
SPARSITY IN INTEGER PROGRAMMING

A Dissertation
Presented to

The Academic Faculty

By

Andres Iroume

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology

May 2017

Copyright c© Andres Iroume 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/84288348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SPARSITY IN INTEGER PROGRAMMING

Approved by:

Dr. Santanu Dey, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Marco Molinaro
Department of Computer Science
Pontificia Universidade Catolica do
Rio de Janeiro

Dr. Andy Sun
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Alejandro Toriello
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. David Goldsman
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: December 12, 2016

I think that it is a relatively good approximation to truth - which is much too complicated to allow

anything but approximations - that mathematical ideas originate in empirics, although the

genealogy is sometimes long and obscure.

John von Neumann

To Stefania

ACKNOWLEDGEMENTS

I would like to first thank my advisor Dr. Santanu Dey for his guidance and support during my

studies. I am tremendously grateful for Santanu’s dedication and his patience, without which, this

thesis would never have been finished. I am also deeply thankful to Dr. Marco Molinaro who was

a fundamental part of most of the work in this thesis, both during his time in Georgia Tech as well

as later on. I would also like to thank the other members of the committee: Dr. David Goldsman,

Dr. Andy Sun and Dr. Alejandro Toriello for their time and feedback that have helped to improve

this research.

Thanks to the other members of the ISyE faculty. In particular those who taught the graduate

courses and were always willing to answer my questions: Dr. Craig Tovey, Dr. Ton Dieker,

Dr. Shabbir Ahmed, Dr. Joel Sokol, Dr. Gary R. Parker, Dr. George Nemhauser, Dr. Robin

Thomas and Dr. Anton Kleywegt. Also thanks for the administrative services of Amanda Ford,

Pam Morrison and Mark Reese and many others.

I would like to thank all my friends and fellow students in the PhD program. I met many

wonderful people from many different countries. Too many people have helped me during this

time to list all their names but I hope they know how much I appreciate it. The long hours at ISyE

discussing work and many other things with my friends and colleagues were always a source of

both motivation and enjoyment. They made my time in Atlanta one of the best ones and I will

always be thankful. In the end, the people I met and the time that I spend with them is what made

this such a fulfilling experience.

Finally, I would like to specially thank Stefania and my parents for their constant support and

encouragement during the last five years.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . x

List of Figures . xi

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.1.1 Previous results on sparse IPs . 2

1.1.2 Areas of interest . 3

1.2 Sparse Approximations . 5

1.3 Randomization step in feasibility pump . 6

1.4 Bounds on the number of extreme points for random polytopes 8

1.5 Multi-row cuts and Sign-Pattern IPs . 9

Chapter 2: Some lower bounds on sparse outer approximations of polytopes 11

2.1 Introduction . 11

2.2 Preliminaries . 13

2.2.1 Definitions . 13

vi

2.2.2 Important Polytopes . 14

2.3 Main results . 15

2.4 Strengthening of LP relaxation by sparse inequalities 17

2.5 Strengthening by general dense cuts . 17

2.6 Sparse approximation of rotations of a polytope 20

2.7 Lower bounds on approximation along most directions 23

Chapter 3: Improving the Randomization Step in Feasibility Pump 26

3.1 Introduction . 26

3.2 Our contributions . 27

3.3 New randomization step RANDWALKSAT` . 32

3.3.1 Description of the randomization step . 32

3.3.2 Analyzing the behavior of RANDWALKSAT` 34

3.4 Randomization step RANDWALKSAT` within Feasibility Pump 38

3.4.1 Running time of WFP for separable subset-sum instances: Proof of Theo-
rem 2 . 39

3.5 Computations . 47

3.5.1 WalkSAT-based perturbation . 48

3.5.2 Computational results . 49

Chapter 4: The ratio of the number integral extreme points to the total number of
extreme points . 52

4.1 Introduction . 52

4.2 Preliminaries . 52

vii

4.2.1 Generating packing instances . 52

4.2.2 Definitions for counting (integral) extreme points 54

4.2.3 Bernstein’s inequality . 54

4.3 Statement of the main result . 54

4.4 Proofs . 55

4.4.1 Proof of Proposition 1 . 56

4.4.2 Proof of Proposition 2 . 59

Chapter 5: The strength of multi-row aggregation cuts for sign-pattern integer programs 61

5.1 Introduction . 61

5.2 Definitions and statement of results . 63

5.2.1 Definitions . 63

Sign-pattern IPs . 63

Closures . 64

5.2.2 Statement of results . 65

5.3 Proofs . 66

5.3.1 Proof of Theorem 9 . 66

5.3.2 Proof of Theorem 10 . 69

5.3.3 Proof of Theorem 11 . 71

Appendix A: Technical Proofs Chapter 2 . 75

A.1 Proof Gap Equivalence . 75

A.2 Proof Description Equivalence . 76

viii

Appendix B: Technical Proofs Chapter 3 . 79

B.1 Minimal projected certificates can be found in polynomial time 79

B.2 Original Feasibility Pump stalls even when flipping variables with zero fractional-
ity is allowed . 80

B.3 No long cycles in stalling . 81

References . 91

Vita . 92

ix

LIST OF TABLES

3.1 Aggregated results on two-stage stochastic models. 50

3.2 Aggregated results on MIPLIB2010. 51

5.1 Containment relation for different classes of polyhedra. 66

x

LIST OF FIGURES

5.1 Feasible region PI . 70

xi

SUMMARY

This thesis deals with understanding the effect of sparsity in integer programming. Chapter

1 corresponds to the introduction and outlay of the thesis, Chapter 2 deals with approximating

polytopes using sparse cuts under various settings. Chapter 3 discusses a variant on feasibility

pump that automatically detects and harnesses sparsity. Chapter 4 deals with the ratio of the

number of integral extreme points to the total number of extreme points for a family of random

polytopes. Chapter 5 discusses the strength of multi-row aggregation cuts in the context of sign-

pattern integer programs (IPs).

The paper [40] studied how well polytopes are approximated by using only sparse valid-

inequalities. In Chapter 2, we consider less-idealized questions such as: effect of sparse inequal-

ities added to linear-programming relaxation, effect on approximation by addition of a budgeted

number of dense valid-inequalities, sparse-approximation of polytope under every rotation and

approximation by sparse inequalities in specific directions.

In Chapter 3 we propose a variant on Feasibility pump (FP) which is a successful primal heuris-

tic for mixed-integer linear programs (MILP). The algorithm consists of three main components:

rounding fractional solution to a mixed-integer one, projection of infeasible solutions to the LP

relaxation, and a randomization step used when the algorithm stalls. While many generalizations

and improvements to the original Feasibility Pump have been proposed, they mainly focus on the

rounding and projection steps.

We start a more in-depth study of the randomization step in Feasibility Pump. For that, we

propose a new randomization step based on the WalkSAT algorithm for solving SAT instances.

First, we provide theoretical analyses that show the potential of this randomization step; to the

best of our knowledge, this is the first time any theoretical analysis of running-time of Feasibility

Pump or its variants has been conducted. Moreover, we also conduct computational experiments

incorporating the proposed modification into a state-of-the-art Feasibility Pump code that reinforce

xii

the practical value of the new randomization step.

In Chapter 4 we look at a sparse packing instances and their extreme points. For such instances,

we try to understand if there is a relation between the ratio of the number of integral extreme points

to the total number of extreme points and the sparsity of the constraint matrix. We are able to show

that there exists a family of randomly generated packing instances for which we can obtain a lower

bound for this ratio that decreases as instances become denser.

Finally, in Chapter 5, we study the strength of aggregation cuts for sign-pattern integer pro-

grams (IPs). Sign-pattern IPs are a generalization of packing IPs and are of the form {x ∈ Zn
+ :

Ax ≤ b} where for a given j, Ai, j is either non-negative for all i or non-positive for all i. Our

first result is that the aggregation closure for such sign-pattern IPs can be 2-approximated by the

original 1-row closure. This generalizes a result for packing IPs from [18]. On the other hand,

unlike in the case of packing IPs, we show that the multi-row aggregation closure cannot be well

approximated by the original multi-row closure. Therefore for these classes of integer programs

general aggregated multi-row cutting planes can perform significantly better than just looking at

cuts from multiple original constraints.

xiii

CHAPTER 1

INTRODUCTION

In this thesis, we explore different roles that sparsity plays in integer programming (Chapter 2,3

and 4) and the strength of multi-row cuts (Chapter 5). First, in Chapter 2, we are interested in

approximating polytopes by sparse constraints under different settings. In Chapter 3, we are inter-

ested in improving the randomization step in feasibility pump, a primal heuristic. Our modification

of the algorithm allows us to automatically detect decomposable problem and harness this sparse

structure to solve problems more efficiently. In Chapter 4, we study the role that sparsity plays in

the integrality of the extreme points of a randomly generated family of polytopes. Computational

experiments suggest a correlation (for a family of randomly generated polytopes) between a sparse

constraint matrix and a higher ratio of integral extreme points. Finally, in Chapter 5 we address

another interesting problem in integer programming. We study the strength of aggregation cuts

in the context of sign-pattern IPs. In particular, we study the benefits of considering multi-row

aggregation cuts (a generalization of aggregation cuts) for these problems.

In this chapter we present the motivation for studying sparsity in integer programming and a

brief introduction to each one of the chapters in the thesis.

1.1 Motivation

Understanding how to make use of sparsity has been a main driver in the development of mul-

tiple areas of scientific computing and optimization. The following examples correspond to an

inexhaustive list of such efforts. Algorithms for solving systems of linear equations with sparse

left-hand-side matrices define a field on their own (see for example [24, Chapter 1], or the books

[30, 89]). Algorithms for solving linear programs (LP) with sparse constraint matrices [24, Chap-

1

ter 3], [60, 55], algorithms for quadratic programs (QP) with sparse data [92, 25], polynomial

optimization with sparse data [95, 69, 96, 66, 64, 70, 27], solving semi-definite programs (SDP)

with sparse data matrices [46, 48, 81] etc.

Surprisingly, the use of sparsity of input data is a very under explored direction of research

in the context of Integer Programming (IP). Standard integer programming textbook do not, in

general, address IPs with sparse data matrices except in the context of reformulation and decom-

position methods to deal with specialized sparsity structure of the constraint matrix. On the other

hand, standard techniques such as primal heuristics or cutting-plane selection, which work very

well in practice - in fact may be working well due to sparsity of the constraint matrix - however,

these consequences of sparsity of constraint matrices for IPs are either not well understood or not

known at all.

1.1.1 Previous results on sparse IPs

We examine some of the current mixed-integer linear programming (MILP) techniques that ex-

plicitly take advantage of sparsity of constraint matrices. Many of them can be understood as

techniques developed for linear programs that have been extended to MILPs.

Reformulation techniques including Dantzig-Wolfe [29] and Benders [11, 52, 53] that use

Minkowski-Weyl representation theorem for polyhedra in order to solve linear programs with spe-

cial structures, such as block diagonal constraint matrix, efficiently. In particular, some of the

most significant works in this area correspond to column generation methods to solve cutting-

stock problem [56], the branch-and-price algorithm [9], and the integer L-shaped method [68].

Additional work has been done in this direction; see [93] for a review. Recent work includes

new decomposition methods that can take advantage of parallelization [4], incorporating Gomorys

cuts in the context of a decomposition algorithm [50], and improvements of the integer L-shaped

method proposed in [5]. A generalization of this direction of research involves first automatic per-

mutation of rows and columns of the matrix so as to make the constraint matrix look like a bordered

2

(or doubly-bordered) block diagonal matrix and then apply the branch-and-price algorithm [22, 13,

98, 1].

As mentioned earlier, sparse LPs can be solved efficiently. A MILP solver typically solves a

large number of LPs in a branch-and-bound tree to solve one MILP instance. Therefore, clearly

one of the biggest benefits of sparsity for state-of-the-art MILP solvers is the sparsity of the under-

lying LP. The following computational result illustrates the importance of understanding sparsity

of the linear relaxation of an IP even further. In an interesting study [97], the authors conducted an

experiment by adding a very dense valid equality constraint to other constraints in the LP relax-

ation at each node while solving IP instances from MIPLIB while using CPLEX. The underlying

polyhedron at each node is not changed but it makes the constraints dense. Their observation was

the following: just by making 9 constraints artificially dense, a 25% increase in time to solve the

instances was reported.

There also exist some complexity results and approximation algorithms related to sparse MILPs.

Complexity results for sparse binary MILPs are, to the best of our knowledge, as the following:

Depending on the non-zero entries of the constraint matrix, a so-called intersection graph [49] is

constructed. Then, using non-serial dynamic programming [15] one can construct algorithms or

obtain extended formulations whose complexity is proportional to the exponent of the tree-width

[88, 87] of the intersection graph [71, 70, 94, 16]. Multiple randomized LP-rounding based ap-

proximation algorithms for sparse packing and covering problems have also been proposed [8,

85].

1.1.2 Areas of interest

Cutting-planes have become one of the main pillars in the structure of state-of-the-art mixed integer

linear programming solvers. In particular, designing new families of cutting-planes for general

MILPs (see the review papers [77, 86]) correspond to important theoretical advances. Even more,

some of these cutting-plane families have brought significant speedups in state-of-the-art MILP

3

solvers [17, 74]. Therefore, understanding the role of sparsity in this context is important.

In particular, it is important to understand the relation between the sparsity structure of the

constraint matrix and the resulting sparsity of valid cuts. In MIPLIB instances, one can possibly

rearrange the rows and columns [22, 13, 98, 1] so that one sees patterns of blocks of variables in

the constraint matrices. If we have a sparse problem, intuitively, we would prefer to generate valid

cuts that somehow preserve this sparse structure.

In the presence of a sparsity pattern (for example, coming from a block structure) of the original

constraint matrix, cuts, like the ones generated in the classical paper [26] satisfied, once again, this

sparsity pattern. In fact many families of single constraint based cuts also satisfy this characteristic

[82, 76, 100, 6, 7]. Note that this is not necessarily the case for general families of cuts.

In [40], Dey, Molinaro and Wang explore the problem of approximating the integer hull (convex

hull of integer solutions) by only using sparse valid inequalities. This corresponds to an important

research direction since, in practice, sparsity is taken into account whenever MIPs solvers are

used. Sparsity of a cut (the number of variables involved in it) is one of the criteria these solvers

use when deciding whether to add the cut or not to the formulation (of course there are additional

considerations). Obviously, if solvers were to consider only sparse valid inequalities (in the setting

of a cutting-plane method), this would pose serious limitations in terms of the problems they could

solve, thus, it is important to understand the limitations of sparse cuts.

Another important area in Integer Programming corresponds to primal heuristics. Primal

heuristics are used to find feasible integral solutions fast and, thus, play a significant role in any

method for solving IPs, in particular branch and cut type approaches. Making use of sparsity should

also be a concern when trying to develop new primal heuristics. For example, back-tracking of fix-

ings may also be done in order to achieve feasibility when dealing with a sparse problem. Such

methods are typically quite successful in the presence of global sparsity structure [28, 54, 12, 51,

75].

4

1.2 Sparse Approximations

In this context, sparsity refers to the number of variables that are present in a constraint (or equiv-

alently to the number of non-zero coefficients present in that constraint). We say that a constraint

is sparse if it involves a small number of variables. Similarly, we say that a constraint is dense if

it involves a large number of variables. If n denotes the number of variables, then for any positive

integer k ≤ n, we say that a constraint is k-sparse if it involves exactly k variables (or k non-zero

coefficients). Sometimes we refer to this as the sparsity level of a particular constraint, a group of

constraints or just the constraint matrix.

In Chapter 2, we are interested in understanding how well we can approximate polytopes by us-

ing sparse inequalities under four different settings. In [40], the authors defined the sparse closure

of a polytope P as the object obtained by taking the intersection of all sparse valid inequalities for

P. They presented bounds on the quality of this approximation in terms of a worst-case-direction

metric measuring the distance between P and its sparse approximation.

Since in practice sparsity is one of the criteria considered when solvers decide whether to add a

cut or not, the paper [40] was interested in understanding how well would the sparse approximation

behave in a general setting. It was shown than whenever the number of vertices of a polytope is

polynomial in the size of the input data, its sparse closure approximates well the integer hull.

However when the number of vertices increases the sparse approximation no longer performs

well, in fact, with high probability the approximation is poor for random 0/1 polytopes with a

super polynomial number of vertices.

In our work, we are interested in the following questions: First, when we want to approximate

the convex hull of a set of integer points (defined by a set of linear constraints as well as integrality

constraints) by considering its linear relaxation and, additionally, only sparse valid inequalities.

Second, when we only allow for a budgeted number of dense constraint to strengthen the sparse

approximation. Third, the approximation of a polytope under every rotation. Finally, how does the

5

sparse approximation behave along a randomly selected direction, for optimization purposes.

The motivation for these questions is as follows. First, since in practice, when trying to solve

an IP, its linear relaxation may contain dense inequalities, one would like to take this into consid-

eration. The question that arises here is: Are there integer programs for which the sparse approxi-

mation intersected with the linear relaxation, does not approximate the integer hull well? Second,

if we want to improve the approximation of a polytope by adding a budgeted number of dense in-

equalities in addition to the sparse ones: Are there polytopes where the quality of approximation by

sparse inequalities cannot be significantly improved by adding a polynomial (or even exponential)

number of dense valid inequalities? Third, since it is well understood that sparse approximation of

polytopes are not invariant under affine transformations (in particular rotations): Are there poly-

topes that are difficult to approximate under every rotation? Finally, since in the context of solving

an integer program, one is concerned with approximating the feasible region in the direction of the

objective function: Are there polytopes that are difficult to approximate, using sparse inequalities,

in almost all directions?

We provide positive answers to each one of the previously described questions. This corre-

sponds to an indication that sparse inequalities do not always approximate integer hulls well under

the settings considered in this work. However, understanding when sparse inequalities are effective

in the afore mentioned settings corresponds to an important research direction given its practical

applications.

1.3 Randomization step in feasibility pump

In Chapter 3, we are interested in primal heuristics that can harness the sparsity and structure

present in many problem and use it to find feasible solutions fast (both in terms of number of

iterations as well as computation time). In particular, we are interested in modifying Feasibility

Pump (FP) a successful primal heuristic for mixed-integer linear programs in order to capture this

effect. FP was first introduced in [43] and many variants and improvements for it have been studied

6

[3, 14, 21, 45, 31, 42, 20, 41, 19].

The core steps in FP are rounding and projecting. In the original version, the algorithm starts

with the solution to the linear relaxation. If this solution satisfies the integrality constraints, a

feasible integral solution has been found. If the solution is fractional, then it is rounded to its

closest integral vector so that is satisfies the integrality constraints. Then, this rounded solution is

projected onto the linear relaxation. This process is repeated until a feasible integral solution has

been found.

Additionally, in the original FP, a randomization step is used to handle stalling solutions (those

that are visited multiple times) by randomly perturbing the current solution. In our work, we

propose to modify this randomization step so that it takes advantage of the decomposable structures

present in many instances. Since decomposable or semi-decomposable instances are naturally

sparse, in our modification, FP can automatically detect the sparse structure in the constraint matrix

and use it advantageously in the randomization step.

The idea comes from a randomized algorithm for solving SAT instances called WalkSAT,

first proposed in [90]. WalkSAT finds feasible solutions for instances in conjunctive normal form

(CNF), starting from a random assignment, check if is feasible, and if it is not, it flips one literal

out of one of the infeasible clauses. If no solution is found after O(n) iterations, it restarts from

a new random assignment. When the number of literals present in each clause is bounded, it was

shown in [90] that WalkSAT runs, in expectation, faster than enumerating and checking all pos-

sible assignments. The upper bound obtained for the running time corresponds to an increasing

function in the number of literals in the clauses. This idea can be directly applied to the case of

binary programs, where small number of literals in a clause corresponds to a sparse constraint.

WalkSAT has the following property. If we apply it to a block separable problem, at a given

point in time, one of the blocks is feasible, then this block will not become infeasible later on. This

comes from the fact that those variables that are flipped come from the infeasible constraints of the

problem.

7

In our work, we generalize WalkSAT for mixed-binary programs and show that it continues

to have the theoretical guarantees of the original method. Then we combine a randomization

step based on this mixed-binary version of WalkSAT with the rounding and projecting steps of

FP. We are also able to provide a theoretical analysis of our WalkSAT-based FP in the case of

decomposable subset-sum-type instances (to the best of our knowledge no such analysis exists to

date).

Based on the theoretical insights, we implemented a modified version of FP with changes only

to the randomization step. In order to test our modified randomization step, we used a state-of-

the-art version of FP (Feasibility Pump 2.0) and incorporated the WalkSAT ideas on top of the

previously discussed randomization step. This allowed for our method to say close to the original

FP method in many cases and transition to the WalkSAT version when the original randomization

step does not work efficiently.

We compare our method to the original FP 2.0 both for a series of randomly generated 2-stage

stochastic programs (that naturally present an almost decomposable structure) as well as a series

of problems from MIPLIB 2010 (see [65]). In both case, on average, our version outperform the

original FP 2.0. Since our modified randomization step does not affect other components of the

algorithm, it can be incorporated to many versions of FP.

1.4 Bounds on the number of extreme points for random polytopes

In Chapter 4, we are interested in understanding the role that sparsity plays in terms of the integral

extreme points of a polytope. We want to understand what happens with the ratio between the

number of integral extreme points to the total number of extreme points for different sparsity

levels.

Some preliminary experiments showed that for a family of randomly generated polytopes this

ratio decreases as problems becomes denser.

We propose a family of randomly generated packing instances in order to perform our analysis

8

and obtain the necessary bounds.

In order to construct a bound on this ratio, we obtain lower bounds for the expected number

of integral points as well as upper bound for the total number of extreme points for the family of

randomly generated packing instances.

Using the previous results, we show that for the family of randomly generated packing in-

stances, we can obtain a lower bound for the expected value of this ratio that decreases as instances

become denser.

1.5 Multi-row cuts and Sign-Pattern IPs

In [18], Bodur et al. studied the aggregation closure of a polyhedron (for definitions, see Chapter

5), an extension of the CG closure and compared it against the following object: the intersection

of the aggregation closures of each one of the original constraints (i.e. obtained in a disaggre-

gated manner). We refer to this object as the original 1-row closure of a polyhedron. In the case

packing/covering type problems (for details, see Chapter 5) the aggregation closure can be 2 ap-

proximated by the original 1-row closure.

Generating cutting-planes from multiple constraints has been a significant research direction

recently. Well known approaches, like the infinite group approach can be used in this context.

Relaxing the bound on the basic variables together with introducing an infinite number of new non-

negative non-basic integer and continuous variables corresponding to distinct columns applied to

m rows of the simplex tableaux lead to the mixed-integer infinite group relaxations (MIIGR) [57,

58, 59, 62]. In [33, 34, 32, 35, 36] some of the first known families of extreme inequalities of

multiple row (m≥ 2) infinite group relaxations were presented.

In the case of aggregation cuts, it is possible to extend the notions of aggregation closure and

original 1-row closure to the multi-row case. For the aggregation closure, we can consider the

object obtained by the convex hull of multiple (namely k) aggregation constraints, which we call

as the k−aggregation closure. For the original 1-row closure, we can consider the object attained

9

by consider the closure of all subset of size k of the original constraints, which we call as the

original k-row closure.

The fact that in the case packing/covering type problems the aggregation closure can be well

approximated by the original 1-row closure is not true for general IPs. Computational experiments

show that for general problems the original 1-row closure can be an arbitrarily bad approxima-

tion of the aggregation closure. But, again in the case of these problems, the same is true when

approximating the 2-aggregation closure by the original 2-row closure.

Note that an important property that packing/covering type problems share is that all the con-

straints are of the same type. Even more, when considering aggregation cuts, these also correspond

to packing/covering type constraints. Thus if a polyhedron is a packing/covering polyhedron, so is

its closure and consequently its integer hull.

In Chapter 5, we study a family of problems that we refer to as sign-pattern IPs. Each one

of these problems satisfies the property that for each variable, the sign of its coefficients in each

constraint and in the objective is the same (for detail see Chapter 5). Thus, as in the case of a

packing/covering problem, its closure and its integer hull also correspond to sign-pattern IPs.

As in the previous case, for these problems, it is true that the aggregation closure can be 2

approximated by the original 1-row closure. However, it is no longer the case that the multi-

row aggregation closure can be well approximated by the aggregation closure, nor that the 2-

aggregation closure can be well approximated by the original 2-row closure.

These results show some further insight into the role that aggregation plays in generating useful

cutting planes.

10

CHAPTER 2

SOME LOWER BOUNDS ON SPARSE OUTER APPROXIMATIONS OF POLYTOPES

The work presented in this chapter has been accepted for publication at Operations Research Let-

ters through a paper authored by Santanu Dey, Andres Iroume and Marco Molinaro [37].

2.1 Introduction

The paper [40] studied how well one can expect to approximate polytopes using valid inequalities

that are sparse. The motivation for this study came from the usage of cutting-planes in integer

programming (IP) solvers. In principle, facet-defining inequalities of the integer hull of a polytope

can be dense, i.e. they can have non-zero coefficients for a high number of variables. In practice,

however, most state-of-the-art IP solvers bias their cutting-plane selection towards the use of sparse

inequalities. This is done, in part, to take advantage of the fact that linear programming solvers

can harness sparsity well to obtain significant speedups.

The paper [40] shows that for polytopes with a polynomial number of vertices, sparse inequal-

ities produce very good approximations of polytopes. However, when the number of vertices

increase, the sparse inequalities do not provide a good approximation in general; in fact with high

probability the quality of approximation is poor for random 0-1 polytopes with super polynomial

number of vertices (see details in [40]).

However the study in [40] is very “idealized” in the context of cutting-planes for IPs, since

almost always some dense cutting-planes are used or one is interested in approximating the in-

teger only only along certain directions. In this chapter, we consider some natural extensions to

understand the properties of sparse inequalities under more “realistic conditions”:

1. All the results in the paper [40] deal with the case when we are attempting to approximate

11

the integer hull using only sparse inequalities. However, in practice the LP relaxation may

have dense inequalities. Therefore we examine the following question: Are there integer

programs, such that sparse inequalities do not approximate the integer hull well when added

to a linear programming relaxation?

2. More generally, we may consider attempting to improve the approximation of a polytope

by adding a few dense inequalities together with sparse inequalities. Therefore we examine

the following question: Are there polytopes, where the quality of approximation by sparse

inequalities cannot be significantly improved by adding polynomial (or even exponential)

number of arbitrary valid inequalities?

3. It is clear that the approximations of polytopes using sparse inequalities is not invariant under

affine transformations (in particular rotations). This leaves open the possibility that a clever

reformulation of the polytope of interest may vastly improve the approximation obtained by

sparse cuts. Therefore a basic question in this direction: Are there polytopes that are difficult

to approximate under every rotation?

4. In optimization one is usually concerned with the feasible region in the direction of the

objective function. Therefore we examine the following question: Are there polytopes that

are difficult to approximate in almost all directions using sparse inequalities?

We are able to present examples that answer each of the above questions in the positive. This

is perhaps not surprising: an indication that sparse inequalities do not always approximate integer

hulls well even in the more realistic settings considered in this chapter. Understanding when sparse

inequalities are effective in all the above settings is an important research direction.

The rest of the chapter is organized as follows. Section 2.2 collects all required preliminary

definitions. In Section 2.3 we formally present all the results. In Sections 2.4-2.7 we present proofs

of the various results.

12

2.2 Preliminaries

2.2.1 Definitions

For a natural number n, let [n] denote the set {1, . . . ,n} and, for non-negative integer k≤ n let
([n]

k

)
denote the set of all subsets of [n] with k elements. For any x ∈ Rn, let ||x||1 denote the l1 norm of

x and ||x|| or ||x||2 denote the l2 norm of x.

An inequality αx ≤ β is called k-sparse if α has at most k non-zero components. Given a

polytope P ⊂ Rn, Pk is defined as the intersection of all k-sparse cuts valid for P (as in [40]), that

is, the best outer-approximation obtained from k-sparse inequalities. We remark that Pk is also a

polytope (see [40]).

Given two polytopes P,Q ⊂ Rn such that P ⊆ Q we consider the Hausdorff distance d(P,Q)

between them:

d(P,Q) := maxx∈Q (miny∈P||x− y||) .

When P,Q⊂ [−1,1]n, we have that d(P,Q) is upper bounded by 2
√

n, the largest distance between

two points in [−1,1]n. In this case, if d(P,Q) ∝
√

n the error of approximation of P by Q is

basically as large as it can be and smaller d(P,Q) (for example constant or of the order of
√

logn)

will indicate better approximations.

Given a polytope P⊆ Rn and a vector c ∈ Rn, we define

gapk
P(c) = max

x∈Pk
cx−max

x∈P
cx,

namely the “gap” between Pk and P in direction c. We first note that d(P,Pk) equals the worst

directional gap between Pk and P (the proof is presented in Appendix A.1).

Lemma 1. For every polytope P⊆ Rn, d(P,Pk) = maxc:||c||=1 gapk
P(c).

For a set D = {α1x≤ β1, . . . ,αdx≤ βd} of (possibly dense) valid inequalities for P, let Pk,D

13

denote the outer-approximation obtained by adding all k-sparse cuts and the inequalities from D :

Pk,D =

(
d⋂

i=1

{x ∈ Rn : aix≤ bi}
)⋂

Pk. (2.1)

Since Pk,D ⊆ Pk we have that d(P,Pk,D)≤ d(P,Pk) for any set D of valid inequalities for P.

2.2.2 Important Polytopes

Throughout the chapter, we will focus our attention on the polytopes Pt,n ⊆ [0,1]n defined as

Pt,n =

{
x ∈ [0,1]n :

n

∑
i=1

xi ≤ t

}
. (2.2)

Notice that for t = 1 we obtain a simplex and for t = n/2 we obtain half of the hypercube. More-

over different values to t yield very different properties regarding approximability using sparse

inequalities, as discussed in [40].

Proposition 2. The following hold:

1. d(P1,n,P
k
1,n) =

√
n

k −
1√
n .

2. d(Pn/2,n,P
k
n/2,n) =


√

n/2 if k ≤ n/2

n
√

n
2k −

√
n

2 if k > n/2
.

3. Pk
t,n = [0,1]n for all t ≤ n and k ≤ t. .

We will also consider symmetrized versions of the polytopes Pt,n. To define this symmetriza-

tion, for x∈Rn and I⊂ [n] let xI denote the vector obtained by switching the sign of the components

of x not in I:

xI
i =

 xi if i ∈ I

−xi if i /∈ I.

14

More generally, for a set P⊆ Rn we define PI =
{

xI ∈ Rn : x ∈ P
}
.

Definition 3. For a polytope P⊆ Rn
+, we define its symmetrized version P = conv

(⋃
I⊆[n]P

I
)
.

Note that P1,n is the cross polytope in dimension n; more generally, we have the following

external description of the symmetrized versions of Pt,n and Pk
t,n (proof presented in Appendix

A.2).

Lemma 4.

Pt,n =

{
x ∈ [−1,1]n : ∀I ⊂ [n] , ∑

i∈I
xi− ∑

i∈[n]\I
xi ≤ t

}
(2.3)

Pt,n
k
=

{
x ∈ [−1,1]n : ∀I ∈

(
[n]
k

)
, ∀I+, I− partition of I,

∑
i∈I+

xi− ∑
i∈I−

xi ≤ t

}
. (2.4)

2.3 Main results

In our first result (Section 2.4), we point out that in the worst case LP relaxations plus sparse

inequalities provide a very weak approximation of the integer hull.

Theorem 5. For every even integer n there is a polytope Qn ⊆ [0,1]n such that:

1. Pn/2,n = conv(Qn∩Zn)

2. d(Pn/2,n,(Pn/2,n)
k∩Qn) = Ω(

√
n) for all k ≤ n/2.

In Section 2.5 we consider the second question: How well does the approximation improve

if we allowed a budgeted number of dense valid inequalities. Notice that for the polytope P n
2 ,n

,

while Proposition 2 gives that d(P n
2 ,n

,Pk
n
2 ,n

)≥ Ω(
√

n), adding exactly one dense cut (ex≤ n/2)

to the k-sparse closure (even for k = 1) would yield the original polytope P n
2 ,n

.

15

We consider instead the symmetrized polytope P n
2 ,n

. Notice that while this polytope needs

2n dense inequality to be described exactly, it could be that a small number of dense inequalities,

together with sparse cuts, is already enough to provide a good approximation; we observe that

in higher dimensions valid cuts for P n
2 ,n

can actually cut off significant portions of [−1,1]n in

multiple orthants. Nevertheless, we show that exponentially many dense inequalities are required

to improve the approximation significantly.

Theorem 6. Consider an even integer n and the polytope P = P n
2 ,n

. For any k ≤ n/100 and any

set D of valid inequalities for P with |D | ≤ exp
(

n
6002

)
, we have

d
(

P,Pk,D
)
≥ 1

6
√

n.

In the proof of this theorem we use a probabilistic approach to count in how many orthants an

inequality can significantly cut off the box [−1,1]n.

In Section 2.6 we consider the question of sparse approximation of a polytope when rotations

are allowed. We show that again Pn/2,n cannot be approximated using sparse inequalities after

any rotation is applied to it.

Theorem 7. Consider an even integer n and the polytope P=P n
2 ,n

. For every rotation R :Rn→Rn

and k ≤ n
2003 , we have

d
(
R(P),(R(P))k)= Ω(

√
n).

The proof of this theorem relies on the intuition given by Theorem 6: since P n
2 ,n

required

exponentially many dense inequalities in order to be well approximated, no rotation is able to align

all of them with the axis so that they can be captured by sparse inequalities.

Finally, in Section 2.7 we show that P n
10 ,n

and its k-sparse approximation have a large gap in

almost every direction.

16

Theorem 8. Let n≥ 1000 be an integer divisible by 10 and consider the polytope P = Pn/10,n. If

C ∈ Rn is a random direction uniformly distributed on the unit sphere, then for k ≤ n
10 we have

P
(

gapk
P(C)≥

√
n

20

)
≥ 1− 4

n
.

To prove this theorem we rely on the concentration of the value of Lipschitz functions on the

sphere (actually we work on the simpler Gaussian space).

2.4 Strengthening of LP relaxation by sparse inequalities

We now present a short proof of Theorem 5. Consider the polytope

Qn =

{
x ∈ [0,1]n : ∑

i∈I
xi ≤

n
2
∀I ∈

(
[n]

n
2 +1

)}
.

It is straightforward to verify that Pn/2,n = conv(Qn∩Zn).

From Part (3) of Proposition 2, Pk
n/2,n = [0,1]n thus Qn∩Pk

n/2,n = Qn. Now x = n
n+2e belongs

to Qn and its projection onto Pn/2,n corresponds to y = 1
2e. Therefore,

d
(
Pn/2,n,P

k
n/2,n∩Qn

)
≥ n−2

2n+4
√

n = Ω(
√

n).

This concludes the proof of the theorem.

2.5 Strengthening by general dense cuts

Now we turn to the proof of Theorem 6. For that we will need Bernstein’s concentration inequality

(stated in a slightly weaker but more convenient form).

Theorem 9 ([67], Appendix A.2). Let X1,X2, . . . ,Xn be independent random variables such that

17

E [Xi] = 0 and |Xi| ≤M ∀i. Let X = ∑
n
i=1 Xi and σ2 = Var(X)≤U . Then:

P(|X |> w)≤ exp
(
−min

{
w2

4U
,

3w
4M

})
.

Notice that to prove the theorem it suffices to consider the case k = n
100 , which is what we

do. Recall that P = Pn/2,n, consider any set D of valid inequalities for P with |D | ≤ exp
(

n
6002

)
;

for convenience let d = |D |. From Lemma 4 we know Pk contains all the points in {−1,1}n.

Also note that any x̄ ∈ {−1,1}n achieves the maximal distance in Pk from P, namely d(P,Pk) =

d(P, x̄) = 1
2
√

n. We then consider a random such “bad” point X , namely X is uniformly distributed

in {−1,1}n (equivalently, the Xi’s are independent and uniformly distributed over {−1,1}). We

will show that there exists an instantiation of the scaled random 2X
3 which belongs to Pk,D , which

will then lower bound the distance d(P,Pk,D) by d(P, 2x̄
3) =

1
6
√

n (for some x̄ ∈ {−1,1}n) and thus

prove the result.

To achieve this, consider a single inequality ax ≤ b from D (we assume without loss of gen-

erality that ‖a‖1 = 1). We claim that with probability more than 1− 1
d , the point 2X

3 satisfies this

inequality. By symmetry of X , we can assume without loss of generality that a ≥ 0. To prove

this, let ā be the vector obtained by keeping the k largest components of a and zeroing out the

other components (ties are broken arbitrarily), and let a = a− ā. Since āx ≤ b is a k-sparse valid

inequality for P and X ∈ Pk, we have that

aX = āX +aX ≤ b+aX . (2.5)

Claim 10. Var(aX)≤ b(n−k)
k2 .

18

Proof. Since Var(Xi) = 1 for all i ∈ [n], we obtain that

Var(aX) = ∑
n
i=1 a2

i Var(Xi) = ||a||2. (2.6)

Note that the kth largest component of a is at most 1/k (otherwise ‖a‖1 > 1), hence aiXi ≤ 1
k for

all i, so we have

||a||2 =
n

∑
i=1

(aiXi)
2 ≤ 1

k

n

∑
i=1

aiXi. (2.7)

Moreover, by comparing averages of the components of ā and a and then using āe ≤ b, we have

that

n

∑
i=1

ai
n− k

≤
n

∑
i=1

āi

k
≤ b

k
. (2.8)

Now by using (2.6)-(2.8), we obtain the bound Var(aX)≤ b(n−k)
k2 , thus concluding the proof. �

Now using the fact that |aiXi| ≤ 1
k , E(aX) = 0 and the above bound on Var(aX), we obtain by

an application of Bernstein’s inequality (Theorem 9) with w = 30b
√

logd√
k

:

P
(

aX ≥ 30b ·
√

logd√
k

)
≤ exp

(
−min

{
302b · k · logd

4(n− k)
,
30
4
·3b ·

√
k logd

})
. (2.9)

To upper bound the right-hand side of this expression, first we employ our assumption d≤ exp(n
6002)

and k = n
100 to obtain

√
logd ≤ 1

600
√

n≤ 3 ·99
30 ·10

√
n =

3
30

(
n− k

k

)√
k.

With this at hand, we have that the minimum in the right-hand side of (2.9) is achieved in the first

19

term. Moreover, notice that b ≥ 1/2: the point p = (1
2 , . . . ,

1
2) belongs to P and hence b ≥ ap =

1
2‖a‖1 = 1/2. Putting these observations together gives

P
(

aX ≥ 30b ·
√

logd√
k

)
≤ exp

(
− 302

4 ·99
b · logd

)
< exp(− logd) =

1
d
.

Then using (2.5) and the above inequality, we obtain that with probability more than 1− 1
d we

have

aX ≤ b
(

1+30
√

logd√
k

)
= b

(
1+

1
2
·600

√
logd√

n

)
≤ b

3
2
, (2.10)

where the first equality uses k = n
100 and the second inequality uses the assumption that

√
logd ≤

1
600
√

n. Now note that (2.10) implies that the point 2X
3 satisfies ax≤ b with probability more than

1− 1
d .

Since |D |= d, we can then take a union bound over the above argument to get that with strictly

positive probability 2X
3 satisfies all the inequalities in D . Hence with strictly positive probability

2X
3 belongs to Pk,D and in particular there is a point x ∈ {−1,1}n such that 2x

3 ∈ Pk,D .

This gives the lower bound d(P,Pk,D)≥ d
(
P, 2x

3

)
; now we lower bound the right-hand side. It

is easy to see that the closest point in P to 2x/3 is x/2, the projection onto P. Since ||2x/3−x/2||=
1
6 ||x||, we obtain that d(P,x)≥ 1

6
√

n which concludes the proof.

2.6 Sparse approximation of rotations of a polytope

In this section we prove Theorem 7; for that we need to recall some standard definitions from

convex geometry.

Definition 11. Given a set P⊆ Rn:

• We say that P is centrally symmetric if ∀x ∈ P : −x ∈ P.

20

• For any α ∈ R we define the set αP := {αx : x ∈ P}.

• The polar of P is the set P◦ = {z ∈ Rn : zx≤ 1 ∀x ∈ P}.

We also need the following classical result about approximating convex set by polytopes with

few vertices (see for instance Lemma 4.10 of [10] and [84])

Theorem 12. For every centrally symmetric convex set S⊆Rk, there is a polytope S′ with at most(3
ε

)k
vertices such that S⊆ S′ ⊆ (1+ ε)S

By applying this result to the polar we obtain approximations with bounded number of facets

instead of vertices.

Lemma 13. For every centrally symmetric convex set C ⊆ Rk, there is a polytope C′ with at most(3
ε

)k
facets such that C ⊆C′ ⊆ (1+ ε)C.

Proof. Consider the (centrally symmetric) convex set 1
1+ε

C◦; applying the above result, we get S

with (3/ε)k vertices and 1
1+ε

C◦ ⊆ S⊆C◦. Taking polars (and noticing that (λA)◦ = (1/λ)A◦), we

get C ⊆ S◦ ⊆ (1+ ε)C and S◦ has at most (3/ε)k facets. This concludes the proof.

The key ideas used in our proof of Theorem 6 are twofold (recall that P = Pn/2,n):

1. Roughly speaking, (RP)k is the intersection of polyhedra each of which can be decomposed

into a k-dimensional polytope plus an (n− k)−dimensional lineality space. This allow us to

use Lemma 13 above to get a good approximation H of (RP)k using fewer than exp
(

n
6002

)
inequalities.

2. Then argue that d(RP,(RP)k)≈ d(RP,H) = Ω(
√

n) since d(P,R−1(H)) = Ω(
√

n) due to the

number of facets of H and Theorem 6.

Proof of Theorem 7. Note that it is sufficient to prove the result for k = n
2003 , which is what we do.

To make the above ideas precise, observe that (RP)k =
⋂

K∈([n]k)
QK , where QK = RP+ 0K ×RK̄

21

(we use K̄ := [n]\K). To approximate each QK , using Lemma 13, let hK ⊆ Rk be a polytope such

that projKQK ⊆ hK ⊆ (1+ ε)projKQK and hK has at most (3/ε)k facets. Let Hk = hK +0K×RK̄;

then QK ⊆ HK ⊆ (1+ ε)QK and HK has at most (3/ε)k facets.

Now notice that for convex sets A,B, we have ((1+ ε)A)∩ ((1+ ε)B) ⊆ (1+ ε)(A∩B). This

gives that if we look at the intersection
⋂

K∈([n]k)
HK , we obtain

(RP)k =
⋂

K∈([n]k)

QK ⊆
⋂

K∈([n]k)

HK ⊆ (1+ ε)
⋂

K∈([n]k)

QK

= (1+ ε)(RP)k. (2.11)

Notice
⋂

K∈([n]k)
HK has at most

(n
k

)(3
ε

)k ≤
(en

k

)k (3
ε

)k
=
(3en

kε

)k
facets. Thus, setting ε = 1

10 we

get

(
3en
kε

)k

=
(
30 · e ·2003) n

2003

=
(
exp(log(30 · e ·2003))

) n
2003

=
(

exp
(

log(30 · e ·2003) · n
2003

))
< exp

(n
6012

)
. (2.12)

Then define H :=
⋂

K∈([n]k)
HK , so that (RP)k ⊆ H ⊆ (1+ ε)(RP)k.

In order to control the relationship between this multiplicative approximation and the distance

d(., .), we introduce the set C = R([−1,1]n). Notice that by construction RP⊆ H ∩C.

Claim 14. d(RP,H ∩C)≥ 1
6
√

n

Proof. Assume by contradiction that d(RP,H ∩C) < 1
6
√

n. Then since distances between points

and number of facets of a polytope are invariant under rotation, we obtain that d(P,R−1(H∩C))<

1
6
√

n where R−1(H ∩C) is defined using at most exp(n/(600)2) inequalities (because C has 2n

facets, using (2.12) H has at most exp(n/(601)2) and for sufficiently large n, exp(n/(601)2)+2n≤

22

exp(n/(600)2)). However notice that this contradicts the result of Theorem 6, since k =
√

n
100 ≤

n
100

and R−1(H ∩C) is defined using at most 2n/(600)2
inequalities. �

But from (2.11) we have (1+ ε)(RP)k∩C contains H ∩C, and hence

d(RP,(1+ ε)(RP)k∩C)≥ 1
6
√

n. (2.13)

Claim 15. d(RP,(RP)k∩C)≥ d(RP,(1+ ε)(RP)k∩C)− ε
√

n

Proof. Take x̄∈ (1+ε)(RP)k∩C and ȳ∈ RP that achieve d(x̄, ȳ) = d((1+ε)(RP)k∩C,RP). Look

at the point 1
1+ε

x̄ and notice it belongs to (RP)k∩C; let ỹ be the point in RP closest to 1
1+ε

x̄. Then

since ȳ is the point in RP closest to x̄,

d(RP,(1+ ε)(RP)k∩C) = d(x̄, ȳ)≤ d(x̄, ỹ).

By triangle inequality, d(x̄, ỹ)≤ d(1
1+ε

x̄, ỹ)+d(1
1+ε

x̄, x̄)≤ d(RP,(RP)k∩C)+d(1
1+ε

x̄, x̄). To bound

d(1
1+ε

x̄, x̄), notice it is equal to ε

1+ε
‖x̄‖; since x̄ belongs to C, we can upper bound ‖x̄‖≤

√
n (this is

why we introduced the set C in the argument). Putting these bounds together we obtain the result.

�

Using (2.13) and Claim 2 we obtain that d(RP,(RP)k)≥ d(RP,(RP)k∩C)≥ d(RP,(1+ε)(RP)k∩

C)− ε
√

n≥ (1
6 −

1
10)
√

n. This concludes the proof of the theorem.

2.7 Lower bounds on approximation along most directions

We now prove Theorem 8. The main tool we use in this section is concentration of Lipschitz

functions on Gaussian spaces.

Theorem 16 (Inequality (1.6) of [72]). Let G1,G2, . . . ,Gn be independent standard Gaussian ran-

dom variables, and let f : Rn→ R be an L-Lipschitz function, namely for all x,x′ ∈ Rn, | f (x)−

23

f (x′)| ≤ L · ‖x− x′‖. Then letting Z = f (G1,G2, . . . ,Gn), for t > 0 we have

P(|Z−E(Z)| ≥ t)≤ 2exp
(
− t2

2L2

)

To prove Theorem 8, recall that P = Pn/10,n. Let G = (G1,G2, . . . ,Gn) be a random vector

whose components are independent standard Gaussians. It is well-known that G
‖G‖2

is uniformly

distributed in the sphere (see for instance [72], page 55). Notice that gapk
P(·) is positive homoge-

neous, so gapk
P

(
G
‖G‖

)
= 1
‖G‖ ·gapk

P(G).

Our first step is to lower bound gapk
P(G) with high probability, starting by lower bounding the

maximization of G over Pk.

Claim 17. With probability at least 1− 1
n , maxx∈Pk Gx≥ 0.7n.

Proof. Since k ≤ n
10 , we have that Pk = [−1,1]n (Lemma 4). It then follows that

max
x∈Pk

Gx =
n

∑
i=1
|Gi|. (2.14)

The random variables |Gi| have folded normal distribution [73], for which is known that E[|Gi|] =√
2/π ≥ 0.79. Since the function (x1, . . . ,xn) 7→∑

n
i=1 |xi| is

√
n-Lipschitz, we can use Theorem 16

to obtain the bound

P

(
n

∑
i=1
|Gi|< 0.7n

)
≤ 2exp

(
−0.092n

2

)
≤ 1

n
,

where the last inequality holds if n≥ 1000. Equation (2.14) then concludes the proof. �

Next we upper bound the maximization of G over P.

Claim 18. With probability at least 1− 2
n , maxx∈P Gx≤ 0.6n.

Proof. Letting ext(P) denote the set of extreme points of P, notice that maxx∈P Gx=maxv∈ext(P)Gv,

24

so it suffices to upper bound the latter. Also notice that the extreme points of P are exactly the points

in {−1,0,1}n with at most n
10 non-zero entries (Lemma 4).

Consider v ∈ ext(P); we verify that Gv ≤ 0.6n with probability at least 1− 2e−0.6n. One

way of seeing this, is by noticing that since v has at most n
10 non-zero entries, Gv = ∑i:vi=1 Gi +

∑i:vi=−1−Gi is a function of G that has at most n
10 terms and is

√ n
10 -Lipschitz, so Theorem 16

gives

P(Gv > 0.6n) = P(Gv−E[Gv]> 0.6n)≤ 2e−0.6n, (2.15)

and the result follows. (Another way to see this is to use the fact that Gv is a centered Gaussian

with variance at most n
10 and use a tail bound for the latter.)

Now notice that P has ∑
n/10
i=1

(n
i

)
2i ≤ n

10

(n
n/10

)
2n/10 extreme points. Since

(n
t

)
≤ (en

t)
t for all

0 < t < n, the number of extreme points of P can be upper bounded by

exp
(

ln
(n

10

)
+

n
10

(ln(10e)+ ln2)
)
≤ 2

n
e0.6n,

where the last inequality uses n≥ 30.

Then taking a union bound of (2.15) over all extreme points of P gives that with probability at

least 1− 2
n for all v ∈ ext(P) we have Gv≤ 0.6n. This concludes the proof. �

Finally, standard results give that ‖G‖2≤ 2
√

n with probability at least 1−2e−0.5n (for instance,

notice by Jensen’s inequality E[‖G‖]2 ≤ E[‖G‖2] = n and apply Theorem 16 to ‖G‖). Using the

fact n ≥ 30, we then get P(‖G‖ ≤ 2
√

n) ≥ 1− 1
n . Then taking a union bound over this event and

the events maxx∈Pk Gx ≥ 0.7n and maxx∈P Gx ≤ 0.6n gives that with probability at least 1− 4
n we

have gapk
P
(G
‖G‖
)
= 1
‖G‖ ·gapk

P(G)≥
√

n
20 . This concludes the proof of Theorem 8.

25

CHAPTER 3

IMPROVING THE RANDOMIZATION STEP IN FEASIBILITY PUMP

The work presented in this chapter was submitted to SIAM Journal on Optimization through a

paper authored by Santanu Dey, Andres Iroume, Marco Molinaro and Domenico Salvagnin on

September 30th, 2016 [38].

3.1 Introduction

Primal heuristics are used within mixed-integer linear programming (MILP) solvers for finding

good integer feasible solutions quickly [44]. Feasibility pump (FP) is a very successful primal

heuristic for mixed-binary LPs that was introduced in [43]. At its core, Feasibility Pump is an

alternating projection method, as described below.

Algorithm 1 Feasibility Pump (Naı̈ve version)
1: Input: mixed-binary LP (with binary variables x and continuous variables y)

2: Solve the linear programming relaxation, and let (x̄, ȳ) be an optimal solution

3: while x̄ is not integral do

4: (Round) Round each coordinate of x̄ to the closest integer, call the obtained vector x̃

5: (Project) Let (x̄, ȳ) be the point in the LP relaxation that minimizes ∑i |xi− x̃i|

6: Return (x̄, ȳ)

The scheme presented above may stall, since the same infeasible integer point may be visited in

Step 4 at different iterations. Whenever this happens, the paper [43] recommends a randomization

step, that after Step 4 flips the value of some of the binary variables as follows: Defining the frac-

tionality of variable xi as |x̄i− x̃i| and let NN be the number of variables with positive fractionality,

randomly generate a positive integer T T and flip min{T T,NN} variables with largest fractionality.

26

Together with a few other tweaks, this surprisingly simple method works very well. On MI-

PLIB 2003 instances, FP finds feasible solutions for 96.3% of the instances in reasonable time [43].

Due to its success, many improvements and generalizations of FP (both for MILPs and mixed

integer non-linear programs(MINLPs)) have been studied [3, 14, 21, 45, 31, 42, 20, 41, 19]. How-

ever, the focus of these improvements has been on the projection and rounding steps or generaliza-

tion for MINLPs; to the best of our knowledge, they use essentially the same randomization step

as proposed in the original algorithm [43] (and its generalization to the general integer MILP case

of [14]).

Moreover, even though FP is so successful and so many variants have been proposed, there is

very limited theoretical analysis of its properties [20]. In particular, to the best of our knowledge

there is no known bounds on expected running-time of FP.

3.2 Our contributions

In this chapter, we start a more in-depth study of the randomization step in Feasibility Pump.

For that, we propose a new randomization step RANDWALKSAT` and provide both theoretical

analysis as well as computational experiments in a state-of-the-art Feasibility Pump code that

show the potential of this method.

Theoretical justification of RANDWALKSAT`. The new randomization step RANDWALKSAT`

is inspired by the classical algorithm WALKSAT [90] for solving SAT instances (see also [83, 79]).

The key idea of RANDWALKSAT` is that whenever Feasibility Pump stalls, namely an infeasible

mixed-binary solution is revisited, it should flip a binary variable that participates in an infeasible

constraint. More precisely, RANDWALKSAT` constructs a minimal (projected) infeasibility cer-

tificate for this solution and randomly picks a binary variable in it to be flipped (see Section 3.3 for

exact definitions).

While the vague intuition that such randomization is trying to “fix” the infeasible constraint is

27

clear, we go further and provide theoretical analyses that formally justify this and highlight more

subtle advantageous properties of RANDWALKSAT`.

First, we analyze what happens if we simply repeatedly use only the new proposed randomiza-

tion step RANDWALKSAT`, which gives a simple primal heuristic that we denote by MBWALK-

SAT. Not only we show that MBWALKSAT is guaranteed to find a solution if one exists, but its

behavior is related to the (almost) decomposability and sparsity of the instance. To make this

precise, consider a decomposable mixed-binary set with k blocks:

PI = PI
1× . . .×PI

k , where for all i ∈ [k] we have

PI
i = Pi∩ ({0,1}ni×Rdi), Pi = {(xi,yi) ∈ [0,1]ni×Rdi : Aixi +Biyi ≤ bi}. (3.1)

Let P = P1× . . .×Pk denote the LP relaxation of PI.

Note that since we allow k = 1, this also captures a general mixed-binary set. We then have the

following running-time guarantee for the primal heuristic MBWALKSAT.

Theorem 1. Consider a feasible decomposable mixed-binary set as in equation (3.1). Let si be

such that each constraint in PI
i has at most si binary variables, and define ci := min{si ·(di+1),ni}.

Then with probability at least 1−δ , MBWALKSAT with parameter `= 1 returns a feasible solution

within ln(k/δ) ∑i ni 2ni logci iterations. In particular, this bound is at most n̄k 2n̄ log n̄ · ln(k/δ), where

n̄ = maxi ni.

There are a few interesting features of this bound that indicates good properties of the proposed

randomization step, apart from the fact that it is already able to find feasible solutions by itself.

First, it depends on the sparsity si of the blocks, giving better running times on sparser problems.

More importantly, the bound indicates that the algorithm works almost independently on each of

the blocks, that is, it just takes about 2ni iterations to find a solution for each of the blocks, instead

of 2n1+...+nk of a complete enumeration over the whole problem. In fact, the proof of Theorem 1

makes explicit this almost independence of the algorithm over the blocks, and motivates the uses

28

of minimal infeasibility certificates. Moreover, we note the important point that the algorithm is

not provided the knowledge of the decomposability of the instance, it just automatically runs “fast”

when the problem is decomposable. This gives some indication that the proposed randomization

could still exhibit good behavior on the almost decomposable instances often found in practice (see

discussion in [39]).

RANDWALKSAT` in conjunction with FP. Next, we analyze RANDWALKSAT` in the context

of Feasibility Pump by adding it as a randomization step to the Naı̈ve Feasbility Pump algorithm

(Algorithm 1); we call the resulting algorithm WFP. This now requires understanding the compli-

cated interplay of the randomization, rounding and projection steps: While in practice rounding

and projection greatly help finding feasible solutions, their worst-case behavior is difficult to ana-

lyze and in fact they could take the iterates far away from feasible solutions. Although the general

case is elusive at this point, we are nonetheless able to analyze the running time of WFP for

decomposable subset-sum instances.

Definition 19. A separable subset-sum set is one of the form

{(x1,x2, . . . ,xk) ∈ {0,1}n1+n2+...+nk : aixi = bi ∀i} (3.2)

for non-negative (ai,bi)’s.

While this may seem like a simple class of problems, on these instances Feasibility Pump with

the original randomization step from [43] (without restarts) may not even converge, as illustrated

next.

29

Remark 20. Consider the feasible subset-sum problem

max x2

s.t. 3x1 + x2 = 3

x1,x2 ∈ {0,1}.

Consider the execution of the original Feasibility Pump algorithm (without restarts). The starting

point is an optimal LP solution; without loss of generality, suppose it is the solution (2
3 ,1). This

solution is then rounded to the point (1,1), which is infeasible. This point is then `1-projected

to the LP, giving back the point (2
3 ,1), which is then rounded again to (1,1). At this point the

algorithm has stalled and applies the randomization step. Since only variable x2 has strictly positive

fractionality |23 −1|= 1
3 , only the first coordinate of (1,1) is a candidate to be flipped. So suppose

this coordinate is flipped. The infeasible point (0,1) obtained is then `1-projected to the LP, giving

again the point (2
3 ,1). This sequence of iterates repeats indefinitely and the algorithm does not find

the feasible solution (1,0).

The issue in this example is that the original randomization step never flips a variable with zero

fractionality. Moreover, in Appendix B we show that even if such flips are considered, there is a

more complicated subset-sum instance where the algorithm stalls.

On the other hand, we show that algorithm WFP with the proposed randomization step always

finds a feasible solution of feasible subset-sum instances, and moreover its running time again

depends on the sparsity and the decomposability of the instance (in order to simplify the proof,

we assume that x̃ /∈ P, then `1-proj(P, x̃) is a vertex of P; notice that since `1-proj(P, x̃) is a linear

programming problem and subset-sum instances are bounded, there is always a vertex satisfying

the desired properties from `1-proj).

Theorem 2. Consider a feasible separable subset-sum set P as in (3.2). Then with probability

at least 1− δ , WFP with ` = 2 returns a feasible solution within T = dln(k/δ)e ∑i ni 22ni logni ≤

30

n̄k 22n̄ log n̄ · ln(k/δ) iterations, where n̄ = maxi ni.

To the best of our knowledge this is the first theoretical analysis of the running-time of a variant

of Feasibility Pump algorithm, even for a special class of instances. As in the case of repeatedly

using just RANDWALKSAT`, the algorithm WFP essentially works independently on each of the

blocks (inequalities) of the problem, and has reduced running time on sparser instances.

The high-level idea of the proof Theorem 2 is to: 1) Show that the combination of projection

plus rounding is idempotent for these instances, namely applying them once or repeatedly yields

the same effect (Lemma 24); 2) Show that a round of randomization step plus projection plus

rounding has a non-zero probability of generating an iterate closer to a feasible solution (Lemma

27).

Computational experiments. While the analyses above give insights on the usefulness of us-

ing RANDWALKSAT` in the randomization step of FP, in order to attest its practical value it is

important to understand how it interacts with complex engineering components present in current

Feasibility Pump codes. To this end, we considered the state-of-the-art code of [45] and modified

its randomization step based on RANDWALKSAT`. While the full details of the experiments are

presented in Section 3.5, we summarize some of the main findings here.

We conducted experiments on MIPLIP 2010 [65] instances and on randomly generated two-

stage stochastic models. In the first testbed there was a small but consistent improvement in both

running-time and number of iterations. More importantly, the success rate of the heuristic im-

proved consistently. In the second testbed, the new algorithm performs even better, according

to all measures. It is somewhat surprising that our small modification of the randomization step

could provide noticeable improvements over the code in [45], specially considering that it already

includes several improvements over the original Feasibility Pump (e.g. constraint propagation).

In addition, the proposed modification is generic and could be easily incorporated in essentially

any Feasibility Pump code. Moreover, for virtually all the seeds and instances tested the modified

31

algorithm performed better than the original version in [45]; this indicates that, in practice, the

modified randomization step dominates the previous one.

The rest of the chapter is organized as follows: Section 3.3 we discuss and present out anal-

ysis of the proposed randomization scheme RANDWALKSAT`, Section 3.4 presents the analysis

of the new randomization scheme RANDWALKSAT` in conjunction with feasibility pump, and

Section 3.5 describes details of our empirical experiments.

Notation. We use R+ to denote the non-negative reals, and [k] := {1,2, . . . ,k}. For a vector v∈Rn,

we use supp(v) ⊆ [n] to denote its support, namely the set of coordinates i where vi 6= 0. We also

use ‖v‖0 = |supp(v)|, and ‖v‖1 = ∑i |vi| to denote the `1 norm.

3.3 New randomization step RANDWALKSAT`

3.3.1 Description of the randomization step

We start by describing the WALKSAT algorithm [90], that serves as the inspiration for the proposed

randomization step RANDWALKSAT`, in the context of pure-binary linear programs. The vanilla

version of WALKSAT starts with a random point x̄ ∈ {0,1}n; if this point is feasible, the algorithm

returns it, and otherwise selects any constraint violated by it. The algorithm then select a random

index i from the support of the selected constraint and flips the value of the entry x̄i of the solution.

This process is repeated until a feasible solution is obtained. It is known that this simple algorithm

finds a feasible solution in expected time at most 2n (see [80] for a proof for 3-SAT instances), and

Schöning [90] showed that if the algorithm is restarted at every 3n iterations, a feasible solution is

found in expected time at most a polynomial factor from (2(1− 1
s))

n, where s is the largest support

size of the constraints.

Based on this WALKSAT algorithm, to obtain a randomization step for mixed-binary problems

we are going to work on the projection onto the binary variables, so instead of looking for violated

constraints we look for a certificate of infeasibility in the space of binary variables. Importantly, we

32

use a minimal certificate, which makes sure that for decomposable instances the certificate does

not “mix” the different blocks of the problem.

Now we proceed with a formal description of the proposed randomization step RANDWALKSAT`.

Consider a mixed-binary set

PI = P∩ ({0,1}n×Rd), where P = {(x,y) ∈ [0,1]n×Rd : Ax+By≤ b}. (3.3)

We use projbin P to denote the projection of P onto the binary variables x.

Definition 21 (Projected certificates). Given a mixed-binary set PI as in (3.3) and a point (x̄, ȳ) ∈

{0,1}n×Rd such that x̄ /∈ projbin P, a projected certificate for x̄ is an inequality λAx+λBy ≤ λb

with λ ∈ Rm
+ such that: (i) x̄ does not satisfy this inequality; (ii) λB = 0. A minimal projected

certificate is one where the support of the vector λ is minimal (i.e. the certificate uses a minimal

set of the original inequalities).

Standard Fourier-Motzkin theory guarantees us that projected certificates always exist, and

furthermore Caratheodory’s theorem [91] guarantees that minimal projected certificates use at most

d +1 inequalities. Together these give the following lemma.

Lemma 22. Consider a mixed-binary set PI as in (3.3) and a point (x̄, ȳ) ∈ {0,1}n×Rd such that

x̄ /∈ projbin P. There exists a vector λ ∈Rm
+ with support of size at most d+1 such that λAx+λBy≤

λb is a minimal projected certificate for x̄. Moreover, this minimal projected certificate can be

obtained in polynomial-time (by solving a suitable LP).

For completeness, see Appendix B for a proof of Lemma 22.

Now we can formally define the randomization step RANDWALKSAT` (notice that the condi-

tion λB = 0 guarantees that a projected certificate has the form ax≤ b).

33

Algorithm 2 RANDWALKSAT`(x̄)

1: //Assumes that x̄ does not belong to projbin P

2: Let ax≤ b be a minimal projected certificate for x̄

3: Sample ` indices from the support supp(a) uniformly and independently, let I be the set of

indices obtained

4: (Flip coordinates) For all i ∈ I, set x̄i← 1− x̄i

Note that in the pure-binary case and ` = 1, this is reduces to the main step executed dur-

ing WALKSAT. We remark that the flexibility of introducing the parameter ` will be needed in

Section 3.4.

3.3.2 Analyzing the behavior of RANDWALKSAT`

In this section we consider the behavior of the algorithm MBWALKSAT that tries to find a feasible

mixed-binary solution by just repeatedly applying the randomization step RANDWALKSAT`.

Algorithm 3 MBWALKSAT
1: input parameter: Integer `≥ 1

2: (Starting solution) Consider any mixed-binary point (x̄, ȳ) ∈ {0,1}n×Rd

3: loop

4: if x̄ does not belong to projbin P then

5: RANDWALKSAT`(x̄)

6: else

7: (Output feasible lift of x̄) Find ȳ ∈ Rd such that (x̄, ȳ) ∈ P, return (x̄, ȳ)

As mentioned in the introduction, we show that this algorithm find a feasible solution if such

exists, and the running-time improves with the sparsity and decomposability of the instance. Recall

the definition of a decomposable mixed-binary problem from equation (3.1), and let certSuppi

34

denote the maximum support size of a minimal projected certificate for the instance PI
i which

consists only of the ith block.

Theorem 3 (Theorem 1 restated). Consider a feasible decomposable mixed-binary set as in equa-

tion (3.1). Then with probability at least 1− δ , MBWALKSAT with parameter ` = 1 returns a

feasible solution within T = dln(k/δ)e ∑i ni 2ni logcertSuppi iterations.

In light of Lemma 22, if each constraint in Pi has at most si integer variables, we have certSuppi≤

min{si · (di +1),ni}, and thus this statement indeed implies Theorem 1 stated in the introduction.

We remark that similar guarantees can be obtained for general `, but we focus on the case `= 1 to

simplify the exposition.

The high-level idea of the proof of Theorem 3 is the following:

1. First we show that if we run MBWALKSAT over a single block PI
i , then with high probability

the algorithm returns a feasible solution within ni 2ni logcertSuppi · ln(1/δ) iterations. This

analysis is inspired by the one given by Schöning [90] and argues that with a small, but

non-zero, probability the iteration of the algorithm makes the iterate x̄xx closer (in Hamming

distance) to a fixed solution x∗ for the instance.

2. Next, we show that when running MBWALKSAT over the whole decomposable instance each

iteration only depends on one of the blocks PI
i ; this uses the minimality of the certificates.

So in effect the execution of MBWALKSAT can be split up into independent executions over

each block, and thus we can put together the analysis from Item 1 for all blocks with a union

bound to obtain the result.

For the remainder of the section we prove Theorem 3. We start by considering a general mixed-

binary set as in equation (3.3). Given such mixed-binary set PI , we use certSupp = certSupp(PI)

to denote the maximum support size of all minimal projected certificates.

35

Theorem 4. Consider the execution of MBWALKSAT over a feasible mixed-binary program as in

equation (3.3). The probability that MBWALKSAT does not find a feasible solution within the first

T iterations is at most (1− p)bT/nc, where p = certSupp−n. In particular, for T = n ·2n log(certSupp) ·

dln(1/δ)e this probability is at most δ (this follows from the inequality (1− x) ≤ e−x valid for

x≥ 0).

Proof. Consider a fixed solution x∗ ∈ projbin P. To analyze MBWALKSAT, we only keep track

of the Hamming distance of the (random) iterate x̄ to x∗; let XXX t denote this (random) distance at

iteration t, for t ≥ 1. If at some point this distance vanishes, i.e. XXX t = 0, we know that x̄ = x∗ and

thus x̄ ∈ projbin P; at this point the algorithm returns a feasible solution for PI .

Fix an iteration t. To understand the probability that XXX t = 0, suppose that in this iteration

x̄ does not belong to projbin P, and let ax ≤ b be the minimal projected certificate for it used in

RANDWALKSAT1. Since the feasible point x∗ satisfies the inequality ax≤ b but x̄ does not, there

must be at least one index i∗ in the support of a such where x∗ and x̄ differ. Then if algorithm

MBWALKSAT makes a “lucky move” and chooses I = {i∗} in Line 3, the modified solution after

flipping this coordinate (the next line of the algorithm) is one unit closer to x∗ in Hamming distance,

hence XXX t+1 = XXX t − 1. Moreover, since I is independent of i, the probability of choosing I = {i∗}

is 1/|supp(a)| ≥ 1/certSupp.

Therefore, if we start at iteration t and for all the next XXX t iterations either the iterate belongs

to projbin P or the algorithm makes a “lucky move”, it terminates by time t + XXX t . Thus, with

probability at least (1/certSupp)XXX t ≥ (1/certSupp)n = p the algorithm terminates by time t+XXX t ≤

t +n.

To conclude the proof, let α = bT/nc and call iterations i · n, . . . , (i+ 1) · n− 1 the i-th block

of iterations. If the algorithm has not terminated by iteration i ·n−1, then with probability at least

p it terminates within the next n iterations, and hence within the i-th block. Putting these bounds

together for all α blocks, the probability that the algorithm does not stop by the end of block α is

at most (1− p)α . This concludes the proof.

36

Going back to decomposable problems, we now make formal the claim that minimal projected

certificates for decomposable mixed-binary sets do not mix the constraints from different blocks.

Notice that projected certificates for a decomposable mixed-binary set as in equation (3.1) have the

form ∑i λ iAixi ≤ ∑i λ ibi and λ iBi = 0 for all i ∈ [k].

Lemma 23. Consider a decomposable mixed-integer set as in equation (3.1). Consider a point

x̄ /∈ projbin P and let ∑i λ iAixi≤∑i λ ibi be a minimal projected certificate for x̄. Then this certificate

uses only inequalities from one block P j, i.e. there is j such that λ i = 0 for all i 6= j. Moreover,

x̄ j /∈ projbin Pj.

Proof. Let x̄=(x̄1, x̄2, . . . , x̄k) and call the certificate (ax≤ b), (∑i λ iAixi≤∑i λ ibi). By definition

of projected certificate we have ∑i λ iAix̄i > ∑i λ ibi, and thus by linearity there must be an index j

such that λ jA jx̄ j > λ jb j. Moreover, as remarked earlier, decomposability implies that the certifi-

cate satisfies λ iBi = 0 for all i, so in particular for j. Thus, the inequality λ j(A j,B j)(x j,y j)≤ λ jb j

obtained by combining only the inequalities form Pj is a projected certificate for x̄. The minimality

of the original certificate ax ≤ b implies that λ i = 0 for all i 6= j. This concludes the first part of

the proof.

Moreover, since λ jA jx̄ j > λ jb j and λ jB j = 0 we have that λ j(A j,B j)(x̄ j,y) > λ jb j for all y,

and hence x̄ j does not belong to projbin Pj. This concludes the proof.

We can finally prove the desired theorem.

Proof of Theorem 3. We use the natural decomposition x̄ = (x̄1, . . . , x̄k) ∈ {0,1}n1× . . .×{0,1}nk

of the iterates of the algorithm. From Lemma 23, we have that for each scenario, each iteration of

MBWALKSAT is associated with just one of the blocks PI
j ’s, namely the PI

j containing all the in-

equalities in the minimal projected certificate used in this iteration; let Jt ∈ [k] denote the (random)

index j of the block associated to iteration t. Notice that at iteration t, only the binary variables xJt

can be modified by the algorithm.

37

Let Ti = ni 2ni lognidln(k/δ)e. Applying the proof of Theorem 4 to the iterations {t : Jt = i} with

index i, we get that with probability at least 1− δ

k the algorithm finds some x̄i in projbin Pi within

the first Ti of these iterations. Moreover, after the algorithm finds such a point, it does not change

it (that is, the remaining iterations have index Jt 6= i, due to the second part of Lemma 23).

Therefore, by taking a union bound we get that with probability at least 1− δ , for all i ∈ [k]

the algorithm finds x̄i ∈ projbin Pi within the first Ti iterations with index i (for a total of ∑i Ti = T

iterations). When this happens, the total solution x̄ belongs to projbin P and the algorithm returns.

This concludes the proof.

3.4 Randomization step RANDWALKSAT` within Feasibility Pump

In this section we incorporate the randomization step RANDWALKSAT` into the Naı̈ve Feasibility

Pump, the resulting algorithm being called WFP. We describe this algorithm in a slightly different

way and using a notation more convenient for the analysis.

Consider a mixed-binary set PI as in equation (3.3). Given a 0/1 point x̃∈{0,1}n, let `1-proj(P, x̃)

denote a point (x,y) in P where ‖x̃− x‖1 is as small as possible. Also, for a vector v ∈ [0,1]p, we

use round(v) to denote the vector obtained by rounding each component of v to the closest integer;

we use the convention that 1
2 is rounded to 1, but any consistent rounding would suffice. Notice

that operations ‘`1-proj’ and ‘round’ correspond precisely to Steps 5 and 4 in the Naı̈ve Feasibility

Pump. With this notation, algorithm WFP can be described as follows.

Note that stalling in the above algorithm is determined using the condition x̃t = x̃t−1. What

about ‘long cycle’ stalling, that is x̃t = x̃t ′ where t ′ < t−1, but x̃t ′, . . . , x̃t−1 are all distinct binary

vectors. As it turns out (assuming no numerical errors) a consistent rounding rule implies that

stalling will always occur with cycles of length two.

Theorem 5. With consistent rounding, long cycles cannot occur.

We present a proof of 5 in Appendix B. For the remainder of the section, we analyze the

38

Algorithm 4 WFP
1: input parameter: integer `≥ 1
2: Let (x̄0, ȳ0) be an optimal solution of the LP relaxation
3: Let x̃0 = round(x̄0)
4: for t = 1,2,. . . do
5: (x̄t , ȳt) = `1-proj(P, x̃t−1)
6: x̃t = round(x̄t)

7: if (x̃t , ȳt) ∈ P then . equivalently, x̃t ∈ projbin(P)
8: Return (x̃t , ȳt)

9: if x̃t = x̃t−1 then . iterations have stalled
10: x̃t = RANDWALKSAT`(x̃t)

behavior of algorithm WFP on separable subset-sum instances, proving Theorem 2 stated in the

introduction.

3.4.1 Running time of WFP for separable subset-sum instances: Proof of Theorem 2

Notice that the projection operators ‘`1-proj’ and ‘round’ now present also act on each block in-

dependently, namely given a point x = (x1, . . . ,xk) ∈ Rn1× . . .×Rnk , if (x̌1, . . . , x̌k) = `1-proj(P,x)

then x̌i = `1-proj(Pi,xi) for all i ∈ [k], and similarly for ‘round’. Therefore, as in the proof of The-

orem 3, it suffices to analyze the execution of algorithm WFP over a single block/inequality of

the separable subset-sum problem. More precisely, it suffices to prove the following guarantee for

WFP on a general subset-sum instance.

Theorem 6. Consider a feasible subset-sum problem P⊆Rn. Then for every T ≥ 1, the probability

that WFP with ` = 2 does not find a feasible solution within the first 2T iterations is at most

(1− p)bT/nc, where p = (1/n2)n. In particular, for T = n ·22n logn · dln(1/δ)e this probability is at

most δ .

The high-level idea of the proof of this theorem is the following. We use a similar strategy

as before, where we consider a fixed feasible solution x∗ and track its distance to the iterates x̃xxt

generated by algorithm WFP. However, while again the randomization step RANDWALKSAT2

39

brings x̃xxt closer to x∗ with small but non-zero probability, the issue is that the projections ‘`1-proj’

and ‘round’ in the next iterations could send the iterate even further from x∗. To analyze the

algorithm we then use the structure of subset-sum instances to: 1) First control the combination

‘`1-proj+ round’ in Steps 5 and 6, showing that in this case they are idempotent, namely applying

them once or repeatedly yields the same effect (Lemma 24); 2) Strengthen the analysis of Theorem

3 to show that a round of RANDWALKSAT2 plus ‘`1-proj+ round’ still has a non-zero probability

of generating a point closer to x∗ (Lemma 27). For this, it will be actually important that we use

`= 2 in algorithm WFP (actually `≥ 2 suffices).

For the remainder of the section we prove Theorem 6. To simplify the notation we omit the

polytope P from the notation of `1-proj. We assume that our subset-sum problem P = {x ∈ [0,1]n :

ax = b} is such that all coordinates of a are positive, since components with ai = 0 do not affect

the problem (more precisely, after the first iteration of the algorithm, the value of x̃xxt
i is set to 0 or

1 and does not change anymore, and this value does not affect the feasibility of the solutions x̃xxt’s).

Also remember that subset-sum problems only have binary variables.

Given a point x̃ ∈ {0,1}n, let AltProj(x̃) ∈ {0,1}n be the effect of applying to x̃ `1-proj(.)

and then round(.). Notice that if x̃ belongs to P, then AltProj(x̃) = x̃. Then algorithm WFP

can be thought as performing a AltProj operation, then checking if the iterate obtained either

belongs to P (in which case it exits) of if it equals the previous iterate (in which case it applies

RANDWALKSAT2); if neither of these occur, then another AltProj operation is performed. So

an important component for analyzing this algorithm is getting a good control over a sequence of

AltProj operations. For that, define the iterated operation AltProjt(x̃) = AltProj
(
AltProjt−1(x̃)

)
(with AltProj1 = AltProj) and if the sequence (AltProjt(x̃)) stabilizes at a point, let AltProj∗(x̃)

denote this point.

A crucial observation, given by the next lemma, is that for subset-sum instances the operation

of AltProj is idempotent, namely it stabilizes after just one operation.

Lemma 24. Let P be a subset-sum instance. Then for every x̃∈{0,1}n, AltProj∗P(x̃)=AltProjP(x̃).

40

Proof. Again to simplify the notation we omit the polyhedron P when writing `1-proj and AltProj.

Let x̄ = `1-proj(x̃) and recall it is an extreme point of P. Clearly, if x̃ ∈ P then AltProj(x̃) = x̃

and hence AltProj∗(x̃) = AltProj(x̃). Similarly, if x̄ is a 0/1 point then AltProj(x̃) = x̄, and again

AltProj∗(x̃) = AltProj(x̃).

Thus, assume that x̃ /∈ P and x̄ is not a 0/1 point. Since x̄ is an extreme point of the subset-sum

LP P it has exactly 1 fractional coordinate, so by permuting indices we assume without loss of

generality:

1. x̄1 = · · ·= x̄k = 1.

2. x̄k+1 ∈ (0, 1).

3. x̄k+2 = · · ·= x̄n = 0

4. ak+2 ≥ ak+3 ≥ ·· · ≥ an.

5. a1 ≤ a2 ≤ a3 ≤ ·· · ≤ ak.

Now we look at the points obtained after applying round(.) and `1-proj(.) to x̄, namely let

x̃′ := round(x̄) = AltProj(x̃) and let x̄′ := `1-proj(x̃′). Notice that x̄′ is obtained by solving:

min ∑{ j | x̃′j=0} x j +∑{ j | x̃′j=1}(1− x j)

s.t. ax = b (3.4)

0≤ x≤ 1.

Case 1: x̄k+1 < 1/2. Then x̃′i = 1 for all i≤ k, x̃′i = 0 for all i≥ k+1; also notice x̃′ ≤ x̄, and hence

ax̃′ < b; thus x̄′ is obtained from x̃’ by increasing some components of 0 value. We have three

subcases:

a. If ak+1 > ak+2: then ak+1 is the largest coordinate of a where x̃′ has value 0, so it follows

from (3.4) that x̄′ is obtained from x̃′ by raising its (k+1)-component from 0 to x̄k+1. Thus,

41

x̄′= x̄, and hence AltProj(AltProj(x̃)) = round(x̄′) equals round(x̄) =AltProj(x̃); this implies

AltProj∗(x̃) = AltProj(x̃).

b. If ak+1 < ak+2: then x̄′ is obtained from x̃ by raising its (k+2)-component to a value that is

at most x̄k+1 < 1/2. Now, round(x̄′) = x̃′, so again we get AltProj(AltProj(x̃)) = round(x̄′) =

x̃′ = AltProj(x̃) and we are done.

c. If ak+1 = ak+2: Since x̄′ is a vertex of the subset-sum LP P, again it only has 1 fractional

component (either k+1 or k+2) and then it is easy to see that x̄′ is equal to the one in either

Case (a) or Case (b) above; thus the result also holds for this case.

Case 2: x̄k+1 ≥ 1/2. Then x̃′ is such that x̃′i = 1 for all i ≤ k+1 and x̃′ = 0 for all i ≥ k+2; also

notice x̃′ ≥ x̄ and hence ax̃′ > b. Now, consider x̄′ = `1-proj(x̃′):

a. If ak < ak+1: This is analogous to Case 1a: x̄′ is obtained by lowering the (k+1)-coordinate

of x̃′ from 1 to x̄, and thus x̄′ = x̄; the rest of the proof is identical to Case 1a.

b. If ak > ak+1: In this case, x̄′ is obtained by lowering the k-component of x̃′. Since ax̄ = ax̄′ =

b, and k and (k+1) are the only components where x̄ and x̄′ differ, we have: ak+ak+1x̄k+1 =

akx̄′k + ak+1. Hence x̄′k = 1− ak+1
ak

(1− x̄k+1) ≥ 1/2 and round(x̄′) = x̃′; the rest of the proof

is identical to Case 1b.

c. If ak = ak+1: Identical to Case 1c.

Therefore, there is not much loss in looking at a “compressed” version of algorithm WFP that

packs repeated applications of AltProj until stalling happens into a single AltProj∗; more formally,

we have the following algorithm (stated in the pure-binary case to simplify the notation).

42

Algorithm 5 WFP-Compressed
1: input parameter: integer `≥ 1
2: Let x̄0 be an optimal solution of the LP relaxation
3: Let z̃0 = round(x̄0)
4: for τ = 1,2,. . . do
5: z̄zzτ = AltProj∗(̃zzzτ−1)

6: if z̃zzτ ∈ P then
7: Return z̃zzτ

8: z̃zzτ = RANDWALKSAT`(̃zzz
τ)

Intuitively, Lemma 24 should imply that packing the repeated applications of AltProj into a

single AltProj∗ should not save more than 1 iteration. To see this more formally, assume that both

algorithms use as starting point the same optimal solution of the LP, so z̃0 = x̃0. Now condition

on a scenario where we have z̃zzτ = x̃t at the beginning of iterations τ and t of algorithms WFP-

Compressed and WFP respectively (for τ, t ≥ 1). Then we claim that either both algorithms return

at the current iteration, or z̃zzτ+1 has the same distribution as either x̃t+1 or x̃t+2 (at the beginning of

they respective iterations): If z̃zzτ = x̃t ∈ P, then both algorithms return; if x̃t /∈ P but x̃t = x̃t−1, then

both algorithms WFP-Compressed and WFP employ RANDWALKSAT2 over z̃zzτ = x̃t , in which

case z̃zzτ+1 has the same distribution as x̃t+1; finally, if x̃t 6= x̃t−1, then WFP at the beginning of

the next iteration will have x̃t+1 = AltProj(x̃t), which by Lemma 24 (and t ≥ 1) equals x̃t itself,

and so it will employ RANDWALKSAT2 to x̃t+1 = x̃t and again we have that x̃t+2 has the same

distribution as z̃zzτ+1.

Therefore, since we can employ this argument to couple iterations ≤ τ of WFP-Compressed

with iterations ≤ 2τ of WFP, we have the following result.

Lemma 25. Consider the application of algorithms WFP and WFP-Compressed over the subset-

sum problem P. Then the probability that algorithm WFP returns after at most 2T iterations is at

least the probability that algorithm WFP-Compressed after at most T iterations.

Therefore, it suffices to upper bound the number of iterations of WFP-Compressed until it

returns. To avoid ambiguity, let zzzτ be the value of z̃zzτ at the beginning of iteration τ of WFP-

43

Compressed. Notice that z1 = AltProj∗(x̃0), and zzzτ+1 = AltProj∗(RANDWALKSAT2(zzzτ)) for τ ≥

2. It suffices to show that with probability at least 1− (1− p)T/n, there is τ ≤ T/2 such that zzzτ

belongs to P.

To do so, for x̃ ∈ {0,1}n and I ⊆ [n] let flip(x̃, I) denote the 0/1 vector obtained starting from

x̃ and flipping the value of all coordinates that belongs to I. Notice that (up to scaling) the only

possible projected certificates for our subset-sum problem are ax ≥ b and ax ≤ b. Since we have

assumed that the vector a has full support, it follows that on this problem RANDWALKSAT2(x̃) =

flip(x̃,I) for I being the set obtained by sampling independently two indices uniformly from [n].

The next lemma then shows that there is always a “lucky choice” of set I in RANDWALKSAT2(zzzτ)

that brings zzzτ+1 = AltProj∗(RANDWALKSAT2(zzzτ)) closer to a fixed solution x∗ to the subset-sum

problem.

The following definition is convenient.

Definition 26. A point x̃ ∈ {0,1}n is called a stalling solution if AltProj(x̃) = x̃.

Lemma 27. Let x∗ ∈ {0,1}n be a feasible solution to the subset-sum problem. Consider x̃∈ {0,1}n

with ax̃ 6= b that satisfies the fixed point condition AltProj(x̃) = x̃. Then there is a set I ⊆ [n] of size

at most 2 such that the point x′ = AltProj∗P(flip(x̃, I)) is closer to x∗ than x̃, namely ‖x′− x∗‖0 ≤

‖x̃− x∗‖0−1.

Proof. Again to simplify the notation we omit P from `1-proj and AltProj, and use flip(x̃, j) instead

of flip(x̃,{ j}) in the singleton case.

We start with a couple of claims.

Claim 1 Suppose x̃ ∈ {0,1}n is a stalling point. If ax̃ < b, then there is k /∈ supp(x̃) such that

`1-proj(x̃)i = x̃i for all i 6= k, and `1-proj(x̃)k ∈ (0, 1
2). Similarly, if ax̃ > b, then there is k ∈ supp(x̃)

such that `1-proj(x̃)i = x̃i for all i 6= k, and `1-proj(x̃)k ∈ [1
2 ,1).

44

Proof of Claim 1. We only prove the first statement, the proof of the second is completely anal-

ogous. Since x̃ is stalling we have that round(`1-proj(x̃)) = x̃, and since `1-proj(x̃) is an extreme

point of the subset-sum problem P it has at most 1 fractional component, and hence only differs in

one component k from

round(`1-proj(x̃)) = x̃.

Since a ·`1-proj(x̃) = b > a · x̃, we have that x̃k = 0 and `1-proj(x̃)k > 0; since round(`1-proj(x̃)k) =

x̃k = 0, we have `1-proj(x̃)k <
1
2 .

Claim 2 Consider a point x̃ ∈ {0,1}n.

1. If the objective value of (3.4) is strictly less than 1
2 , then AltProj(x̃) = x̃.

2. If the objective value of (3.4) is strictly less than 1, then ‖AltProj(x̃)− x̃‖0 ≤ 1.

Proof of Claim 2. Let x̄ = `1-proj(x̃) be an optimal solution for (3.4). Proof of Part 1: the assump-

tion implies that |x̄i− x̃i|< 1
2 for all i, which directly implies that AltProj(x̃) = round(x̄) = x̃.

Proof of Part 2: the assumption implies that there can be at most one index j with |x̄ j− x̃ j| ≥ 1
2 ,

which implies that for all i 6= j, AltProj(x̃)i = round(x̄i) = x̃i and the result follows.

Now we are ready to present the proof of Lemma 27. Let x∗ and x̃ be as in the statement of the

Lemma. From Lemma 24 we know that

AltProj∗(flip(x̃,J)) = AltProj(flip(x̃,J)),

so it suffices to work with the right-hand side instead. Since x̃ 6= x∗ we have supp(x̃) 6= supp(x∗).

We separate the proof in three cases depending on the relationship between these supports.

Case 1: supp(x̃) (supp(x∗): Pick any j ∈ supp(x∗)\ supp(x̃) and notice that ‖flip(x̃, j)− x∗‖0 =

‖x̃− x∗‖0−1. Notice that both supp(x̃) and supp(flip(x̃, j)) are contained in the support of x∗, and

hence we have ax̃≤ b and a ·flip(x̃, j)≤ b. Moreover, since flip(x̃, j)≥ x̃, it is easy to see that the

45

optimal value of (3.4) for flip(x̃, j) is strictly less than that for x̃ (we need to raise fewer variables

to make the point satisfy ax = b), which by Claim 1 is at most 1
2 . Thus, employing Part 1 of Claim

2 to flip(x̃, j) gives that AltProj(flip(x̃, j)) = flip(x̃, j), which is the desired point closer to x∗.

Case 2: supp(x∗) (supp(x̃): The proof is the same as above, with the only change that we take

j ∈ supp(x̃)\ supp(x∗).

Case 3: The supports supp(x∗) and supp(x̃) are not contained in one another. In this case ax̃ can

be either < b or > b:

1. If ax̃ < b. Take m ∈ supp(x∗)\ supp(x̃). If a ·flip(x̃,m)≤ b, then we can argue exactly as in

Case 1 to get that AltProj(flip(x̃,m)) = flip(x̃,m), which is closer to x∗ than x̃. So consider

the case a ·flip(x̃,m)> b. Take i ∈ supp(x̃)\ supp(x∗) and consider flip(x̃,{m, i}), which is 2

units closer to x∗ in Hamming distance.

We claim that the optimal value of (3.4) for flip(x̃,{m, i}) is strictly less than 1. Suppose

a ·flip(x̃,{m, i})≤ b; since a ·flip(x̃,m)> b (notice flip(x̃,m) is obtained from flip(x̃,{m, i})

by increasing coordinate i to 1), this means that we can make flip(x̃,{m, i}) satisfy ax = b

by increasing coordinate i to a value strictly less than 1, thus upper bounding the optimum

of (3.4). On the other hand, consider a ·flip(x̃,{m, i})> b; notice a ·flip(x̃, i)≤ a · x̃ < b (the

last uses a running assumption), and thus again we can make flip(x̃,{m, i}) satisfy ax = b by

decreasing coordinate m to a value strictly smaller than 1. This proves the claim.

With this claim in place, we can just employ Part 2 of Claim 2 to flip(x̃,{m, i}) and triangle

inequality to obtain that ‖AltProj(flip(x̃,{m, i}))− x∗‖0 is at most

1+‖flip(x̃,{m, i})− x∗‖0 = 1+‖x̃− x∗‖0−2,

which gives the desired result.

2. If ax̄ > b. The proof of this case mirrors that of the above case (only with the inequalities <

46

and > reversed throughout).

Notice that since zzzτ is obtained from AltProj∗(.), it satisfies the fixed point condition AltProj(zzzτ)=

zzzτ . Thus, as long as zzzτ does not belong to P we can apply the above lemma to obtain that with

probability at least 1
n2 we have I in RANDWALKSAT2 equal to the set I in the lemma and thus the

iterate moves closer to a feasible solution; more formally we have the following.

Corollary 28. Let x∗ ∈ {0,1}n be a feasible solution to the subset-sum problem P. Then

P
(
‖zzzτ+1− x∗‖0 ≤ ‖zzzτ − x∗‖0−1

∣∣∣ zzzτ /∈ P
)
≥ 1

n2 .

Now we can conclude the proof of Theorem 6 arguing just like in the proof of Theorem 4.

Proof of Theorem 6. Consider x∗ ∈ P and let ZZZτ = ‖zzzτ − x∗‖0. Notice that ZZZτ = 0 implies zzzτ = x∗

and hence zzzτ ∈ P. Corollary 28 gives that P(ZZZτ+1 ≤ ZZZτ −1 | zzzτ /∈ P) ≥ 1
n2 . Therefore, if we start

at iteration τ and for all the next ZZZτ iterations either the iterate zzzτ ′ belongs to P or the algorithm

reduces ZZZτ ′ , it terminates by time τ +ZZZτ . Thus, with probability at least (1/n2)ZZZτ ≥ (1/n2)n = p

the algorithm terminates by time t +ZZZτ ≤ t +n.

To conclude the proof, let α = bT/nc and call time steps i ·n, . . . , (i+1) ·n−1 the i-th block

of time. From the above paragraph, the probability that there is τ in the ith block of time such that

zzzτ ∈ P conditioned on zzzi·n−1 /∈ P is at least p. Using the chain rule of probability gives that the

probability that there is no zzzτ ∈ P within any of the α blocks is at most (1− p)α . This concludes

the proof.

3.5 Computations

In this section, we describe the algorithms that we have implemented and report computational

experiments comparing the performance of the original Feasibility Pump 2.0 algorithm from [45],

47

which we denote by FPORIG, to our modified code that uses the new perturbation procedure. The

code is based on the current version of the Feasibility Pump 2.0 code (the one available on the

NEOS servers), which is implemented in C++ and linked to IBM ILOG CPLEX 12.6.3 [61] for

preprocessing and solving LPs. All features such as constraint propagation which are part of the

Feasibility Pump 2.0 code have been left unchanged.

All algorithms have been run on a cluster of identical machines, each equipped with an Intel

Xeon CPU E3-1220 V2 running at 3.10GHz and 16 GB of RAM. Each run had a time limit of half

an hour.

3.5.1 WalkSAT-based perturbation

In preliminary tests, we implemented the algorithm WFP as described in the previous section.

However, its performance was not competitive with FPORIG. In hindsight, this can be justified by

the following reasons:

• Picking a fixed ` can be tricky. Too small or too big a value can lead to slow convergence in

practical implementations.

• Using RANDWALKSAT` at each perturbation step can be overkill, as in most cases the

original perturbation scheme does just fine.

• Computing the minimal certificate is too expensive, as it requires solving LPs.

For the reasons above, we devised a more conservative implementation of a perturbation pro-

cedure inspired by WALKSAT, which we denote by WFPBASE. The algorithm works as follows.

Let F ⊂ [n] be the set of indices with positive fractionality |x̃ j− x̄ j|. If T T ≤ |F |, then the pertur-

bation procedure is just the original one in FPORIG. Else, let S be the union of the supports of the

constraints that are not satisfied by the current point (x̃, ȳ). We select the |F | indices with largest

fractionality |x̃ j− x̄ j| and select uniformly at random min{|S|,T T −|F |} indices from S, and flip

the values in x̃ for all the selected indices.

48

Note also that the above procedure applies only to the case in which a cycle of length one is

detected. In case of longer cycle, we use the very same restart strategy of FPORIG.

3.5.2 Computational results

We tested the two algorithms on two classes of models: two-stage stochastic models, and the

MIPLIB 2010 dataset.

Two-stage stochastic models. In order to validate the hypothesis suggested by the theoretical

results that our walkSAT-based perturbation should work well on almost-decomposable models,

we tested WFPBASE on two-stage stochastic models. These are the deterministic equivalent of

two-stage stochastic programs and have the form

Ax+Diyi ≤ bi , i ∈ {1, . . . ,k}

x ∈ {0,1}p

yi ∈ {0,1}q , i ∈ {1, . . . ,k}.

The variables x are the first-stage variables, and yi are the second-stage variables for the ith sce-

nario. Notice that these second-stage variables are different for each scenario, and are only coupled

through the first-stage variables x. Thus, as long as the number of scenarios is reasonably large

compared to dimensions of x,y1, . . . ,yk, these problems are to some extent almost-decomposable.

For our experiments we randomly generated instances of this form as follows: (1) the entries

in A and the Di’s are independently and uniformly sampled from {−10, . . . ,10}; (2) to guarantee

feasibility, a 0/1 point is sampled uniformly at random from {0,1}p+k·q and the right-hand sides bi

are set to be the smallest ones that make this point feasible. We generated 50 instances, 5 for each

setting of parameters k = {5,15,25,35,45}, p = {10,20}, q = 10.

We compared the two algorithms FPORIG and WFPBASE over these instances using ten dif-

49

ferent random seeds. A seed by seed comparison is reported in Table 3.1. In the tables, #found

denotes the number of models for which a feasible solution was found, while time and itr.

report the shifted geometric means [2] of running times and iterations, respectively.

Table 3.1: Aggregated results on two-stage stochastic models.

found time (s) itr.

Seed FPORIG WFPBASE FPORIG WFPBASE FPORIG WFPBASE

1 28 31 4.12 3.36 124.43 76.02
2 26 35 4.06 3.17 122.51 82.85
3 25 37 4.00 3.02 117.74 72.50
4 26 36 4.28 3.40 119.82 75.17
5 25 31 4.20 3.44 124.41 81.66
6 26 35 3.98 3.56 122.74 79.73
7 25 27 4.22 3.98 126.77 91.59
8 28 38 3.82 3.10 112.91 73.92
9 25 31 4.22 3.67 117.61 83.46
10 25 32 4.12 3.57 116.92 88.23

Notice that WFPBASE performed substantially better than FPORIG, in agreement with our the-

oretical results. Using the walkSAT-based perturbation the average number of successful instances

increased by 28%, while average runtime was reduced by 17% and average number of iterations

was reduced by 33%.

MIPLIB 2010. We also compared the algorithms on a subset of models from MIPLIB 2010 [65].

The subset is defined by the models for which at least one of the two algorithms took more than

20 iterations to find a feasible solution (if any); the remaining models are basically too easy and

not useful for comparing the two perturbation procedures. We are thus left with a subset of 82

models. Again we compared the two algorithms using ten different random seeds. A seed by seed

comparison is reported in Table 3.2.

Even though the improvement in this heterogeneous testbed was less dramatic as in the two-

50

stage stochastic models, as expected, WFPBASE still consistently dominates FPORIG: it can find

more solutions in 7 out 10 cases (in the remaining 3 cases it is a tie), taking always less time and

almost always fewer iterations. On average over the seeds, WFPBASE increased the number of

successfully solved instances by 6%, reduced by the computation time by 8.4% and reduced the

number of iterations by 5.9%.

In conclusion, given that the suggested modification is very simple to implement, and appears

to dominate FPORIG consistently, it suggests it is a good idea to add it as a feature in all future

feasibility pump codes.

Table 3.2: Aggregated results on MIPLIB2010.

found time (s) itr.

Seed FPORIG WFPBASE FPORIG WFPBASE FPORIG WFPBASE

1 33 34 1070.35 1068.09 103.38 104.59
2 34 34 1073.03 1004.84 108.65 104.05
3 34 39 1125.44 976.16 107.10 96.18
4 34 36 1045.10 976.31 101.30 96.24
5 31 32 1033.60 974.56 96.67 94.36
6 34 34 974.47 880.05 99.61 91.20
7 33 36 972.96 877.45 102.39 95.04
8 29 32 1085.82 1049.22 104.63 103.22
9 37 37 1065.50 937.19 101.44 91.73
10 32 37 1096.99 913.50 103.01 90.85

51

CHAPTER 4

THE RATIO OF THE NUMBER INTEGRAL EXTREME POINTS TO THE TOTAL

NUMBER OF EXTREME POINTS

4.1 Introduction

In this Chapter, we are interested in understanding the role that the sparsity of the constraint matrix

plays in the integrality of extreme points. We want to understand if the ratio of the number of

integral extreme points to the total number of extreme points of a polytope varies as a function

of sparsity. Preliminary computational results showed that for a family of randomly generated

polytopes this ratio decreased as a function of sparsity.

The Chapter is structured as follows. First, we introduce a model for random packing polytopes

that we use to derive our results, notation and definitions. Second, we present the main result for

this Chapter. Finally, we present the proof for this result including bounds for the number of

(integral) extreme points.

4.2 Preliminaries

In this section, we define the model we use for generating random packing instances. Addition-

ally, we present basic definitions and notation. Finally, we present a well known concentration

inequality (in a convenient form) that we use in our analysis.

4.2.1 Generating packing instances

A setting for generating random packing instances was described in [40, 63]: where for n,m,M ∈N

we construct P = conv
({

x ∈ {0,1}n : A jx≤ ∑
n
i=1 A j

i
2 ,∀ j ∈ [m]

})
, where the A j

i s are chosen inde-

pendently and uniformly in the set {0,1, ...,M}.

52

In this work, we are interested in the linear relaxation of these packing instances (and not the

convex hull of the feasible 0/1 points). The previous model can be understood as a particular case

of the following.

For parameters n,m,N,M ∈ Z (M ≥ N) and p ∈ [0,1], we consider the random polytope

P(n,m,N,M, p) defined as

P(n,m,N,M, p) =

{
x ∈ [0,1]n : A jx≤ ∑

n
i=1 A j

i
2

,∀ j ∈ [m]

}
,

where with probability p, each coefficient A j
i is chosen independently and uniformly in the set

{N, ...,M} and with probability 1− p it is 0. Note, that these polytopes correspond to packing

instances as long as N ≥ 0.

For the reminder of this chapter, we focus on the case where N = M = 1 and p ∈ (0,1) (and

thus omit N and M from our notation). Even more, since we are interested in sparse instances we

will require p to be small (we specify exactly how small later). By sparsity or sparsity level, we

refer to the number of non-zero coefficients per constraints.

For the instances described above, we have that P(n,m, p) corresponds to all the points x in Rn

satisfying the following constraints

n

∑
i=1

A j
i xi ≤ B j, ∀ j = 1, . . . ,m,

xi ≤ 1, ∀i = 1, . . . ,n,

xi ≥ 0, ∀i = 1, . . . ,n,

where A j
i ∼ Bernoulli(p) and for m, j positive integer, j ≤ m, B j denotes ∑

n
i=1 A j

i
2 , i.e. the right

hand side on the j-th constraint in our model.

53

4.2.2 Definitions for counting (integral) extreme points

We use the notation [n] to denote the set {1, . . . ,n}.

Definition 29. For n,m,k positive integers such that k≤ n and p ∈ (0,1) and the random polytope

P = P(n,m, p), we define the following random variables

1. NEP: the number of extreme points in P.

2. NI
EP: the number of 0/1 extreme points in P.

Note that is this setting NI
EP corresponds to the number of feasible 0/1 points in P(n,m, p) as,

in this case, no integral point can be expressed as a non-trivial combination of extreme points.

Since we are interested in lower bounding the ratio of the number of integral extreme points

to the total number of extreme points and in particular, we will work (mainly) in finding lower

bounds for NI
EP and upper bound for NEP (or their respective expectations).

4.2.3 Bernstein’s inequality

Theorem 7 ([67], Appendix A.2). Let X1,X2, . . . ,Xn be independent random variables such that

E [Xi] = 0 and |Xi| ≤M ∀i. Let X = ∑
n
i=1 Xi and σ2 = Var(X)≤U . Then, for w > 0

P(|X |> w)≤ exp
(
−min

{
w2

4U
,

3w
4M

})
.

4.3 Statement of the main result

Theorem 8. Let n be a positive integer and p ∈ (0,2/3], then there exist a m such that

54

E
(

NI
EP

NEP

)
≥ 2−

1
2 exp

(
p
√

n
1−p

)
3−n2b

n
2−n3/4c−1.

Note that for the lower bound on the ratio stated in Theorem 8, we have that as instances

become denser (i.e. p decreases) the lower bound increases.

4.4 Proofs

In order to prove Theorem 8 we use the following two results.

Proposition 1. Let n be a positive integer, let p ∈ (0,2/3] and let m be a positive integer such that

m≤ 1
2 exp

(
p
√

n
1−p

)
, then

E
(
NI

EP
)
≥ 2b

n
2−n3/4c−1.

Proposition 2. Let n,m be a positive integers, then

NEP ≤ 2m3n.

Now, the proof of Theorem 8.

Proof. For Y,Z random variables and L,U ∈ R+ such that E(Y)≥ L and 0 < Z ≤U we have that

E
(

Y
Z

)
≥ E

(
Y
U

)
≥ L

U
.

Then by Propositions 1 and 2 and for n,m, p as in the statements of both Propositions, we

55

obtain that

E
(

NI
EP

NEP

)
≥ 2−m3−n2b

n
2−n3/4c−1.

By taking m as its upper bound in Proposition 1, we obtain the result.

4.4.1 Proof of Proposition 1

We are interested with finding the number of integral extreme points of polytopes of the form

P =

{
x ∈ [0,1]n :

n

∑
i=1

Ai
jxi ≤

∑
n
i=1 Ai

j

2
∀ j = 1, . . . ,m

}
.

Since for all i and for all j, Ai
j is i.i.d and Ai

j ∼ Bernoulli(p), we have that j is of the form:

∑i∈I j xi ≤
|I j|
2 , where I j =

{
i : Ai

j = 1
}

. This implies that the right hand side is either an integer or

a half integer.

Proof. Let NI,k
IEP denote the number of extreme points with exactly k non-zero coefficients. We can

write the expression E
(
NI

EP
)

in term of E
(

NI,k
EP

)
for any k ∈ [n] and then

E
(
NI

EP
)
=

n

∑
k=0

E
(

NI,k
EP

)
=

n

∑
k=0

(
n
k

)
P
(

Xk feasible
)

=
n

∑
k=0

(
n
k

)
P
(

A jXk ≤ B j ∀ j ∈ [m]
)
.

56

We can bound the expression P
(
A jXk ≤ B j ∀ j ∈ [m]

)
by

P
(

A jXk ≤ B j ∀ j ∈ [m]
)
= 1−P

(
A jXk > B j for some j

)
≥ 1−

m

∑
j=1

P
(

A jXk > B j

)
(union bound)

= 1−mP
(

A jXk > B j

)
.

We remove the index j for simplicity. Now, we work on the expression P
(
AXk > B

)
. Since for

all i ∈ [n]: Ai corresponds Bernoulli with parameter p and Xk corresponds to a random 0/1 point

with exactly k ones, we have that

P
(

AXk > B
)
= P

(
2

n

∑
i=1

AiXk
i >

n

∑
i=1

Ai

)

= P

(
n

∑
i=1

Ai

(
2Xk

i −1
)
> 0

)
(by independence)

= P

 ∑
i: Xk

i =1

Ai− ∑
i: Xk

i =0

Ai > 0

 (equal in distribution)

= P

(
k

∑
i=1

Ai >
n

∑
i=k+1

Ai

)
.

We use Bernstein’s inequality (Theorem 7) to obtain the following bound. For P
(
∑

k
i=1 Ai > ∑

n
i=k+1 Ai

)
we have that

P

(
k

∑
i=1

Ai >
n

∑
i=k+1

Ai

)
= P

(
k

∑
i=1

Ai− kp−
n

∑
i=k+1

Ai +(n− k)p > (n−2k)p

)
.

57

For all i ∈ [n] let Xi be defined as

Xi =

 Ai− p if i≤ k

p−Ai if i≥ k+1.

Note that for every i ∈ [n]: E(Xi) = 0, |Xi| ≤ 1 and Var(Xi) = p(1− p). Let Sn = ∑
n
i=1 Xi and let

t = (n−2k)p. Note that for k < n/2, we have that t > 0. Then, by Bernstein’s inequality, we have

P

(
k

∑
i=1

Ai >
n

∑
i=k+1

Ai

)
≤ P(|Sn|> t)

≤ exp
(
−min

{
t2

4np(1− p)
,
3t
4

})
.

For p≤ 2/3, we have that t2

4np(1−p) ≤
3t
4 and thus

P

(
k

∑
i=1

Ai >
n

∑
i=k+1

Ai

)
≤ exp

(
−(n−2k)2 p

4n(1− p)

)
.

Let k = bn
2 − n3/4c, so that (n−2k)2 p

4n(1−p) ≥ p
√

n
1−p and then for m as in the statement of Proposition 1

(such that m≤ 1
2 exp

(
(n−2k)2 p
4n(1−p)

)
), we have that

P

(
k

∑
i=1

Ai >
n

∑
i=k+1

Ai

)
≤ 1

2m
.

Since E
(
NI

EP
)
≥∑

n
i=0
(n

i

)(
1−mP

(
AX i > B

))
and for k as above, P

(
AXk > B

)
≤ 1

2m , we have

that

58

E
(
NI

EP
)
≥

k

∑
i=0

(
n
i

)(
1−mP

(
AX i > B

))
≥ 1

2

(n
k

)k
≥ 2k−1.

4.4.2 Proof of Proposition 2

Consider the problem in standard form

∑
i∈I j

xi + y j = b
|I j|
2
c ∀ j ∈ [m], (4.1)

xi + zi = 1 ∀i ∈ [n], (4.2)

x,y,z≥ 0.

We can obtain upper bounds on NEP by bounding the number of basic (feasible) solutions. For

the problem in standard, a basis is defined by n+m linearly independent columns of the constraint

matrix. A trivial bound comes from the maximum number of possible bases
(2n+m

n+m

)
≤
(
e2n+m

n+m

)n+m
.

Proof of Proposition 2. First note that a basic feasible solution satisfies the following.

Claim 30. A basic feasible solution cannot have more than m fractional x variables.

Proof. Clearly if m ≥ n, then the claim is trivially true. If m < n and for l a positive integer such

that m+ l ≤ n, consider a feasible solution with m+ l fractional x variables. By constraint (2), we

also have at least m+ l fractional z variables. Constraint (2) also implies that we must have at least

n−m− l additional non-zero x or z variables. Together with the fractional 2m+2l non-zero x and

z variables, the solution has at least n+m+ l non-zero variables and thus cannot be basic.

59

Claim 30 implies that we cannot have more than m fractional z variables, since the number of

fractional x and z variables are equal.

Consider a typical basic feasible solution:

1. Number of basic x variables: We assume there are exactly i≤ n basic variables. Clearly there

are
(n

i

)
ways of selecting such variables.

2. Number of basic z variables: Since there are (n− i) non-basic x variables, we must have

(n− i) basic z variables. We assume there are exactly j additional basic z variables among

the remaining (n− (n− i)) z variables. Claim 30 implies that j ≤min{m, i}.

3. Number of basic y variables: The total number of basic x and z variables is (n+ j). Therefore

there are exactly (m− j) basic y variables.

Based on the above discussion an upper bound on the total number of basic feasible solution is

n

∑
i=0

(
n
i

)min{m,i}

∑
j=0

(
i
j

)(
m

m− j

)
.

We can directly bound
(m

m− j

)
≤ 2m. For ∑

min{m,i}
j=0

(i
j

)
, consider the two cases: (i) m ≤ i:

∑
m
j=0
(i

j

)
≤ 2i. (ii) m > i: ∑

i
j=0
(i

j

)
= 2i. Finally, since ∑

n
i=0
(n

i

)
2i = 3n, we obtain the bound:

2m3n.

60

CHAPTER 5

THE STRENGTH OF MULTI-ROW AGGREGATION CUTS FOR SIGN-PATTERN

INTEGER PROGRAMS

5.1 Introduction

In a recent paper [18], Bodur et al. studied the strength of aggregation cuts. An aggregation cut is

obtained as follows: (i) By suitably weighing and adding the constraints of a given IP formulation

one can obtain a relaxation which is defined by a single constraint together with variable bounds.

(ii) All the valid inequalities for the integer hull of this knapsack-like set are called as aggregation

cuts. The set obtained by adding all such aggregation cuts (for all possible aggregations) is called

the aggregation closure. Such cuts are commonly used in practice by state of the art solvers [100,

101, 99, 78, 47]. A very special subclass of the aggregation cuts are the cuts where one just uses

the original constraints of the problem (without non-trivial aggregation) as the knapsack-like relax-

ation. The weaker closure obtained from such cuts is called as the original 1-row closure [18]. The

paper [18] shows that for packing and covering IPs, the aggregation closure can be 2-approximated

by the original 1-row closure. In contrast, they show that for general IPs, the aggregation closure

can be arbitrarily stronger than the original 1-row closure.

The notion of aggregations cuts can be generalized to multi-row aggregation cuts. Essentially

by using k different set of weights on the constraints of the problem one can produce a relaxation

that involves k constraints together with variable bounds. We call the valid inequalities for the

integer hull of such k-row relaxations as k-row or multi-row aggregation cuts. Analogous to the

case of aggregation cuts, we can also define the notion of k-row aggregation closure and the original

k-row closure. It is shown in [18] that for packing and covering IPs the k-row aggregation closure

can be approximated by the original k-row closure within a multiplicative factor that depends only

61

on k.

Observe that for packing and covering IPs all the coefficients of all the variables in all the con-

straints have the same sign. Therefore when we aggregate constraints we are not able to “cancel”

variables, i.e., the support of an aggregated constraint is exactly equal to the union of supports of

the original constraints used for the aggregation. A natural conjecture for the fact that the (resp.

multi-row) aggregation closure is well approximated by the original (resp. multi-row) 1-row clo-

sure for packing and covering problems, is the fact that such cancellations do not occur for these

problems. Indeed one of the key ideas used to obtain good candidate aggregations in the heuristic

described in [78] is to use aggregations that maximize the chances of a cancellation.

In order to study the effect of cancellations, we study the strength of aggregation closures vis-

à-vis original row constraints for sign-pattern IPs. A sign-pattern IP is a problem of the form

{x ∈ Zn
+ : Ax ≤ b} where a given variable has exactly the same sign in every constraint, i.e. for a

given j, Ai, j is either non-negative for all i or non-positive for all i. Thus aggregations do not create

cancellations.

Our study produces surprising results. On the one hand we are able to show that the aggregation

closure for such sign-pattern IPs is 2-approximated by the original 1-row closure. On the other

hand the multi-row aggregation closure cannot be well approximated by the original multi-row

closure. Therefore these classes of integer programs show results that are in between packing and

covering IPs on one side and general IPs on the other side.

The structure of the rest of the chapter is as follows. In Section 5.2 we provide definitions and

statements of all our main results. In Section 5.3 we present the proofs for our results related to

sign-pattern IPs.

62

5.2 Definitions and statement of results

5.2.1 Definitions

For an integer n, we use the notation [n] to describe the set {1, . . . ,n} and for k ≤ n non-negative

integer, we use the notation
([n]

k

)
to describe all subsets of [n] of size k. For i ∈ [n], we denote by

ei the ith vector of the standard basis of Rn. The convex hull of a set S is denoted as conv(S). For

a set S⊂ Rn and a positive scalar α we define αS := {αu | u ∈ S}. We use C (P) and PI to denote

the CG closure and the convex hull of integer feasible solutions of P respectively.

Sign-pattern IPs

Definition 31. Let n be an integer, let J+,J− ⊂ [n] s.t. J+∩ J− = /0 and J+∪ J− = [n]. We call a

polyhedron P with m constraints a (J+,J−) sign-pattern polyhedron if it is of the form

P =

{
x ∈ Rn

+ : ∑
j∈J+

ai
jx j− ∑

j∈J−
ai

jx j ≤ bi ∀i ∈ [m]

}
,

where ai
j,b

i ≥ 0, ∀i = 1, . . . ,m,∀ j = 1, . . . ,n. Additionally, we require ai
j ≤ bi ∀ j ∈ J+, ∀i =

1, . . . ,m.

Definition 32. For points x,y ∈ Rn, we say that y is (J+,J−) sign-pattern dominated by x if y j ≤

x j ∀ j ∈ J+ and y j ≥ x j ∀ j ∈ J−.

Clearly for P a (J+,J−) sign-pattern polyhedron, if x ∈ P and y ≥ 0 is (J+,J−) sign-pattern

dominated by x then, y ∈ P. Similarly, for x ∈ P we have that x̄ ∈ Zn
+ defined as

x̄ j =

 bx jc if j ∈ J+

dx je if j ∈ J−

63

is in PI .

Definition 33. Given two polyhedra P⊃Q contained in Rn
+ and a positive scalar α , we say that Q

is an α-approximation of P if

P⊂ αQ.

Closures

Given a polyhedron P, we are interested in cuts for the pure integer set P∩Zn.

Definition 34. For P = {x≥ 0 : Ax≤ b}, k ≥ 1 integer, and λ1, . . . ,λk ∈ Rm
+ let

P(λ1, . . . ,λk) = {x≥ 0 : λ1Ax≤ λ1b, . . . ,λkAx≤ λkb} .

PI(λ1, . . . ,λk) = conv
({

x ∈ Zn
+ : λ1Ax≤ λ1b, . . . ,λkAx≤ λkb

})
.

Definition 35. Given a polyhedron P =
{

x ∈ Rn
+ | Ax≤ b

}
, we define its aggregation closure

A (P) as

A (P) =
⋂

λ∈Rm
+

PI(λ).

We can generalize the aggregation-closure to consider simultaneously k aggregations, where

k ∈ Z and k ≥ 1. More precisely, for a polyhedron P the k-aggregation closure is defined as

Ak(P) :=
⋂

λ1,...,λk∈Rm
+

PI(λ1, . . . ,λk).

Similarly, the original 1-row closure 1-A (P) is defined as

64

1-A (P) :=
⋂

i∈[n]
PI(ei).

We can generalize the original 1-row closure, to an original k-row closure k-A (P). More

precisely, for a polyhedron P the original k-row closure is defined as

k-A (P) :=
⋂

K∈([m]
k)

PI(ei1, . . . ,eik).

Where, in the last equation for each K ∈
([m]

k

)
: {i1, . . . , ik}= K.

5.2.2 Statement of results

The first result compares the aggregation closure with the LP relaxation of a (J+,J−) sign-pattern

polyhedron.

Theorem 9. For a (J+,J−) sign-pattern polyhedron P, we have that A (P) can be 2-approximated

by P (and thus by 1-A (P)).

This results is equivalent to the one obtained in [18] for the case of packing problems. Next

we show that, in general, for (J+,J−) sign-pattern IPs, the aggregation-closure does not do a good

job at approximating the convex hull.

Theorem 10. There is a family of (J+,J−) sign-pattern polyhedra with 2 constraints for which A

is an arbitrarily bad approximation to A2 (and thus to the convex hull), i.e. for each α > 0, there is

a (J+,J−) sign-pattern polyhedron P such that A (P) is not an α-approximation of A2(P).

For such a family of polyhedra, we have that zLP

zIP is arbitrarily large at the same time that

zA

zIP is also arbitrarily large. The previous results show how for (J+,J−) sign-pattern polyhedra,

65

aggregating multiple constraints can have significant benefits. This is different than for the case of

packing/covering problems (where the improvement is bounded).

The next result shows that the aggregation-closure considering simultaneously 2 aggregations

(A2) can be arbitrarily stronger than the original 2-row closure (2-A).

Theorem 11. There is a family of (J+,J−) sign-pattern polyhedra with 4 constraints for which

2-A is an arbitrarily bad approximation to A2 (and thus to the convex hull), i.e. for each α > 0,

there is a (J+,J−) sign-pattern polyhedron P such that 2-A (P) is not an α-approximation of

A2(P).

The previous results establish α-approximation comparison between the sets P and A (P),

A (P) and A2(P), and 2-A (P) and A2(P). These results are combined with the results obtained

in [18] regarding packing and covering problems in Table 5.1. For polyhedra of each type with m

constraints we have the following upper bounds for α .

Table 5.1: Containment relation for different classes of polyhedra.

Packing (from [18]) Covering (from [18]) Sign-pattern (this chapter)
P⊂ αA (P) 2 2 2

A (P)⊂ αA2(P) 3 if m≥ 2 3 if m≥ 2 ∞ if m≥ 2

2-A (P)⊂ αA2(P)
{

1 if m = 2
3 if m≥ 3

{
1 if m = 2
3 if m≥ 3


1 if m = 2
? if m = 3
∞ if m≥ 4

5.3 Proofs

5.3.1 Proof of Theorem 9

First, we need some general properties for (J+,J−) sign-pattern LPs.

66

Proposition 3. Consider a (J+,J−) sign-pattern polyhedron defined by one constraint

P =
{

x≥ 0 : ∑ j∈J+ a jx j−∑ j∈J− a jx j ≤ b
}

and let c be a vector with the same sign-pattern as a,

i.e. c j ≥ 0 ∀ j ∈ J+ and c j ≤ 0 ∀ j ∈ J−.

1. zLP = max
x∈P

c>x is bounded if and only if max
j∈J+

c j
a j
≤ min

j∈J−
c j
a j

.

2. If zLP is bounded, there exists an optimal solution xLP such that xLP
j = c j/a j for j∈ argmax j∈J+ c j/a j

and xLP
k = 0 for k ∈ [n]\{ j}.

3. If zLP is bounded, then zLP ≤ 2zIP, where zIP = max
x∈PI

c>x.

Proof. Clearly 0 ∈ P, thus the (J+,J−) sign-pattern LP cannot be infeasible. Consider its dual

min by

s.t. a jy≥ c j ∀ j ∈ J+

a jy≤ c j ∀ j ∈ J−

y≥ 0

which is feasible if and only if max
j∈J+

c j
a j
≤ min

j∈J−
c j
a j

.

If zLP is bounded, there exists an optimal solution that is an extreme point. Since the problem

is defined by a single non-trivial constraint, each extreme point can have at most one non-zero co-

efficient, thus a maximizer over the set of extreme points must be of the form described previously.

Additionally, if the problem is bounded, there exists an extreme point xLP of the form xLP
j∗ =

b/a j∗ ≥ 1 for some j∗ ∈ J+ and xLP
j = 0 ∀ j ∈ [n]\{ j∗} that is optimal. Clearly bxLPc ∈ PI (since

it is non-negative and (J+,J−) sign-pattern dominated by xLP), thus zLP

zIP ≤
b/a j∗
bb/a j∗c

. Finally, since P

is a (J+,J−) sign-pattern polyhedron b/a j∗ ≥ 1 and thus zLP

zIP ≤ 2.

In order to prove Theorem 9, we need some preliminary results.

67

Proposition 4. Consider a (J+,J−) sign-pattern polyhedron P, then PI is also a (J+,J−) sign-

pattern polyhedron.

Proof. First, since P is a (J+,J−) sign-pattern polyhedron, 0,e1, . . . ,en ∈ P, then PI is a non-empty

polyhedron. We show that for every facet ax ≤ b, we must have a j ≥ 0 for j ∈ J+ and a j ≤ 0 for

j ∈ J−.

For j ∈ J−. Note that the recession cone of PI is the same as the recession cone of P. Then for

every facet ax≤ b: a j ≤ 0 (otherwise e j would not be in the recession cone of PI).

For j ∈ J+, assume that there exists a facet ax≤ b s.t. a j < 0. Consider a′ = a−a je j (we zero

out the j-th component), if a′x≤ b is valid, it corresponds to a stronger constraint than ax≤ b. In

order to show that is valid, assume that there exists x ∈ P∩Zn s.t. a′x > b. Clearly x j ≥ 1 (since

otherwise a′x = ax ≤ b). Consider x′ = x− x je j (clearly x′ ∈ P∩Zn), then b < a′x = ax′ ≤ b, a

contradiction.

Proposition 5. Let P be a (J+,J−) sign-pattern polyhedron defined by one constraint, then P ⊂

2PI .

Proof. Assume that this is not the case and let x′ ∈ 1
2P s.t. x′ /∈ PI . Since PI is a (J+,J−) sign-

pattern polyhedron, each facet defining inequality ax≤ b satisfies a j ≥ 0 ∀ j ∈ J+ and a j ≤ 0 ∀ j ∈

J−. Since x′ /∈ PI , for one of these facets, we have: ax′ > b. Now, if we consider a as an objective:

maxx∈PI ax≤ b and thus defines a bounded problem. Since the IP is feasible and bounded and P is

defined by rational data, the LP is also bounded (see [23]). By Proposition 3, ax′ ≤ 1
2zLP ≤ zI ≤ b

a contradiction.

Observation 1. Let φ : Rn→Rn be a bijective map, let {Si}i∈I be a collection of subsets in Rn and

let φ(S) := {φ(x) : x ∈ S}. Then φ (∩i∈ISi) = ∩i∈I φ(Si).

Now, we prove Theorem 9.

Proof. By definition, we have that P ⊂ P(λ), ∀λ ∈ Rm
+. Since P(λ) corresponds to a (J+,J−)

sign-pattern polyhedron defined by one constraint, by Proposition 5, we have that P(λ)⊂ 2PI(λ)

68

and thus P ⊂ 2PI(λ), ∀λ ∈ Rm
+. Then, taking intersection over all λ ∈ Rm

+ and by Observation 1

we have

P⊂
⋂

λ∈Rm
+

2PI(λ)

= 2
⋂

λ∈Rm
+

PI(λ)

= 2A (P)

Since 1A (P) is contained in P, we have that 1A (P) corresponds to a 2-approximation of

A (P).

5.3.2 Proof of Theorem 10

In order to prove Theorem 10, consider the following family of (J+,J−) sign-pattern polyhedra

and M ≥ 2 integer

max x1− (M−1)x2

s.t. x1−M(M−1)x2 ≤ 1

x1 ≤M+1

x1,x2 ≥ 0

Note that the integral solutions of interest are (1,0) and (x̄1, x̄2), where x̄1, x̄2 ∈ Z+, x̄1 ≤M+1

and x̄2 ≥ 1 (clearly in terms of objective function value, all of the latter solutions are dominated by

(M+1,1)). Now the optimal IP value zIP corresponds to 2 = M+1− (M−1) (since the value of

69

(M +1,1) is greater than the value of (1,0)). While for the LP relaxation, we have that the point(
M+1, 1

M−1

)
is optimal and it’s value is: M. Thus, in this case we have that: zLP

zIP = M
2 .

See example of feasible set in Figure 5.1.

x1

x2

x1−M(M−1)x2 ≤ 1

x1 ≤M+1

(0, 0) (1, 0)

(M+1,1)

(
M+1, 1

M−1

)• •
•
•

PI

Figure 5.1: Feasible region PI .

Trivially, since we have only two constraints A2(P) = PI .

Now, the proof of Theorem 10.

Proof. It follows from Proposition 5 that for any (J+,J−) sign-pattern polyhedron zLP

zA ∈ [1,2].

For the family of (J+,J−) sign-pattern polyhedra previously described we have that zIP = zA2 and

therefore

zA

zA2
=

zLP

zIP ·
zA

zLP ≥
M
2

1
2
.

Since M can be arbitrarily large, A (P) cannot be an α-approximation of A2(P) for any finite

value of α .

70

5.3.3 Proof of Theorem 11

In order to show the proof for Theorem 11, we introduce the following family of instances.

For M ≥ 2 an even integer:

max x1−
M
2

x2−
M
2

x3−
M
2

x4

s.t. x1−Mx2−Mx3 ≤ 1 (5.1)

x1−Mx2 −Mx4 ≤ 1 (5.2)

x1 −Mx3−Mx4 ≤ 1 (5.3)

x1 ≤M+1 (5.4)

x1,x2,x3,x4 ≥ 0.

It is not difficult to see that zIP = 1. The point (1,0,0,0) has value 1 and for any feasible

solution such that x1 ≥ 2, we must have x2 + x3 + x4 ≥ 2 (from constraints (1)− (3)) thus the

value in this case is at most 1. Additionally, zLP = M
4 +1 since the feasible point

(
M+1, 1

2 ,
1
2 ,

1
2

)
achieves that value and by aggregating constraints (1)− (4) and dividing by 4, we obtain the valid

inequality: x1− M
2 x2− M

2 x3− M
2 x4 ≤ M

4 +1.

Now, the proof of Theorem 11.

Proof. We show that for the family of problems previously described z2-A

zA2
= M

4 +1 and thus 2-A

can be an arbitrarily bad approximation of A2.

First, we show that z2-A = M
4 + 1 by showing that the optimal point for the LP relaxation is

also feasible for 2-A . To conclude the proof, we show that zA2 = zI by providing an upper bound

on zA2 coming from a particular selection of multipliers.

In the case of 2-A , we verify that (x,y1,y2,y3) =
(
M+1, 1

2 ,
1
2 ,

1
2

)
is in PI(ei1,ei2), where

71

{ei1,ei2} = K corresponds to an arbitrary selection of two constraints, i.e. any K ∈
([4]

2

)
. Let

S′K be those variables with non positive coefficients that are present in the inequalities in K. If

constraint (4) is in K, let l denote the smallest index in S′K . Otherwise, let l denote the index of

the variable (out of {x2,x3,x4}) that is present in both constraints {ei1,ei2} (note that there must

always be one such index).

Then it can be verified that the points (M + 1,0,0,0) + e>l and (M + 1,1,1,1)− e>l are in

PI(ei1,ei2) and so is the midpoint
(
M+1, 1

2 ,
1
2 ,

1
2

)
. The latter point has value: M+1− M

2
3
2 =

M
4 +1,

thus, in terms of objective function value, 2-A does not provide any extra improvement when

compared to the LP relaxation.

Now, in order to show that zA2 = 1. Since PI ⊂ A2(P), we have that zA2 ≥ 1, and by the

definition of A2, we have that

zA2 ≤ zPI(λ ,µ) ∀λ ,µ ∈ R4
+.

Consider λ̄ = (1,1,0,0), µ̄ = (0,0,1,1) and c> =
(
1,−M

2 ,−
M
2 ,−

M
2

)
, then the problem

max
{

c>x : x ∈ PI(λ̄ , µ̄)
}

corresponds to

max x1−
M
2

x2−
M
2

x3−
M
2

x4

s.t. 2x1−2Mx2−Mx3−Mx4 ≤ 2

2x1 −Mx3−Mx4 ≤M+2

x1,x2,x3,x4 ≥ 0.

Note that x3 and x4 have the same coefficients in the objective and in every constraint, thus by

dropping x4 and rearranging the constraints we obtain a problem with the same optimal objective

72

function value

max x1−
M
2

x2−
M
2

x3

s.t. x1 ≤ 1 +Mx2 +
M
2

x3

x1 ≤ 1+
M
2

+
M
2

x3

x1,x2,x3 ≥ 0.

Now, a simple case analysis for each value of x1, shows that zPI(λ̄ ,µ̄) = 1. Let z denote the best

objective function value for each case:

• Case (x1 = 0): it is easy to see that z≤ 0.

• Case (x1 = 1): it is easy to see that z≤ 1 (in fact, it is equal to 1 when x2 = x3 = 0).

• Case
(
2≤ x1 ≤ M

2 +1
)
: note that in this case the first constraint forces either x2 or x3 to be

at least one. Thus z≤ M
2 +1− M

2 = 1.

• Case
(
k M

2 +2≤ x1 ≤ (k+1)M
2 +1, for k ≥ 1 integer

)
: similar to the previous case. Now,

since x1 ≥ k M
2 +2, the second constraint forces x3 ≥ k, this together with the first constraint

forces x2 + x3 ≥ k+1. Then, z≤ (k+1)M
2 +1− M

2 − k M
2 = 1.

73

Appendices

74

APPENDIX A

TECHNICAL PROOFS CHAPTER 2

A.1 Proof Gap Equivalence

Proof of Lemma 1. It is not difficult to see that for Pk = P, the lemma holds, since d(P,Pk) =

gapk
P(c) = 0 ∀c : ||c||= 1. When, Pk 6= P, we have that d(P,Pk) = d(x0,y0)> 0 is attained at x0 ∈

ext(Pk) and y0 ∈P, the orthogonal projection of x0 P (see [40]). Thus, y0 ∈F = {z ∈ Rn : az = b}∩

P, a face of P such that a = (x0− y0), b = (x0− y0)y0 and P ⊆ {z ∈ Rn : az≤ b}. Let c = (x0−

y0)/||x0− y0||, we have: maxx∈P cx = cy0. On the other hand, maxz∈Pk cz = cx0, since otherwise,

if ∃x̄ ∈ Pk with cx̄ > cx0, let ȳ denote the orthogonal projection of x̄ onto {z ∈ Rn : az = b}. Then,

for all z ∈ P we have d(x̄,z) ≥ d(x̄, ȳ) > d(x0,y0) (the last inequality follows from the fact that

cx̄ > cx0, cȳ = cy0 and x̄− ȳ/||x̄− ȳ||= c), a contradiction. So, we obtain

d(P,Pk) = ||x0− y0||= c(x0− y0)

= max
x∈Pk

cx−max
x∈P

cx = gapk
P(c).

Now, assume by contradiction that ∃c′ s.t. gapk
P(c
′) > gapk

P(c) and ||c′|| = 1. Let x′ ∈ Pk,y′ ∈ P

denote the points at which gapk
P(c
′) is attained. Using the definition of d(P,Pk) and the relation

between c and c′

d(P,Pk)≥ ||x′− y′||= (x′− y′)
||x′− y′||

(x′− y′)

= max
c:||c||=1

c(x′− y′)≥ c′(x′− y′)

= gapk
P(c
′)> gapk

P(c) = d(P,Pk),

75

a contradiction. Thus, we must have d(P,Pk) = maxc:||c||=1 gapk
P(c).

A.2 Proof Description Equivalence

A polytope P⊆Rn
+ is called down-monotone if whenever x ∈ P and 0≤ y≤ x, we have y ∈ P. We

begin with some preliminary results about the symmetrization we employ.

Lemma 36. For a down-monotone polytope P⊆ Rn
+ we have P =

⋃
I⊆[n]P

I .

Proof. It is sufficient to prove that the set
⋃

I⊆[n]P
I is convex. For that, consider y1,y2 ∈

⋃
I⊆[n]P

I;

by definition, let x1,x2 ∈ P be such that there are sets I1, I2 giving (x1)I1 = y1 and (x2)I2 = y2. For

any λ ∈ [0,1], consider y = λy1 +(1−λ)y2; we show y ∈
⋃

I⊆[n]P
I .

By construction we have:

yi =



λx1
i +(1−λ)x2

i i ∈ I1∩ I2

λx1
i − (1−λ)x2

i i ∈ I1\I2

−λx1
i +(1−λ)x2

i i ∈ I2\I1

−λx1
i − (1−λ)x2

i i ∈ [n]\I1∪ I2

Now, let Ī = {i ∈ [n] : yi ≥ 0}. Then define x := yĪ , which is nonnegative by construction. By

non-negativity of the xi’s, we have |λx1
i − (1−λ)x2

i | ≤ λx1
i +(1−λ)x2

i and |−λx1
i +(1−λ)x2

i | ≤

λx1
i +(1−λ)x2

i , thus x≤ x1 +(1−λ)x2 ∈ P. Since P is down-monotone, we have that x belongs

to P. Since y = xĪ , this gives that y belongs to
⋃

I⊆[n]P
I , concluding the proof.

Lemma 37. For a down-monotone polytope P⊆ Rn
+ we have (P)k = Pk.

Proof. We break the proof into a couple of claims.

Claim 38. (P)k∩Rn
+ = Pk = Pk∩Rn

+.

Proof. For the first equality, notice that since Pk ⊇ Pk it suffices to prove (P)k∩Rn
+ ⊆ Pk. For any

x ∈ (P)k ∩Rn
+ and I ⊆

([n]
k

)
, there exists y ∈ P such that y|I = x|I . Moreover, using the fact that

76

x≥ 0 and the symmetry in the definition of P, there is one such y which is non-negative, and hence

y ∈ P. But again using x|I = y|I , we get that x ∈ Pk.

For the second equality, since P is down-monotone we have that Pk is down monotone. There-

fore, from Lemma 36 Pk =
⋃

I⊆[n](P
k)I , which implies Pk∩Rn

+ = Pk. �

Claim 39. Consider z ∈ (P)k and let y = zI for some I ⊆ [n]. Then y ∈ (P)k.

Proof. First note that it is straight forward to verify that if αx≤ b is a valid inequality for P, then

for every I ⊆ [n] the inequality aIx ≤ b is also a valid inequality for P. Then the point y must

belong to (P)k, since otherwise y would be separated by some k-sparse cut ax≤ b and so z would

be separated by the k-sparse cut aIx≤ b. �

Now we conclude the proof of the lemma. For the direction (P)k ⊆ Pk, let z ∈ (P)k and let

I = {i ∈ [n] : zi ≥ 0} and x = zI . Then using Claim 39 we get x ∈ (P)k∩Rn
+. Thus by Claim 38 we

have x ∈ Pk and hence z ∈ Pk, concluding this part of the proof. For the direction Pk ⊆ (P)k, let

z ∈ Pk. Let I = {i ∈ [n] : zi ≥ 0} and x = zI . The point x ∈ Pk ∩Rn
+. Thus, by Claim 38 we have

that x ∈ (P)k∩Rn
+. However, by Claim 39 we have that z ∈ (P)k. This concludes the proof.

From [40], it is straightforward to see that for t ≤ n the k-sparse apporximation of Pt,n corre-

sponds to:

Pk
t,n =

{
x ∈ [0,1]n : ∑

i∈I
xi ≤ t, ∀I ∈

(
[n]
k

)}
.

The next result together with Lemma 37 implies Lemma 4.

Proposition 40. Consider non-negative vectors a1, . . . ,am ∈ Rn
+ and define the polyhedron P =

{x ∈ Rn
+ |aix≤ bi ∀i ∈ [m]}. Then P = {x |(ai)Ix≤ bi ∀I ⊆ [n], ∀i ∈ [m]}.

Proof. (P ⊆ {x |(ai)Ix ≤ bi ∀I ⊆ [n], ∀i ∈ [m]}) Consider z ∈ P and define I = {i ∈ [n] : zi ≥ 0}.

Then zI ∈ P∩Rn
+ and thus zI ∈ P (from Lemma 36). Now observe that (ai)Iz = aizI ≤ bi where

the last inequality follows from that fact that zI ∈ P. This concludes this part of the proof.

77

({x |(ai)Ix ≤ bi ∀I ⊆ [n], ∀i ∈ [m]} ⊆ P) Consider z ∈ {x |(ai)Ix ≤ bi ∀I ⊆ [n], ∀i ∈ [m]}. Let

I = {i ∈ [n] : zi ≥ 0}. Then observe that aizI = (ai)Iz≤ bi for all i ∈ [m] and zI ∈ Rn
+. Thus, zI ∈ P

or equivalently, z ∈ P. This concludes the proof.

78

APPENDIX B

TECHNICAL PROOFS CHAPTER 3

B.1 Minimal projected certificates can be found in polynomial time

Consider the following LP:

max λAx̄−λb

s.t. BT λ = 0

eT λ = 1

λ ≥ 0,

where e is the all-ones vector. Since we assumed a projected certificate exists, this LP is feasible

and has strictly positive optimal value.

An optimal extreme point solution provides a projected certificate that can be computed in

polynomial time [91]; we just need to verify that there cannot exist a projected certificate with

smaller support. Let λ ∗ be an extreme point optimal solution, and by contradiction assume that λ̃

gives a projected certificate and is such that supp(λ̃) is strictly contained in supp(λ ∗). Since λ̃ ≥ 0

and also different from 0, by scaling we can assume without loss of generality that eT λ̃ = 1, and

thus λ̃ is a feasible solution for the LP above. This implies that

BT
(

λ
∗− λ̃

)
= 0

eT
(

λ
∗− λ̃

)
= 0,

79

so the assumption supp(λ̃) (supp(λ ∗) implies that the columns of the matrix

 BT

eT

 in the

support of λ ∗ are linearly dependent. But since λ ∗ is an extreme point, it is a basic solution,

namely the columns of the matrix in the support of λ ∗ are linearly independent. This reaches a

contradiction and concludes the proof.

B.2 Original Feasibility Pump stalls even when flipping variables with zero fractionality is

allowed

In Section 3.2 we showed that the original Feasibility Pump without restarts may stall; we now

show that this is still the case even if variables with zero fractionality can be flipped in the pertur-

bation step.

Let T T , the number of variables to be flipped, be randomly selected from the set [t,T]∩Z,

where T ∈ Z++ is a pre-determined constant in the FP code (independent of the instance). More-

over assume the reasonable convention that for two variables with equal fractionality, we break ties

using their index number, that is, if the xi and x j have the same fractionality and i < j, then xi is

picked before x j to be flipped.

Consider the following subset-sum problem:

max xT+2

s.t. 5x1 + · · ·+5xT+1 +2xT+2 = 5T +5

xi ∈ {0,1} ∀ i ∈ [T +2]

Clearly the LP optimal solution x̄0 is of the form x̄0
T+2 = 1, x̄0

i = 3
5 for some i ∈ [T + 1] and

x̄0
j = 1 for all j ∈ [T +1]\{i}. Rounding this we obtain x̃0 which is of the form x̃0

T+2 = 1 and x̃0
j = 1

for all j ∈ [T +1]. It is also straightforward to verify that x̃0 is a stalling solution (see Definition 26).

So that algorithm randomly selects T T from the set [t,T]∩Z and flips T T variables. Note that

80

only xi has a fractionality of |35 − 1| and all the other variables have a fractionality of 0 for some

i ∈ [T +1]. So using the convention for breaking ties, we flip xi and T T −1 other variables. Since

T T ≤ T < T +1, the new point x̃ is of the form x̃T+2 = 1 and x̃ j = 0 for j ∈ S⊆ [T +1] and x̃ j = 1

for j ∈ [T +1]\S. (Note that S can also be /0 since we make no assumption on t).

First note that x̃ is not a feasible solution since x̃T+2 = 1. Moreover,

1. If S = /0, then x̃ = x̃0, a stalling solution visited before.

2. If S 6= /0, then 5x̃1 + · · ·+ 5x̃T+1 + 2x̃T+2 < 5T + 5 and on projecting to the LP relaxation

we will obtain a point of the form of x̄0. Rounding this again gives us x̃0, a stalling solution

visited before.

This completes the proof.

B.3 No long cycles in stalling

Lemma 41. Suppose that following is a sequence of points visited by Feasibility Pump (without

any randomization):

(x̄1, ȳ1)→ (x̃1, ȳ1)→ (x̄2, ȳ2)→ (x̃2, ȳ2),

where (x̄i, ȳi), i ∈ {1,2} are the vertices of the LP relaxation, x̃i, i ∈ {1,2} are 0− 1 vectors,

x̃i = round(x̄i) and (x̄2, ȳ2) = `1-proj(x̃1, ȳ1). Then,

‖x̄1− x̃1‖1 ≥ ‖x̄2− x̃2‖1.

Proof. This result holds due to the fact that we are sequentially projecting using the same norm.

In particular, we have that

‖x̄1− x̃1‖1 ≥ ‖x̄2− x̃1‖1,

since (x̄2, ȳ2) = `1-proj(x̃1, ȳ1), i.e., x̄2 is a closest point in l1-norm to x̃1 in the projection of the LP

81

relaxation in the x-space. Then

‖x̄2− x̃1‖1 ≥ ‖x̄2− x̃2‖1,

since x̃1 and x̃2 are both integer points and x̃2 is obtained by rounding x̄2 (and a rounded point is

the closest integer point in `1 norm).

A long cycle in feasibility pump is a sequence

(x̄1, ȳ1)→ (x̃1, ȳ1)→ (x̄2, ȳ2)→ (x̃2, ȳ2)→ . . .(x̄k, ȳk)→ (x̃k, ȳk)

where

1. (x̄i, ȳi), i ∈ {1,2, . . . ,k} are the vertices of the LP relaxation, x̃i, i ∈ {1,2, . . . ,k} are 0− 1

vectors, x̃i = round(x̄i) and (x̄i+1, ȳi+1) = `1-proj(x̃i, ȳi),

2. x̃1, x̃2, . . . , x̃k−1 are unique integer vectors,

3. x̄1 = x̄k, x̃1 = x̃k, and

4. k ≥ 3.

The statement of Theorem 5 is that such a scenario cannot occur, assuming 0.5 is always rounded

consistently.

Proof of Theorem 5. Without loss of generally, we assume that 0.5 is rounded up to 1. Consider

the sub-sequence (x̄i, ȳi)→ (x̃i, ȳi)→ (x̄i+1, ȳi+1)→ (x̃i+1, ȳi+1). By Lemma 41, since there is

cycling, we have that

‖x̄i− x̃i‖1 = ‖x̄i+1− x̃i‖1 = ‖x̄i+1− x̃i+1‖1.

For simplicity and without loss of generality, we may assume that x̃i is the all ones vector.

(This can be achieved by reflecting on coordinates the LP relaxation and the [0, 1]n hypercube.

82

Note that under such mappings, the sequence of points in feasibility pump will not be altered.

Moreover, a point with value 0.5 in some coordinates I ⊆ [n] will be mapped to a point with 0.5 in

the coordinates I.)

Let /0 6= J ⊆ [n] be the set of indices where x̃i
j 6= x̃i+1

j , that is x̃i+1
j = 0 for all j ∈ J. Since

‖x̄i+1− x̃i‖1 = ‖x̄i+1− x̃i+1‖1, we have

n

∑
j=1

(1− x̄i+1
j) = ∑

j∈[n]\J
(1− x̄i+1

j)+ ∑
j∈J

x̄i+1
j

⇔ ∑
j∈J

x̄i+1
j =

|J|
2
. (B.1)

Now observe that since x̃i+1
j = 0 for j ∈ J, we must have that x̄i+1

j < 0.5 for all j ∈ J. This

contradicts, (B.1).

83

REFERENCES

[1] S. Acer, E. Kayaaslan, and C. Aykanat, “A recursive bipartitioning algorithm for permuting
sparse square matrices into block diagonal form with overlap,” SIAM Journal on Scientific
Computing, vol. 35, no. 1, 2013.

[2] T. Achterberg, “Constraint integer programming,” PhD thesis, Technische Universität Berlin,
2007.

[3] T. Achterberg and T. Berthold, “Improving the feasibility pump,” Discrete Optimization,
vol. 4, no. 1, pp. 77–86, 2007.

[4] S. Ahmed, “A scenario decomposition algorithm for 0–1 stochastic programs,” Operations
Research Letters, vol. 41, no. 6, pp. 565–569, 2013.

[5] G. Angulo, S. Ahmed, and S. S. Dey, “Improving the integer l-shaped method,” INFORMS
Journal on Computing, vol. 28, no. 3, pp. 483–499, 2016.

[6] E. Balas, “Facets of the knapsack polytope,” Mathematical Programming, vol. 8, pp. 146–
164, 1975.

[7] E. Balas and E. Zemel, “Facets of knapsack polytope from minimal covers,” SIAM Journal
on Applied Mathematics, vol. 34, pp. 119–148, 1984.

[8] N. Bansal, N. Korula, V. Nagarajan, and A. Srinivasan, “On k-column sparse packing pro-
grams,” in International Conference on Integer Programming and Combinatorial Opti-
mization, Springer, 2010, pp. 369–382.

[9] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H. Vance, “Branch-
and-price: column generation for solving huge integer programs,” Operations Research,
vol. 46, no. 3, pp. 316–329, 1998.

[10] A. Barvinok, “Thrifty approximations of convex bodies by polytopes,” International Math-
ematics Research Notices, vol. 2014, no. 16, pp. 4341–4356, 2014.

[11] J. F. Benders, “Partitioning procedures for solving mixed-variables programming prob-
lems,” Numerische mathematik, vol. 4, no. 1, pp. 238–252, 1962.

84

[12] P. Beraldi, G. Ghiani, A. Grieco, and E. Guerriero, “Rolling-horizon and fix-and-relax
heuristics for the parallel machine lot-sizing and scheduling problem with sequence-dependent
set-up costs,” Computers & OR, vol. 35, no. 11, pp. 3644–3656, 2008.

[13] M. Bergner, A. Caprara, F. Furini, M. E. Lübbecke, E. Malaguti, and E. Traversi, “Partial
convexification of general mips by dantzig-wolfe reformulation,” in International Confer-
ence on Integer Programming and Combinatorial Optimization, Springer, 2011, pp. 39–
51.

[14] L. Bertacco, M. Fischetti, and A. Lodi, “A feasibility pump heuristic for general mixed-
integer problems,” Discrete Optimization, vol. 4, no. 1, pp. 63–76, 2007.

[15] U. Bertele and F. Brioschi, Nonserial dynamic programming. Academic Press, 1972.

[16] D. Bienstock and G. Munoz, “Lp approximations to mixed-integer polynomial optimiza-
tion problems,” arXiv preprint arXiv:1501.00288, 2015.

[17] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling, “Mixed integer pro-
gramming: a progress report,” The Sharpest Cut, pp. 309–325, 2004.

[18] M. Bodur, A. Del Pia, S. S. Dey, M. Molinaro, and S. Pokutta, “Aggregation-based cutting-
planes for packing and covering integer programs,” arXiv preprint arXiv:1606.08951, 2016.

[19] N. L. Boland, A. C. Eberhard, F. G. Engineer, M. Fischetti, M. W. Savelsbergh, and A.
Tsoukalas, “Boosting the feasibility pump,” Mathematical Programming Computation,
vol. 6, no. 3, pp. 255–279, 2014.

[20] N. L. Boland, A. C. Eberhard, F. G. Engineer, and A. Tsoukalas, “A new approach to the
feasibility pump in mixed integer programming,” SIAM Journal on Optimization, vol. 22,
no. 3, pp. 831–861, 2012.

[21] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot, “A feasibility pump for mixed integer
nonlinear programs,” Mathematical Programming, vol. 119, no. 2, pp. 331–352, 2009.

[22] R. Borndörfer, C. E. Ferreira, and A. Martin, “Decomposing matrices into blocks,” SIAM
Journal on Optimization, vol. 9, no. 1, pp. 236–269, 1998.

[23] R. Byrd, A. Goldman, and M. Heller, “Recognizing unbounded integer programs,” Oper-
ations Research, vol. 35, no. 1, pp. 140–142, 1987.

[24] T. F. Coleman, Large sparse numerical optimization. Springer-Verlag New York, Inc.,
1984.

85

[25] T. F. Coleman and L. A. Hulbert, “A direct active set algorithm for large sparse quadratic
programs with simple bounds,” Mathematical Programming, vol. 45, no. 1-3, pp. 373–406,
1989.

[26] H. Crowder, E. L. Johnson, and M. Padberg, “Solving large-scale zero-one linear program-
ming problems,” Operations Research, vol. 31, no. 5, pp. 803–834, 1983.

[27] E. Dalkiran and H. D. Sherali, “Theoretical filtering of rlt bound-factor constraints for
solving polynomial programming problems to global optimality,” Journal of Global Opti-
mization, vol. 57, no. 4, pp. 1147–1172, 2013.

[28] E. Danna, E. Rothberg, and C. L. Pape, “Exploring relaxation induced neighborhoods to
improve MIP solutions,” Mathematical Programming, vol. 102, no. 1, pp. 71–90, 2005.

[29] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations
Research, vol. 8, no. 1, pp. 101–111, 1960.

[30] T. A. Davis, Direct methods for sparse linear systems. SIAM, 2006, vol. 2.

[31] M. De Santis, S. Lucidi, and F. Rinaldi, “New concave penalty functions for improving the
feasibility pump,” Department of Computer and System Sciences Antonio Ruberti Techni-
cal Reports, vol. 2, no. 10, 2010.

[32] S. S. Dey, “Strong cutting planes for unstructured mixed integer programs using multiple
constraints,” PhD thesis, Purdue University, 2007.

[33] S. S. Dey and J.-P. P. Richard, “Facets of the two-dimensional infinite group problems,”
Mathematics of Operations Research, vol. 33, pp. 140–166, 2008.

[34] —, “Sequential-merge facets for two-dimensional group problems,” in International Con-
ference on Integer Programming and Combinatorial Optimization, Springer-Verlag, 2007,
pp. 30–42.

[35] —, “Some relations between facets of low- and high-dimensional group problems,” Math-
ematical Programming, vol. 123, pp. 285–313, 2010.

[36] S. S. Dey, J.-P. P. Richard, Y. Li, and L. A. Miller, “On the extreme inequalities of infinite
group problems,” Mathematical Programming, vol. 121, pp. 145–170, 2010.

[37] S. S. Dey, A. Iroume, and M. Molinaro, “Some lower bounds on sparse outer approxima-
tions of polytopes,” Operations Research Letters, vol. 43, no. 3, pp. 323–328, 2015.

86

[38] S. S. Dey, A. Iroume, M. Molinaro, and D. Salvagnin, “Improving the randomization step
in feasibility pump,” arXiv preprint arXiv:1609.08121, 2016.

[39] S. S. Dey, M. Molinaro, and Q. Wang, “Analysis of sparse cutting-planes for sparse milps
with applications to stochastic milps,” arXiv preprint arXiv:1601.00198, 2016.

[40] —, “Approximating polyhedra with sparse inequalities,” Mathematical Programming, vol.
154, no. 1-2, pp. 329–352, 2015.

[41] C. DAmbrosio, A. Frangioni, L. Liberti, and A. Lodi, “A storm of feasibility pumps for
nonconvex minlp,” Mathematical programming, vol. 136, no. 2, pp. 375–402, 2012.

[42] —, “Experiments with a feasibility pump approach for nonconvex minlps,” in Experimental
Algorithms, Springer, 2010, pp. 350–360.

[43] M. Fischetti, F. Glover, and A. Lodi, “The feasibility pump,” Mathematical Programming,
vol. 104, no. 1, pp. 91–104, 2005.

[44] M. Fischetti and A. Lodi, “Heuristics in mixed integer programming,” Wiley Encyclopedia
of Operations Research and Management Science, 2011.

[45] M. Fischetti and D. Salvagnin, “Feasibility pump 2.0,” Mathematical Programming Com-
putation, vol. 1, no. 2-3, pp. 201–222, 2009.

[46] K. Fujisawa, M. Kojima, and K. Nakata, “Exploiting sparsity in primal-dual interior-point
methods for semidefinite programming,” Mathematical Programming, vol. 79, no. 1-3,
pp. 235–253, 1997.

[47] R. Fukasawa and M. Goycoolea, “On the exact separation of mixed integer knapsack cuts,”
Mathematical Programming, vol. 128, no. 1-2, pp. 19–41, 2011.

[48] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting sparsity in semidefinite
programming via matrix completion i: general framework,” SIAM Journal on Optimization,
vol. 11, no. 3, pp. 647–674, 2001.

[49] D. Fulkerson and O. Gross, “Incidence matrices and interval graphs,” Pacific Journal of
Mathematics, vol. 15, no. 3, pp. 835–855, 1965.

[50] D. Gade, S. Küçükyavuz, and S. Sen, “Decomposition algorithms with parametric gomory
cuts for two-stage stochastic integer programs,” Mathematical Programming, vol. 144, no.
1-2, pp. 39–64, 2014.

87

[51] G. Gamrath, T. Berthold, S. Heinz, and M. Winkler, “Structure-based primal heuristics for
mixed integer programming,” in Optimization in the Real World, Springer, 2016, pp. 37–
53.

[52] A. M. Geoffrion, “Generalized benders decomposition,” Journal of Optimization Theory
and Applications, vol. 10, no. 4, pp. 237–260, 1972.

[53] A. M. Geoffrion and G. W. Graves, “Multicommodity distribution system design by ben-
ders decomposition,” Management Science, vol. 20, no. 5, pp. 822–844, 1974.

[54] S. Ghosh, “Dins, a mip improvement heuristic,” in International Conference on Integer
Programming and Combinatorial Optimization, Springer, 2007, pp. 310–323.

[55] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Sparse matrix methods in
optimization,” SIAM Journal on Scientific and Statistical Computing, vol. 5, no. 3, pp. 562–
589, 1984.

[56] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting-stock
problem,” Operations research, vol. 9, no. 6, pp. 849–859, 1961.

[57] R. E. Gomory, “Some polyhedra related to combinatorial problems,” Linear Algebra and
its Application, vol. 2, pp. 341–375, 1969.

[58] R. E. Gomory and E. L. Johnson, “Some continuous functions related to corner polyhedra,
part I,” Mathematical Programming, vol. 3, pp. 23–85, 1972.

[59] —, “Some continuous functions related to corner polyhedra, part II,” Mathematical Pro-
gramming, vol. 3, pp. 359–389, 1972.

[60] P Guerrero-Garcıa, “Range-space methods for sparse linear programs,” PhD thesis, Ph. D.
thesis, Department of Applied Mathematics, University of Málaga, Spain, 2002.

[61] I. ILOG, CPLEX high-performance mathematical programming engine, http://www.
ibm.com/software/integration/optimization/cplex/.

[62] E. L. Johnson, “On the group problem for mixed integer programming,” Mathematical
Programming Study, vol. 2, pp. 137–179, 1974.

[63] K. Kaparis and A. N. Letchford, “Separation algorithms for 0-1 knapsack polytopes,”
Mathematical programming, vol. 124, no. 1-2, pp. 69–91, 2010.

88

http://www.ibm.com/software/integration/optimization/cplex/
http://www.ibm.com/software/integration/optimization/cplex/

[64] S. Kim, M. Kojima, and P. Toint, “Recognizing underlying sparsity in optimization,” Math-
ematical Programming, vol. 119, no. 2, pp. 273–303, 2009.

[65] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna, G.
Gamrath, A. M. Gleixner, S. Heinz, et al., “Miplib 2010,” Mathematical Programming
Computation, vol. 3, no. 2, pp. 103–163, 2011.

[66] M. Kojima and M. Muramatsu, “A note on sparse sos and sdp relaxations for polynomial
optimization problems over symmetric cones,” Computational Optimization and Applica-
tions, vol. 42, no. 1, pp. 31–41, 2009.

[67] V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems: Ecole dEté de Probabilités de Saint-Flour XXXVIII-2008. Springer, 2011.

[68] G. Laporte and F. V. Louveaux, “The integer l-shaped method for stochastic integer pro-
grams with complete recourse,” Operations Research Letters, vol. 13, no. 3, pp. 133–142,
1993.

[69] J. B. Lasserre, “Convergent sdp-relaxations in polynomial optimization with sparsity,”
SIAM Journal on Optimization, vol. 17, no. 3, pp. 822–843, 2006.

[70] M. Laurent, “Sums of squares, moment matrices and optimization over polynomials,” in
Emerging Applications of Algebraic Geometry, Springer, 2009, pp. 157–270.

[71] S. L. Lauritzen, Graphical models. Clarendon Press, 1996, vol. 17.

[72] M. Ledoux and M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes.
New York: Springer, 1991.

[73] F. C. Leone, L. S. Nelson, and R. B. Nottingham, “The folded normal distribution,” Tech-
nometrics, vol. 3, no. 4, pp. 543–550, 1961.

[74] A. Lodi, “Mixed integer programming computation,” in 50 Years of Integer Programming
1958-2008, Springer, 2010, pp. 619–645.

[75] M. E. Lubbecke and C. Puchert, “Primal heuristics for mixed integer programs with a
staircase structure,” 2015.

[76] H. Marchand and L. A. Wolsey, “The 0-1 knapsack problem with a single continuous
variable,” Mathematical Programming, vol. 85, pp. 15–33, 1999.

89

[77] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey, “Cutting planes in integer and
mixed integer programming,” Discrete Applied Mathematics, vol. 123, no. 1, pp. 397–446,
2002.

[78] H. Marchand and L. A. Wolsey, “Aggregation and mixed integer rounding to solve mips,”
Operations Research, vol. 49, no. 3, pp. 363–371, 2001.

[79] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, “Minimizing conflicts: a heuristic
repair method for constraint satisfaction and scheduling problems,” Artificial Intelligence,
vol. 58, no. 1-3, pp. 161–205, 1992.

[80] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

[81] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota, “Exploiting sparsity in
semidefinite programming via matrix completion ii: implementation and numerical re-
sults,” Mathematical Programming, vol. 95, no. 2, pp. 303–327, 2003.

[82] G. L. Nemhauser and L. A. Wolsey, “A recursive procedure to generate all cuts for 0-1
mixed integer programs,” Mathematical Programming, vol. 46, pp. 379–390, 1990.

[83] C. H. Papadimitriou, “On selecting a satisfying truth assignment,” in Foundations of Com-
puter Science, 1991. Proceedings., 32nd Annual Symposium on, IEEE, 1991, pp. 163–169.

[84] G. Pisier, The volume of convex bodies and Banach space geometry. Cambridge University
Press, 1999.

[85] D. Pritchard and D. Chakrabarty, “Approximability of sparse integer programs,” Algorith-
mica, vol. 61, no. 1, pp. 75–93, 2011.

[86] J.-P. P. Richard and S. S. Dey, “The group-theoretic approach in mixed integer program-
ming,” in 50 Years of Integer Programming 1958-2008, Springer, 2010, pp. 727–801.

[87] N. Robertson and P. D. Seymour, “Graph minors. ii. algorithmic aspects of tree-width,”
Journal of Algorithms, vol. 7, no. 3, pp. 309–322, 1986.

[88] N. Robertson and P. D. Seymour, “Graph minors. iii. planar tree-width,” Journal of Com-
binatorial Theory, Series B, vol. 36, no. 1, pp. 49–64, 1984.

[89] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

90

[90] U. Schöning, “A probabilistic algorithm for k-sat and constraint satisfaction problems,” in
Foundations of Computer Science, 1999. 40th Annual Symposium on, IEEE, 1999, pp. 410–
414.

[91] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons, 1998.

[92] P. Toint, “A note about sparsity exploiting quasi-newton updates,” Mathematical Program-
ming, vol. 21, no. 1, pp. 172–181, 1981.

[93] F. Vanderbeck and L. A. Wolsey, “Reformulation and decomposition of integer programs,”
in 50 Years of Integer Programming 1958-2008, Springer, 2010, pp. 431–502.

[94] M. J. Wainwright and M. I. Jordan, “Treewidth-based conditions for exactness of the
sherali-adams and lasserre relaxations,” Univ. California, Berkeley, Technical Report, vol.
671, p. 4, 2004.

[95] H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite pro-
gram relaxations for polynomial optimization problems with structured sparsity,” SIAM
Journal on Optimization, vol. 17, no. 1, pp. 218–242, 2006.

[96] H. Waki, S. Kim, M. Kojima, M. Muramatsu, and H. Sugimoto, “Algorithm 883: sparsepop—
a sparse semidefinite programming relaxation of polynomial optimization problems,” ACM
Transactions on Mathematical Software (TOMS), vol. 35, no. 2, p. 15, 2008.

[97] M. Walter, “Sparsity of lift-and-project cutting planes,” in Operations Research Proceed-
ings 2012, Springer, 2014, pp. 9–14.

[98] J. Wang and T. Ralphs, “Computational experience with hypergraph-based methods for
automatic decomposition in discrete optimization,” in International Conference on AI and
OR Techniques in Constriant Programming for Combinatorial Optimization Problems,
Springer, 2013, pp. 394–402.

[99] R. Weismantel, “On the 0/1 knapsack polytope,” Mathematical Programming, vol. 77, no.
3, pp. 49–68, 1997.

[100] L. A. Wolsey, “Faces for a linear inequality in 0–1 variables,” Mathematical Programming,
vol. 8, no. 1, pp. 165–178, 1975.

[101] E. Zemel, “Lifting the facets of zero–one polytopes,” Mathematical Programming, vol. 15,
no. 1, pp. 268–277, 1978.

91

VITA

Andres Iroume was born in Edinburgh, Scotland. Shortly after, he moved to southern Chile where

he grew up. In 2004, he became a student at the School of Mathematical and Physical Sciences,

Universidad de Chile. There, he earned a Bachelor of Science in Mathematical Engineering and

then a Master of Science in Operations Management. During his studies, Andres was involved in

research projects related with natural resource planning and power systems. Andres was also a

Teaching Assistant for multiple classes, including calculus, statistics and economics.

In 2011, Andres joined the Ph.D. program for Operations Research at the H. Milton Stewart

School of Industrial and Systems Engineering at Georgia Tech. He carried out his dissertation

research under the supervision of Dr. Santanu Dey. Andres’s broader research interests involve

developing theory and methods to solve optimization problems. His work is focused on sparse

integer programs, polyhedral theory, primal heuristics and cutting plane theory. During his PhD,

Andres was involved in teaching both as a Teaching Assistant and an Instructor, mostly in classes

related with optimization.

On a personal level, Andres is married to Stefania Stefansdottir.

92

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Previous results on sparse IPs
	Areas of interest

	Sparse Approximations
	Randomization step in feasibility pump
	Bounds on the number of extreme points for random polytopes
	Multi-row cuts and Sign-Pattern IPs

	Some lower bounds on sparse outer approximations of polytopes
	Introduction
	Preliminaries
	Definitions
	Important Polytopes

	Main results
	Strengthening of LP relaxation by sparse inequalities
	Strengthening by general dense cuts
	Sparse approximation of rotations of a polytope
	Lower bounds on approximation along most directions

	Improving the Randomization Step in Feasibility Pump
	Introduction
	Our contributions
	New randomization step RandWalkSAT
	Description of the randomization step
	Analyzing the behavior of RandWalkSAT

	Randomization step RandWalkSAT within Feasibility Pump
	Running time of WFP for separable subset-sum instances: Proof of Theorem 2

	Computations
	WalkSAT-based perturbation
	Computational results

	The ratio of the number integral extreme points to the total number of extreme points
	Introduction
	Preliminaries
	Generating packing instances
	Definitions for counting (integral) extreme points
	Bernstein's inequality

	Statement of the main result
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2

	The strength of multi-row aggregation cuts for sign-pattern integer programs
	Introduction
	Definitions and statement of results
	Definitions
	Sign-pattern IPs
	Closures

	Statement of results

	Proofs
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11

	Technical Proofs Chapter 2
	Proof Gap Equivalence
	Proof Description Equivalence

	Technical Proofs Chapter 3
	Minimal projected certificates can be found in polynomial time
	Original Feasibility Pump stalls even when flipping variables with zero fractionality is allowed
	No long cycles in stalling

	References
	Vita

