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SUMMARY 

 

 Multiscale modeling of material systems demands novel solution strategies to 

simulating physical phenomena that occur in a hierarchy of length scales. Majority of the 

current approaches involve one way coupling such that the information is transferred from 

a lower length scale to a higher length scale. To enable bi-directional scale-bridging, a new 

data-driven framework called Materials Knowledge System (MKS) has been developed 

recently. The remarkable advantages of MKS in establishing computationally efficient 

localization linkages (e.g., spatial distribution of a field in lower length scale for an 

imposed loading condition in higher length scale) have been demonstrated in prior work. 

In prior work, the viability and computational advantages of the MKS approach were 

demonstrated in a number of case studies involving multiphase composites, where the local 

material state in each spatial bin of the volume element was permitted to be any one of a 

limited number of material phases (i.e., restricted to a set of discrete local states of the 

material). As a major extension, the MKS framework has been extended for polycrystalline 

aggregates which need to incorporate crystal lattice orientation as a continuous local state. 

Another important extension of the MKS approach that permits calibration of the influence 

kernels of the localization linkages for an entire class of low to moderate contrast material 

systems will also be presented. This major extension of the MKS framework for elastic 

deformation of polycrystals is achieved by employing compact Fourier representations of 

functions defined in the crystal orientation space. The viability of this new formulation will 

be presented for several case studies involving single and multi-phase polycrystals. 
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INTRODUCTION 

 

 Most advanced material systems exhibit multiple length and temporal scales that 

play an important role on the material property which is strongly connected to 

multifunctional performance characteristics of the material system. It is very well 

acknowledged that chemical composition alone has a tremendous value in determining the 

performance characteristics. However, it is not only the chemical composition that control 

these characteristics, but the details of three dimensional hierarchical structure of the 

material that spans several length scales. Below in Figure 1, the atomistic scale, mesoscale 

and macroscale of a component can be seen. Even though the relationships between the 

material structure at multiple length scales shown in Figure 1, its evolution through 

different manufacturing processes and the macroscale properties are acknowledged to 

exist, the traditional approaches used in materials development has proven to be slow, 

expensive and effort-intensive. These efforts are heavily based on experimental approaches 

and they are slow, customized and not extensible to other material systems. For instance, 

it takes roughly 20 years from discovering an advanced material system to deploy it in a 

product in aerospace industry [1]. 

 Indeed, the example above does not indicate that modeling and simulation are not 

included in design and discovery of new material systems. The modeling and simulation 

cover a big area of modern materials science research. However, optimization of material 

systems through modeling and simulation has not progressed as fast as the design of 
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components. For this manner, Integrated Computational Materials Engineering (ICME) 

approach was published in 2008 [2]. It aims to optimize the materials systems, 

manufacturing processes and component design before the material system is deployed in 

the product. Of course this approach is not limited to simple exchange of information 

between component design, manufacturing processes and computational materials science 

tools but it can also include open science tools, materials infrastructure, database and 

knowledgebase management, etc. 

 

Figure 1: Some selected material length scales (from atomistic scale to macroscale) 

 Other than ICME, an initiative called Materials Genome Initiative (MGI) was 

launched in 2011 [1]. The initiative aims to integrate computational tools, experimentation 

and data informatics for accelerated materials development and design by bringing 

materials innovators, researchers and industry partners together through a materials 

innovation infrastructure. With this infrastructure, it is desired to deploy advanced 
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materials systems in half the time at a reduced cost than the traditional materials 

development approaches. 

 It should be noted that all these efforts focus on building/identifying processing-

structure-property (P-S-P) linkages. Even though there has not been a rigorous and generic 

framework that can extract these linkages efficiently, in the past decades, materials 

scientists found out that not all details in multiple scales play an important role on a selected 

property (e.g. only crystal lattice orientation and thermodynamic phase identifier have 

significant effect on elastic properties). Hence, the efforts are directed to extract myriad 

details of material internal structure that are important to selected technology application. 

In other words, based on the experiences and insights on the relationships between the 

manufacturing processes, material internal structure and the performance characteristics, 

the focus is now on extracting and building the P-S-P linkages for advanced materials 

development. 

 Process - Structure - Property Linkages 

 The crux of the knowledge required to accelerate materials design and development 

lies in process-structure-property (P-S-P) relationships (see Figure 2). Process space 

defines all the possible manufacturing processes related to that material system in interest. 

These processes can involve machining, casting, forming, sintering, annealing, etc. One 

should keep in mind that all these different processes make a point in process space as well 

as the permutations of these processes [3]. These are called hybrid process routes and 

different routes essentially leads to distinct structures. Hence, the number of process routes 

that can be realized in process space for a material system is essentially infinite. Similarly, 
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structure space contains all the possible structures that can theoretically be defined for a 

selected material system. On the other hand, property measure is directly connected to 

performance characteristics and in our case, it indicates physical properties of a material 

structure (yield strength, elastic stiffness, thermal conductivity, etc). 

 Initial efforts were focused on linking a manufacturing process to a property 

measurement of the material system (simply linking process space to property space). 

These efforts involved extremely expensive and time consuming experimental techniques. 

The challenge in this approach lies in the fact that process space is not a continuous space. 

Following a different hybrid route or changing the sequences of a combination of multiple 

processes does not correspond to a change with an interpretable pattern in property space. 

In other words, the interpolation in process space is not a meaningful task, rendering every 

single hybrid route in this space a discrete point. With the inclusion of structure in the 

connection between the process and property spaces, there is a tremendous potential to 

actually build these linkages in a more generic and extensible way. Since any point in 

structure space can be defined in a statistical (or probabilistic) manner, the interpolation 

between properties becomes possible. 

 P-S-P relationships have been usually formulated with a flow from processing to 

structure and from structure to property [4]. As stated before, there is no direct obvious link 

between the process and property space. Hence, the quantification of structure plays in 

important role in exploring the P-S-P relationships [5-7]. In Figure 2 shown the P-S-P 

spaces. The conventional approach in exploring these relationships involved a bottom-up 

flow of information. Olson [4] explains this flow of information as the deductive cause-

and-effect logic of science. On the other hand, the top-down flow of information is seen as 
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the inductive goal-means relations of engineering flow. The top-down flow of information 

is realized through considered invertible linkages which essentially constitute materials 

design.  

 

Figure 2: Process, structure and property spaces.  

 Hierarchical Multiscale Modeling 

 The successful design and manufacture of new/improved materials with vastly 

enhanced properties or performance characteristics are contingent on the availability of a 

computational framework that efficiently bridges the relevant hierarchical length/structure 

scales in the material (also referred to as hierarchical multiscale modeling) [4, 8-12]. In 

most hierarchical multiscaling approaches, the focus has thus far been in communicating 

the effective properties to the higher length scales, i.e. on homogenization. On the other 

hand, communicating the information from higher length scale to a lower length scale is 

called localization. As an example, localization may involve the spatial distribution of the 

response field of interest (e.g. stress or strain rate fields) at the microscale (on a 

representative volume element) for an imposed loading condition at the macroscale. In 
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conventional hierarchical multiscale models, homogenization is handled by solving the 

governing field equations in a lower length scale. Then, the effective property of the 

volume in lower length scale is transferred to a higher length scale as a single 

(homogenized) property, which is the representative property of the material neighborhood 

in the lower length scale. However, localization is as important as homogenization if not 

more important. The difficulty in implementing localization in a hierarchical multiscale 

model lies in solving the governing field equations at a lower length scale. This becomes 

computationally inefficient if the space of microstructures that have to be explored is too 

large. Hence, there is often very little information passed from higher length scale to lower 

length scale in hierarchical multiscale modeling. Historically, the multiscale materials 

modeling efforts have focused on only one way of transfer of information (either 

homogenization or localization). Even though both homogenization and localization have 

been incorporated to physics-based hierarchical multiscale modeling [13-16], it was shown 

in previous studies that employing data-based approaches have tremendous advantages in 

terms of computational efficiency [17-26]. 

 Materials Knowledge System 

 In recent years, a novel, computationally efficient, bi-directional, scale-bridging 

framework called materials knowledge systems (MKS) has been formulated [19, 22-25, 

27]. In the MKS framework, the focus is on expressing the localization relationships of 

interest in the form of a simple algebraic series whose terms capture systematically the 

individual contributions from a hierarchy of local microstructure descriptors. The specific 

form of the algebraic series used in the MKS approach is adopted from the well-established 

statistical continuum theories [28, 29]. In both of these approaches (MKS and the statistical 
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continuum theories), the localization linkage takes the form of a series where each term is 

expressed as a convolution product of a physics-capturing kernel with a higher-order local 

microstructure descriptor. However, the main difference between the two approaches is 

that the localization linkage in the MKS approach is calibrated to datasets obtained from 

established numerical approaches for the materials phenomena of interest. For example, in 

studies of micromechanical phenomena, the physics-capturing kernels in the MKS linkages 

are calibrated to results obtained from finite element models for a diverse set of example 

microstructures. The most impressive benefit of the MKS approach lies in the dramatic 

reduction of the computational cost, often by several orders of magnitude compared to 

numerical approaches typically employed in microstructure design problems. The MKS 

methodology has thus far been successfully applied to capturing thermo-elastic stress (or 

strain) distributions in composite representative volume elements (RVEs), rigid-

viscoplastic strain rate fields in composite RVEs and the evolution of the composition 

fields in the spinodal decomposition of binary alloys [19, 23, 24].  

 Almost all of the case studies explored thus far have been restricted to composite 

material systems with a limited set of discrete local material states (i.e. two-phase or three-

phase microstructures). However, most materials of interest in emerging technologies 

exhibit local states that are much more complicated. For example, most advanced structural 

materials exhibit polycrystalline microstructures, where the spatial distribution of the 

crystal lattice orientations at the microscale plays an important role in controlling their 

effective properties. High throughput evaluation of the responses of a large set of 

microstructures (as one might need in optimizing the material performance in a selected 

application) with such complex local states requires a major extension of the MKS 
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framework that allows efficient treatment of tensorial local states (e.g. crystal lattice 

orientation) and their associated continuous local state spaces. In this regard, it should be 

recognized that it is possible to treat continuous local states simply by binning the 

continuous local state space (as described in our earlier work [19]). However, a primitive 

binning of the local state space is expected to prove highly inefficient, computationally, in 

capturing accurately the localization linkages of interest, especially in situations where the 

microscale response in the material microstructure shows high sensitivity to the local state 

(e.g. plastic response of crystalline states).  

 Problem Statement and Motivation 

 The localization in hierarchical multiscale modeling is a computationally 

inefficient task due to solving governing field equations in lower length scale. The 

motivation behind this dissertation is to accelerate the localization in hierarchical 

multiscale modeling for polycrystalline aggregates through data-driven MKS approach. It 

is presented in this dissertation that recently developed novel generalized MKS framework 

allows a rigorous treatment of the complex local state variable, crystal lattice orientation 

through compact GSH basis functions. It should be noted that GSHs have already been 

demonstrated to produce highly efficient and compact spectral descriptions of functions 

defined on the orientation space in other applications in prior literature [11, 30-44]. It will 

be shown MKS approach predict the local response field orders of magnitudes faster than 

conventional physics based models. The viability of the new MKS formulation presented 

in this dissertation is demonstrated with case studies of both single phase [17, 20] and 

multiphase polycrystals. 
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 Chapter 2 summarizes some fundamental mathematical concepts that are required 

to follow the derivations and formulations employed in this dissertation. In Chapter 3, a 

generalized MKS framework will be derived from Kroner’s expansion and a templated 

workflow of MKS approach will be presented. In Chapter 4, 5 and 6, MKS case studies for 

single phase polycrystalline materials, a broad class of single phase polycrystalline 

materials and multiphase polycrystalline materials are presented, respectively. In Chapter 

7, the results of the new generalized MKS framework is discussed and in Chapter 8, the 

potential new directions for MKS are discussed. 
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REVIEW OF FUNDAMENTAL CONCEPTS 

  

 This chapter includes the review of some fundamental concepts that are required to 

follow the derivation and expressions used in the case studies. Even though this section 

summarizes the most important properties of the fundamental mathematical concepts in 

interest, readers should keep in mind that the information shared about these concepts in 

this thesis is far from being comprehensive. Fortunately, these concepts are utilized on a 

daily basis by a very large number of scientists from a wide range of disciplines. Hence, 

there are numerous online references and textbooks which includes these theories in a 

systematic and detailed manner. As quick references, readers can find detailed information 

about these concepts in [45-50]. 

 Fourier Series 

 Fourier series are sum of sine and cosine series to represent periodic functions. If a 

function, 𝑓(𝑥), is periodic, then: 

𝑓(𝑥) = 𝑓(𝑥 + 𝑝) (1) 

where 𝑝 is a positive number which represents the period such that the function repeats 

itself after every interval of 𝑝. This also implies that the function is also periodic on the 

intervals of multiples of this number (i.e. 𝑓(𝑥) = 𝑓(𝑥 + 𝑛𝑝) where n is any integer). Let 

us assume the period, 𝑝, of the function 𝑓(𝑥) is 2𝜋. Then, this function can be represented 

with Fourier series as below: 
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𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑛 𝑐𝑜𝑠(𝑛𝑥) + 𝑏𝑛 𝑠𝑖𝑛(𝑛𝑥)

∞

𝑛=1

 (2) 

where 𝑎𝑛 and 𝑏𝑛 are the coefficients of the series (can be called Fourier coefficients as 

well). On the other hand, 𝑎0 term is the constant term of the representation (in some 

literature it is also called bias). From Eq. (2), it can be seen that each monomial in these 

series has a period of 2𝜋. Theoretically, if one keeps infinite number of terms in the Eq. 

(2), the right side of the equality is an exact representation. 

 The most important part of the Fourier series is the coefficients which characterize 

the representation of the function. These coefficients can be found from orthogonality of 

trigonometric functions. Two functions are called orthogonal if their integral (or inner 

product) over a period 𝑝 is zero for 𝑓 ≠ 𝑔: 

〈𝑓. 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑝/2

−𝑝/2

= 0  𝑤ℎ𝑒𝑟𝑒 𝑓 ≠ 𝑔 (3) 

The orthogonality rule holds for sine and cosine functions. By taking the equality in Eq. 

(3) in consideration, similar expressions can be written for trigonometric functions: 

∫ cos(𝑛𝑥) cos(𝑚𝑥)
𝜋

−𝜋

= 0   ,   (𝑛 ≠ 𝑚) 

∫ sin(𝑛𝑥) sin(𝑚𝑥)
𝜋

−𝜋

= 0   ,   (𝑛 ≠ 𝑚) 

(4) 

It should be kept in mind that the limits of integral are taken as from –𝜋  to 𝜋 as an example.   

The expression holds for any set of limits as long as the period is kept as 2𝜋. To obtain the 

definitions of Fourier coefficients in Eq. (2), we multiply each side of Eq. (2) with 1, 
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𝑠𝑖𝑛(𝑚𝑥), 𝑐𝑜𝑠(𝑚𝑥), then take integral of both sides for all 3 cases. Then, we can reach the 

expressions below: 

𝑎0 =
1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝜋

 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) 𝑐𝑜𝑠(𝑛𝑥) 𝑑𝑥

𝜋

−𝜋

 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) 𝑠𝑖𝑛(𝑛𝑥) 𝑑𝑥

𝜋

−𝜋

 

(5) 

The Fourier representation in Eq. (2) can be repeated for any arbitrary period 𝑝: 

𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑛 𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝑝
) + 𝑏𝑛 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑝
)

∞

𝑛=1

 (6) 

where the Fourier coefficients 𝑎0, 𝑎𝑛 and 𝑏𝑛 can be written as: 

𝑎0 =
1

𝑝
∫ 𝑓(𝑥)𝑑𝑥

𝑝/2

−𝑝/2

 

𝑎𝑛 =
2

𝑝
∫ 𝑓(𝑥) 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑝
) 𝑑𝑥

𝑝/2

−𝑝/2

 

𝑏𝑛 =
2

𝑝
∫ 𝑓(𝑥) 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑝
) 𝑑𝑥

𝑝/2

−𝑝/2

 

(7) 

From this point on, orthogonality will play a major role in the utilization of different basis 

functions in the localization relationships of MKS framework. The readers are strongly 

encouraged to follow the derivation of Fourier coefficients from a detailed source as it will 

be shown that in all of the case studies shown in this dissertation will involve Fourier 
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coefficients in the representation of functions. Hence, employing orthogonality and Fourier 

coefficients have the utmost importance in deriving the expression used in MKS 

framework. 

 Fourier Transform 

 Fourier transform is a very common tool in analyzing the signals in frequency 

domain. It is a remarkable tool that by simply applying the transform to a signal, we can 

extract or identify information about the signal as well as manipulating it in a way that we 

cannot achieve in time domain. Let 𝑓(𝑥) be a function in time domain with an input signal 

of 𝑥 which represent time, then 𝑓(𝑥) can be written in frequency domain as: 

𝐹(𝑘) = ∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝑘𝑥𝑑𝑥
∞

−∞

 (8) 

where 𝑘 is the frequency and 𝑖 is √−1. The operation in Eq. (8) is called Fourier transform 

(or forward Fourier transform) and 𝐹(𝑘) indicates how much amplitude 𝑓(𝑥) has at 

frequency 𝑘. It should be expressed strongly that there is one-to-one mapping between 

signal in time domain, 𝑓(𝑥) and signal in frequency domain, 𝐹(𝑘). Thus if we know a 

frequency response of a signal, 𝐹(𝑘), then we can obtain the signal in time domain with 

inverse Fourier transform and it can be written as: 

𝑓(𝑥) = ∫ 𝐹(𝑘)𝑒2𝜋𝑖𝑘𝑥𝑑𝑘
∞

−∞

 (9) 

 Another way of expressing forward and inverse Fourier transforms is through 

angular frequency. In Eq. (8) and (9), 𝑘 is the ordinary frequency which is measured in Hz. 
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If the frequency response is defined in terms of angular frequency, 𝜔 (which is 2𝜋𝑘 and 

measured in rad/s), then Eq. (8) can be rewritten as: 

𝐹(𝜔) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝜔𝑥𝑑𝑥

∞

−∞

 (10) 

The way Fourier transform is written depends on the choice. But historically, physicists 

preferred using angular frequency as an independent variable in frequency domain, while 

mathematicians usually preferred ordinary frequency. For consistency from this point on, 

the functions in frequency domain will be defined in terms of ordinary frequency, 𝑘. 

 Fourier transform is the central tool for scientists involved in digital signal 

processing. Hence, the input domain is usually called the time domain. However, today 

Fourier transform is employed by scientists from a wide range of disciplines and its 

utilization is not limited to signals in time domain. In our case, Fourier transform is applied 

in spatial domain. If 𝑓(𝑥) is a periodic function with a period of 𝑇, the expressions in Eq. 

(8) and (9) can be rewritten as below: 

𝐹(𝑘) =
1

𝑇
∫ 𝑓(𝑥)𝑒−

2𝜋𝑖𝑘𝑥
𝑇 𝑑𝑥

𝑇/2

−𝑇/2

 (11) 

𝑓(𝑥) =
1

𝑇
∑ 𝐹(𝑘)𝑒2𝜋𝑖𝑘𝑥

∞

𝑘=−∞

 (12) 

Attention must be paid to Eq. (12). If 𝑇 goes to infinity, this expression yields to Eq. (9). 

These formulations are especially important in representation of aperiodic signals with 

Fourier series. Even though these expressions are very general and extensible to any real 

function, we are particularly interested in the discrete format of signals. Since a very large 
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percentage of existing data is stored today in a digitized environment, discrete 

representations and transforms have been heavily utilized in the MKS framework. 

 Discrete Fourier Transform (DFT) 

 As stated in the previous subsection, all of the data generated and used in this thesis 

is represented as digital signals and stored in accordingly suitable digitized environments. 

Hence, discrete Fourier transform (DFT) plays a major role in calibrating influence 

functions. 

 Let 𝑓𝑥 be a discrete signal where of 𝑥 = 0, 1, … ,𝑁 − 1 and is assumed to be 

periodic over an interval of [𝑎, 𝑏], then the discrete Fourier transform (DFT) of 𝑓𝑥 can be 

written as: 

𝐹𝑘 = ℑ(𝑓𝑥) = ∑ 𝑓𝑥𝑒
−

2𝜋𝑖𝑘𝑥
𝑁

𝑁−1

𝑥=0

 (13) 

where ℑ( ) represents the DFT operation and 𝐹𝑘 are the Fourier coefficients of signal 𝑓𝑥. 

Indeed, one-to-one mapping between the signals in spatial domain and spatial frequency 

domains holds for DFT as well, like in the Fourier transform of continuous functions (or 

signals). Thus the inverse discrete Fourier transform (IDFT) can be written as: 

𝑓𝑥 = ℑ−1(𝐹𝑘) =
1

𝑁
∑ 𝑓𝑥𝑒

−
2𝜋𝑖𝑘𝑥

𝑁

𝑁−1

𝑥=0

 (14) 

where ℑ−1( ) represents the IDFT operation. From Eq. (13) and (14), it can be seen that if 

one knows frequency response 𝐹𝑘, any point in 𝑓𝑥 can be recovered individually as there is 
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no dependence between the values of 𝑓𝑥 in IDFT expression (this holds for vice versa as 

well).  

 There are several important features of DFT (and IDFT) that can be deduced from 

Eq. (13) and (14):  

1) The formulations are completely independent of sampling window size (i.e. (𝑏 −

𝑎)/𝑁). Hence, the periodicity can be assumed according to the spatial frequency 

index (𝑥 = 0, 1, … ,𝑁 − 1) without including sampling window size in the 

calculations as long as there is a consistency between multiple data sets (or signals). 

2) Uniformly discretized grid in spatial domain is exactly the same as in spatial 

frequency domain (𝑥 = 0, 1, … , 𝑁 − 1 and 𝑘 = 0, 1, … ,𝑁 − 1). 

3) 𝐹𝑘 are the Fourier coefficients of 𝑓𝑥, and they are analogous to the Fourier 

coefficients discussed in previous subsection about Fourier transform of continuous 

signals. 𝐹𝑘 indicates the amplitude of signals at discrete frequency of 𝑘. 

4) 𝐹𝑘 has a special meaning at frequency 𝑘 = 0. It can be seen from Eq. (13) that the 

exponential term becomes 0 at this value. Thus, 𝐹𝑘 has the sum of all terms in 𝑓𝑥 

and the average of 𝑓𝑥 can be found by simply dividing this term by the number of 

points in the signal, 𝑁. This feature is considered the most important feature in this 

thesis as it will play a major role in calibration of localization kernels and defining 

the average macroscopic response. 

 DFT operation yields some very important properties. Some of these properties will 

be an integral part of the approaches used in this study. It is also reminded again that the 

content shared here is not comprehensive and readers are strongly encouraged to go 
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through a digital signal processing textbook to have a full grasp of these features and 

properties. 

 Symmetry of DFT 

DFT operation produces a symmetric set of Fourier coefficients, 𝐹𝑘 (under the 

assumption that all points in 𝑓𝑥 are real valued). An example real valued signal 𝑓𝑥 and its 

frequency response 𝐹𝑘 can be seen in second and third columns of Error! Reference s

ource not found., respectively. The first column is for indices of both spatial location and 

spatial frequency (recall that both spatial and frequency domains are on the same 

discretized grid). 

Table 1: An example input signal (second column) and its frequency response (third 

column) 

𝒌 or 𝒙 𝒇𝒙 𝑭𝒌 

0 1 14 

1 3 −2.58 + 0.49𝑖 

2 4 1.15 − 1.69𝑖 

3 0 −2.07 − 5.16𝑖 

4 2 −2.07 + 5.16𝑖 

5 3 1.15 + 1.69𝑖 

6 1 −2.58 − 0.49𝑖 

 

 It can be seen that the frequencies from 𝑘 = 1 to 𝑘 = 3 is redundant with the 

frequencies from 𝑘 = 4 to 𝑘 = 6. It is clear that the first half of the frequency response is 

simply the complex conjugate of the other half. This can be formulated as below: 

𝐹𝑁−𝑘 = 𝐹𝑘
∗ (15) 
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where * represents the complex conjugate. There are two important aspects about this 

property. First of all, attention must be paid to the indexing for frequency, 𝑘. Since there is 

no frequency 𝑁, this equality does not hold for 𝑘 = 0 frequency. Second of all, the 

symmetry property in Eq. (15) does not hold for complex input signals. However, this will 

not be a difficulty in the case studies here as the input signals will always be real valued. It 

will be shown in following sections that this property is very crucial in saving 

computational times in calibration of localization linkages and will be utilized in all of the 

case studies. 

 Linearity of DFT 

 DFT has a property of linearity. This states that DFT of a sum of two input signals 

is equal to the sum of DFT of each signal. This can be written as below: 

ℑ(𝑓𝑥 + 𝑔𝑥) = ℑ(𝑓𝑥) + ℑ(𝑔𝑥) (16) 

where 𝑓𝑥 and 𝑔𝑥 are two separate signals in spatial domain. This property enables us to 

add, subtract and modify information in both frequency and input domains. Also if the 

input signal can be decomposed into multiple signals, then this decomposition can be done 

in frequency domain as well. 

 Convolution property of DFT 

 Convolution property of DFT is the major property that enables the tremendous 

computational efficiency of MKS. Convolution can be expressed as the sum that expresses 

the overlap of a function, 𝑔𝑥 as it is shifted over another function 𝑓𝑥. In discrete format, the 

convolution of 𝑓𝑥 and 𝑔𝑥 for discrete points of 𝑥 = 0, 1, … ,𝑁 − 1 can be expressed as: 
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𝑓 ∗ 𝑔 = ∑ 𝑓𝑥𝑔𝑘−𝑥

𝑁−1

𝑥=0

 (17) 

The operation in Eq. (17) can be performed by employing DFT operations. It turns out that 

by applying IDFT operation to the pointwise multiplication of frequency responses of two 

functions 𝑓𝑥 and 𝑔𝑥, the same expression on the left hand side of Eq. (17) can be obtained. 

𝑓 ∗ 𝑔 = ℑ−1(𝐹𝑘𝐺𝑘) = ∑ 𝑓𝑥𝑔𝑘−𝑥

𝑁−1

𝑥=0

 (18) 

The expression in Eq. (18) is particularly important due to the number of operations 

involved in calculation of the convolution. The convolution in Eq. (17) requires 𝑁2 number 

of operations while the calculation in frequency domain requires on 𝑁 operations. This is 

a remarkable reduction in computational operations and it is used in several image 

processing and feature extraction operations such as image resizing, dilation, sharpening, 

filtering, etc. Convolution property will be exploited in all of the case studies in this 

dissertation. Even though the tools and expressions used here are open to utilization of 

other spectral operations, so far DFT proved itself indispensable due its convolution 

property. 

 Another important concept is fast Fourier transform (FFT). FFT operation produces 

the same result as DFT operation within machine precision. The difference comes from the 

fact that FFT does the Fourier transform by factorizing the DFT matrix into a product of 

sparse factors. The benefit of applying FFT lies in its computational efficiency. The 

standard DFT operation has a complexity of 𝑁2, while the complexity of FFT operation is 

only 𝑁 log𝑁 (i.e. this computational gain is one of the key reasons why the localization 
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relationships and microstructure quantification tools are utilized in frequency space). 

Hence, it is acknowledged here that DFT operation refers to the fundamental concept of 

representation of discrete functions, while FFT will be referred to as a specific 

computational algorithm to reach abovementioned representations. In all of the case studies 

involved in this thesis, the functions (or discrete spatial signals) are cast into spatial 

frequency space by employing FFT algorithms. However, DFT term will be used explicitly 

for all transformations from spatial domain to spatial frequency domain. 

 Legendre Polynomials 

 Legendre polynomials are a set of polynomials which are commonly used in the 

solutions to physical problems and they are found from Legendre differential equation: 

(1 − 𝑥)
𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 𝑛(𝑛 + 1)𝑦 = 0 (19) 

When Legendre differential equation is solved according to series method, it has only 

convergence for |𝑥| < 1 with singularities at 𝑥 = ±1 (there is no convergence for series 

solution beyond these points). Since Legendre polynomials is a well-established 

mathematical concept, the derivation of Legendre polynomials will not be included here. 

The derivation can be found in several fundamental calculus and mathematical methods 

books. Legendre polynomials can be found once the series solution below is achieved: 

𝑃𝑛(𝑥) = ∑(−1)𝑚
(2𝑛 − 2𝑚)!

2𝑛𝑚! (𝑛 − 𝑚)! (𝑛 − 2𝑚)!
𝑥𝑛−2𝑚

𝑀

𝑚=0

 (20) 
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where 𝑀 is 𝑛/2 for even 𝑛 and (𝑛 − 1)/2 for odd 𝑛. From here it can be deduced that the 

polynomials with even degree, the coefficients are also even and vice versa. This can be 

clearly seen in Eq. (21), where Legendre polynomials up to degree 𝑛 = 5 are listed. 

𝑃0(𝑥) = 1 

𝑃1(𝑥) = 𝑥 

𝑃2(𝑥) =
1

2
(3𝑥2 − 1) 

𝑃3(𝑥) =
1

2
(5𝑥3 − 3𝑥) 

𝑃4(𝑥) =
1

8
(35𝑥4 − 30𝑥2 + 3) 

𝑃5(𝑥) =
1

8
(63𝑥4 − 70𝑥2 + 15) 

(21) 

 Another feature of these polynomials is that the polynomials with an even degree 

are even functions. The polynomials in Eq. (21) are visualized in the interval of [−1,1] in 

Figure 3. It can be seen that values of the polynomials with an even degree are symmetric 

with respect to 𝑥 = 0 line, while the polynomials with an odd degree are symmetric with 

respect to origin (i.e. (𝑥, 𝑦) = (0,0)). In other words, 𝑃𝑛(𝑥) = 𝑃𝑛(−𝑥) for even 𝑛 and 

𝑃𝑛(𝑥) = −𝑃𝑛(−𝑥) for odd 𝑛. 
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Figure 3: Plot of the Legendre polynomials up to 5th degree in the interval of [−𝟏, 𝟏].  

 The most important property of Legendre polynomials is the orthogonality and they 

form an orthogonal basis in the interval of [−1,1]. This orthogonality can be expressed as: 

∫ 𝑃𝑛(𝑥)𝑃𝑚(𝑥)𝑑𝑥
1

−1

=
2

2𝑛 + 1
𝛿𝑚𝑛 (22) 

where 𝛿𝑚𝑛 is Kronecker delta and it is equal to 1 if 𝑚 = 𝑛 and to 0 otherwise. 

Orthogonality is the main motivation behind the utilization of these polynomials in the 

local state description. It will be shown in one of the following sections that Legendre 

polynomials will be integrated into the localization relationships for tensorial variables and 

they will form a suitable Fourier basis with other basis functions due to its orthogonality 

property. 
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 Multiple Linear Regression 

 Linear regression is a machine learning approach that forms the core of calibration 

process involved in obtaining influence functions in this dissertation. Although the 

fundamentals of regression methods have been well established, today there are numerous 

advanced methods that are used to solve problems in wide range of areas such as artificial 

intelligence, finance, physics, etc. The method used in this dissertation is multiple linear 

regression. In all of the case studies presented here, multiple linear regression will be the 

central part of calibration process. Readers should keep in mind that the calibration process 

that will be covered in the next sections is not limited to multiple linear regression. In fact, 

advanced regression methods involving constrained optimization techniques [51], 

nonlinear regression [52], Bayesian regression [46], etc. might lead to more efficient 

calibration process and more accurate linkages. However, these methods are beyond the 

scope of this dissertation, since the focus is on calibration of influence functions that 

constitute MKS and multiple linear regression proved its performance in present case 

studies explained here. 

 Let 𝑦𝑛 be the nth observation (or dependent variable) based on the kth input variable 

𝑥𝑛,𝑘 (or independent variable) where 𝑛 = 1, 2, … ,𝑁 and 𝑘 = 1, 2, … , 𝐾. Then, the linear 

relationship between 𝑥𝑛,𝑘 and 𝑦𝑛 can be expressed as: 

𝑦𝑛 = 𝛽𝐾𝑥𝑛,𝐾 + 𝛽𝐾−1𝑥𝑛,𝐾−1 + ⋯+ 𝛽1𝑥𝑛,1 + 𝛽0 + 𝜀𝑛 (23) 

where 𝛽𝑘 are regression coefficients and 𝜀𝑛 are the error terms. Attention must be paid to 

coefficients 𝛽0. This term is not multiplied with any independent variable. Thus, it stands 
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as the constant term (or bias). The expression in Eq. (23) can be expressed in matrix 

notation as well. 

𝒚 = 𝑿𝜷 + 𝜺 (24) 

where 

𝒚 = [

𝑦1

𝑦2

⋮
𝑦𝑁

]   ,   𝑿 =

[
 
 
 
1 𝑥1,1 𝑥1,2 … 𝑥1,𝐾

1 𝑥2,1 𝑥2,2 … 𝑥2,𝐾

⋮ ⋮ ⋮  ⋮
1 𝑥𝑁,1 𝑥𝑁,2 … 𝑥𝑁,𝐾]

 
 
 
  ,   𝜷 = [

𝛽0

𝛽1

⋮
𝛽𝐾

]   ,   𝜺 = [

𝜀1

𝜀2

⋮
𝜀𝑁

] (25) 

Regression coefficients characterizes the model between input and output and can be found 

by ordinary least squares (OLS) method. The derivation of OLS formulation will not be 

shown here, however readers are encouraged to follow it through a machine learning or 

statistics book. If we differentiate the sum of the squares of error terms with respect to each 

regression coefficient, we can reach the expression below: 

𝑿𝑇𝑿𝜷 = 𝑿𝒚 (26) 

where 𝑇 in the superscript represents the matrix transpose. From Eq. (26), the predictors 

can be found: 

𝜷 = (𝑿𝑇𝑿)−1𝑿𝒚 (27) 

There are a few points that can be made about the formulation in Eq. (27): 

1) The matrix 𝑿𝑇𝑿 is called the covariance matrix. It is a symmetric and square matrix 

with the dimensions of 𝐾x𝐾.  
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2) If there is linear dependency between the rows of covariance matrix, there is not a 

unique solution (i.e. the covariance matrix is singular). There are several methods 

to deal with the linear dependency such as reducing the matrix to reduced row 

echelon form (RREF) to find pivot points and find a solution according to these by 

assuming the others zero.   

3) If there are more regression coefficients in the model than the number of unique 

observations, then the covariance matrix becomes singular and there is no unique 

solution for regression coefficients. 

 Principal Component Analysis 

 Principal component analysis (PCA) is a method that transforms the coordinate 

system in which a set of observations exists in, in such a way that it is viewed from the 

most informative way. PCA performs a linear transformation of the original coordinate 

system to a new orthogonal space where the axes are ordered according to the eigenvalues 

that result from the eigenvalue decomposition employed. First principal component 

contains the largest variance in the data which is reflected by the first eigenvalue and so 

on.  

 Principal components can be found from eigenvalue decomposition applied on the 

covariance of the data matrix. Consider a data matrix 𝑿 where rows and columns represent 

the observations and dimensions, respectively. If we define the principal components with 

a matrix 𝑼, then the data set can be projected to principal component space by: 

𝑿̃ = 𝑿𝑼𝑇 (28) 
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The columns of 𝑼 denote the principal components and 𝑿̃ is the data matrix in the principal 

component space. Since the principal components are orthogonal to each other the 

covariance matrix of the data in principal component space is a diagonal matrix and can be 

written as: 

𝑺𝑿̃ = 𝑿̃𝑇𝑿̃ (29) 

The expression in Eq. (28) can be rewritten in terms of the data matrix defined in original 

space as: 

𝑺𝑿̃ = (𝑿𝑼)𝑇(𝑿𝑼) = 𝑼𝑇𝑿𝑇𝑿𝑼 = 𝑼𝑇𝑺𝑿𝑼 (30) 

The term 𝑺𝑿 at the right hand side of Eq. (30) is the covariance matrix of the data in original 

space (i.e. 𝑺𝑿 = 𝑿𝑻𝑿). The trick is to find a set of eigenvectors for this covariance matrix 

so that 𝑺𝑿̃ becomes a diagonal matrix. Since 𝑺𝑿 is a symmetric matrix, it can be written in 

terms of its eigenvalues 𝑫 and eigenvectors 𝑬 as below: 

𝑺𝑿 = 𝑬𝑫𝑬𝑇 (31) 

If we set the eigenvalues 𝑬 equal to 𝑼, the right hand side of Eq. (30) can be written as: 

𝑺𝑿̃ = 𝑼𝑇(𝑼𝑫𝑼𝑇)𝑼 = (𝑼𝑇𝑼)𝑫(𝑼𝑇𝑼) = 𝑫 (32) 

From the expression in Eq. (32), it is evident that 𝑼 makes a diagonal 𝑺𝑿̃ matrix. It is 

obvious that the principal components of 𝑿 are the eigenvectors of covariance matrix 𝑺𝑿 

and the first diagonal value of 𝑺𝑿 (assuming the diagonal values are in an ascending order) 

indicates the variance of first principal component 𝑼1. In practice, PCA simply involves 

two steps; mean centering the data and extracting the eigenvectors of covariance matrix 
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𝑿𝑻𝑿. In most cases, the eigenvalues start decaying to zero values very quickly and usually 

a less number of principal components than the dimensions are actually required to retain 

the variance information of the data. The percentage of variance captured by the first R 

principal components can be written as: 

𝐽 =
(∑ 𝑫𝑖

𝑅
𝑖=1 )

𝑡𝑟(𝑫)
× 100 (33) 

 PCA is visualized through a simple example shown in Figure 4. A set of 

observations with 2 dimensions (𝑥1 and 𝑥2) is seen on the left side of the figure along with 

the Gaussian distribution of points for each dimension. These data points are generated 

based on the covariance shown at the bottom left corner. From the off-diagonal elements 

of covariance matrix and the distribution of points in 𝑥1 𝑣𝑠 𝑥2 space, 2 dimensions are 

strongly correlated to each other. As we go further in 𝑥1 direction, 𝑥2 values of data points 

increase as well. When we apply PCA to this ensemble, we can obtain the principal 

component space shown at the right side of the plot. In principal component space, the data 

points have high variance in PC1 direction and PC2 values of data points are not correlated 

to PC1 values. This is also evident in the covariance matrix of data points in principal 

component space. The off-diagonal elements of covariance matrix are zero (i.e. there is no 

correlation between PC1 and PC2). On the other hand, the variance in PC1 is 30 times of 

PC2, rendering the information in PC2 insignificant. This insignificance can also be seen 

in the Gaussian distributions shown on the side and bottom of both plots. In original space, 

the data has strong variance in both dimensions while PC1 has much more variance than 

any other distribution with the distribution of PC2 has very low variance and a sharp peak 

at the mean value. To analyze the data points in new space, we only need the information 
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from PC1 as PC2 does not contain any important information about the nature of the data 

hence it can be considered as noise. Indeed, this is a grossly simplified example. However, 

even from this example we can see that PCA does not only extract the strong evident 

information from the data sets, it also helps us to reduce the dimensions in defining the 

points. 

 

Figure 4: Visualization of PCA with a set of observations with two dimensions.  
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GENERALIZED MKS FRAMEWORK 

 

 The localization relationships of MKS are derived from the homogenization 

relationships mainly developed by Kroner [28, 29] and Torquato [53, 54]. Homogenization 

theory simply focuses on finding an effective property value that is representative of the 

averaged or macroscopic property of the volume in interest. The theories that were started 

decades ago are based on perturbation expansions and higher order microstructure 

statistics. The present protocols to measure effective property for heterogeneous materials 

heavily depends on primitive measures such as grain size [55], volume fraction [56], 

nearest neighbors [57], etc. These basic measures can be misleading in building reliable P-

S-P linkages. Hence, the heterogeneity of the structure must be accounted for to reach the 

effective property in in interest. It is well known that myriad details of the microstructure 

can only be captured by higher order functions (or statistics) and abovementioned 

perturbation expansions are completely based on the expansion of these functions. 

Even though homogenization theories try to predict the effective properties of a 

material volume in interest, theory is formulated in such a way that a macroscopic loading 

or boundary condition is mapped to a lower level by localization terms. In this section, this 

part of the formulation will be exploited to derive the localization relationships of MKS. 

Indeed, some assumptions have to be made to derive the localization relationships from the 

homogenization theories mentioned in the first paragraph. Two length scales, macroscale 

and mesoscale that we are interested in can be seen in Figure 5. The first assumption is that 
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there is a significant difference (preferably several orders of magnitude) between the length 

scales that are implemented in the theories (𝐿 ≫ 𝑙). If the length scale in lower level, 𝑙 is 

in vicinity of the order of average particle (or grain) size, the local microstructure properties 

will change significantly when we move from one point to another with this length. 

However, the effective (or averaged) properties will decay to similar values for different 

volumes of the material system due to significant difference between the length scales of 

two levels. In other words, the fluctuations of the property in higher level must be very 

slow (or small) while the fluctuations in the lower level must be fast. These are also called 

global and local fluctuations of property in two different levels of a material system [54]. 

 

Figure 5: Two different length scales of a hypothetical material system (Macroscale (a) 

and Mesoscale (b)) 

The second assumption is the eligibility of field equations and constitutive theories 

at both length scales. The localization relationships are derived from the homogenization 

theories under the assumption that the constitutive behavior of the material system is the 

same in both length scales. Since the constitutive behavior in interest is elastic behavior of 

polycrystalline aggregates, same linear elastic field equations can be applied in both 

macroscale and mesoscale.  
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This chapter includes the perturbation expansions used in homogenization theories, 

derivation of MKS localization relationships from these theories and the detailed 

explanation of the end result (MKS series expansion) obtained from the derivation. Since 

elasticity is the main material constitutive behavior we are interested in, a brief review of 

elasticity is included before the derivation and detailed explanation of localization 

relationships. 

 Theory of Linear Elasticity 

 The material constitutive behavior in interest in this dissertation is linear elastic 

behavior. Hence, understanding the basic concepts of linear elasticity such as stress, strain, 

material symmetry are means to an end in understanding the content here. It should be 

noted that the concepts about linear elasticity shared in this subsection is only for review 

purposes for people who are already confident in theory of linear elasticity. Readers who 

are not familiar with these concepts are strongly encouraged to follow the basics and details 

through a standard elasticity or continuum mechanics textbook. 

 Another crucial point is the indicial (Einstein) notation used in both this section and 

following sections where case studies are presented. If an index appears twice in a 

monomial, summation is meant over that index unless it is stated otherwise. Hence, the 

summation signs are omitted in the following content. The fundamentals of indicial 

notation can be found in several textbooks and online sources. 
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 Stress 

 In the center of elasticity theory lies the state of stress. Stress is usually defined as 

the ratio between the average force applied per unit area, ∆𝐹 and a selected surface element, 

∆𝑆. 

𝑡 =
∆𝐹

∆𝑆
 (34) 

The definition given in Eq. (34) is valid for only the selected surface ∆𝑆. The number of 

surfaces that can pass through a point defined in space is essentially infinite and the stress 

is different for each of these surfaces. Thus, having the definition in Eq. (34) as a general 

stress description is a meaningless task. Considering the above argument, we can 

generalize the stress definition as a vector as below: 

𝑡𝑖
(𝑛)

= 𝜎𝑖𝑗. 𝑛𝑗  (35) 

where 𝑡𝑖
(𝑛)

 is the stress vector defined on a surface with a unit normal vector, 𝑛. The stress 

vector is illustrated with blue arrows in Figure 6. Let us assume the body shown in Figure 

6 as an infinitesimal cubic element whose face normals coincide with the components of 

sample frame 𝑥1, 𝑥2 and 𝑥3. The state of stress of this infinitesimal element is represented 

by stress tensor 𝜎𝑖𝑗 which is a second rank tensor. This tensor consists of nine components 

where 3 components represent the normal stresses while other 6 components are shear 

stresses. Stress tensor can be written in matrix format as below: 
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𝜎𝑖𝑗 = [

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

] (36) 

where normal stresses are the diagonal components and the shear components are the off 

diagonal components. Stress tensor relates the stress vector 𝑡𝑖
(𝑛)

  to the unit normal 𝑛 for a 

selected surface which is perpendicular to this normal. There are several important points 

that can be said about stress tensor: 

1) According to principal of conservation of angular momentum, equilibrium of a 

body requires that the sum of all moments with respect to an arbitrary point is zero. 

From this argument, it can be shown that stress tensor is symmetric (i.e. 𝜎𝑖𝑗 = 𝜎𝑗𝑖). 

2) Stress tensor obeys the rule of transformation laws under a change in coordinate 

system. In other words, the stress state in one coordinate system can be defined in 

terms of the components of another coordinate system. 

3) According to principal of conservation of linear momentum, the stress tensor in 

every point of selected infinitesimal body satisfies the equilibrium equations (it will 

be covered in this subsection). 

4) The stress definition covered in this thesis is Cauchy stress tensor which is used for 

stress analysis involving small deformations. There are other stress definitions (e.g. 

Piola-Kirchhoff stress tensor) in the literature used in other material constitutive 

behaviors (e.g. finite deformations). 
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Figure 6: Illustration of stress tensor and stress vector of an infinitesimal cubic element 

whose face normals coincide with the directions of sample frame 𝒙𝟏, 𝒙𝟐 and 𝒙𝟑. 

 In Figure 6, it can be seen that stress vector does not necessarily coincide with the 

directions of sample frame. When the components of the stress vectors coincide with the 

directions of sample frame, we find the principal stress state where off diagonal stress 

components in stress tensor disappear. Calculation of principal stresses play a major role 

in several materials phenomena. Principal stress state and the calculation of principal 

stresses are not covered in this dissertation; however, readers can read through a solid 

mechanics reference to get a full understanding of these concepts. 

 Strain 

 In this subsection, the deformation of a solid body will be studied in terms of strain. 

Even though in classical mechanics, a body under forces is assumed rigid, there is no such 

thing as rigidity in reality. If there are any forces acting on a selected body, it goes under 

deformation up to a certain extent (depending on the magnitude and direction of the force). 
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The rigidity can only be treated as an assumption if the rigid body approximations are 

within the precision desired for calculation of body motions. 

 

Figure 7: A hypothetical body going under deformation. On the left is the reference 

(initial) configuration and on the right is the current (deformed) configuration. 

 Deformation can be regarded as the mapping of a body from a reference 

configuration (or initial) at time 𝑡 to a current configuration at time 𝑡 + ∆𝑡 (or deformed 

configuration). The illustration of the deformation can be seen in Figure 7. 𝑎𝑖 and 𝑑𝑎𝑖 

determine the locations of two material points 𝑃0 and 𝑃 in initial configurations. On the 

other hand, 𝑥𝑖 and 𝑑𝑥𝑖 determine the locations of the material points 𝑃0
′ and 𝑃′ in current 

configuration. From these definitions, we can also state that the points at 𝑃0 and 𝑃 in initial 

configuration are deformed to points 𝑃0
′ and 𝑃′ in current configuration. Hence, the 

displacement of point 𝑃0 can be written as: 

𝑢𝑖
0 = 𝑥𝑖 − 𝑎𝑖 (37) 
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Similar expressions can be written for the other points (i.e. 𝑃′). For an infinitesimal 

deformation, the displacements around point 𝑃0 can be written as a Taylor expansion: 

𝑢𝑖 = 𝑢𝑖
0 +

𝜕𝑢𝑖

𝜕𝑥𝑖
𝑑𝑥𝑗 +

1

2

𝜕𝑢𝑖

𝜕𝑥𝑖𝜕𝑥𝑘
𝑑𝑥𝑗𝑑𝑥𝑘 + ⋯ (38) 

Under the assumption of infinitesimal deformations, it can be said that the derivative in the 

second monomial of right hand side of Eq. (38) is very small. Hence, the second order 

derivative and higher order derivatives (terms that follow the second monomial) will be 

even smaller and they can be neglected. From here, the first derivative can be decomposed 

into symmetric and antisymmetric part: 

𝑢𝑖 = 𝑢𝑖
0 +

1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)𝑑𝑥𝑗 +

1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑗
)𝑑𝑥𝑗𝑑𝑥𝑘 (39) 

Then, the infinitesimal strain tensor can be defined as: 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (40) 

 The strain tensor 𝜀𝑖𝑗 is also called Cauchy strain tensor in several references. It can 

be written in matrix format as below: 

𝜀𝑖𝑗 = [

𝜀11 𝜀12 𝜀13

𝜀21 𝜀22 𝜀23

𝜀31 𝜀32 𝜀33

] (41) 

where the components on the diagonal are normal strain components, while the off 

diagonal components are called shear strain components. 

 The derivations explained in this content are based on variables defined in terms of 

coordinates in current configuration (or spatial coordinates). It should be reminded that all 

of the variables and material points in Figure 7 can be defined in terms of coordinates in 
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reference configuration (or material coordinates). If the derivation included here is done 

without the assumption of infinitesimal deformation, we can reach two different strain 

tensor definitions, Lagrangian and Eulerian strain tensor. Lagrangian strain tensor defines 

the state of strain in terms of material coordinates, while Eulerian strain tensor defines the 

state of strain in spatial coordinates. When the higher order derivatives in Eq. (38) are 

neglected under the assumption of infinitesimal deformation, Lagrangian and Eulerian 

strain tensors become the same and lead to Cauchy strain tensor. The assumption of 

removing higher order derivatives made in reaching Eq. (39) from Eq. (38) is only valid 

for infinitesimal deformations. When the deformations are not infinitesimal, one must 

employ Lagrangian or Eulerian strain tensor definitions to accommodate the accurate 

deformations (i.e. finite deformations). The derivation of these strain tensors are not 

included here since finite deformations are beyond the scope of this dissertation. 

 There are a few points that can be made about the abovementioned assumptions 

and the Cauchy strain tensor: 

1) The strain tensor is the symmetric part of the first derivative in Eq. (38). Hence, the 

strain tensor is a symmetric tensor like the stress tensor (𝜀𝑖𝑗 = 𝜀𝑗𝑖). 

2) The second parenthesis on the right hand side of Eq. (39) is the antisymmetric part 

of the first derivative in Eq. (38) and it is called infinitesimal rotation tensor, 𝜔𝑖𝑗. 

It accounts for the rigid body rotations. 

3) The normal strain components represent the change of length per unit length of a 

line element initially parallel to the selected coordinate direction. 

The arguments about principal stresses given in previous subsection can be made for strain 

tensor as well. If the coordinates axes coincide with principal directions of a state of strain, 
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then we reach principal strain tensor where off diagonal components (i.e. shear strains) 

vanish. 

 Governing Equations of Linear Elasticity 

 There are several factors that affect the relationship between deformation of the 

body and the forces acting on it such as loading rate, load history, temperature, etc. In most 

of the loading conditions, after the deformation the body cannot recover to its original 

shape.  However, if the deformations are infinitesimal and temperature has negligible 

effect, then the relationship between stress and strain is covered in Theory of Linear 

Elasticity. Governing equations of linear elasticity are based on three tensorial partial 

differential equations; equilibrium conditions, strain-displacement equation and elastic 

constitutive equations. Beyond this point, all deformations are assumed infinitesimal and 

the temperature has no effect on them. 

 

Figure 8: A hypothetical body in equilibrium under body forces 𝒃𝒊 and surface tractions 

𝒕𝒊
(𝒏⃗⃗ )

. 

 First governing equation is equilibrium conditions for zero acceleration. Consider 

the body in Figure 8 with a volume V and surface S is subjected to surface tractions, 𝑡𝑖
(𝑛)

 

and body forces, 𝑏𝑖. If this body is in equilibrium (or has zero acceleration), then the sum 
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of all forces acting on the body is zero. From the equations of motion, the sum of all forces 

can be written in terms of body forces and surface tractions: 

∑𝐹𝑖 = ∫𝑏𝑖𝑑𝑉
𝑉

+ ∫𝑡𝑖
(𝑛)

𝑑𝑆
𝑆

= 0 (42) 

The second integral on the right hand side of Eq. (42) is an integral over the surface S and 

can be written as an integral over the volume V by using Gauss theorem: 

∑ 𝐹𝑖 = ∫𝑏𝑖𝑑𝑉
𝑉

+ ∫𝜎𝑖𝑗𝑛𝑗𝑑𝑆
𝑆

= ∫𝑏𝑖𝑑𝑉
𝑉

+ ∫𝜎𝑖𝑗,𝑗𝑑𝑉
𝑉

= 0 (43) 

At this stage, both of the integrals on the right hand side are volume integrals. Hence the 

total forces can be shortly written as: 

∑𝐹𝑖 = ∫(𝜎𝑖𝑗,𝑗 + 𝑏𝑖)𝑑𝑉
𝑉

= 0 (44) 

From here equilibrium conditions can be written as: 

𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0 (45) 

 Second governing field equation is strain-displacement equations for infinitesimal 

deformations and it can be written as: 

𝜀𝑖𝑗 = 𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (46) 

It can be seen in Eq. (46) that there are 6 strain-displacement equations where each accounts 

for one strain component in the strain tensor written in matrix format in Eq. (41). The 

derivation and properties of these equations are summarized in previous subsection. 
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 Third governing field equation is the linear elastic constitutive equation (also 

known as Hooke’s Law). It is expressed as: 

𝜎𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (47) 

where 𝐶𝑖𝑗𝑘𝑙 is the elastic stiffness tensor and relates the state of strain to state of stress. 

There are 2 important aspects of the linear elastic constitutive relationship shown in Eq. 

(47). 

1) There is one-to-one correspondence between the states of stress and strain. In other 

words, there is only one unique solution that satisfies the governing field equations 

of linear elasticity. Hence if the state of stress is known, the calculation of strain is 

trivial. 

2) All of the governing field equations are indeed linear due to having only first order 

terms in the dependent variables and derivatives. Thus, the components of strain 

and stress can be calculated independently by superposing the loads acting on the 

body. This is called superposition principle and it plays an important role in 

building elastic localization linkages for any arbitrary loading condition. 

 Elastic stiffness tensor is a fourth rank tensor with 81 components where each index 

(i.e. i, j, k, l) runs from 1 to 3. However, not all 81 components are independent. The 

symmetries of fourth rank elastic stiffness tensor can be written as: 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑘𝑙𝑖𝑗 (48) 

With these symmetries, the number of independent elastic stiffness components become 

21 for a generalized anisotropic material system. Since we have only 21 independent 
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components, the constitutive equation in Eq. (47) can be written in matrix format by using 

Voigt notation: 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46

𝐶15 𝐶25 𝐶35 𝐶45 𝐶55 𝐶56

𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66]
 
 
 
 
 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝜀4

𝜀5

𝜀6]
 
 
 
 
 

 (49) 

where stress and strain components with indices 4, 5 and 6 correspond to stress and strain 

components with Einstein notation 23, 13 and 12, respectively. It should be kept in mind 

that the components 𝜀4, 𝜀5 and 𝜀6 are engineering strains 𝛾23, 𝛾13 and 𝛾12 where:  

𝛾23 = 2𝜀23   ,   𝛾13 = 2𝜀13   ,   𝛾23 = 2𝜀23 (50) 

 The symmetry mentioned in Eq. (48) for elastic stiffness tensor is a symmetry that 

defines the stiffness of a generalized anisotropic material. However, most materials exhibit 

a symmetry in their crystal structure. The symmetry in crystal structure defines the number 

of independent components in fourth rank elastic tensor. There are several crystal 

symmetries such as isotropic, cubic, hexagonal (transversely isotropic), orthotropic, 

monoclinic symmetries. In this thesis, we are only interested in isotropic, cubic and 

hexagonal symmetries since all of the case studies included material systems with one of 

these crystal symmetries. However, the concepts are completely extendable to material 

systems with other crystal symmetries as well. 
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3.1.3.1 Isotropic Symmetry 

 Isotropic materials do not depend on the arrangement of crystal structure. When 

there is no dependence on coordinate system, the number of independent elastic stiffness 

tensor components reduce to only 2. The Voigt notation of isotropic elastic stiffness tensor 

can be seen below: 

[
 
 
 
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0

0 0 0
(𝐶11 − 𝐶12)

2
0 0

0 0 0 0
(𝐶11 − 𝐶12)

2
0

0 0 0 0 0
(𝐶11 − 𝐶12)

2 ]
 
 
 
 
 
 
 
 
 

 (51) 

As an example, tungsten is a metal which exhibits isotropic symmetry. Even though the 

main focus is on building localization relationships for polycrystalline aggregates in this 

thesis, two-phase isotropic composites will be used for demonstration of fundamental 

aspects of calibration aspects. 

3.1.3.2 Cubic Symmetry 

 Cubic materials have three mutually orthogonal planes of reflection symmetry and 

90-degree rotation symmetry with respect to those planes. The fourth rank elastic stiffness 

tensor has only 3 independent components and it can be written as: 
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[
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44]

 
 
 
 
 

 (52) 

As an example, copper is a metal which exhibits cubic crystal structure. Case studies in 

this thesis will heavily involve cubic metals. 

3.1.3.3 Hexagonal (Transversely Isotropic) Symmetry 

Hexagonal crystal structure has one plane of symmetry and one axis of symmetry 

perpendicular to the plane of symmetry. The number of independent elastic stiffness tensor 

components reduce to 5. The Voigt notation of hexagonal elastic stiffness tensor can be 

seen below: 

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0

0 0 0 0 0
(𝐶11 − 𝐶12)

2 ]
 
 
 
 
 
 

 (53) 

Magnesium is an example for a material system with a hexagonal crystal structure. In one 

of the case studies, hexagonal crystal structure will be included in localization 

relationships. 

 Homogenization Theory 

The mechanical response of material systems with multiple hierarchical length 

scales with significant heterogeneities has been addressed rigorously in prior literature 
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using generalized composite and homogenization theories [28, 29, 40, 54, 58-65]. Inherent 

to these theories is the concept of a scale-bridging localization tensor that relates the local 

fields of interest at the microscale to the macroscale (typically averaged) fields. For 

example, the fourth-rank localization tensor for elastic deformation, 𝒂, can be defined to 

relate the local elastic strain at any location of interest in the microstructure to the 

macroscale strain imposed on the composite material system as: 

𝜺(𝑥) = 𝒂(𝑥)〈𝜺(𝑥)〉 (54) 

𝒂(𝑥) = (𝑰 − 〈𝜞(𝑥, 𝑥′)𝑪′(𝑥′)〉 + 〈𝜞(𝑥, 𝑥′)𝑪′(𝑥′)𝜞(𝑥′, 𝑥′′)𝑪′(𝑥′′)〉 − ⋯ ) (55) 

In Eq. (55), 𝑰 is the fourth-rank identity tensor, 𝑪′(𝑥) is the deviation in the local elastic 

stiffness at spatial location x with respect to that of a selected reference medium, 𝜞 is a 

symmetrized derivative of the Green’s function defined using the elastic properties of a 

selected reference medium [28, 54, 66], and 〈 〉 brackets denote an ensemble average over 

a representative volume element (RVE) of the material microstructure.  

The main problem in Eq. (55) lies in the localization tensor. This term depends on 

the reference medium, rendering it very difficult to calculate analytically. There are certain 

iterative approaches which uses an initial guess of strain field and a symmetrized derivative 

of Green’s function, 𝜞 based on specific bounds of the selected reference medium. Even 

though the iterative methods based on the Green’s function established its success in 

predicting local response fields [62, 63, 67], it is highly important that an approach which 

does not require the analytical calculation of influence functions has to be developed for 

computationally efficient localization relationships. In the next section, the derivation to 

formulate these relationships is shown in detail.  
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 Derivation of Localization Relationships 

As stated before, the higher order theory has to be implemented for more accurate 

estimates for effective properties. The theory involves the correlations between the local 

states at different locations of the reference medium. By following the perturbation 

expansion given in Eq. (54) and (55), we can decompose a local strain field into two parts 

as: 

𝜺(𝑥) = 𝜺̅ + 𝜺′(𝒙)    ,    𝜺̅′ = 𝟎 (56) 

where 𝜺̅ is the average strain and 𝜺′ represents the strain fluctuations from the average 

strain. From this additive decomposition in Eq. (56), an expression similar to Eq. (54) can 

be written as below: 

𝜺′(𝒙) = 𝒂(𝑥)𝜺̅   ,    𝒂̅ = 𝟎 (57) 

The difference between the Eq. (54) and (57) is the lack of average terms on the left hand 

side in Eq. (57). Indeed, these expressions are in accordance with general effective stiffness 

equation. If a selected volume element has an average strain 〈𝜺(𝑥)〉 resulting from a 

heterogeneous strain distribution 𝜺(𝑥), then the average strain corresponds to an average 

stress distribution, 〈𝝈(𝑥)〉 through an effective stiffness tensor 𝐶𝑒𝑓𝑓: 

𝝈̅ = 𝑪𝑒𝑓𝑓𝜺̅ (58) 

Expressions similar to Eq. (58) are widely used to calculate effective properties for several 

phenomena such as thermal conduction [68], electrical conduction [69], permeability [70], 

etc. 
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Same additive decomposition in Eq. (56) can be repeated for Eq. (58) and it can be shown 

that average stress is equal to the average of tensorial product of local strain and stiffness: 

𝝈̅ = 𝑪𝑒𝑓𝑓𝜺̅ = 𝑪𝜺̅̅̅̅  (59) 

Readers should keep in mind that for clarity, the functional dependence of the spatial 

location are not shown explicitly. The definition on the right side of Eq. (59) can be 

decomposed according to average strain and strain fluctuations: 

𝑪𝜺̅̅̅̅ = 𝑪(𝜺′ + 𝜺̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑪𝜺′̅̅ ̅̅̅ + 𝑪̅𝜺̅ (60) 

Then, we can insert the definition in Eq. (57) to the right hand side of Eq. (60): 

𝑪𝜺′̅̅ ̅̅̅ + 𝑪̅𝜺̅ = 𝑪𝒂̅̅ ̅̅ 𝜺̅ + 𝑪̅𝜺̅ (61) 

At this stage all terms in the right hand side of the Eq. (61) have 𝜺̅. If we cancel this term 

from both average stress definition and Eq. (57), then we can find: 

𝝈̅ = 𝑪𝑒𝑓𝑓𝜺̅ = 𝑪𝒂̅̅ ̅̅ 𝜺̅ + 𝑪̅𝜺̅   ⇒   𝑪𝑒𝑓𝑓 = 𝑪𝒂̅̅ ̅̅ + 𝑪̅ (62) 

As the next step, we apply the additive decomposition to local stiffness as well to get 

reference and fluctuation terms. 

𝑪 = 𝑪(𝒙) = 𝑪𝑟 + 𝑪′(𝒙) (63) 

If we take the average of both sides in Eq. (63), the average of stiffness fluctuations can be 

found as: 

𝑪̅′ = 𝑪̅ − 𝑪𝑟 (64) 
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Then, by substituting Eq. (64) into Eq. (62), the effective stiffness can be found as: 

𝑪𝑒𝑓𝑓 = 𝑪𝒂̅̅ ̅̅ + 𝑪̅′ + 𝑪𝑟 (65) 

It is shown in Eq. (65) that a localization tensor is required to find an effective property by 

using perturbation expansions. A derivative of this localization tensor will be the integral 

part of the localization relationships used in this thesis. 

To derive the localization relationships, we go back to stress-strain relationship in 

Eq. (59) and additive decompositions applied to it in Eq. (60). For a framework that is 

comprehensive for any elastic material (isotropic or anisotropic), we include the indices of 

all tensors. The right hand side of the equation can be rewritten as: 

𝝈𝑖𝑗 = (𝑪𝑖𝑗𝑘𝑙
𝑟 + 𝑪𝑖𝑗𝑘𝑙

′ )(𝜺̅𝑘𝑙 + 𝜺𝑘𝑙
′ ) (66) 

𝝈𝑖𝑗 = 𝑪𝑖𝑗𝑘𝑙
𝑟 𝜺̅𝑘𝑙 + 𝑪𝑖𝑗𝑘𝑙

𝑟 𝜺𝑘𝑙
′ + 𝑪𝑖𝑗𝑘𝑙

′ 𝜺̅𝑘𝑙 + 𝑪𝑖𝑗𝑘𝑙
′ 𝜺𝑘𝑙

′  (67) 

Now like the standard elastic constitutive behavior in Eq. (47), this relationship must meet 

the equilibrium conditions (see Eq. (46)) as well. If we apply the divergence operation on 

expression in Eq. (67) to meet equilibrium conditions, we get: 

𝝈𝑖𝑗,𝑗 = 𝑪𝑖𝑗𝑘𝑙
𝑟 𝜺𝑘𝑙,𝑗

′ + 𝑪𝑖𝑗𝑘𝑙,𝑗
′ 𝜺̅𝑘𝑙 + (𝑪𝑖𝑗𝑘𝑙

′ 𝜺𝑘𝑙
′ )

,𝑗
= 0 (68) 

Attention must be paid to the expression in Eq. (68). The first monomial in Eq. (67) became 

zero after the derivative due to the fact that both variables are constant terms. The second 

monomial had 2 variables with only the first one being a constant term, hence leading to a 

derivative on the second term and third monomial is vice versa. On the other hand, fourth 

monomial had the derivative outside the parenthesis as neither of the variables are constant. 
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If we take the last two monomials in Eq. (68) as the body forces, 𝐹𝑖, the expression can be 

rewritten as: 

𝑪𝑖𝑗𝑘𝑙
𝑟 𝜺𝑘𝑙,𝑗

′ + 𝐹𝑖 = 0 (69) 

𝐹𝑖 = 𝑪𝑖𝑗𝑘𝑙,𝑗
′ 𝜺̅𝑘𝑙 + (𝑪𝑖𝑗𝑘𝑙

′ 𝜺𝑘𝑙
′ )

,𝑗
 (70) 

The approach that will be derived from the above equations is based on the definition of 

strain in terms of displacements. We can write 𝜺𝑘𝑙
′  terms in terms of displacement u: 

𝜺𝑘𝑙
′ =

1

2
(𝑢𝑘,𝑙

′ + 𝑢𝑙,𝑘
′ ) (71) 

where (,) represents the partial derivative with respect to distance. Then, Eq. (69) becomes: 

𝑪𝑖𝑗𝑘𝑙
𝑟 (𝑢𝑘,𝑙

′ + 𝑢𝑙,𝑘
′ )

,𝑗

2
+ 𝐹𝑖 = 0 (72) 

Now that there are displacement terms, we can have a strategy involving Green’s functions 

in the solution of 𝑢𝑖
′. To do this, first we treat Eq. (72) as a nonhomogeneous partial 

differential equation for unit body force. Then, we solve for displacement 𝑢𝑖
′ by a 

convolution of Green’s function and body force per unit volume. The strategy can be 

summarized as: 

𝑪𝑖𝑗𝑘𝑙
𝑟 𝐺𝑘𝑚,𝑙𝑗(𝑥 − 𝑥′) + 𝛿(𝑥 − 𝑥′)𝛿𝑖𝑚 = 0 (73) 

𝑢𝑘
′ (𝑥) = ∫𝐺𝑘𝑖(𝑥 − 𝑥′)𝐹𝑖(𝑥

′)𝑑𝑥′

𝑉

 (74) 
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where 𝐺𝑘𝑖 is the Green’s function. An illustration of Green’s function is given in Figure 9. 

Green’s function is related to the displacement 𝑢𝑘
′  at location 𝑥 due to the application of a 

body force 𝐹𝑖 at location 𝑥′. Eq. (74) is the fundamental Green’s function solution, 𝐺𝑘𝑚 as 

the component k of the displacement field at location 𝑥. 

 

Figure 9: Illustration of Green’s function 

The expression in Eq. (74) can be reformulated with an integral over 𝑟 = 𝑥 − 𝑥′ 

and the displacements given in Eq. (71) can be expressed in terms of Green’s function and 

body forces: 

𝑢𝑘
′ (𝑥) = ∫𝐺𝑘𝑖(𝑟)𝐹𝑖(𝑥

′)𝑑𝑥′

𝑉

 (75) 

𝑢𝑙
′(𝑥) = ∫𝐺𝑙𝑖(𝑟)𝐹𝑖(𝑥

′)𝑑𝑥′

𝑉

 (76) 

If we substitute the expression for 𝐹𝑖 (see Eq. (70)) into Eq. (75) and (76), displacements 

can be rewritten as: 

𝑢𝑘
′ (𝑥) = ∫ 𝐺𝑘𝑖(𝑟) [𝑪𝑖𝑗𝑚𝑛

′ (𝑥′)𝜺̅𝑚𝑛 + (𝑪𝑖𝑗𝑚𝑛
′ (𝑥′)𝜺𝑚𝑛

′ (𝑥′))
,𝑗
] 𝑑𝑥′

𝑉

 (77) 
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𝑢𝑙
′(𝑥) = ∫ 𝐺𝑙𝑖(𝑟) [𝑪𝑖𝑗𝑚𝑛

′ (𝑥′)𝜺̅𝑚𝑛 + (𝑪𝑖𝑗𝑘𝑙
′ (𝑥′)𝜺𝑚𝑛

′ (𝑥′))
,𝑗
] 𝑑𝑥′

𝑉

 (78) 

These displacement expressions can be differentiated with respect to 𝑥 and then can be 

inserted in Eq. (71). 

𝜺𝑘𝑙
′ = ∫

𝐺𝑘𝑖,𝑙(𝑟) + 𝐺𝑙𝑖,𝑘(𝑟)

2
[𝑪𝑖𝑗𝑚𝑛,𝑗

′ (𝑥′)𝜺̅𝑚𝑛 + (𝑪𝑖𝑗𝑚𝑛
′ (𝑥′)𝜺𝑚𝑛

′ (𝑥′))
,𝑗
] 𝑑𝑥′

𝑉

 (79) 

From here the localization tensor 𝒂𝑘𝑙𝑚𝑛 can be extracted by simply substituting Eq. (54) 

into Eq. (79). 

𝒂𝑘𝑙𝑚𝑛(𝒙) = ∫
𝐺𝑘𝑖,𝑙(𝑟) + 𝐺𝑙𝑖,𝑘(𝑟)

2
[𝑪𝑖𝑗𝑚𝑛

′ (𝑥′) + 𝑪𝑖𝑗𝑚𝑛
′ (𝑥′)𝒂𝑝𝑞𝑚𝑛(𝑥′)]

,𝑗
𝑑𝑥′

𝑉

 (80) 

The Green’s function in Eq. (80) goes to infinity as 𝑥 − 𝑟 approach to zero. Hence, the 

integral has a principal value around 𝑥 − 𝑟 = 0. This integral can be evaluated with 

integration by parts. However due to the singularity, the integration is done over a volume 

between two spherical surfaces corresponding to 𝑥 − 𝑟 = 0 and 𝑥 − 𝑟 = ∞. 

𝒂𝑘𝑙𝑚𝑛(𝒙) = [∫
𝐺𝑘𝑖,𝑙(𝑟) + 𝐺𝑙𝑖,𝑘(𝑟)

2
[𝑪𝑖𝑗𝑚𝑛

′ (𝑥′)
𝑆

+ 𝑪𝑖𝑗𝑝𝑞
′ (𝑥′)𝒂𝑝𝑞𝑚𝑛(𝑥′)]𝑛𝑗𝑑𝑆]

𝑟→0

𝑟→∞

 

−∫
𝐺𝑘𝑖,𝑙𝑗(𝑟) + 𝐺𝑙𝑖,𝑘𝑗(𝑟)

2
[𝑪𝑖𝑗𝑚𝑛

′ (𝑥′) + 𝑪𝑖𝑗𝑝𝑞
′ (𝑥′)𝒂𝑝𝑞𝑚𝑛(𝑥′)]

𝑉̃

𝑑𝑥′ 

(81) 

If we consider only the terms without localization tensors in Eq. (81), the weak contrast 

expansion can be written as: 
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−𝜞𝑪′ = [∫
𝐺𝑘𝑖,𝑙(𝑟) + 𝐺𝑙𝑖,𝑘(𝑟)

2
[𝑪𝑖𝑗𝑚𝑛

′ (𝑥′)]𝑛𝑗𝑑𝑆
𝑆

]
𝑟→0

𝑟→∞

 

−∫
𝐺𝑘𝑖,𝑙𝑗(𝑟) + 𝐺𝑙𝑖,𝑘𝑗(𝑟)

2
[𝑪𝑖𝑗𝑚𝑛

′ (𝑥′)]
𝑉̃

𝑑𝑥′ 

(82) 

The expression above can be summarized as: 

𝜞𝑘𝑙𝑖𝑗(𝑟) = 𝑬𝑘𝑙𝑖𝑗(𝑟)𝛿(𝑟) + 𝑰𝑘𝑙𝑖𝑗
∞ 𝛿(𝑟) + 𝜱𝑘𝑙𝑖𝑗(𝑟) (83) 

where 𝜱𝑘𝑙𝑖𝑗 are the Green’s function terms. 𝑬𝑘𝑙𝑖𝑗 and 𝑰𝑘𝑙𝑖𝑗
∞  are the contributions from 

surface terms. These terms are expressed as below: 

𝜱𝑘𝑙𝑖𝑗 =
𝐺𝑘𝑖,𝑙𝑗(𝑟) + 𝐺𝑙𝑖,𝑘𝑗(𝑟)

2
 (84) 

𝑬𝑘𝑙𝑖𝑗 = 𝑙𝑖𝑚
𝑟→0

(∫
𝐺𝑘𝑖,𝑙(𝑟) + 𝐺𝑙𝑖,𝑘(𝑟)

2
𝑛𝑗𝑑𝑆

𝑆

) (85) 

𝑰𝑘𝑙𝑖𝑗
∞ = 𝑙𝑖𝑚

𝑟→∞
(∫

𝐺𝑘𝑖,𝑙(𝑟) + 𝐺𝑙𝑖,𝑘(𝑟)

2
[𝑪𝑖𝑗𝑚𝑛

′ (𝑥 − 𝑟)]𝑛𝑗𝑑𝑆
𝑆

) (86) 

The intermediate steps and detailed information about the integration by parts operation 

can be found in [54]. If we plug in 𝜞𝑘𝑙𝑖𝑗 to expression in Eq. (81), we get: 

𝒂𝑘𝑙𝑚𝑛(𝒙) = −∫𝜞𝑘𝑙𝑖𝑗(𝑟)[𝑪𝑖𝑗𝑚𝑛
′ (𝑥′) + 𝑪𝑖𝑗𝑝𝑞

′ (𝑥′)𝒂𝑝𝑞𝑚𝑛(𝑥′)]𝑑𝑥′

𝑉

 (87) 

We can substitute the entire expression to the last term recursively to reach the general 

expression for localization tensor. Readers should be reminded as we recursively insert the 
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expression to itself, we reach the higher order localization terms and they account for the 

nonlinearities in series expansion. 

𝒂𝑘𝑙𝑚𝑛(𝑥) = −∫𝜞𝑘𝑙𝑖𝑗(𝑟)
𝑉

[𝑪𝑖𝑗𝑚𝑛
′ (𝑥′) + 𝑪𝑖𝑗𝑝𝑞

′ (𝑥′) 

(−∫ 𝜞𝑝𝑞𝑢𝑣(𝑟
′) [𝑪𝑢𝑣𝑚𝑛

′ (𝑥′′) + 𝑪𝑢𝑣𝑟𝑠
′ (𝑥′′)∫…

𝑉

]
𝑉

𝑑𝑥′′)] 𝑑𝑥′ 

(88) 

Now, we can use the localization tensor back in Eq. (57) to reach the general expression of 

perturbation strain. 

𝜺𝑘𝑙
′ = −∫𝜞𝑘𝑙𝑖𝑗(𝑟)𝑪𝑖𝑗𝑚𝑛

′ (𝑥′)𝜺̅𝑚𝑛𝑑𝑥′

𝑉

 

−∫ ∫𝜞𝑘𝑙𝑖𝑗(𝑟)𝑪𝑖𝑗𝑝𝑞
′ (𝑥′)𝜞𝑝𝑞𝑢𝑣(𝑟

′)𝑪𝑢𝑣𝑚𝑛
′ (𝑥′)𝜺̅𝑚𝑛𝑑𝑥′′𝑑𝑥′

𝑉𝑉

+ ⋯ 

(89) 

This expression is a sum of series that goes to infinity due to the perturbation expansions 

and it is very close to localization relationships that we are seeking. Eq. (89) can be 

transformed into a more computationally useful form by taking advantage of the concept 

of spatially resolved microstructure function 𝑚(𝑥, 𝑛) [71] that reflects the probability 

density associated with finding the local state n (to within an invariant measure 𝑑𝑛) at the 

spatial location 𝑥 (note that 𝑚(𝑥, 𝑛)𝑑𝑛 reflects the corresponding probability). The local 

state identifies the specific combination of local features (including phase identifiers, 

elemental compositions, crystal lattice orientations, etc.) needed to uniquely define the 

relevant local physical properties at the spatial location x. Furthermore, the complete set of 

all distinct local states that are possible in a given material system is referred to as the local 

state space, denoted by 𝐻 (i.e., 𝑛 𝜖 𝐻). From here the first step is to introduce local 
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microstructure descriptor to the expression. We start by describing the perturbation 

stiffness as: 

𝑪′(𝑥 − 𝑟) = ∫ 𝑪′(𝑛)
𝐻

𝑚(𝑥 − 𝑟, 𝑛)𝑑𝑛 (90) 

where 𝑪′(𝑛) represents the deviation in elastic stiffness of the local state 𝑛 from the 

effective stiffness. The summation (or integral in this case) of the perturbation stiffness 

term that comes from each local state bin contributes to total perturbation stiffness at spatial 

location 𝑥 (left hand side of Eq. (90)).  

With the introduction of Eq. (90), we removed the dependence of stiffness term to 

spatial location 𝑥 and transferred it to microstructure function. We also know that 

symmetrized derivative of Green’s function only depends on the relative distance 𝑟. From 

these two arguments, we can define a new term called influence function, 𝜶. 

𝜶(𝑟, 𝑛) = −𝜞(𝑟)𝑪′(𝑛) (91) 

𝜶(𝑟, 𝑟′, 𝑛, 𝑛′) = −𝜞(𝑟)𝑪′(𝑛)𝜞(𝑟′)𝑪′′(𝑛′) (92) 

where 𝜶(𝑛, 𝑟)  and 𝜶(𝑛, 𝑛′, 𝑟, 𝑟′) in Eq. (91) and (92) are first order and second order 

influence functions, respectively. Higher order influence functions can be defined in a 

similar manner. Now if we plug these terms into Eq. (89) and remove the indices for clarity, 

we reach the final form of localization relationships: 
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𝜺′(𝑥) = (∫ ∫ 𝜶(𝑟, 𝑛)
𝐻

𝑚(𝑥 − 𝑟, 𝑛)𝑑𝑛𝑑𝑟
𝑉

 

+∫ ∫ ∫ ∫ 𝜶(𝑟, 𝑟′, 𝑛, 𝑛′)𝑚(𝑥 − 𝑟, 𝑛)𝑚(𝑥 − 𝑟′, 𝑛′)𝑑𝑛𝑑𝑛′𝑑𝑟𝑑𝑟′

𝐻𝐻𝑉𝑉

+ ⋯) 𝜺̅ 

(93) 

The structure of Eq. (93) offers many computational advantages. First, the terms 

𝜶(𝑟, 𝑛) and 𝜶̃(𝑟, 𝑟′, 𝑛, 𝑛′) are independent of the microstructure function. In other words, 

they capture the microstructure-independent physics governing the local response of a 

composite material [71]. Second, the terms in Eq. (93) can be calibrated to physics based 

models efficiently using discrete Fourier transforms (DFTs). Note that Eq. (93) represents 

an infinite series expansion of a highly nonlinear function, where each term of the series 

captures a linearized contribution from a specific spatial feature in the microstructure. 

 Generalized MKS Framework 

 Even though the expression in Eq. (93) defines the true localization relationships, 

it has two minor difficulties in employing it in P-S-P linkages. First difficulty stems from 

the fact that the expression is defined in continuous local state space and spatial domain. It 

has to be converted to a discrete format in such a way that it can be handled in digitized 

environment. The other difficulty is the way the local microstructure is included in the 

expression. A generic local microstructure descriptor must be defined to describe the 

localization relationships in Eq. (93) so that it can hold for several materials systems and 

physics based phenomena. For this manner, we seek a computationally efficient form of 

Eq. (93) using spectral representations.  
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 Spectral Representations 

 Specifically, we seek representations of the following type for the influence 

functions 𝜶(𝑟, 𝑛) and microstructures functions 𝑚(𝑥, 𝑛) in Eq. (93). 

𝑚(𝑥, 𝑛) = ∑∑𝑀𝑠
𝐿𝑄𝐿(𝑛)𝜒𝑠(𝑥)

𝑠𝐿

 (94) 

𝜶(𝑟, 𝑛) = ∑∑𝑨𝑡
𝐿(𝑛)𝑄𝐿(𝑛)𝜒𝑡(𝑟)

𝑡𝐿

 (95) 

where 𝐿 denotes the index for numbers defined in the local state space. In Eq. (94) and (95), 

𝑄𝐿(𝑛) is a suitably selected Fourier basis for functions defined on the local state space with 

the following orthonormal properties:  

∫ 𝑄𝐿(𝑛)𝑄𝐿′
∗ (𝑛)𝑑𝑛

𝐻

=
𝛿𝐿𝐿′

𝑁𝐿
 (96) 

where the superscript * denotes a complex conjugate,  𝛿𝐿𝐿′ is the Kronecker delta, and 𝑁𝐿 

is a constant that might depend on 𝐿. 𝜒𝑠(𝑥) in Eq. (94) defines an indicator basis which 

essentially tessellates the spatial domain into a uniform grid [71]. This function is defined 

such that its value is one for all points belonging to spatial bin 𝑠, and zero for all points 

outside. The choice of the indicator basis for the spatial variables in Eq. (94) is primarily 

motivated by the fact that it allows for the use of DFTs in carrying out the integrals in Eq. 

(93). Using the orthogonal properties of both bases, we can show: 

𝑀𝑠
𝐿 =

𝑁𝐿

∆
∫ 𝑚(𝑥, 𝑛)𝑄𝐿

∗(𝑛)𝜒𝑠(𝑥)𝑑𝑛𝑑𝑥
𝐻,𝑉

 (97) 
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𝑨𝑡
𝐿 =

𝑁𝐿

∆
∫ 𝜶(𝑟, 𝑛)𝑄𝐿

∗(𝑛)𝜒𝑡(𝑟)𝑑𝑛𝑑𝑟
𝐻,𝑅

 (98) 

where ∆ is the volume of the spatial bin. By using Eq. (97) and (98), the first order terms 

in expression in Eq. (93) can be rewritten in a new format: 

𝒑𝑠 = (∑∫ [∑𝑨𝑡
𝐿𝑄𝐿(𝑛)

𝐿

] [∑𝑀𝑠+𝑡
𝐿′

𝑄𝐿(𝑛)

𝐿′

] 𝑑𝑛
𝐻𝑡

) 〈𝒑〉 (99) 

where 𝒑𝑠 is the response at the spatial bin 𝑠 and it can represent any response field based on 

the phenomena in interest (stress, strain, strain rate, composition field, etc). On the other 

hand, 〈𝒑〉 is average response field imposed on the macroscale. In all applications of MKS 

so far, 〈𝒑〉 is indeed the volume average of 𝒑𝑠 over the entire spatial domain of the 

microstructure. In other words, the localization linkages in the expression shown in Eq. (96) 

are aimed at capturing the spatial distribution of the quantity imposed at the higher length 

scale. We can take the summations and terms which are independent of local state 𝑛 outside 

the integral: 

𝒑𝑠 = (∑∑𝑨𝑡
𝐿

𝐿

∑𝑀𝑠+𝑡
𝐿′

𝐿′

∫ 𝑄𝐿(𝑛)𝑄𝐿′(𝑛)𝑑𝑛
𝐻𝑡

) 〈𝒑〉 (100) 

The integral in Eq. (100) is almost identical to Eq. (96), except the conjugate. If the basis 

functions have imaginary parts, then the second basis function needs a conjugate for the 

orthonormality condition (see Eq. (96)). This problem can be solved by taking the 

conjugate of the local microstructure descriptor expression in Eq. (94). This does not affect 

the expression as local microstructure descriptor, 𝑚(𝑥, 𝑛) is a real-valued function. With 

the conjugate, Eq. (100) can be rewritten as: 
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𝒑𝑠 = (∑∑𝑨𝑡
𝐿

𝐿

∑𝑀𝑠+𝑡
𝐿′∗

𝐿′

∫ 𝑄𝐿(𝑛)𝑄𝐿′
∗ (𝑛)𝑑𝑛

𝐻𝑡

) 〈𝒑〉 (101) 

If we plug Eq. (96) into (105), we obtain: 

𝒑𝑠 = (∑∑∑𝑨𝑡
𝐿𝑀𝑠+𝑡

𝐿′∗
𝛿𝐿𝐿′

𝑁𝐿
𝐿′𝐿𝑡

) 〈𝒑〉 (102) 

Due to Kronecker delta, the terms can only be non-zero when 𝐿 = 𝐿′. Hence, one of the 

summations can be removed and the localization relationships can be written in terms of 

first order terms: 

𝒑𝑠 = (∑∑
∆

𝑁𝐿
𝑨𝑡

𝐿𝑀𝑠+𝑡
𝐿′∗

𝐿𝑡

) 〈𝒑〉 (103) 

The phenomena we are interested in is linear elastic deformation of polycrystalline 

aggregates. However, a discrete version of the expression in Eq. (93) was utilized for other 

physics based phenomena [23, 72]. From Eq. (103), the generalized localization 

relationships with higher order terms can be written as: 

𝒑𝑠 = (∑∑
∆

𝑁𝐿
𝑨𝑡

𝐿𝑀𝑠+𝑡
𝐿∗

𝑡𝐿

+ ∑∑∑∑
∆2

𝑁𝐿𝑁𝐿′
𝑨𝑡

𝐿𝐿′
𝑀𝑠+𝑡

𝐿∗ 𝑀𝑠+𝑡+𝑡′
𝐿′

𝑡′

+ ⋯

𝑡𝐿′𝐿

) 〈𝒑〉 (104) 

  It is pointed that if 𝑄𝐿(𝑛) were selected to be the indicator functions (i.e., a simple 

binning of the local state space), we would recover the simpler MKS formulation utilized in 

our prior studies involving multiphase composites [18, 22-25]. Likewise, if the local state 

was selected to the crystal lattice orientation and the Fourier basis was selected to the 

generalized spherical harmonics (GSH) [73], we would recover the localization relationships 
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formulation demonstrated for elastic deformations in single phase polycrystalline 

microstructures [20]. We believe that the formulation presented above is the most general 

and practical MKS formulation that will be applicable for a very broad range of advanced 

material systems. 

 Influence Functions 

 There have been essentially two main difficulties in the computation of the 

localization kernels defined in Eq. (55). The first difficulty stems from the fact that 𝜞(𝑟) 

(embedded in the localization kernels; see Eq. (55)) exhibits a singularity at 𝑟 = 0. The 

second difficulty is that the convergence of the series is quite sensitive to the selection of 

the reference medium (e.g., [74]). These difficulties are handled with the generalized MKS 

framework shown in Eq. (104). A diagram of how influence functions are obtained and 

utilized for prediction of local response of a microstructure can be seen in Figure 10. The 

influence functions that constitute the knowledge in the MKS framework in Eq. (104) are 

fit to the results obtained from physics based models through regression methods. To 

calibrate the influence coefficients, first we need calibration microstructures. Calibration 

microstructures are usually generated from a wide range of volume fractions and 

topological features. These microstructures would serve as the microstructure function, 𝑀𝑠
𝐿 

in Eq. (104). In other words, they are the input for the calibration. The selection of calibration 

microstructures will be explained in detail for the case studies presented in the next 

sections. Next, we run physics based models to produce the local response fields, 𝒑𝑠 which 

serves as the output. The calibration of influence functions at this stage requires only 

regression methods. By simply calibrating them to the results obtained from physics based 

models, we overcome the problem of singularity encountered in 𝜞(𝑟).  
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Figure 10: A diagram showing the main strategy in calibration of the influence functions 

and the prediction of response field through convolution of microstructure and influence 

functions 

 𝑨𝑡
𝐿 and 𝑨𝑡

𝐿𝐿′
 are referred to as first and second order influence functions, respectively. 

𝑨𝑡
𝐿 captures the influence of local state 𝐿 in spatial bin separated by a vector 𝑡 from spatial 

bin 𝑠. On the other hand, 𝑨𝑡
𝐿𝐿′

 capture the combined contribution of local state 𝐿 and 𝐿′ in 

the spatial bins separated by vectors 𝑡 and 𝑡′. Higher order influence functions can be 

described in the same manner. Influence functions are on the same spatial grid as 

microstructure function. However, the most important difference of influence functions, 𝑨𝑡
𝐿 

is that they are independent of the local microstructure descriptor (see that the subscript 

depends on the relative distance between points, 𝑡, not on the spatial location, 𝑠). This 

indicates that we do not need to define a reference localization tensor for each 

microstructure. From this perspective, one might consider the computational time required 

to execute physics based models as a disadvantage. However, since influence functions are 

completely independent of the local microstructure descriptor, the calibration process is a 

one-time computational cost. Once the influence functions are obtained, the response field 
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of any microstructure that can be realized in the material system in interest can be predicted 

in a very computationally efficient manner. Often times, MKS can achieve this task with 

orders of magnitude faster than physics based models. This will be demonstrated in detail 

with both of the case studies. 

 Workflow for Establishing Localization Linkages 

 The similarity of the generalized MKS framework presented here to the versions in 

prior localization work [18, 19, 24, 25, 27] suggests the use of the same overall strategy for 

calibrating the influence functions (such as 𝑨𝑡
𝐿) in Eq. (104).  The overall workflow involved 

in building the MKS databases is shown in Figure 11 as a broadly usable template. This 

procedure involves four different main tasks (color coded in Figure 11) with several subtasks. 

These tasks involve: 1) generation of a calibration data set, 2) calibration of influence 

coefficients, 3) generation of validation data set and 4) validation of MKS. Although this 

template has been presented first time in [17], the protocols described in prior localization 

case studies essentially followed these protocols. The tasks shown in the template are 

explained in detail with case studies of MKS. 
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Figure 11: A suggested workflow template for establishing the generalized localization 

relationships formulation 

 MKS for Composite Materials 

 Even though the focus in this dissertation is to extend the MKS framework to 

polycrystalline aggregates, the details about the calibration of influence functions will be 

explained through composite materials. The localization relationships of MKS for 

composite materials were implemented in prior work for two-phase material systems [19, 

23-25]. To obtain the suitable localization linkages for composite material systems, an 

appropriate Fourier basis function should be selected. The local microstructure descriptor 

and the procedure for calibration of influence coefficients are explained in this section.  

 Local Microstructure Descriptor for Multiphase Composites 

 Since we defined a generalized expression for MKS framework, we can recover the 

specific formulation for multiphase material system by selecting indicator functions as 

Fourier basis function, 𝜒𝐿(𝑛). If we plug the indicator function in Eq. (97), we obtain: 
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𝑚(𝑥, 𝑛) = ∑∑𝑀𝑠
𝐿𝜒𝐿(𝑛)𝜒𝑠(𝑥)

𝑠𝐿

 (105) 

𝑀𝑠
𝐿 =

𝑁𝐿

∆
∫ 𝑚(𝑥, 𝑛)𝜒𝐿(𝑛)𝜒𝑠(𝑥)𝑑𝑛𝑑𝑥
𝐻,𝑉

 (106) 

The local microstructure descriptor shown in Eq. (106) acts as a digital signal in discrete 

format and it denotes the probability of finding the local state 𝐿 in the spatial bin 𝑠. Based 

on the definition made above, there are some constraints which are given as below: 

∑𝑀𝑠
𝐿

𝐿

= 1  ,   0 ≤ 𝑀𝑠
𝐿 ≤ 1  ,   ∑𝑀𝑠

𝐿

𝑠

= 𝑉𝐿𝑆  (107) 

where 𝑆 is the total number of spatial bins and 𝑉𝐿 is the volume fraction of the local state 

𝐿 in the volume of interest. For a two-phase material system, the local state space has only 

2 discrete local states (i.e. 𝐿 = {1,2}). An example of 𝑀𝑠
𝐿 for two-phase materials system is 

shown in Figure 12. A grossly simplified 4 × 4 microstructure of a two-phase material 

system is shown at the left side. Spatial bins are numbered from 1 to 16 and each of them are 

fully occupied either by a white or gray phase. The white and gray phases are indicated by 

𝐿 = 1 and 𝐿 = 2, respectively. If we take spatial bin 6 as an example, we can see that 𝑀6
1 =

1 as the entire spatial bin is occupied by white phase. From this point, we can easily denote 

𝑀6
1 = 0. Similar approach is repeated for spatial bin 15 as well and it is shown in the right 

side of the Figure 12. This is an example of eigen-microstructure [75] where each spatial bin 

is fully occupied by a one discrete local state. However, the expressions given in Eq. (105) 

holds for non-eigen microstructures as well where the microstructure function can get 

fractional values. 
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Figure 12: Visualization of local microstructure descriptor for a two-phase materials 

system 

 Calibration of Influence Functions 

 As it was mentioned before, the influence functions are calibrated to the results 

obtained from physics-based models through regression methods. To demonstrate the 

calibration procedure in detail, a one-dimensional microstructure is utilized and it can be 

seen in Figure 13. Each spatial bin is fully occupied either by a gray or white phase and the 

local microstructure values are given at the right hand side of the figure. The top values are 

for white phase and the bottom values are for gray phase. 

 

Figure 13: One dimensional microstructure of a two-phase material system. Local 

microstructure values for both phases are given at the right side of the microstructure 

 Now, let us write the expression in Eq. (104) for this microstructure in matrix 

format by considering only the first order terms and assuming the area of the spatial bin is 

1.  



 
64 

[

𝒑1

𝒑2

𝒑3

] = [

𝑀1
1 𝑀2

1 𝑀3
1 𝑀1

2 𝑀2
2 𝑀3

2

𝑀2
1 𝑀3

1 𝑀1
1 𝑀2

2 𝑀3
2 𝑀1

2

𝑀3
1 𝑀1

1 𝑀2
1 𝑀3

2 𝑀1
2 𝑀2

2

]

[
 
 
 
 
 
 
𝑨0

1

𝑨1
1

𝑨2
1

𝑨0
2

𝑨1
2

𝑨2
2]
 
 
 
 
 
 

 (108) 

The influence functions at the right hand side of system of equations shown in Eq. (108) 

can be solved through regression methods. If we call the response, microstructure and 

influence function matrices as 𝑷, 𝑴 and 𝑨, then the influence functions can be predicted 

based on Eq. (27) (i.e. OLS). 

𝑨 = (𝑴𝑇𝑴)−1𝑴𝑷 (109) 

The difficulty in solving for influence functions in Eq. (109) lies in the inversion of 𝑴𝑇𝑴. 

This matrix has a size of (𝑆 × 𝐿) × (𝑆 × 𝐿) where 𝑆 is 3 and 𝐿 is 2 for this microstructure. 

However, for a microstructure with a realistic size, this number increases dramatically. For 

a 3-D two-phase microstructure with a spatial grid of 𝑆 = 21 × 21 × 21 = 9261 voxels, 

this number jumps to 𝑆 × 𝐿 = 21 × 21 × 21 × 2 = 18522. Even with a small size of 

volume element and two distinct local states, inverting this matrix is a computationally 

inefficient task. For a more computationally efficient approach, we solve for the influence 

functions in DFT space. First, we cast all 3 fields (response field, local microstructure and 

influence functions) in DFT space. 

ℳ𝑘
𝐿 = ℑ(𝑀𝑠

𝐿)  ,   𝓐𝑘
𝐿 = ℑ(𝑨𝑠

𝐿)  ,   𝓹𝑘 = ℑ(𝒑𝑠) (110) 

where ℑ represents the DFT operation and 𝑘 enumerates the frequency in DFT space. The 

advantage of solving for influence functions in DFT space comes from the convolution 
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property of DFT. From the expression in Eq. (104), it can be seen that the right hand side 

of the equation is comprised of terms which are the convolution of local microstructure 

descriptors and influence functions. In other words, the influence functions are coupled 

with spatial and local state variables. In spatial frequency space, the expressions are 

decoupled due to the fact that DFT takes care of the convolution. This decoupling can be 

seen below for first order terms: 

ℑ(𝒑𝑠) = ℑ(∑∑𝑨𝑡
𝐿𝑀𝑠+𝑡

𝐿

𝑡𝐿

) (111) 

𝓹𝑘 = ∑𝓐𝑘
𝐿ℳ𝑘

𝐿

𝐿

 (112) 

When we cast the first order terms in DFT space, DFT operation takes care of the summation 

over spatial variable. In DFT space, the local response field is defined with only one 

summation which is over local state variable, 𝐿. The spatial variable in Eq. (112) is the 

frequency index 𝑘. Since there is no summation over 𝑘, influence coefficients in DFT space, 

𝓐𝑘
𝐿  can be solved separately for each unique frequency. The matrix format for OLS solution 

to Eq. (112) is given as below: 

𝓐 = (𝓜†𝓜)−1𝓜𝓹 (113) 

where † represents the Hermitian transpose. It is clear from Eq. (112) that the 𝓜†𝓜 is a 

𝐿 × 𝐿 matrix (i.e. 2 × 2 for two-phase material system). The above solution is repeated for 

each unique frequency, 𝑘 to come up with the entire field of influence functions in DFT 

space. The computational efficiency lies in the inversion of 𝐿 × 𝐿 matrix. If we take a volume 

with a spatial grid of 𝑆 = 21 × 21 × 21 = 9261 voxels, we repeat this operation 𝑆 = 9261 
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times. However, inverting a 2 × 2 matrix for 𝑆 = 9261 times is orders of magnitude faster 

than inverting a 18522 × 18522 matrix once. DFT operation helps us gather influence 

coefficients for very large spatial domains and very large number of local states in a very 

computationally efficient manner which often times it is computationally impossible to do 

with the brute force way in real space. 

 However, the computational advantage in calibration procedure is not the main 

reason in employing DFT operations. The crux of DFT operation lies in the prediction of 

response field after we obtain the influence coefficients which essentially contains the 

physics-based knowledge. The convolution of influence functions and local microstructure 

descriptor in frequency space is a Hadamard product (entrywise product). Once the 

influence functions are obtained, the response field of any microstructure in the material 

system in interest can be predicted in a matter of seconds. This is a result of the complexity 

of DFT operation. For instance, FE simulations have 𝑆3 complexity while DFT operation 

has a complexity of 𝑆 log 𝑆. This helps us obtain the prediction of a response field often 

times orders of magnitude faster than FE simulations. This is the central advantage of 

MKS. In the next sections, the computational advantage of the MKS framework will be 

demonstrated with two case studies. 
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MKS FOR SINGLE PHASE POLYCRYSTALLINE MATERIALS 

 

 Almost all of the case studies explored thus far have been restricted to composite 

material systems with a limited set of discrete local material states (i.e., two-phase or three-

phase microstructures). However, most materials of interest in emerging technologies 

exhibit local states that are much more complicated. For example, most advanced structural 

materials exhibit polycrystalline microstructures, where the spatial distribution of the 

crystal lattice orientations at the microscale plays an important role in controlling their 

effective properties. High throughput evaluation of the responses of a large set of 

microstructures (as one might need in optimizing the material performance in a selected 

application) with such complex local states requires a major extension of the MKS 

framework that allows efficient treatment of tensorial local states (e.g., crystal lattice 

orientation) and their associated continuous local state spaces. In this regard, it should be 

recognized that it is possible to treat continuous local states simply by binning the 

continuous local state space (as described in our earlier work [19]). However, a primitive 

binning of the local state space is expected to prove highly inefficient, computationally, in 

capturing accurately the localization linkages of interest, especially in situations where the 

microscale response in the material microstructure shows high sensitivity to the local state 

(e.g., plastic response of crystalline states). 

 This section presents the needed extension to the theoretical framework of the MKS 

approach to allow a rigorous treatment of the crystal lattice orientation as the local state 
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variable. This is accomplished through the use of Generalized Spherical Harmonics (GSH) 

[73] for capturing the orientation dependence of the influence kernels in the MKS linkages. 

It should be noted that GSH have already been demonstrated to produce highly efficient 

and compact spectral descriptions of functions defined on the orientation space in other 

applications in prior literature [11, 30-44]. The viability of the new MKS formulation 

developed in this work is demonstrated with case studies on selected cubic and hexagonal 

polycrystalline material systems.  

 Generalized Spherical Harmonics 

 Extension of MKS formulation to continuous local states requires suitable Fourier 

basis function, 𝑄𝐿(𝑛) in the series (Eq. (104)). For single phase polycrystals, where the 

local state is adequately described by the crystal lattice orientation, the response field can 

be expressed using the crystal lattice orientation, 𝑔, as the local state variable with only the 

first order terms as follows: 

𝒑𝑠 = ∑∑
∆

𝑁𝐿
𝑨𝑡

𝐿𝑀𝑠+𝑡
𝐿

𝑡𝐿

= ∑∫ 𝛼𝑡(𝑔)𝑓𝑠+𝑡(𝑔)𝑑𝑔
𝐹𝑍𝑡

 (114) 

where 𝐴𝑡(𝑔) is the influence function which is a function of crystal lattice orientation. In Eq. 

(114), 𝑓𝑠(𝑔) is generally referred to as the spatially resolved orientation distribution function 

(ODF) for the spatial bin labeled 𝑠. Since 𝑓𝑠(𝑔) is the probability density, 𝑓𝑠(𝑔)𝑑𝑔 denotes 

the volume fraction of material with crystal lattice orientation in the spatial bin s that can be 

associated with crystal lattice orientations that lie within 𝑑𝑔 around 𝑔. With this 

reinterpretation, it should be easy to see the correspondence between 𝑓𝑠(𝑔)𝑑𝑔 and 𝑀𝑠
𝐿.  
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Furthermore, the reformulation of the MKS formulation as shown in Eq. (114) is completely 

consistent with the expressions used in statistical continuum theories [28, 29, 74-76].   

 Note that the use of crystal lattice orientation in localization relationships demands 

integration over the fundamental zone of crystal lattice orientations (denoted as FZ). This 

computation can of course be performed numerically (generally corresponds to a suitable 

binning the FZ).  However, based on past experience [31, 40, 44], the number of bins 

needed for sufficiently accurate numerical integration of the integral in Eq. (114) is 

expected to be substantially large. Note also that a large number of bins would also imply 

that an equally large number of influence functions will have to be calibrated in the MKS 

approach. As a result, a direct numerical integration of the integral in Eq. (114) is not very 

attractive from a computational perspective. 

 To represent ODF with a suitable Fourier basis function, one needs a definition of 

the crystal lattice orientation, 𝑔 is represented. Crystal lattice orientation, 𝑔 is represented 

with 3 angles (also known as Euler angles) and they are used to transform the reference (or 

sample) frame to crystal frame. The angles used in these case studies are called Bunge-

Euler angles (𝜑1, Φ, 𝜑2) and they are applied to sample frame in 3 successive rotations. 

This procedure is illustrated in Figure 14. The sample frame is represented by {𝑒1, 𝑒2, 𝑒3}. 

First, the sample frame is rotated with an angle of 𝜑1 about 𝑒3. Then, the new coordinate 

system {𝑒1
′ , 𝑒2

′ , 𝑒3
′ } is rotated with an angle of Φ about 𝑒1

′ . The last rotation angle is 𝜑2 and 

the new coordinate system {𝑒1
′′, 𝑒2

′′, 𝑒3
′′} is rotated with it about 𝑒3

′′. The resulting directions 

{𝑒1
𝑐, 𝑒2

𝑐, 𝑒3
𝑐} denote the crystal frame. 
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Figure 14: Illustration of the representation of crystal lattice orientation with Bunge-Euler 

angles, (𝝋𝟏, 𝚽,𝝋𝟐). 

 Based on prior work with a mathematical framework called Microstructure 

Sensitive Design (MSD) [31, 40], it can be hypothesized that the use of Generalized 

Spherical Harmonics (GSH) [73] as a Fourier basis for functions defined on the orientation 

space would lead to an efficient computation of the integral in Eq. (114). In particular, we 

note that in a prior case study [77], the elastic localization terms (very similar to those seen 

in the MKS series expansion discussed here) in classes of cubic-triclinic polycrystals were 

captured with only ten GSH coefficients. The ODF can be written in terms of GSH basis 

functions, 𝑇𝑙
𝑚𝑛(𝑔) as below: 

𝑓(𝑔) = ∑ ∑ ∑ 𝐶𝑙
𝑚𝑛𝑇𝑙

𝑚𝑛(𝑔)

+𝑙

𝑛=−𝑙

+𝑙

𝑚=−𝑙

∞

𝑙=0

 (115) 

where 

𝑇𝑙
𝑚𝑛(𝑔) = 𝑇𝑙

𝑚𝑛(𝜑1, Φ, 𝜑2) = 𝑒𝑖𝑚𝜑1𝑃𝑙
𝑚𝑛(Φ)𝑒𝑖𝑛𝜑2 (116) 

𝑃𝑙
𝑚𝑛 are certain generalizations of associated Legendre function. The derivations of Eq. 

(115) and (116) are not included in this dissertation. However, the derivations can be found 

in [78]. GSH functions form a complete orthonormal basis [73]: 
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∮𝑇𝑙
𝑚𝑛𝑇𝑙

𝑚′𝑛′∗𝑑𝑔 =
1

2𝑙 + 1
𝛿𝑙𝑙′𝛿𝑚𝑚′𝛿𝑛𝑛′ (117) 

where 𝑑𝑔 is the invariant measure of orientation space and * denotes the complex 

conjugate. The importance of orthonormality appears in implementing basis functions to 

MKS series expansion. The expression of ODF in Eq. (115) does not include any 

symmetries involving the crystal system. GSH functions can be modified to reflect any 

desired crystal and sample symmetries [40, 73]. For instance, symmetrized GSH functions 

for cubic-triclinic symmetry are denoted as 𝑇̇̇𝑙
𝜇𝑛

, and can be found as a linear combination 

of GSH functions: 

𝑇̇̇𝑙
𝜇𝑛

= ∑ 𝐶̇̇𝑙
𝑚𝜇

𝑇𝑙
𝑚𝑛

𝑙

𝑚=−𝑙

𝛿𝑛𝑛′  (118) 

where 𝐶̇̇𝑙
𝑚𝜇

 are the coefficients that account for the cubic crystal symmetry and 𝑇̇̇𝑙
𝜇𝑛

 are the 

symmetrized GSH functions. Similar approach can be repeated for sample symmetry as 

well. The double dot above the coefficients denote the crystal symmetry and a single dot 

denote the sample symmetry. If the coefficients accommodate both of the symmetries, then 

it is written with 3 dots. In Eq. (118), there are not solution for all possible 𝑙. These solutions 

can be found by singular value composition (SVD) or null space approaches. The number 

of linearly independent solutions to Eq. (118) are actually enumerated by index 𝜇. It will 

be shown in this and next case study that for cubic-triclinic symmetry, there are only 2 

linearly independent orthogonal solutions from up to 𝑙 = 4. Since index 𝑛 runs from −𝑙 to 

+𝑙, for each solution of 𝑙, there are 2𝑙 + 1 functions. For instance, symmetrized GSH 

functions of cubic-triclinic symmetry has one solution for 𝑙 = 0 and 𝑙 = 4. This makes 10 
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functions in total for cubic triclinic symmetry up to 𝑙 = 4. Similar comments can be made 

for the number of functions for hexagonal-triclinic symmetry which has one solution for 

each of 𝑙 = {0,2,4} leading to 15 functions. The number of solutions for different 𝑙 values 

and crystal symmetries are given in [73].  

 Derivation of MKS for Single Phase Polycrystalline Aggregates 

 Symmetrized GSH functions, 𝑇̇̇𝑙
𝜇𝑛

 were selected for as Fourier basis function for 

the functions defined over the orientation space (𝛼𝑡(𝑔) and 𝑓𝑠(𝑔)). It is anticipated that the 

influence functions can be represented compactly [31, 40, 44, 75, 77] with a small number 

of GSH terms. Such representations can be expressed as: 

𝑓𝑠(𝑔) = ∑ 𝑀𝑙𝑠
𝜇𝑛

𝑇̇̇𝑙
𝜇𝑛(𝑔)

𝜇,𝑛,𝑙

  ,   𝑀𝑙𝑠
𝜇𝑛

= (2𝑙 + 1)∫ 𝑓𝑠(𝑔)𝑇̇̇𝑙
𝜇𝑛∗(𝑔)𝑑𝑔

𝐹𝑍

 (119) 

𝜶𝑡(𝑔) = ∑ 𝑨𝑙𝑡
𝜇𝑛

𝑇̇̇𝑙
𝜇𝑛(𝑔)

𝜇,𝑛,𝑙

  ,   𝑨𝑙𝑡
𝜇𝑛

= (2𝑙 + 1)∫ 𝜶𝑡(𝑔)𝑇̇̇𝑙
𝜇𝑛∗(𝑔)𝑑𝑔

𝐹𝑍

 (120) 

where 𝑀𝑙𝑠
𝜇𝑛

 and 𝐴𝑙𝑡
𝜇𝑛

 are the Fourier coefficients of the functions 𝑓𝑠(𝑔) and 𝛼𝑡(𝑔), 

respectively. The number of coefficients in the Fourier representations for each 𝑠 (or 𝑡 value) 

are determined by the combinations of 𝜇, 𝑛 and 𝑙. For simplicity and consistency with the 

generalized MKS framework shown in Eq. (104), all combinations of these indices will be 

enumerated by a single index 𝐿. By using the Fourier representations above, the MKS series 

expansion for single polycrystalline aggregates can be derived. If we insert the Fourier 

representations in Eq. (119) and (120) into (114), we obtain: 
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𝒑𝑠 = ∑∫ [∑𝑨𝑡
𝐿 𝑇̇̇𝐿(𝑔)

𝐿

] [∑𝑀𝑠+𝑡
𝐿′

𝑇̇̇𝐿′
(𝑔)

𝐿′

] 𝑑𝑔
𝐹𝑍𝑡

 (121) 

We can take the summations outside the integral and if we rearrange the terms, we get: 

𝒑𝑠 = ∑∑∑𝑨𝑡
𝐿𝑀𝑠+𝑡

𝐿′
∫ 𝑇̇̇𝐿(𝑔)𝑇̇̇𝐿′

(𝑔)𝑑𝑔
𝐹𝑍𝐿′𝐿𝑡

 (122) 

Attention must be paid to the terms inside the integral in Eq. (122). These terms are almost 

identical to the orthonormality condition of GSH functions given in Eq. (117), except the 

conjugate. To get rid of the integral in Eq. (122), we have to have conjugate on one of the 

GSH functions inside the integral. We can go around this problem by simply conjugating 

Fourier representation of ODF (see Eq. (119)) inserted in Eq. (121). This conjugate does 

not change the result of ODF as ODF is a real valued function (probabilistic measure). 

With the conjugate, the expression in Eq. (122) becomes: 

𝒑𝑠 = ∑∑∑𝑨𝑡
𝐿𝑀𝑠+𝑡

𝐿′∗ ∫ 𝑇̇̇𝐿(𝑔)𝑇̇̇𝐿′∗(𝑔)𝑑𝑔
𝐹𝑍𝐿′𝐿𝑡

 (123) 

where * denotes the conjugate. Now that we have the conjugate term inside the integral, 

the definition in Eq. (117) can be plugged in Eq. (123). 

𝒑𝑠 = ∑∑∑𝑨𝑡
𝐿𝑀𝑠+𝑡

𝐿′∗
𝛿𝐿𝐿′

2𝑙 + 1
𝐿′𝐿𝑡

 (124) 

where 𝛿𝐿𝐿′ is the Kronecker delta. Due to 𝛿𝐿𝐿′, the terms inside the summations only have 

non-zero values when 𝐿 = 𝐿′. Hence, the expression in Eq. (124) can be reduced to: 
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𝒑𝑠 = ∑∑
1

2𝑙 + 1
𝑨𝑡

𝐿𝑀𝑠
𝐿′∗

𝐿𝑡

 (125) 

where 1/(2𝑙 + 1) is the normalization factor resulting from GSH functions and actually 

corresponds to the normalization factor given in Eq. (104). This result is a testimony to the 

flexibility and versatility of generalized MKS framework shown in Eq. (104). Generalized 

MKS framework can be extended for a wide variety of material systems and phenomena 

given that a suitable Fourier representation function is selected for both the influence 

function and local microstructure representation. 

 Calibration of Influence Functions 

 Now that the localization relationships for single-phase polycrystalline aggregates 

are known, the influence functions can be calibrated. In this case study, we will limit our 

attention to the first term in the MKS series expansion (referred to as first-order influence 

functions), since our prior work [23, 25] on a range of material systems has demonstrated 

that this term is adequate in providing accurate MKS localization linkages for low to 

moderate contrast composite material systems. As mentioned earlier, our overall strategy 

is to calibrate the influence functions such that the predictions from MKS localization 

linkages match the corresponding results from micromechanical finite element simulations 

obtained on selected microstructures [18, 19, 23, 25, 40].  

 Selection of Microstructures for Training Dataset 

 The first step in the calibration process is the selection of the ensemble of 

microstructures for training the localization linkages. The specific volume elements used in 

the calibration and validation steps have been referred to as microscale volume elements 
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(MVEs). It was shown that MVEs reflecting “delta” microstructures were adequate to 

calibrate the first-order influence coefficients for low contrast composite material systems 

with a small number of distinct phases (i.e., local states) [25]. Delta microstructures are 

represented using MVEs where one central volume element is assigned one phase, and all 

other volume elements are assigned another phase (see the MVE at the left of Figure 15). 

The response of a delta microstructure corresponds to the output of an impulse signal, and 

makes it trivial to calibrate the influence coefficients [23, 25]. However, as noted earlier, the 

local state space in polycrystalline materials is comprised of a very large number of distinct 

crystal lattice orientations, and thereby requires a different strategy. In this case study, three 

different types of microstructures were used in the training set: (i) delta, (ii) equi-axed, and 

(iii) random microstructures (see Figure 15). As noted earlier, delta microstructures are very 

efficient in capturing accurately the fundamental interactions between the two local states 

represented in them. However, since we can explore only two orientations at a time with each 

MVE exhibiting a delta microstructure, they are not efficient in quickly exploring the 

interactions between all possible local states (note that a very large number of local states are 

possible in the case studies selected in this work). Conversely, the random microstructures 

(where each volume element is assigned a distinct crystal lattice orientation) permit efficient 

exploration of the interactions between a large number of crystal lattice orientations. Note 

also that the random microstructures produce the most heterogeneous stress (and strain) 

fields in the MVEs. The equi-axed microstructures were added to the calibration dataset as 

they reflect the type of microstructures encountered in real applications. 
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Figure 15: Examples of MVEs (of size 𝟐𝟏 ×  𝟐𝟏 ×  𝟐𝟏) used for the calibration of 

influence coefficients for polycrystalline material systems studied in this work: (a) delta 

microstructures, (b) equi-axed microstructures, and (c) random microstructures. 

 Taking into account inherent symmetry of the crystal lattice, the local state space 

for cubic and hexagonal polycrystals studied in this work can be expressed as [40]: 

𝐹𝑍𝐶 = {

𝑔 = (𝜑1, Φ, 𝜑2)|0 ≤ 𝜑1 ≤ 2𝜋,

cos−1 (
cos𝜑2

1 + cos2 𝜑2
) ≤ Φ ≤

𝜋

2
, 0 ≤ 𝜑2 ≤

𝜋

4
} (126) 

𝐹𝑍𝐻 = {𝑔 = (𝜑1, Φ, 𝜑2)|0 ≤ 𝜑1 ≤ 2𝜋, 0 ≤ Φ ≤
𝜋

2
, 0 ≤ 𝜑2 ≤

𝜋

3
} (127) 

The assignment of crystal orientations to each volume element in the MVE must be 

accomplished in such a way that it permits efficient exploration of the very large range of 

potential spatial interactions between all possible local states [79]. Since the local state space 

for the problems at hand is a continuous space (see Eq. (104)), the number of distinct 

orientations making up the local state space is essentially infinite.  A strategy that has been 

successfully used in prior studies is to identify a set of principal orientations [40] that exhibit 

the extremes in the local responses (or properties) of interest. The central hypothesis is that 

using these principal orientations in the calibration process ensures that the localization 

linkages are employed largely as interpolations as opposed to extrapolations. It was 
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previously shown that the principal orientations can be identified as the vertices of a texture 

hull in the GSH space [42, 80], which were also observed to correspond with the 

orientations on the bounding surfaces of the fundamental zone [79]. In this work, our goal 

is to demonstrate that the framework described above works well for both cubic and 

hexagonal polycrystals. We will therefore undertake two separate case studies (one for 

cubic and one for hexagonal) and demonstrate that in both cases the influence functions 

need representation only up to 𝑙 ≤ 4, as claimed earlier. We therefore generated two 

calibration datasets, one for each crystal symmetry, while essentially following the same 

overall approach. In this work, the set of principal orientations were sampled from the 

bounding surface of the respective fundamental zones (see Figure 16). For the calibration 

microstructures with hexagonal crystals, the principal orientations were selected only from 

the surface of 𝐹𝑍𝐻 corresponding to 𝜑2 = 0  (see part (b) of Figure 16), because the angle 

𝜑2 has no influence on the local elastic stiffness of the crystal (because of the transverse 

isotropy implied in the description of the elastic stiffness for hexagonal crystals). 

 

Figure 16: (a) 222 principal crystal lattice orientations used in the calibration of influence 

coefficients for cubic polycrystals, and (b) 80 principal crystal lattice orientations used in 

the calibration of the influence coefficients for hexagonal polycrystals. 
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 To prove that the selection of orientations from the surfaces of 𝐹𝑍𝐶  and 𝐹𝑍𝐻 count 

as principal orientations, we can visualize the GSH coefficients. Since every spatial voxel 

in the MVE is occupied by one distinct crystal orientation, the ODF if each cell reduces to 

single crystal ODF. If we call the single crystal orientations in a spatial voxel 𝑠 as 𝑔0, the 

GSH coefficients of 𝑓𝑠(𝑔0) are simply given by: 

𝑀𝑠
𝐿 = (2𝑙 + 1)𝑇̇̇𝐿∗(𝑔𝑜) 

(128) 

For cubic-triclinic symmetry of interest in the present case study, the spectral 

representation of the elastic stiffness tensor in the orientation space is expected to include 

all 𝑙 ≤ 4 GSH terms [20]. Taking into account the fact that GSH coefficients for real 

functions have certain interdependencies (some of the coefficients will be complex 

conjugates of the others), the GSH representations for 𝑙 ≤ 4 constitute 10 dimensions. In 

Table 2 is given GSH coefficients, 𝑀𝑠
𝐿 of a cubic-triclinic crystal system for Bunge-Euler 

angles of (𝜑1, Φ, 𝜑2) = (156, 45, 7) in degrees. There is only one term for 𝑙 = 0 and it is 

always 1. For 𝑙 = 4, there are 9 terms. The coefficients that correspond to even numbers 

of 𝑛 are conjugate of their negative counterpart (recall that 𝑛 is one of the three indices that 

constitute the general index of 𝐿). As an example, the coefficients that correspond to 𝑛 =

4 is the conjugate of the coefficient for 𝑛 = −4. On the other hand, the coefficients that 

correspond to odd numbers are negative conjugate of their negative counterpart. For each 

solution there are 2𝑙 + 1 coefficients for a selected 𝑙. Hence, the number of coefficients for 

each solution is an odd number. The center value corresponds to 𝑛 = 0 and it is always 

real. This is a general characteristic of GSH coefficients for any crystal system, solution 

index and crystal lattice orientation. 
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Table 2: GSH coefficients, 𝑴𝒔
𝑳 of a cubic-triclinic crystal system for Bunge-Euler angles 

of (𝝋𝟏, 𝚽,𝝋𝟐) = (𝟏𝟓𝟔, 𝟒𝟓, 𝟕) in degrees. The first column shows the unified index for all 

combinations of (𝝁, 𝒏, 𝒍). The second column shows the solution number for series index 

𝒍 (fourth column). The third column shows the indices of coefficients for a specific series 

index 𝒍. In the fifth column is shown the GSH coefficients, 𝑴𝒔
𝑳 

𝑳 𝝁 𝒏 𝒍 𝑀𝑠
𝐿 

1 1 0 0 1 

2 1 -4 4 0.726 −  2.913i 

3 1 -3 4 0.686 −  1.057i 

4 1 -2 4 −4.152 +  3.244i 
5 1 -1 4 −0.619 +  0.213i 
6 1 0 4 −1.849 

7 1 1 4 0.619 +  0.213i 

8 1 2 4 −4.152 −  3.244i 

9 1 3 4 −0.686 −  1.057i 
10 1 4 4 0.726 +  2.913i 

 

However, the visualization of cubic-triclinic texture hull in 10 dimensions in order to 

identify the principal orientations is a major challenge. To visualize the principal 

orientations in a reduced order space, we utilized principal component analysis (PCA). 

PCA essentially provides a linear transformation of high dimensional data into a new 

orthonormal coordinate frame, whose axes are ordered by the amount of the variance 

observed in the dataset (with the first axis identifying the direction of maximum variance 

in the dataset). The same idea was used in prior work in a different context [26, 81]. Figure 

2 shows PCA representations of the single crystal orientation distributions corresponding 

to orientations sampled from 𝐹𝑍𝐶 . The sample orientations are color-coded such that the 

orientations on the surface of 𝐹𝑍𝐶  are marked red, while the orientations inside 𝐹𝑍𝐶  are 

marked blue. It can be seen from the PCA plots (low dimensional projections) in Figure 17 

that the orientations on the surface of 𝐹𝑍𝐶  are indeed the principal orientations of interest. 
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Based on this observation, 220 principal orientations are selected from the bounding surface 

of 𝐹𝑍𝐶  for the calibration steps. 

 

Figure 17: (a) Cubic-triclinic fundamental zone, 𝑭𝒁𝑪. Red points show the orientations on 

the surface of 𝑭𝒁𝑪 and blue points show the orientations inside the zone. (b) and (c) show 

the GSH representations for the single crystal orientation distribution functions 

corresponding to the crystal orientations in (a) in the PCA subspaces. 

 Micromechanical Finite Element Models 

 The calibration dataset for the present work was established by executing 

micromechanical finite element simulations using commercial software ABAQUS [82]. 

Each MVE was represented by a finite element mesh of uniform cuboids (eight-noded, three-

dimensional, solid elements, C3D8 [82]) defined on a 21 ×  21 ×  21 grid. On this 

uniformly gridded finite element mesh, different assignments were made for the crystal 

orientations (see Figure 16) to produce the three different classes of microstructures shown 

in Figure 15.  

 All of the MVEs studied here were subjected to a uniaxial strain using periodic 

boundary conditions. In other words, the loading conditions were such that only the 〈𝜀11〉 

(average normal strain component along the 1-axis) was allowed to be non-zero. Two 

material systems were selected for this study: (i) copper with elastic stiffness constants 

𝐶11 = 168.4𝐺𝑃𝑎, 𝐶12 = 121.4𝐺𝑃𝑎 and 𝐶44 = 75.4 𝐺𝑃𝑎 [83] (this corresponds to cubic 
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anisotropy ratio of 𝐴 = 3.21), (ii) -Ti with elastic stiffness constants 𝐶11 =

154𝐺𝑃𝑎, 𝐶12 = 86𝐺𝑃𝑎, 𝐶44 = 46 𝐺𝑃𝑎, 𝐶13 = 67 𝐺𝑃𝑎 and 𝐶33 = 183 𝐺𝑃𝑎 [84]. Based 

on these values, we might characterize copper as a moderate contrast composite and -Ti 

as a low contrast composite [43]. 

 Calibration of Influence Functions 

 The calibration dataset was established by executing micromechanical finite element 

simulations on a total of 3600 microscale volume elements (MVE) using commercial 

software ABAQUS [82] for each case study presented in this case study. The MVEs were 

produced as explained in the previous subsection. While there is always the possibility of 

adding more MVEs to the calibration dataset, it was observed that addition of new MVEs 

to the calibration set did not contribute significantly to the accuracy and robustness of the 

localization linkages produced in this study.  

 As noted earlier, the calibration of the influence functions is best accomplished by 

casting the linkages in the DFT space [19, 22-25, 40]. Application of this strategy results 

in the following set of equations in the DFT space by using expressions in Eq. (110): 

𝓹𝑘 = [(∑𝓐𝑘
𝐿∗ℳ𝑘

𝐿

𝐿

)] 〈𝑝〉 (129) 

where 𝒜𝑘
𝐿  and ℳ𝑘

𝐿 are the Fourier coefficients of influence functions and the microstructure 

function in the DFT space. The corresponding linear regression [85] for establishing the 

influence kernels can be expressed as 
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∑ 𝓹𝑘𝑟 ( ℳ𝑘
𝐿′

𝑟 )
∗

𝑟

= ∑𝓐𝑘
𝐿∗

𝐿

[∑ ℳ𝑘
𝐿

𝑟 ( ℳ𝑘
𝐿′

𝑟 )
∗

𝑟

] (130) 

where k denotes the spatial frequency in the DFT space and r indexes the training MVEs 

used in the calibration process.  

 One of the important consequences of casting the MKS kernels in a spectral basis 

for representing the functional dependence on continuous local states is that the number of 

terms even in the first-order expansion is essentially infinite (see Eq. (125)). We expect 

only a finite number of these to be dominant. For example, based on our prior experience 

[31, 77, 79], we anticipate that only ten of the 𝑨𝑡
𝐿 terms in Eq. (125) (i.e., 𝑙 = (0, 4), which 

is then mapped to  𝐿 = 1,… ,10) would have dominant contributions for cubic polycrystals. 

The number of dominant terms in 𝐴𝑡
𝐿 for hexagonal polycrystals is expected to be only fifteen 

(corresponding to 𝑙 = (0, 2,4), which is then mapped to  𝐿 = 1,… ,15) [44]. In order to 

critically evaluate this hypothesis, we systematically computed the average error in the 

localization linkages as a function of the truncation level (i.e., for different values of the 

maximum value of 𝐿) [18] for a selected ensemble set of microstructures. For each trial 

truncation level, the error between the MKS and FEM predictions for each MVE in the 

calibration set is defined as the mean absolute strain error (MASE) 𝐸𝑟 [18]: 

𝐸𝑟 = ∑
|𝑝𝑠

𝐹𝐸𝑀 − 𝑝𝑠
𝑀𝐾𝑆|

𝑆 × 〈𝑝〉
× 100

𝑆

𝑠=1

 (131) 

where 𝑝𝑠
𝐹𝐸𝑀and 𝑝𝑠

𝑀𝐾𝑆 are the values of the response field of interest (here the 𝜀11 strain 

component) in the spatial bin s of FEM and MKS predictions, respectively, and 〈𝑝〉 is the 

macroscale average value of the response field. In Figure 18, the effect of increasing the 
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number of coefficients for the spectral representation of the influence functions on the error 

in the calibrated localization linkages is shown. The plots show both the average value of 

MASE as well as the minimum and maximum values of MASE for the entire training set 

used in the analyses. As hypothesized, it is clearly seen that the terms corresponding to 𝑙 >

4 (i.e., 𝐿 > 10 for cubic and 𝐿 > 15 for hexagonal) do not make any significant 

contributions to improving the accuracy of the MKS linkages for the elastic deformations in 

cubic and hexagonal polycrystals. More importantly, it is seen that the average MASE as 

well as the maximum and minimum MASE for the calibration set are extremely small for 

the entire datasets in both cubic and hexagonal polycrystals. As expected, the MASE is 

slightly higher for the moderate contrast Cu polycrystals compared to the low contrast Ti 

polycrystals. These observations validate the central hypothesis of this approach that the 

GSH representations of the influence functions over the orientation space are extremely 

efficient and compact. It is emphasized again that the tremendous dimensionality reduction 

obtained as a consequence of using the GSH representations results in major computational 

advantages. 
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Figure 18: Mean absolute strain errors for training sets as a function of the truncation level 

in the spectral representations of the influence functions: (a) Cubic polycrystals, (b) 

Hexagonal polycrystals.  

 The computational advantage of casting the MKS series expansion into the DFT 

space for calibration can be realized again by examining Eq. (130). Without transforming 

the localization series into spatial frequency space, the total number of Fourier coefficients 

of influence functions that needs to be calibrated simultaneously are 92,610 (= 10 × 21 ×

21 × 21) for cubic polycrystals and 138,915 (= 15 × 21 × 21 × 21) for hexagonal 

polycrystals. However, in the DFT space, the number of coupled variables is only 10 for 

cubic and 15 for the hexagonal case (established separately for each spatial frequency, 𝑘). In 

other words, in the DFT space, the complete set of 92,610 coefficients for cubic case are 

established by selecting only 10 at a time, which leads to a remarkable savings in the 

computational effort involved in the calibration of influence functions. 

 In our prior work [18, 19, 25], it was shown that the influence coefficients decayed 

to zero values with increasing distance, 𝑡. In the reformulated localization series presented 

in this case study, the Fourier coefficients of influence functions, 𝐴𝑡
𝐿, are also expected to 

show the same trend. A few selected Fourier coefficients of the influence functions are 

shown in Figure 19. It was seen that all of the Fourier coefficients established in this case 

study decayed to zero or near zero values, attesting to the robustness of calibration 

procedures used in this work. The decay of the influence coefficients to zero values at large 

values of t is essential for trivially extending the influence coefficients for larger MVEs by 

zero-padding. Furthermore, the fast decay of the influence coefficients confirms that the 

selected size of the MVEs used in the calibration (21 × 21 × 21) was adequate for the 

present case studies. 
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Figure 19: Variation of selected influence functions 𝑨𝒕
𝑳 as a function of y and z components 

of t (the x component of t is set to zero).  

 Validation of Localization Linkages 

 For the critical evaluation of the localization linkages established in this case study, 

two validation sets of 1800 microstructures comprising 600 delta, 600 equi-axed and 600 

random microstructures were generated for each crystal symmetry. The crystal lattice 

orientations in the validation MVEs were selected randomly from the complete 

fundamental zones described in Eq. (126) and (127) (recall that only the orientations on 

the bounding surfaces of the fundamental zone were used in generating the calibration 

datasets).   

 The accuracy of the localization linkages established in this work is shown in Figure 

1 by plotting the mean, minimum, and maximum errors (defined in Eq. (131)) for the two 

classes of polycrystals. As expected, the MASE increases with increased contrast (the 

anisotropy in Copper polycrystals is substantially larger than in -Titanium). It is also seen 

that the influence kernels established in this study exhibit remarkable accuracy for both 

case studies presented (the maximum error of the entire set was less than 0.5% for 

hexagonal polycrystals, while it was less than 2% for cubic polycrystals). Note also that 
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the error levels in the validation and calibration datasets were of similar magnitude, further 

validating the approach employed in this work. 

 

Figure 20: Summary of mean, minimum, and maximum of the absolute errors in the MKS 

linkages established in this work for elastic responses in cubic and hexagonal polycrystals. 

 Next, we critically evaluate the accuracy of localization linkages at the level of 

individual spatial voxels in the MVEs. In Figure 21, the strain field predicted by the MKS 

approach is compared with the corresponding prediction from FEM for a selected equiaxed 

microstructure of Copper. The plots shown in Fig. 6(c) and 6(d) correspond to the strain 

distributions of a middle slice of the three dimensional RVE shown in Fig. 6(a). Fig. 6(b) 

compares the distributions of the strains present in the two predictions (for the entire MVE). 

It is seen that there is an excellent agreement between the FEM and MKS predictions. The 

value of the MASE for this MVE was only 1.6%. Similar comparisons for -Ti 

microstructures revealed even better agreement (because of the lower contrast) compared to 

the results for the Cu polycrystals. 
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Figure 21: Comparison of strain fields predicted with MKS and FEM approaches. (a) An 

example Copper polycrystal microstructure selected for the validation. (b) Frequency plots 

of the predictions of 𝜺𝟏𝟏 from MKS and FEM. (c) and (d) Middle slices of strain fields 

predicted by MKS and FEM, respectively.  

 It is also important to note the computational efficiency of the MKS approach 

presented in this paper. For example, the FEM prediction of a 21 × 21 × 21 microstructure 

took 25 seconds with 2 processors (each 3.0 GHz) on a supercomputer, while prediction 

with MKS took only 2 seconds with only 1 processor (3.0 GHz) on a standard desktop 

computer.  

 Scalability is one of the major advantages of localization linkages. As discussed 

earlier, influence functions are analogous to the Green’s function and decay as the distance 



 
88 

𝑡 from the spatial cell of interest increases. In prior work, it was demonstrated that the 

influence functions obtained from smaller size MVEs can be trivially extended to larger 

domains by padding with zeros [18, 19, 25] to permit their usage on arbitrary-sized MVEs 

(or RVEs). In order to demonstrate this characteristic for the new localization linkages 

established in this work, the Fourier coefficients of the influence functions obtained from 

the 21 ×  21 ×  21 domain are padded with zeros to acquire the functions for the larger 

domain of 51 × 51 × 51. An example 51 × 51 × 51 equiaxed microstructure was 

generated (see the top left plot of Figure 22) and 1255 distinct orientations from the complete 

cubic-triclinic FZ were assigned to the individual grains in the microstructure. The FEM and 

MKS predictions for this example microstructure are compared in Figure 22. The excellent 

agreement between the MKS and FEM predictions validates the scalability of the approach 

presented here. In terms of computational efficiency, the gain is indeed much more 

significant for the larger MVEs compared to the smaller MVEs. The FEM simulation of 

51 ×  51 ×  51 MVE took 6 minutes with 8 processors (each 3.0 GHz) on a supercomputer, 

while the MKS prediction took only 30 seconds with only 1 processor (3.0 GHz) on a 

standard computer. 

 Two aspects of the new approach presented in this case study must be paid attention. 

It is very clear that higher levels of anisotropy demand the consideration of higher-order 

terms in the localization linkages. In other words, one should not ignore the importance of 

the second term in Eq. (104) when one applies the approach described here to material 

systems that exhibit higher levels of anisotropy (which translates to higher levels of contrast).  

Second, it is also important to recognize that there is a critical need for a more rigorous 

evaluation of the accuracy of the localization linkages. The error measures used here as well 
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as the types of microstructures used here are somewhat limited. It would be beneficial to 

establish the localization linkages on a much larger set of microstructures with much more 

diversity in their topological features (only three families were used in this study). 

 

Figure 22: Comparison of strain fields predicted with MKS and FEM approaches. (a) The 

example 𝟓𝟏 × 𝟓𝟏 × 𝟓𝟏 copper polycrystal microstructure selected for validation. (b) 

Frequency plots of the predictions of 𝜺𝟏𝟏 from MKS and FEM. (c) and (d) Middle slices 

of strain fields predicted by MKS and FEM, respectively. 
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MKS FOR A BROAD CLASS OF SINGLE PHASE 

POLYCRYSTALLINE MATERIALS 

 

 In all prior applications of the MKS approach, one material system was considered 

at a time. In other words, the developed localization linkages databases were applicable 

only to a broad range of microstructures within a selected material system. In this case 

study, the viability of the generalized MKS framework is demonstrated to establish 

databases to elastic deformations in an entire family of cubic polycrystals. In this case 

study, we focus on the application of the generalized MKS framework introduced in the 

previous section to a family of cubic polycrystals. For this class of microstructures, the 

local state description needs to include both the crystal lattice orientation and the single 

crystal cubic elastic stiffness constants (expressed in the crystal reference frame). The 

crystal lattice orientation was expressed by a set of ordered Bunge-Euler angles, 𝑔 =

(𝜑1, Φ, 𝜑2) in the previous chapter. In prior work [20, 86], it was shown that functions 

defined on the orientation space can be efficiently represented using symmetrized GSH 

functions, 𝑇̇̇𝑙
𝜇𝜈

, as a Fourier basis. More specifically, it was demonstrated that the elastic 

localization kernels for single phase cubic material needed only 10 terms in these GSH 

representations. 

 In this paper, we seek to establish localization linkages for an entire family of single 

phase cubic polycrystals (as opposed to doing this for each material system at a time). In 

order to accomplish this task, it is necessary to include the fundamental cubic single crystal 
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elastic stiffness constants, (𝐶11, 𝐶12, 𝐶44), in the local state description. In other words, the 

complete local state description for this problem can be expressed as 𝑛 = (𝑔, 𝐶11, 𝐶12, 𝐶44). 

Note that this local state description now has six independent variables (recall that 𝑔 =

(𝜑1, Φ, 𝜑2)). This compounded local state description is needed to accurately represent the 

fourth-rank elasticity tensors in the sample reference frame in each spatial bin of the 

microstructure of interest (which now can correspond to a broad range of cubic 

polycrystals).  

 The next task is the selection of the Fourier basis, 𝑄𝐿(𝑛) (see Eq. (94)). While we 

already know that 𝑇̇̇𝑙
𝜇𝜈

 can serve as a basis for the functional dependence on crystal lattice 

orientation, it is not clear what basis should be used for the other variables (𝐶11, 𝐶12, 𝐶44). 

The main challenge here arises from the fact that these variables are not defined on a 

periodic domain (unlike 𝑔). We selected Legendre polynomials 𝑃(𝑥) as a Fourier basis for 

inclusion of elastic stiffness constants in the local state description. In order to employ these 

basis functions, we need to rescale the variables such that their domain is mapped to the 

interval (−1,1). This can be accomplished generically for any variable 𝐶 by defining a new 

variable 

𝐶𝑟 =
2𝐶 − 𝐶𝑚𝑖𝑛 − 𝐶𝑚𝑎𝑥

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
 (132) 

where 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 are the respective minimum and maximum values of 𝐶. Applying Eq. 

(132) to (𝐶11, 𝐶12, 𝐶44) results in rescaled descriptors (𝐶11
𝑟 , 𝐶12

𝑟 , 𝐶44
𝑟 ). We might now 

describe the extended local state for the material class of interest as 𝑛 = (𝑔, 𝐶11
𝑟 , 𝐶12

𝑟 , 𝐶44
𝑟 ) 

with the Fourier basis selected as: 
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𝑄𝐿(𝑛) = 𝑄𝐿(𝑔, 𝐶11
𝑟 , 𝐶12

𝑟 , 𝐶44
𝑟 ) = 𝑇̇̇𝑙

𝜇𝜈(𝑔)𝑃𝑎(𝐶11
𝑟 )𝑃𝑏(𝐶12

𝑟 )𝑃𝑐(𝐶44
𝑟 ) (133) 

The new localization relationships in continuous local state space can be written with only 

first order terms as: 

𝒑𝑠 = ∑∫ ∫ 𝜶𝑡(𝑔, 𝐶11
𝑟 , 𝐶12

𝑟 , 𝐶44
𝑟 )𝑓𝑠+𝑡(𝑔, 𝐶11

𝑟 , 𝐶12
𝑟 , 𝐶44

𝑟 )𝑑𝑔𝑑𝐶11
𝑟 𝑑𝐶12

𝑟 𝑑𝐶44
𝑟

𝐹𝑍𝐶𝑍𝑡

 (134) 

For simplicity, all combinations of the indices related to GSH functions (𝜇, 𝑛 and 𝑙) can be 

enumerated by a single index 𝐼. The terms inside the integral can be written in terms of the 

Fourier basis functions shown in Eq. (133) as: 

𝑓𝑠(𝑔, 𝐶11
𝑟 , 𝐶12

𝑟 , 𝐶44
𝑟 ) = ∑ 𝑀𝑠

𝐼𝑎𝑏𝑐 𝑇̇̇𝐼(𝑔)𝑃𝑎(𝐶11
𝑟 )𝑃𝑏(𝐶12

𝑟 )𝑃𝑐(𝐶44
𝑟 )

𝐼,𝑎,𝑏,𝑐

 (135) 

𝜶𝑡(𝑔, 𝐶11
𝑟 , 𝐶12

𝑟 , 𝐶44
𝑟 ) = ∑ 𝑨𝑡

𝐼𝑎𝑏𝑐 𝑇̇̇𝐼(𝑔)𝑃𝑎(𝐶11
𝑟 )𝑃𝑏(𝐶12

𝑟 )𝑃𝑐(𝐶44
𝑟 )

𝐼,𝑎,𝑏,𝑐

 (136) 

If we insert these representations in Eq. (134) by ignoring the function variables to make 

the equation more compact: 

𝒑𝑠 = ∑∫ ∫ [ ∑ 𝑨𝑡
𝐼𝑎𝑏𝑐 𝑇̇̇𝐼𝑃𝑎𝑃𝑏𝑃𝑐

𝐼,𝑎,𝑏,𝑐

]
𝐹𝑍𝐶𝑍𝑡

                                                 

                                       [ ∑ 𝑀𝑠+𝑡
𝐼′𝑎′𝑏′𝑐′

𝑇̇̇𝐼′𝑃𝑎′𝑃𝑏′𝑃𝑐′

𝐼′,𝑎′,𝑏′,𝑐′

] 𝑑𝑔𝑑𝐶11𝑑𝐶12𝑑𝐶44 

(137) 

Where 𝐶𝑍 stands for the space covering the ranges of elastic stiffness constants. We can 

take the summations outside the integral and rearrange the terms as: 
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𝒑𝑠 = ∑ ∑ 𝑨𝑡
𝐼𝑎𝑏𝑐 ∑ 𝑀𝑠+𝑡

𝐼′𝑎′𝑏′𝑐′

𝐼′,𝑎′,𝑏′,𝑐′𝐼,𝑎,𝑏,𝑐𝑡

                                                                  

                                                     ∫ 𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑎′𝑃𝑏′𝑃𝑐′ ∫ 𝑇̇̇𝐼 𝑇̇̇𝐼′𝑑𝑔𝑑𝐶11𝑑𝐶12𝑑𝐶44
𝐹𝑍𝐶𝑍

 

(138) 

There are 2 orthonormality expressions in Eq. (138). First one is the orthonormality of 

Legendre polynomials and the second one is the orthonormality of GSH functions. 

However, the orthonormality of GSH functions is missing a conjugate like in the previous 

case study. We can go around this problem by taking the conjugate of ODF which is a real 

valued function. With the conjugate and orthonormality conditions, Eq. (138) can be 

rewritten as: 

𝒑𝑠 = ∑ ∑ ∑ 𝑨𝑡
𝐼𝑎𝑏𝑐𝑀𝑠+𝑡

𝐼′𝑎′𝑏′𝑐′∗
8𝛿𝑎𝑎′𝛿𝑏𝑏′𝛿𝑐𝑐′

(2𝑎 + 1)(2𝑏 + 1)(2𝑐 + 1)

𝛿𝐼𝐼′

(2𝑙 + 1)
𝐼′,𝑎′,𝑏′,𝑐′𝐼,𝑎,𝑏,𝑐𝑡

 (139) 

where 𝛿 is Kronecker delta. Just like in the previous case study, the variables of both 

summations are tied to each other with Kronecker delta. Hence the expression is only non-

zero when the indices from the summations are the same. Based on this constraint and 

wrapping the combination of indices 𝐼, 𝑎, 𝑏 and 𝑐 to a single index 𝐿, we can remove the 

summation and reach the final form of MKS series expansion for a broad class of single 

phase polycrystalline aggregates. 

𝒑𝑠 =
8

(2𝑎 + 1)(2𝑏 + 1)(2𝑐 + 1)(2𝑙 + 1)
∑∑𝑨𝑡

𝐿𝑀𝑠+𝑡
𝐿∗

𝐿𝑡

 (140) 



 
94 

where 8/(2𝑎 + 1)(2𝑏 + 1)(2𝑐 + 1)(2𝑙 + 1) accounts for the normalization factor of 𝑁𝐿 in 

(93). Once again, the expression derived from continuous localization relationships (see 

Eq. (93)) yielded to the generalized MKS framework shown in Eq. (104). 

 Calibration of Influence Functions 

 The generation of calibration data set starts with the identification of the local state 

space corresponding to the selected local state descriptors. Since 𝑛 = (𝑔, 𝐶11
𝑟 , 𝐶12

𝑟 , 𝐶44
𝑟 ) the 

overall local state space is essentially the compounded local state spaces of all the variables 

involved. The local state space for the crystal lattice orientation is simply the cubic-triclinic 

fundamental zone, 𝐹𝑍𝐶 , defined in Eq. (126). This essentially means that each spatial bin 

of the microstructure can be assigned any combination of crystal lattice orientations from 

𝐹𝑍𝐶 . Although the framework presented above allows assignment of polycrystals at each 

spatial bin, we will restrict our attention here to the assignment of only single crystals in each 

spatial bin. In other words, we will assume that the spatial discretization used is such that 

only one crystal orientation is assigned in each spatial bin. The same strategy followed in the 

previous case study was followed here as well for the selection of orientations for calibration 

MVEs. 220 orientations are sampled from the surface of  𝐹𝑍𝐶 . 

 Next we decide on the ranges for the elastic stiffness constants (𝐶11, 𝐶12, 𝐶44). The 

ranges were selected to include many of the commonly used cubic metals, while covering 

cubic anisotropy ratios (defined as 𝑍 = 2𝐶44/(𝐶11 − 𝐶12) [40]) in the range 𝑍 = [0.5,1.95]. 

This range is expected to cover the range of low to moderate contrast for which the first term 

in the localization series is deemed adequate based on prior work [19, 20, 23-25]. It is also 

pointed out that 𝑍 = 1 corresponds to the isotropic case. Because of the rescaling described 
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earlier (see Eq. (132)), the range for the rescaled local state variables will be (−1,1) 

independent of the selection of the ranges for (𝐶11, 𝐶12, 𝐶44).  Within the selected range, a 

total of 64 distinct sets of (𝐶11, 𝐶12, 𝐶44) were used in generating the calibration dataset in 

this work. These sets are identified in Figure 23.  

 

Figure 23: The set of 64 different combinations of the elastic stiffness constants 

(𝑪𝟏𝟏, 𝑪𝟏𝟐, 𝑪𝟒𝟒) used in the calibration step of the present study. 

 Once the local state and local state space are identified, next steps in generating the 

calibration data set are the selection of the classes of representative microstructures of 

interest. For calibration, same type of calibration MVEs are used and these are shown in 

Figure 15. It is also reminded again that each MVE is assigned only one set of elastic stiffness 

constants (i.e. single phase polycrystalline aggregates). 

 The final step in generating the calibration data set is to execute the micromechanical 

finite element (FE) simulations using suitable boundary conditions. Periodic boundary 

conditions were imposed on all MVEs used in the calibration in such a way that all 

macroscopic strain components other than 𝜀11 had zero values. Repeating the simulations 
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with six different sets of boundary conditions allows us to establish the localization 

linkages for all components of the fourth rank elastic localization kernels [22, 25, 79]. Just 

like in the previous case study, we limit our attention to only the 𝜀11 strain component. A 

uniformly discretized grid of 21 ×  21 ×  21 is used for each MVE. Each spatial bin in the 

MVE is defined as an 8-noded, three-dimensional, solid element (C3D8) in the finite element 

mesh. A total of 1800 microstructures (600 of each of the three types of microstructures 

shown in Figure 15) compounded with 64 different assignments of single crystal elastic 

constants (shown in Figure 23) produced the calibration dataset used in this work. The finite 

element simulations were carried out using the commercial software ABAQUS [82].  

 The next major task in the establishing localization linkages for this case is the 

estimation of influence coefficients. As mentioned earlier, influence coefficients are 

calibrated to micromechanical finite element simulations through the application of linear 

regression methods in the DFT space. The first step in the calibration of influence 

coefficients is the spectral representation of each of the MVE included in the calibration 

set. Let (𝑔𝑠, 𝐶11𝑠
𝑟 , 𝐶12𝑠

𝑟 , 𝐶44𝑠
𝑟 ) denote the local state in the spatial bin 𝑠. The spectral 

representation of the microstructure function for single crystal orientation distribution 

function and a selected set of elastic stiffness constants can then be written as 

𝑀𝑠
𝐿 =

𝑁𝐿

∆
𝑇̇̇𝑙

𝜇𝑛∗(𝑔𝑠)𝑃𝑎(𝐶11𝑠
𝑟 )𝑃𝑏(𝐶12𝑠

𝑟 )𝑃𝑐(𝐶44𝑠
𝑟 ) (141) 

Then, the calibration procedure shown in Eq. (130) is followed. However, we need to 

establish how many terms of the Fourier series we wish to retain (i.e., establish ℒ). In our 

previous work [20], we found out that we will only need ten of the GSH basis functions 

(corresponding to 𝑙 = (0, 4)) for accurately representing the influence functions for cubic 
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polycrystals. Since we do not have any prior expectations on how many Legendre basis 

functions are needed to capture the functional dependence on the elastic stiffness parameters, 

we have to execute a few trials to establish this number. Using the calibration dataset 

prepared for this case study, OLS was performed using Eq. (130) for different truncation 

levels on the Legendre basis, and the average error in each MVE of the calibration set was 

computed based on the error measure give in Eq. (131). In this case study, it was decided to 

keep the truncation level the same for all three Legendre representations (one for each 

elastic stiffness parameter). Let ℬ denote the number of terms retained in the Legendre 

series (same for all three elastic stiffness parameters). The value of ℬ was increased 

systematically and the computed error using Eq. (131) is plotted in Figure 24. It was 

observed that truncation beyond ℬ = 3 did not improve the accuracy of the linkage 

significantly. It is also worth noting that the average error values for ℬ = 3 were extremely 

low (<< 1%). This result implies that the elastic MKS influence functions can be captured 

with adequate precision for the family of cubic polycrystals studied here with only ℒ = 270 

(i.e., 10 GSH terms and 3 terms for each Legendre basis) spectral coefficients. This is a 

remarkable compaction of an extremely complex physical phenomenon over a broad class 

of material systems. 
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Figure 24: Error in the MKS linkages as a function of the truncation level of Legendre series 

for the representations over the elastic stiffness space  

 Validation of Localization Linkages 

 In order to evaluate the performance of the localization linkages, a validation data 

(distinct from the calibration dataset) was generated. For sampling of the local state space, 

MVEs of the validation set were assigned cubic single crystal elastic stiffness constants 

from the region shown in Figure 23 that are distinct from the 64 combinations used in the 

calibration set. For crystal lattice orientations, the entire cubic-triclinic fundamental zone 

is utilized in generation of the validation set as opposed to the selection of orientations only 

from the boundary of fundamental zone used in the calibration. As a result of these 

protocols, the microstructures used in the validation are completely distinct from those 

used in the calibration. A validation set of 9000 microstructures comprising 3000 delta, 

3000 equiaxed, and 3000 random microstructures with assignments of single crystal elastic 

stiffness constants as described above, were utilized. The 𝜀11 strain field for the validation 

dataset was predicted by executing FE simulations by applying the same boundary 

conditions used for calibration data set.  
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 The last step of the MKS framework is the validation of the influence functions. This 

can be achieved simply by comparing directly the predictions from the localization linkages 

established with the validation dataset. The accuracy and the robustness of the localization 

linkages established in this case study is shown in Figure 25 by plotting the mean, minimum, 

and maximum errors for different cubic anisotropy ratios used in both the calibration and 

validation datasets. As expected, the average error increases with higher levels of 

anisotropy (results in higher contrast levels in the composite material system). It is also 

shown that the influence functions established in this study are highly accurate (note that 

highest average error is well below 1%). 

 

Figure 25: Variation of mean, minimum, and maximum of the absolute strain errors for the 

MVEs included in both the calibration and the validation datasets as a function of the degree 

of anisotropy 

 Figure 25 attests to the high accuracy of the localization linkages established in the 

present case study based on the average error definition from Eq. (131). Next, we critically 

evaluate the predictions of the localization linkages at the level of individual spatial bins. 

In Figure 26, the strain field predicted by the MKS approach for a selected equiaxed 
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microstructure with an elastic anisotropy ratio of 𝑍 = 1.32 is compared with the 

corresponding prediction from the FE simulation. Equiaxed microstructure shown in 

Figure 26(a) contained 157 distinct orientations randomly picked from the complete cubic-

triclinic FZ. The middle slices of strain fields from MKS and FEM predictions are shown 

in parts (c) and (d) of Figure 26, respectively. Figure 26 shows the frequency plot of the 

strain distribution of entire MVE for both MKS and FEM predictions. From Figure 26, it 

can be seen that MKS and FEM predictions are almost indistinguishable from each other. 

It is noted that the average error for this example microstructure shown was only 0.11%. 
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Figure 26: Comparison of strain fields predicted with MKS and FEM approaches for a low 

elastic anisotropy cubic polycrystalline microstructure (𝒁 = 𝟏. 𝟑𝟐). a) 𝟐𝟏 ×  𝟐𝟏 ×  𝟐𝟏 

microstructure with each color representing a distinct orientation selected randomly from 

the complete cubic-triclinic fundamental zone. b) Comparison of MKS and FEM 

predictions as a frequency plot of 𝜺𝟏𝟏. Red dashed line shows the distribution of strains 

from FEM predictions, while the blue solid line shows the distribution of strains from MKS 

predictions. c) and d) show middle slices of strain fields predicted by MKS and FEM 

approaches, respectively 

 For cubic polycrystals with higher levels of anisotropy corresponding to 𝑍 = 0.54 

and 𝑍 = 1.94, the MKS predictions are compared with the corresponding FEM results in 

Figure 27. Even though the values of the average error have increased somewhat (0.62% 

for the case with 𝑍 = 1.94, and 0.59% for the case with 𝑍 = 0.54), the accuracy of the 

localization linkages established in this work is remarkable. This is particularly impressive 
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when one keeps in mind the tremendous compaction achieved in the description of the 

influence functions over extremely large continuous local state spaces. Other than the 

accuracy of MKS, the computational efficiency of MKS should also be emphasized. The 

FEM prediction of the microstructure in Figure 7(a) took 24 seconds with 2 processors 

(each 3.0 GHz) on a supercomputer, while prediction with MKS took only 2 seconds with 

only 1 processor (3.0 GHz) on a standard desktop computer. 

 

Figure 27: Comparison of MKS and FEM predictions for moderate levels of cubic elastic 

anisotropy included in this study. (a) and (b) shows the strain field distributions predicted 

by the MKS and FEM approaches on a middle slice of a MVE with an anisotropy ratio of 

𝒁 = 𝟏. 𝟗𝟒. (c) is the frequency plot of the strains from the same predictions. (d), (e), and 

(f) repeat the comparisons for a MVE with a cubic anisotropy ratio of 𝒁 = 𝟎. 𝟓𝟒 

 The influence functions are analogous to Green’s functions and show a decaying 

characteristic with increasing size of t vector. It was previously shown that the influence 

functions obtained from smaller domains can be extended to larger domains by padding 

with zeros [18-20, 25]. This is done to facilitate the applications of the influence functions 
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to arbitrary-sized MVEs (or RVEs) without much additional work (i.e., without the need 

to recalibrate the localization linkages). In an effort to demonstrate the scalability of 

influence functions, the Fourier coefficients of the influence functions obtained from the 

21 ×  21 ×  21 domain are extended to the larger domain of 45 ×  45 ×  45 by zero-

padding. For validation of the scalability of influence functions for cubic polycrystalline 

aggregates, a 45 ×  45 ×  45 equiaxed microstructure with 1257 distinct orientations from 

the entire cubic-triclinic FZ was generated. Assigning a set of cubic elastic stiffness 

parameters with 𝑍 = 1.32 to the microstructure, the FEM and MKS predictions were 

obtained and shown in Figure 28. There is an excellent agreement between the MKS and 

FEM predictions, attesting the scalability of the influence functions established in MKS 

framework. It should be noted that the computational efficiency is much more impressive 

with larger size microstructures. FEM simulation of 45 ×  45 ×  45 microstructure took 3 

minutes with 16 processors (each 3.0 GHz) on a supercomputer, while MKS prediction took 

only 24 seconds with only 1 processor (3.0 GHz) on a standard computer.  

 

Figure 28: Comparison of the strain field 𝜺𝟏𝟏 for a middle slice predicted with (a) MKS 

and (b) FEM approaches for a 𝟒𝟓 × 𝟒𝟓 × 𝟒𝟓 MVE with a cubic anisotropy factor of 𝒁 =
𝟏. 𝟑𝟐. (c) Comparison of the MKS and FEM strain predictions presented as frequency 

plots. Red dashed line shows the distribution of strain from FEM results, while the blue 

solid line shows the distribution of strain from MKS predictions 
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 In this new MKS framework for a family of single phase cubic polycrystalline 

aggregates, it is once again observed that the first set of terms are adequate in predicting 

the response field of interest for low to moderate contrast material systems. However from 

our previous experiences [18], it is crucial that the higher order terms are included in the 

local state description for higher anisotropy levels (produces higher contrast). Especially 

in applications where higher accuracy in prediction of response field is required on the 

spatial locations where failure is likely to occur (high cycle fatigue, etc.), the higher order 

terms along with much more sophisticated error measures will be required.  
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LOCALIZATION RELATIONSHIPS FOR MULTIPHASE 

POLYCRYSTALLINE MATERIALS 

 

 As a last case study, MKS framework is extended to multiphase polycrystalline 

material. Multiphase polycrystalline material can be considered as a material system with 

more than one phase, where each phase is heterogeneous within itself due to crystal lattice 

orientation. In multiphase polycrystals, contrast between the microscale constituents is 

described by the elastic stiffness constants and crystal lattice orientation. The localization 

relationships on a continuous local state space can be written as: 

𝒑𝑠 = ∑∑
∆

𝑁𝐿
𝑨𝑡

𝐿𝑀𝑠+𝑡
𝐿

𝑡𝐿

= ∑∑∫ 𝜶𝑡
𝑐(𝑔)𝑓𝑠+𝑡

𝑐 (𝑔)𝑑𝑔
𝐹𝑍𝑐𝑐𝑡

 (142) 

where 𝑐 = 1, 2, … , 𝐶 enumerates the material phase in the volume. 𝛼𝑡
𝑐(𝑔) and 𝑓𝑠+𝑡

𝑐 (𝑔) are 

influence functions and orientation distribution functions for material phase c respectively. 

As stated in Chapter 4 and 5, the numerical evaluation of integral in Eq. (142) is now even 

more difficult than its analogue for the single phase polycrystalline aggregates [20, 27], if 

one considers the primitive binning of fundamental zones of all crystal systems defined in 

the localization relationships. The computations in Eq. (142) are better addressed with 

Generalized Spherical Harmonics (GSH) functions [73]. The influence functions, 𝛼𝑡
𝑐(𝑔) and 

the orientation distribution function, 𝑓𝑠+𝑡
𝑐 (𝑔) can be defined with GSH functions as: 
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𝑓𝑠
𝑐(𝑔) = ∑𝐹𝑠

𝐿𝑐 𝑇̇̇𝐿𝑐(𝑔)

𝐿

 (143) 

𝜶𝑡
𝑐(𝑔) = ∑𝐴𝑡

𝐿𝑐 𝑇̇̇𝐿𝑐(𝑔)

𝐿𝑐

 (144) 

where 𝐿𝑐 enumerates each distinct combination of  (𝜇𝑐, 𝑛𝑐 , 𝑙𝑐) in GSH series expansion of 

the material system c in multiphase polycrystalline microstructure. Same approach used in 

derivation of localization series can be followed here as well. If we plug Eq.  (143) and (144) 

in Eq. (142), the new MKS series expansion can be reformulated as: 

𝒑𝑠 = ∑∑∑
1

(2𝑙𝑐 + 1)
𝑨𝑡

𝐿𝑐𝑀𝑠+𝑡
𝐿𝑐∗

𝐿𝑐𝑐𝑡

 (145) 

This new formulation does not only capture the interactions between the different crystal 

lattice orientations of the same material phase but also captures the interactions between the 

crystal lattice orientations of constituent material phases of multiphase polycrystalline 

aggregate. In other words, MKS linkages obtained from localization relationships in Eq. 

(145) provides the ability to predict the response field of microstructure with multiple 

material systems as well as the microstructures with single material system defined in the 

localization relationship. It should also be recalled that the calibration of MKS linkages is a 

one-time computational cost and the linkages obtained from this calibration can be utilized 

for any microstructure with any number of material systems defined in the localization 

relationships with minimum computational effort. 

 To clarify the advantage of casting the localization relationships in Fourier basis, the 

localization relationships in Eq. (145) can be further simplified as: 
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𝒑𝑠 = ∑∑
1

(2𝑙𝑐 + 1)
𝑨𝑡

𝐿𝑀𝑠+𝑡
𝐿∗

𝐿𝑡

 (146) 

where 𝐿 enumerates the terms in GSH expansions for constituent phases in the multiphase 

polycrystalline aggregate. In previous case studies [17, 20], it was shown that only the 

terms corresponding up to 𝑙 = 4 in the spectral representation of influence functions had 

significant effect on the accuracy of MKS. For example, if a multiphase polycrystal 

consists of two material systems with cubic-triclinic and hexagonal-triclinic symmetries, 

the expected number of Fourier coefficients for the spectral representation of the MKS 

linkages is only 𝐿 = 25 (𝐿 = 1,2, … ,25 consists of 𝐿𝑐 = 1,… ,10 which results from 𝑙 =

0,4 for cubic-triclinic and 𝐿𝑐 = 1,… ,15 which results from 𝑙 = 0,2,4 for hexagonal-

triclinic). The compact representation of functions in orientation space through GSH 

becomes even more significant in terms of computational efficiency when one considers 

the abovementioned case of multiphase polycrystals. It is reminded here that the reduction 

in the representation of the functions is a result of employing GSH functions in the 

localization relationships.  

 For the demonstration of MKS approach for low contrast multiphase 

polycrystalline aggregates, α-β-Ti material system is used. 300 random microstructures 

[20] with volume fractions of 𝛽 phase ranging from 0 to 100% were generated for 

calibration. For validation of localization linkages, a set of 600 equiaxed polycrystalline 

microstructures were generated and the grains are randomly assigned to be 𝛼 or 𝛽 phase in 

such a way that the entire ensemble had datasets with 𝛼 phase volume fraction ranging 

from approximately 0 to approximately 100 percent. In Figure 29, the results of MASE for 

both validation and calibration data sets can be seen. The entire ensemble is divided into 
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10 bins for 𝛼 phase volume fractions. The red part of each bin shows the distribution of 

average error for the validation datasets falling into that volume fraction bin of 𝛼 phase, 

while the blue part shows the distribution of average error for the corresponding calibration 

datasets. It can be seen that localization linkages calibrated to physics based models can 

accurately predict the elastic response fields of multiphase polycrystalline aggregates with 

any volume fraction of constituent phases and arbitrary orientation distributions.  

 

Figure 29: Violin plot of average error in calibration and validation datasets for different 

α phase volume fractions 

 Figure 30 presents the case study for demonstrating the predictive capability of the 

MKS approach for an MVE with a grid size of 21 ×  21 ×  21. In part (a) shown the 

distribution of different grain which are colored distinctly (i.e. each color represents a 

distinct crystal lattice orientation). In part (b) is shown the distribution of 𝛼 (black color) 

and 𝛽 (white color) phases in the MVE. The frequency plot shown in part (c) has two 

distributions. The distribution shown with dashed lines are for 𝛽 phase, while the 
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distribution with solid lines are for 𝛼 phase. We can see that the strain distributions of both 

phases have a very good match between MKS (blue color) and FEM (red color) predictions. 

The same argument can also be made about comparisons at voxel level shown in parts (d) 

and (e). It is seen that the MKS approach provides excellent predictive capabilities for low 

contrast multiphase polycrystalline aggregates. The computational efficiency of MKS 

should be noted. The FEM prediction took 26 seconds with 2 processors (each 3.0 GHz) on 

a supercomputer, while MKS prediction of the same microstructure took only 2 seconds with 

only 1 processor (3.0 GHz) on a standard desktop computer.  

 

Figure 30: Comparison of strain fields predicted with MKS and FEM approaches for low 

contrast multiphase polycrystal α-β-Ti. (a) 𝟐𝟏 ×  𝟐𝟏 ×  𝟐𝟏 microstructure with each color 

representing a distinct orientation selected from the cubic and hexagonal fundamental 

zones randomly. (b) Distribution of α and β phases where black color represents α phase. 

(c) Red and blue lines show the distribution of strain field in FEM and MKS respectively 

(d) and (e) are the middle slices of strain fields predicted by MKS and FEM approaches, 

respectively  



 
110 

 

 

CONCLUSIONS 

 

 In this dissertation, three main advancements were implemented in the localization 

part of hierarchical multiscale modeling. In prior work of MKS, the local microstructure 

was described with finite number of local states (i.e. two or three finite discrete local states). 

The discrete binning of the local state space is not a computationally efficient way of 

establishing localization linkages. MKS formulation developed in prior work would not be 

feasible for both discrete and continuous local state spaces (i.e. crystal lattice orientation 

for polycrystalline materials). First advancement is the formulation of a new generalized 

MKS framework for localization relationships.  This new formulation was based on Fourier 

representations of the local microstructure descriptor and influence functions that 

constitute MKS. It was shown that the new generalized MKS framework is very versatile 

and flexible that it can be extended to any number of phases with complex tensorial local 

states as well as discrete local state spaces used in prior work. This argument was proven 

with 3 case studies where the generalized framework was extended to single phase 

polycrystalline material systems, a broad class of single phase polycrystalline systems and 

multiphase polycrystalline systems. 

 The second important advancement is the compact representation of the local 

microstructure descriptor through Fourier basis functions. The main local state we were 

interested in this dissertation was crystal lattice orientation. As mentioned before, the 

number of local states that were handled in prior MKS framework included only two or 
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three finite discrete local states. The local state space for a polycrystalline material is the 

fundamental zone (FZ) that contains all unique crystal lattice orientations. Since each 

orientation that we can extract from FZ results in a different material property in sample 

frame, the number of discrete local states that can be defined in this local state space is 

essentially infinite. Hence, a novel, compact and accurate representation of the functions 

that are defined in the crystal orientation space was required. For this manner, GSH 

functions were employed for the inclusion of crystal lattice orientation in the new 

generalized MKS framework. GSH functions form an orthonormal basis in the FZ of the 

crystal system selected and it was shown that the continuous crystal orientations space can 

be included in MKS formulation with more compact forms than we can with binning it. 

The physics phenomena we were interested in was linear elastic deformation. It was found 

out that the number of coefficients that were required to represent the local microstructure 

and influence functions were reduced to only 10 and 15 for cubic and hexagonal materials, 

respectively, by employing GSH basis functions. This was a dramatic reduction from 

possibly hundreds of discrete local states if we preferred to discretize FZ for the selected 

crystal system. 

 The third and most important advancement was in the computational efficiency 

achieved for the prediction of local response field for the linear elastic deformation of 

material systems presented in this dissertation. As mentioned before, the FEM has a 

complexity of 𝑆3, while DFT operation has a complexity of 𝑆 log 𝑆. The gains in 

computational efficiency in MKS are due to the convolution property of DFT operation. 

Since each term in MKS expansion is a convolution of local microstructure descriptor and 

influence function, it takes only a few seconds to predict the local response in DFT space. 
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The computational gains are even more significant as the size of the RVE gets larger. MKS 

predicts the response field of a selected RVE often times several order magnitudes faster 

than FEM. This is especially crucial when the number of RVEs to be evaluated for their 

local response field. 
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FUTURE WORK 

 

 Even though the versatility and flexibility of MKS approach to localization 

relationships have been proven with both prior work and the case studies in this 

dissertation, there are some certain aspects of MKS that has to be explored to make the 

approach more desirable from many different disciplines of science. 

 The selection of calibration MVEs play an important role in the performance of 

localization linkages. In prior work, it was shown that two delta microstructures for a two-

phase material system was adequate to obtain high accuracy in the prediction of local fields. 

However, the number of possible delta microstructures that we can generate for 

polycrystalline aggregates is essentially infinite. Hence, the calibration MVEs were 

assigned crystal lattice orientations randomly to the spatial voxels based on the topology. 

For instance, the MVEs with equiaxed topology have orientations assigned to the same 

color spatial voxels randomly. Indeed, not every combination of two orientations have the 

same contrast. Some combination of orientations (or some textures) have more 

observations in the ensemble than others. Even though this definitely affects the 

performance of localization linkages, the effects were negligible for the low to moderate 

contrast polycrystalline material systems studied in this dissertation. However, for high 

contrast material systems, a strategy that involves a more systematic calibration MVE 

generation should be developed to cover all different contrasts resulting from different 

crystal lattice orientations. 
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 In this dissertation, only the first order terms in the MKS series expansion were 

employed to predict the response field of polycrystalline materials with low to moderate 

contrasts. Since the focus on this dissertation was on extending the MKS approach to 

material systems with complex local states by using compact Fourier representations, the 

higher order terms were not included in the analysis. However, higher order terms are 

essential for the prediction of local response fields of material systems with higher contrast. 

The contrast is actually more significant in multiphase polycrystalline material systems. 

The α-β Ti system studied in Chapter 6 had low contrast between its microscale 

constituents. However, for multiphase polycrystalline material systems, contrast is defined 

by both the crystal lattice orientation and the magnitudes of the elastic stiffness constants. 

Hence, the higher order terms need to be employed for high contrast multiphase 

polycrystalline material systems. 

 The phenomena explored in this dissertation was linear elastic deformation. The 

linkages that are developed here can be used in applications where elastic deformations 

carry utmost importance. One important example is the high cycle fatigue, where the 

deformations are mostly elastic (or very small plastic strains). High cycle fatigue testing 

usually involves very large number of cycles (usually 104 or more). The simulations that 

require to simulate this kind of testing might need to solve elastic governing field equations. 

This would require incredible amount of computational effort due to the nature of high 

cycle fatigue testing. Data-driven MKS approach would decrease the computational 

requirements dramatically based on the performance of linkages for elastic deformation of 

polycrystalline materials shown in the case studies of this dissertation. 
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