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Figure 1.22 Device schematic (a) and energy level diagram (b) of the photovoltaic device 

structure consisting of ITO/GO/P3HT:PCBM/Al components. Current-voltage 

characteristics of (c) photovoltaic devices with no hole transport layer (curve 

labeled as ITO) and (d) ITO/GO/P3HT:PCBM/Al with different GO 

thicknesses. [262] Copyright 2010. With permission of American Chemical 

Society............................................................................................................. 55 

Figure 1.23 Cross-section SEM images of (a) pure chemically converted graphene and (b) 

graphene-PANI nanofiber composite film.  (c) Plot of specific capacitance 

versus current density of graphene-PANI composite and PANI, and (d) cycling 

stability of graphene-PANI composite and PANI films. [158] Copyright 2010. 

With permission of American Chemical Society............................................ 59 

Figure 1.24 Mechanical properties of the graphene-polymer nanocomposites in the 

toughness-modulus space with data points color-coded with ultimate strength 

and numbered according to Table 1.2. ............................................................ 62 

Figure 2.1 Illustration of research goals and technical objectives. .................................. 68 

Figure 3.1 Diagram of the process for spin-assisted layer-by-layer assembly: different 

components in solutions are alternatively dropped on the flat surface and spun 

to dry. Thin films of each component are left on the top surface. .................. 78 

Figure 3.2 (a) the vacuum filtration setup; and (b) the scheme of the reduction procedure 

of the graphene oxide paper. ........................................................................... 79 

Figure 3.3 Buckling device and the buckling pattern as observed by optical microscope.
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Figure 3.4 The Interference pattern of a 50 nm nanocomposite membrane subjecting 

negative pressure through a 300-μm copper aperture at the initial stage (a) and 

deformed stage (b). ......................................................................................... 87 

Figure 4.1 Representative molecular structure of silk fibroin (a, upper part) and GO (a, 

lower part – side view; b top view). Elements in the ball and stick model are 

color-coded: C-grey, O-red, H-white, N-blue. (c) The sequential binding 

structure of the LbL nanocomposite membrane. The thicknesses of the layers 

are not drawn in scale. .................................................................................... 94 

Figure 4.2 Morphology of the methanol treated GO-SF nanocomposite membrane: AFM 

height (z range: 60 nm) (a) (inset: optical image of the membrane suspending 

on a 300-um copper aperture) and phase (b) images of the nanocomposite; (c) 

SF molecule adsorption on GO flake (z range: 7.5 nm); (d) membrane thickness 

increases with the number of the bilayers. ...................................................... 96 

Figure 4.3 Moduli of the methanol treated GO-SF nanocomposite membrane. (a) 50 um x 

50 um AFM image of the buckling pattern from a 10 bilayer GO-SF 

nanomembrane (Z scale: 2 um); (b) optical image of the buckling pattern; (c) 

the GO concentration dependence of the Young’s modulus of the 

nanomembranes; (d) sigmoid decaying curves for buckling and bulging tests at 

the interphase region. ...................................................................................... 97 
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Figure 4.4 Mechanical properties of the nanocomposite membrane from bulging test. (a) 

Ultimate stress vs. GO concentration; (b) ultimate strain vs. GO concentration; 

(c) toughness vs. GO concentration; (d) representative σ-ε curves. ............. 101 

Figure 5.1 (a) The fabrication of free-standing GO-SF membranes with dSA-LbL 

assembly; (b) The laminated structure of the LbL membrane and the release of 

the free standing membrane followed by mounting on the copper aperture. 105 

Figure 5.2 Morphologies of the stretched SF on GO surfaces: (a, b) Survey and high 

resolution AFM images showing the uniform distribution of SF molecules 

without significant aggregation or entanglement. (z-scales: 2 nm) (c)-(f) The 

cross sectional profile of the single molecules from the color coded lines in 
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Figure 5.3 The FTIR spectra of the silk spun using the (a) conventional SA-LbL and (b) 

dSA-LbL; (c) peak assignment of the FTIR spectra and (d) the composition of 

the secondary structures of the silk. .............................................................. 109 

Figure 5.4 Structure and composition of the GO-SF nanocomposite membrane: (a) AFM 

image and height profile of film edge (z-scale: 350 nm) showing the 45 nm 

thick GO-SF nanocomposite membrane on top of the 103 nm thick sacrificial 

PS layer. (b) Ellipsometry data show that the thickness of the membranes 

increases linearly with the number of the GO-SF bilayers assembled. (c) XRD 

data and peak fitting of a 70 bilayer GO-SF dSA-LbL membrane on silicon 

wafer. The silicon wafer background is subtracted. (d) XPS of the GO-SF 

nanomembranes in comparison with that for pure silk films. ....................... 110 

Figure 5.5 (a) Optical image of the GO-SF nanocomposite membrane suspended across a 

300 μm copper aperture. (b) Interference pattern on the deflected membrane 

during bulging measurement. SEM image of the freely suspended 

nanomembrane (c) before and (d) after bulging measurements (the membrane 
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Figure 5.6 (a) Dependence of the Young’s modulus of the GO-SF nanomembranes upon 

the volume concentration of graphene oxide. (b) Sigmoid decay curves for 

bulging tests at the interphase region. (c) The dependence of the effective 

Young’s modulus of the silk layer on the thickness of the silk fibroin laminates. 

The dashed line is the fitted curve using the interphase reinforcement model. (d) 

Variation of the Young’s modulus for membranes with different thicknesses.
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Figure 5.7 (a) Representative stress–strain curves derived from the bulging tests and (b) 

the ultimate strain, (c) the ultimate stress, and (d) the toughness as a function of 

the GO concentration for GO-SF nanocomposite membranes fabricated here as 

compared to the values for the conventional SA-LbL membranes (data taken 
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Figure 5.8 (a) The SEM image showing the broken edges of GO-SF nanomembrane. inset: 

the whole image of the broken membrane suspending on a 300 μm copper 

aperture. (b) TEM image of selected ruptured areas (framed in (a)) of the free-

standing GO-SF nanomembrane. (c), (d) the TEM images of the yield failure 
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mode and the rapid rupture mode (indicated by frames in (b)), respectively. (e) 
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and Raman spectra (d) before and after selective reduction; Raman mapping (e) 
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the border between the reduced and the non-reduced regions. ..................... 126 

Figure 6.4 The reduction setup using electrochemical microstamping method.  The 
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Figure 7.7 EDX mapping of the bio-bond graphene oxide paper (top), and the partially 

(around 40% thickness) reduced (middle) and fully reduced (bottom) bio-bond 

graphene paper. The white dashed line in the combined mapping indicates the 

position of the line profile shown on the rightmost column. ........................ 148 

Figure 7.8 Summary of the electrical conductivity and the mass density of the common 

electronic and related materials. The colored bars indicate the variable range of 

the electrical conductivities of the materials. ................................................ 151 

Figure 7.9 Tensile mechanical properties and durability tests of the fully reduced bio-bond 

graphene paper with 2.5 wt% silk binder. (a) Stress-strain curve obtained at the 

tensile test. Inset shows the geometry and setup of the tensile test with a 

fractured specimen. (b) Folding durability test with the film resistance 

monitored up to 3000 folding cycles. The inset shows schemes of the folding 

states during one testing cycle. ..................................................................... 151 
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(f) TEM images of the fractured regions with wavy cracks, pulled sheets, and 
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optical transmittance, and electric conductivity of CNC-GO nanomembranes. 

(a) The schematic structure of the cellulose nanocrystal-graphene oxide 

nanomaterials. (b and c) Comparison of mechanical properties among nacre-

like nanomaterials in different coordinates with stars representing results in this 

study. (d) Optical transmittance of soda-lime glass substrate, CNC-GO (6 

biayers, 63.5 wt% GO) and CNC-rGO (6 bilayers, 56.8 wt% rGO) 

nanomembranes. Inserts show the pattern covered by transparent 

nanomembranes of different composition. (e) Electrical conductivity of CNC-

rGO nanomembranes with various rGO contents. Insert demonstrates the LEDs 

lit up through the conductive nanomembrane. .............................................. 166 

Figure 9.1 (a) Schematic drawing of the metal-GO junction structure and the mechanism 

of the power generation. Insets: (left) the top view of the symmetrical Al-GO 

junction pair, and (right) the side view of the same sample that shows its 

excellent folding robustness. (b) SEM micrograph showing the cross section of 

an Al-GO junction. The inset emphasizes the uniform Al coating layer. (c) 

Optical photograph demonstrating the flexibility of the Au/Al coated GO bio-
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Figure 9.2 AFM height micrographs of bare GO bio-papers and GO bio-papers coated 

with aluminum, copper, and gold, respectively. Surface roughness is not 

affected (except for aluminum coating, which slightly roughens the surface) by 

the metal coatings, and the coated surfaces are free of microscopic defects (e.g., 

cracks, agglomerations, pin holes, etc.) ........................................................ 172 

Figure 9.3 Foldability demonstration of the GO bio-paper by inserting the tightly folded 

sample in a glass tube (panel a, inner diameter of 5 mm) and take out before 

unfolding and flatten (b to d). ....................................................................... 173 

Figure 9.4 I-V output profile of a fully activated Al-GO junction, showing the maximum 

power output of this junction is around 12 nW. ............................................ 175 

Figure 9.5 Open circuit voltage outputs of the metal-GO junction pairs with various (a) 

electrode metals and (b) gap widths. (c) The voltage response of an 

asymmetrical Au/Al-GO junction pair to humidity change (1 RH%/min), 

showing slight hysteresis due to the faster water adsorption than desorption 

(inset: optical photograph of the Ø37mm sample). (d) XPS spectra of an 

extensively actuated (around 5000 times) Al-GO junction at different depths 

from the Al/GO interface, indicating a reduced layer of GO underneath the Al 
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Figure 9.6 (a) XPS spectra of freshly fabricated Al-GO junction at different depths from 

the Al/GO interface, indicating a sub-nanometer layer of reduced graphene 

oxide at the Al/GO interface. The reduction of the thin graphene oxide layer at 

the interface is probably caused by the heat carried by the initial adsorption of 

the hot metal vapor during the electron beam evaporation process. The same 

phenomenon also happens to the extensively actuated (around 5000 times) Au-

GO junction (shown in panel b). ................................................................... 178 

Figure 9.7  The (a) switching and (d) alternating tests for the stability of the metal-GO 

junctions as tactile sensing elements (the plus and minus signs on the contacts 

denotes the polarity of the measuring probes): open circuit voltage output of 

symmetrical Al-GO junction pair (b and e) and asymmetrical Au/Al-GO 

junction pair (c and f) under switching and alternating actuations, respectively. 

The insets show close views of detailed waveform as indicated by arrowed 

frames. ........................................................................................................... 179 

Figure 9.8 Open circuit voltage output of symmetrical Cu-GO junction pair (a and d), 

symmetrical Au-GO junction pair (b and e), and symmetrical rGO-GO junction 

pair (c and f) under repeating and alternating stimulations, respectively. The 

insets show close views of detailed waveform as indicated by arrowed frames.

....................................................................................................................... 181 

Figure 9.9  (a-e) Frequency variation test of the Al-GO junction, showing stable response 

to sinusoidal stimulations from 2 to 20 Hz. (f) The fast Fourier transform of the 

response signal based on the actuation frequency. Higher orders of harmonic 

response indicate a strong correlation between the input and output. .......... 182 

Figure 9.10  Continuous sense of finger presses with arbitrary frequency by the 

symmetrical Al-GO junction pair. Regardless of the polarity, the output is stable 

and slightly decreases in amplitudes with higher frequencies. ..................... 183 

Figure 9.11  Two-dimensional touch sensing platform (electronic skin) shows highly 

independent open circuit voltage output for the two orthogonally orientated Al-

GO junction pairs on the same piece of GO bio-paper substrate: (a) Excellent 

bending robustness of the electronic skin withstands repeated fisting in the palm 

(see Supporting Video S3); (b) diagram of the 2D sensing circuit and address 

allocations (the plus and minus signs on the contacts denotes the polarity of the 

measuring probes). The 2-digit trinary system is denoted as (V1, V2), and actual 

waveform of the distinctive response for the 9 locations could be found in 

Figure 9.12. ................................................................................................... 185 

Figure 9.12 (a-i) waveform of the distinctive response for the 9 locations that are shown 

in Figure 5b. Each location was pressed for 3 seconds................................. 186 

Figure 10.1 Summary of the mechanical properties from the nanocomposite materials in 

this research. Representative data points from recent publications are plotted 

and labeled in the figure for comparison. Our results are majorly located well 

beyond the boomerang shaped envelope of the conventional laminated 
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SUMMARY 

 

This study is focused on the fundamental principles of fabricating graphene based bio-

nanocomposite materials and optimizing their structural and functional properties for 

prospective bioelectronics applications. The status of the research on graphene based 

functional nanocomposites has been critically reviewed and the motivation and challenges 

to develop ultra-robust, functional nanocomposite films are presented. Biopolymers and 

biomaterials, such as silk fibroin and cellulose nanocrystals, in addition to graphene oxide 

are chosen as the matrix, binding and reinforcing components, respectively, to investigate 

the optimized interfacial interactions between biomaterials and the heterogeneous 

graphene derivatives with various degrees of chemical functionalization. 

Two different aspects of the graphene based bio-nanocomposites were the foci of this study: 

1) the mechanical enhancement by the synergistic interactions between the nanofiller 

components and biopolymer matrix, and 2) the effective improvement of electrical 

properties of the graphene oxide components in the bio-nanocomposite for prospective 

electrical and sensing applications. Specifically, the major achievements can be 

summarized by the following: 

 The interfacial interactions between silk fibroin and graphene oxide has been carefully 

tuned through layer-by-layer assembly to elucidate the optimized surface interactions 

for heterogeneous components in bio-nanocomposites. Record-high mechanical 

properties have been reported for the ultra-thin graphene oxide-silk fibroin 

nanocomposites fabricated here, including Young’s modulus of 145 GPa, ultimate 

stress of 330 MPa, and toughness of 2.2 MJ m-3 for 50-nm-thick membranes. 

Theoretical analysis suggested that an interphase reinforcing region between the 

graphene oxide and the silk fibroin components due to the high-density of randomized 

weak interactions at the matrix-filler interface. 
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 Spin assisted layer-by-layer assembly approach has been refined and dynamic spinning 

routine has been suggested to unfold the protein molecules during the adsorption, 

spreading, and assembly process. The distinctive morphology and secondary structures 

of the silk molecules have been carefully imaged by high-resolution atomic force 

microscopy and quantified by Fourier transform infrared spectroscopy. As a result, the 

enhanced interfacial interactions further improved the mechanical properties of the 

resulting silk fibroin-graphene oxide nanocomposite to show extremely high Young’s 

modulus of 170 GPa and toughness of 3.4 MJ m-3. The interfacial strength and the 

interphase thickness are 100% and 50% higher, respectively, than those of the samples 

made by the static spin coating method. 

 Thin films were fabricated by vacuum filtration of graphene oxide – silk fibroin 

mixtures to fabricate graphene “bio-paper” with significant improvement in 

mechanical properties and water resistance in contrast to pristine graphene oxide papers. 

The ultimate stress, Young’s modulus, and toughness are 300 MPa, 26 GPa, and 2.8 

MJ m-3, respectively, which are 330%, 330%, and 370% higher than the pristine 

graphene oxide papers. An innovative technique has been applied to reduce patterned 

surface of the graphene bio-paper to restore its electrical conductivity by using active 

metal as the reducing agent. In neutral pH and ambient conditions, the electrical 

conductivity of the reduced graphene oxide bio-paper was around 1300 S m-1 being 

comparable to those of the doped silicon and conducting polymers. 

 The metal-assisted graphene oxide reduction technique has been extensively 

investigated and optimized for efficient and effective fabrication of electrically 

conductive patterns that are used for flexible electronics. The electrical conductivity of 

the samples largely depends on the thickness of the reduced layer and the extent of the 

oxygen removal (C/O ratio). By varying the reducing pH, time, and number of cycles, 

the highest electrical conductivity reaches 15200 S m-1, and the work function of the 

reduced graphene oxide surface could be tuned over a range of 0.7 eV, from 4.9 eV for 

pristine graphene oxide to 4.2 eV for reduced samples. 
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 A combination of 1D and 2D nanomaterials using cellulose nanocrystals and graphene 

oxide has been suggested for high performance nanocomposite thin films for excellent 

mechanical, optical, and electrical properties. By avoiding extensive content of soft 

biopolymer matrix, the unique combination between these two conventional nanofillers 

with excellent mechanical properties resulted in synergistic strengthening and 

toughening effect, showing unprecedented high ultimate strength (650 MPa), 

toughness (3.8 MJ m-3), and elastic modulus (169 GPa). In addition, the optical and 

electrical properties are also characterized with 50% optical transmittance at 550 nm 

and 5000 S m-1 electrical conductivity. 

 A new type of human-tactile sensing materials using the metal-graphene oxide 

electrodes has been demonstrated based on the electrochemical reaction between active 

metal and graphene oxide surface. The tactile sensing performance of this novel hybrid 

material is extensively tested in various experimental and practical settings. The self-

powered bio-touch sensor can output over 800 mV open circuit voltage upon actuation 

with tunable output level by varying the electrode gap size and metal species. The 

response speed is higher than 20 Hz with a unique ability to fabricate 2-D touch pads 

with fewer electrodes. 

Flexible electronics, especially those that are potentially useful for biomedical applications, 

is a big opportunity as well as challenge for the advancement of the functional bio-

nanocomposite research. Graphene based bio-nanocomposites are promising to bridge the 

excellent mechanical properties and the effective electrical conductivities in the 

prospective bioelectronics. We suggest that the understanding of the integration of 

biopolymers and graphenes using versatile assembly techniques and the successive 

chemical modification of the electrical properties of the nanocomposite discussed in this 

study is critically important and inspiring for tackling the challenges faced by the 

employment of flexible and robust structural and bio-microelectronic materials. 
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Chapter 1 Introduction to polymer nanocomposites 

 

1.1 Background 

Synthetic polymer (nano)composite materials were introduced centuries ago and used as 

structural components due to their much improved mechanical properties, chemical 

inertness and stability, versatile processing techniques, and reduced cost. [1, 2] For many 

traditional composite materials, polymers conventionally serve as elastomeric and flexible 

matrices by contributing high elasticity, strength, flexibility, controlled surface and bulk 

properties, and other unique physical properties. In this chapter, the background of 

nanocomposites will be introduced by reviewing the polymeric matrices and inorganic 

fillers, respectively. Challenges and motivations of the proposed study will also be 

presented in the end of this chapter. 

1.1.1 Choice of polymeric matrices 

Benefiting from almost infinite choices of monomers and chemistries available, polymer 

matrices can be precisely tuned and controlled to exhibit the whole spectrum of 

physiochemical properties for very different applications, including hydrophobicity, 

ionozibility, crystallinity, transparency, toughness, strength, densities, and degradability. [3, 

4, 5, 6, 7, 8] 

Among the structural polymeric matrices for the advanced nanocomposites, elastomers, 

thermoplastics, epoxy, block copolymers, and hydro/aerogels are used widely due to their 

unique physical and chemical properties, which can be tailored to various applications. [2, 

9, 10, 11, 12, 13] For example, elastomers are highly stretchable polymers consisting of lightly 

crosslinked (chemically or physically) long chains. [14, 15] In contrast, epoxy resins contain 

rigid segments and are very heavily crosslinked so that their stiffness, as well as their 

brittleness, are extremely high. [16, 17] Thermoplastic polymers are reinforced by physically 
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ordered domains which are not chemically crosslinked so they can be shaped, melted, and 

recycled.  

Block copolymers are essentially composed of two or more chemically divergent polymer 

chains that are covalently linked end to end in order to create complex nanoscale 

morphologies. [2, 9, 11] One of the biggest benefits of the block copolymers is that the 

physiochemical properties of the resulting materials can be tuned by adjusting the content 

of species that make up the chain and the lengths of each component. [ 18 , 19 ] Block 

copolymers have the inherent advantage of possessing heterogeneous properties, e.g., 

amphiphilicity, which are controlled by microphase states with sharp interfaces and 

tailored 3D morphologies. [20] Hydrogels or aerogels with their porous morphology and 

permeable properties can be swollen in water or contain gas, which can be used for 

scaffolds, catalyst support, controlled release/adsorption, shock absorbance, and low-

density thermal or electromagnetic shielding. [21, 22, 23, 24, 25] 

Natural biomaterials have drawn huge attention from the researchers as well as the general 

public because of their intricate and inspiring structures and superior performance, one 

outstanding example of which is silkworm silk. Silkworms have been cultivated for 

thousands of years to produce textile silk fibers. Thanks to its hierarchical molecular 

structure, pristine silk fiber is one of the strongest natural biomaterials, with 600-800 MPa 

ultimate stress and 18% ultimate strain.[1, 2] Consequently, silk sutures have been used in 

surgical operations for centuries due to the outstanding mechanical properties, in addition 

to their inherent biocompatibility and relatively good biodegradability.[1, 2]  

However, until a few decades ago was silk fibroin (SF) - the prevailing protein constituent 

of silk fiber – studied systematically. Silk fibroin consists of two protein chains connected 

by disulfide bond[3, 4], where the molecular weight is between 130 and 390 kDa due to the 

various degrees of hydrolyzation and degradation.[4, 5] The longer protein chain is 

composed of alternating predominant hydrophobic and relatively short end-capping 

hydrophilic amino acid sequences, which grant the amphiphilicity of the material.[3, 6] The 

non-neutral amphiphilicity brings the aqueous processibility of the silk fibroin, but the 

prevailing hydrophobic segments make the aqueous solution unstable due to hydrophobic 
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interactions and sequential crosslinking. In spite of that, silk fibroin is also sensitive to pH 

value, salt ions and high temperature, in presence of which the solution may undergo 

gelation. As a result, silk fibroin solutions are usually prepared with ultra-pure water for 

the minimum amount of time and stored at low temperature and mildly basic environment. 

Ionic liquids are also reported to be a good solvent of silk fibroin, essentially depending on 

the concentration and species of the anions.[7]  

The secondary structure of silk fibroin, i.e. molecular conformation, defines its physical 

and chemical properties. Antiparallel β-sheet crystals can be induced by abrupt drying, 

shear straining, water annealing, and alcohol treatment.[8, 9] The β-sheet crystals are a few 

nanometers in size[10, 11] and work as nano-filler and crosslinker in the amorphous matrix, 

dramatically giving rise to the mechanical properties. β-sheet crystals induced by different 

methods exhibit various shapes, sizes and packing orders, affecting the mechanical 

properties and hydration.[9] The methanol treated ultrathin silk fibroin layer-by-layer (LbL) 

membranes have been reported to be ~8 GPa Young’s in modulus and 0.5-3% of 

elongation-to-break.[8] Due to the technical difficulties in directly extracting silk fibroin 

from the silkworm glands, reconstituted SFs are commonly used in research and 

production.[3, 8, 12, 13-19] Reconstituted SFs are made from the dissolved and dialyzed pristine 

silk fibers (see the Experimental section for detail). To date, reconstituted SFs have been 

made into threads[2], films[8], hydrogels[16], scaffolds[17], capsules[1] and biocompatible 

coatings[18] by drop casting, chemical modification/crosslinking, lyophilization and LbL 

deposition. Molecular level engineering of the material is also undertaking its way due to 

the progressive understanding of its secondary structures and the relationship between the 

structures, properties and processing conditions. 

Despite significant efforts, the mechanical properties of polymer matrices can be 

considered to be modest in many cases. Indeed, the elastic modulus of linear amorphous 

polymers is usually around several gigapascals in their bulky glassy states except some 

famous examples of rigid polymers and polymer fibers with highly oriented polymer chains. 

[2] Moreover, the mechanical strength of polymer materials will further decrease by several 

orders of magnitude when heated above the glass transition temperature. Therefore, a 

variety of high performance inorganic fillers are frequently introduced as important 
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reinforcing components in order to significantly improve the structural strength of polymer 

composites and induce some additional functional properties (e.g., thermal or electrical 

conductivity).  

1.1.2 Reinforcing components 

Conventional polymer composites are usually fabricated from a relatively compliant matrix 

and stiff inorganic fillers in the form of fibers, laminates, or particles. The philosophy of 

the fabrication of high performance composite materials is to synergistically combine the 

strengths of multiple constituents and optimize the primary mechanical properties. Glass 

fibers, carbon fibers, wood sheets, metal particles, and inorganic mineral particles are all 

common fillers in conventional composites composed of continuous matrices of 

thermoplastic polymers, rubbers, hydrogels, or thermosets. However, conventional 

polymer composites suffer from some common issues caused by very dissimilar properties 

of matrices and components, which include modest improvement of mechanical strength, 

reduced compliance, catastrophic failure caused by interfacial defects and weak interfacial 

bonding, accelerated degradation caused by mismatching of coefficient of thermal 

expansion, and significant manufacturing cost in some cases. [26]  

On the other hand, nanocomposite materials with nanoscale fillers have emerged in the 

past couple decades as a promising novel class of materials which take advantage of greatly 

increased interfacial area, higher loads, controlled interfacial interactions, and higher 

overall compliance. The mismatch of the physical properties is much less critical and the 

interfacial area between the filler and the matrix is maximized so that the interfacial 

strength can be much improved. [ 27 ] Currently, multifunctional nanocomposites with 

improved mechanical performances are primarily fabricated by addition of pre-treated 

carbon nanotubes and nanofibers [ 28 , 29 ], inorganic nanoparticles [28, 30 ], and metal 

nanostructures. [30, 31, 32]  

Among various reinforcing nanoscale components, clay, carbon nanotubes, and 

metal/ceramic nanoparticles are the most common nanofillers employed in the past two 

decades to fabricate a variety of high performance nanocomposite materials. [25, 33, 34, 35, 36, 

37 , 38 , 39 , 40 , 41 , 42 ] Clay nanoparticles (e.g., montmorillonite, MMT) possess excellent 
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mechanical strengths and optical transparency, they are relatively cheap, and can be easy 

pre-treated and dispersed in a common solvents and even in an aqueous environment. [25, 

33] The 2D geometry of the MMT nanoparticles is also beneficial for their self-assembly in 

organized layered morphologies, which are important to anisotropic stress transfer 

applicatoins. The mechanical performance of these nanomaterials can show much 

improvement compared to traditional composites. For instance, the ultimate strength 

MMT/poly(vinyl alcohol) (PVA) nanocomposites can reach around 220 MPa with the 

elastic modulus as high as 19 GPa. [43] However, because MMT is a stiff inorganic platelet 

filler the limited flexibility and biodegradability of these nanocomposite can be 

compromised. 

In addition, cellulose nanocrystals (CNCs) is a unique whisker shaped bio-originated 

nanofiller that have emerged as an important biodegradable, biorenewable reinforcing 

components in nanocomposites. [44, 45, 46, 47, 48] CNC is purified from wood pulp by acid 

hydrolysis process. The length of CNCs is around 250 nm and the diameter varies from 3-

10 nm. The rod-shaped nanoparticle of CNC is usually negatively charged due to the 

presence of the –SO3H groups from the acid hydrolysis.[44, 45] Due to the high crystallinity 

of the material, the elastic modulus of the single CNC is around 150 GPa. And the surface 

charge of the CNC greatly facilitates the strong ionic interactions between the components 

in the nanocomposites.[48] 

Metal and carbon nanoparticles show exceptional reinforcing properties and can add 

electrical conductivity, catalytic activity, and plasmonic properties. [4, 40, 41, 42] However, 

metal nanoparticles are not readily dispersable in polymeric matrices due to the 

hydrophobicity of the nanoparticles and limitations of the ligands utilized. Therefore, 

grafting of nanoparticles with various polymeric ligands or growing metal nanoparticles in 

situ have been implemented. [49, 50, 51, 52] Alternatively, metal oxide nanoparticles show 

good aqueous processibility, functional properties, and high mechanical strengths 

compared to corresponding metal nanoparticles, but their integration in polymer matrices 

can be challenging. [53, 54, 55]  
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Carbon black is the most commonly used nanomaterial in industry for mechanical 

reinforcement and damping in synthetic rubbers, thermal properties of polymeric materials, 

and electrical modification in polymer matrices. [ 56 , 57 , 58 ] Carbon black are mainly 

amorphous materials with their moderate physiochemical properties in all major aspects. 

However, these fillers are abundant, can be readily functionalized, and are very inexpensive. 

The surface-to-volume ratio of carbon black is lower than that of activated carbon and its 

mechanical and electrical properties are not comparable to its crystalline carbon cousins, 

thus novel carbon-based fillers have been intensively elaborated in the past two decades.  

Recently, carbon nanotubes and buckyballs have become much more sophisticated and 

popular nanostructures. They are seen as one of the most promising nanofilling materials 

because of their low density, extremely high aspect ratio (nanotubes), minute dimensions, 

outstanding mechanical and thermal properties, good chemical inertness, and tunable 

electrical properties. [34, 35, 36, 37, 59] However, the progress in nanocomposites made by using 

carbon nanotubes is still continuing and great challenges still remain to be resolved. Among 

most critical unresolved issues are poor aqueous dispersability, stubborn contaminations, 

excessive aggregation, high cost, poor control of surface chemistries, and low interfacial 

interactions with the polymeric matrix. Significant efforts in the development of these 

nanocomposites are summarized in a number of books and reviews and will not be 

considered here. [60, 61, 62, 63, 64]  Recently, various modern graphene materials have emerged 

as a new class of prospective components for advanced nanocomposites with intriguing 

new opportunities for the integration into polymer matrices.  

1.1.3 Graphene-based nanocomposites 

Indeed, the number of publications on graphene-based nanocomposites has grown 

exponentially in recent years from almost non-existing records before 2006 to almost two 

thousand in the past two years (Figure 1.1). Even prior to 2010, less than two hundred 

publications can be counted in total with no significant records found before 2006 (which 

probably caused in particular by a terminology gap).  

However, since the year of 2010 the number of peer-reviewed publications on graphene-

based nanocomposites has surged greatly and keeps growing exponentially. Apparently the 
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Nobel Prize in Physics for graphene has drawn vast attention from the materials community 

and brought a dramatic number of new research groups to this field. Indeed, the number of 

the graphene nanocomposite publications appeared only in past two years exceeds several 

times those ever published in this field (Figure 1.1). Therefore, even if some 

comprehensive reviews have been recently published on this topic mostly in 2010-2014 

(see summary of some recent reviews below) the overall landscape changed dramatically 

in the past two years alone and, therefore, it is necessary to summarize again very recent 

results and discuss the newest trends in this fast evolving field.  

Overall, polymer-graphene (here under a general term of “graphene” we usually imply not 

just traditional monolayer graphenes but also various chemical derivatives if not specified 

otherwise) nanocomposites show not only record mechanical properties but also 

impressive functional properties, such as electrical (semi-) conductivity, unique 

photonic/optical transportation, anisotropic transport, low permeability, and fluorescence 

quenching. It has already been demonstrated that the introduction of even a small fraction 

of a graphene component can dramatically improve the mechanical performance of the 

variety of the polymeric matrices and some extraordinary reinforcing and functional 
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Figure 1.1 Number of the peer-reviewed publications (articles and reviews) containing the 

keywords “graphene” and “(nano)composite(s)” since 2005.  The data for the year of 2015 is 

off trend due to database lag.  Data source: Web of Knowledge, Thomson Reuters. 
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properties have been reported very recently. Graphene materials and their various 

derivatives show tremendous potential in revolutionary enhancement of mechanical, 

electrical, thermal, and chemical properties of polymeric materials relevant for a wide 

range of emerging demanding applications (Figure 1.2). [34, 65, 66, 67, 68, 69, 70, 71]  

It is worth to note that although the current research activities are greatly focused on the 

understanding of fundamental phenomena and utilization of the excellent properties of the 

graphene materials as efficient nanofillers, the next exploding area on the graphene 

material research relevant to nanocomposite materials might be the development of atomic 

multi-stacking of heterogeneous 2D structures (also known as “van der Waals crystals”) 

with promising extraordinary functional properties. [72] 

The initial results on graphene-polymer nanocomposites are summarized in a number of 

excellent recent reviews as briefly introduced here. In an important “early” publication, 

Kim et al. provided a general review on graphene-polymer nanocomposites. [73] Kuilla et 

al. introduced examples from different combinations of polymers with graphene materials 

Figure 1.2 Graphene derivatives show promising results for various fields, including energy 

conversion [65], energy storage [66], electronic materials [67], quantum effects [68], low density 

structural materials [69], sensors [70], chemical screening applications [34], and thermal interface 

materials [71].  
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in addition to presented general background on graphene and its derivatives. [74] Compton 

et al. focused on graphene and graphene oxide, and discussed the properties of these 

nanofillers in detail. [75] 

In their review, Huang et al. paid major attention to devices made of polymer-graphene 

nanocomposites and the other constituents including metal, semiconductor, and organic 

small molecules. [76] Yang et al. critically evaluated the fabrication of graphene multilayers, 

including graphene-polymer nanocomposite thin films fabricated by layer-by-layer 

assembly. [77] Young et al. reviewed graphene-polymer nanocomposites and discussed the 

modeling, fabrication, and characterization of these materials. [78] Among the most recent 

reviews, Wu et al. discussed the structures and general functional applications of the 

nanocomposites made from chemically modified graphenes. [79] Finally, very recently Sun 

et al. provided insight on the integration of both graphene and carbon nanotube materials 

in polymer nanocomposites. [34]  

In this review, we focus on very recent (mostly published in 2010-2013) and the most 

spectacular results of the outstanding mechanical as well as other physical properties of the 

polymer-graphene nanocomposite materials, and discuss some fundamental properties and 

the processing approaches of such nanocomposites. We highlight the fundamental 

properties and critical characteristics of graphene materials as prospective reinforcing 

nanofillers, their chemical and physical functionalities, the interfacial interactions 

important for the effective reinforcement, and the methods of the fabrication of these 

materials. Finally, we briefly summarize the theoretical works and experimental efforts on 

the optimization of the elastic modulus values, strength, deformation, and toughness, major 

mechanical characteristics and discuss the results of the ultimate mechanical performance 

of such nanocomposites with variable composition, chemistry, and morphology.  

1.1.4 Graphene and graphene derivatives as prospective filler nanomaterials 

In this section, we provide a brief reminder of the fundamental properties and 

microstructure of graphene materials of different types. Similar to carbon nanotubes, basic 

graphene is composed of only carbon atoms, but it is a 2D flat sheet rather than rolled up 

monolayer of carbon. Benefiting from its pure sp2 hybridization network, graphene 
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materials frequently possess record characteristics of mechanical, thermal and electrical 

properties. The most important materials characteristics for our discussion are: the highest, 

1 TPa, elastic modulus [80], very high, 5.1x103 W m-1 K-1 thermal conductivity [81], and the 

highest known intrinsic electrical conductivity of 6x105 S m-1. [ 82 ] Among the most 

interesting and fundamental properties we should mention the theoretical van der Waals 

thickness of individual graphene sheets of 0.34 nm, which is the thinnest 2D nanofiller 

known to date (Figure 1.3a). [83] Other critical parameters of these materials are extremely 

high aspect ratio (ratio of lateral dimensions to the thickness) and high intrinsic flexibility.  

Pristine graphene is usually obtained or synthesized by mechanical exfoliation of graphite 

and chemical vapor deposition (CVD). [83] Mechanical cleavage or exfoliation of highly 

ordered pyrolytic graphite (HOPG) is an original top-down method that can easily produce 

large quantity of graphene sheets with different microscopic dimensions, individual or 

multilayered flakes, and modestly defective microstructure.  

CVD synthesis of graphene uses carbon-rich precursors (e.g., methane) and recombines 

the carbon atoms on the surface of metal foil (copper or nickel) in inert atmosphere at over 

1000oC. [73] By controlling the reaction parameters, such as the ratio of the different 

precursors, temperature, and substrates, single, double or multiple layer graphene with 

various sizes can be produced. The synthesis of graphene does not require catalysts in gas 

phase that are hard to be removed, and the size of graphene can be controlled from 

nanoscale to millimeter scale, giving it huge potentials for nanocomposite applications. 

However, both mechanical exfoliation and the CVD synthesis result in defective and 

(a) (b) 

Figure 1.3 Atomistic structures of individual sheets of basic graphene (a) and graphene oxide 

(b). The atoms are color-coded: grey – carbon, red – oxygen, and white – hydrogen. 
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heterogeneous structures. Moreover, time and energy consumption for their fabrication are 

high for real mass-production of consistent graphene materials in large quantities.  

Therefore, different graphene derivatives that partially preserve the extraordinary 

properties of graphene materials and overcome some of their deficiencies have attracted 

more attention. One of the most popular graphene derivatives, which can be utilized for the 

fabrication of polymer-graphene nanocomposites is graphene oxide with excellent 

mechanical properties. Even though preliminary studies show that the biocompatibility of 

graphene oxide is good in many cases [84, 85], extensive investigation needs to be carried out 

to discriminate cytotoxicity and metabolic accumulation for prospective biomedical 

applications. [86] 

Graphene oxide (GO) is an oxidized graphene derivative, which can be widely used as an 

alternative or precursor for graphene materials due to its high dispersibility and 

processibility in aqueous environment. [8, 87, 88] It is produced from mineral graphite flakes 

by thermal oxidation method invented by Hummers and modified by successors. [89] The 

resulting single atomic layers graphene-like material possess high density of epoxy and 

hydroxyl groups on both sides of the basal carbon plane and carboxyl groups around their 

edges (Figure 1.3b). [90] Recent studies of surface defect distribution using electrostatic 

force microscopy (EMF) [ 91 , 92 , 93 ] demonstrated the heterogeneous distribution of 

nanoscale (~100 nm across) oxidized domains which completely dissipate after chemical 

reduction to graphene (Figure 1.4). [94] 

Figure 1.4 (a) Topography, (b) EFM-phase image before reduction, and (c) after chemical 

reduction of the same graphene oxide flakes.  
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Molecular simulations have shown the bonding energy and shear strength have been 

significantly improved by inducing the surface and edge functionalities on graphene sheets, 

which is critically important for their integration into polymer matrix. [95] The ratio of 

carbon and oxygen in graphene oxide materials is close to 2:1, the overall surface coverage 

with oxidized regions can reach 60-70%, and point defects are present among the 

honeycomb primary structure, all reflecting an intense and highly localized oxidization 

processes (Figure 1.3b). [3, 74, 75, 96]  

The theoretical thickness of graphene oxide is around 0.72 nm, doubling that of the pristine 

graphene due to the presence of additional prominent bulky surface functionalities resulting 

from the oxidation process. [3] It is worth to note that the actual thickness of graphene oxide 

flakes might be slightly larger due to surface contaminants, organic adsorbates, underlying 

substrate roughening, or occasional presence of bulkier functionalities. [3, 69]  

Although lacking electrical merits of graphene and being somewhat inferior in ultimate 

mechanical performance, graphene oxide and corresponding derivative materials still 

exhibit huge potential in nanocomposite fabrications due to its outstanding mechanical 

properties, high flexibility, high bonding potential, and extremely high aspect ratios. The 

elastic modulus of a single graphene oxide sheet is as high as 250 GPa despite the high 

concentration of local defects, which is much higher than that demonstrated by the most of 

known fillers. [97, 98] This high tensile strength is combined with high lateral flexibility, 

which facilitates nanocomposite flexibility but can be problematic during processing. 

Graphene oxide flakes are negatively charged in slightly acidic and basic conditions due to 

the surrounding carboxyl groups. The zeta potential of graphene oxide decreases 

progressively with higher pH values and can be as low as -50 mV at pH=10.5. [88] Graphene 

oxide does not precipitate in most polar solvents and can be incorporated into 

correspondingly charged polyelectrolyte matrices. [3, 87]  

Even pure graphene oxide materials without any polymer matrices show outstanding 

performance. Graphene oxide “paper” made by vacuum-assisted self-assembly (VA-SA) 

and evaporation methods possess very high values of the elastic modulus of 18-36 GPa, 

with only water molecules serving as binders. [99, 100, 101] Localized water molecules link 
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the neighboring graphene oxide flakes by hydrogen bonding while free water molecules 

that are intercalated in the interlayer spacing of graphene oxide layers lubricate the inter-

layer slippage, which in turn decreases the efficiency of stress transfer between layers. That 

is why the reported values of the mechanical characteristics of different graphene oxide 

papers strongly depend upon local humidity conditions and might disagree in some cases. 

To this end, it has been demonstrated that the covalently bonded graphene oxide paper with 

the use of organic, ionic, or polymeric crosslinkers possesses enhanced elastic modulus as 

compared to pure graphene oxide paper. The elastic modulus as high as 120 GPa can be 

reached with dense crosslinking. [99]  

It is also worth noting that graphene oxide can be reduced to graphene-like structures with 

similar mechanical and conductive properties by chemical, electrochemical, thermal, 

hydrothermal, and photothermal reducing techniques. [102, 103] Hydrazine, hydriodic acid 

(HI), electron complexes in liquid ammonia, metal particles, sodium hydroxide, and 

infrared laser illumination can all remove the oxygen-containing groups from the graphene 

oxide surfaces and restore proper hybridization of sp2 electronic orbitals. [104, 105, 106, 107, 108] 

Metal foil and laser beam can directly pattern graphene oxide films with controlled 

localization of the reduced regions. Aluminum foils have been employed to reduce 

graphene oxide paper with intercalated natural binders with controlled surface patterning 

and depth distribution. [ 109 ] Light-induced and plasmon-assisted graphitization of 

amorphous carbon may also be applied to pattern the reduction of graphene oxide. [110]  

These patterned reduced graphene oxide (rGO) materials can be made ready for integration 

of into flexible electronic devices. However, the rGO electronic materials are normally 

flimsy and polymer matrices are usually considered to work as mechanical support for their 

proper functioning. 

1.1.5 Interfacial interactions and polymer matrices 

Interfacial interactions between polymers and graphene-based materials play a key role in 

the mechanical integrity of the corresponding nanocomposite and their mechanical 

performance. Due to the homogeneous carbon composition of graphene without other 

functionalities, the interactions with polymers are limited to weak van der Waals forces, π-
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stacking, and hydrophobic-hydrophobic interactions. [111, 112] Van der Waals forces are 

universal attractive interactions between molecules generated by the transient or permanent 

dipoles of the molecules. Although very weak, these forces contribute the major part of 

interfacial attractions between graphene and common polymers like polyethylene due to 

intimate contact and very large specific surface area. [113] A special case of π-π interactions 

is especially important for the graphene materials with the electron-rich aromatic rings 

interacting with a variety of chemical species with phenyl rings, which can act as strong 

bonding sites. [114, 115] Then, π-stacking can adapt to different space organizations and 

significantly enhance bonding in graphene nanocomposites. Hydrophobic-hydrophobic 

interactions are another common means for binding graphene in hydrophobic polymer 

matrices.  

In contrast, graphene oxide possesses abundant oxygen-containing polar functionalities, 

such as epoxide, carbonyl, hydroxyl, and carboxyl groups. [102] The choices of 

functionalization and resulting interactions with various polymers are much more versatile 

for graphene oxide materials. Furthermore, covalent grafting of polymer chains on 

graphene oxide surfaces can achieve a better blending of graphene oxide component and 

the polymer matrix. [116] The mechanical strength of the covalent bonds is the highest 

among the intermolecular interactions and the compatibility of grafted graphene oxide is 

much better due to the replacement of exposed functionalities. Polymers that are terminated 

with hydroxyl groups are directly used to crosslink the graphene oxide sheets with their 

carboxyl groups through esterification. The interfacial crosslinking dramatically increases 

the modulus of the nanocomposite, but the compliance can be compromised due to the 

permanent and interlocking structure caused by the covalent crosslinking. [116] The 

electrostatic interactions are also strong and restorable alternatives to covalent bonding for 

graphene oxides with polar functionalities. Due to the strong electrostatic interactions and 

restorability of these interactions during variable strain loading, the nanocomposites can 

be much stronger and tougher than their counterparts without graphene oxide fillers. [3] 

Hydrogen bonding between two highly polarized donor and acceptor groups are abundant 

for graphene oxides. The epoxide, hydroxyl, carbonyl, and carboxyl groups on graphene 

oxide are all highly polarized with oxygen atom being the negative center. [75] As a result, 
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graphene oxide can bond with various polar polymers, especially polyelectrolytes and 

proteins, through hydrogen bonding networks and polar interactions. [117] Due to the high 

density of the highly polar functionalities, the interfacial strength of the polymer-graphene 

nanocomposites with hydrogen bonding network can be as high as, if not higher, than that 

of the covalently crosslinked nanocomposites. The toughness of such hydrogen bonded 

nanocomposites is greatly improved due to the in situ restoration ability of the hydrogen 

bonds, which is another advantage over the permanent nature of the covalent crosslinking. 

[69] 

It is worth noting that graphene oxide has recently been suggested as amphiphilic material, 

meaning that their heterogeneous surface contains both hydrophobic and hydrophilic 

domains, which can interact concurrently with very different functionalities of 

hydrophobic and hydrophilic nature. [118] The amphiphilicity of graphene oxide suggests 

two important facts: (1) graphene oxide is readily bonded with either polar or non-polar 

polymers to improve the mechanical properties of the nanocomposites; and (2) the strength 

of the interface can be further improved if a matching heterogeneous polymer interfaces 

are chosen. For every domain on the graphene oxide surface, either hydrophobic graphitic 

areas or hydrophilic oxidized areas, the amphiphilic macromolecules can spontaneously 

assemble to maximize the interfacial interactions. However, more studies on a wider 

spectrum of polymeric matrix and nanofiller compositions are needed to fully reveal the 

principles of the enhancing heterogeneous interactions.  

 

For comparative purposes, we summarized the common bondings which are characteristic 

for graphene-based materials, spatial range of interactions, and their relative strengths in 

Table 1.1. [119, 120, 121, 122] Apparently, it is ideal to utilize all possible interactions in the 

nanocomposite, not just covalent bonding, to ultimately fabricate a strong as well as tough 

system. As we also indicated in Table 1.1, all the weaker interactions are restorable on site 

after being broken, which is favorable to prevent macroscopic failures and facilitate the 

mechanisms of self-healing of nanocomposites.  
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Table 1.1 Intermolecular interactions relevant to graphene components. 

Interaction 
Strength 

(kJ mol-1) 

Bond length 

(nm) 
Restorability Example 

Covalent 
355 - 730 

[119] 

0.15 - 0.26 
[119] 

N C-C backbone 

Hydrophobic 40r [120] [a] <0.3 Y Protein-graphene 

π-stacking 8 - 12 [121] 0.5 [121] Y Polystyrene-graphene 

Coulombic 
5.8 - 232 

[119] [b] 
0.3 - 1.0 [119] Y 

Polyelectrolyte-graphene 

oxide 

Hydrogen 4 - 20 [119] 
0.24 - 0.35 

[119] 
Y 

Poly(vinyl alcohol)-

graphene oxide 

Van der 

Waals 
2 - 4 [119] 0.3 - 0.5 [122] Y Any two molecules 

[a] r is the radius (nm) of solute molecules in water. 

[b] Varies largely by different dielectric constants of media. 

 

1.2 Theoretical grounds for the selection of nanofillers 

Due to the extreme contrasts in composition, interactions, and properties between the 

dissimilar components in nanocomposites, conventional models of composite 

reinforcement have issues in describing the mechanical performances of the new materials 

with non-traditional reinforcing nanofillers. Therefore, in this section we will briefly 

refresh several common models that are used to evaluate the mechanical properties (mostly 

the elastic modulus value) of the nanocomposites based on the geometry, dispersion, and 

interfacial properties, and their applicability to graphene-polymer materials considered 

here. 

Yong’s modulus is the intrinsic property that represents the mechanical strength of the 

nanocomposite under modest deformations. Unlike ultimate strength and ultimate strain, 

Young’s modulus values only reflect the stress-strain behavior on the initial state of the 

loading process, and can be predicted by models unlike other mechanical characteristics. 

For instance, the popular Takayanagi model for the fiber/laminate composite systems 

predicts simple rules of mixing under different types of stress transfers: [2] 

𝐸∥ = 𝐸𝑚𝜈𝑚 + 𝐸𝑓𝜈𝑓  (1.1) 
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1

𝐸⊥
=

𝜈𝑚

𝐸𝑚
+

𝜈𝑓

𝐸𝑓
  (1.2) 

where 𝐸∥ and 𝐸⊥ represent the Young’s modulus parallel and perpendicular to the direction 

of fiber axis or laminate plain, respectively; 𝐸𝑚and 𝐸𝑓 are the Young’s modulus of the 

matrix and the filler, respectively;  𝜈𝑚 and 𝜈𝑓 are the volume fractions of the matrix and 

the filler, respectively. 

The Takayanaqi model assumes sharp interfaces, perfect bonding, and complete stress 

transfer across the interface. It is a reliable model for evaluating the upper (𝐸∥) and lower 

(𝐸⊥) limits of the aligned fiber nanocomposites and laminated composites. However, due 

to the discontinuous nature of the nanofillers, Takayanagi model fails to count the end 

effect of the nanofillers, which plays a significant role in the well dispersed nanocomposite 

systems. 

1.2.1 Models for particulate nanocomposites 

Kerner has proposed another model to describe the lower limit of the shear modulus of the 

particulate-reinforced polymer composites with spherical particles and perfect 

particle/particle and particle/matrix bonding: [2, 123]  

𝐺𝑐

𝐺𝑚
=

𝐺𝑓𝜈𝑓

𝑎
+𝑏

𝐺𝑚𝜈𝑓

𝑎
+𝑏

;  (1.3) 

𝑎 = (7 − 5𝜎𝑚)𝐺𝑚 + (8 − 10𝜎𝑚)𝐺𝑓; 𝑏 =
𝜈𝑚

15(1−𝜎𝑚)
. 

where G is the shear modulus; σ is the Poission’s ratio; ν is the volume fraction; and 

subscripts c, m, and f represent composite, the polymeric matrix, and the particulate fillers, 

respectively. The number of components in the nanocomposite system is not limited, so it 

is suitable to analyze the complex multicomponent systems.  

For particulate reinforced elastomers with carbon black and silica, Guth and Smallwood 

proposed a simple model to predict the lower bound shear modulus of the nanocomposite. 

[2, 124] The increase in the shear modulus of the composite is only related to the volume 
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fraction of the particulate fillers. This model assumes perfectly spherical fillers, complete 

adhesive bonding, and uniform dispersion, which are challenging to realize in 

nanocomposites.  

1.2.2 Models for nanocomposites with anisotropic fillers 

Halpin-Tsai model was developed for composites with nanoparticle fillers of various 

geometries, including rods, disks, and spheres. [3, 125] It provides well-defined shape factor 

and is widely adapted for composite behavior analysis. [40, 69, 126] Also, Halpin-Tsai model 

considers the distribution of the 2D aligned anisotropic fillers as well as 3D randomly 

oriented fillers with different shapes. For composite materials with parallel aligned short 

platelets, the Halpin-Tsai equation is presented as: [127] 

𝐸∥ = [
1+2𝛼𝜂∥𝜈𝑓

1−𝜂∥𝜈𝑓
] 𝐸𝑚  (1.4) 

where 𝜂∥ =

𝐸𝑓
𝐸𝑚

⁄ −1

𝐸𝑓
𝐸𝑚

⁄ +2𝛼
; 𝐸∥  and 𝐸𝑚  are the Young’s modulus of the parallel aligned 

nanocomposite and the matrix, respectively; α is the aspect ratio of the nanofiller. It is 

worth noting that when the aspect ratio is very high, the Halpin-Tsai equation regresses to 

the rule of mixture. When the aspect ratio is low (approaching spherical particles), the 

equation regresses to the common inverse rule of mixture for composite materials. 

For randomly orientated nanoparticles, the Halpin-Tsai considers the contribution of the 

transverse mode, modifying its format to the following: 

𝐸𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑚𝐸∥ + 𝑛𝐸⊥  (1.5) 

where 𝐸⊥ = [
1+2𝜂⊥𝜈𝑓

1−𝜂⊥𝜈𝑓
] 𝐸𝑚;  𝜂∥ =

𝐸𝑓
𝐸𝑚

⁄ −1

𝐸𝑓
𝐸𝑚

⁄ +2
; m and n are the coefficients that evaluating the 

contributions from the longitudinal mode and the transverse mode. [2, 128] 

Another development, the average-stress theory (Mori-Tanaka model) calculates the elastic 

stress field around an ellipsoidal particle in order to derive the longitudinal and transverse 

Young’s moduli [129]: 
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𝐸∥ = [
𝐴

𝐴+𝜈𝑓(𝐴1+2𝜎𝑚𝐴2)
] 𝐸𝑚  (1.6) 

𝐸⊥ = {
2𝐴

2𝐴+𝜈𝑓[−2𝜎𝑚𝐴3+(1−𝜎𝑚)𝐴4+(1+𝜎𝑚)𝐴5𝐴]
} 𝐸𝑚  (1.7) 

where A, A1 through A5 are model-specific coefficients that are primarily functions of the 

physical properties and geometries of the filler and the matrix.[2, 129] By adjusting the 

geometry parameters of this model, the filler could be represented as high-aspect ratio 

fibers or platelets and even spheres. However, it should be pointed out that the Mori-

Tanaka model treats the geometries of fillers based on ellipsoidal parameters, while the 

Halpin-Tsai model treats the fibers as cylinders and considers rectangular platelets. 

Finally, Jäger–Fratzl model predicts the elastic modulus of the layered, nacre-like 

biocomposites, where the flexible polymeric matrix regressed to a minute binder of the 

dominating stiff inorganic phases in the form: [130] 

𝐸𝑐 = [
8𝜈𝑚(1+𝜎𝑚)

𝐸𝑚𝜈𝑓
2𝛼2 +

1

𝜈𝑓𝐸𝑓
]

−1

  (1.8)  

In order to compare predictions of different models, we calculated the expected increase of 

the elastic modulus with increasing filler content for different filler shapes as predicted by 

different mechanical models (Figure 1.5). This brief comparative analysis shows that the 

careful selection of an appropriate model with consideration of composite properties and 

morphologies is critical for the prediction of the properties of nanocomposites. 

It is striking to see that differences in the predicted values among various models can easily 

reach 200%. On the other hand, it is worth noting that spherical particulates have much 

weaker reinforcing effect on the nanocomposite properties due to the high specific surface 

area. Randomly distributed platelets should result in the strongest isotropic 

nanocomposites, while aligned fibers or platelets exhibit a similar but direction-dependent 

reinforcement effect in the anisotropic nanocomposites. 
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Figure 1.5 Calculations of the theoretical values of elastic modulus predicted by different 

models described above with the elastic modulus of 150 GPa and 3.5 GPa, and Poisson’s ratio 

of 0.25 and 0.4 for the filler and the matrix, respectively. 
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Overall, the existing mechanical models, which have been developed for conventional 

composite materials are generally suitable for coarse evaluation of the nanocomposite 

behavior. However, these models ignore some critical differences and unique 

characteristics of nanocomposites, such as developed interfaces and complex morphologies. 

For example, all the models discussed above assume an ideal non-slipping bonding 

condition between the filler and the matrix and sharp interface between them, which is not 

the case for graphene-polymer nanocomposites. Therefore, more adequate mechanistic 

models should be developed especially those which consider the role of interphases, end-

to-end interactions, and extremely high specific interfacial area.  

1.2.3 Interphases in nanocomposites 

In the special case of nanocomposites, the extremely large surface-to-volume ratio might 

result in high binding efficiency. On the other hand, the strong interfacial binding might 

alter the macromolecular conformation in the vicinity of the filler surface. Such a 

transitional zone might alter the properties of polymer matrix with gradual change across 

the interface. This region is called “interphase” in contrast to the conventional sharp 

interface with an abrupt change in property and composition. [ 131 ] The additional 

reinforcing effect comes from the interphase layer of the polymer matrix. The stronger but 

ultrathin interphases are usually ignored in regular composites due to a minute contribution 

to the overall mechanical properties.  

In nanocomposite materials, however, the mechanical properties of the interphase region 

might play significant role. For instance, an interphase model has been suggested to account 

for the exceedingly high elastic modulus of polymer-graphene oxide nanocomposites. [126, 

132] The model assumes that the adsorption of polymers on graphene oxide surfaces alters 

the modulus of the adsorbed polymer layer. By estimating the modulus change, adsorption 

ratio, and the specific surface area of graphene oxide, the model adjusted the volume 

fraction of the nanofiller to an effective value after the polymer adsorption. This model 

adequately described the experimental data collected for nanocomposites studied.  
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1.3 Processing of the graphene-polymer nanocomposites 

The ultimate properties of graphene-based polymer nanocomposites are critically 

dependent upon the processing conditions in the course of nanocomposite fabrication. [133, 

134, 135] The functionality of graphene components is critical to lower filler loading rate, 

make them highly dispersed and organized sheets within polymer matrix to enhance overall 

performance of nanocomposites. In particular, the mechanical properties such as Young’s 

modulus, ultimate tensile strength and strain, and flexural strength are expected to be 

controlled by a composition of specific surface area, aspect ratio, organization, and loading 

content of graphene materials. Dispersion state, interfacial strength, affinity of components, 

and spatial organization are all of great importance in determining the final stiffness, 

strength, toughness, and elongation of polymer nanocomposites under various loading 

conditions. [136, 137, 138, 139, 140]  

The pre-treatment procedures and the fabrication methods dictate the fine morphology and 

physical/chemical properties of graphene-based polymer nanocomposites. For different 

graphene-polymer nanocomposites known to date, the extent of dispersion and exfoliation 

of graphitic layers is controlled by applied shear force, temperature, and solvent polarity. 

Effective control of restacking, wrinkling, and aggregation of graphene sheets is required 

for the development of functional nanocomposites with high performance. In fact, 

extremely flexible and high-aspect ratio graphene components are prone to random 

wrinkling, buckling, or folding during processing which dramatically affect the ultimate 

performance. In the case of the graphene oxide post-reduction, the degree of dispersion can 

be influenced by the hydrophobic nature of reduced graphene oxide sheets and dewetting 

processes at the interfaces.  

The choice of fabrication methods is determined by the functionalization of integrated 

graphitic sheets. Traditional fabrication routines include solution-based processing [139, 141, 

142, 143, 144] and melt-based processing. [145, 146, 147] Among most popular approaches for 

chemical modification and assembly are in situ polymerization, chemical grafting, latex 

emulsion blending, LbL assembly, and supramolecular self-assembly. [3, 148, 149, 150, 151, 152] 

For the in situ polymerization method, intercalated monomers within expanded graphite 
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clusters can promote their efficient exfoliation into single sheets throughout the polymer 

matrix based on catalysis reactions. [153] 

The solution processing maximizes filler dispersion in polymer matrix by using pre-

suspended single layer graphene sheets. The different solvents (aqueous to organic) can be 

used for dissolve graphene materials including graphene oxide and reduced graphene oxide. 

This approach has been widely exploited due to its high dispersion efficiency, facile and 

fast fabrication step, and a high level of control on component behavior. Disadvantages of 

this approach is challenges in finding common solvents, toxic solvent utilization, thin-film 

limitation, difficulties in solvent removal, and common aggregation issues during solvent 

evaporation stage. [154, 155] 

On the other hand, the melt-based mixing is a solvent free process in which applied 

mechanical shear force make the fillers distributed in the polymer matrix using screw 

extruder or blending mixer. [145, 156] This method allows stacked graphite or reduced 

graphene oxide to be exfoliated into viscous polymer melt by suppressing unfavorable 

interactions and inducing component dispersion. The melt mixing is recognized a practical 

approach that can be adapted to the graphene-based polymer nanocomposites. However, 

thermal heating and high local mechanical stresses can affect the stability of components, 

their shapes, and the reduction state of graphene oxide sheets. Several examples of various 

processing approaches will be discussed below.  

1.3.1 Examples of solution-based processing 

Solution mixing methods have been employed as a powerful strategy widely utilized in a 

combination with high shearing (e.g., due to ultrasonication) for a range of polymer 

matrices including poly(vinly alcohol) (PVA) [157, 143], poly(methyl methacrylate) (PMMA) 

[141], polyurethane (PU) [139], and polyaniline (PANI) [158]. Water-soluble PVA, which is 

nontoxic and hydrophilic polymer, has been used for the fabrication of graphene oxide 

nanocomposite films by simple solution mixing, which enables the graphene oxide 

components to be dispersed on a molecular scale and aligned in the polymer matrix. [159] 

The authors suggested that the resulting homogeneous dispersion and preferential 

alignment of graphene oxide sheets in PVA matrix combined with the strong interfacial 
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interactions accounted for the much improved mechanical properties in the nanocomposite 

films.  

In another case of solution-based process, the intense ultrasonication was employed to 

exfoliate graphite oxide materials into single-layer graphene oxide sheets that results in 

better graphene oxide dispersion in the polymer matrix. [160] The effect of ultrasonication 

of the solution with graphene oxide on the final mechanical properties of GO-PVA 

nanocomposites was explored in other study. [161] In this study, graphene oxide solution 

treated under different ultrasonication conditions and water was then mixed with the PVA 

solution, and stirred at room temperature. The ultrasonication time has been considered as 

a critical factor to determine the ultimate reinforcement in a nanocomposite system via the 

controlled exfoliation of graphene oxide component. The fabrication of nanocomposites 

with fully exfoliated graphene oxide sheets and maximum sheet size has been demonstrated 

for the optimal power input of the ultrasonication. 

Recently, Wajid et al. have reported a comparative study of a freeze drying and solution 

mixing strategies for high-strength conductive pristine graphene/epoxy nanocomposites. 

[ 162 ] Aggregation-resistant polyvinlypyrrolidon (PVP)-stabilized graphene dispersions 

have been obtained with the choice of the matrix in consideration.  The authors 

demonstrated that PVP modification can effectively stabilize the graphene component and 

enhances the interfacial interactions between graphene filler and matrix due to the polarity 

and affinity of the ring structure on PVP component. Additionally, polymer-stabilized 

graphene dispersions in water can be freeze-dried and then re-dispersed with aid of stirring 

and sonication prior to the final curing process. The authors reported that the ability to 

increase dispersion of graphene component led to enhanced mechanical properties by about 

40% at 0.46 vol% of graphene loading. Moreover, the nanocomposites also showed a very 

low electrical percolation threshold at 0.088 vol% of graphene content.  

Poly(e-caprolactone) (PCL) is a biodegradable and biocompatible aliphatic polyester with 

good resistance to water, solvents and oil, which is synthesized for biomedical and 

biomaterials applications. [163] Ning et al. have reported a fabrication route for obtaining 

graphene-polymer nanocomposites by covalent bonding of PLC and well dispersed, 
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chemically reduced graphene oxide for biodegradable tissue engineering. [163] The 

covalently-linked and chemically reduced graphene-based nanocomposite showed 

improved mechanical properties and electrical conductivity for nanocomposites with 

homogeneously dispersed graphene component. The subsequent chemical bonding of the 

components after rigorous solution mixing was critical for the stabilization of the finely-

dispersed morphology and the strong interfacial bonding between components.  

It is known that a popular semi-crystalline thermoplastic polymer, polypropylene (PP) is a 

dielectric material, which is employed in capacitors due to its outstanding dielectric 

properties. It has been demonstrated that the dielectric constant of PP can be substantially 

enhanced if conductive graphene is incorporated. In fact, Wang et al. demonstrated 

Figure 1.6 (a) Aqueous suspensions of PP latex and graphene oxide. (b) TEM image of PP 

latex. (c)(d) TEM images of the rGO/PP latex composite dispersed in water before filtration. (e) 

SEM image of fracture surface of the rGO/PP composite (after hot-press molding. (f) SEM of 

agglomerated rGO nanosheets. [164]  Copyright 2013. With permission of Elsevier. 
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graphene-filled nanocomposites by mixing PP latex with graphene oxide (Figure 1.6). [164] 

The reduced graphene oxide (rGO) and PP nanocomposites were prepared through a 

emulsion polymerization followed by an in-situ chemical reduction of graphene oxide and 

a subsequent filtration.  

The introduction of latex-type morphology has been recognized a versatile and 

environmental friendly approach to fabricate polymer nanocomposite with a fine 

dispersion and spatial stability as compared to traditional melt mixing of bulk polymer 

components. [164] The rGO/PP nanocomposites prepared by the emulsion method revealed 

the homogeneous dispersion of reduced graphene oxide nanosheets in the PP matrix, which 

facilitates a strong interactions at the interface (Figure 1.6). Moreover, the ultralow 

percholation threshold of 0.033 vol% was observed with the dielectric permittivity of the 

nanocomposites increasing by three orders of magnitude. 

In another study, Lalwani et al have reported a thermal crosslinking method for laminated 

polymeric nanocomposites and investigated the efficacy of graphene nanostructures as 

reinforcing agents for highly cross-linked nanocomposites. [ 165 ] Biodegradable and 

biocompatible nanocomposites have been prepared from polypropylene fumarate (PPF) 

with very low concentration of reinforcing graphene component of 0.01−0.2 wt%. The 

graphene oxide sheets have been dispersed under sonication as individual nanoparticles in 

the PPF polymer matrix with high cross-linking density. The resulting nanocomposites 

showed significantly increased mechanical properties, which were considered appropriate 

for bone tissue engineering.  

1.3.2 Examples of melt-based processing 

In a recent study, melt mixing under high shear force has been employed for the fabrication 

of graphene-based nanocomposites with polylactide (PLA) and polyethylene terephthalate 

(PET) as matrices. [ 166 , 167 , 168 ] As another example, elastomer/ graphene platelets 

nanocomposites have been developed by a melt compounding method. [169] Thick graphene 

platelets (partially exfoliated materials) from graphite intercalated compounds obtained 

using thermal shock followed by ultrasonication were exploited in this study. This material 

was mixed with an elastomer—ethylene–propylene–diene monomer rubber (EPDM) using 
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a two-roll mill and then crosslinked through vulcanization. Increased graphitic contents led 

to the enhanced tensile strength and reduced strain at fracture due to confinement effects. 

Electrically and thermally conductive elastomeric nanocomposites have been obtained 

with a modest percolation threshold.  

It has been demonstrated that the melt extrusion process promotes the exfoliation of 

reduced graphene oxide in the various polymer matrixes of different polarity such as 

isotactic poly(propylene) (iPP), poly(styrene-co-acrylonitrile) (SAN), polyamide 6 (PA6) 

and polycarbonate (PC), yielding thermoplastic nanocomposites with uniformly dispersed 

graphene materials. [170] Similar to the conventional expanded graphite, graphene oxide can 

be converted into thermally reduced graphite oxide with very low bulk density by rapid 

thermal heating process. In this study, the reduced graphite oxide materials were obtained 

by oxidation of graphite followed by thermal expansion at 600°C. As a result, the 

functionalized graphene with large specific surface areas of 600 to 950 m2 g-1 exhibited 

exfoliation during processing.  

The enhancement of the flame retardancy with addition of graphite oxide has been 

suggested to be related to the oxidation barrier of natural graphite and the graphite oxide. 

[ 171 ] To exploit this phenomenon, graphite oxide with different oxidation degrees or 

graphene materials were blended with PS matrix to serve as a flame retarding additive. 

Melt mixing the graphite oxide and graphene with the PS was conducted under different 

melt-mixing conditions. The incorporation of low concentration of graphene (5 wt%) 

showed the enhanced flame retardant properties (increased by 50 %) as compared to the 

pristine PS material.  

Melt mixing can be employed for post treatment after solution processing as described in 

a recent study. [172] Song et al. have presented PP nanocomposites with homogeneous 

dispersion of CNTs and reduced graphene oxides obtained via a facile polymer-latex-

coating. A combination of this routine with subsequent melt-mixing has been considered 

for developing an advanced hybrid nanocomposites. PP-based nanocomposites were 

obtained by mixing graphite oxide and CNTs with PP latex (a water-based emulation of 

maleic anhydride grafted isotactic polypropylene), followed by a reduction of graphite 
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component to the partially reduced state. The ternary system of PP/rGO/CNTs showed a 

continuous interconnected network of reduced graphite oxide and CNTs (Figure 1.7). [172] 

This processing strategy enabled the uniform dispersion of two different carbon 

components that resulted in remarkable multiple synergy in their mechanical properties, 

electrical conductivity, and thermal conductivity.  

The formation of the strong chemical bonding between graphene sheets and polymer 

matrices via covalent interactions has been considered an attractive route for the 

modification of functionalized graphene oxide components with mostly preserved intrinsic 

structure and properties. In recent study, Gao et al. have demonstrated the efficient grafting 

of poly[(dimethylamino)ethyl methacrylate] (PDMAEMA) brushes onto graphene oxide 

sheets via “grafting–from” process. [173, 174] Two step grafting methods included a non-

covalent modification of graphene oxide surfaces by pyrene terminated initiator via π- π 

interaction followed by in situ surface-initiated atom transfer radical polymerization (SI-

ATRP) (Figure 1.8).  

Figure 1.7 (A) and (B): the formation of interconnected network of rGO and CNTs using PP 

latex as a dispersing agent. (C) TEM image of PP/RGO/CNTs ternary system. (D) Schematic 

of strong interactions between RGO and CNTs via stacking. [172] Copyright 2013. With 

permission of Institute of Physics. 
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The resulting positively charged PDMAEMA brush layer has been used for the 

modification of the negatively charged graphite oxide sheets to produce GO-g-

PDMAEMA hybrid fillers. These nanostructures exhibit zwitterionic behavior because of 

the presence of different functional groups including phenol hydroxyl, carboxyl, and amine 

groups and further demonstrated the ability of these composite systems to serve a template 

for metal nanoparticle synthesis. [173] 

By using similar brush-modification approach, Shen et al. have proposed an efficient 

strategy for the chemical modification of graphene oxide sheets and demonstrated the 

preparation of polycarbonate (PC)/(GO-epoxy) nanocomposites with strong interfacial 

interactions. [175] In this study, an epoxy-containing layer was coupled to graphene oxide 

sheets via the ‘‘grafting to’’ method and then mixed with PC matrix by solution casting. In 

addition, terminal epoxide groups were exploited to covalently connect two graphene oxide 

sheets together, which resulted in the efficient crosslinking of graphite oxide layers via a 

coupling reaction. The residual functionalized sites in the grafted epoxy chains also formed 

chemical bonds with the PC matrix that thereby led to the enhanced mechanical properties 

of these nanocomposites.  

Figure 1.8 The preparation of PDMAEMA-modified graphene oxide and charging state of the 

GO-g-PDMAEMA composite at different pH values. [173] Copyright 2013. With permission of 

John Wiley & Sons. 
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The high pseudocapacitance of PANI arising from the versatile redox reactions and 

corresponding color changes allow for use in electrochemical capacitors and for 

electrochromic colorimetric applications. [ 176 , 177 ] Wei et al. have described a facile 

electropolymerization method for the preparation of PANI-graphite oxide nanocomposite 

films by electrodeposition of aniline monomers in sulfuric acid solution onto indium tin 

oxide (ITO) coated with graphite oxide. In other study, Zhu et al. reported the interfacial 

polymerization method for the fabrication of PANI nanofibers with graphite oxide 

materials with excellent interfacial strength due to the enhanced specific surface area. [178] 

The elongated fibrous structures were synthesized via a facile surface initiated interfacial 

polymerization method. A random growth of PANI fibers derived from the PANI coated 

graphite oxide sheets, which are instrumental in enhanced interfacial strength were directly 

observed with TEM.  

In alternative approach, Ning et al. reported the one-step template-free polymerization of 

3D hybrid materials composed of 2D fish scale-like PANI morphologies on graphene oxide 

sheets and carbon nanotubes. [179] These multicomponent nanomaterials were synthesized 

by a one-step process using a simplified template-free oxidative polymerization method. 

As a result, complex 3D microstructures assembled from hybrid PANI nanosheets 

combined with graphite oxide sheets were assembled. In this approach, the graphite oxide 

sheets were readily dispersed in an aqueous solution and further acted as nucleation sites 

for PANI deposition to fabricate hybrid reinforcing elements.  

In situ polymerization has also been demonstrated to provide another efficient means to 

help intercalate the graphene fillers in diverse polymer matrices including PS, PMMA, 

polystyrene sulfonates (PSS), polyimides (PI), and PET. [180, 181, 182] One recent study 

demonstrated graphene oxide/PI nanocomposites based on 4,4-bisphenol A dianhydride, 

4,4-oxydiphthalic anhydride, and diaminodiphenyl methane (MDA) as comonomers. [183] 

In one example, the addition of a small amount of graphite oxide component (0.03–0.12 

wt%) was found to significantly improve the mechanical properties of PI nanocomposites 

without a substantial decrease of film transparency (sustained above 80% in 500–800 nm 

range). 
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Overall, although solution and melt mixing methods offer lots of benefits in the processing 

of graphene-based polymer nanocomposite in terms of scalability and processing time, but 

they are limited in the level of control of the microstructure due to predominantly random 

distributions of the flexible fillers during mixing process and their easily crumpling and 

folding. To obtain higher ordering, unfolded states, and control over the orientation of 

loaded graphene sheets a step-wise LbL assembly has been considered in several recent 

studies.  

1.3.3 LbL assembly of graphene components 

Well known LbL assembly is an efficient fabrication approach for the development of 

ultrastrong and robust thin and ultrathin films, membranes, and coatings with high strength, 

controlled adhesion, flexibility, and environmental stability. [184, 185, 186, 187, 188, 189] These 

organized layered assemblies can provide a route to precisely engineer the graphene-

polymer interface and control the distribution and content of graphene component on a 

molecular level by alternating deposition of two complementary components from 

graphene filler suspension and polymer solution. [77] Furthermore, the morphology of the 

nanocomposite films can be finely tuned by the deposition mode, solvent removal 

procedure, or applied shear force through either direct dipping or spin and spray assisted 

LbL methods. On the other hand, vacuum-assisted assembly employs micro-flow at the 

filter/solution interface thus making the deposition process continuous. [69] However, the 

vacuum-assisted method cannot control precisely the arrangement of different components 

in the resulting nanocomposite paper. 

To date, only few studies have employed LbL assembly for the fabrication of graphene-

based nanocomposites. However, long ago the use of graphite oxide layered assemblies 

was demonstrated for the intercalated graphene oxide and poly (diallyldimethylammonium 

chloride) (PDDA) components. [190] The chemical and electrochemical post-reduction led 

to conductive nanocomposite films with high structural uniformity and chemical stability. 

In another study, Kovtyukhova et al. investigated multilayer assemblies by alternate 

adsorption of anionic colloidal graphene oxide sheets and cationic poly (allylamine 

hydrochloride) (PAH). [ 191 ] Multilayer films have been formed by dip-assisted LbL 
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assembly, which facilitated controlled coverage on the substrate and low surface roughness. 

Cassagneau et al. reported multilayer assembly of graphene oxide and polyelectrolyes 

(PDDA/GO/PEO) by a dip-assisted LbL method based on electrostatic and epitaxial 

adsorption of polymers for lithium ion battery electrode applications. [152]  

Zhao et al. fabricated multilayer films of PVA and exfoliated graphene oxide by a hydrogen 

bonding LbL method and measured their mechanical properties. [144] The dip-assisted LbL 

fabrication enabled the formation of the uniform ultrathin multilayer nanofilms with high 

homogeneity in morphology and flake orientation and led to a significant improvement of 

mechanical strength and a manifold increase of nanocomposite strength with respect to the 

original polymer matrix.  

In recent development, Zhu et al. compared the mechanical and electrical properties of the 

PVA/rGO nanocomposites with the same composition fabricated by either dip-assisted 

LbL assembly or vacuum-assisted method. [ 192 ] Their results revealed that the final 

mechanical properties are largely determined by the micro-morphology of the well-layered 

nanocomposites, which is concluded from the almost identical mechanical properties of 

both series of samples. On the other hand, the electrical conductivities are predominantly 

affected by the dispersed nanostructures of the nanocomposites because the transportation 

of electrons is predominantly dependent on the tunneling barrier among the finely 

distributed conductive components. 

Recently, Li et al. have fabricated hybrid multilayered films based on negatively charged 

graphene oxide nanosheets and polyoxometalate clusters with cationic polyelectrolytes 

using traditional dip-assisted electrostatic LbL assembly. [117] Film formation was followed 

by UV photoreduction of graphene oxide sheets by taking an advantage of the 

photocatalytic activity of embedded clusters without the use of toxic chemicals. This 

approach enabled the formation of uniform and large-area nanocomposite films with 

precisely controlled thickness on various substrates by varying the number of deposited 

graphene oxide layers.  

In a study from our group, ultrathin free-standing graphene oxide/polyelectrolyte 

multilayers were fabricated based synthetic polyelectrolytes (PSS/PAH) by a spin-assisted 
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LbL assembly in a combination with Langmuir Blodgett (LB) deposition (Figure 1.9). [3] 

This combined LbL-LB fabrication strategy facilitated the fabrication of a highly integrated 

nanocomposite membrane with large lateral dimensions (centimeters) and a thickness of 

around 50 nm by suppressing wrinkling and folding of graphene oxide sheets during 

deposition procedure. Micromechanical measurements on these freely suspended 

nanocomposite membranes revealed dramatic enhancement of the mechanical properties 

with the elastic modulus increased by an order of magnitude to about 20 GPa at only 8.0 

vol% graphene oxide loading content (see more discussion below). [3]  

In another very recent example, conductive nanocomposite films from PS microspheres 

wrapped by graphene oxide sheets were prepared via LbL assembly followed by graphite 

oxide reduction. [193] The nanocomposite films with a graphene conductive network were 

fabricated by hot pressing graphene-wrapped PS microspheres into thin films with 

network-like morphology. The use of PS polymer latex facilitated the uniformity of the 

graphene filler distribution in the polymer matrix. The combination of latex technology and 

LbL assembly offers a facile, efficient, and environmentally-friendly method for the 

Figure 1.9 Fabrication of ordered and hierarchical multilayered graphene oxide-

polyelectrolyte nanomembranes via combination of LbL and LB techniques. [3] Copyright 

2010. American Chemical Society. 
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fabrication of electrically conductive graphene/PS nanocomposites with well-developed 

network morphology.  

Supramolecular self-assembly has also been recognized a method to enhance the interfacial 

adhesion based on diverse chemical functionality. [194] In a recent study, interface-mediated 

assembly method have been exploited for the fabrication of micelle-decorated graphene 

oxide sheets with ordered polymer morphology. Amphiphilic heteroarm star copolymers 

(PSnP2VPn and PSn(P2VP-b-PtBA)n (n= 28 arms)) were adsorbed on the pre-suspended 

graphene oxide sheets at the air-water interface due to the peculiar surface activity of 

graphene oxide sheets. The resulting bilayer nanocomposites are composed of flat 

graphene oxide sheets uniformly covered with a highly ordered and discrete assemblies of 

Figure 1.10 AFM topography (left) and phase (right) of (a, b) GO /PS28P2VP28 star 

copolymer at pH 2 for surface pressures of 15 mN/m; (c) The height profile of corresponding 

topography image;  (d) FFT of domain morphologies for A and B regions from Figure 3b.  z-

scale: 5 nm (topography) and 30° (phase). [194] Copyright 2013. American Chemical Society. 
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unimolecular micelles of amphiphilic star macromolecules in pancake conformation. This 

organized morphology of polymer material at graphene oxide sheets has been attributed to 

the strong affinity among positively charged pyridine groups of star polymers onto the 

negatively charged basal plane and the edges of graphene oxide (Figure 1.10).  

Nanocomposites of PVA matrix with functionalized (sulfonated) graphene oxide 

components show fibrillar, dendritic and rod like structures under different processing 

conditions. [195] Since reduced graphene oxide has a limited dispersion in aqueous medium, 

the anchoring of –SO3H group on the graphene oxide surface prior to chemical reduction 

with hydrazine offers a promising method for producing a highly conducting and 

dispersible graphene-based materials in an aqueous medium. The fibrillar morphology, 

highly branched dendritic morphology, and rod-like structures were all observed due to 

hydrogen-bonded controlled supramolecular organization with different balances of 

interfacial interactions. 

After all, the dispersing and processing techniques all serve the purpose of fully reveal the 

structural and functional properties of graphenes. After discussion of various processing 

routines, in the next section, we will consider the mechanical properties of resulting 

nanocomposites in conjunction with their composition, morphology, and processing 

conditions. 

 

1.4 Mechanical properties of graphene–polymer nanocomposites 

It is well known that strong mechanical interfaces play a key role in the fabrication of tough 

nanocomposites as has been briefly been discussed above. [196, 197] Carbon nanomaterials 

also offer an advantage of fabricating multi-functional composites with high electrical and 

thermal conductivities along with strong mechanical properties. The most important factor 

along with the increased specific interfacial area is the control of the stress transfer across 

the interface, which can be achieved by means of covalent bonding, electrostatic 

interactions, hydrogen bonding, or van der Waals interactions.[198, 199, 200] It is expected that 

the strength of the filler material would dominate the properties of the composite material 
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but, in fact, it is the interfacial strength that usually controls the ultimate mechanical 

properties. Fine dispersion of a reinforcing component determines the high specific 

interfacial area. Poor dispersion or excessive aggregation of the carbon nanomaterials in 

the polymer matrix results in a decreased interfacial area along with weakening interfaces 

thereby leading to poor mechanical properties.  

Figure 1.11 shows the different scenarios encountered during polymer nanocomposite 

fabrication with laminated reinforcing materials. [201] It is widely accepted that the efficient 

exfoliation of stacked laminates followed by intercalation can improve the interfacial 

strength and dramatically rise the interfacial area thus leading to stronger nanocomposite 

materials. Efficient intercalation can lead to stronger interfacial interactions and a localized 

improvement in the properties of the composite. Thus, a uniform dispersion and exfoliation 

of graphitic components inside the polymer matrix are both important for improved 

performance.  

 Carbon nanomaterials are usually difficult to disperse in the polymer matrix and their 

simple mixing results in the formation of a weak interface and significant aggregation 

leading to poor mechanical properties if special efforts are not applied. [202, 203] Most 

frequently, carbon nanomaterials are functionalized to ease the dispersion and improve the 

chemical interactions with the polymer matrix. Numerous studies on functionalization of 

the carbon materials have been reported. [135, 204 , 205 ] But the properties of these 

nanocomposites still fall short of the expected characteristics considering superior 

properties of many nanofillers. Theoretically, it is not possible to achieve a complete stress 

transfer across the interface but the fabrication of a strong interface for the efficient stress 

Figure 1.11 Representative dispersing scenarios of laminated nanofillers in polymer matrix. [201] 
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transfer is essential to maximize the mechanical strength. [ 206 ] However, further 

development might be hindered due to a poor dispersion of these reinforcing nanostructures 

within the polymer matrix.  

The mechanical properties of a composite material are judged based on the enhancement 

of the performance as characterized by the elastic modulus, tensile strength, elongation, 

and toughness.[207] It is difficult to obtain a multicomponent material exhibiting record 

values for all these factors due to conflicting reinforcing mechanisms. Usually, efforts to 

improve one of these characteristics show an adverse effect on the other factors. Thus, 

selective improvement of one or more of these mechanical characteristics is usually 

considered as a priority depending on a specific end-application.  

However, many applications require high toughness thus requiring a balance between 

increasing mechanical strength, elastic modulus, and the preservation of materials 

compliance. Considering that the toughness value relates to overall energy dissipation and 

is formally evaluated by the area under the stress-stain curve, a material that can withstand 

high stress under maximum elongation will possess the highest toughness. Adding stiff 

nanofillers and tailoring strong polymer-filler interactions, a usual routine for 

reinforcement, frequently results in higher elastic modulus and mechanical strength but 

lower ultimate elongation. However, more compliant interfacial interactions might result 

in a slippage mechanism to be activated at the polymer-filler interface well before the 

ultimate fracture. The materials would eventually fail under higher load and thus 

demonstrates higher toughness. Thus, finding the optimum combination of reinforcing and 

deformational mechanisms should be carefully considered for the design of graphene-

polymer nanocomposites with ultimate mechanical performance. 

Graphene-based derivatives are mechanically strong but flexible that makes them an ideal 

nanofiller component for the fabrication of high-performance multi-functional polymer 

nanocomposites with high toughness. [74, 133] Graphene oxide components incorporated into 

different polymer matrices might result in a dramatic improvement in the mechanical 

properties such as elastic modulus, tensile strength, elongation, and toughness. A high level 
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of dispersion, flexible sheets, and a rich balance of interfacial interactions play the key 

roles as will be illustrated with selected examples from recent studies.  

1.4.1 Graphene papers 

Graphene oxide sheets can be assembled into highly-layered paper-like structures as 

fabricated by a vacuum-assisted assembly technique. [101, 116, 133, 134] These popular strong 

“paper” materials show very good mechanical properties including elastic modulus of 30-

40 GPa, strength of 120 MPa, and toughness of 0.26 MJ m-3. [133]  Chen et al. reported 

similar paper-like materials using reduced graphene oxide and achieved 300 MPa ultimate 

strength, around 40 GPa elastic modulus, and higher toughness of 1.22 MJ m-3. [208 ] 

However, despite these examples, the ultimate values reported are still well below those of 

the pristine graphene oxide materials or predicted by mechanical models. Furthermore, the 

reported mechanical properties of the graphene oxide papers are frequently divergent, 

inconsistent, poorly reproducible, and difficult to control. [134, 209]  

In original graphene paper materials, water molecules have been considered to be 

intercalated between the graphene oxide flakes. [134] Submolecular water layers are 

suggested to act as a binder, which enables the hydrogen bonding network between water 

molecules and the oxygen-containing functionalities on the surface of the graphene oxide, 

thereby, linking the neighboring flakes together. However, hydrogen bonding represents 

weak forces compared to ionic or covalent interactions and even a high density of the 

bonding network might be compromised by a high mobility of small molecules. Moreover, 

an excessive amount of water (several molecular layers of water molecules) can act as a 

plasticizer or lubricant in the layered graphene oxide paper that can compromise its 

mechanical strength. As an alternative option, borate-assisted crosslinking of graphene 

oxide papers has been suggested to fabricate extremely strong, yet, brittle materials. [99]  

Additional crosslinking of graphene oxide sheets in the multi-layered papers has been 

suggested to improve mechanical performance. [101, 116, 210] It is plausible to employ flexible 

polymers with proper side or main chain functionalities as the binder in graphene oxide 

materials with various oxidized surface functionalities. For example, the carboxyl 



39 

 

functional groups primarily located around the edge of the graphene oxide flakes are 

available for chemical crosslinking with amine groups to reinforce the inter-flake binding.  

Cheng et al. have reported successful crosslinking of graphene oxide flakes with 10,12-

pentacosadiyn-1-ol (PCDO) monomers via esterification (Figure 1.12a). [116] The 

monomers can be polymerized after intercalation to form a conjugated polymer with an 

integrated network of covalently bonded graphene oxide sheets.  

The resulting material fabricated in this study is significantly tougher than the regular 

graphene/graphene oxide based polymeric nanocomposites without crosslinking. The 

toughness reached a record value of around 3.0 MJ m-3, with a 120 MPa tensile strength, 

and significant, 5%, elongation to break. The authors claimed that the reason for such 

outstanding mechanical properties is the multiple strengthening mechanisms, including 

hydrogen bonding, entropic elasticity of the polymeric binders, covalent bonding between 

the graphene oxide and the polymer as well as between polymer chains themselves. The 

chemical reduction of graphene oxide further improved the mechanical properties of the 

nanocomposite, resulting in a tensile strength of about 160 MPa, 8% elongation to break, 

and around 4.0 MJ m-3 toughness (Figure 1.12). The crosslinking through the edge 

functionalities is inspiring because such reinforcement maintains the hydrogen bonds. This 

network acts at the initial stress thus facilitating large flexibility and compliance with 

Figure 1.12 Schemes of the esterification, crosslinking, and reduction of the graphene oxide 

nanocomposites and corresponding changes of mechanical properties . [116] Copyright 2013. 

With permission of John Wiley & Sons. 

(a) 

(b) 
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covalent bonding adding strength at small strain. The synergistic strategy employed in this 

research is important for developing robust graphene-based polymer nanocomposites.  

Further reinforcement of the nanocomposite films can be realized by controllably reducing 

the graphene oxide sheets using a green and facile aluminum reduction strategy with 

controlled depth and pattern of microscopic regions. [109] The toughness of the chemically 

reduced graphene nanocomposite films was not compromised as a result of this treatment, 

but the strength is increased by 100% to above 300 MPa, and the elastic modulus increased 

to 26 GPa (Figure 1.13). The mild and environmental friendly strategy to restore the 

electrical properties and dramatically improve the mechanical properties introduced in this 

study can be widely applied to almost all graphene oxide based nanocomposite materials 

without the concern of excessive damage of the polymeric binders, which is always a 

critical issue if the traditional harsh and toxic reducing techniques are employed. 

In another study, Park et al. reported robust paper-like materials from graphene oxide 

sheets crosslinked by polyallylamine (PAA). [101] PAA contains periodic reactive amine 

groups along the polymer backbones which are ready to react with the oxygen-containing 

functionalities on graphene oxide surfaces (Figure 1.13a). By adding 21% of PAA in the 

graphene oxide suspension and by employing extensive sonication, the homogeneous 

mixture can be initially formed. After filtration of this suspension, uniform paper-like 

(a) 
(b) 

Figure 1.13 (a) XPS spectra of the graphene oxide paper and the PAA modified graphene oxide 

paper, showing effective chemical crosslinking; (b) stress-strain curves of the PAA modified 

and pristine graphene oxide papers, respectively. [101] Copyright 2009. With permission of 

American Chemical Society. 
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morphologies can be achieved. The mechanical properties of the PAA-cross-linked 

graphene oxide paper are somewhat improved as compared to the non-modified graphene 

oxide paper (Figure 1.13).  

The ultimate stress increased from 82 MPa to 91 MPa, whereas the ultimate strain slightly 

decreased from 0.4% to 0.32%. A significant improvement was observed in the elastic 

modulus values of the nanocomposites as well. The elastic modulus measured at three 

different stages of loading (i.e., initial, straightening, and maximum) was significantly 

higher for the graphene oxide paper with PAA-modified components, reaching the highest 

value of 33 GPa (Figure 1.13b). The authors suggested that the modification of graphene 

oxide with a PAA component is critical for the efficient mechanical reinforcement by 

chemical crosslinking, but the overall reinforcing effect is modest when compared to the 

other results reported in literature.  

The subdued effect on the mechanical properties of the PAA-crosslinked graphene-

polymer nanocomposites may be due to macroscopic aggregation caused by the strong 

chemical interactions between PAA and graphene oxide materials. In order to obtain a 

homogeneous dispersion to assure uniform morphology, the initial mixture underwent 

extensive sonication. It is suggested that during the sonication the graphene oxide flakes 

are broken into smaller pieces, which undermines the strength characteristics of the 

resulting nanocomposites. Also, it is worth noting that although the dispersion is 

homogeneous after sonication, the presence of small aggregated nanoparticles 

compromises the final mechanical performance. 

Similar results have been reported by Tian et al., who used polyethyleneimine (PEI) to 

crosslink dopamine-functionalized graphene oxide materials. [210] The paper-like materials 

fabricated by vacuum-assisted method were additionally crosslinked with relatively high, 

30%, PEI content. These crosslinked papers showed very high elastic modulus of about 

100 GPa and excellent ultimate mechanical strength of 210 MPa. However, the ultimate 

strain of these crosslinked nanocomposites has significantly decreased to around 0.2% due 

to the inevitable dense and poorly deformable covalent chemical crosslinking network with 

low molar weight component (Figure 1.14).  
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1.4.2 Graphene-polymer nanocomposites via weak interfacial interactions 

Another strategy for toughening the graphene oxide-polymer nanocomposites is employing 

restorable network rather than permanent covalent bonding. Hydrogen bonding, 

hydrophobic interactions, electrostatic attractions, and polar-polar interactions with the 

potential of self-restoration and large deformation are considered for this purpose (Table 

1.1). The network of such multiple weak interactions can facilitate significant 

reinforcement and compensate the weaker individual bindings. Elastomeric synthetic and 

biological materials might be efficient binders due to their wide spectrum of chemical 

compositions and functions. In addition, their easy processability, high mobility, 

conformational flexibility are important advantageous features as well.  

In recent study, Kulkarni et al. exploited electrostatic interactions to bind the negatively 

charged graphene oxide sheets and oppositely charged polyelectrolyte multilayers. [3, 135] 

Negatively charged monolayer graphene oxide flakes in high concentration (60% of 

surface coverage) were incorporated into the polyelectrolyte matrix without folding and 

wrinkling (Figure 1.9). The multiple electrostatic interactions at the graphene oxide-

polyelectrolyte interface resulted in a significant toughening the ultrathin membrane by 

500%, from 0.4 MJ m-3 to a high value of 1.9 MJ m-3 (Figure 1.15). [3] The application of 

(c) 

Figure 1.14 The chemical structure and SEM morphologies of the graphene oxide paper before 

(a) and after (b) PEI crosslinking. (c) Summary of the mechanical performance of the PEI 

crosslinked graphene oxide paper. [210] Copyright 2013. With permission of John Wiley & Sons. 



43 

 

LbL assembly significantly increased the interaction area of the two components, thus 

optimizing the stress transfer condition during large strain. The content of graphene oxide 

required to achieve to achieve the optimum toughness was only 3.3 vol.%, owing to the 

high density of electrostatic interactions and the ability to restore the interactions under 

large strains.  

Meanwhile, the elastic modulus value increased by 8-fold to 18 GPa; the ultimate stress 

increased by 120% to 130 MPa, and the ultimate strain increased by 50% to 2.3% (Figure 

1.15). The increase in strain is unusual for graphene oxide reinforced polymeric materials 

because the ultra-strong graphene oxide tends to make the nanocomposite brittle. However 

in this case, the interactions are either too strong (e.g., covalent bonding) or too weak (e.g., 

van der Waals force), facilitating the stress distribution and the constituent reorganization. 

Utilizing moderate but high density interactions to bind graphene oxide and the polymeric 

component is a plausible philosophy to develop new nanocomposites with balanced 

mechanical properties. 

Figure 1.15 Representative stress-strain curve (a) of the graphene oxide-polyelectrolyte 

nanomembranes and the effect of graphene oxide content on the mechanical properties: (b) 

ultimate strain, (c) ultimate stress, and (d) toughness. [3] Copyright 2010. With permission of 

American Chemical Society. 
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The formation of hydrogen bonding networking is the most utilized reinforcement 

mechanism for the integration of graphene oxide component in various polymeric matrices. 

In another recent study, Putz et al. have compared the effect of the incorporation of 

graphene oxide nanofillers in the matrices of such different matrices as PVA (hydrophilic) 

and PMMA (hydrophobic). [211] Due to the contrasting hydrophobicity of these matrices, 

the reinforcing effects caused by the addition of graphene oxide are very different. As 64% 

of graphene oxide is added to the hydrophilic PVA matrix, the strong hydrogen bonding 

networking results in dramatically increased elastic modulus of 36 GPa and significantly 

improved tensile strength of 80 MPa (Figure 1.16a). However, the strain to failure of these 

nanocomposites plunged from 14.2% to 0.25% thus indicating stiffening of the reinforced 

material.  

The change in mechanical properties is attributed to the strong hydrogen bonding between 

PVA matrix and graphene oxide. In contrast, for the hydrophobic PMMA matrix, the 

hydrogen bonding is much weaker because the PMMA molecules can only serve as 

hydrogen bond acceptors through the ester oxygen. As a result, the Young’s modulus of 

the 68% graphene oxide filled PMMA matrix is very modest, around 6 GPa only (Figure 

1.16). But on the other hand, the ultimate strain is higher, around 2.6% (Figure 1.16).  

In different study, Li et al. have reported the effect of addition of a small content of 

graphene oxide in PVA matrix and the load transfer using polarized Raman spectroscopy. 

Figure 1.16 Storage moduli and tensile strengths of: A) PVA-based and B) PMMA-based 

nanocomposites. The average and maximum values are shown by the white and shaded bars, 

respectively. [211] Copyright 2010. With permission of John Wiley & Sons. 
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[212] Addition of 3% of graphene oxide to the PVA matrix caused a modest increase in the 

storage modulus value by 50% to around 6 GPa. On the other hand, the ultimate strength 

increased by 100% to 60 MPa with minimal compromise of the ultimate strain (decreased 

from 180% to 155%).  

In this study, the authors have employed Raman spectroscopy to understand the stress 

development in these nanocomposites and observed the shift of the D band of graphene 

oxide material as a function of engineering strain (Figure 1.17). The D band of the 

graphene oxide embedded in the nanocomposite shifted linearly and reversibly from 

1333.5 cm-1 to 1326 cm-1 when 1.0% strain was applied, indicating good interfacial transfer 

between the nanofiller and the matrix (Figure 1.18). [212] Although the calculated modulus 

value for graphene oxide is much smaller than the widely accepted value (200-250 GPa), 

the use of Raman spectroscopy to monitor the strain in the nanocomposite can be 

considered an important approach to the understanding of the reinforcement and load 

transfer mechanism between graphene oxide sheets and various polymer matrices. 

Xu et al. have also reported the mechanical strengthening of reduced graphene oxide to the 

PDMS matrix using Raman spectroscopy. [213] The authors demonstrated that the elastic 

modulus, toughness, damping capability, and strain energy density were all increased by 

42%, 39%, 673%, and 43%, respectively, with the addition of only 1% graphene 

Figure 1.17 Shift of the D band position with strain to the PVA-graphene oxide nanocomposite 

for loading and unloading. [212] Copyright 2013. With permission of American Chemical 

Society. 
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component. Also, a G band shift rate in Raman measurements of 11.2 cm-1 per 1% strain 

for compression and 4.2 cm-1 per 1% strain for tensile stress was observed for these 

nanocomposites. These values are much higher than the common values reported for the 

graphene sheets embedded in PDMS matrix. [214] The higher shift rate of the Raman bands 

in Xu’s results was primarily attributed to the efficient bonding of monolayers of reduced 

graphene oxide sheets to the hydrophobic PDMS matrix in contrast to the stacked graphitic 

platelets without proper functionalities as used in the other studies. 

Interaction of graphene oxide with the polymer matrices can be enhanced by chemical 

functionalization of graphene oxide surfaces. In order to crosslink epoxy resin with 

graphene oxide, Bao et al. functionalized graphene oxide surface with 

hexachlorocyclotriphosphazene and glycidol treatment to graft chains with epoxide groups. 

[17] The functionalized graphene oxide was mixed with epoxy oligomer and polymerized 

in situ to fabricate dispersed and crosslinked morphologies. The resulting highly 

crosslinked nanocomposites with only 2% graphene oxide content showed an improvement 

in elastic modulus from 1.5 GPa to 3.2 GPa. The ultimate strength also improved to 217 

MPa when 4% graphene oxide was added. 

In another recent study, graphene oxide was solution mixed with ultra-high molecular 

weight polyethylene (PE) and hot pressed to prepare a composite film. [215] Addition of 

small quantities of graphene oxide increases the mechanical properties of the neat PE films 

with the composite having 0.5 wt. % graphene oxide showing the best tensile strength. 

Moreover, the biocompatibility of these nanocomposites was tested and no negative effect 

on the cell growth was observed.  

1.4.3 Incorporation of graphene fillers into nanocomposites 

To date, very few results have been reported on the fabrication of polymer nanocomposites 

with a pristine graphene component. This is primarily due to the chemical inertness of 

graphitic surfaces and difficulties in the exfoliation. Graphene is highly hydrophobic and 

non-dispersable in most conventional organic solvents, which is another challenge for 

materials processing. The range of interactions between graphene and various polymer 

matrices is very limited as well. Hydrophobic-hydrophobic interactions and π-π stacking 
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are usually employed to enhance interfacial interactions with proper polymer matrices like 

PS but they are not extremely strong. [114] 

Among recent studies, Laaksonen et al. reported graphene-nanofibrillated cellulose (NFC) 

nanocomposites as mechanically robust materials. [216] The approach employed genetically 

engineered materials to match the properties of the two components, which opens wide 

opportunities for the field of bio-nanocomposites. The authors exploited a di-block protein, 

which can bind graphene layers through hydrophobic interactions and cellulose fibrils with 

biological recognition terminal group, to crosslink the different components (Figure 1.18).  

Figure 1.18 (a)-(c) The assembly of the graphene-NFC nanocomposites; (d)-(f) Mechanical 

properties of the graphene nanocomposites: Young’s modulus (YM), work of fracture (WOF), 

and ultimate tensile stress (UTS) versus the weight fraction of graphene in the nanocomposite, 

respectively.  [216] Copyright 2011. With permission of John Wiley & Sons. 
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The elastic modulus, ultimate strength and toughness increased to 20 GPa, 280 MPa, and 

about 5 MJ m-3, respectively, with only 1.25 wt% graphene added (Figure 1.18d-f). 

Virtually all polymeric materials can be engineered to fit in this strategy and bond strongly 

with graphene. However, the genetic modification requires significant synthetic efforts and 

long term screening and purification procedures.  

Another approach for the incorporation of graphene components into polymeric matrices 

is the in-situ reduction of graphene oxide. Li et al. have reported graphene-PVA 

nanocomposites through mixing of graphene oxide suspension and PVA solution. [217] The 

mechanical properties of the nanocomposite were already excellent even before chemical 

reduction of graphene oxide component with the ultimate stress and ultimate strain 

reaching 120 MPa and 1.2%, respectively. After HI reduction, the ultimate stress, ultimate 

strain and stiffness increased significantly to 190 MPa, 2.6%, 11 GPa, respectively. The 

reinforcement is claimed to be strong because of the restoration of the defected carbon 

network and the reduction of the interlayer spacing after the chemical reduction of 

graphene oxide. However, the real reinforcing mechanism is still unclear because the 

strength of the affinity between PVA matrix and the reduced graphene oxide which is 

hydrophobic is not clarified.  

1.4.4 Hydrogels reinforced by graphene derivatives 

Hydrogels are known for their wide range of applications including tissue engineering, 

drug delivery, and energy storage owing to their large specific surface area, high 

compliance, responsive behavior, and biocompatibility. [ 218 , 219 , 220 , 221 , 222 , 223 , 224 ] In 

particular, polymer hydrogels are promising for biomedical applications including 

controlled drug release, enzyme immobilization, sensors and actuators, and as tissue 

culture substrates. However, conventional hydrogels show modest mechanical properties 

such as low mechanical strength and low elastic modulus. Thus, significant efforts are 

devoted to improving mechanical properties (mostly mechanical strength and toughness) 

of the hydrogels by employing organic and inorganic cross-linkers, hydrophilic silica 

particles, and functionalized clay nanoplatelets as reinforcing agents.  
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Recent studies have reported the incorporation of graphene and graphene oxide into 

hydrogel structures as well. In particular, Shen et al. have reported the fabrication of 

graphene oxide-PAA hydrogels and investigated the mechanical, thermal, and swelling 

behavior of these reinforced hydrogels (Figure 1.19). [225] The functional groups on the 

graphene oxide surface were used as anchoring sites for the in situ polymerization of PAA 

matrix by N,N-methylenebisacrylamide (BIS). Moreover, the oxygenated functionalities 

also enabled the formation of the network of hydrogen bonds of graphene oxide with the 

compliant PAA matrix.  

The analysis of the stress-strain behavior of the hydrogels fabricated with and without the 

graphene oxide component showed that the incorporation of graphene oxide sheets resulted 

in a significant increase in the elongation to break up to 300% (Figure 1.19). Also, the 

nanocomposite PAA hydrogels with graphene oxide were found to be more ductile and 

capable of sustaining large deformation and complex shear force fields. The simultaneous 

increase in the mechanical strength and ductility was attributed to the strength of graphene 

oxide.  

Poly (N-isopropylacrylamide) (PNIPAAm) is a material of choice for thermoresponsive 

applications owing to the ability of polymer chains to undergo a reversible coil-to-globule 

transition at the Lower Critical Solution Temperature (LCST). [226, 227, 228, 229] PNIPAAm is 

Figure 1.19 (a) Scheme of the crosslinked gel network consists of graphene, BIS, and PAA; 

(b) Stress-strain curves of PAA gels with different combinations of GO and BIS contents. The 

inset shows the photographs of BIS-gel and GO-BIS gel from left to right, respectively.  [225] 

Copyright 2012. With permission of Royal Society of Chemistry. 
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considered for biomedical applications such as drug delivery on-demand, however, the 

poor mechanical properties with low compressive modulus and poor elastic recovery limit 

its use. Thus, graphene-based PNIPAAm nanocomposites have gained attention as a 

prospective material exhibiting enhanced mechanical properties along with high 

temperature sensitivity.  

Thermoresponsive graphene-nanocomposite PNIPAAm hydrogels were fabricated by 

Mariani et al. [230] Graphene was dispersed in N-methyl pyrrolidone by subjecting graphite 

to ultrasound treatment. The resulting solution was mixed with NiPAAm monomer and 

polymerized using a frontal polymerization technique. Mechanical analysis of the resulting 

nanocomposites revealed that the addition of graphene into the hydrogel matrix resulted in 

a material with thermoplastic behavior. The storage modulus and viscosity of hydrogels 

increased with the increase in graphene content; however, at higher concentrations, a 

significant decrease in the mechanical strength of these nanocomposites was observed 

possibly due to the slippage of the sheets at higher loading rates.  

Figure 1.20 (a) TEM of a GO/PPy nanocomposite sheet with platinium nanoparticles 

embedded, (b) I-V curve of a lyophilized GO/PPy hydrogel, (c) cyclic voltammograms of 

GO/PPyl hydrogel in 0.1 M LiClO4 at different scan rates, and (d) Ammonia gas sensing 

performance of three devices with different sensing elements. [232] Copyright 2011. With 

permission of Royal Society of Chemistry. 
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In another study, pH-responsive and thermal-responsive graphene oxide hydrogels have 

been fabricated by covalently attaching graphene oxide sheets to PNIPAM-co-AA 

microgels in water. [231] However, the mechanical properties of these reinforced hydrogels 

were not mentioned. Hydrogels made from conducting polymers such as polypyrrole (PPy) 

can be promising for electrochemical and energy storage applications. Shi et al. 

demonstrated the fabrication of graphene oxide-PPy hydrogels using in situ polymerization 

of monomer in graphene oxide solution and tested for their electrical properties (Figure 

1.20). [232] 

Graphene oxide components, which are known for their effective gelation properties, are 

expected to have a strong interaction with the conducting polymer resulting in a cross-

linked network. Indeed, the hydrogels showed a frequency independent storage modulus 

and the values were much higher than the loss modulus suggesting the fabrication of strong 

hydrogels (Figure 1.20). These hydrogels were much stronger than the other graphene 

oxide based-hydrogels reported in literature due to the strong π-π interaction between the 

graphene oxide and PPY matrix. The enhanced crosslinking and the high moduli of 

conjugated polymer with a stiff backbone both contributed to improved mechanical 

performance.  

 

1.5 Other functional properties and applications 

Besides the strong mechanical performance which has mostly been discussed above, 

graphene materials play a critical role in the fabrication of polymer nanocomposites with 

novel functionalities. Most important functionalities addressed in current studies are 

enhanced optical, electrical, thermal, or barrier properties. To date, graphene components 

have been included in a variety of polymer matrices such as epoxy polymers, PS, PANI, 

Nafion, and poly (3,4-ethyldioxythiophene) to fabricate nanocomposites with new 

functionalities. [ 233 , 234 , 235 ] The percolation threshold, conductivity, and mechanical 

properties of the nanocomposites were tested for prospective applications including 

supercapacitors, transparent conducting electrodes, gas barrier membranes, and biosensors. 

[150, 236, 237, 238]  
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However, to improve the functional performance of the nanocomposite, efficient 

dispersion of the graphene components inside the polymer matrix without aggregation 

should be implemented. This is a challenging task for potentially functional matrices 

similarly to those discussed above for mechanical performance. For instance, as was 

mentioned before inert graphene is difficult to disperse in the commonly used organic 

solvents and also in the functionalized polymer matrices. Thus, efforts to employ reduced 

graphene oxide or decorate the surface of graphene or graphene oxides with different 

functionalities are needed for improving the dispersibility and functionality. [74, 237, 239] 

1.5.1 Graphene-polymer nanocomposites for sensing applications 

In one of the earlier studies, reduced graphene oxide was mixed with Nafion, a well-known 

membrane-type material. [240] The resulting mixed solution was used for the fabrication of 

an electrochemically active polymer nanocomposite. These materials were used as a 

sensing platform to detect trace levels of toxic elements such as lead and cadmium. It was 

observed that the resulting Nafion-reduced graphene oxide films possess a high sensitivity 

towards metal ions and exhibit an improved detection limit of 0.02 µg L-1 for selected metal 

ions.  

Graphene-PANI nanocomposites have also been fabricated for hydrogen sensing 

applications. [241] Hydrogen sensing of the nanocomposite material was compared with that 

of PANI nanofibers and graphene sheets. The nanocomposite films were found to have a 

much higher sensitivity for hydrogen gas detection than films fabricated solely from 

graphene sheets or PANI nanofibers. In another study, graphene oxide-PP nanocomposites 

have further been fabricated by polymerization of pyrrole in graphene oxide solution. [232] 

These hydrogels were used as a sensing element in a chemoresistor sensor to detect 

ammonia gas. The lyophilized graphene oxide-PP composites showed a good sensitivity 

towards ammonia with a 40% increase in sensitivity detected if pores remind open under 

wet conditions. 

Several recent developments include the fabrication of multicomponent polymer 

nanocomposites from silica and other oxide particles coated with graphene oxide for 

detection of dopamine [242] and monitoring of mammalian nervous cells, proteins and E.coli 
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cells [243, 244, 245]; conducting reduced graphene oxide-polymer with high barrier and gas 

sensing properties [246, 247] and electrochemical sensing of isomers [248]. Methanol-sensitive 

nanocomposites with enhanced characteristics from PANI-graphene oxide nanocomposites 

[249], amplified colorimetric sensors for target DNA detection [250, 251], sensing skins for 

detection of volatile organic vapors [252], advanced electrochemical electrodes for peroxide 

and glucose detection for food control [ 253 ], and electrically conductive aerogels for 

catalysis and sending applications [254] have also been reported. 

1.5.2 Graphene-polymer nanocomposites as gas barriers 

Solid, non-porous fillers with a high surface area to volume ratio are one of the prime 

necessities in fabricating polymer nanocomposite thin films to prevent the permeation of 

gas and water molecules through the film. Food, electronics, Li-ion batteries, and fuel cells 

are sensitive to the presence of gases such as oxygen and moisture and require 

protective/active elements. [150, 255] Strong and modestly flexible metal thin films such as 

aluminum foils form an excellent barrier against these elements, however, presence of pin 

holes and defects during stretching, bending, and handling limits their broad use.  

On the other hand, flexible polymer nanocomposites offer an alternative due to their high 

mechanical strength combined with high transparency and a tendency to reduce the 

permeation of gases and moisture through the films. Traditionally, clay-based polymer 

nanocomposites known for their low permeability to gases and moisture are exploited for 

these applications. [256] However, recent studies have also reported the use of graphene for 

gas barrier and gas sensing applications owing to its non-permeable sheets-like structures.  

For instance, Yang et al. deposited graphene oxide sheets alternatively with PEI polymer 

to form a stacked polymer nanocomposite to investigate the oxygen barrier properties of 

these films (Figure 1.21). [255] A 91 nm thick film comprising of 10 bilayers of 0.1 wt% 

graphene oxide and 0.2 wt% PEI on top of PET supporting film showed an improved 

oxygen permeability of 2.5 x 10-20 cm2 s-1 Pa-2. This low permeability is comparable to the 

oxygen permeability observed in case of 100 nm thick SiOx nanocoatings. Also, these films 

were found to be useful for gas separation with a H2/CO2 selectivity (i.e., the ratio of 

permeabilities of different gasses, H2 and CO2) higher than 383.  
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In recent studies, a significant reduction of oxygen and carbon dioxide permeation and 

potentials for high selectivity of hydrogen permeation have been reported for in-situ 

polymerized, paper-like, and LbL graphene oxide-conjugated polymer nanocomposite 

films. [255, 257, 258] In another study, high moisture barrier properties combined with high 

transparency has been reported for robust graphene-based polyimide nanocomposite 

materials. [259] Graphene oxide-polymer films have been reported as flammable-resistant 

coatings caused by their high gas barrier properties and reduced oxydation [260] as well as 

highly elastomeric nanocomposites, which combine low permeability with good electrical 

conductivity. [150] 

1.5.3 Graphene-polymer nanocomposites for photovoltaic applications 

Graphene components as well as traditional carbon nanotubes are well known as hole 

transport materials, which can be effective in fabricating organic photovoltaic materials. 

[261] However, these nanocomposite materials are frequently deposited from highly acidic 

aqueous solutions, which adversely affects the common ITO electrodes and degrades the 

device performance.  

Figure 1.21 (a) LbL assembly of PEI-GO nanocomposites as gas barrier films.  Oxygen 

transmission rate of PEI-GO composites assembled on PET, measured at 23oC under (b) 0% 

RH and (c) 100% RH. [255] Copyright 2013. With permission of John Wiley & Sons. 
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Chhowalla et al. demonstrated the use of graphene oxide as alternative, solution 

processable hole-transport material in organic photovoltaic films (Figure 1.22). [ 262 ] 

Graphene oxide thin films were obtained from neutral solutions between the photoactive 

poly(3-hexylthiophene) (P3HT) : phenyl-C61-butyric acid methyl ester (PCBM) layer and 

transparent conducting ITO electrode. This design resulted in a dramatic improvement of 

the photovoltaic efficiency and were comparable to the devices fabricated using traditional 

poly(3,4-ethylenedioxythiophene) (PEDOT):PSS pair. Also, the use of non-aqueous 

solvents for the deposition of graphene oxide was suggested for further improvement of 

the device performance and to ensure the reliability of these films.  

Thin layers with graphene oxide and carbon nanotubes were also used as a replacement for 

PEDOT:PSS in P3HT:PCBM layers in a tandem devices. [263] The regular and inverted 

tandem photovoltaic cells fabricated in this study showed a significant increase in open-

circuit voltage (Voc) by 84% and 80% of the sub-cell Voc. Power conversion efficiency 

(PCE) as high as 4.1% was achieved for these modified tandem cells. The tandem cells 

showed high transparency in the near-infrared region and were expected to work well with 

tandem cells with a low band gap polymer component. Also, doping of the carbon 

Figure 1.22 Device schematic (a) and energy level diagram (b) of the photovoltaic device 

structure consisting of ITO/GO/P3HT:PCBM/Al components. Current-voltage characteristics 

of (c) photovoltaic devices with no hole transport layer (curve labeled as ITO) and (d) 

ITO/GO/P3HT:PCBM/Al with different GO thicknesses. [262] Copyright 2010. With permission 

of American Chemical Society. 
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nanotubes was expected to further improve the charge recombination at the interface. This 

study indicates that graphene oxide can effectively serve as the hole transport component 

and electron blocking layer for photovoltaic and light-emitting applications.  

Recent publications in this field discussed all-polymer-graphene nanocomposites with 

various graphene components and conjugated polymer matrices for a variety of related 

applications including those for optoelectronic phenomena [264, 265] and other energy-related 

and broader prospective applications [ 266 , 267 , 268 ]. Additional recent results include a 

combination of graphene with solid polymer electrolytes and dye-sensitized solar cells [269, 

270], fabrication of nanocomposites with photoluminescent quenching [271], non-covalent 

integration of variously reduced graphene oxide and stamping transfer into bulk 

heterojunction polymer solar cells [272, 273, 274, 275, 276].  

1.5.4 Graphene-polymer nanocomposites with high thermal conductivity 

Decreases in the size of electronic devices necessitate the fabrication of high density 

electronics leading to an increase in the heat generation. Fillers with high thermal 

conductivities efficiently transfer the phonons, however, the transport is slowed down at 

the polymer-filler interfaces in polymer nanocomposites due to the amorphous 

characteristics of the polymer with low thermal conductivity and imperfect interfacial 

binding. [277] 

Graphitic nanoplatelets, which are composed of a few graphitic layers were incorporated 

in the epoxy matrix at different loading concentrations and the nanocomposites were tested 

for their thermal conductivities. [278] A linear increase in the thermal conductivity of the 

nanocomposite was observed for higher graphene content. The incorporation of 5 wt% 

graphene oxide in the epoxy matrix resulted in a 4 times higher thermal conductivity than 

the neat polymer and can be further increased by incorporating 20 wt% of graphene oxide. 

Finally, thermal conductivity increased by up to 20 times for a graphene loading of 40 wt%. 

Expanded graphite was acid-functionalized and used as a filler material for fabrication of 

polymer nanocomposities with high electrical conductivity. [ 279 ] At similar loadings, 

functionalized graphite was found to be more effective filler for improving the thermal 

conductivity of the polymer nanocomposites.  
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A number of recent publications addressed improving of thermal conductivity graphene-

polymer nanocomposites such as in silane-crosslinked graphene oxide nanocomposites [280] 

and in nanocomposites with strong interfacial interactions [280,281]. Several recent studies 

reported nanocomposites with enhanced thermal conductivity and dimensional stability 

[280], fabrication of dielectric epoxy thermosets with increased thermal conductivity [282], 

design of stable nanocomposites which exhibit a high dielectric constant and low dielectric 

loss along with high thermal conductivity [283], improving thermal properties of polyimide 

and polyamic acid matrices [284], and controlling thermoelectrical properties of PANI films 

[285]. 

1.5.5 Graphene-polymer nanocomposites with electrical conductivity 

Graphene oxide is known to become highly conductive upon chemical reduction or thermal 

reduction or a combination of chemical and thermal reduction techniques. [102, 103, 104, 105, 106, 

107, 108] The extent of the restoration of the electrical conductivity during reducing procedure 

is largely dependent on the effectiveness of the removal of the oxygen-containing 

functionalities, especially the epoxide groups, from the surface and restoration of carbon-

carbon sp2 bonds. [102] Therefore, graphene oxide-polymer nanocomposites are potentially 

useful for integration into electronic devices if proper reducing treatment is applied. 

Graphene oxide incorporated into a PDMS matrix was found to show unique electric 

properties. [286] On application of an electric field of low strength, the composite showed a 

lower conductivity compared to the neat power due to the blockage of ion transport by the 

graphene oxide network. Further increase in the electric field resulted in nonlinear 

conductivity that is progressively more sensitive to the applied electric field. At high 

electric field, the electrical conductivity is dominated by the electron transport across the 

graphene oxide network which can be tuned by varying the oxidation state, the volume 

fraction of graphene oxide, and morphology. The authors suggested that the unique 

electrical properties combined with high mechanical strength has potential applications as 

field electromagnetic field protective materials or insulation materials in high voltage 

power system and electronic devices.  
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In other study, Koratkar et al. compared the electrical conductivity of multi-walled carbon 

nanotube-PS materials and graphene-PS nanocomposites fabricated by mixing the filler 

materials followed filtration and drying. [287] The conductivity of the nanocomposites was 

found to increase significantly but still was several orders of magnitude lower than the PS 

films with carbon nanotubes. Further, selective localization of graphene was achieved by 

adding PLA into the matrix. PLA interacts poorly with graphene and the higher viscosity 

of PLA compared to PS results in the isolation of PLA in the matrix. As a result of this 

phase separation, graphene migrates into the hydrophobic PS regions, which resulted in a 

decrease in the percolation threshold for electrical conductivity to 0.075 vol %. 

PP-graphene oxide nanocomposites with electrical conductivity were fabricated by in situ 

polymerization using Ziegler-Natta catalyst. [288] The use of a supported catalyst system 

helped overcome the incompatibility between polar graphene oxide and non-polar PP 

matrix. Although, the nanocomposites showed a poor electrical conductivity of 0.3 S m-1 

at a 4.9 wt% loading, it enabled a means of incorporating graphene oxide into a variety of 

incompatible polymer matrices.  

Nanocomposite films of polypyrrole, a well-known conducting polymer and graphene 

functionalized with sulfonic acid groups were electrochemically deposited from aqueous 

solutions containing pyrrole monomer, sulfonated graphene, and dodecyl benzene sulfonic 

acid. [ 289 ] The negatively charged sufonated graphene resulted in the doping of the 

polypyrrole during the polymerization process. The resulting composite films with 40 wt% 

sulfonated graphene sheets showed a specific capacitance of 285 F g-1 at a discharge rate 

of 0.5 A g-1 with improved electrochemical stability. In another study, isocyanate 

functionalization of graphene oxide and its subsequent reduction after solvent blending 

within the PS matrix resulted in a highly dispersed uniform nanocomposite film at a 

graphene oxide loading of 2.4 vol%. [133] These nanocomposites revealed a percolation 

threshold for electrical conduction of 0.1 vol% graphene oxide, which is three times lower 

than the values obtained for other filler materials.  

Stable nanocomposite films of graphene oxide and PANI nanofibers were prepared by 

vacuum filtration to form a layered material with the PANI nanofibers sandwiched between 



59 

 

the graphene oxide layers (Figure 1.23). [158] These mechanically robust and flexible 

nanocomposite films with 44% graphene oxide showed a 10 times higher electrical 

conductivity than the pristine PANI nanofiber films. These films were further employed in 

the fabrication of supercapacitor microdevices and resulted in a 210 F g-1 electrochemical 

capacitance at a discharge rate of 0.3 A g-1.  

Flexible PANI electrodes doped with graphene oxide were fabricated by in situ 

polymerization of aniline in the presence of graphene oxide. [290] Incorporation of graphene 

oxide resulted in a remarkable enhancement in the electrical conductivity and specific 

capacitance of the nanocomposite materials as compared to individual PANI materials. The 

nanocomposite showed an electrical conductivity of 1000 S m-1 at a PANI:GO ratio of 

100:1 and specific capacitance of 531 F g-1 (compared to 216 F g-1 for pure PANI). This 

process was further improved by incorporation of carbon nanotubes into the GO-PANI 

composite. [179] For this material, graphene oxide was mixed with carbon nanotubes to form 

a 3D network and further mixed with PANI by a one-step template-free process. The PANI 

Figure 1.23 Cross-section SEM images of (a) pure chemically converted graphene and (b) 

graphene-PANI nanofiber composite film.  (c) Plot of specific capacitance versus current 

density of graphene-PANI composite and PANI, and (d) cycling stability of graphene-PANI 

composite and PANI films. [158] Copyright 2010. With permission of American Chemical 

Society. 
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formed a fish scale-like structure on the graphene oxide sheets aided by electrostatic 

interaction, hydrogen bonding, and π-π interaction. These multicomponent nanocomposite 

materials exhibited a specific capacitance of 589 F g-1 and retained 81% of its initial 

capacitance even after 1000 cycles. 

Different graphene-PANI nanocomposites were prepared by the use of polymerized ionic 

liquid. [ 291 ] Graphene sheets were dispersed in N,N-dimethylformamide (DMF) and 

polymerized ionic liquid poly(1-vinyl-3-butylimidazolium chloride) (PIL) in order to 

stabilize the dispersion. PIL was found to adsorb on the graphene surface due to non-

covalent π-π interaction and helped in stabilizing the graphene dispersion in DMF. Aniline 

was polymerized on the surface of the PIL stabilized graphene sheets and resulted in a 5 

times higher electrical conductivity at a 21 wt% loading due to excellent electronic 

transport of graphene and the π-π interactions with the PANI. Graphene-PANI 

nanocomposites were fabricated by in situ polymerization of graphene oxide and aniline 

followed by the reduction of graphene oxide. [234] The relative concentration of polymer 

and the graphene filler was tuned by varying the mass ratio of graphene in mixed 

suspension. The nanocomposites with 80 wt% graphene showed a remarkable specific 

capacitance of 480 F g-1 at a current density of 0.1 A g-1 along with good reliability. 

Chemically reduced graphene oxide was stabilized with cationic PEI to fabricate 

supercapacitors. [ 292 ] The charged polymer component ensured good dispersibility of 

reduced graphene oxide and acted as binding sites for negatively charged carbon materials. 

These hybrid films showed an interconnected network of carbon structures with well-

defined pores to enable the diffusion of ions through the interconnected morphology. 

Finally, these conducting nanocomposites showed a good specific capacitance of 120 F g-

1 even at a high scan rate of 1 V s-1.  

3D porous structures of reduced graphene oxide and cellulose composites were fabricated 

by ball milling, template shaping, coagulating, and lyophilization. [293] Ball milling ensured 

the formation of homogeneous hydrogel composed of reduced graphene oxide embedded 

in cellulose matrix, improved thermal stability, and enhanced crystallinity of the cellulose 

matrix inside the nanocomposite. Reduced graphene oxide along with the coagulation 
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effect of cellulose material facilitated the preservation of 3D porous morphology during 

freeze-drying and the conducting material. This nanocomposite material with a 

GO/cellulose ratio of 70:100 showed a modest electrical conductivity of 15 S m-1. Also, 

these composites showed an ideal capacitive behavior and showed a specific capacitance 

of 71 F g-1 at a current density of 0.5 A g-1. 

Among numerous recent publications on this topic we would like to note several selected 

studies on inkjet printing of nanocomposite films with highly conductive patterns [294], high 

performance and flexible electromagnetic shielding nanocomposites [294], elastic and 

conducting hydrogels with double network morphology [295], and conducting melt-spun 

nanocomposite fibers [ 296 ]. Among other interesting developments are free-standing 

flexible graphene-PANI papers with good cycling stability [ 297 ], polycarbonate 

nanocomposites with much improved electrical conductivity [298], a variety of natural 

electroconductive cellulose nanocomposites [ 299 , 300 ], electrical memory devices from 

conjugated polymers and reduced graphene oxides [301], and melt processed polyamide 

conductive films [302]. 

 

1.6  Status and Issues 

This review has briefly summarized recent efforts on the materials selection, binding 

approaches, processing methods, theoretical models, design rules, and resulting 

mechanical, thermal, electrical and other functional properties of graphene-polymer 

nanocomposites. Graphene derivatives have outstanding mechanical properties and 

versatile functionalities to bind with various polymeric materials. Generally, the ultimate 

performance might be potentially outstanding as has been already demonstrated on a 

number of occasions.  

Solution and melt mixing, LbL assembly, vacuum-assisted routines, and in situ 

polymerization have unique characteristics and their own advantages for the fabrication of 

graphene-based nanocomposites with ultimate mechanical and functional properties. 

Critical issues are related to homogeneous dispersion in initial mixed states and fine 
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dispersion with exfoliations of individual layers and the establishment of the 

interconnected morphology. Choosing the appropriate dispersion technique or the 

combination of processing techniques and finding proper functionalized components is 

critical for reaching the best mechanical performance as illustrated with major 

characteristics such as those collected for a number of representative nanocomposite  

In conclusion, the best performing graphene-polymer nanocomposites presented in Table 

1.2 in terms of the most important mechanical properties for the ultimate mechanical 

applications such as the elastic modulus value and toughness are visualized in Figure 1.24. 

The data points which are related directly to numbering from Table 1.2 are also color-coded 

to reflect their ultimate mechanical strength in terms of stress-to-brake values. 

 

 

Figure 1.24 Mechanical properties of the graphene-polymer nanocomposites in the toughness-

modulus space with data points color-coded with ultimate strength and numbered according to 

Table 1.2. 

0 20 40 60 80 100 120 140 160

0

2

4

76

78

T
o

u
g

h
n

e
s
s
 (

M
J
 m

-3
)

Young's modulus (GPa)

60.00

90.00

120.0

150.0

180.0

210.0

240.0

270.0

300.0

Ultimate strength (MPa):To
u

gh
 b

u
t so

ft
 

Strong but brittle 

15 

14 

10 

9 6 

5 

8 4 

11 

12 

3 

2 

13 

1 7 

16 

Ultimate-goal zone: 
Tough, strong, and compliant 



63 

 

 

Table 1.2 The mechanical properties of the recent polymer-graphene nanocomposites. 
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This summary plot shows that the majority of the best results reported to date for graphene-

polymer nanocomposites are traditionally skewed to different axis and can be grouped in 

two very dissimilar groups. First group represents tough graphene-polymer 

nanocomposites with record values of toughness, which, however, do not show very high 

mechanical performance in terms of elastic modulus (mostly below 20 GPa) and the 

ultimate mechanical strength. Second group of materials includes mechanically strong 

nanocomposites with the extremely high elastic modulus value of 100-150 GPa (higher 

than steel), which, however, possess lower toughness due to their brittle behavior (well 

below 2 MJ m-3).  

A wide area of the potentially best performing tough, strong, and compliant graphene-

polymer nanocomposites (central region) remains largely intact currently. Only few recent 

cross the critical lines, which separate these data from two traditional groups (Figure 1.24). 

Currently, such a general pattern, which is common for many composite materials leaves 

exciting opportunities for the synergistic reinforcement of the universal mechanical 

properties of graphene-polymer nanocomposites, which, apparently will be explored in the 

near future. Materials reported to date in Table 1.2.  

Finally, various theoretical models with different assumptions are used to predict the 

mechanical properties of the graphene-polymer nanocomposites with various successes. 

The validity of the predicted values by different models largely depends on the assumptions 

made by the models which are not always valid for these nanocomposite materials with 

developed interphases.  

Besides the mechanical properties of the graphene enhanced polymer nanocomposites, the 

functional properties of such materials are also very important for wide applications, in 

which the electrical properties is fundamental. Although graphene show superior electronic 

properties, the high cost and the lack of efficient manufacture and distribution methods 

prevent its practical applications. Graphene oxide holds promising potentials as the 

precursor of graphene in electronic applications. However, the controllable reduction 

techniques still require significant improvements. Moreover, the unique electrical and 
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chemical activity of graphene oxide is also subject to intensive investigation to fully unveil 

the functional applications of this material without harsh chemical modifications.  
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Chapter 2 Research Goals, Objectives, and Overview 

 

2.1 Goals 

The goal of this study is to (1) understand the fundamental principles of the interfacial 

interactions in bio-nanocomposites via comprehensive investigation of the influences of 

the morphology, secondary structure, surface charge, concentration, and organization of 

graphene oxide, biomolecules (silk fibroin), and biomaterials (cellulose nanocrystals), (2) 

design ultra-robust and flexible graphene based bio-nanocomposites using the 

fundamental understanding obtained from the model system studied, and (3) elucidate the 

mechanism of the metal-mediated chemical modification of graphene oxide and the 

electronic transport characteristics of the graphene based bio-nanocomposites via facile 

and eco-friendly strategies. And as the comprehensive and ultimate goal, the 

documentation of the key principles for the integration of inorganic nanofillers with 

biomacromolecules exhibiting optimal structural and functional performance for 

mechanical and bioelectronics applications is the core value of this study that is constantly 

implemented throughout the research process. 

Thus, in an effort to address the fundamental and engineering aspects separately, the study 

will be divided into two parts. In the first part, the combination of silk fibroin and graphene 

oxide is chosen as a model system to understand the binding mechanism of these two 

diversely originated materials on the molecular level. Assembly techniques will be 

employed to accurately build up the interfaces between silk fibroin and graphene oxide, 

ruling out the distribution problem of the conventional nanocomposites, and direct 

molecular imaging using high-resolution atomic force microscopy will provide visual 

proofs of the specific adsorption of the molecules. Molecular conformation of the silk 

fibroin is also a critical parameter that can be manipulated to investigate the influence of 

entropy on the properties of the bio-nanocomposites. Mechanical models are going to be 

proposed to offer theoretical support of the experimental results.  As another example of 
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the high-performance bio-nanocomposite material, cellulose nanocrystal will also be 

employed to combine with graphene oxide with the aim of proposing new category of bio-

nanocomposite materials predominantly using nanofillers of various physical dimensions 

to replace the weak polymeric matrix materials. 

The mechanism of inducing electrical conductivity of the graphene oxide in these bio-

nanocomposites are investigated in a great detail in terms of dynamics, kinetics, and spatial 

confinement. By employing a new reduction technique using metal as reductant, the 

underlying chemistry needs to be clarified in order to fully leash the powerful and versatile 

potential of the new technique. Multiple characterization techniques will be employed to 

determine the efficiency and effectiveness of the reduction processes that include defect 

healing, oxidation removal, and reestablishment of the electronic transport routes, 

including X-ray photoelectron spectroscopy for chemical states of the elements, 4-probe 

measurement of the electrical conductivity, Raman mapping for the reduction resolution 

study, etc. The non-invasive reduction technique is the key to open up the avenue of the 

post-treatment for electrical conductivities of the graphene oxide bio-nanocomposites, 

which is critical for the fast development of the flexible bio-electronics. 

In the second part, the engineering aspect of this study will be focused on improving the 

mechanical properties of the bio-nanocomposite films by varying contents of the 

nanofillers in the bio-nanocomposites and improving interfacial binding between the 

components. Different thickness scales of the bio-nanocomposite films from dozens of 

nanometers to a few micrometers will be fabricated by various self-assembly techniques 

and superior mechanical properties are expected throughout the whole spectrum of films. 

Other biopolymeric components are also studied in addition to silk in order to combine 

multiplex unique characteristics of different nanocomponents. 1D and 2D combination of 

nanofillers is studied for advanced mechanical, electrical and optical properties by 

eliminating the passive and weak polymeric matrix. In addition, the electrical properties of 

the graphene oxide in the bio-nanocomposite films will be significantly improved while 

avoiding using harsh treatment conditions or toxic reagents. In order to corporate the 

mechanical robust bio-nanocomposite films into flexible electronics systems, microscopic 

patterning techniques will also be utilized to arbitrarily control the shape and depth of the 
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electrically conductive pattern of the modified graphene oxide. Finally, the functional 

properties of the graphene oxide films will be investigated in conjunction with the electrical 

conductivity of the substrate, and self-powered tactile sensors developed from the concept 

are demonstrated. 

 

2.2 Objectives 

In the proposed goals, the following technical objectives would be addressed (and 

summarized in Figure 2.1): 

Figure 2.1 Illustration of research goals and technical objectives. 
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Task 1 – Ultra-robust bio-nanocomposites based on graphene and biomacromolecules 

 Fabricating ultra-robust graphene oxide-silk fibroin bio-nanocomposites using the 

SA-LbL assembly and investigating the strong interfacial interactions by measuring the 

mechanical properties of the nanomembranes by bulging and buckling techniques. The 

correlation between the strong mechanical properties and the effective interfacial 

interactions is to be established by the mechanical analysis and generalized by suggesting 

new model for strongly binding nanocomposite systems with significant contribution from 

the interphase region between the nanocomponents. 

 Elucidating the effect of the secondary structure of the soft phase molecules (silk 

fibroin) on the interfacial interactions and stress transfer of the bio-nanocomposites by 

refining the spin coating process and suggesting the dynamic spinning of the 

biomacromolecules.  The effectiveness of the dynamic spinning process for modifiying the 

secondary structures of the biomacromolecules is to be illustrated by high-resolution 

imaging techniques and secondary-structure-sensitive spectroscopies. The improved 

interfacial interactions between the graphene oxide components and the 

biomacromolecular components are to be demonstrated by mechanical strenthening and 

theoretical model analysis. 

 Formulating mechanically strong graphene oxide paper by introducing the bio-

macromolecular binder (silk fibroin) to the graphene oxide aqueous suspension during the 

vacuum-filtration process. The homogeneous distribution of the nanocomponents in the 

mixture is to be realized by the adjustment of the repulsive forces between the graphene 

oxide flakes. The mechanical properties of the modified graphene oxide paper is to be 

characterized by tensile tests and compared to those of the pristine graphene oxide papers. 

 Combining stiff nanofillers of various dimensions (1D cellulose nanocrystals and 

2D graphene oxide) directly by eliminating the weak and insulating polymeric matrix to 

realize the optimized stress distribution and improved optical and electrical properties in 

the bio-nanocomposites. The interfacial interactions between the cellulose nanocrystals 

and graphene oxide flakes are improved by surafece charge modifications using 

polyelectrolyte prime layers for maximized columbic attractions. Optical and electrical 
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properties are optimized by proper post-treatments to achieve multifunctional bio-

nanocomposite thin films to facilitate the practical applications in the bioelectronics. 

 

Task 2 – Programmable induction of the electrical conductivity of the graphene 

biopaper 

 Reduction of the graphene oxide in the biomacromolecule bonded paper and 

inducing the electrical conductivity of the material while protecting the bio-binder (silk 

fibroin) from degradation using the facile and mild metal-assisted spontaneous 

electrochemical reaction. The effective and localized reduction is to be demonstrated by 

various imaging and quantification techniques; and the electrical properties of the reduced 

graphene paper are to be characterized and compared with other commonly used flexible 

or organic electronic materials.  

 Investigation of the dynamics and kinetics of the reducing reaction, and 

manipulation of the electrical properties based on the kinetics. The reduction conditions, 

including time period, pH, and the content of the insulating bio-binders are to be 

individually screened to figure out the optimized combination of parameters for the desired 

electrical and electronic properties while keeping the mechanical integrity of the graphene 

biopapers. The overall mechanism and reaction routes of the metal-assisted spontaneous 

electrochemical reactions are to be suggested based on the experimental data and classical 

thermodynamics theories of chemical reduction potentials. 

 Demonstration of the applicable path for fabricating microelectronic devices by the 

programmable reduction technique using photolithography for patterned electrically 

conductive areas on the flexible graphene oxide paper substrate. The optimization of the 

patterning parameters for the highest resolution of the reduced patterns are to be conducted. 

Self-powered tactile sensors are to be shown as an example of utilizing the unique chemical 

properties of graphene oxide to develop novel functional materials that are active for 

sensing and actuation applications.  
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2.3 Organization and composition of dissertation 

Chapter 1 is a critical review of the graphene-polymer nanocomposites. Graphene-based 

materials have prompted the development of nanocomposites for emerging applications in 

need of superior mechanical, thermal, electrical, optical, and chemical performance. These 

nanocomposites exhibit outstanding structural and functional properties by synergistically 

combining the characteristics of both components if proper structural organization is 

achieved. Here, we briefly introduce the materials and basic interfacial interactions in the 

graphene-polymer nanocomposites and the corresponding theoretical models that are 

capable of predicting the mechanical performances of such nanocomposites. Then, we 

discuss various assembly techniques that are available for effectively incorporating the 

strong and flexible graphene-based components into polymer matrices by the utilization of 

a set of weak and strong interfacial interactions available in functionalized graphenes. We 

discuss mechanical performance and briefly summarize other physical (thermal, electrical, 

barrier, optical) properties which are controlled by processing conditions. Finally, we 

present the status and current issues of the graphene-based polymer nanocomposites by 

discussing the major opportunities and challenges. 

Chapter 2 describes the scientific goals and technical objectives of the work discussed in 

this dissertation, which are organically assembled based on the integration of graphenes 

and biomacromolecules for structural and functional applications. This chapter also 

provides a concise overview and brief description of the general structure and contents of 

the dissertation. 

Chapter 3 introduces the experimental techniques that critically support the studies 

presented in this dissertation. It includes materials preparation, sample fabrication, and 

characterization techniques. Materials preparation and sample fabrication processes 

include oxidation of graphite, dissolution of silk, spin assisted LbL (SA-LbL) assembly, 

vacuum-assisted filtration, and electrochemical reduction of graphene oxide. 

Characterization techniques mechanical properties measurement, interphase reinforcement 

model and data analysis approaches, ellipsometry, atomic force microscopy, scanning 

electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman 
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spectroscopy. In the following chapters the experimental details sections are provided as 

supplementary descriptions for specialized application and further experimental details 

including specific parameters are supplied. 

Chapter 4 reports that graphene oxide (graphene oxide) – silk fibroin (silk fibroin) 

nanocomposite membranes were fabricated by SA-LbL technique. Ultrathin (50 nm) 

graphene oxide-silk fibroin nanocomposite membranes possess outstanding mechanical 

properties. The unique fabrication approach of SA-LbL allows precise control of filler 

concentration by varying the number of filler layers. By this method, we were able to vary 

the graphene oxide concentration from 1.7 to 23.5 vol.%. The modulus, ultimate stress, 

ultimate strain and toughness were all found to increase linearly within this range of 

graphene oxide concentration and no sign of modulus saturation is observed even at 

concentrations of 23.5 vol.%, for which a 149 GPa tensile modulus was recorded. The high 

values of mechanical properties, namely 77 GPa tensile modulus, 282 MPa ultimate stress 

and 2.2 MJ m-3 toughness of the optimized 11.5 vol.% sample, originate from the effective 

2-D graphene oxide filler, the β–sheet nanocrystals of the silk fibroin matrix, and the dense 

H-bonding interactions between the alternating quasi-single-molecular layers. In addition, 

a strong silk fibroin-graphene oxide interphase is proposed to predominantly facilitate the 

high elastic moduli that exceed the theoretical values predicted by Halpin-Tsai model. 

Benefiting from the ultrastrong mechanical performances, rapid fabrication process and 

inherent biocompatibility, the potential applications for the graphene oxide-silk fibroin 

nanomembranes include nanosensing, protective coating, bio-encapsulation and energy 

harvesting. 

Chapter 5 expands the results from Chapter 4 and proposed that ultrathin and robust 

nanocomposite membranes were fabricated by incorporating graphene oxide (GO) sheets 

into a silk fibroin (SF) matrix by a dynamic spin-assisted layer-by-layer assembly (dSA-

LbL). We observed that in contrast to traditional SA-LbL reported earlier fast solution 

removal during dropping of solution on constantly spinning substrates resulted in largely 

unfolded biomacromolecules with enhanced surface interactions and suppressed nanofibril 

formation. The resulting laminated nanocomposites possess outstanding mechanical 

properties, significantly exceeding those previously reported for conventional LbL films 
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with similar composition. The tensile modulus reached extremely high values of 170 GPa, 

which have never been reported for graphene oxide based nanocomposites, the ultimate 

strength was close to 300 MPa, and the toughness was above 3.4 MJ m-3. The failure modes 

observed for these membranes suggested the self-reinforcing mechanism of adjacent 

graphene oxide sheets with strong 2 nm thick silk interphase composed mostly from 

individual backbones. This interphase reinforcement leads to the effective load transfer 

between the graphene oxide components in reinforced laminated nanocomposite materials 

with excellent mechanical strength that surpasses those known today for conventional 

flexible laminated carbon nanocomposites from graphene oxide and biopolymer 

components. 

In Chapter 6, we report on a novel way for facile writing-in of electrically conductive 

microscopic patterns by a localized electrochemical reduction with micron-scale resolution 

on robust bio-graphene paper under ambient conditions. These robust biopapers with 

enhanced toughness and stability in wet-environment were assembled by replacing 

traditional synthetic binders with heterogeneous hydrophilic-hydrophobic biopolymer 

“binder”-silk fibroin. This “binder” matches closely to the patched, amphiphilic nature of 

graphene oxide surfaces that result in outstanding mechanical performance of tough but 

flexible bio-graphene paper. This green approach can be valuable for future inexpensive, 

disposable, biodegradable paper with written electrical circuitries integrated into 

biolelectronic, flexible, and conformal devices such as artificial sensing skin. 

In Chapter 7, the novel approach to chemically tuning the electronic properties of bio-

bond graphene paper is suggested, which allows for the facile fabrication of large area, 

flexible, robust, and highly conductive films. A layer of anodic metal deposited on the 

surface of the initial laminated graphene oxide-silk films with micron thickness is used to 

initiate the fast and spontaneous electrochemical reduction of graphene oxide to the 

electrically conductive states at predetermined depths under ambient conditions. By 

controlling the reaction conditions, a wide range of conductivities from those common for 

semiconductors to semi-metals can be achieved at different stages of the defect-removal 

process. Ultimately, the electrical conductivity can be increased over six orders of 

magnitude from about 1 x 10-2 S/m for pristine bio-bond graphene oxide paper up to 1.5 x 
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104 S/m for fully transformed film. The conductivity achieved is by far the highest among 

the reduced graphene oxide papers using environmentally friendly techniques, and 

moreover, the mechanical performance and flexibility remains extremely high. We propose 

the mechanism responsible for this process involves the balance of the internal potential 

drop due to the electric resistance of graphene oxide layers and the diffusion of oxygen 

containing species to the reactive interface. This electrochemical reduction technique is 

facile, environmentally friendly, and adaptable for large-scale fabrication of the robust, and 

lightweight thin film for flexible electronic devices for sensing, energy storage, and 

wearable electronics where the interfacial charge transportation characteristics and great 

mechanical robustness are critical. 

Chapter 8 discusses the combination of high strength with elasticity and high toughness 

in flexible nanocomposites is a vital requirement for the development of advanced 

engineering materials. However, achieving such a combination is severely restricted by 

mutually exclusive reinforcing and deformation mechanisms. We demonstrate 

exceptionally strong and record tough carbon-carbon nanocomposites composed of a 

cellulose nanocrystal “haystack” network encapsulated into graphene oxide monolayer 

sheets. The design combines two classical reinforcing components—stiff, high aspect ratio 

cellulose nanocrystals, and strong flexible, graphene oxide sheets-“glued” together by a 

polymeric binder. These nanomaterials show extremely high ultimate stress of 490 MPa 

and toughness of 3.9 MJ m-3 with the Young’s modulus of 60 GPa. Moreover, an 

electrochemical post-treatment of the graphene oxide component further increases the 

elastic moduli of nanocomposites to 169 GPa. These mechanical properties with uniquely 

balanced strength and toughness are by far the highest known for laminated all-carbon 

nanomaterials. 

Chapter 9 demonstrates a series of self-powered metal-GO hybrid sensing materials for 

detecting bio-tactile signals by outputting hundred-millivolt continuous electrical 

potentials upon the bare finger touching. The bio-electrolyte triggered electrochemical 

reaction at the metal-GO junctions and the secondary proton diffusion synergistically 

contribute to the high electrical potential output. By deliberately choosing the metal species 

(i.e., Al, Cu, Au, etc.) and the combination of the metal-GO junction pairs, various signal 
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output strengths and polarities are demonstrated. The tactile sensors fabricated using the 

hybrid metal-GO junctions are both robust and fast, with stable output by repeated 

actuation patterns and high response rate up to 20 Hz. Electronic skin based on the two 

dimensional metal-GO junction pairs show simplified device structure with only four 

electrodes that address nine tactile positions, excellent signal independence that screens 

mechanical deformation and indirect human touching, and outstanding mechanical 

robustness owing to the excellent physical binding mechanism of the biomolecules. The 

humidity sensing, especially the fast bio-tactile sensing capabilities using these 

mechanisms are unprecedented and ready for scaling up in the wide applications of 

wearable bio-signal monitors, smart tagging, electronic skin, and portable/disposable 

electronics. 

Finally, by focusing on the scientific impact and future routes, Chapter 10 presents the 

general discussions of the overall research that is included in this dissertation. Three 

aspects of the challenges and the corresponding suggestions of further development has 

been presented and discussed, including improved dispersion and distribution of the 

nanofillers, strengthened interface interactions between the nanocomponents, and 

controlled reduction of graphene oxide component for bio-electronic applications. 
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Chapter 3 Experimental Methods 

 

3.1 Materials 

3.1.1 Synthesis of graphite oxide 

The graphene oxide aqueous suspension was prepared by Hummers method.[89] Natural 

300-mesh graphite powders (Alfa Aesar) were added with 2.5 g of NaNO3 in 107 ml of 98% 

H2SO4, which was cooled to 0 ̊C before mixing. Then 15 g of KMnO4 was slowly added 

with vigorous stirring to avoid the temperature raising above 20 ̊C. The mixture was heated 

to 35±3 °C and maintained for 30 min before adding 214 ml of H2O, waiting for the 

temperature to raise to 98  ̊C and maintaining for 15 min. 850 ml of warm water and 1 - 2 

ml of H2O2 was added to reduce KMnO4 and MnO2 to MnSO4, during which the color of 

the solution turned from black to dark green, then brown, and finally bright yellow.  

The acidic mixture with graphene oxide suspended was kept still overnight for the graphene 

oxide to precipitate, then the clear supernatant was removed before adding the same 

amount of Nanopure water (18.2 MΩ cm, Millipore Corp.). After three cycles of the acid 

removal, the graphene oxide suspension turns from bright yellow to dark brown, indicating 

the pH of the suspension has slightly raised. The graphene oxide suspension was then 

divided into several 45 ml centrifuge vials and centrifuged at 10000 rpm for 1 hour to 

separate the acidic contaminates and the graphene oxide by dumping the supernatants, 

which is repeated until the pH of the suspension rise above 3.3. Finally the graphene oxide 

was redispersed in Nanopure water and diluted to 0.3 wt% for storage, during which the 

suspension is occasionally stirred to prevent precipitation. 

3.1.2 Silk fibroin processing  

Silkworm cocoons (Air Force Office of Scientific Research) were cut in half to remove the 

silkworm remains and consequently peeled into thin layers. Then the collected splits (4g) 
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were mixed with boiling NaCO3 (2 L, 0.02 M, BDH) for 30 min with occasional stir to 

dissolve the glue-like sericin. After that, the supernatant was removed, and the residual silk 

fibroin fibers were rinsed thoroughly with Nanopure water for five times and air-dried 

overnight. The effective removal of sericin was confirmed by ~23% weight loss compared 

to the original weight of the cocoon splits. Next, the dried silk fibroin filaments were 

dissolved in LiBr (9.3M, Alfa Aesar) at 60 °C to obtain a concentration of 10 w/v%. The 

silk fibroin-LiBr aqueous solution was cooled to room temperature, centrifuged to remove 

the foam, and dialyzed against Nanopure water (1.8L) using a Slide-A-Lyzer dialysis 

cassette (10,000 MWCO, Thermo Scientific) for 1 day, during which the dialysis medium 

was refreshed every 60 minutes during the working hours (at least 6 times). Finally, the 

silk fibroin aqueous solution after the dialysis was collected and purified by centrifuging 

twice (9000 rpm, 20 min, 5 °C). The concentration of the resulting silk fibroin solution was 

3.7-4.7 wt% as determined by dry-weight method. The solution was further diluted to the 

desired concentration immediately and stored in the refrigerator at 2 °C. All the silk fibroin 

aqueous solutions are used within 2 weeks after the dialysis to ensure the random coil 

secondary structures. 

3.1.3 Cellulose nanocrystal fabrication and modification 

The aqueous suspension of CNC was prepared from microcrystalline cellulose (MCC) by 

acid hydrolysis followed by purification by centrifugation.[380] Chemically modified CNC 

material was obtained by following procedure in literature.[303] Briefly, a mixture of 1 mL 

of CNC suspension (1 wt%) and 2 mL of PEI solution (1 wt%, Mw=25 000) was stirred 

continuously for 1 h at room temperature. The pH was adjusted to 1.5 with concentrated 

HCl to enhance the ionic interactions between CNC and PEI. After 10 min, the mixture 

was centrifuged at 14000 rpm for 10 min and washed with Nanopure water to remove free 

PEI. Then the precipitate was re-dispersed into Nanopure water and PEI crosslinked CNC 

aggregation was removed by centrifuging at 8000 rpm. Finally, the uniform PEI-modified 

individual CNC suspension from the supernatant was diluted to 0.3 wt%. After the 

modification, around 10% weight fraction of PEI was introduced onto the surface of CNC, 

which is determined by calculating the atom mass ratio derived from XPS. 
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3.2 Sample fabrication 

3.2.1 Spin-assisted layer-by-layer (SA-LbL) 

SA-LbL is a fast and reliable technique to precisely fabricate layered nanostructures. On a 

14x25 mm Piranha solution (90 ml of 30% H2O2 and 210 ml of 98% H2SO4) treated silicon 

wafer, we first deposit 100 nm of PS as a sacrificial layer. Then the 0.2 wt.% silk fibroin 

aqueous solution and 0.04% graphene oxide methanol or aqueous suspensions were 

deposited alternately to build the bilayer structure (Figure 3.1). After each deposition of 

graphene oxide, the sample was rinsed with Nanopure water to remove loosely binded or 

overlapped graphene oxide flakes. The thickness of the resulting membrane was checked 

by ellipsometer and AFM.  

3.2.2 Dynamic spin-assisted layer-by-layer (dSA-LbL) 

dSA-LbL is a modified SA-LbL by dropping the solutions while the substrate is spinning 

at a preset speed. The silk fibroin aqueous solution (0.02 wt%) was dropped on rotating (in 

contrast to the stationary substrate in conventional SA-LbL process) substrate (up to ten 

droplets for one step), followed by the deposition of graphene oxide suspension from 0.04 

wt% solution. Between deposition steps, the surface was rinsed with Nanopure water to 

Figure 3.1 Diagram of the process for spin-assisted layer-by-layer assembly: different 

components in solutions are alternatively dropped on the flat surface and spun to dry. Thin films 

of each component are left on the top surface. 
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remove excessive material. The routine was repeated until the desired thickness was 

reached. 

3.2.3 Vaccum-assisted filtration (VAF)  

VAF technique was employed to fabricate the bio-bond graphene paper according to the 

established procedures. The graphene oxide in the aqueous suspension was first 

deprotonated by adjusted the pH to 12 using 0.25 M sodium hydroxide solution right before 

mixing with silk fibroin solution. The color of the suspension turned from dark brown to 

black with the increased pH. By gently stirring, a total of 380 µL of the 0.2 wt% silk fibroin 

solution was slowly added to 10 ml of 0.3 wt% pH-adjusted graphene oxide suspension 

with a capillary-neck micropipette tip, making a silk concentration of 2.5 wt% with respect 

to the dry weight of the graphene oxide. No gelation was observed in the silk-graphene 

mixture. Then the solid content in the mixture was assembled into paper-like films using a 

vacuum filtration system (Figure 3.2a). The hydrophilic filter (Versapor, Pall Life 

Sciences) is 47 mm in diameter and with pore size of 0.45 um. The filtration took about 12 

hours to finish depending on the total volume of the aqueous mixture. Right after the 

Figure 3.2 (a) the vacuum filtration setup; and (b) the scheme of the reduction procedure of the 

graphene oxide paper. 

(a) (b) 
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filtration was completed, the visually uniform film was rinsed five times and stored in 

deionized water for 2 hours before soaking in 1 M hydrochloric acid for 1 hour to induce 

further crosslinking. After that, the acid treated film was rinsed thoroughly again and 

soaked in an excessive amount of deionized water for 1 hour to neutralize the bio-bond 

graphene paper. Finally, the bio-bond graphene paper was peeled off from the filter paper 

and dried against a flat surface in air for reduction and further characterizations.  

3.2.4 Metal deposition 

The metal electrodes (Al, Cu, Au) were deposited using electron beam evaporation (Mark 

40, CHA Industries) at 3 Å/s. The geometries of the electrodes are predetermined by 

shadow masks and the gap is fixed at 12 mm wide without further notification. For the 

interdigitated finger pattern, the finger width and gap are both 1 mm and the finger length 

is 14mm.  

3.2.5 Chemical reduction of graphene oxide  

The metal assisted electrochemical reduction of the bio-bond graphene paper is conducted 

in ambient conditions as follows. Firstly, a layer of 500 nm thick aluminum is deposited 

on the top surface of the bio-bond graphene paper by electron beam evaporation (Denton 

Explorer, Denton Vacuum, LLC.) at a deposition rate of 3 Å/s. Then the aluminum coated 

bio-bond graphene paper is placed on a 2”x3” glass slide and hydrochloric acids with 

various concentrations (10-5, 10-3, 10-1, 10o, 101 M) are slowly dropped on the aluminum 

coating. The second glass slide is immediately covered on top of the acid activated, 

aluminum coated bio-bond graphene paper and pressed gently for uniform distribution of 

the acids and firm contact between the aluminum layer and the bio-bond graphene paper 

surface. The reaction is timed for 2-20 hours and quenched by rinsing the bio-bond 

graphene paper with Nanopure water. All the unreacted aluminum flakes are rinsed off 

easily by a gentle spray of nanopure water at a shallow angle. Then the surface reduced 

bio-bond graphene paper is soaked in Nanopure water for 1 hour and air dried to neutralize 

and remove the ionic contaminates from the reactions. When cyclic reduction is required, 

the dry surface reduced bio-bond graphene paper is coated by aluminum on the reduced 

surface and the aforementioned standard protocol for reduction is conducted repeatedly. 
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3.2.6 Photolithography 

Micropatterned graphene oxide films were fabricated via a single exposure step 

photolithography under cleanroom conditions using a mask aligner (Karl Suss MA-6). A 

layer of negative photoresist (OSCoR 2313) was spun on to the film at 3000 rpm to yield 

a 1.2 µm thick uniform coating, followed by exposure to UV light (435 nm wavelength) 

with a photomask (soda lime glass coated by chrome pattern) to facilitate selective 

crosslinking the exposed portion of the photoresist layer. Following by a further 

development process, the photoresist layer formed inverted micro-patterns on the graphene 

oxide film, worked as a shadow mask during the following aluminum deposition. 

 

3.3 Characterizations 

3.3.1 Ellipsometry  

The thickness of the resulting n-bilayer nanomembrane was estimated by M2000 

spectroscopic ellipsometer (J.A. Woollam). The thickness of the PS sacrificial layer on a 

silicon wafer with 1.6 nm SiO2 layer was measured beforehand, and the total thickness of 

the structure with an n-bilayer nanomembrane was measured immediately after the SA-

LbL deposition. The light signals at three progressive angles were detected and Cauchy 

model was used to fit the experimental data.[304] 

3.3.2  Atomic force microscopy (AFM)  

AFM topographical and phase images were collected with a Dimension 3000 microscope 

(Digital Instrument) in the tapping mode. Silicon tips with a spring constant of 50 N m-1 

were used for all scans at 1 Hz. ScanAsyst mode and soft tapping mode of a Digital 

Instruments-ICON AFM (Vecco) was used to provide the RMS roughness, topography and 

the graphene oxide coverage information of the nanomembrane. AFM scan data was 

analyzed with the Nanoscope Analysis software to obtain 1×1 um2 RMS roughness 

(averaging from 10 random sites). Phase image of the AFM scan was processed by ImageJ 

(contrast enhancement and boundary trace) and converted to binary data for graphene oxide 
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coverage analysis. The average coverage was calculated from 8 random 20×20 um2 scan 

areas. Sample thickness was also checked complementarily to ellipsometry by scratching 

the nanomembrane and analyzing the topological profile. 

3.3.3 Scanning electron microscopy (SEM) 

We use the Hitachi S3700 SEM to observe the microstructures of the corss sections and 

surfaces of the nanocomposite films at the acceleration voltage of 10 kV and work distance 

of 10 mm. For the contrast observation of the GO and rGO surfaces, a pre-exposure time 

of 1 min is applied before actual imaging. Energy dispersive x-ray spectroscopy (EDX) is 

done on the same SEM with the integration time of 300 seconds. 

3.3.4 Transmission electron microscopy (TEM) 

TEM imaging was conducted on a Hitachi HT7700 by dropcast the sample onto a carbon-Formvar 

TEM grid (TED PELLA, INC). To minimize radiation damage and use the smallest objective 

aperture for enhancing contrast, measurements were operated at 80 kV acceleration voltage. 

3.3.5 X-ray diffraction (XRD)  

The interlayer spacing of the GO-SF microfilms were measured by X’Pert Pro Alpha-1 

diffractometer at 40mA current and 45 kV acceleration voltage. The scan range is 4-25 

degrees with a step size of 0.004 degree and integration time of 4 seconds per step. Scherrer 

equation D = Kλ/(Bcosθ) has been employed to estimate the stacking number of the bilayer 

structure and the size of the beta-sheet crystals of silk, where D is the stacking number, 

K=0.9 is the shape factor, λ is the wavelength of the X-ray (0.154 nm), B is the full width 

at half maximum (FWHM) of the diffraction peak, and θ is the Bragg angle. 

3.3.6 X-ray photoelectron spectroscopy (XPS)  

The elemental composition of the samples was characterized by Thermal Scientific K-

alpha XPS system. XPS is an analytical technique that directs a monochromatic beam of 

X-rays on a sample and detects the characteristic electrons that are ejected. The energies 

and number of electrons are used to determine the elements present, their abundance and 

chemical bonding state. This technique is highly surface sensitive and the typical detection 
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depth is ~5nm. It can detect light elements such as Silicon at about 1% of the total surface 

composition and heavier elements down to ~0.1% with an accuracy of 20-50% of the given 

value.[305] For survey scans, two integrations and 120 seconds per scan were chosen. For 

high resolution elemental scans, four integrations and 20 seconds per scan were chosen. 

3.3.7 Raman Spectroscopy  

Raman spectra and maps were captured by a WiTek Alpha 300R confocal Raman 

microscope using 514 nm laser. The laser power is 0.5 mW for all measurements. The 

single spectra are taken by 1-second exposure and 30 integrations. And the maps are taken 

by 0.5-second exposure per pixel. Raman microscopy relies on vibrational spectroscopy 

which can provide chemical composition, structure of the material by monitoring the 

frequency shifts between excitation laser and scattered light. It is one of the most important 

tools for characterizing the microstructure of various carbon materials (graphite, 

amorphous carbon, carbon nanotubes, graphene), primarily due to its non-destructive 

approach, presence of sharp bands, and high intensity of these characteristic bands. This 

technique provides a wide range of critical information for bulk carbon materials, 

nanoscale structures, carbon-based nanocomposites, and individual carbon structures, 

including the composition, internal stresses and crystal orientation inside the material.[306, 

307, 308, 309] Raman spectroscopy is a unique technique for probing the physical state of 

different carbon materials in a nondestructive manner. The Raman microscope provides a 

lateral resolution of ~250 nm and vertical resolution of 1μm.[310] 

3.3.8 Fourier transform infrared spectroscopy (FTIR) 

A vertical attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) 

was used to study silk secondary structure at the silk-GO interphase and the hydrogen 

bonding formation in the CNC-GO nanocomposites in ultrathin LbL films.  Several GO-

biopolymer bilayers were spun cast onto both immobile and mobile silicon ATR crystal.  

An infrared beam is directed in to the high refractive index crystal at a specific angle where 

is undergoes total internal reflectance.  Total internal reflectance creates an evanescent 

wave that extends 0.5 – 5 um beyond the crystal surface.  Sample IR adsorption attenuates 

the evanescent wave.  This attenuated beam reenters the crystal then exits and is directed 
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by a series of mirrors to the detector that records the beam as an interferogram which 

analysis software OPUS 6.5 converts to an IR spectrum.  Analysis was conducted in a 

Bruker Vertex 70 FTIR using liquid nitrogen to cool the detector to improve IR detection 

of the ultrathin films with resolution 4 cm-1.  For each sample, 200 background scans on 

the wafer without sample were collected then the sample was deposited and a final 

spectrum of 100 averaged sample scans was produced.  IR spectra were analyzed in 

accordance with well-established wavenumber assignments for hydrogen bondings[311] and 

secondary structure motifs beta-sheets, beta-turns, random coils, and alpha helices and 

peaks noted in second derivative of the produced spectra.[312] 

3.3.9 UV-Vis spectroscopy 

UV-vis extinction spectra of the nanomembranes on soda lime glass slides from 350-900 

nm (1 nm intervals) were collected using a Shimadzu UV-vis-2450 spectrometer with D2 

and tungsten lamps offering a wavelength range of 300-1100 nm. The nanomembrane 

extinction spectra were corrected against air and the blank soda lime glass slide.  

3.3.10 Dynamic light scattering (DLS) and ζ-potential measurements 

DLS measurements were carried out after equilibrating CNC suspensions (0.1 wt%) at 

room temperature for 10 min Suspensions were placed in a temperature-regulated cell at a 

temperature of 25.0±0.1 oC. DLS measurements were conducted using a Malvern Zetasizer 

Nano-S instrument working at a 173o scattering angle. This optimum angle was selected 

by the instrument maker by taking into account the inverse relation between particle sizes 

and scattering angle. This instrument is equipped with a 4.0 mW He–Ne laser (λ=633 nm) 

and an Avalanche photodiode detector. The translational self-diffusion coefficient of 

particles can be obtained from the decay rate of autocorrelation function from DLS 

measurements.[2] For spherical particles in dilute solution, the hydrodynamic diameter dH 

can be related to the translational diffusion coefficient (Dt) by Stokes-Einstein relation.[313] 

3.3.11 Electrical property measurements 

The sheet resistance and the effective conductivity of the bio-bond graphene papers is 

measured by the 4-point probe system (Lucas Signatone, Corp.) with a Keithley 2400 
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Source Meter. At least five uniformly distributed locations on the bio-bond graphene 

papers are measured to calculate the average values. Fully reduced bio-bond graphene 

papers are sandwiched between aluminum electrodes, and the total resistance is measured. 

The contact resistance between the electrodes and the bio-bond graphene papers are 

extracted by extrapolating the linear plot of the electrical resistance versus the thickness of 

the bio-bond graphene papers. Then the through-thickness conductivity (σ) of the bio-bond 

graphene papers are calculated by the following equation and averaged 
1

𝜎
=  𝜌 = 𝑅

𝐴

𝑡
, 

where ρ is the resistivity, R is the measured through-thickness resistance minus the contact 

resistances, A is the contact area (5.5 x 15.5 mm2), and t is the thickness of the bio-bond 

graphene papers. 

3.3.12 Mechanical properties measurement  

The resulting nanomembranes were floated on the water-air interface by dipping the 

sample-mounted silicon wafer at a small angle in water. We obtained the final silk fibroin-

graphene oxide nanocomposite membranes by dissolving the PS sacrificial layer with 

toluene and catching with proper substrates (copper TEM grid or PDMS). No evidence 

from morphology observation by AFM shows negative impact of toluene contact to the 

properties of the silk fibroin. All samples were dried overnight at ambient temperature. 

So far, the sensitivity of the conventional tensile or compressive test setups is not high 

enough to measure the small force applied on the nano-scale membranes. It is also not 

feasible to apply in-plane compression on the freestanding nanomembranes. Moreover, for 

tensile tests, proper handling of the samples without creating defects is extremely hard. 

Therefore, buckling and bulging tests were carried out to measure the compressive/tensile 

moduli, ultimate stress, ultimate strain and toughness of the sample nanomembranes.[314, 

315, 316]  

3.3.12.1 Buckling 

For buckling test, the sample membrane was firstly caught on a 10×10 ×5 mm3 PDMS and 

then the PDMS was slightly compressed (<<10% strain) by a homemade uniaxial 

compressor (Figure 3.3). Based on the mechanical relaxation theory regarding the 
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mismatched moduli of the PDMS substrate and membrane, sinusoidal buckling pattern will 

form perpendicular to the net stress direction.[317] The compressive Young’s modulus of 

the sample membrane was calculated by the equation:[316] 

𝜆 = 2𝜋𝑑 [
𝐸𝑓(1−𝜐𝑠

2)

3𝐸𝑠(1−𝜐𝑓
2)

]

1
3⁄

 (3.1) 

where λ is the period of the buckling pattern, d is the thickness of the sample membrane, 

Ef (νf) and Es (νs) are the Young’s moduli (Poisson’s ratios) of the sample nanomembrane 

and the PDMS substrate, respectively.  

The modulus of the underlying PDMS is a critical reference value to calculate the modulus 

of the thin film. We measured the modulus of the PDMS by standard tensile test with dog 

bone shaped samples and the result was 1.80±0.16 MPa. To confirm the modulus of the 

PDMS, the authors conducted reversed buckling test, which used a thin film with known 

modulus (polystyrene, 3.5 GPa) to calculate the modulus the PDMS substrate using 

Equation 3.1.  

The results (1.78±0.20 MPa) match those of the tensile tests (1.80±0.16 MPa). To eliminate 

the influence of the modulus of PDMS, we have also run a few tests using PDMS substrates 

with different modulus (2.2 MPa), where the measured moduli of the thin films are 

Figure 3.3 Buckling device and the buckling pattern as observed by optical microscope. 
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consistent with those measured by PDMS with 1.8 MPa modulus after replacing the 

corresponding parameters in the equations. 

3.3.12.2 Bulging 

Bulging tests are capable of monitoring the stress vs. strain curve of the bulged sample, so 

the tensile Young’s modulus, ultimate stress/strain and toughness can be determined.[318, 

319, 320, 321] The results from bulging test match well with those made by nanoindentation 

and point membrane deflection tests.[322] Details in the bulging test experimental setup and 

data analysis can be referred from the previous publications of the laboratory.[6, 40] In short, 

the nanomembranes were caught on the copper TEM grids with 300-um circular apertures. 

The air-dried samples were mounted on a homemade interference bulging setup. A beam 

of 632.8 nm He-Ne laser was guided and reflected on the nanomembrane and a reference 

glass slide, which are aligned with a small tilting angle in order to yield a strait interference 

pattern (Figure 3.4). A syringe vacuum system with a pressure gauge provided the negative 

pressure to deflect the nanomembrane suspended on the copper aperture. The brightness of 

the reference point in the center of the suspended membrane underwent bright-dark-bright 

cycles due to the increase of the distance between the membrane and the reference glass 

slide. The incremental deflection in every cycle was half of the wavelength of the laser. 

The brightness evolution of the reference point due to the negative pressure were recorded 

by a digital camcorder and analyzed by custom-made software.  

Figure 3.4 The Interference pattern of a 50 nm nanocomposite membrane subjecting negative 

pressure through a 300-μm copper aperture at the initial stage (a) and deformed stage (b). 

(a) (b) 
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Therefore, the pressure (P) and vertical deflection at the apex of the deformation dome (d) 

were captured simultaneously and converted to stress and strain by the relationships: 𝜎 =

𝑃𝑟2 4ℎ𝑑⁄ 𝑎𝑛𝑑 𝜀 = 2 𝑑2 3𝑟2⁄ , where h is the thickness of the nanomembrane and r is the 

radius of the aperture.6 The most sensitive parameters in the bulging measurement were 

the radius of the aperture (r) and the deflection of the membrane (d). The radius of the 

aperture was very consistent with the labeled value from the manufacture and confirmed 

by optical microscope. And the deflection of the membrane was precisely measured by 

interference pattern that has been explained above. Other than those two parameters, the 

pressure and membrane thickness are either linearly or reversely proportional to the stress 

or strain, whose errors do not affect the final results in the same dramatic way as the other 

parameters. Even though pressure and thickness are not as sensitive to the final results, we 

measured the pressure in-situ using a pressure gauge with ±0.01 MPa precision and the 

thickness using ellipsometry and AFM scratch test. 

There are several models which are widely used to predict the theoretical values of the 

Young’s modulus of the nanocomposites: Halpin-Tsai model is available for nanoparticle 

fillers with various geometries. [6, 127] It provides well-defined shape factor and is widely 

adapted by researchers. Takayanagi model is an intuitive and effective model to predict the 

fiber/laminate filler composite systems, which simply follows the rule of mixture.[2] 

Jaeger–Fratzl model describe the nacre-like biocomposites.[15] When the filler 

concentration is high, Jaeger-Fratzl model approaches the real modulus better. Therefore, 

we chose Halpin-Tsai model as a standard of the theoretical value. 

3.3.12.3 Tensile tests 

Stress-strain curves of the films were collected by tensile testing the 2±0.2 × 30 mm strips 

with a gap between grips of 10 mm at room temperature (RSA III Dynamic Mechanical 

Analyzer, TA Instruments). The relative humidity during the tensile tests is around 40% 

and the temperature is around 23 °C. The thickness of each strip was measured by a 

micrometer (±0.5 μm accuracy) individually. The strain rate is 1.0%/min. Overall, at least 

three different stress-strain curves were collected for each data point from strips broken in 

the middle of the gap during testing. 
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3.3.13  Interphase reinforcement model and data analysis approaches  

Due to the strong interaction brought about by the high-density hydrogen bonding between 

silk fibroin and graphene oxide, the silk fibroin molecules at the direct vicinity of the 

graphene oxide sheets are anchored, giving rise to the thermodynamic barrier of the 

mobility. This immobilization effect expands into the silk fibroin region by physical 

entanglement and crosslinking of the silk fibroin molecules and decays within a short 

range.[38, 40] In addition, studies have also shown that the interface facilitates the 

crystallization of polymers, enhancing the interfacial strength and the local stiffness.[49] As 

a result, the averaged macroscopic stiffness of the region increases.[31]  

In order to determine the thickness of the interphase region and the degree of enhancement 

of the interphase effect, we propose a sigmoid decaying model to simulate the molecular 

behavior at the interfacial region. It is worth to mention that the exponential decaying 

functions can also be used to fit the experimental data and provide the same results. 

However, there is an inflection point at the beginning of the exponential decaying curves. 

It is physically more favorable to apply sigmoid functions with continuous decaying rates 

for the data fitting. In addition, it is note-worthy that at such small length scale (1~2 nm, 

i.e. a few atoms across), continuous modulus decaying curves start to lose their theoretical 

rigorousness and practical meaning. But the average values from the integration over that 

range are still representative. According to Kovalev et al., the reduced local modulus at the 

interphase is:[323] 

𝐸′(𝑡) = 𝐸∗(𝑡) − 𝐸𝑆𝐹   (3.2) 

𝐸′(𝑡) = 𝐸′(𝑡 − ∆𝑡) + 𝑚 ∙ 𝐸′(𝑡 − ∆𝑡)∆𝑡 − 𝑛 ∙ 𝐸′(𝑡 − ∆𝑡)∆𝑡   (3.3) 

where E’(t) is the reduced local modulus at distance t from the interface, which is defined 

by subtracting the ground level modulus ESF from the real local modulus E*(t); m and n are 

continuous positive and negative local deviation coefficients, respectively. Equation (3.3) 

can be written in differential form: 

𝑑𝐸′(𝑡)

𝑑𝑡
= −𝑘𝐸′(𝑡) (3.4) 
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where k=m-n and k is continuous since m and n are continuous. Differential coefficient k 

depends on the relative value of local modulus to that of the total difference between the 

two components, ∆𝐸 = 𝐸𝐺𝑂 − 𝐸𝑆𝐹, where EGO is the modulus of graphene oxide: 

𝑘 = 𝛼[∆𝐸 − 𝐸′(𝑡)] (3.5) 

where α is the scaling coefficient. Then Equation (3.4) is rewritten as 

𝑑𝐸′(𝑡)

𝑑𝑡
= −𝛼[∆𝐸 − 𝐸′(𝑡)]𝐸′(𝑡) (3.6) 

Rearrange to solve the differential equation 

1

∆𝐸
[

𝑑𝐸′(𝑡)

𝐸′(𝑡)
+

𝑑𝐸′(𝑡)

∆𝐸−𝐸′(𝑡)
] = −𝛼𝑑𝑡  (3.7) 

we have   

ln[𝐸′(𝑡)] − ln[∆𝐸 − 𝐸′(𝑡)] = −𝛼∆𝐸𝑡 + 𝜂 (3.8) 

where η is the integration constant depending on the boundary condition.  

To solve Equation (3.8), we defined a boundary condition 𝐸′(𝜏) =
∆𝐸

2
, where τ is the 

distance where the reduced local modulus is equal to half of the total modulus difference 

between the two components. By plugging this boundary condition back to Equation (3.8), 

integration constant η is determined as 

𝜂 = 𝛼∆𝐸𝜏  (3.9) 

Equation (3.9) demonstrates that the integration constant η is a unitless coefficient by 

dimensional analysis.  

We can combine Equations (3.8) and (3.9) to solve the modulus decay function: 

ln[𝐸′(𝑡)] − ln[∆𝐸 − 𝐸′(𝑡)] = −𝛼∆𝐸(𝑡 − 𝜏)  (3.10a) 

𝐸′(𝑡) =
∆𝐸

1+exp [𝜂(
𝑡

𝜏
−1)]

  (3.10b) 
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Equation (3.10b) is an equivalent form of the Equation (4.2) by substituting E’(t) with 

E*(t)-ESF in the paper context. We also redefine η and τ as shape factor and relaxation 

distance respectively to grant them physical meanings.  

With the knowledge of decay profile at interphase, the effective modulus of the silk fibroin 

layer, ESF,eff, can be calculated by averaging the nominal moduli throughout the silk fibroin 

layer: 

𝐸𝑆𝐹,𝑒𝑓𝑓 =
2

𝑡𝑆𝐹
∫ 𝐸∗(𝑡)𝑑𝑡

𝑡𝑆𝐹

0
 (3.11) 

where tSF is the thickness of the silk fibroin between graphene oxide layers. Meanwhile, 

ESF,eff can also be calculated by using Takayanagi model:15 

𝐸𝑐𝑜𝑚𝑝 = 𝜙𝐺𝑂 ∙ 𝐸𝐺𝑂 + 𝜙𝑆𝐹 ∙ 𝐸𝑆𝐹0 (3.12) 

where Ecomp is the modulus of the nanocomposite measured experimentally, 𝜙𝑆𝐹 = 1 −

𝜙𝐺𝑂 is the volume fraction of silk fibroin in the nanomembrane. Therefore, we combined 

equations into a function of ESF,eff(tSF). Then we fitted the experimental modulus data to 

this function in order to determine the shape factor η and relaxation distance τ. 

To make the fit, we calculated the effective SF layer modulus ESF,eff and plot ESF,eff versus 

effective SF thickness between GO layers tSF. Then we use the integrated form of Equation 

(3.10) to fit parameters η and τ: 

𝐸𝑆𝐹,𝑒𝑓𝑓 =
2Δ𝐸∙𝜏

𝜂∙𝑡𝑆𝐹
{

𝜂∙𝑡𝑆𝐹

𝜏
− 𝑙𝑛 [𝑒𝜂(

𝑡𝑆𝐹
𝜏⁄ −1) + 1] + 𝑙𝑛(𝑒−𝜂 + 1)} (3.13)  
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Chapter 4 Ultra-Robust Graphene Oxide-Silk Fibroin Nanocomposite 

Membranes 

 

4.1 Introduction 

High-performance structural composite materials are widely used in civil constructions, 

aerospace engineering and military applications. They synergistically combine the 

strengths of two or more macroscopic components, yielding a strength-toughness balance. 

However, these composite materials suffer from the unpredictable catastrophic. Most of 

the material failures are attributed to the debonding between different components (e.g. 

polymer matrix and carbon fiber fillers) and the difficulties in uniform distribution of the 

fillers, which greatly undermine its reliability. Nanocomposites utilize filler components 

in nanoscale to increase the surface-to-volume ratio and enhance the interaction at the 

interface, improving the performance of the composite by orders of magnitude.  

Carbon nanotubes, metallic nanoparticles, graphene and intercalated clay are typical 

examples among the common nanofillers. Carbon nanotubes are probably the most 

investigated nanofiller to date. Single-walled carbon nanotubes (SWNTs) have Young’s 

modulus up to 1 TPa, ultimate stress of 300 GPa.[31] However, the non-uniform dispersion 

in various matrices and lack of attracting interaction to the matrices keep being the major 

problems in the effective loading transfer. Chemical treatment with strong acids can modify 

carbon nanotubes with polar functionalities, facilitating its dispersion and interface binding. 

Shim et al. reported a SWNT-PVA nanocomposite membrane possessing 600 MPa 

ultimate strength and a record-high 121 MJ m-3 toughness, but the stiffness is relatively 

low at 16 GPa.[31] Podsiadlo et al. reported a PVA-nanoclay LbL film crosslinked by 

glutaraldehyde (GA) with 106 GPa Young’s modulus and 400 MPa ultimate stress, but the 

toughness of the material was very low due to the strong covalent bonds.[32] Silver nano-

platelets and MMT nano-clay were incorporated into silk fibroin matrix to enhance its 

mechanical properties, as well as to tune the reflectivity from completely reflective to 
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transparent as an optical sensor.[14] A PAH/PSS nanocomposite with gold nanoparticles 

embedded shows surprising compliance, pressure sensitivity and self-healing 

characteristics, but the low strength prohibits its structural applications.[33, 34] Graphene is 

emerging to become a popular nano-filler due to its ultra-low thickness, large aspect ratio, 

strong mechanical properties and outstanding electrical conductivity.  

Graphene oxide-polyelectrolyte nanomembranes were fabricated by spin assisted LbL 

technique (SA-LbL) and Langmuir-Blodgett (LB) techniques and by tuning the graphene 

oxide concentration from 0 to 8.0 vol.%, the toughness and Young’s modulus has achieved 

1.9 MJ m-3 and 20 GPa, respectively.[24] However, the LB technique is extremely slow with 

a deposition rate of 45 min/layer, preventing industrial production for the time being. 

Polymer nanocomposite with graphene or reduced graphene fillers shows semiconducting 

to semimetallic properties with only a few percent concentration of fillers, giving it 

potential applications in next-generation electronics.[35] All these achievements applicable 

in nanotechnologies facilitate the further miniaturization of MEMS systems. However, 

with the thickness and lateral dimensions decreasing, the properties of the nano-membranes 

deteriorate disproportionally. Flexible polymer materials or strong ceramic materials 

become either too fragile or too stiff, both lacking the desired mechanical properties for 

nano-sensing applications. In addition, nanocomposite films also show thickness 

dependence of the strength. The ultimate stress of a DOPA-PEG-clay composite film with 

Fe3+ ion crosslinker decreases by 13% when the thicknesses decrease from 4.9 um to 1.2 

um.[36] A significant decay of mechanical properties of the nanocomposite membranes is 

expected when the thickness further lowered to less than 100 nm. The need of strong 

nanomembrane with balanced strength, stiffness and toughness, which is capable of 

sustained nanosensing and nanoencapsulation is still not met. 

In this chapter, we introduced a new series of ultrathin, robust nanocomposite membrane 

using SA-LbL technique to incorporate silk fibroin and graphene oxide. Silk fibroin and 

graphene oxide strongly interact by high-density hydrogen bonding between the amino 

groups along the silk fibroin chain and the epoxy, hydroxyl, carbonyl and carboxyl groups 

on both sides of graphene oxide sheet (Figure 4.1). In addition to uniform distribution of 

the LbL technique, the large aspect ratio (~5000), quasi-atomic thickness (~0.9 nm) and 
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outstanding mechanical properties of graphene oxide make it a perfect nanofiller to transfer 

load throughout the silk fibroin matrix. Moreover, due to the strong molecular interaction, 

a stiff interphase region of 0.5-1 nm across also exists between the graphene oxide filler 

and silk fibroin matrix. The interphases in composite systems were comprehensively 

studied by mechanical tests, thermal analysis, scanning probing microscopy and molecular 

dynamic simulation.[37, 38-40]  

The presence of immobilized layer of polymer chains is the direct reason for the altering 

of thermodynamic properties, i.e. heat of fusion, glass transition temperature, chemical 

potential, etc. The effect of the interphase on the mechanical enhancement has been long 

ignored due to the relatively tiny portion of interphase region compared to the size of the 

fillers (micron-scale fibers). However, in the case of graphene oxide, the interphase region 

plays a significant role since the thickness of the filler is only 0.95 nm. Therefore, the 

Young’s modulus of the graphene oxide-silk fibroin nanocomposite is extraordinarily high 

with low graphene oxide concentration. In addition, the reformable hydrogen bondings 

serve as excellent energy dissipater to improve extensibility and toughness of the material. 

Figure 4.1 Representative molecular structure of silk fibroin (a, upper part) and GO (a, lower 

part – side view; b top view). Elements in the ball and stick model are color-coded: C-grey, O-

red, H-white, N-blue. (c) The sequential binding structure of the LbL nanocomposite membrane. 

The thicknesses of the layers are not drawn in scale. 
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With the outstanding mechanical properties, fast fabricatin, potential electrical 

conductivity and inherent biocompatibility, the ultrathin graphene oxide-silk fibroin 

nanocomposite membranes exhibit potential applications in biosensors, nanopackaging, 

energy-harvesing, chemical filters and gas barriers.  

 

4.2 Results and discussion 

4.2.1 Micromorphology of the nanomembranes 

AFM results of membrane roughness and graphene oxide coverage are shown in Figure 

4.2a & b. The height profile illustrates a uniform 4.3±1.9 nm microroughness for samples 

with different numbers of bilayers. The microroughness of the bilayers starts around 1 nm 

and increases gradually with the addition of the number of bilayers, and saturate at 5 

bilayers. The increase of microroughness with the layer number is because of the random 

distribution of graphene oxide flakes. The quality and uniformity of the nanocomposite 

membrane was also confirmed by optical microscopy observation (Figure 4.2a inset). The 

phase image confirms that graphene oxide coverage is 69±3% and 69±9% for samples 

prepared with graphene oxide methanol suspension and graphene oxide aqueous 

suspension, respectively. Molecular conformation of polymer chains adsorbed on 

nanofillers is proven to play an important role of the mechanical behavior of the 

nanocomposite.[47] Stretched chains provide higher stiffness while losing extensibility. The 

AFM image of the silk fibroin on graphene oxide shows globule morphology of the silk 

fibroin molecules uniformly adsorbed on both sides of graphene oxide sheets (Figure 4.2c), 

indicating the strong interactions. 

Membrane thickness of the bilayer-structured nanocomposite membrane increases linearly 

with the number of bilayers (Figure 4.2d). The average single bilayer thickness is 5.4 nm 

for 0.2% silk fibroin solution with 0.04% graphene oxide methanol suspension spun at 

3000 rpm. The replacement of graphene oxide aqueous suspension provided no noticeable 

difference in thickness accumulation. This value is reasonable when considering the ~5 nm 

thickness of single layer silk II and 69% coverage of 0.95 nm graphene oxide layer on top 
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of it. Graphene oxide volume percentage in the nanocomposite membrane is controlled by 

varying the number of filler layers or the thickness of silk fibroin layers. Graphene oxide 

concentration is calculated by  

𝜙𝐺𝑂 =
𝑛∗𝛼∙𝑡𝐺𝑂

𝑡𝑓
× 100%  (4.1) 

where n is the total number of graphene oxide layers deposited on the sample; α is the 

graphene oxide coverage ratio (69%); tGO and tf are the thickness of single layer graphene 

oxide (0.95 nm) and the nanomembrane, respectively. 

Figure 4.2 Morphology of the methanol treated GO-SF nanocomposite membrane: AFM height 

(z range: 60 nm) (a) (inset: optical image of the membrane suspending on a 300-um copper 

aperture) and phase (b) images of the nanocomposite; (c) SF molecule adsorption on GO flake 

(z range: 7.5 nm); (d) membrane thickness increases with the number of the bilayers. 
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4.2.2 Young’s modulus of the nanomembranes 

Figure 4.3a & b are the AFM scan and optical image of the buckling pattern of a 

representative graphene oxide-silk fibroin nanocomposite membrane. The period of the 

sinusoidal wave deformation varies from 2 to 10 microns based to the thickness and 

stiffness of the sample. From the pattern we know the samples are locally uniform and free 

of defects. Figure 4.3c shows the moduli results for samples with different graphene oxide 

concentration and tested by both techniques. Theoretical values predicted by Halpin-Tsai 

model are also plotted for reference. The pristine methanol treated silk fibroin LbL nano-

membrane has a compressive Young’s modulus of ~10 GPa, which is 150% higher 

Figure 4.3 Moduli of the methanol treated GO-SF nanocomposite membrane. (a) 50 um x 50 

um AFM image of the buckling pattern from a 10 bilayer GO-SF nanomembrane (Z scale: 2 

um); (b) optical image of the buckling pattern; (c) the GO concentration dependence of the 

Young’s modulus of the nanomembranes; (d) sigmoid decaying curves for buckling and 

bulging tests at the interphase region. 
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compared to the previous reported values.[8, 15] The reason for this increase is that the LbL 

silk fibroin membranes fabricated in this work were methanol treated on each layer, while 

the samples prepared by previous studies were post-treated by methanol after the whole 

LbL structures were finished. The β-sheet crystal inducing dehydration process driven by 

methanol is more effective in this work, resulting in the stronger membranes.  

The tensile modulus of the pristine silk fibroin LbL membranes also have ~70% increase 

for the same reason. The validity of the 10±1 GPa Young’s modulus reported in this work 

is also supported by the studies carried out by Keten et al. and Hu et al., which determined 

the Young’s modulus of the β-sheet crystals is 22 GPa[10] by molecular dynamic simulation 

and combinational mechanical experiments, and the β-sheet crystal fraction in methanol 

treated silk fibroin samples is ~45%[13] by thermal analysis and infrared spectroscopy. With 

the assumption of the Young’s modulus of the amorphous silk fibroin is 4 GPa[8] and 

applying Halpin-Tsai model for randomly oriented nanoparticles, the Young’s modulus for 

the pristine silk fibroin nanomembrane was calculated to be 9.5 GPa, which fits well to our 

experimental data.  

With the addition of graphene oxide filler, the Young’s moduli of the samples increase 

linearly with the graphene oxide concentration, reaching a highest bulging value of 149 

GPa. This is by far the highest modulus value recorded for nanomembranes. In contrast to 

similar nanocomposite with much higher thickness (a few microns), the ultrahigh stiffness 

is achieved without the expense of high nanofiller concentration.[31, 32, 48] And there is no 

sign of saturation in the plot, which together with the ultra-high stiffness values indicates 

that the incorporation of graphene oxide with silk fibroin is favorable. Moreover, it is 

shocking to find that the experimental data are systematically higher than the theoretical 

model values, which had been believed to be the highest performance achievable.  

4.2.3 Interphase reinforcement model 

We attribute this unexpected phenomenon to the unusual interphase enhancement in this 

nanocomposite system.[39] With the validity being discussed above, the sigmoid modulus 

decaying function at the interphase region is 
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𝐸∗(𝑡) =
𝐸𝐺𝑂−𝐸𝑆𝐹

1+exp [
𝜂(𝑡−𝛿)

𝜏
−𝜂]

+ 𝐸𝑆𝐹   (4.2) 

where E*(t) is the modulus of the slice of silk fibroin material at a distance t from the 

graphene oxide-silk fibroin interface; EGO and ESF are the Young’s moduli of graphene 

oxide and silk fibroin, respectively; η is the sigmoid transition factor (η = 6 used in this 

work). And δ is the retardation length and τ is the relaxation factor, which controls the start 

point and the rate of decaying along the thickness. We take δ = 0 in this case modeling by 

considering the quantum nature of the interphase and the weak hydrogen bonding 

interactions. The effective modulus of the silk fibroin matrix can be calculated by the 

weighted average of the moduli along the whole silk fibroin layer: 

𝐸𝑠𝑓,𝑒𝑓𝑓 =
2

𝑡𝑠𝑓
∫ 𝐸∗(𝑡)

𝑡𝑠𝑓

0
𝑑𝑡  (4.3) 

where Esf,eff is the effective Young’s modulus of the silk fibroin layer, tsf is the thickness of 

the silk fibroin between the sandwiching graphene oxide layers. Meanwhile, Esf,eff can also 

be calculated by using Takayanagi model for conventional composites: 

𝐸𝑐𝑜𝑚𝑝 = 𝜙𝐺𝑂 ∙ 𝐸𝐺𝑂 + 𝜙𝑆𝐹 ∙ 𝐸𝑠𝑓,𝑒𝑓𝑓  (4.4) 

where Ecomp is the modulus of the composite material measured experimentally, ΦGO and 

ΦSF are the volume fraction of graphene oxide and silk fibroin in the composite, 

respectively. The modulus relaxation factor τ was determined by combining equations (4.2) 

to (4.4). The τ values for buckling and bulging tests are 0.24±0.05 nm and 0.49±0.05 nm 

respectively, indicating the single-sided interphase depth of ~0.5 nm and ~1.0 nm (Figure 

4.3d). These values are lower than those determined for similar nanocomposite systems by 

scanning probe microscopy[38, 39], which is attributed to the ultra-low filler thickness with 

limited ability for solid molecular anchoring. Nevertheless, surface adsorption of silk 

fibroin molecule on graphene oxide forms a stiff region into the matrix, resulting in a 2.0 

and 2.8 times multiplier of the effective filler concentration[50] for compressive and 

extensive moduli, respectively. The predicted moduli values are plotted in solid lines for 

both buckling and bulging results in Figure 4.3c. The difference in interphase enhancement 

for buckling and bulging tests is originated from their different loading condition.[8, 14] 
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Although the local loading condition is fairly complicated for buckling test, it is 

approximately a uniaxial compression in the planar direction of the layered structure. While 

for the bulging test, the loading condition can be reduced to a biaxial extension, which is 

equivalent to a uniaxial compression normal to the layer structure. The graphene oxide 

filler is ultra-stiff in response to tensions but loses almost all of the stiffness when 

compressed due to the large aspect ratio. Moreover, the bulging failure mode is stick-slip 

mechanism[10] and the buckling failure mode is delamination. As a result, the bulging 

stiffnesses are noticeably higher than those of the buckling tests. Similar LbL graphene 

oxide-silk fibroin samples without methanol treatment were also tested for comparison. 

The tensile Young’s moduli are 30% lower than those of the methanol treated samples for 

all of the graphene oxide concentrations tested. This result is expected because of the lower 

β-sheet crystal content without the methanol treatment. Less crystalline domains directly 

cause the lower Young’s modulus of the silk fibroin layers, and further diminish the 

correlation of the polymer chains and the thickness of the interphase region at the silk 

fibroin-graphene oxide interface due to the lower degree of crosslinking. 

4.2.4 Other mechanical properties of the nanomembranes 

Figure 4.4a & b show the relationship between ultimate stress/strain and the graphene 

oxide concentration. The ultimate stress of the pristine methanol treated silk fibroin LbL 

membranes is 100 MPa, matching the previous results well.[8] The lower ultimate stress of 

the silk fibroin nanomembrane as compared to the 600-800 MPa values of native silk fibers 

is attributed to the lack of highly-engineered and effective hierarchical loading transfer 

structures[51] and the degradation of silk fibroin molecules during the reconstitution.[11, 19, 

52] Expectedly, the ultimate stress increases with the graphene oxide concentration. The 

highest ultimate stress reaches 300 MPa and saturates at 11.5 vol.% of graphene oxide. The 

saturation concentration and the ultimate stress are both 300% higher than those of the 

graphene oxide-polyelectrolyte nanomembranes[24], indicating a stronger interaction by 

hydrogen bonding than the electrostatic force. It is quite reasonable because the 

electrostatic charges only exist on the carboxyl groups surrounding the graphene oxide 

edges, while hydrogen-bonding sites, although the unit strength is much weaker than 

electrostatic interaction, are all over the planar surface (Figure 4.1b). The graphene oxide-
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silk fibroin LbL nanomembranes fabricated by graphene oxide aqueous suspension were 

also tested for comparison. The ultimate stresses are systematically lower than those of the 

methanol treated samples and the gap increases with the increase of graphene oxide 

concentration. The lower ultimate stresses for non-methanol treated samples are caused by 

the lower content of β-sheet crystals in absence of methanol induction. And the lack of 

crosslinking provided by nanocrystals also results in the lower slope of the increasing stress 

trend for the non-methanol treated samples.  

On the other hand, it is commonly known that the addition of filler will make the composite 

materials stiffer with the compromise of extensibility, as in the case for the non-methanol 

treated samples (Figure 4.4b). For pristine silk fibroin LbL membranes, the 1.4% ultimate 

Figure 4.4 Mechanical properties of the nanocomposite membrane from bulging test. (a) 

Ultimate stress vs. GO concentration; (b) ultimate strain vs. GO concentration; (c) toughness 

vs. GO concentration; (d) representative σ-ε curves. 
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strain of non-methanol treated samples is 40% higher than that of the methanol treated ones. 

This is originated from the lower degree of crystallinity and the loose physical 

entanglement of the non-methanol treated samples. With the addition of graphene oxide, 

the ultimate strain of the non-methanol treated samples drops linearly by 57% from 0 to 

11.5 vol.% of graphene oxide concentration. However, in the case of methanol treated 

samples, this trend is only valid for the very first stage of graphene oxide concentration 

increase. The ultimate strain for the pristine silk fibroin LbL nanomembrane decreases to 

0.6% with 2.9 vol.% of graphene oxide. Then the ultimate stain climbs up gradually to 1.1% 

thereafter and saturates at 11.5 vol.% of graphene oxide. The increasing trend of ultimate 

stain with graphene oxide concentration is counterintuitive. This unusual behavior of 

increasing ultimate strain with increasing filler concentration again indicates the strong and 

recoverable interaction between silk fibroin and graphene oxide. Because the hydrogen 

bondings are relatively weak and permanent electronic dipole interactions in nature, they 

are easy to be ruptured and reform the bonding with the next neighboring polar counterparts. 

Molecular dynamic simulations demonstrated the ability of the hydrogen bonding 

recovery.[10] At a pulling out rate of 5 cm/s, which is orders of magnitudes larger than the 

strain rate in this work, peaks appear in the force-displacement curve of the silk β-sheet 

crystals, demonstrating the instant reform of hydrogen bonding during the shearing 

movement. Integrated by hydrogen bonding, the interface is becoming interconnecting site 

for more silk fibroin molecules, rather than a weak and stress-concentrating spot as in 

conventional composites. Both the saturation in ultimate stress and ultimate strain at 11.5 

vol.% is proposed to be because that there is a threshold for the complete coverage of a 

single layer of silk fibroin in the LbL deposition. Graphene oxide concentration higher than 

11.5 vol.% will result in discontinuous matrix distribution and stress concentration. 

However, the Young’s moduli do not saturate at that concentration simply because the 

Young’s modulus reflects the properties at the initial stage of the loading, while the 

ultimate stress/strain represents the failing stage of the loading behavior.  

Toughness is another important mechanical property considered essential for sustained 

loading ability. The physical origin of toughness is the energy dissipated by a material 

before failure. During the loading cycle, the hydrogen bondings, both between silk fibroin 

and graphene oxide and within β-sheet crystal of silk fibroin, and covalent bondings of the 



103 

 

silk fibroin molecular chain are the primary loading bearers. While the covalent bondings 

are mainly responsible for the final failure of the material, the hydrogen bondings between 

silk fibroin and graphene oxide are the major energy dissipater during the loading. Because 

of the reformability of the hydrogen bondings described above, the higher graphene oxide 

concentration results in higher toughness by providing more hydrogen bondings. By 

combining the modulus, ultimate stress and ultimate strain, the toughness of the methanol 

treated nanomembranes (Figure 4.4c) takes a dip initially and monotonously increases to 

2.2 MJ m-3 at the 11.5 vol.% saturation point. The highest recorded toughness for the 

materials is 3.4 MJ m-3. In comparison, the toughness of the non-methanol treated samples 

remains essentially constant. 

Representative stress-strain curves of graphene oxide-silk fibroin nanocomposite 

membranes are presented in Figure 4.4d. Distinct difference in mechanical performances 

due to various graphene oxide concentrations indicates the significant roles graphene oxide 

plays in this nanocomposite system. A comparison among the current films/membranes 

containing silk fibroin or graphene oxide provides a clear perspective to directly evaluate 

the performance of the materials. Pristine LbL silk fibroin membranes have relatively low 

mechanical properties due to the degradation of the protein caused by silk reconstitution.[8] 

By incorporating clay nanoparticles, the modulus of the silk membranes has doubled and 

the toughness is improved.[14, 15] graphene oxide-polyelectrolytes nanomembrane greatly 

improved the toughness of the material due to the strong electrostatic interactions between 

different components. [24] Graphene paper fabricated by vacuum infiltration and thermal 

annealing has surprisingly high ultimate stress considering the poor binding condition of 

the building blocks.[53] Then chemical crosslinking pushes the stiffness of the graphene 

oxide films to 120 GPa[27], 300% higher than that of the uncrosslinked cousin. However, 

the strong covalent bonds between graphene oxide flakes also resulted in a very brittle 

material. Finally, the graphene oxide-silk fibroin nanocomposite membranes introduced by 

this work occupies the lower right corner of the column chart, showing highest combination 

of ultimate stress and stiffness. And more interestingly, it also possesses the highest 

toughness of 2.2 MJ m-3.  
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4.3 Conclusions 

We have fabricated ultra-thin graphene oxide-silk fibroin nanocomposite membranes using 

SA-LbL technique and demonstrated the outstanding mechanical performances. SA-LbL 

technique has proven to be a reliable deposition method to quasi-molecular layered self-

assembly. The alternating layered structure of the graphene oxide-silk fibroin 

nanocomposite greatly improved the filler dispersion and components interactions. The 

highest Young’s modulus, ultimate stress and ultimate strain recorded are 145 GPa, 300 

MPa and 1.1% respectively for a sample with 23.5 vol.% graphene oxide concentration. 

The high-density hydrogen bonding is proposed to be the origin of the balanced stiffness, 

strength and toughness. The low strength and reform-readily characteristic of hydrogen 

bondings make the membrane flexible and extensible, while the high density of the 

hydrogen bondings ensures the strength, stiffness and toughness. 
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Chapter 5 Biopolymeric Nanocomposites with Enhanced Interphases 

 

5.1 Introduction 

We demonstrate a dynamic spin-assisted LbL assembly (dSA-LbL) as an efficient method 

for the formation of silk-based nanocomposites with controlled molecular hierarchical 

structures and enhanced interphase interactions (Figure 5.1). In contrast to the 

conventional LbL assemblies reported earlier, the dSA-LbL methods suggested here 

provides a facile way of manipulating the secondary structures of silk fibroin proteins 

adsorbed on the of heterogeneous graphene oxide surface and resulting in excellent, 

Figure 5.1 (a) The fabrication of free-standing GO-SF membranes with dSA-LbL assembly; 

(b) The laminated structure of the LbL membrane and the release of the free standing membrane 

followed by mounting on the copper aperture. 
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balanced ultimate strength, Young’s modulus, and toughness. We suggest that the fast 

spreading of biomacromolecules during direct dropping of biopolymer solution on 

continuously spinning substrate allows for stretching of the silk fibroin molecules that 

favors the enhancement of their interactions with substrates. The excellent mechanical 

properties achieved here include the outstanding tensile modulus of around 170 GPa, the 

ultimate strain of around 1.5%, the ultimate tensile stress of nearly 300 MPa, and the 

toughness of more than 3.4 MJ m-3, with all characteristics far surpassing those known for 

traditional ultrathin carbon-based nanocomposite.[109, 324]  

 

5.2 Results and discussion 

5.2.1 Fabrication and Morphology of Nanocomposite Membranes  

The characteristic distinction of the dSA-LbL assembly over the conventional SA-LbL is 

the constantly rotating substrate while applying the to-be-spun solutions, which saves time, 

facilitates automation, and provides a novel means for the modification of the secondary 

structures of the molecular chains. In contrast to the conventional LbL assemblies, the 

highly kinetic adsorption conditions and fast solvent (water) evaporation during the dSA-

LbL process eliminate the loosely attached molecules as well as “quench”, fix the 

secondary structures and anchor the biomacromolecules on the substrate (Figure 5.1a & b). 

We found that, by using 0.02 wt% silk solution, 2000 rpm of the spin speed ensures a 

complete, uniform, and monolayer coverage of the unfolded and stretched silk molecules 

on the graphene oxide substrate. Lower speeds resulted in bundled and self-folded silk 

molecules and more than one layer of adsorption. Higher rotational speeds resulted in 

incomplete coverage of the substrate. Approximately 2 seconds was allowed for deposition 

to ensure the complete removal of the solvent and the fixation of the molecules. We kept 

spinning for another 20-25 seconds before dropping the next layer of constituents. 

Therefore, the optimal spinning condition for silk fibroin layer was determined to be 2000 

rpm with 45 second between depositions. The solution concentration was limited to 0.02 

wt% because higher viscosity adversely affects the film uniformity. It is critically important 

that with the substrate vigorously spinning, the silk solution spreads fast and the solvent 
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evaporates in milliseconds, resulting in the major difference and advantage over the 

conventional LbL techniques as discussed below.[325] 

In fact, the high resolution AFM micrographs show the uniform surface distribution of the 

silk biomacromolecules without signs of significant aggregation (Figure 5.2a & b). It is 

worth noting that the samples used to adsorb biomacromolecules for these images are 

diluted for clear visualization of the individual macromolecule behavior. Silk backbones 

Figure 5.2 Morphologies of the stretched SF on GO surfaces: (a, b) Survey and high resolution 

AFM images showing the uniform distribution of SF molecules without significant aggregation or 

entanglement. (z-scales: 2 nm) (c)-(f) The cross sectional profile of the single molecules from the 

color coded lines in panel (b). 
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are anchored in random conformation on the surface of graphene oxide and individual 

biomacromolecules are stretched locally without forming larger bundles.  

Distinctly different from the previously observed morphologies of silk biomacromolecules 

deposited by the conventional SA-LbL technique with formation of rich and large scale 

aggregates (nanofibrils, bundles, and globules), silk backbones during dSA-LbL deposition 

explored here form a dense network of individual stretched chains. Indeed, the diameter of 

backbones across the entire surface was measured to be 0.8 ± 0.2 nm that is close to the 

natural diameter of silk backbones with occasional bulky side groups of amino acids 

(Figure 5.2c-f). The unfolding and stretching of the silk backbones by the dynamic 

deposition process is essentially important for exposing the polar moieties along the 

backbone and forming high-density hydrogen bonding and other attractive weak 

interactions between individual segments of the silk backbones and the graphene oxide 

surfaces with random distribution of oxidized functionalities. Such maximization of 

interfacial interactions results in strong anchoring of the individual biomacromolecules to 

graphene oxide surface.  

In addition, the molecular secondary structures of silk under the dSA-LbL processing have 

also altered significantly. High resolution deconvoluted FTIR spectra of the silk fibroin 

after the two different type of spin coatings has been presented in Figure 5.3. The 

vibrational bands centered at around 1625 cm-1 and 1680 cm-1 have been assigned to the 

antiparallel beta-sheets and beta-turns respectively, which are corresponding to the 

crystallinity of the silk; and the bands around 1659 cm-1 and 1646 cm-1 are from the 

vibrations of the alpha-helices and random coils of the silk chains, respectively.[312] From 

the comparison of the secondary structure composition resulted from the dSA-LbL and the 

conventional SA-LbL shown in Figure 5.3d, it is clear that the dSA-LbL assembly 

transformed around 20 % of the random coils to beta-turns, indicating a higher crystallinity 

induced by material shearing. And the increased fraction of beta-turns in the crystallized 

portion of silk also suggests a less ordered crystallinity, incurring the quenching effect of 

the dSA-LbL deposition as will be discussed in detail elsewhere. 
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The density of the silk coverage has been controlled via applying different amount of silk 

solutions when spin coating to ensure the full coverage of the LbL structure. At high 

concentration, uniform nanometer thick silk layers are formed on the graphene oxide 

surface. When alternated with graphene oxide sheets, silk fibroin is uniformly covered with 

graphene oxide sheets without large corrugations and wrinkles thus promoting formation 

of uniform continuous multilayered films (Figure 5.4a). The representative profile of the 

cross section of the 15-bilayer GO-SF dSA-LbL film shows a thickness of around 45 nm. 

The total thickness of the silk-graphene oxide layer is around 3 nm, thus, indicating about 

2 nm thick silk layer. The thickness of films was also independently confirmed by 

ellipsometry measurements. The root-mean-square surface microroughness, as measured 

within an area of 1μm×1μm, was 5.1±2.9 nm, similar to that of GO-SF multilayered films 

studied earlier. [69] 

Figure 5.3 The FTIR spectra of the silk spun using the (a) conventional SA-LbL and (b) dSA-

LbL; (c) peak assignment of the FTIR spectra and (d) the composition of the secondary structures 

of the silk. 

Conventional	SA-LbL dSA-LbL

(a) (b)

(c) (d)

dSA-LbL Conventional	SA-LbL
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The thickness of GO-SF films increases linearly with increasing number of layers 

deposited, confirming the conventional stepwise growth mode, characteristic of LbL 

assembly (Figure 5.4b). The average bilayer thickness of 3.1±0.4 nm is lower than that 

observed for the conventional SA-LbL films.[69] The reduction of the effective silk layer 

thickness is due to the different kinetic conditions that affect the removal rate of the solvent 

and the adsorption rate of the individual silk chains rather than bundles and nanofibrils. [69] 

The reduced average bilayer thickness was also independently confirmed by multi-peaks 

fitting of X-ray Diffraction (XRD) data (Figure 5.4c). The broad peak at 2.6o can be 

assigned to the first order diffraction peak with the average spacing of 3.3 nm that 

corresponds to the data obtained from AFM and ellipsometry. On the other hand, the 

diffuse halo at 5.5o can be originated from the interplanar distances within β-sheet 

Figure 5.4 Structure and composition of the GO-SF nanocomposite membrane: (a) AFM image 

and height profile of film edge (z-scale: 350 nm) showing the 45 nm thick GO-SF nanocomposite 

membrane on top of the 103 nm thick sacrificial PS layer. (b) Ellipsometry data show that the 

thickness of the membranes increases linearly with the number of the GO-SF bilayers assembled. 

(c) XRD data and peak fitting of a 70 bilayer GO-SF dSA-LbL membrane on silicon wafer. The 

silicon wafer background is subtracted. (d) XPS of the GO-SF nanomembranes in comparison 

with that for pure silk films. 
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nanocrystals of silk fibroin of 1.5 nm. [69] We have also employed the Scherrer equation to 

estimate the ordering of the GO-SF bilayer structure and the size of the silk beta-sheet 

nanocrystals and stacking number of graphene oxide sheets.[326] The stacking number of 

the GO-SF bilayer structure is about 8 for the 70-bilayer film, indicating a partially-ordered 

layering. And the size of the beta-sheet nanocrystals was estimated to be around 3.2 nm, 

which matches well with the previously reported dimensions for optimized stress transfer 

of the partially ordered silk II phase.[327] 

Finally, we employed XPS to directly evaluate the chemical composition of the 

nanocomposite membranes (Figure 5.4d). By ignoring the weight contribution of the 

hydrogen atoms in the material, the weight fraction of silk fibroin (ωSF) in the 

nanocomposite membrane can be estimated by using relationship: 

𝜔𝑆𝐹 =
𝑍𝐶𝐴𝑆𝐹

𝐶 + 𝑍𝑂𝐴𝑆𝐹
𝑂 + 𝑍𝑁𝐴𝑆𝐹

𝑁

𝑍𝐶𝐴 
𝐶 + 𝑍𝑂𝐴 

𝑂 + 𝑍𝑁𝐴 
𝑁

 

where ZC, ZO, and ZN are the atomic weight of carbon, oxygen, and nitrogen, respectively; 

𝐴𝑆𝐹
𝐶 , 𝐴𝑆𝐹

𝑂 , and 𝐴𝑆𝐹
𝑁  are the atomic fractions of carbon, oxygen, and nitrogen that are 

contributed by the silk constituent in the nanocomposite membrane, respectively; and 𝐴 
𝐶 , 

𝐴 
𝑂 , and 𝐴 

𝑁  are the total atomic fractions of carbon, oxygen, and nitrogen in the 

nanocomposite membrane, respectively.  

Since all the nitrogen comes only from the silk constituent, 𝐴𝑆𝐹
𝑁 = 𝐴 

𝑁, 𝐴𝑆𝐹
𝐶 = 𝐴 

𝑁 ∙ 𝛾𝑆𝐹

𝐶
𝑁⁄

, 

and 𝐴𝑆𝐹
𝑂 = 𝐴 

𝑁 ∙ 𝛾𝑆𝐹

𝑂
𝑁⁄

, where 𝛾𝑆𝐹

𝐶
𝑁⁄

 and 𝛾𝑆𝐹

𝑂
𝑁⁄

 are the atomic ratio of C/N and O/N in silk 

fibroin, respectively. Therefore, the atomic fractions of carbon, oxygen, and nitrogen in 

both the nanocomposite membrane and the pristine silk fibroin can be extracted from the 

XPS survey spectra at Figure 4d and used in the equation for the estimation of chemical 

composition. The weight fraction of silk fibroin in the nanocomposite membrane was 

estimated to be ωSF = 65.4%. By taking the density of silk fibroin and graphene oxide as 

1.3 g/cm3 and 1.8 g/cm3, respectively, the volume fraction of graphene oxide can be finally 

estimate to be around 27%, that is close to that independently obtained from the 

ellipsometry data. 
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5.2.2 Mechanical Properties from Bulging Experiments 

The mechanical properties of the GO-SF nanocomposite membranes can be analyzed with 

the well-known bulging technique. [315, 328 , 329 ] This technique is widely utilized for 

measuring the mechanical properties of freely suspended nanoscale films. [42, 69, 330, 331] In 

this test, the ultrathin LbL membranes were freely suspended over the copper aperture with 

300 μm diameter, while the micromechanical response to the air pressure is measured as 

the deflection of the membrane by a laser interferometer (Figure 5.5). [69] An analysis of 

the deflection behavior of the membranes under variable pressure allows for the 

reconstruction of the stress-strain curves according to the known procedure. [69] From this 

data, the mechanical properties, including Young’s modulus, ultimate strain, ultimate stress, 

and toughness, can be readily estimated. The ultimate strain and stress can be obtained at 

the maximum deflection for the nanocomposite membranes before the breaking point 

(Figure 5.5c, d). 

Figure 5.5 (a) Optical image of the GO-SF nanocomposite membrane suspended across a 300 

μm copper aperture. (b) Interference pattern on the deflected membrane during bulging 

measurement. SEM image of the freely suspended nanomembrane (c) before and (d) after bulging 

measurements (the membrane is fractured). 

(a)

(d)(c)

(b)
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For the dSA-LbL nanocomposite membranes fabricated here, the experimental values of 

the Young’s modulus in the elastic regime are calculated from the stress-strain data in 

Figure 5.6a. We found that, an elastic modulus of 12 ± 1 GPa obtained for the pure silk 

membranes is around 20% higher that reported for the conventional SA-LbL silk films 

(about 10 GPa) that suggests the noticeable strengthening due to the alternation of the 

secondary structures of the silk molecules during dynamic LbL assembly. [69] The 

theoretical value of Young’s modulus was calculated according to the Halpin–Tsai model 

for randomly oriented nanoparticles within confined silk fibroin matrix. [127] As reported, 

the Young’s modulus of random silk fibroin (silk I) and β-sheet crystals is 4–5 GPa and 

Figure 5.6 (a) Dependence of the Young’s modulus of the GO-SF nanomembranes upon the 

volume concentration of graphene oxide. (b) Sigmoid decay curves for bulging tests at the 

interphase region. (c) The dependence of the effective Young’s modulus of the silk layer on the 

thickness of the silk fibroin laminates. The dashed line is the fitted curve using the interphase 

reinforcement model. (d) Variation of the Young’s modulus for membranes with different 

thicknesses. 
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around 22 GPa, respectively. [327] Therefore, the estimated content of the β-sheet crystal 

should be 63%, which is significantly higher than that calculated for the conventional SA-

LbL silk films (around 45%), indicating a stronger intermolecular interactions between the 

silk chains due to the unfolding and the corresponding closer packing of the 

biomacromolecules that allow for fast formation of ordered domains. [69] 

After adding graphene oxide component to the LbL films, the Young’s modulus value 

increased dramatically, about 15 times, to 171±6 GPa at graphene oxide content of 24 vol% 

(Figure 5.6a). This is the highest value of the elastic modulus ever reported for flexible 

nanocomposites and biopolymer-based membranes. [332, 333, 334] Moreover, we found that 

the theoretical values of the Halpin-Tsai model calculated with the condition of ideal 

parallel orientation of platelets and complete stress transfer scenario are significantly lower 

than those obtained experimentally from the bulging measurements (Figure 5.6a).  

The filler-reinforcement effect may be related to the formation of the extended interphase 

zone between the two components with gradually changing composition (Figure 5.6b). [69] 

Therefore, the shape factor η and relaxation distance τ can be determined by fitting the 

experimental modulus data ESF,eff with the Newton's iterative method. As shown in Figure 

5.6c, the modulus value for different graphene oxide contents calculated according to the 

interphase zone fit well to the experimental results, thus, confirming the reinforcing 

mechanism in the nanocomposites. At limiting cases, the interphase model proposed can 

be transformed to standard rule-of-mixture model for composites when the effective 

thickness of the interphase region τ is reduced to zero. 

The fitting of the compositional variation of the elastic modulus gives value of η = 11.0 

and τ = 0.75 nm, respectively (Figure 5.6c). The value of η is almost twice larger than that 

obtained by the conventional SA-LbL technique (η=6.0). [69] This difference indicates 

enhanced silk-graphene oxide surface interactions caused by larger percentage of the 

exposed functionalities of individual backbones during the dSA-LbL deposition, which is 

a distinctive advantage over the conventional static and relaxed LbL deposition techniques. 

The effective thickness of the reinforcing region of 0.75 nm corresponds a single silk 

backbone diameter (Figure 5.6c), which indicates the close-to-limit reinforcement 
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performance. The overall fraction of the reinforcing region (graphene oxide and the 

effective interphase zone) reached 58% in overall volume of the nanocomposite films. Thus, 

even when the graphene oxide content is only 24% such a reinforcement increases the 

effective high-modulus filler volume by a factor of 2.5.  

Additional experiments for samples with the same composition but different thicknesses 

(from 20 nm to 80 nm) were also conducted in order to verify if the dramatic reinforcement 

of the mechanical properties is significantly dependent on the thickness of the films (Figure 

5.6d). The average Young’s moduli of the membranes with different thicknesses are 

160±23 GPa and consistent for all membranes tested here. Moreover, the modulus value 

reaches 175±4 GPa for membrane thickness above 50 nm (Figure 5.6d). 

Figure 5.7a shows the representative stress-strain curves of the nanocomposite membranes 

with various GO content obtained from the bulging test. All the stress-strain curves 

collected here show elastic deformation at the initial stages of the loading and yield before 

ultimate fracture (Figure 5.7b-d). As clear from this data, the ultimate strain increases 

three-fold (from 0.44 to 1.51%) with increasing volume fraction of graphene oxide sheets 

from 5.1 to 24 vol % (Figure 7b). Similar phenomena can also be found in the comparable 

conventional LbL membranes (Figure 5.7b). [69] At the lower graphene oxide content, fewer 

layers of graphene oxide embedded in the silk matrix, thus, causing stress concentration 

around these sites. However, further increases in the graphene oxide content results in more 

uniform stress distribution throughout the whole thickness of the membrane, resulting in 

significant increase in the ultimate strain to very high value for silk nanocomposite films.[41]  

The ultimate stress of reinforced GO-SF nanomembranes increased linearly with the 

increasing content of GO component from 66±9 MPa to 292±29 MPa (Figure 5.7c). This 

high ultimate strength is higher than those values reported earlier for the conventional SA-

LbL films. Moreover, the films fabricated here are more stretchable with significantly 

increased ultimate strain (Figure 5.6a). This improvement can be accredited to the effective 

corporation of the strong and flexible sheets and the improved stress transfer induced by 

the enhanced interphase zone between components. Remarkably, the maximum ultimate 

stress value obtained at a moderate loading of 24 vol% graphene oxide sheets is higher than 



116 

 

that of “nacre”-like nanocomposites with extremely high content of inorganic laminates, 

one of the strongest known natural nanocomposites (around 110 MPa).[335] Moreover, it is 

twice of that for high-performance plastics (polyethylenimine (PEI), 145 MPa) and reaches 

1.5-fold of that recorded for CNT-LbL membranes with 50 wt% loading of carbon 

nanotubes (220 MPa). [336] 

An even more significant finding is that the toughness of the graphene oxide-containing 

nanomembranes increased exponentially up to very high value of 3.4 MJ m-3 at the 

graphene oxide content of 24%. This value is much higher than that reported for 

conventional SA-LbL films reported earlier (Figure 5.7d). The value recorded here is about 

five times higher than those reported for other reinforced LbL films containing 

nanoparticles and for silk-clay LbL nanocomposites. [41, 330] The increased value of the 

Figure 5.7 (a) Representative stress–strain curves derived from the bulging tests and (b) the 

ultimate strain, (c) the ultimate stress, and (d) the toughness as a function of the GO concentration 

for GO-SF nanocomposite membranes fabricated here as compared to the values for the 

conventional SA-LbL membranes (data taken from ref. 69). 



117 

 

toughness is mainly due to the combination of linearly increasing ultimate stress and the 

significantly improved ultimate strain at higher filler contents.  

5.2.3 Fracturing behavior 

Further analysis of the fractured films has been conducted with transmission electron 

microscopy (TEM) and scanning electron microscopy (SEM) (Figure 5.8). Images of 

fractured specimens show signs of plastic deformation of membranes before final failure. 

By carefully examining the morphology of the ruptured regions, we have defined two types 

of fracture modes. The first mode involves increased plasticity and corresponds to the yield 

failure mode (Figure 5.8c, e). In this mode, the edge of the fractured membrane is ragged 

with materials pull-outs. Significant amount of energy can be dissipated during the rupture 

and reconstruction of the dense and weak bonds between the graphene oxide surface and 

the stretched and spread silk fibroin molecules, facilitating the drastic improvement of the 

toughness of the dSA-LbL films fabricated here. This fracture mode is also consistent with 

the yielding observed in the mechanical tests, although the overall plasticity of the films is 

relatively low.  

The second failure mode is the brittle rupture mode where the edge of the fracture is much 

smoother down to the nanometer scale and seldom pull-outs could be observed (Figure 

5.8d). This fracture mode is formed during the crack propagation, because the smoother 

fracture is always observed in pairs, indicating secondary rupture event and the initiation 

of the ruptured front (Figure 5.8f-h). It is visible that the compliant constituent of the 

nanocomposite membrane, silk fibroin matrix, deforms plastically and forms bridges 

across the crack tip (Figure 5.8h). The circular shape of the tip of the crack demonstrates 

the ability of the compliant silk constituent to evenly distribute the concentrated stress at 

the crack tip and dissipate the tensile energy effectively due to significant plastic 

deformation of compliant silk matrix.  

These results indicate that the combination of different deformational modes at different 

length scales can be associated with heterogeneous morphology with graphene oxide sheets 

and silk matrices behaving differently and providing complementary paths for energy 

dissipation during global deformation. Such a combination facilitates three-fold increase 
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in the ultimate strain before complete failure along with higher elastic modulus at the initial 

deformational stage. The increased ultimate deformation can be related to the ability 

undergoing a full-scale unfolding transformation of the silk backbones with a step-by-step 

unfolding of the soft and hard domains (tens of a nanometer) even confined in limited 

spacing between graphene oxide sheets.  

Overall, this study shows superior mechanical behavior of laminated biopolymer-GO 

nanocomposites fabricated here in comparison with recent literature data on similar 

materials. A major challenge for modern nanocomposites is the simultaneous 

Figure 5.8 (a) The SEM image showing the broken edges of GO-SF nanomembrane. inset: the 

whole image of the broken membrane suspending on a 300 μm copper aperture. (b) TEM image 

of selected ruptured areas (framed in (a)) of the free-standing GO-SF nanomembrane. (c), (d) the 

TEM images of the yield failure mode and the rapid rupture mode (indicated by frames in (b)), 

respectively. (e) TEM image of zoomed end of the fracture edge (framed in (c)). (f) TEM images 

of the end of the crack (indicated by the arrow in (a)). (g) TEM images of the third failure mode 

(framed in (f)). (h) The higher magnification TEM images of zoomed hole (framed in (g)). 
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reinforcement of the toughness and the Young’s modulus, due to the competition of 

strengthening mechanisms. For instance, GO-polyvinyl alcohol (PVA) drop-cast films 

show extremely high toughness of over 77 MJ m-3 owing to the very high elongation-to-

break, but the ultimate stress and Young’s modulus are only 62 MPa and 6 GPa, 

respectively.[212] Ha et al. fabricated polyimide (PI) nanocomposites films reinforced with 

graphene oxide and different reduced graphene oxide (rGO) sheets using a conventional 

solution casting method followed by thermal imidization and additional crosslinking. The 

incorporation of 5 wt% GO increased the tensile strength to 1.5 GPa, but their elastic 

modulus increased only moderately, to 36 GPa.[284] Cui et al. demonstrated high toughness 

rGO/poly(dopamine) (PDA) nanocomposites by dopamine cross-linking.[ 337 ] The 

toughness reaches 4.0±0.9 MJ m-3, which is 2 times higher than that of natural nacre and 

about 18% higher than the value we reported in this work. However, the tensile strength is 

modest, around 200 MPa, and the very low elastic modulus, of 6.1 GPa, demonstrates very 

modest mechanical strength of these materials.[337]  

Borate crosslinking of graphene oxide can significantly stiffen the resulting thin film, 

reaching 127 GPa of Young’s modulus due to the strong and dense network of covalent 

bonds, but the borate crosslinked films are also extremely brittle with the toughness of only 

0.12 MJ m-3, limiting its practical applications.[99] Similar examples for ultrahigh Young’s 

modulus with very low toughness can also be found in PVA/ montmorillonite (MTM) films 

and crosslinked GO-PEI films. [210] Figure 5.9 summarizes the toughness and Young’s 

modulus of the aforementioned high-performance nanocomposite materials mainly 

consisting of GO and other 2D nanoreinforcing materials. The extremely high Young’s 

modulus and excellent toughness, especially the unique balancing of these two critical 

mechanical properties, make the GO-SF nanocomposite membranes fabricated by the dSA-

LbL technique stand out.  

Among silk-based nanocomposites, silk fibroin and hydrotalcite (HTlc) nanocomposites 

display very modest elastic modulus and ultimate stress: around 2.6 GPa and 65 MPa, 

respectively. [332] Moreover, the similar GO-SF laminated membranes fabricated by drop 

casting show the low ultimate stress below 35 MPa and elastic modulus below 1 GPa due 

to the plasticizing effect of the glycerol.[338]  
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5.3 Conclusions 

Ultrathin SF-GO nanocomposite membranes with remarkable mechanical properties were 

fabricated by using the novel dynamic SA-LbL assembly. Uniquely realized by the dSA-

LbL, the strong interactions between stretched silk backbones and graphene oxide surface 

lead to effective load transfer between components with the interphase reinforcement.  The 

silk-graphene oxide membranes with modest volume fraction of graphene oxide sheets 

show the elastic modulus above 170 GPa and a high toughness of 3.4 MJ m-3 due to three-

fold increase in the ultimate deformation as compared to conventional LbL membranes 

with similar chemical composition. We suggest that the dense network of weak interactions 

between the individual silk fibroin chains and graphene oxide surfaces facilitates the 

formation of strong molecular interphase zones of confined individual silk backbones, thus, 

dramatically enhancing the reinforcing effect.  

Figure 5.9 Summary of the mechanical properties of the GO based nanocomposite materials. 
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Chapter 6 Written-in Conductive Patterns on Robust Graphene Oxide 

Biopaper by Localized Electrochemical Reduction 

 

6.1 Introduction 

Although graphene-based flexible ”paper” materials[99, 134, 211, 339] made by vacuum assisted 

assembly have been introduced as prospective superior carbon-only replacement of 

inorganic-based composites with excellent mechanical properties, their further progress as 

protective coatings, membranes, electromagnetic shielding, and electromechanical 

elements is limited by several issues related to their integration in device environment.[3, 6, 

41, 77, 189, 209, 217, 340, 341] Very limited options for inducing electrical conductivities and long-

term stability under wet conditions are most critical issues.[69, 73, 78, 116, 208, 210, 342, 343] The 

epoxide, hydroxyl, carbonyl, and carboxyl groups of graphene oxide enable aqueous 

processibility and enhance interfacial interactions and crosslinking. The variable content 

of water molecules, which is a common “binder” of graphene oxide paper through 

hydrogen bonding, affects the reliability of mechanical performance of the graphene oxide 

paper.[ 73, 134] Moreover, graphene oxide paper is susceptible to water plasticization and 

easily loses its mechanical integrity in wet condition.  

To tackle this challenge, many studies have focused on strengthening the graphene oxide 

papers by chemical crosslinking, but often resulted in compromised toughness and 

excessive stiffening.[210] The heterogeneous nature of surfaces of graphene oxide flakes 

with hydrophobic domains isolated by highly oxidized hydrophilic domains makes it 

difficult to apply traditional strategies for making strong layered nanocomposites with 

conventional organic binders and crosslinking strategies. [118, 189] Moreover, unlike “bucky 

paper” or other nanocomposites made from carbon nanotubes[344, 345], the integration of 

these graphene oxide nanocomposite films into the flexible electronic devices calls for 

further reduction via chemical, electrochemical, thermal, photothermal or hydrothermal 

routes, which usually involve harsh and toxic chemicals or intensive thermal treatments, 
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thus consequently damaging the structural integrity of the films and reducing their 

stability.[104, 106, 107, 346] 

Therefore, in order to dramatically improve applicability of graphene oxide paper, we 

present a novel bio-inspired hierarchical approach for making much improved, robust and 

flexible graphene-based paper materials. [347] These papers are fabricated on a large scale 

(several inches across) with the use of a heterogeneous biopolymeric binder and 

complemented with a facile, localized, and ambient chemical reduction of graphene oxide 

flakes, resulting in excellent electrical conductors without compromising their mechanical 

stability. We suggest that the heterogeneous (hydrophilic-hydrophobic) domain-specific 

functionalities of silk fibroin match those random domain functionalities on the oxidized-

graphitic heterogeneous surfaces of graphene oxide flakes, making silk fibroin a natural 

“universal” binder. [348] Moreover, in contrast to many other chemical binders, silk fibroin 

is mechanically strong, optically transparent, biocompatible, biodegradable, completely 

bio-renewable, and can serve as an additional reducing agent.[5, 50, 349, 350] 

The materials design proposed here facilitates the outstanding mechanical properties, 

which include 300 MPa strength, 26 GPa elastic modulus, 2.8 MJ m-3 toughness, and 

around 2% ultimate strain, to well exceed most of those reported in literatures for graphene-

based papers. Surprisingly, we found that the aluminum foil in direct contact with the paper 

can spontaneously and locally reduce graphene oxide flakes in ambient conditions. Such a 

readily controlled and “green” treatment combined with the ability of both surface area and 

depth selective electrochemical reduction creates electrically conductive paper materials 

with excellent 1350 S m-1 in-plane electrical conductivity without compromising the initial 

mechanical stability.  

 

6.2 Results and discussion 

6.2.1 The bio-bonded graphene oxide paper 

Vacuum-assisted filtration was used to fabricate layered “paper” from the homogeneous 

mixture of graphene oxide and silk fibroin similar to literature but with special efforts to 
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prevent fast coagulation of biopolymer solution (see Methods). [88, 99, 134, 210] The resulting 

2D stacking of the graphene oxide flakes within several-micron-thick freestanding paper 

is presented in Figure 6.1a. The root-mean-square surface roughness is 0.30±0.06 μm per 

100 μm2 square area for the as prepared paper, indicating their uniformity (below 4% 

variation in thickness) (Figure 6.1b). The incorporation of silk fibroin in the stacks of 

graphene oxide flakes is confirmed quantitatively by X-ray photoelectron spectroscopy 

(XPS), which shows the silk fibroin added in the mixture is effectively bonded to the 

graphene oxide flakes and retained in the final films (Table 6.1). The interlayer spacing of 

the pure film as measured from (001) peak of the X-ray diffraction (XRD) data is 0.81 nm, 

Figure 6.1 Morphologies of the graphene oxide-silk fibroin films: (a) SEM micrograph (scale 

bar: 5 μm) of the fractured cross section of the silk fibroin intercalated graphene oxide film, fine 

layered structure with mild wrinkling is observed.  (b) AFM micrograph of the surfaces of the 

nanocomposite films before reduction (scale bar: 20 μm, z-range: 6 μm). (c) XRD data for the 

graphene oxide nanocomposite films with various silk fibroin contents before and after 

electrochemical reduction. (d) Representative stress-strain curves of the nanocomposite biopaper 

before and after partial reduction. 



124 

 

which is close to the common interlayer spacing of graphene oxide papers. [38, 351] Addition 

of small quantity of silk fibroin (below 10%) results in gradual increase in the interlayer 

spacing to 0.89 nm, which indicates the uniform intercalation of silk fibroin molecules 

(Figure 6.1c upper part). The width of the peaks also progressively increases, indicating 

fewer stacking layers of the graphene oxide flakes from 24 for pure graphene oxide paper 

to around 10 for higher silk content due to the intercalation of silk fibroin and flakes mis-

stacking (Table 6.1). It is worth noting that the overall content of silk binder within paper 

calculated from XPS and XRD data is close to the initial silk content in solution (except 

highest 10%) which indicates effective intercalation of silk macromolecules for modest 

(below 7%) silk concentrations.  

Table 6.1 The content analysis of the graphene oxide nanocomposite films. 

N
o
. 

N
o
m

in
a
l 

G
O

 c
o
n

te
n

t 

(w
t%

) 

N
o
m

in
a
l 

S
F

 c
o
n

te
n

t 

(w
t%

) 

As prepared Partially reduced 

A
ct

u
a
l 

S
F

 c
o
n

te
n

t 

(X
P

S
)[a

]  (
w

t%
) 

A
ct

u
a
l 

S
F

 c
o
n

te
n

t 

(X
R

D
)[b

] 
(w

t%
) 

C
/O

 r
a
ti

o
 o

f 
G

O
[c

]  

G
O

 s
ta

ck
in

g
 

(l
a
y
er

s)
[d

]  

A
ct

u
a
l 

S
F

 c
o
n

te
n

t 

(w
t%

) 

A
ct

u
a
l 

S
F

 c
o
n

te
n

t 

(X
R

D
) 

(w
t%

) 

C
/O

 r
a
ti

o
 o

f 
G

O
 

G
O

 s
ta

ck
in

g
 

(l
a
y
er

s)
 

A
l3

+
 (

w
t%

) 

1 100.0 0.0 0.0 n/a 2.27 23.7 0.0 n/a 3.71 16.6 9.9 

2 97.5 2.5 3.0 2.7 2.20 10.6 2.4 2.7 3.20 9.7 9.7 

3 95.0 5.0 5.4 5.2 2.13 9.8 5.7 4.8 3.54 8.9 8.9 

4 92.5 7.5 8.3 5.6 2.07 9.1 7.6 5.8 3.66 8.6 8.3 

5 90.0 10.0 12.7 5.1 2.06 7.1 12.3 9.4 3.44 8.0 9.3 

[a] Determined from the content of nitrogen (elemental ratio C:O:N =52:24:24 in SF).  
[b] Determined from the increase of the interlayer spacings by assuming the densities of the 

components are the same as their bulk states. 
[c] Contributions from the intercalated silk fibroin are excluded. 
[d] Calculated from the Scherrer equation by taking shape factor K = 0.9, system broadening factor 

β = 6x10-4 rad. 

 

The mechanical properties of these as prepared pure graphene oxide paper with the elastic 

modulus value of 7 GPa and ultimate strength of 60 MPa are on par with literature data 

(Figure 6.2 black columns).[73] Ruoff et al. fabricated stronger but stiffer graphene oxide 

paper, which is probably due to annealing process and different environment humidity. [134] 

Adding silk binder results in dramatic increase of mechanical properties: the ultimate stress, 
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ultimate strain, elastic modulus, and toughness reach 153 MPa, 2.8%, 13 GPa, and 2.6 MJ 

m-3 at 5% silk fibroin, respectively, which are correspondingly 125%, 90%, 105%, and 330% 

higher than those of the pure graphene oxide paper. The mechanical properties of the 

graphene oxide papers with silk binder are comparable to those reported by Huang et al., 

who fabricated similar films using drop casting technique after homogenizing the gelled 

mixture by intense sonication343. 

6.2.2 The metal reduction of graphene oxide 

In order to further improve mechanical performance and induce electrical conductivity we 

exploited aluminum initiated chemical reduction, which is known for producing reduced 

graphene oxide powders rather than structured films.[106] The effective chemical reduction 

of graphene oxide by direct physical contact with aluminum foil is first spectacularly 
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Figure 6.2 Mechanical properties of the graphene oxide nanocomposite films with various silk 

fibroin contents before and after electrochemical reduction.  Panels (a), (b), (c), and (d) are ultimate 

stress, ultimate strain, elastic modulus, and toughness versus silk fibroin content, respectively. 
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reflected by the alternation in color (dark brown to grey) and the appearance of metallic 

luster of the films (Figure 6.3a & b). The change in color and enhanced luster of initial 

Figure 6.3 Microstamping of graphene oxide biopaper: (a) Micrographs (scale bar: 5 mm) of two 

strips along with contact angle measurements before (right) and after (left) reduction. (b) Reflective 

optical micrograph (scale bar: 200 μm) showing the border of the partially reduced region.  XPS 

C1s high resolution spectra (c), and Raman spectra (d) before and after selective reduction; Raman 

mapping (e) (scale bar: 20 μm) of the ID/IG ratio and SEM image (f) (scale bar: 300 μm) of the 

border between the reduced and the non-reduced regions. 
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black paper suggests the narrowing down of the band gap of this material, which in turn 

indicates the reconstruction of the sp2 hybridization chemical structures.[102] In addition, 

the contact angle of the film increased from 51o to 81o, showing a significant increase in 

hydrophobicity as expected for surfaces with increase graphitization. The increased 

hydrophobicity is also favorable for resisting water damage, which is a common problem 

for pristine graphene oxide papers. It is also worth noting that the surface roughness of the 

reduced nanocomposite films is not changed as compared to the as prepared samples 

(Figure 6.1b). 

Moreover, the chemically modified surface areas can be readily patterned with high 

selectivity by applying properly shaped aluminum foil under ambient conditions, 

demonstrating highly localized nature of the chemical reduction process (Figure 6.4). Such 

Figure 6.4 The reduction setup using electrochemical microstamping method.  The resulting 

patterned graphene oxide biopaper specimens are shown on the right (from top to bottom): 

checker pattern (freestanding paper), GT logo with the background reduced (on filter paper, 

submerged in water), and GT logo with GT letters reduced (transferred to silicon wafer).  The 

reduced areas have metallic luster and are light grey in color. The diameter of the specimens is 

around 40 mm. 
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contact-controlled patterning is feasible with sharp edges and micro-scale lateral resolution 

below 10 m for manually cut foil patterns (Figure 6.4), which is potentially comparable 

to traditional labor-consuming techniques such as photolithography or laser etching352.  

Significant changes in chemical functionality of graphene oxide flakes are further 

confirmed by XPS, XRD, energy-dispersive X-ray (EDX) analysis, and Raman 

spectroscopy (Figure 6.3). Indeed, the C/O ratio increased from 2.2 to 3.5, indicating 

effective removal of the oxygen-containing functionalities. [102] The presence of 9 wt.% 

Al3+ is also identified independently by XPS and EDX. The aluminum ions are distributed 

in interior space of the films as can be concluded from the increase of the interlayer spacing 

by 0.11±0.04 nm, which is consistent with intercalation of partially complete monolayer 

ions (Figure 6.1c). [342] High resolution XPS C1s scan shows that the relative intensity of 

the epoxide group decreased by 29%, and that of the graphitic carbon increased by 19% 

after the reduction, which is a clear sign of the effective removal of oxidized chemical 

groups and the restoration of the conducting sp2 hybridized carbon (Figure 6.3c).[116] 

Finally, Raman spectra show the width of the D band decreases and the ID/IG ratio increases 

from 0.96 to 1.27, which is another recognized sign of the homogenization of the sp3 

carbons due to the removal of oxygen-caused defects, which is also occurred in highly 

localized manner (Figure 6.3d).[108]  

Considering these results, we can suggest that these changes of chemical functionality are 

due to the presence of aluminum, which is an active reducing metal with a standard 

reduction potential (E0
Al) of -1.66 V.[106] Aluminum can reduce other materials with a 

standard reduction potential higher than E0
Al including graphene oxide (e.g. E0

GO = 0±0.6 

V depending on oxidization state[106, 353, 354]) according to the following electrochemical 

path355:  

𝐴𝑙 → 𝐴𝑙3+ + 3𝑒−;  𝐸𝐴𝑙
0 = −1.66𝑉 (6.1) 

𝑎 ∙ 𝐺𝑂 + 𝑏 ∙ 𝐻+ + 𝑏 ∙ 𝑒− → 𝑎 ∙ 𝑟𝐺𝑂 +
𝑏

2
∙ 𝐻2𝑂;  𝐸𝐺𝑂

0 ≈ 0 ± 0.6 𝑉 (6.2) 
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It is important to note that although acidic conditions facilitate the efficient reduction of 

graphene oxide, the chemical reaction can be conducted in neutral condition at pH = 7±0.4 

and room temperature.[355]  

 

Figure 6.5 The Raman mapping of the patterned partially reduced graphene oxide 

nanocomposite film: (a) D band width, (b) D band area, and (c) D band position. 
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Indeed, Raman mapping reveals very narrow microscopic transitional zone between 

pristine and transformed surface regions similar to that observed in optical microscopies 

and SEM of surfaces (Figure 6.5). Moreover, depth-distribution of the transformed interior 

volume obtained with SEM on fractured region confirms gradual progression of the 

reaction from the surface to the interior (Figure 6.6a-c). Darker regions in proximity to the 

surface being in contact with aluminum foil correspond to more conductive, transformed 

paper sub-surface regions while brighter regions indicate high surface charges on pristine 

Figure 6.6 SEM micrographs of the partially reduced graphene oxide biopaper and their electrical 

conductivity.  (a) SEM micrograph (scale bar: 20 μm) of a fractured biopaper with the reduced 

top layer (dark) and the pristine non-reduced bottom layers (bright).  The cross sections of (b) 

bottom surface reduced, and (c) both surfaces reduced (scale bar: 5 μm).  The white arrows 

indicate the thicknesses of the biopaper.  (d) The electrical conductivities of the uniformly reduced 

graphene oxide biopaper with various contents of silk fibroin. Data points for the single-sided 

samples corresponding to the scenario in (b), and those for the double-sided samples 

corresponding to the scenario in (c). 
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graphene oxide dominated material, which is similar to that observed for surface charging 

distribution. Stopping electrochemical reaction at certain time resulted in conversion only 

to certain depth as controlled by electronic connectivity of the graphene oxide to the 

aluminum metal as in the primary batteries (Figure 6.6b & c). Placing aluminum foils on 

both surfaces of the film makes concurrent propagation of electrochemical transformation 

from both surfaces and results in virtually complete interior transformation twice faster.  

6.2.3 The electrical properties of the reduced bio-bond graphene oxide paper 

In fact, as a result of this electrochemical reaction at ambient conditions we observed 

excellent conductivity of the transformed paper, which reaches 1350 S m-1 for completely 

transformed paper with 2.5% of silk binder (Figure 6.7). This value is comparable to the 

values of 1700-2100 S m-1 of the graphene oxide papers reduced by traditional harsh 

Figure 6.7 The linear increase of effective conductivity of the 5-µm thick graphene oxide 

nanocomposite films with 2.5 wt% silk fibroin for the first 120 hours of reduction, and then the 

effective conductivity saturates at around 1300 S m-1.  This result demonstrates the steady 

progress of the reduction through thickness with the intercalation of silk fibroin in the film, and 

120 hours is the critical reduction time for the complete through thickness reduction of a 5-µm 

thick film.  The reduction rate is estimated to be around 25 nm hr.-1 per surface. 
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methods.[106, 356] The effective conductivity of the single-side treated film is exactly half of 

the double-side treated film, which suggests the critical role of the reduction depth 

propagation in material transformation (Figure 6.4d). We suggest that adding insulating 

binder (i.e. silk fibroin) results in fast reduction of the film conductivity due to the 

interruption of the propagation path for electrons by the presence of the aggregated silk 

and catastrophic defects in flake stacking (Figure 6.6d).  

It is critically important that the paper after chemical transformation by our “green” 

technique improved its mechanical properties, in striking contrast to the current reduction 

techniques that involve harsh chemical or thermal treatments and inevitably damage the 

polymeric components (Figure 6.2 red columns). The ultimate strength of the transformed 

films reaches very high value of 300 MPa at low silk content, which results also in the 

highest toughness of 2.8 MJ m-3 among all the samples tested in this study. The elastic 

modulus of the reduced pure graphene oxide film increased almost three-fold due to defect 

reduction and the Al ion doping. [342] Manifold increase in the mechanical strength may be 

also supported by additional crosslinking and reducing ability of silk backbones. [330] 

The mechanical properties of the reduced graphene oxide-silk fibroin biopapers observed 

here are among the best of the traditional layered graphene-based papers reported to date.[3, 

116, 189, 342, 343] For example, drop casted graphene oxide-silk fibroin films have comparable 

ultimate strain at 1.8% but much lower tensile strength and elastic modulus343. A graphene 

oxide-polyvinyl alcohol (PVA) film that has been reduced by hydroiodic acid (HI) 

possesses much lower strength and modulus.[73, 217] Chemically crosslinked graphene oxide 

(polydopamine)-polyethyleneimine (PEI) films exhibit extremely high elastic modulus up 

to 103 GPa but much lower tensile strength of 210 MPa and 0.2% strain-to-failure, which 

is a common problem for chemically crosslinked brittle graphene paper. [210]   

 

6.3 Conclusions 

We demonstrated that the extremely mechanically strong, flexible, and tough graphene 

oxide-based “paper” can be readily prepared with one-step facile approach by applying 
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natural polymer binder, silk fibroin, which outperforms classical nacre composed of 

laminated aragonite (an inorganic mineral) and small amount of protein binder with 

toughness of 1.0 MJ m-3.  Furthermore, this paper can effectively and selectively reduced 

by localized presence of aluminum under neutral aqueous conditions and at room 

temperature to highly conductive graphene paper not only just without compromising their 

mechanical integrity, but also further improving mechanical performance and making them 

stable in aqueous environment.   



134 

 

 

Chapter 7 Tuning the Electronic Properties of Robust Bio-Bond 

Graphene Papers by Spontaneous Electrochemical Reduction: 

from Insulators to Flexible Semi-Metals 

 

7.1 Introduction 

As known, removal of the oxygenated groups and restoration of the electrical conductivity 

of graphene oxide can be realized by using a so-called “reduction” procedure. [103, 106, 107, 

357] This process is generally conducted by using chemical or thermal treatments such as 

photon-induced thermal energy,[107] hydraulic pressure,[223] harsh reducing agents,[116, 358] 

or the combination of these techniques.[359] For example, reduced graphene oxide paper 

annealed at 220 ºC for 1 hour show electrical conductivity up to 1.0 x 104 S/m.[208] 

Treatment at high temperature (up to 2850 ºC) results in mechanical and electrical 

properties close to those of pristine graphene.[102, 360] However, this high-energy consuming 

process damages other components that are sensitive to heat, e.g., crosslinkers or functional 

dopants. On the other hand, hydrazine and concentrated hydroiodic acid are volatile and 

highly toxic, posing environmental and health-related concerns for industrial 

productions.[102] Recently, electrochemical reduction of graphene oxide has been employed 

for the restoration of electrical properties of graphene oxide in various energy storage and 

transport applications.[361, 362] These electrochemical reduction techniques adopted from 

conventional electrochemical cells provide an excellent alternative route to energy-

efficiently reduce graphene oxide in layer-by-layer thin films, but an external energy source 

is still required and the selectivity of the reduced areas is hard to achieve. 

As has been demonstrated earlier, mechanically strong and moisture-resistant bio-bond 

graphene oxide paper can be fabricated by using silk fibroin (SF) as an efficient 

multifunctional binder.[186, 330, 348] And a new spontaneous electrochemical “write-in” 

technique allowed to selectively pattern the bio-bond graphene oxide paper with 

conductive paths.[109]  When compared to the other pattern-enabled reduction techniques, 
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e.g., laser writing or “light scribing,”[107] the metal-assisted reduction technique is capable 

of large-area patterning, energy efficient, and preserves the outstanding mechanical 

properties of the graphene papers.[311] However, the electrical conductivity of the reduced 

graphene paper materials fabricated by the original metal-assisted reduction technique is 

relatively low (usually not exceeding 102 - 103 S/m), and the extent of the reduction is 

difficult to control due to the very low reduction rate.  

We demonstrate the full control of the electrical conductivity of graphene oxide based 

papers, which were mechanically strengthened by a small amount of silk fibroin, over 

orders of magnitude by depth-controlled spontaneous electrochemical reduction at ambient 

conditions (aqueous environment and room temperature). The steady progression of the 

reduced layer and the spontaneous diffusion of the oxygen containing moieties allow for 

the realization of high electrical conductivity up to 1.5 x 104 S/m and reduced surface work 

function from 4.9 to 4.2 eV all across large area flexible and mechanically robust materials 

(>100 cm2). To the best of our knowledge, this is the first systemic study of the 

environmental-aware graphene oxide reduction technique. And it demonstrates high 

versatility in real-world applications by controlling the electrical conductivity over orders 

of magnitude and significantly shifting the work function of this robust and flexible 

electronic material.  

Scheme 7.1 The fabrication and reduction of the bio-bond graphene paper explored in this study. 
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7.2 Results and Discussion 

7.2.1 Fabrication and morphologies of the bio-bond graphene oxide papers 

We employed vacuum-assisted filtration (VAF) technique to assemble the graphene oxide 

flakes into paper-like films as demonstrated in Scheme 7.1.[134] Silk fibroin was mixed with 

the graphene oxide suspension to strengthen the resulting paper by physically binding the 

layers of the flakes. Graphene oxide flakes with lateral sizes between 2 µm and 20 µm and 

thickness around 0.9 nm were utilized for this assembly (Figure 7.1a & b). X-ray 

photoelectron spectroscopy (XPS) shows predominant carbon and oxygen peaks and no 

other peaks related to external contaminations (Figure 7.1c). Quantitative peak 

deconvolution of the XPS survey renders a 2.2 : 1 atomic ratio for carbon and oxygen 

elements which is consistent with the reported values.[109] The Raman spectrum shows a 

Figure 7.1 Quality characterization of the graphene oxide flakes: (a) TEM and (b) AFM (z-

scale: 3.5 nm) micrographs of the graphene oxide flakes. (c) XPS survey scan of the graphene 

oxide. (d) Raman spectrum of the graphene oxide showing distinct D and G bands. 
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strong D band, which represents the oxygenated “defects” in the sp2 hybridized basal plane 

(Figure 7.1d). Based on the ID/IG ratio, the size of the graphitic domains can be estimated 

to be around 7 nm, which is characteristic for amphiphilic surfaces.[363]  

Then we applied the metal-assisted spontaneous electrochemical reduction to restore the 

electronic properties of the bio-bond graphene oxide paper (details in the Experimental 

section). Simply, a 500 nm layer of aluminum was deposited on the the paper, and then 

diluted hydrochloric acid was dropped on top of the metal covered paper to initiate the 

reaction. Finally, the unreacted metal debris were carefully washed by Nanopure water. 

The appearance of the bio-bond graphene paper after reduction is metallic grey in contrast 

to matte dark brown of the initial paper, suggesting dramatic change in electronic band 

structures (Figure 7.2a, d). The surface morphology is not affected by the reduction 

procedure as characterized by atomic force microscopy (AFM) (Figure 7.2b, e), where the 

root-mean-square roughness is about 600 nm in a selected surface area of 1x1 µm2 for both 

cases. However, when observed using scanning electron microscopy (SEM), the 

morphology of the paper cross sections before and after reduction is distinctly different 

Figure 7.2 Morphologies of the bio-bond graphene paper before (top row) and after (bottom row) 

reduction. (a) and (d): optical photographs, (b) and (e): AFM topographies (z-scale: 6 µm), and (c) 

and (f): SEM cross sections of the graphene (oxide) papers that are pulled apart to reveal the 

embedded microstructures. 
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(Figure 7.2c, f). Smoother sections of the fully reduced bio-bond graphene paper indicate 

reduced surface charging, characteristic of conductive materials.  

7.2.2 Tuning electrical properties by polymeric binders 

Here, we use the effective conductivity, which is the conductivity averaged over the whole 

bio-bond graphene paper as a uniform conducting material, for direct comparison across 

the reported results (Figure 7.3). As was observed, the effective conductivity decreases 

exponentially with the increase of the content of the bio-binder (silk fibroin) from 0.5 to 5 

wt%. After the 2-hour partial reduction, the effective conductivity for the samples 

decreases by more than 20 folds from 350 S/m for the ones made of pure graphene oxide 

to 14 S/m for the sample with 5 wt% of silk fibroin. It is worth noting that the electrical 

conductivity of the samples of the same composition is much higher in this study because 

the accelerated reduction and effective removal of the oxygen containing moieties under 
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Figure 7.3 The electrical conductivity and the C/O ratio of the reduced graphene oxide measured 

from the 15 µm thick bio-bond graphene paper reduced at pH=0 for 2 hours for different silk 

contents. The C/O ratios of the reduced graphene oxide are post-corrected by subtracting the 

elemental contributions from the silk constituents. 
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acidic conditions (pH=0) (see below) in contrast to neutral conditions previously reported. 

Meanwhile, the level of reduction of the graphene oxide is not hindered by the addition of 

the silk fibroin binders as revealed by the constant C/O ratio of the bio-bond graphene 

papers with various silk fibroin content, indicating undisrupted network of the graphene 

oxide flakes (Figure 7.3). The C/O ratio of the samples is stable at around 6.2 as detected 

by XPS after subtracting the elemental contributions of silk in the composite paper. 

7.2.3 The effect of reducing pH to the electrical and electronic properties 

During electrochemical reduction, the aluminum surface is oxidized into water dissolvable 

high valence states and the graphene oxide close to the metal layer accepts the electrons 

from the metal (see more discussion below).[355] Under the standard reaction condition 

(pH=0), the graphene oxide gets reduced following the electrochemical redox route:[353] 

𝐴𝑙 → 𝐴𝑙3+ + 3𝑒−;  𝐸𝐴𝑙
0 = −1.66𝑉 (7.1) 

𝑎 ∙ 𝐺𝑂 + 𝑏 ∙ 𝐻+ + 𝑏 ∙ 𝑒− → 𝑎 ∙ 𝑟𝐺𝑂 +
𝑏

2
∙ 𝐻2𝑂; 𝐸𝐺𝑂

0 ≈ −0.6 𝑉 (7.2) 

The difference between the standard reduction potentials (E0) of aluminum and graphene 

oxide is around 1.0 V, which is large enough to drive an effective electrochemical reaction. 

Here, we have also investigated the effect of the concentration of protons (i.e., pH) on the 

extent of the reduction since protons are a reactant participating in the second half-reaction 

to reduce graphene oxide (Eq. 7.2). By keeping the reduction time and the content of the 

silk fibroin constant, we varied the acidity of the reduction environment (the HCl 

concentration varied from 10-5 to 10+1 M). It is worth noting that the actual pH of the 10+1 

M hydrochloric acid has diverted from the negative logarithm of the concentration of the 

protons (i.e. −𝑙𝑜𝑔10[𝐻+]) due to the increased activity of the concentrated protons, but we 

still use pH=-1 to denote the environment of the 10+1 M HCl during the reaction for the 

sake of simplicity and consistency.  

As shown in the high-resolution C1s electron orbital binding energy spectra of XPS, the 

peak around 286.2 eV that corresponds to the epoxy groups of the graphene oxide is 

noticeably stronger at higher pH reduction environment (Figure 7.4a).[364] This is caused 
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by the fact that with pH increased from the standard condition (pH=0), the difference of 

the reduction potentials (E) between aluminum and graphene oxide decreases due to the 

decrease of the reduction potential of graphene oxide according to the Nernst equation:[355] 

𝐸𝐺𝑂 = 𝐸𝐺𝑂
0 +

𝑅𝑇

𝐹
𝑙𝑛[𝐻+] (7.3) 

where R is the ideal gas constant, T is the absolute temperature, and F is the Faraday 

constant. For example, the gap between the reduction potentials of aluminum and graphene 

oxide is about 0.6 V in neutral condition (pH=7), which is 40% smaller as compared to that 

of the standard condition (1.0 eV at pH=0). Therefore, the increase of pH during the 

reduction effectively shifts the thermodynamics of the reaction to the less favorable end 
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Figure 7.4 Bio-bond graphene paper with 2.5 wt% silk fibroin reduced for 2 hours under various 

pH environments: (a) XPS C1s spectra of the top reduced surfaces, (b) electrical conductivity and 

C/O ratio of the top reduced surfaces, (c) XRD data, and (d) UPS spectra of the top reduced surfaces 

for the measurement of work functions (insets: the zoom-in views of the starting and the ending part 

of the UPS spectra). 
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that affects the removal of the oxygen containing moieties. In addition, the reaction rate is 

also affected by the lower concentration of protons according to the rate law (see Eq. 7.2), 

slowing down the removal of the oxygen containing species. 

As known, the removal of the epoxy groups greatly facilitates the restoration of the electric 

conductivity of the reduced graphene oxide.[ 365 ] Therefore, we can suggest that the 

effective conductivity of the reduced bio-bond graphene paper should increase with larger 

reduction potential gaps between aluminum and graphene oxide, which is promoted by 

lower pH. Indeed, the effective conductivity drastically increases with lower pH values, 

peaking at pH=0 (Figure 7.4b). However, when the pH is further decreased from 0, the 

effective conductivity decreased back down to a significantly lower level. Under these 

conditions, the competing side-reaction can consume aluminum metal and produces 

hydrogen gas: 

2𝐻+ + 2𝑒− → 𝐻2 ↑  (7.4) 

In the case of the excessive consumption of aluminum by the gas forming side-reaction 

(Eq. 7.4), the reduction of graphene oxide sheets is limited to the very surface of the sample.  

The direct correlation between C/O ratio to the effective conductivity observed here 

(Figure 7.4b) indicates that the higher effective conductivity for the samples reduced at 

pH=0 is caused by more efficient removal of the various oxygenated surface groups (i.e., 

epoxides) under these conditions. The highest C/O ratio achieved is about 6.3, which is 

high and comparable to those of the other commonly used techniques for the reduction of 

graphene oxides. [366] Because of that the fraction of the defected benzene rings in the 

graphene oxide basal plane decreases from 91% to 32%, by assuming each benzene ring 

can accommodate only one oxygen containing functional group and each functional group 

contains one oxygen atom, the restoration of the electrically conductive paths in the 

reduced graphene oxide flakes is effectively achieved.  

More importantly, the layered microstructure of the bio-bond graphene papers is not 

affected by the 2-hour reduction by different pH environments (Figure 7.4c). The interlayer 

spacings of the samples after the reduction remains constant at 0.79±0.01 nm (2θ = 11o), 
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which is consistent with the theoretical single sheet thickness of 0.76 nm. [367] We have 

determined the order of layering of the bio-bond graphene oxide papers by the Scherrer 

equation.[326] The stacking number of these samples are around 10 layers, indicating long 

correlation in packing of individual sheets. Moreover, after the reduction, the bio-bond 

graphene paper becomes a semi-metallic material as judged by the 0 eV take-off binding 

energy of the ultraviolet photoelectron spectroscopy (UPS) spectra, making it an excellent 

conductive substrate material for flexible electronics (Figure 7.4d).[368] 

It is also worth noting that by merely 2 hours of mild reduction, the highest effective 

conductivity reaches close to 100 S/m and the final level can be easily adjusted by varying 

the pH values. More interestingly, we found the work function of the bio-bond graphene 

paper which primarily governs the charge transfer characteristics across the interface is 

also tunable by the variation of the pH during the reduction (Figure 7.4d).[369, 370] We 

progressively adjust the work function of the bio-bond graphene papers from 4.9 eV to 4.2 

eV by applying the electrochemical reduction pH at 5 or 0, respectively. This is significant 

tuning of the work function of the graphene oxide materials by the controlled reduction 

process that has not been observed before. By closely matching the work function with 

those of the commonly used electronic materials, the hole-transporting bio-bond graphene 

paper could be utilized as both diode junction material and current collector. [191, 369, 371]  

7.2.4 The rate of the reducing front propagation 

The reduction time plays a dominant role on the extent of reduction of the bio-bond 

graphene paper. When reduced in 1 M HCl for 2 to 8 hours, the chemical states of carbon 

on the surface of the bio-bond graphene paper are consistently stable with predominant C-

C peak at 284.6 eV and small trace of C-O peak at 286.2 eV, indicating completely reduced 

surface layers (within the detection limit of XPS, about 10 nm) after only 2 hours of 

reduction (Figure 7.5a).[372] The effective conductivity of the bio-bond graphene papers 

increases monotonously in the first 8 hours and remains constant after that. Meanwhile, the 

C/O ratio of the top (reduced) surface of the bio-bond graphene paper increases from 

around 2.2 for pristine graphene oxide to 6.3 after the first two hours of reduction (Figure 
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7.5b). However, the C/O ratio on the top of the bio-bond graphene paper gradually 

decreases from 6.3 to 4.0 when the reduction continues from 2 hours to 8 hours.  

Moreover, the bottom surface of bio-bond graphene paper (not covered by aluminum layer) 

shows a slightly increasing C/O ratio that is inverse to that of the top surface (Figure 7.5b). 

This surprising observation can be due to the diffusion of the oxygen containing species 

from the bottom to the top, triggered by the gradient of the oxygen concentration created 

by the reduction occurring on the top surface. Indeed, the graphene oxide is not perfectly 

stable and slow decomposition or reduction of graphene oxide under wet conditions can be 

observed.[373, 374] This secondary mechanism of the reduction of graphene oxide that is far 

from the metal contacting layers facilitates the uniformity of the reduced layer and works 

like a “spontaneous pump” to lift the oxygen buried deep in the bio-bond graphene oxide 
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Figure 7.5 Bio-bond graphene paper with 2.5 wt% silk fibroin reduced at pH=0 for various time 

periods: (a) XPS C1s spectra of the top reduced surfaces, (b) overall effective electrical 

conductivity and the C/O ratio from both the top reduced and the bottom unreduced surfaces, (c) 

XRD data for the interlayer spacings of a 1.2 µm thin model sample showing three major peaks for 

GO, rGO and amorphous carbon (a-Carbon), and (d) the evolution of the integrated intensities of 

the GO and the rGO peaks with reduction time from the 1.2 µm thin model sample. 
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paper. Finally, after 8 hours of electrochemical reduction, this pumping of oxygen from the 

bottom layers essentially stops when the reaction and the oxygen gradient virtually 

dissipates (Figure 7.5b). 

To illustrate a complex character of multiple ongoing processes we suggest a general 

scheme representing all three adjacent elements (partially dissolving aluminum, initial 

graphene oxide, and reduced graphene oxide) surrounded by the electrolyte (Scheme 7.2). 

When the partial dissolution is initiated at the aluminum-graphene oxide interface 

according to eq. 1, the aluminum surface supplies a cloud of electrons to the adjacent 

graphene oxide sheet surface. This shift in balance promotes the restoration of the oxidized 

surface functionalities on graphene oxide surface according to eq. 2. As soon as the first 

monolayer of the graphene oxide sheets is reduced and becomes conductive, the under 

layers of graphene oxide are affected by the surplus of electrons and the reduction 

progresses further into the film (Scheme 7.2). This way, the reaction continues to the deeper 

Scheme 7.2 Illustration of the electrochemical reduction process mediated by the reduced graphene 

oxide layer. Four major steps are numbered in the scheme: (1) the initiation of aluminum ionization; 

(2) the dissolving of ionized aluminum and separation of free electrons; (3) The transportation of 

free electrons and protons to the rGO/GO interface (reduction front) and the reduction of graphene 

oxide; (4) the passive diffusion of dissociated oxygen species from the deeper layers of graphene 

oxide to the reduced interface. 
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graphene oxide layers for the first eight hours. However, the progression becomes limited 

at larger penetration depths due to the increasing internal electrical resistance. When the 

drop of electrical potential across the reduced layers approaches a certain threshold, which 

is close to the original reduction potential gap between aluminum and graphene oxide 

(around 1V), the reaction ceases across the film. In this case, the effective conductivity of 

the bio-bond graphene paper stops increasing and stays at around 700 S/m. 

Furthermore, in order to get specific rate information for the first few hours of reduction, 

we set up a model sample with a thickness of 1.2 µm and monitored the extent of the 

reduction via the evolution of the microstructural characteristics of the bio-bond graphene 

paper by X-ray diffraction (XRD) (Figure 7.5c). At longer reduction time (up to 5 hours), 

the XRD peak that corresponds to the interlayer spacing of the graphene oxides packing 

(at 0.80 nm) diminishes and a diffuse peak at around 23.5o emerges, indicating the dramatic 

transformation of the initial laminated structure. We assign the emerging peak at d=0.38 

nm to closely packed phenyl rings of the graphene monolayer (minimum face-to-face 

distance of around 0.34 nm).[364] It is also noticed that with longer reduction times, another 

diffused peak at around 19.5o (d=0.45 nm) emerges (Figure 7.5c). This secondary diffuse 

peak can be assigned to the presence of the amorphous component composed of amorphous 

carbon and silk material. From the integrated intensity of the graphene oxide peak versus 

the reduction time we found a linear regression of the d=0.80 nm peak intensity (Figure 

7.5d). The interception of the linear fitting indicates that the total time required to fully 

reduce the 1.2 µm thick bio-bond graphene paper is 4.2 hours. Therefore, the linear 

reduction rate of the bio-bond graphene paper has been calculated to be 0.29 µm/hour under 

given conditions. Finally, the peak at 0.38 nm becomes dominant after full reduction thus 

indicating full transformation of the initial laminated structure to limited face-to-face 

graphitic region packing, which facilitates the high electrical conductivity through local 

restacking. These conducting regions coexist with a minor fraction of the amorphous 

carbon-rich regions.  
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7.2.5 Bio-bond graphene papers under cyclic reduction 

As has been discussed in the previous sections, a single cycle of electrochemical reduction 

results only in a certain modest level of electrical conductivity to the bio-bond graphene 

paper. The optimal single-cycle reaction condition for the maximum effective conductivity 

has been determined as 1 M HCl (pH=0). Too high or too low pH values either slow down 

the reduction or promote the competitive gas forming reaction, respectively. Longer 

reduction time does not further reduce the bio-bond graphene paper due to the substantial 

potential drop through the reduced layers. Based upon the calculated reduction rate of 0.29 

µm/hr, the total thickness of the reduced layer of the bio-bond graphene paper is around 

2.3 µm for 8 hr, a small fraction of a total thickness of the flexible films investigated here 

(around 15 µm in most cases).  
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Figure 7.6 Bio-bond graphene paper with 2.5 wt% silk fibroin reduced by multiple cycles of 8 

hours at pH=0: (a) Sheet resistance and effective conductivity; (b) XPS C1s spectra of the bottom 

surface; (c) the C/O ratios of the top and the bottom surfaces; (d) the dependence of perpendicular 

electrical resistance of the bio-bond graphene paper on the thicknesses measured by the two-probe 

method (scheme of the experimental setup is shown in the figure). 
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In order to further reduce the remaining volume of bio-bond graphene paper for better 

electrical conduction, a cyclic reduction process has been tested (Figure 7.6a). For the 

cycling procedure, the partially reduced bio-bond graphene paper was rinsed and dried 

before depositing another layer of aluminum for a new cycle of reduction. As was observed, 

in fact, under these conditions the conductivity of the bio-bond graphene paper increases 

steadily with a number of cycles (Figure 7.6a). The effective conductivity increases 

drastically by more than 20 folds from around 700 S/m to 1.45x104 S/m after 5 cycles and 

maximizes at around 1.52x104 S/m after 7 cycles. Further reduction beyond 7 cycles does 

not increase the effective conductivity, indicating a full reduction throughout the total 

thickness of the film of 15 µm. In fact, it is also expected from extrapolating the reduction 

rate of 2.3 µm/cycle (times 7 cycles).  

The gradual reduction of graphene oxide surfaces and diffusion of oxygen containing 

moieties during the cycled reduction of the bio-bond graphene paper is confirmed by the 

XPS C1s spectra of the bottom unreduced surface of the bio-bond graphene paper that is 

not coated with aluminum (Figure 7.6b). The predominant peak at around 286.2 eV that 

corresponds to the epoxy groups continuously decreases from the first to the fifth cycle, 

confirming the slow reduction of the graphene oxide by the spontaneous diffusion of the 

oxygen containing moieties. By the seventh cycle, the epoxy peak for the XPS C1s 

spectrum disappears due to the final expansion of the reduction. Indeed, the C/O ratios of 

the top and the bottom surface of the bio-bond graphene paper both increase and get 

progressively closer in values over the first 6 cycles of the repeated reductions until they 

coincide after the seventh cycle at the value of 6.3 confirming the complete reduction of 

the bio-bond graphene paper through the entire thickness of the film (Figure 7.6c).  

In addition, we used a two probe method to determine the perpendicular electrical 

resistance of the fully reduced bio-bond graphene papers with different thicknesses (Figure 

7.6d). By extrapolating to zero thickness, the interfacial resistance between the bio-bond 

graphene paper and the electrodes is extracted, therefore the perpendicular conductivity of 

the bio-bond graphene paper is low, which is 5.8 x 10-3 S/m even at full reduction. This 

value is seven orders of magnitudes lower than the basal conductivity (1.52x104 S/m) and 

indicates extreme anisotropy of the conductive properties of reduced graphene oxide paper 
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fabricated here due to distinct laminated morphology. In addition, the insulating spacer of 

silk fibroin distributed throughout the graphene network may also contribute to the huge 

anisotropy of electrical conductivity since the blocking effect caused by the silk molecules 

is more pronounced in the out-of-plane direction of the 2D laminated conducting particles.  

Finally, from the data of the carbon chemical states and the overall C/O ratio of the bio-

bond graphene paper, it is clear that the increase in the C/O ratio is primarily caused by the 

removal of the oxygenated surface groups as was suggested in Scheme 7.2. In fact, the 

energy dispersive X-ray spectroscopy (EDX) mapping of film cross-sections clearly shows 

that there is compositional interface between the reduced and unreduced portions of the 

partially-reduced bio-bond graphene paper (Figure 7.7). It is also noteworthy that partial 

delamination might happen at the GO/rGO interface for the partially reduced sample, 

which is due to strong interfacial stresses. The semi-quantitative profile of the EDX scans 

demonstrates that the C/O ratio is much higher for the reduced graphene oxide than that of 

the graphene oxide cross section (Figure 7.7). And the partially reduced graphene oxide 

sample shows distinct steps in the line scan profile, where carbon and oxygen intensities 

Figure 7.7 EDX mapping of the bio-bond graphene oxide paper (top), and the partially (around 

40% thickness) reduced (middle) and fully reduced (bottom) bio-bond graphene paper. The white 

dashed line in the combined mapping indicates the position of the line profile shown on the 

rightmost column.  
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inversely change. Such an interface suggests that the electrochemical reduction strictly 

relies on the propagation of the reduction front that meets the propagation of the oxygen 

diffusion across the paper thickness (Scheme 7.2).  

The excellent electrical conductivity of the bio-bond graphene paper of more than 1.5x104 

S/m achieved in this study is among the highest for graphene oxide materials which usually 

shows the value around 103 S/m. For instance, graphene paper reduced by in-situ ion-

bombardment exhibits a strikingly high C/O ratio of 100, but its electrical conductivity is 

low at 1300 S/m due to the extremely surface specific reduction.[ 375 ] The electrical 

conductivity of the laser-scribed graphene paper is 1740 S/m and is limited by the 

incomplete penetration of the reduced layers, the thermal damage of the graphitic networks, 

and the highly porous morphology caused by the micro-explosion. Graphene paper 

fabricated by electro-spray deposition shows a moderate electrical conductivity of 2170 

S/m due to the high porosity of the film, although the performance could be improved by 

mechanical compression and ultra-high temperature annealing at 2850 °C. The graphene 

paper also made by VAF technique of reduced graphene oxide possesses electrical 

conductivity of 7200 S/m after extensive reduction by hydrazine at elevated temperature.[88] 

The electrical conductivity of a PVA-GO nanocomposite film becomes 5260 S/m after 

being reduced in concentrated hydroiodic acid for 1 hour.[217]  

A graphene film fabricated by gel-film transformation and successively reduced by 57 wt% 

hydroiodic acid has a high conductivity of 3.4x104 S/m due to the semi-3D network of the 

wrinkled graphene sheets.[366] Another example of graphene paper crosslinked by 

conjugated polymer and reduced by hydroiodic acid has been reported with an electrical 

conductivity of 2.3x104 S/m. It is worth noting that all the high electrical conductivities 

reported to date are usually achieved by employing hydrazine or concentrated hydroiodic 

acids, which are hazardous, corrosive, and volatile chemicals in contrast to ambient and 

mild conditions suggested in this study. In addition, all of these aforementioned procedures 

are not known to provide means for manipulation of local and global electrical and 

electronic properties. 
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It is clearly demonstrated that the metal-assisted spontaneous electrochemical reduction of 

the bio-bond graphene paper is highly competitive on the electrical conductivity and 

uniquely superior in terms of energy-efficiency and environmental awareness. Thermal 

annealing renders the best reduced graphene oxide in terms of the electrical conductivity 

and sp2 hybridized network restoration, but the high energy consumption and the almost 

certain thermal degradation of other ingredients hinders its applications in graphene related 

nanocomposites. Chemical reduction using hydrazine or hydroiodic acid provide a fast way 

to effectively remove the oxygen on graphene oxide, but inevitably dope the reduced 

graphene oxide and the toxic reagents pose significant health concerns for industrial 

productions. The laser induced reduction is another versatile technique that is capable of 

patterning the reduced graphene oxide surfaces, but the abrupt thermal effect exfoliates the 

lamination of the reduced graphene layers and leaves a porous material, which is suitable 

for certain applications, such as organic solvent absorption and energy storage, but the 

mechanical integrity of the materials has been seriously damaged. Last but not least, 

electrochemical reduction applies only a small bias voltage and could reduce any material 

that contains percolated graphene oxide network, but an external energy input is still 

necessary.[361, 362] While in contrast, the metal-assisted spontaneous electrochemical 

reduction technique introduced and systematically studied in this work eliminates the 

requirement of external electrical energy input by applying the inherent reduction potential 

drop across the interface between aluminum and graphene oxide, providing excellent 

results on electrical conductivities and work function tunability.  

To further illustrate the potential application of the electrochemically reduced bio-bond 

graphene papers, we have summarized the electrical conductivities and mass densities of 

the common electronic materials and related components in Figure 7.8. It is apparent that 

graphene materials along with other metallic materials have the highest electrical 

conductivities on the level of 107 - 108 S/m and graphene is also lightweight. [376] However, 

the very high cost of graphene, and the high densities with low flexibilities of the metals 

limit the applications of these materials for lightweight wearable electronics. More 

importantly, the bio-bond graphene paper presented in this work has a large quasi-

continuous tunable range of the electrical conductivities over six orders of magnitudes by 

simple alternation of the reduction conditions. The highly tunable electrical conductivities 
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are comparable to the extreme range of silicon achieved by variable doping. PEDOT:PSS 

is another popular flexible, lightweight organic electrode material that has fairly large range 

of electrical conductivity, but the mechanical robustness is low.[377]  

Figure 7.9 Tensile mechanical properties and durability tests of the fully reduced bio-bond 

graphene paper with 2.5 wt% silk binder. (a) Stress-strain curve obtained at the tensile test. Inset 

shows the geometry and setup of the tensile test with a fractured specimen. (b) Folding durability 

test with the film resistance monitored up to 3000 folding cycles. The inset shows schemes of 

the folding states during one testing cycle. 

Figure 7.8 Summary of the electrical conductivity and the mass density of the common 

electronic and related materials. The colored bars indicate the variable range of the 

electrical conductivities of the materials. 
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In contrast to the current thin coating conductive materials, large area conducting and 

flexible thin films fabricated here are extremely robust and preserve their conductivity after 

prolonged cyclic mechanical deformation. The tensile strength of the fully reduced 

graphene paper reaches high value of 327±6 MPa with high Young’s modulus of 31.9±1.4 

GPa and toughness of 2.5±0.1 MJ m-3, respectively (Figure 7.9a). These properties are 

comparable to the highest values that have been reported to date for flexible electronic 

materials, which is originated from the slow recombination of the less-defective structure 

of the reduced graphene flakes during the steady reduction process.[116, 366, 378] In addition, 

the high mechanical and electrical stability has also been demonstrated by cyclic folding 

tests. Folding test is one of the harshest property durability test for current flexible 

electronic material films and coatings (e.g., based upon thin film silicon or conductive 

polymers) since the radius of curvature is minimized to the thickness of the papers (tens of 

microns) at the folding line, where large tensile and compressive strains are generated at 

the two surfaces (Figure 7.9b). As we observed, the resistance of the conductive thin film 

fabricated in this study subjected to multiple repeatable folding test remains unchanged 

after 3000 folding cycles (within ± 2%). After the first several hundred cycles, the 

resistance reduces (conductivity increases) initially probably due to the structural 

reorganization and the formation of additional conducting paths during the localized 

mechanical deformation and residual stress relaxation.  

 

7.4 Conclusions 

We have demonstrated that the metal-assisted electrochemical reduction is highly efficient 

and versatile for modifying the electronic properties of the bio-bond graphene papers and 

making them highly conductive.  The fabrication of the highly conductive bio-bond 

graphene paper is facile and fast, and can be conducted under ambient wet conditions 

without the involvement of hazardous reagents.  The electrical properties can be easily 

controlled by processing conditions in the ambient environment that are easily customized 

for different objectives and could be employed individually or combined to reveal the full 

spectrum of electrical and electronic properties in addition to the outstanding mechanical 
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robustness, folding endurance, and flexibility of conducting sheets (more than 100 cm2 

surface area and higher). We suggest the mechanism responsible for this process involves 

the balance of the internal potential drop due to the electric resistance of the reduced layers 

of graphene oxide and the diffusion of oxygen containing species to the reduced 

monolayers. Lower pH values promote both the kinetics (i.e., reaction rate) and dynamics 

(i.e., reduction potentials) of the electrochemical reduction, resulting in higher electrical 

conductivity and progressively lower work function.  The lowering of the work function in 

the process of reduction is the first demonstration of such modification for the graphene 

papers.   
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Chapter 8 Ultra-robust Transparent Cellulose Nanocrystal-Graphene 

Membranes with High Electrical Conductivity 

 

8.1 Introduction 

In the search for advanced matrices and an effective combination of complementary 

components beyond those explored to date, we focus on new material components to 

replace those traditional rigid platelets or fibers based biopolymers and polymer 

nanocomposites. Here, we suggest assembling the strong and flexible 2D GO component 

(elastic modulus reaching 200-250 GPa[98]) with high aspect ratio 1D cellulose nanocrystals 

(CNC), which possess excellent mechanical properties (elastic modulus of 150 GPa), as 

well as being biodegradable and versatile for functional applications.[44, 45, 46, 47, 48] The high 

concentration of surface anionic functional groups also presents possibilities for the 

effective “gluing” of CNCs to primed GO sheets via non-covalent, yet strong ionic 

interactions, and hydrogen bonding.[379] Moreover, spin assisted layer-by-layer (SA-LbL) 

assembly technique was adopted to prepare these nanomembranes.[189] This fabrication 

approach is a facile, fast, inexpensive, and versatile process for constructing highly ordered 

multilayer film structures from various complementary materials. The LbL process is 

realized through sequential adsorption of oppositely charged components, such as grafted 

nanoparticles and polyelectrolytes, by ion pairing to form laminated morphology, which is 

analogous to the natural nacre (Figure 8.1a). Besides, compared with other popular 

approaches (e.g., vacuum assisted filtration and drop-casting), SA-LbL is more appropriate 

to precisely tailor the thickness, size, microstructure and surface roughness of the 

nanomembranes by applying high-speed centrifugal force to realize effective stress transfer. 

In fact, these laminated nanocomposites exhibit high ultimate stress of (490±30 MPa), high 

Young’s modulus (59±12 GPa) and outstanding toughness (3.9±0.5 MJ m-3), while 

maintaining elongation to break up to 1.5% — a combination of mechanical characteristics 

that has never been observed in graphene-based nanocomposites. In addition, after 
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electrochemical reduction of the GO component, the ultimate stress and Young’s modulus 

were found to reach even higher values of 655±102 MPa and 169±33 GPa respectively; 

both are among one of the highest reported values to the best of the authors’ knowledge for 

graphene-based polymer nanocomposite films. We suggest that this excellent mechanical 

performance is caused by strong synergistic interactions between the two types of 

dissimilar nanocomponents, with flexible GO sheets integrated into a continuous network 

of densely packed nanocrystals arranged in haystack-like randomly overlaid morphology. 

Moreover, such outstanding mechanical performance is combined with high optical 

transparency and high electrical conductivity, a rare combination of physical properties. 

 

8.2 Experimental details 

For SA-LbL assembly, the nanomembranes were deposited on a sacrificial layer (≈200 nm) 

of cellulose acetate (CA) on silicon wafer (10 mm × 15 mm). The CNC aqueous solution 

(0.3 wt%) and graphene oxide suspension with desired concentration were alternatively 

spun on the substrate (3000 rpm, 30 s) until the desired thickness (60±10 nm) was reached. 

The films were released from the silicon substrates by dissolving the CA layer in acetone. 

Membranes prepared by using GO concentrations of 0.025, 0.05, 0.1 and 0.15 wt%, were 

found to have respective GO weight contents of 42.4, 56.4, 59.1 and 63.5 wt% as 

determined by XPS.  

 

8.3 Results and discussions 

8.3.1 Composition and morphology of the nanocomposite membrane 

The GO sheets, prepared by Hummers’ method[89], were predominantly 1.1 nm thick 

monolayers with lateral dimensions ranging from 2 to 8 μm (Figure 8.1b) and zeta-potential 

of -19.7 ± 0.9 mV. The rod-like CNCs were produced through a sulfuric acid hydrolysis of 

microcrystalline cellulose and possessed a diameter of 7±2 nm and length of 178±30 

nm.[380] To enhance the interfacial interactions of anionic CNC component and anionic GO 
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Figure 8.1 Design strategy of the Cellulose Nanocrystal-Graphene Oxide Nanomaterials. a, 

Fabrication of the laminated cellulose nanocrystals/graphene oxide nanomembranes. (b)The AFM 

phase image of graphene oxide, (c)cellulose nanocrystals on graphene oxide, (d) graphene oxide 

sheet on cellulose nanocrystals  and (e) 6 bilayers cellulose nanocrystals/graphene oxide 

nanomembrane (59.1 wt% GO) with graphene oxide on top.   
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sheets, we modified the CNCs with a cationic polyethyleneimine (PEI) “prime” layer in 

order to introduce positive charged surface functionalities for strong ion pairing with GO 

sheets.[381] After the modification, the content of PEI in the CNC is estimated to be around 

10 wt% that is sufficient for full surface recharge. In fact, the zeta-potential of CNCs jumps 

from strongly negative, -39.2 ± 1.0 mV, to strongly positive, 42.5 ± 0.2 mV after 

modification. Based on the dynamic light scattering (DLS) analysis, the effective diameter 

also increases from 7 nm for bare CNC to 9 nm for PEI-modified CNC. Such changes 

indicate the successful CNC modification with effective surface recharge (from negative 

to positive surface potential). The presence of strongly positively charged polymer sheath 

of a few nanometers thick is important to facilitate strong ionic interactions with strongly 

negatively charged flexible GO sheets for effective dispersion, LbL assembly and 

improved interfacial strength (Figure 8.2).  

In addition, hydrogen bondings are the secondary interactions between the PEI modified 

CNC and GO required for formation of continuous films as demonstrated by the attenuated 

total reflection Fourier transform infrared spectra (ATR-FTIR) (Figure 8.3). Spectra were 

taken of GO-CNC nanocomposite and its components, PEI-modified CNC and GO. The 

FTIR spectrum for PEI-modified CNC exhibits characteristic PEI peaks at 2899 cm-1 (C-

H, alkane) and 1598 cm-1 (N-H, 1o amine), however similar peaks are not observed in the 

nanocomposite spectra due to low PEI content.[311, 382] Peaks at 2893 cm-1 and 2906 cm-1 

(C-H, alkane) in spectra for PEI-modified CNC and GO-CNC nanocomposite, respectively, 

Figure 8.2 The AFM images of CNC/GO and PEI modified CNC/GO. 
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Figure 8.3 The FTIR spectra of the (a) GO, (b) PEI modified CNC, and (c) the LbL nanocomposite 

of CNC-GO. 
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are attributed to CNC.[311, 383, 384] In particular, the GO-CNC nanocomposite has a broad 

peak at 3348 cm-1 characteristic of –OH group stretching vibration that is shifted to a lower 

frequency with respect to the typical position at 3500 cm-1. These features can be attributed 

to increased hydrogen bonding in the composite which alters the absorbance of –OH 

vibrational modes. [312, 385] Additional peaks at 2814 cm-1 (HC=O, aldehyde), 1728 cm-1 

(C=O, aldehyde), and 1629 cm-1 (C-C, aromatic ring) in the composite spectra are 

characteristic of GO and notably mirror corresponding peaks at 2793 cm-1 (HC=O, 

aldehyde), 1730 cm-1 (C=O, aldehyde), and 1624 cm-1 (C-C, aromatic ring) in the FTIR 

spectra for GO. [311, 386] 

Indeed, the thickness of the SA-LbL films increases consistently with the number of 

deposition cycles with a common linear growth mode with the increment from 7.0 nm to 

15.1 nm per bilayer. High-resolution atomic force microscopy (AFM) images show that 

the dense network of long rigid nanocrystals expands across the entire surface region in a 

characteristic morphology resembling “randomly overlaid haystack straws” (Figure 8.1c). 

Individual GO sheet were found to wrap CNCs uniformly and firmly without disturbing 

original nanocrystal network (Figure 8.1c, d). Besides, CNCs show uniform random 2D 

orientation distribution, which is beneficial to form an isotropic in-plane structure without 

preferential orientation (Figure 8.4).  

Figure 8.4 The polarizing microscope images of CNC/GO nanomembrane at different 

angle (0oand 90o) showing no liquid crystalline phases. 
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Figure 8.5 Morphology of the Cellulose Nanocrystal-Graphene Oxide Nanomaterials. (a), AFM 

height of image of the cross section of 6 bilayers cellulose nanocrystals/graphene oxide 

nanomembrane (59.1 wt% GO). (b),TEM image of the surface of the 1.5 bilayers CNC-GO 

nanomembrane. High resolution AFM (c) topography and (d) phase images of cellulose 

nanocrystals covered with graphene oxide sheet.  (e) Cross section profile of different position on 

the image showing: (1)graphene oxide sheet edge; (2, 3, 4) graphene oxide sheet wrinkle on top 

of cellulose nanocrystal; (5) longitudinal and (6) transversal sections of cellulose nanocrystals 

partially covered by graphene oxide sheet. 
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The 60-nm-thick GO-CNC nanomembranes show an overall uniform surface with root-

mean-square (rms) roughness of 4.7 ± 0.9 nm (within 1×1 μm2) (Figure 8.5a), which is 

much smoother than other GO-based nanocomposites fabricated by common drop-casting 

or vacuum-assisted filtration methods (Figure 8.S7).[366] Such improved surface 

homogeneity is a sign of well-organized laminated structure with minimized random 

wrinkling and thus reduced localized stresses. Indeed, significant wrinkling is common for 

both drop-casted and vacuum filtrated GO-based films which compromise their ultimate 

mechanical performance. The random network of individual CNCs is also confirmed by 

TEM micrograph (Figure 8.5b).  

Notably, wrapping deposited CNCs with the flexible GO sheets does not change the 

underlying morphology of the random CNC network. Cross-section profiles of individual 

cellulose nanocrystals partially covered with flexible GO sheets show the 1 nm-thick 

coating added after GO sheets deposition. Such an incremental increase corresponds to a 

GO monolayer and indicates that only single sheet wrapped around individual cellulose 

nanocrystals. Moreover, minimum contrast in the phase image suggests strong bonding 

between the CNCs and the flexible GO sheets, and also indicates full surface coverage by 

the flexible GO layers (Figure 8.5c-d). The tight wrapping is also confirmed by observing 

only a 2 nm high occasional wrinkles of GO sheets at the underlying nanocrystal surface 

(see sections in Figure 8.5e).  

8.3.2 Mechanical properties of the nanocomposite membranes 

The composite GO-CNC nanomembranes can be released from sacrificial substrate by 

solvent treatment.[189] Despite the minute thickness, the released nanomembranes are 

robust and freestanding even after drying, without signs of cracks, pinholes, or random 

wrinkles. Due to the very low thickness of these nanomembranes, conventional tensile tests 

are not capable of measuring their mechanical properties and instead, bulging testing had 

to be conducted. This testing is a common and widely accepted method designed for 

ultrathin films that is consistent with those measured by tensile tests [42] and verified by the 

authors in several comparative measurements (not shown). For this test, the films are 
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Figure 8.6 Micromechanical Properties of the Cellulose Nanocrystal-Graphene Oxide 

Nanomembranes and Failure Modes. a, the stress-strain curves of the CNC-GO and CNC-rGO 

nanomembranes with different GO contents (shown in wt %); Comparison of the ultimate stress 

(b), tensile modulus (c), and toughness (d) of nanomembranes with different GO contents (wt %) 

measured by bulging test; (the mechanical properties of pristine thick CNC films were measured 

by tensile test because the ultrathin pristine CNC films do not uphold their integrity when 

transferring to the copper apertures for bulging test. e) compressive modulus of nanomembranes 

with different GO contents (wt %) measured by buckling test; (f) TEM images of the fractured 

regions with wavy cracks, pulled sheets, and bridging nanocrystals. 
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released and transferred to a copper substrate with a 600 μm circular aperture for bulging 

mechanical testing. 

Typical stress-strain curves derived from the bulging test data show a gradual rise of stress 

up to 200-500 MPa during elongation of 0.8-1.4% (Figure 8.6). A high residual stress of 

20-70 MPa has been revealed in all nanomembranes due to a significant shrinkage during 

drying as was observed for many conventional LbL membranes.[42, 387 ] For the 

nanomembranes with GO content of 59.1%, CNC of 36.8%, and PEI of 4.1%, which are 

determined by X-ray photoelectron spectroscopy (XPS) measurement, high mechanical 

characteristics have been achieved including tensile strength of 490±30 MPa (up to 525 

MPa in some cases), Young’s modulus of 59±12GPa, and toughness of 3.9±0.5 MJ m-3 

(Figure 8.6a-d). Pure GO nanomembranes without any CNC component showed poorer 

performance because flat GO sheets are only weekly bonded by van der Waals interactions 

and hydrogen-bonded water molecules that drastically decreases the toughness and 

strength. Adding positively charged CNC component brings stronger ionic interactions 

with negatively charged GO sheets to promote better interfacial bonding and resulting 

excellent mechanical properties. The characteristics achieved under these conditions are 

generally 4 to 10 times higher than common graphene-based paper materials and GO-

polymer nanocomposites (see discussion below). Furthermore, the strongly bonded GO-

CNC nanomembranes are stable under aqueous conditions, at which a common graphene 

oxide paper is prone to damage and delamination (Figure 8.7). [134]  

We further reduced GO in the LbL nanomembranes using the metal-assisted 

electrochemical reduction technique, which has been demonstrated to be an effective and 

efficient way to remove the oxygen containing functional groups on the GO surface.[109] 

After the reduction of the GO component which results in tighter interlayer spacings and 

the addition of strong π-π interactions, the mechanical strength further increased to the even 

higher level – ultimate stress of 655±102 MPa and Young’s modulus of 169 ± 33 GPa are 

achieved for multiple specimens. The elastic modulus value is comparable to that of 

individual CNCs and Kevlar fibers (168 ± 4 GPa) even if randomly oriented 2D 

morphology exists without one-dimensional uniformly-oriented fibrillary structure.[388] 
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Furthermore, these values exceed the known elastic modulus values reported for the 

strongest graphene-based nanocomposites available in the current literatures.[389]  

Figure 8.8 TEM images of the fractured regions with multiple cracking and crack bridging 

towards the end of the crack path. Arrows indicate the onset of crack branching and bridging. 

Figure 8.7 Long-term stability of CNC/GO nanomembranes under wet conditions. 
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Moreover, the compressive elastic modulus was evaluated by analyzing the periodic 

buckling patterns of the compressed nanomembranes, which is another widely used test for 

ultrathin films.[316] The compressive elastic modulus of all nanomembranes have a slightly 

lower value than the Young’s modulus derived from bulging test, which is probably caused 

by progressive delamination of the layered nanomembranes due to local wrinkling of 

flexible graphene oxide sheets in buckling experiments.[69]  

To explore the failure mechanisms of these nanomembranes, the morphologies of the 

fractured regions were examined using TEM (Figure 8.6f and Figure 8.8). By straining the 

film close to the point of failure, we see the emergence of diverging and unevenly shaped 

microcracks, and the pulling-outs of both GO nanosheets and CNCs. The jagged, highly-

angled crack junctures indicate a high degree of contact shielding of the crack tip probably 

due to the enhanced local microroughness caused by the presence of the long CNC ridges 

that arrest sliding and shearing of the laminated structures. Meanwhile, the dense and 

strong bonding between CNCs hinders the separation of crack tips via the bridging GO 

nanosheets (Figure 8.6f). Finally, the unique hierarchy of strongly interacting structural 

elements in the nanocomposite membranes cover a wide range of length scales from 100 

nm (graphene oxide sheet thickness), around 101 nm (diameter of cellulose nanocrystals), 

around 102 nm (length of cellulose nanocrystals), and 103-105 nm (lateral dimensions of 

graphene oxide flakes). Therefore, such a combination of different modes of deformation 

is a main cause for achieving exceptionally high mechanical characteristics.  

Based on the failure analysis from the TEM micrographs, we propose the nano-structural 

model of the GO-CNC LbL nanocomposites (Figure 8.9a). Flexible GO sheets can form 

conformal shells on the cross-junctions of the dense CNC network via ionic interactions 

and hydrogen bonds. Therefore, global deformation of these nanocomposite films is 

mediated by local torques of the GO-jointed CNCs. Reorientation and displacement of the 

confined CNCs dissipates excessive mechanical energy during deformation, resulting in 

increased ultimate strain and overall toughness.  
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Figure 8.9 Integrated schematics, comparison of the laminated materials performance, optical 

transmittance, and electric conductivity of CNC-GO nanomembranes. (a) The schematic structure 

of the cellulose nanocrystal-graphene oxide nanomaterials. (b and c) Comparison of mechanical 

properties among nacre-like nanomaterials in different coordinates with stars representing results 

in this study. (d) Optical transmittance of soda-lime glass substrate, CNC-GO (6 biayers, 63.5 wt% 

GO) and CNC-rGO (6 bilayers, 56.8 wt% rGO) nanomembranes. Inserts show the pattern covered 

by transparent nanomembranes of different composition. (e) Electrical conductivity of CNC-rGO 

nanomembranes with various rGO contents. Insert demonstrates the LEDs lit up through the 

conductive nanomembrane. 
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8.4 General comparisons and conclusions. 

As a common benchmark for bioinspired nanocomposites, natural nacre exhibit an 

excellent balance of mechanical properties, including ultimate stress of 137 MPa, 

toughness of 1.8 MJ m-3 and Young’s modulus of 60 GPa, which are much better than most 

of the laminated nanocomposites reported to date especially those based upon flexible 

synthetic polymers. One of the examples from recent studies to be compared here is GO 

films crosslinked by borate which shows a very high modulus value of 127 GPa due to 

covalent borate orthoester bonds between GO sheets and borate ions.[99] However, the 

ultimate stress is modest at 185 MPa and thus the toughness is as low as 0.12 MJ m-3 (only 

one fifteenth of nacre). Polyvinyl alcohol/ montmorillonite nanocomposite films show 

excellent strength of 400 MPa and superior modulus of 106 GPa, but the toughness is only 

around 0.6 MJ m-3. The ultimate stress and toughness of crosslinked GO-PEI film can reach 

210 MPa and 103 GPa, but the toughness is only about 0.23 MJ m-3.[210] Silk-GO 

nanomembranes possess an ultimate stress above 300 MPa combined with very high 

Young’s modulus of 145 GPa, but the toughness is modest, around 2.4 MJ m-3. [69] Another 

example is GO-poly(acrylic acid-co-(4-acrylamidophenyl) boronic acid) (PAPBx) films 

with ultimate strength of 207 MPa and high toughness of 3.8 MJ m-3, but the Young’s 

modulus drops to very low value of 5 GPa.[366] Even after graphene reduction, both the 

ultimate stress and toughness has been improved dramatically to 382 MPa and 7.5 MJ m-3, 

but the Young’s modulus is still at about 8 GPa, which is only one seventh of natural nacre. 

Recently, it is reported that multi-layered carbon nanotube films show high strength (450 

MPa) and high toughness (9.6 MJ m-3), but the modulus is only 30 GPa.[390] Walther et al. 

reported helical plywood structure films with tailored cholesteric liquid-crystal structure 

through self-assembly process and interesting structural and optical properties.[ 391 ] 

However, the mechanical properties are modest at best, with Young’s modulus of about 10 

GPa and ultimate stress of 67 MPa, both are about an order of magnitude lower than those 

reported here.  

On toughness vs. modulus and ultimate stress vs. modulus Ashby plots of laminated 

nanocomposites film, it can be seen that our GO-CNC composite extends beyond the 

property space of previously reported materials (Figure 8.9b, c). The “boomerang”-like 
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envelope in toughness-elastic modulus coordinates reflects the trade-off between materials 

with high strength (but brittle) and materials with high toughness (but soft). [392] This 

characteristic shape is caused by conflicting mechanisms for increasing mechanical 

strength on one hand, and compliance on the other hand. The ultimate strength of 490 MPa 

is also the highest on record among all the laminated graphene-based nanocomposites 

reported to date and “breaks” the traditional shape by “opening” a new position on the 

mechanical diagram (Figure 8.9b). The enhanced toughness is caused by improved 

compliance, which is two to three-fold higher in the elongation to break as compared to 

conventional laminated graphene with various synthetic and biopolymer binders. Moreover, 

further electrochemical reduction of the graphene oxide component leads to a dramatic 

increase in ultimate mechanical stress to 655 MPa and very high elastic modulus of 169 

GPa, another set of exceptionally high characteristics (Figure 8.9c). If taking the 

lightweight into consideration, the specific strength and stiffness of CNC-rGO 

nanomembranes were determined to be 382 MPa/(g cm-3) and 100 GPa/(g cm-3) 

respectively, which are comparable to the best representatives of sophisticated nacre-like 

composites based upon metal and ceramic materials.  

Moreover, the nanocomposite membranes fabricated here also possess excellent optical 

and electrical properties. The 60-nm-thick sample shows 77% optical transmittance at 550 

nm wavelength for CNC-GO nanomembranes, which is higher than that of pure graphene 

oxide film with the same thickness thanks to the transparency of CNC components (Figure 

8.9d).[393] After the metal-assisted electrochemical reduction, the transmittance reduced to 

around 50%, which is still transparent enough to make the covered graphics legible (see 

optical photographs in Figure 8.9d). The decrease in optical transmittance after reduction 

is due to the restoration of conjugated π electronic structure and the enhanced π-π* electron 

transition upon light absorption.[346] In addition, the nanomembranes with high contents of 

graphene oxide show high conductivities around 5000 S m−1 after reduction, which is hard 

to achieve for flexible laminated nanocomposites (Figure 8.9e). [109] 
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Chapter 9 Self-Powered Flexible Electronic Skin with Touching 

Sensitivity Triggered by Bio-Electrolytes 

 

9.1 Introduction 

Tactile sensors are a large category of human-machine interfacing devices, whose 

applications include wearable and portable electronics, smart automation servers, soft 

robotics, and active identifications.[394, 395, 396] Generally, piezoelectricity[397, 398, 399, 400], 

piezoresistivity[401, 402, 403], capacitance[404, 405], and triboelectrification[406, 407, 408] are the 

major operating mechanisms for tactile sensors, which show different characteristics in 

specialized applications.[409] However, most of these sensors not only rely on external 

power supply but also require signal amplification/analysis components due to the small 

response signals limited by the sensing mechanisms. Self-powered sensing and responding 

solutions are in urgent needs for constructing sustainable nodes for the fast growing 

internet-of-things, such as wearable body monitors, intelligent home appliances, smart 

logistic tags, and active surveillance networks.[410, 411, 412] 

Moreover, although there are numerous tactile sensors detect various pressures by straining, 

the difficulty for the differentiation between human and artificial touches remained a major 

challenge due to the lack of sensitivity for unique biological interfacial cues. Despite the 

chemical cues that are characteristic for various interfaces, human skins naturally contain 

moisture and biofluids, which are abundant and distinctive for living entities.[413] Therefore, 

humidity sensors are potentially adaptable for biological tactile sensing applications. 

However, the response rate of the humidity sensors is usually low due to the relatively slow 

adsorption/desorption and diffusion process of biofluids.[414, 415] In addition, the sensing 

substances in the humidity sensors are still passive, which in other words need external 

power to actuate.[416] The search for functional materials suitable for designing new classes 

of bio-interfacial sensing that are applicable for innovative self-powered human-

technology interactions has not been completed yet.  
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One of the recent candidates for the role of active materials at human biointerfaces is 

graphene and its derivatives. These abundant materials have been playing important roles 

in various structural and functional applications in the last decade due to their extraordinary 

electrical, mechanical, and chemical properties.[90, 417, 418] Sensors[419], batteries[266, 420], 

supercapacitors[107], and robust multifunctional nanocomposites[389] fabricated using 

graphenes hold promises for wide range of applications. For instance, flexible strain 

sensors made using graphene as the active component have been reported extensively.[419] 

However, purely graphene based devices usually require complicated and tedious assembly 

and packaging processes.[421] From other materials from this class, graphene oxide (GO) is 

primarily used as precursor for reduced graphene oxide (rGO, an analog to pristine 

graphene) or nanofillers for mechanically robust nanocomposites.[69, 422] Recently, a strong 

and flexible platform of bio-bond graphene oxide paper (GO bio-paper) for the wearable 

electronics has been suggested.[109, 423] The paperlike material becomes much stronger, 

stiffer, tougher, and more importantly for biological applications, water resistant.[109] The 

GO bio-paper is available for localized selective reduction to form electrically conductive 

patterns by the metal-assisted spontaneous electrochemical reaction (MASER) technique, 

paving a new avenue for simplified fabrication of flexible electronics.[423] By analyzing the 

mechanism of the process, we found that the MASER only proceed in aqueous 

environments due to the necessity of electrolytes for the electrochemical reaction at the 

metal-GO interfaces. Owing to the galvanic nature of the metal-GO reactions, the 

activation of the power generation by the micro-injection of the bio-electrolyte from human 

skin to the metal-GO junction becomes a possible approach to design self-powered human-

tactile sensors.  

Herein, we introduce a series of novel self-powered tactile sensing materials based on the 

metal-GO junction that serves as the trigger of the electrochemical reaction to exclusively 

respond to direct human touching, which locally delivers trace amount of bioelectrolytes. 

The metal-GO junctions show unprecedented, strong and continuous response signal (up 

to 1000 mV) for prolonged activation durations and excellent response rate up to 20 Hz, in 

addition to the outstanding passivation to mechanical deformation or non-human 

activations. These ultrathin materials also show the excellent mechanical robustness, 
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flexibility, and water resistivity, all make them prospective materials for self-powered 

human-tactile sensors of flexible electronic skins in soft robotics. 

 

9.2 Experimental details 

The ambient humidity sensing is done in a glove box and the humidity in the chamber is 

controlled by adjusting the speed and the path length of the dry air passing through a series 

of water bubblers. The ambient humidity is monitored by a commercial humidity sensor 

(Model 512, Electro Tech Systems, Inc.) and the device voltage output is measured by a 

Fluke 117 digital multimeter. The time resolved electrical signals were recorded by a 

potentiostat (VersaSTAT 3, Princeton Applied Research) in open circuit experimental 

Figure 9.1 (a) Schematic drawing of the metal-GO junction structure and the mechanism of the power 

generation. Insets: (left) the top view of the symmetrical Al-GO junction pair, and (right) the side view of 

the same sample that shows its excellent folding robustness. (b) SEM micrograph showing the cross 

section of an Al-GO junction. The inset emphasizes the uniform Al coating layer. (c) Optical photograph 

demonstrating the flexibility of the Au/Al coated GO bio-paper.  
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setup with two electrode connection. All the electrical response tests of the bio-touch 

sensors were conducted in ambient conditions at 21-23 ºC and 35-45 RH%. The frequency 

tests were realized by a combination of an electrodynamic shaker (LW126.151-9, 

Labworks Inc.) and a sinusoidal wave function generator (SC-121 Sine Servo Controller 

system, Labworks Inc.), scanning from 2 to 20 Hz.  

9.3 Results and Discussions  

9.3.1 Materials design of the metal-GO junctions for tactile sensing 

GO bio-paper have been fabricated by vacuum filtration of the GO aqueous suspension 

with 2.5 wt% of silk fibroin (SF) mixed as bio-binders for improved mechanical 

properties.[109] The tactile sensing hybrid materials have been assembled by depositing two 

separate thin metal electrodes on the surface of the laminated GO bio-paper (Figure 9.1a), 

forming opposite metal-GO junctions. The metal layers deposited by electron beam 

evaporation are uniform (500 nm thick) and conformed to the topography of the laminated 

GO bio-paper (Figure 9.1b). The surface roughness and morphology of the metal coated 

surfaces essentially stays the same, without noticeable pin holes or micro-cracks, indicating 

Figure 9.2 AFM height micrographs of bare GO bio-papers and GO bio-papers coated with 

aluminum, copper, and gold, respectively. Surface roughness is not affected (except for aluminum 

coating, which slightly roughens the surface) by the metal coatings, and the coated surfaces are free 

of microscopic defects (e.g., cracks, agglomerations, pin holes, etc.) 
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impermeable uniform coatings (Figure 9.2). The excellent flexibility of the metal-GO 

junction facilitates versatile attachment to curved surfaces that does not affect sensing 

performance (Figure 9.1c) (see below). Moreover, complete folding with sharp folds and 

unfolding do not damage the integrity of the films either (Figure 9.1a inset, Figure 9.3). 

When one of the metal-GO junction is moisturized by either directly spraying deionized 

water (macroscopic moisturizing) or pressing bare finger (microscopic moisturizing) on it 

(Figure 9.1a), an electrical potential on the level of few hundred millivolts can be detected; 

if the other metal-GO junction is pressed, electrical potential with the same amplitude and 

opposite polarity is recorded. When both of the opposite metal-GO junctions on the same 

Figure 9.3 Foldability demonstration of the GO bio-paper by inserting the tightly folded sample 

in a glass tube (panel a, inner diameter of 5 mm) and take out before unfolding and flatten (b to d). 
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GO bio-paper are moisturized or pressed, the electrical potential output return to zero, 

probably because the opposite potential outputs annihilate. Among the three metal 

electrode materials we have tested, gold (Au), copper (Cu), and aluminum (Al) generate 

sequentially larger potential outputs. When the two electrodes are the same materials, the 

idle (i.e., not moisturized or pressed) output in ambient conditions is close to zero; if the 

two electrodes are made of different metals (e.g., Al and Au, respectively), the idle output 

is not negligible and varies with the ambient humidity.  It is also observed that the potential 

output stays at stable levels if the finger pressing holds, which is an unusual characteristic 

beneficial for the continuous recording of the pressure duration.  

Based on the aforementioned phenomena, we suggest the working mechanism of the 

metal/GO tactile sensor as follows. By direct pressing using bare finger on the metal-GO 

junction, trace amount of bio-electrolyte transports from the human skin to the first few 

GO layers at the interface of the junction (Figure 9.1a). In conjunction with the 

bioelectrolytes from the human skin, the solubilized GO ionizes to form a thin electrolyte 

layer between the reactive metal anode (e.g., aluminum or copper) and the GO cathode, 

generating electrochemical potentials that drive current flow through the external circuit 

and are detected by the voltmeter. In addition, the dissociated protons from the ionized 

carboxyl groups of GO diffuse from the ionized area close to the pressed electrode to the 

opposite electrode area across the GO bio-paper driven by the concentration gradient, 

forming the secondary potential gap between the two electrodes.[424] Therefore, even if the 

inert electrodes (e.g., Au and rGO) does not participate in the electrochemical reaction, 

smaller potential of the same order of magnitude is still generated due to the secondary 

diffusion of the protons. Moreover, the polarity of the proton diffusion current (𝐼𝑃𝐷 ) 

matches that of the electrochemical current (𝐼𝐸𝐶 ), enhancing the signal strength of the 

touching activation (Figure 9.1a). 

Due to the large internal resistance of the GO bio-paper (around 30 MΩ), the short circuit 

current (𝐼𝑆𝐶) of the fully activated Al-GO junction is on the order of 50 nA, being too small 

to be effectively detected by usual means (Figure 9.4). While the open circuit voltage (𝑉𝑂𝐶) 

of the same fully activated Al-GO junction reaches around 850 mV, which is a huge 

potential level in terms of electrical signal that is easily measured and transduced. 
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Therefore, we take 𝑉𝑂𝐶  as the standard output for signal analysis (for simplicity, denoted 

as “voltage output” in the following discussions).  

To further illustrate the unique working mechanism of these novel hybrid sensing materials 

that respond to the micro-injection of bio-electrolytes, a few graphene based high-

performance humidity sensors are discussed here for comparison. An impedance type 

polyelectrolyte/graphene bilayer humidity sensor has been reported to be able to measure 

ultra-low humidity level at 0.18 RH%, with the scarification of signal magnitude, output 

linearity, and response rate.[425] Zhao et al. recently reported an active humidity sensor 

using gradient rGO film, which records human breath humidity variation by potential 

pluses induced solely by the diffusion of dissociated protons.[424] However, the signal 

amplitude is one magnitude lower than the Al-GO junction demonstrated here, probably 

due to the extremely large internal impedance through the laminated graphene film, which 

limits its application for the necessity of signal processing components. Another ultrafast 

humidity sensor has been fabricated simply by depositing ultrathin GO films on printed 

silver electrodes. [426] Due to the fast adsorption and desorption of the water molecules on 

Figure 9.4 I-V output profile of a fully activated Al-GO junction, showing the maximum power 

output of this junction is around 12 nW. 
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the ultrathin GO film (tens of nanometers), the impedance of the device changes 

significantly and is calibrated to the environmental relative humidity. All of these examples 

limit themselves by ignoring the excellent chemical reactivity of GO, thus resulting in 

moderate signal strength or sensitivity for facile applications. Therefore, by utilizing the 

unique combination of the chemical activity and water affinity properties of GO, we 

demonstrate here a new category of humidity sensing hybrid materials that is capable of 

detecting trace amount of bio-moisture by bare finger touching and responding with 102 

mV scale signals. 

9.3.2 Influence of metal species to the tactile performance of metal-GO junctions 

Figure 9.5a shows the voltage outputs of symmetrical metal-GO junction pairs made with 

various metals. All three symmetrical junction pairs show stable output signal levels 

throughout the prolonged activation period (60 s) for both the opposite junctions, 

demonstrating the human skin is an excellent bio-electrolyte source with continuous supply. 

The activation slope of the Al-GO junction is steep at 605 mV/s, and the deactivation slope 

of the same junction is 401 mV/s, showing excellent recovery rate for repeated activations. 

Al-GO junctions show the highest output of over 800 mV due to the largest reduction 

potential gap between aluminum and GO.[ 311] Copper can also reduce GO but has much 

smaller reduction potential gap, thus the output of the Cu-GO junction is moderate at 

around 300 mV.[354] In the case of Au-GO junctions, the output voltage is still notably high 

at around 250 mV probably due to the ion diffusions as proposed in the previous section. 

What is also important is that the output polarity of the opposite metal-GO junctions 

symmetrically coincides with that of the positive electrode, demonstrating the universal 

response of the metal-GO junctions without the need of individual calibration. It is also 

worth noting that by replacing human finger with finger shaped sponge wetted by deionized 

water, the voltage output is comparable to that actuated by human finger, indicating the 

water, rather than salt or oil on the skin, is the key component of the activation signal. 

However, extra electrolytes from the human skin also facilitates the sensing process.  

It has been demonstrated that the gradient of the protons (i.e, 
𝑑𝑐𝐻+

𝑑𝐿
⁄ , where 𝑐𝐻+ is the 

initial concentration of protons upon dissolution and L is the diffusion distance) across the 
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two junctions is directly related to the diffusion induced voltage output, therefore the 

variation of the gap between the junctions may affect the overall electrical voltage 

output.[424] Figure 9.5b shows that by narrowing the gap between the Al-GO junctions from 

24 to 6 mm, the voltage output increase linearly from 680 to 950 mV, resulting in a 14.4 

mV/mm sensitivity to the gap distances. This correlation between the output amplitude and 

the junction distance further demonstrates the additional voltage contribution from the 

proton diffusion. 

Due to the large difference between the humidity output from the aluminum and gold (610 

mV difference according to Figure 9.5a), asymmetrical Au/Al-GO junction pair has been 

tested to demonstrate a simple ambient humidity sensor (Figure 9.4c inset). The 

Figure 9.5 Open circuit voltage outputs of the metal-GO junction pairs with various (a) electrode 

metals and (b) gap widths. (c) The voltage response of an asymmetrical Au/Al-GO junction pair to 

humidity change (1 RH%/min), showing slight hysteresis due to the faster water adsorption than 

desorption (inset: optical photograph of the Ø37mm sample). (d) XPS spectra of an extensively 

actuated (around 5000 times) Al-GO junction at different depths from the Al/GO interface, 

indicating a reduced layer of GO underneath the Al coating. 



178 

 

interdigitated finger pattern for the metal layers is designed to maximize the perimeter of 

the junctions, where the water vapor gets transported to the metal-GO interface to initiate 

the electrochemical reaction. It needs to be noted that in the ambient humidity sensing setup, 

no proton diffusion contributes to the overall voltage output because the moisture 

absorption has no gradient over the lateral surface across the two junctions in the first place, 

generating no proton gradient to support the diffusion. When the relative humidity is slowly 

increased from 30 to 50 RH% by 1 RH%/min, the output voltage increases abruptly from 

almost 0 to 160 mV, indicating a fast while narrow adsorption window for the ambient 

water vapor (Figure 9.5c). When the air is slowly dried at the same rate, the humidity 

response of the asymmetrical Au/Al-GO junction pair show some hysteresis with wider 

desorption window between 80 and 10 RH%, indicating slower water desorption 

characteristic of GO.[426]  

After prolonged humidity cycles, the GO layers underneath the aluminum coating have 

been characterized by the depth resolved X-ray photoelectron spectroscopy (XPS) (Figure 

9.5d). It is obvious that the first few layers of GO in contact with the aluminum layer get 

fully reduced based on the extinction of the epoxy peak at around 286.5 eV.[102] With the 

progress of the depth profiling, deeper layers of GO gradually turn from completely 

reduced to partially reduced, and eventually to fully intact without signs of reduction. It is 

Figure 9.6 (a) XPS spectra of freshly fabricated Al-GO junction at different depths from the Al/GO 

interface, indicating a sub-nanometer layer of reduced graphene oxide at the Al/GO interface. The 

reduction of the thin graphene oxide layer at the interface is probably caused by the heat carried by 

the initial adsorption of the hot metal vapor during the electron beam evaporation process. The 

same phenomenon also happens to the extensively actuated (around 5000 times) Au-GO junction 

(shown in panel b). 
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also noteworthy that the XPS C1s spectra show slight blueshift as the probe approaching 

deeper, indicating progressive charging due to the removal of the electrically conductive 

reduced top layers.  In comparison, only the very top layers of the GO show signs of 

reduction under freshly deposited aluminum layer, probably due to the thermal effect 

during the electron beam deposition process (Figure 9.6a). Therefore, the reduction of the 

GO layers is the direct evidence of the electrochemical reaction occurred during the 

humidity cycles and the touching activations. In addition, similar top-layer-confined 

reduction of GO is also observed underneath the extensively used gold electrode, 

confirming the chemical inertness of the gold electrode and the thermal reduction of the 

top GO layers when adsorbing the hot metal vapors during the electron beam evaporation 

(Figure 9.6b). 

9.3.3 Tactile sensing stability of the metal-GO junctions 

The sensing stability of the metal-GO junctions has been investigated by repeated 

actuations. Figure 9.7a and d show the scheme of the symmetrical Al-GO junction pair 

Figure 9.7  The (a) switching and (d) alternating tests for the stability of the metal-GO junctions 

as tactile sensing elements (the plus and minus signs on the contacts denotes the polarity of the 

measuring probes): open circuit voltage output of symmetrical Al-GO junction pair (b and e) and 

asymmetrical Au/Al-GO junction pair (c and f) under switching and alternating actuations, 

respectively. The insets show close views of detailed waveform as indicated by arrowed frames. 
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and the asymmetrical Au/Al-GO junction pair under two repeated actuation patterns of 

switching and alternating, respectively. For the switching tests, the positive junction is first 

repeatedly pressed by bare finger for 30 times and then the repeated presses were switched 

to the negative junction for another 30 times. The dwell and interval times are both 1 s. 

From Figure 9.7b we demonstrate the stable voltage output of 330±47 mV and -310±44 

mV for the positive and negative Al-GO junction, respectively. The waveform of the 

signals (Figure 9.7b insets) shows distinct chisel shape with abrupt jump followed by a 

slower linear increase, and then a cliff drop to the baseline upon deactivation, being the 

result of the combination of different potential generating kinetics between the large 

potential jump due to the electrochemical reaction and the relatively smaller potential 

contribution from the proton diffusion. In addition, also due to the proton diffusion, the 

baseline of the device voltage output increased slowly and saturated at around 60 mV after 

repeated activations. When subjected to the alternating activations between the positive 

and the negative junctions, the output remains stable and the waveform keeps the chisel 

shape (Figure 9.7e). And due to the counterbalance between the proton diffusion in the 

opposite directions, the baseline is pinned at 0 mV in the alternating activation tests.  

Similar stability tests have also been conducted to the symmetrical Cu-GO, Au-GO, and 

rGO-GO junction pairs (Figure 9.8). Comparable responses further demonstrate the 

excellent stability and the wide applicability of the operating mechanisms to electrically 

conductive material coatings either reactive or inert to GO. What is more interesting, by 

replacing the metal coatings with the rGO pattern of the same shape, the amplitude of the 

output peaks is identical to that of the Au-GO junction (50 mV), indicating that the 

universal diffusion mechanism of the protons supports the operation of the hybrid sensing 

materials when no reactive metal layers are available. 

An asymmetrical Au/Al-GO junction pair similar to the one shown in Figure 9.5c is also 

fabricated to demonstrate the asymmetrical tactile output from the two junctions. It is worth 

noting that the humidity sensing design shown in Figure 9.5c is subject to the 

environmental humidity change, while the asymmetrical junction pair tested in this case 

receives bio-electrolyte injection from the finger touched area. Figure 9.7c and f show the 

switching and alternating tests in the same manner to those shown in Figure 9.7b and e, 
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respectively. For the asymmetrical Au/Al-GO junction pair, when activating the Au-GO 

junction, small peaks and large baseline shift are observed due to the sole proton diffusion 

effect. When the Al-GO junction is activated, much higher amplitudes of the peaks are 

present, which is typical for the Al-GO junction in the symmetrical junction pairs, 

indicating the independent operation of the two opposite junctions. 

The stability of the metal-GO junctions is also demonstrated by its irresponsiveness to 

mechanical deformation and false actuations that are not related to direct human touch. The 

junction responds normally to the bare finger touch on either of the two electrodes, but is 

inert to gloved finger touching. It is worth noting that the temperature elevations after the 

bare finger and gloved finger touching are identical based on the infrared imaging, ruling 

out the possible reason of thermally activated response (e.g. thermoelectricity) of the 

device. The inertness to the gloved finger touching is caused by the barricade of the body 

moisture by the nitrile rubber layer. Moreover, when bent or shaken, the device only 

outputs minimal background noise with the level of around 1% compared to that of the 

fully activated state, which is probably originated from the contact resistance undulation 

from the metal wire leads when deforming and easily isolated in signal identification. 

Figure 9.8 Open circuit voltage output of symmetrical Cu-GO junction pair (a and d), symmetrical 

Au-GO junction pair (b and e), and symmetrical rGO-GO junction pair (c and f) under repeating 

and alternating stimulations, respectively. The insets show close views of detailed waveform as 

indicated by arrowed frames. 
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9.3.4 Tactile frequency responses of the Al-GO junctions 

 Another critical parameter for tactile sensing materials is the responsiveness, or the 

maximum operation frequency. In order to test the responsiveness, we used a linear 

electrodynamic shaker for high actuation frequencies. Therefore, the activation frequency 

is precisely tunable and correlated with the response frequency (Figure 9.9). Figures 9a-e 

show the response waveform of the Al-GO junction subjected to 2, 5, 10, 15, and 20 Hz 

actuations, respectively. The waveforms are stable and uniform from 2 to 15 Hz with slight 

baseline upshift due to the relatively long relaxation time of the proton diffusion. When the 

activation frequency increases to 20 Hz, the waveform starts to become noisy probably due 

to the vigorous mechanical movement and saturated bio-electrolyte adsorption from the 

high-frequency repeated micro-injection. The coupling between the actuation and the 

response frequency has been plotted in Figure 9.9f in the form of Fourier transform of the 

response waveforms. The sharp peaks locate across the diagonal of the plot indicate robust 

correlation between the actuation and response signals. For lower frequency actuations (2, 

4 and 10 Hz), higher orders of harmonic oscillation peaks are also prominent and evenly 

spaced, further indicating strong and strict coupling of the signals.  

Figure 9.9  (a-e) Frequency variation test of the Al-GO junction, showing stable response to 

sinusoidal stimulations from 2 to 20 Hz. (f) The fast Fourier transform of the response signal based 

on the actuation frequency. Higher orders of harmonic response indicate a strong correlation 

between the input and output. 
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To further demonstrate the responsiveness of the tactile sensing metal-GO junctions, to 

real human finger actuations, the manual touching actuation of the tactile sensor has been 

tested and the result is shown in Figure 9.10. The device has been activated continuously 

in segments of various touching frequencies, the positive and negative responses are 

identical in terms of slight baseline shift and gradual decreasing peak amplitudes with 

higher actuation frequencies. The voltage output signal reliably records the human finger 

touching events at various frequencies from 0.5 to 5 Hz on both electrodes, demonstrating 

stable and directly interpretable monitoring of human-touch events. It is noteworthy that 

the waveform of the manual touching test is different from that of the linear motor 

actuations, because the movement of the linear motor is continuous following the 

sinusoidal pattern while the manual actuation roughly follows the square wave pattern. 

9.3.5 Simplified two-dimensional tactile sensor array (electronic skin) 

Conventionally, in order to fabricate electronic skins, matrices of individual sensing 

elements are patterned over a flexible surface and the number and size of the sensing 

elements determines the spatial resolution of the device. Utilizing the electrochemical 

touch sensing mechanism of the metal-GO junctions introduced in this research, two pairs 

of Al-GO junctions are capable of addressing nine tactile pixels (Figure 9.11 and Figure 

9.12). Specifically, each pair of orthogonally placed electrodes can output three potential 

levels (i.e., 1, 0, -1), therefore the two pairs of electrodes act as two ternary digits, which 

translates to 3x3 distinct states. To our surprise, although the two pairs of Al-GO junctions 

are deposited on the same piece of GO bio-paper substrate, minimal crosstalk happens for 

the simultaneous operation of these tactile sensors. The small leak signals to the inactive 

junction pair shown in Figure 9.12 are probably due to the slight shift of the touch point 

from the center of the designated areas, incurring concentration gradient diffusion of the 

protons to the neighboring junctions. Moreover, if the two pairs of metal-GO junctions are 

made by metals that have different output signals, the two voltage outputs could be easily 

added to realize single voltage level addressing of the 9 locations, further simplifying the 

signal analyzing components of the electronic skin. For instance, the horizontal 

symmetrical Al-GO junction pair integrates with the vertical symmetrical Cu-GO junction 

pair. Due to the inherent step difference of the voltage output from these two metal-GO 
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junctions (i.e., 800 mV for Al-GO and 300 mV for Cu-GO), the combined signal could be 

1100, 300, -500, 800, 0, -800, 500, -300, and -1100 mV for positions 1-9, respectively.  

 

9.4 General comparison and conclusions 

The benefit of self-powering for the sensors is of critical importance for the increasing 

requirements of mobile and wearable electronics. A paper based tactile sensor has been 

reported with the active polypropylene piezoelectric layer sandwiched between silver paste 

Figure 9.11  Two-dimensional touch sensing platform (electronic skin) shows highly 

independent open circuit voltage output for the two orthogonally orientated Al-GO junction 

pairs on the same piece of GO bio-paper substrate: (a) Excellent bending robustness of the 

electronic skin withstands repeated fisting in the palm (see Supporting Video S3); (b) diagram 

of the 2D sensing circuit and address allocations (the plus and minus signs on the contacts 

denotes the polarity of the measuring probes). The 2-digit trinary system is denoted as (V1, V2), 

and actual waveform of the distinctive response for the 9 locations could be found in Figure 

9.12. 
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patterned regular paper substrates.[397] The sensor is self-powered with a maximum signal 

level of close to 2 V depending on actuation speed and force; and it performs robustly even 

after being cut in half. However, due to the inherent working principles of piezoelectricity, 

such tactile sensors only record the transient states of the activation and the signal 

decoupling between actuation speed and pressure remains a problem. Another self-

powered electronic skin that senses human touch by thermoelectric effect has been reported 

based on rGO foam.[427] The signal level for normal human touch is around 200 nA and the 

signal strength is heavily dependent on the temperature gradient across the rGO foam, 

which is difficult to maintain in real-world field applications. Fan et al. have demonstrated 

a self-powered pressure sensor based on triboelectricity.[ 428 ] The maximum signal 

magnitude reached 18 V with the aid of nanostructured contact surfaces, but the transient 

Figure 9.12 (a-i) waveform of the distinctive response for the 9 locations that are shown in Figure 

5b. Each location was pressed for 3 seconds. 
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current output due to the contact electrification mechanism constrains its ability to monitor 

continuous pressure as a self-powered system.  

Other than the self-powered touch sensors, it is still necessary to combine with some format 

of electric energy source for the proper functioning of the devices, significantly depleting 

the potential flexibility, portability and sustainability. Park et al. fabricated highly sensitive 

pressure sensors using polyaniline nanofibers and gold coated polydimethylsiloxane 

(PDMS) micropillars, which features excellent sensitivity (15 Pa) and high response rate 

(50 ms).[429] Another tactile sensor employing the micropillars concept uses the giant 

magneto-impedance mechanism, where the bending of the magnetized iron nanowire 

nanocomposite micropillars induces impedance change in the NiFe/Cu/NiFe laminated 

substrate even underwater.[430] By mimicking the interlocked epidermal-dermal layers of 

human skin, an electronic skin was made based on carbon nanotube filled elastomer, 

featuring multimodal sensing ability, which differentiates various wrist movements.[431] All 

these ultra-sensitive touch sensors are ideal for low-force applications, such as vital signs 

monitors and biomimetic robotics, but the sensing array involves tedious microfabrication 

and assembly process, incurring cost concerns for wide deployment.  

Flexible sensors can also be made using metal nanoparticles embedded in polymeric matrix, 

responding to temperature, strain, volatile organic chemicals by altered electrical 

conductivity.[432, 433, 434] However, the poor dispersion and distribution of the nanoparticles 

severely limit the consistency and stability of such sensor. Moreover, due to the multi-

parametric sensing characteristics (i.e., simultaneous response to multiple environmental 

changes), the decoupling of these stimuli could be of apex challenge. Recently, a multiplex 

graphitic carbon nitride (GCN) based multiplex sensor that can independently measure 

temperature, humidity, and stress in three modes has been reported.[435] Although the 

versatility and sensitivity of this flexible fiber-form sensor are impressive, the robustness 

of the nanoscale active GCN coating and signal strength should be continuously improved 

for smart textiles. 
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Chapter 10 General Discussions and Broader Impacts 

 

10.1 General conclusions and discussion 

We have successfully demonstrated the outstanding mechanical properties of graphene 

oxide-silk fibroin nanocomposites fabricated by SA-LbL and dSA-LbL assembly. 

Uniquely realized by the SA-LbL and further improved by the dSA-LbL, the dense network 

of weak interactions between the individual silk fibroin chains and graphene oxide surfaces 

facilitates the formation of strong molecular interphase zones of confined individual silk 

backbones, thus, dramatically enhancing the reinforcing effect. The outstanding 

mechanical properties of the ultrathin graphene oxide-silk fibroin nanocomposite 

membranes may inspire researchers of more combinations of functionalized components 

and these strong and flexible ultrathin membranes in their freely standing state can be 

valuable for prospective applications in sensing devices, protective molecular coatings, 

biological and chemical filters, cell protection and support, membranes for separation and 

delivery, energy harvesting and ion separation. 

In addition, we demonstrated strong, tough and flexible laminated nanocomposites 

composed of rigid cellulose nanocrystal networks conformally wrapped by flexible 

graphene oxide sheets. The design proposed here combines two different classical 

reinforcing nanocomponents – stiff rodlike 1D cellulose nanocrystals, and strong but 

flexible 2D graphene oxide sheets – into one nanomaterial. This approach eliminates the 

overwhelming presence of the “soft and weak” polymer matrix, which is in this case 

repurposed to a molecular glue between two strong components. This combination of 2D 

flexible and 1D rigid reinforcing nanostructures promotes high mechanical strength along 

with excellent toughness, resulting in synergetic properties that cannot be achieved in 

previously reported graphene-based polymer nanocomposites.  The illustrated summary of 

the mechanical properties of the nanocomposites developed in this study has been 

demonstrated in Figure 10.1. With outstanding mechanical properties and high flexibility 
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combined with high optical transparency in the visible range and high electrical 

conductivity, we suggest these unique material systems can serve in a broad range of 

technological applications, including ballistic protection, electromagnetic interference 

shielding, bio-fluid separation, and wearable electronic devices.  

Moreover, we demonstrated that the graphene oxide paper can effectively and selectively 

reduced by localized presence of aluminum under neutral aqueous conditions and at room 

temperature to highly conductive graphene paper not only just without compromising their 

mechanical integrity, but also further improving mechanical performance and making them 

stable in aqueous environment. The outstanding mechanical and electrical properties of the 

graphene-silk “paper” make them excellent candidates of structural and functional 

components, holding promising potentials in the emerging applications of protective 

Figure 10.1 Summary of the mechanical properties from the nanocomposite materials in this 

research. Representative data points from recent publications are plotted and labeled in the figure 

for comparison. Our results are majorly located well beyond the boomerang shaped envelope of 

the conventional laminated nanocomposites. 
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coatings, chemical barriers, electromagnetic interference shielding, sensory skin, and 

biodegradable, flexible, organic electronic components. 

The fabrication of the highly conductive bio-bond graphene paper is facile and fast, and 

can be conducted under ambient wet conditions without the involvement of hazardous 

reagents. The electrical properties can be easily controlled by processing conditions in the 

ambient environment that are easily customized for different objectives and could be 

employed individually or combined to reveal the full spectrum of electrical and electronic 

properties in addition to the outstanding mechanical robustness, folding endurance, and 

flexibility of conducting sheets (more than 100 cm2 surface area and higher). The lowering 

of the work function in the process of reduction is the first demonstration of such 

modification for the graphene papers. The metal-assisted electrochemical reduction of bio-

bond graphene paper is efficient for the electrical modification of the bio-bond graphene 

paper. The versatility and environmental friendliness of this fabrication technique is 

suitable for production of flexible, conductive, and foldable thin films for large area 

flexible lightweight electronic components in the applications of sensing, wearable 

electronics, logic processing, and energy storage. 

We have, for the first time, demonstrated flexible metal-GO hybrid materials for human-

tactile sensing that are sensitive to the micro-injection of trace amount of bio-electrolyte 

and respond with high electrical potential signals. The human-tactile sensitive metal-GO 

junctions utilize the combination of the unique chemical activity and hydrophilicity of 

graphene oxide to generate close to 1000 mV electric signal through the synergistic power 

generation mechanisms of electrochemical reaction with active metal layers and the 

asymmetrical cation diffusions driven by the concentration gradient due to localized 

ionization. The metal-GO junctions show excellent stability of electrical potential response 

to repeated finger pressing, outstanding signal independency between the individual 

junctions, and high responsiveness to fast actuations. 

The electronic skins fabricated following this materials design strategy for humidity 

sensing, especially the fast bio-tactile sensing applications are ready for scaling up. In 

addition, the electronic skins using the minimum two pairs of electrodes exhibits 
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outstanding versatility for human-machine interfacing with programmable signal levels. 

When compared to the other tactile bio-sensors, the concept introduced in this work is 

advantageous in facile fabrication, low cost, fast response, large continuous signal, and 

mechanical robustness, being promising for advanced applications in wearable bio-signal 

monitors, smart tagging, electronic skin, and portable/disposable electronics. 

10.2 Significance and broader impact 

10.2.1 Dispersion and distribution of the graphene nanofillers 

A fine control of dispersion and distribution of the graphene nanofillers remains the major 

problem for the effective reinforcement of the mechanical properties and adding functional 

properties to the graphene-based nanocomposites. Distributed network morphology and 

suppressed flexible component aggregation enable the optimal exposure of the graphene 

surface to the polymer matrix. For these optimal dispersion levels, the interfacial binding 

can be maximized and interconnected morphology can be realized. The achievement of 

such optimal morphology represents a great challenge and indeed is an acute issue for the 

integration of graphene components that, considering their flexibility and high aspect ratio, 

can be easily folded, crumpled, and wrinkled by even modest shearing forces and complex 

force field distribution during processing.  

To avoid the problems associated with of the inhomogeneous distribution and a coarse 

dispersion of graphene components by conventional mixing or the presence of small, 

broken or crumpled flakes by forcibly enhanced mixings, various assembling techniques 

and in-situ polymerization approached should be considered. One of them is LbL assembly, 

which is facilitated by alternative nanoscale assembly of the polymer and graphene 

components. The highly ordered LbL layered nanocomposite films are built through 

natural or force-assisted adsorption of complementary components. Although the LbL 

assemblies are advantageous in the maximized interfacial interactions between the 

nanocomponents and molecularly defined laminating structures, they are extremely slow 

by adding few nanometers each cycle and wasteful due to the excessive material removal 

during the spinning process.  
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Vacuum assisted formation of layered papers is another promising and practical approach. 

These techniques control the nanostructures of graphene-polymer nanocomposites from 

bottom up and result in optimized distribution and dispersion of components in a layered 

fashion thus enhancing interfacial interactions and mechanical performance. Vacuum 

filtration methods are fast and easily scaled up for mass production; it also does not waste 

any solid constituents in contrast to the SA-LbL approaches, but the internal structures 

suffers from the final drying effect to create inconsistencies such as voids or wrinkles, and 

the surface morphologies are largely dependent on the substance the filtrates are against, 

therefore the cost for the high-quality filters, such as porous alumina membranes, has to be 

considered for advanced applications. 

10.2.2 Improving interactions between graphene materials and the biopolymer matrix 

Although graphene has by far the best mechanical properties of all potential reinforcing 

components, the binding options are limited to weak van der Waals forces, hydrophobic 

interactions, and π-π interactions due to the homogeneous sp2 carbon composition. These 

forces are generally too weak as the primary binding means and only π-π-interactions might 

be a promising candidate to assemble graphene and polymers with a strong interface. [133, 

436] Therefore, enhanced functionalization of graphene components with proper surface and 

edge chemical groups must be considered in order to improve interfacial binding with 

various polymer matrices and implement reinforcing effects. To this end, graphene oxide 

sheets and other functionalized graphene-based components are considered as promising 

reinforcing agents. 

Graphene oxide is a widely explored derivative of graphene with a lot of advantages over 

graphene itself from the prospective of nanocomposite design, including aqueous 

processibility, low cost, the ability to further functionalization, and large-scale production. 

The heterogeneous surfaces of these graphene derivatives caused by the heavy localized 

oxygen-containing groups might facilitate the diverse options for the strong interfacial 

binding. A whole class of polar interactions becomes available for designing new strong 

interfaces, which includes hydrogen bonding, Coulombic interactions, and polar 

interactions in addition to common covalent bonding and hydrophobic interactions. We 
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have successfully demonstrated that the biomacromolecules that show unique combination 

of heterogeneous domains bind strongly with graphene oxide through matching domain 

sizes and binding forces. By expanding and unfolding the molecule chains of proteins, the 

binding interactions can further be improved and the mechanical properties are pushed 

further over the border. We also explored the combination of the conventional nanofillers 

together with minimum amount of biopolymer binders that show excellent mechanical and 

electrical properties. 

10.2.3 Controlled reduction of graphene oxide to highly conductive states in 

nanocomposites 

It is well established that the next important property to be considered, electrical 

conductivity, is greatly compromised for graphene oxide by the scission of sp2 bonds, high 

concentration of pinhole defects and surface oxidized functionalities. Therefore, for 

emerging applications, which require the ultimate conductivity of graphene-polymer 

nanocomposites, the graphene oxide has to be reduced through a variety of chemical and 

thermal methods before, during, and after nanocomposite fabrication. [66, 105, 106, 107, 346, 437, 

438] Efficient reduction results in the partial restoration of pristine electrically conducting 

state of reduced graphene oxide sheets and graphene-polymer nanocomposites as a whole 

to a practically relevant high level.  

The electrical conductivity may be induced to relatively high values, at least 15000 S m-1 

which is high enough for many “soft” electronic applications such as those considered in 

flexible organic/polymer electronics and bioelectronics. The corresponding graphene-

polymer semi-metallic materials can be considered for the integration into flexible 

electronic devices. It is also critically important that the mechanical properties of the 

reduced graphene can be improved as well due to the restoration of the sp2 hybridized 

carbon network and reduction of surface defects. By controlling the reduction level of the 

graphene oxide in the polymer nanocomposites, both electrical and mechanical properties 

can be tuned up significantly to a level that is suitable for various structural and functional 

applications, such as sensors, flexible circuit substrates, and wearable electronics.  
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10.2.4 Future trends and suggestions 

The combination between graphene oxide and biomaterials here and below is an ongoing 

research for wide spectrum of different academic interests and practical applications. We 

have demonstrated that by using silk as a bio-binder, graphene oxide flakes can be glued 

securely together and render excellent mechanical properties. Using molecular engineering 

approaches, various peptides and functional molecules could be synthesized to match better 

with the surface functionalities of the graphene oxide, resulting in further pushing over the 

bracket of the current limit for nanocomposites. By embedding multiscale unfolding 

secondary structures of the macromolecules, higher flexibility and toughness of the 

nanocomposite could be revisited. The current challenge for the robust nanocomposites is 

mainly on the extremely limited ultimate strains.  

Further development in this direction may involve the multiplex interactions between the 

components of the nanocomposites. For example, the strong binding forces supports the 

stiffness of the material but are prone to permanent disruption upon large deformation; then 

the weak but dense secondary interactions will continue to support the mechanical integrity 

of the material with large strain. Therefore, the synergistic combination of the 

heterogeneous interactions could lead to the next-generation super-strong nanomembranes. 

The surface coverage of the graphene materials in the LbL assemblies are not well 

controlled yet. Monolayer of graphene covering the surface in a close packed or “mosaic” 

pattern is highly desired but hard to achieve. LB assembly can partially resolve this 

problem but the process is extremely slow and the results vary from batch to batch, largely 

depending on the flake sizes and concentrations. Therefore, research that focuses on the 

surface distribution of 2D nanofillers on various surfaces (essentially various surface 

energies) are highly needed. In addition, VAF is great for semi-automated fabrication of 

laminated graphene oxide papers but the inherent micro-flux directed assembly on the filter 

surface causes self-constrained wrinkles that are inevitable and undermine the mechanical 

strength of the films. Either pre- or post-treatment of the graphene papers that could be 

flattened to “wrinkle-free” states is highly desired for improved mechanical and electrical 

properties of the products. 
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On the macroscale assembly of the nanocomposites, new methods that are both fast and 

efficient to combine various nanocomponents are to be developed. LbL assemblies are 

precise but slow, VAF is relatively faster but the microstructure is commonly not well 

defined. Industrialized techniques such as freeze drying mold casting are both promising 

techniques for consideration, but significant modifications are definitely needed to meet 

the high anticipation in the lab research. For example, hydrothermal treatment and then 

freeze drying of the mixture of the graphene oxide and silk fibroin is an excellent method 

to quench the nano- and micro-structures of the stable graphene oxide-silk fibroin complex, 

and the highly porous nanocomposite aerogel should be post-treated to remove the air voids 

to reestablish the mechanical integrity and electrical properties. 

The functional properties of graphene oxide mainly base on the restoration of its electrical 

properties. Although the current metal-assisted reduction technique is versatile and 

efficient for this task, the applicability of the high-purity metal coating still needs 

significant improvement. Also, the localization of the reduced graphene oxide as confined 

by the metal coating pattern is the major obstacle to be removed before achieving high-

resolution, strictly defined conducting paths on the surface of graphene oxide films. 

Adopted form the metal nano-rod growth techniques, electric field direction of the free 

electrons is a promising method to confine the reduction path strictly to the z-direction of 

the films. With large enough electric potential applied along the through-thickness 

direction of the film while in the electrolyte media, the electrons driven by the external 

electrical field directs, if not restricts, the reduction only in the z-direction.   

Great attention should also be paid to the unique combination of electrical, chemical, and 

mechanical properties of graphene oxide bio-papers for possible discovery of new 

functional materials based on it. For example, since the metal-GO junction could sense 

humidity by enhanced diffusion and electrochemical reactions, the sensing of other volatile 

organic compounds (VOCs) is highly possible due to the great dissolvability of GO in 

many alcohols and organic solvents. Specific sensing and giant responses of such metal-

GO junctions could be potential chemical sensors or biological cue sensors for a wider 

applications. 
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Graphene based bio-nanocomposites hold promising potentials for the flexible and 

bioelectronics applications, including wearable bio-signal monitors, smart tagging, 

electronic skin, and portable/disposable electronics. The mechanical flexibility and 

robustness, in combination with the high and programmable electrical conductivity, make 

graphene based bio-nanocomposite thin films excellent platform for a whole spectrum of 

electronic designs and functionalities, which are easily adopted from the classical 

microelectronics library. Being a new class of materials, there are countless opportunities, 

besides the examples demonstrated in this dissertation, for researches to explore, optimize, 

and innovate in all the directions of energy generation, energy storage, sensing, actuation, 

and finally the integration of the complete flexible bioelectronics system that is self-

sustaining, self-powering, highly sensitive to multiplex stimuli, and implantable for the 

better life quality of human being. 
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Films Fabricated by a Facile, Green and Energy Efficient Strategy”, oral 

presentation*, MRS Fall Meeting, Boston, MA 2013 

[11] “Extremely robust silk ionomer/graphene oxide microcapsules with tunable 

permeability”, poster, 247th ACS National Meeting, Denver, CO 2014 

[12] “Behavior of LbL Graphene Oxide-Protein Nanomembranes as Manipulated by 

the Secondary Structures of Proteins”, poster*, LbL Assemblies: Science and 

Technology Conference, Hoboken, NJ 2014  

[13] “Robust Graphene Biopapers with Written-In Microelectronic Components 

Fabricated by Vacuum Assisted Flocculation and a Green, High-Resolution 

Reduction Strategy”, poster*, LbL Assemblies: Science and Technology Conference, 

Hoboken, NJ 2014  

[14] “Road to the Next Generation Flexi-electronics”, poster*, MSE Graduate Poster 

Competition, Georgia Tech 2014 

[15] “Filtration Self-Assembly Strong and Tough Graphene Oxide – Silk Fibroin 

Nanocomposite Films Fabricated by pH-Assisted Vacuum Filtration”, poster*, MRS 

Fall Meeting, Boston, MA 2013 

[16] “Using Layer-by-Layer Technique to Fabricate Graphene Oxide-Silk Fibroin 

Nanomembranes with Record-Breaking Mechanical Properties”, poster*, MSE 

Graduate Poster Competition, Georgia Tech, 2013 

* Presented in person (12 total). 
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Awards and Recognitions 

 Center of Organic Photonics and Electronics Fellowship, Georgia Tech 2015 

 Chinese Government Award for Outstanding Self-Financed Students Abroad, 2015 

 Invited Talk (two students nationwide) at the 38th Michigan Macro Symposium, 

University of Michigan 2014 

 2nd runner-up in Georgia Tech Polymer Network Poster Competition, Georgia Tech 

2014 

 1st place in Energy & Electronic Materials, MSE Poster Competition, Georgia Tech 

2014 

 1st place in Polymers, MSE Poster Competition, Georgia Tech 2013 
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