for the super controller. The procedures are explained as follows.

When a new flow arrives to a switch, the switch forwards the first packet of the flow

to the domain controller and requests the forwarding path. The domain controller then

updates the current network state regarding the latest information from slave controller(s),

exploits the proposed RL in Algorithm 9 to select a feasible path with respect to QoS

requirements of the flow, and modifies the forwarding tables of switches along the selected

path. Furthermore, if the domain controller realizes that the destination switch does not

belong to its subnet, the first packet will also be sent to the super controller. The super
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controller then performs Algorithm 9 to find the forwarding direction among subnets (i.e.,

subnet-path), and send the corresponding notifications to the domain controllers of involved

subnets. In this way, the RL executed by the super and domain controllers conjointly gets

the global optimality. In particular, the path searching of these controllers can be executed

simultaneously, thus saving much computation time to facilitate time-efficient QAR.

Note that the computation loads, distributed among three levels of controllers, are

largely reduced through this hierarchical load-sharing. Moreover, being complied with

OpenFlow, if there exists the matching entry of the incoming flow, the switch will not

send the packet to domain controller but simply forwards the packet following the exist-

ing matching. Thus, QAR successfully provides a QoS-aware, time-efficient, and adaptive

routing algorithm, particularly effective for large-scale SDNs. Finally, such a better rout-

ing function with the proper consideration of QoS requirements and changes of network

status offers one of the best candidate for an innovative service-enabled, virtualized, and

generalized network function that could be easily integrated with other network planning

and management systems.

Algorithm 8: QoS-aware Adaptive Routing (QAR).
1 New flow f arrives to a switch in the subnet.
2 Switch forwards the first packet to domain controller E f .
3 if Dest( f ) is not in the same subnet then
4 Super controller executes Algorithm 9;
5 Domain controllers along the subnet-path executes Algorithm 9;
6 else
7 Domain controller E f executes Algorithm 9;
8 end
9 The rest packets of flow are forwarded following the established flow tables in

switches.

5.4.4 Performance Evaluation

In this section, we compare our proposed QAR with conventional learning algorithm in a

practical Sprint GIP network [5] and multi-layer hierarchical controller architecture as in

Figure 43(b). There are 25 deployed nodes as switches and 53 links, and actual link delay
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Algorithm 9: Reinforcement Learning (RL) for QAR.
1 Initialize Q0(s0, a0) = 0 and R0 from Eq. (72).

At time t:
2 Choose action at according to softmax in Eq. (68).
3 Observe st+1 and Rt+1.
4 Update Qt+1 function according to Eq. (71).
5 Continue from step 2 at time t := t + 1.
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Figure 46. Link utilization with respect to different step-size parameters (α,γ) of QAR.

profiles are provided in [5].

Impacts of Step-Sizes in QAR Algorithm: based on RL, the performance of QAR is

governed by the selection of step-size parameters (α,γ) as shown in Eq. (71). In particular,

α adjusts the error that is included in the Q updating; γ ∈ [0, 1) has zero value if the routing

only considers the current reward and acts as greedy algorithm, and has the value close to

one if the routing considers the long-term revenue. Figure 46 provides the percentage of

link utilization of a suitable path via QAR with respect to (α,γ). It shows QAR converges
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Figure 47. Time evolution of QAR.

only when γ ∈ [0.7, 0.99], which implies the recent action indeed affects system perfor-

mance more than the future ones. Moreover, with these large γ values, QAR performs

better with few fluctuations when α ∈ [0.5, 1). Thus, these evaluations provide the pre-

ferred ranges of the step-size parameters with regards of routing performance, facilitating

the practical implementation of QAR.

Performance Comparison of QAR Algorithm and Conventional Q-Learning [8]: we ex-

amine the time evolution of QAR without and with QoS provisioning, and compare QAR

with the conventional Q-learning [8]. First, Figure 47 shows the QAR results with re-

spect to different time-to-live (TTL) values that denote the maximum allowable number of

searching iterations in each episode (TTL is set as 100). In particular, without QoS provi-

sioning, the weights β1, β2, β3 in Eq. (72) are set to zero, and Figure 47(a) shows that the

greater the TTL is the faster the QAR converges. However, there exists a trade-off between
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Figure 48. Comparison between QAR and conventional Q-learning [8].

algorithm convergence and end-to-end delay. Specifically, while an increasing TTL brings

better convergence, it also increases the computation time of each searching episode and

thus increases end-to-end delay. Figure 47(b) further shows the results with QoS provi-

sioning, where β1 = β2 = β3 = θ1 = φ1 = 1 and θ2 = φ2 = 0.5. It indicates that the longer

convergent time is required when considering QoS requirements. In particular, while QAR

does not converge when TTL= 10, it requires double episodes to converge when TTL= 50.

For TTL= 100, QAR takes almost the same episode to converge with or without QoS pro-

visioning. Note that the fluctuations after the graph converges means that even finding a

suitable forwarding path, QAR still tries to find the better solution with greater reward.

Next, Figure 48 shows the comparison between QAR and Q-learning. It indicates that both

approaches have similar convergent performance without QoS provisioning, but QAR out-

performs with QoS provisioning. Thus, we successfully provide an effective and efficient
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routing algorithm upon multi-layer hierarchical architecture for large-scale SDN.

5.4.5 Highlights

In this section, QAR is proposed as network service via RL in multi-layer hierarchical

SDNs. This distributed hierarchical control plane is first introduced to minimize the sig-

naling delay, serving as a realistic SDN architecture. QAR algorithm is then proposed

to enable adaptive, time-efficient, and QoS-aware packet forwarding upon the proposed

architecture. Performance evaluation confirms that QAR outperforms the conventional Q-

learning approach with fast sublinear convergence when considering QoS provisioning.

We have provided a novel network service that facilitates on-line and QoS-aware routing

in practical implementation of large-scale software service-defined networks.
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CHAPTER 6

CONCLUSIONS

In this thesis, we propose SoftAir as a new paradigm towards 5G wireless networks. Sof-

tAir provides high flexible architecture, which can accelerate the innovations for both

hardware forwarding infrastructure and software networking algorithms through control

and data plane separation, enable the efficient and adaptive sharing of network resources

through network virtualization, achieve maximum spectrum efficiency through cloud-based

collaborative baseband processing, encourage the convergence of heterogeneous networks

through open and technology-independent interfaces, and enhance energy efficiency through

the dynamic scaling of computing capacity of the SD-BSs. First, we gave an detailed

overview of state-of-the-art W-SDN architectures. Second, we introduced SoftAir architec-

ture and four key design elements. Third, to realize the promising properties of SoftAir, we

proposed the essential management tools, including control traffic balancing, optimal net-

work planning, resource-efficient network virtualization, and QoS-aware traffic classifier.

Fourth, we presented the novel software-defined traffic engineering solutions, including

dynamic BS formation, throughput-optimal scheduling, and QoS-aware adaptive routing.

The contributions in each chapter are summarized as follows:

• In Chapter 2, we gave a detailed overview of priori W-SDN studies. We mentioned

the major problems of scalability challenges and vendor-specific device configura-

tion, facing by the current cellular architectures (e.g., LTE and LTE-A). We sum-

marized the existing wireless work that considers SDN and NFV solutions and con-

tributes to W-SDN trends. Moreover, we investigated several integrated W-SDN and

NFV solutions and pointed out the missing parts in all related studies.

• In Chapter 3, we introduced SoftAir architecture and provided a completed qualita-

tive comparison between SoftAir and existing architectures. In particular, four key

design elements of SoftAir architecture were presented as scalable software-defined
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planning, fine-grained fronthaul network decomposition, seamless OpenFlow incor-

poration, and network virtualization capacity. Also, the qualitative comparison of

existing W-SDN solutions and SoftAir are provided with regard to architecture, scal-

ability, network virtualization, traffic engineering solutions, and research community.

• In Chapter 4, we proposed the essential management tools to realize the promising

properties of SoftAir. Specifically, first, given single-controller SoftAir, the control

traffic balancing was proposed that enabled timely delivery of in-band control mes-

sages with minimum average delay. The simulation results confirmed that our design

successfully demonstrated communication efficiency with at least 80% delay reduc-

tion via a fast and low complexity approach. Second, regarding multiple-controllers

SoftAir, the optimal network planning was proposed that jointly optimized control

traffic balancing and controller placement with minimum required controllers and

the control traffic delay. The results showed that the proposed control scheme, based

on the minimum number of required controllers, demonstrated communication ef-

ficiency with at least 73% delay reduction, close to the benchmark performance.

Third, the network virtualization was introduced that provided a multi-tenancy man-

agement framework to enable the jointly optimized design of QoS-aware virtual-

ization and routing by tenant isolation and prioritization as well as flow allocation,

fulfilling QoS requirements of tenants’ applications. Performance evaluation showed

that our design outperformed the conventional approaches with less shared edges,

congestion latency, and traffic delay for multi-tenants. Forth, the traffic classifier

was proposed that jointly exploited deep packet inspection and semi-supervised ma-

chine learning so that accurate traffic classification can be realized, while requiring

minimal communication between the network controller and SD-switches (SD-BSs).

Based on the real Internet data set, the simulation results show the proposed classifi-

cation framework can provide good performance in terms of classification accuracy

and communication costs.
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• In Chapter 5, we developed several novel software-defined traffic engineering solu-

tions for SoftAir. In particular, first, through W-SDN SoftAir architecture, a dynamic

BS formation was developed that achieved a joint optimal design of RRH-UE asso-

ciations and beamforming weights of millimeter-wave RRHs to facilitate ubiquitous

millimeter-wave coverage. Simulations showed that our solution can always satis-

fied UEs’ QoS requirements with millimeter-wave transmissions and significantly

outperformed conventional association schemes with suboptimal beamforming. Sec-

ond, a throughput-optimal and delay-based maximum power-weight scheduling for

single-hop flows with heavy-tailed traffic was introduced. Specifically, the DMPWS

and its variant IU-DMPWS were proposed and proved to be of throughput optimality

with respect to moment stability. The IU-DMPWS policy was also favored among

scheduling algorithms for practical implementation because of its immunity to the

impact of HT traffic along with limited signaling overhead. Third, LIFO-DMWS

was proposed to achieve throughput-optimality with heavy-tailed traffic. In partic-

ular, LIFO-DMWS guaranteed bounded average delay for hybrid HT and LT flows

under any admissible traffic arrivals without any knowledge of statistical informa-

tion of the arrivals. Forth, QAR algorithm was proposed as network service via

RL in multi-layer hierarchical SoftAir. Performance evaluation confirmed that QAR

outperformed the conventional Q-learning approach with fast sublinear convergence

when considering QoS provisioning.

Through the synergy of SDN and NFV solutions, the developed SoftAir in this thesis lays

out the foundation for 5G wireless software-defined cellular systems.
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