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SUMMARY

Volcanic eruption releases gases and aerosols (e.g., sulfur compounds) to the atmo-

sphere, impacting climate for up to several years. While most research efforts of volca-

nologists to date have been devoted to unraveling the eruptive activity and formation of

volcanoes, the understanding of volatiles diffusion during volcanic eruption is still prelim-

inary, largely due to the lack of robust computational tools for magma dynamics during

volcanic eruption at the necessary time and length scales. On the other hand, magmatic

processes, from the production of melts in the upper mantle to their crystallization or erup-

tion at the surface, are dominated by dynamic processes in deep Earth that are not directly

observable, limiting the direct measurement of these processes through geological fieldwork.

This dissertation includes three main parts: (i) a non-equilibrium bubble growth models are

developed to assess the role of bubble dynamics and volatile kinetics in “excess sulfur” prob-

lem (Chap. 2) and the implication of the volatile diffusion profile after eruptions on magma

ascent history (Chap. 3); (ii) a new bubble dynamics model that accounts for hydrody-

namical interactions (deformation, coalescence) between bubbles are established (Chap. 4);

(iii) the dynamical response of saturated porous media to transient stresses is studied using

the lattice Boltzmann method with four different porous media topologies (Chap. 5). It

is anticipated that the findings in this dissertation will improve physical understanding of

volatile degassing, bubble dynamics, and saturated porous media in response to transient

changes of stresses.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Volcanic eruptions can be extremely hazardous, and a single explosive volcanic eruption can

cause catastrophic destruction of life and property. Volatiles can be the direct causes of some

of the hazards, e.g., the global temperature drop and regional temperature anomalies after

Mt. Pinatubo eruption in 1991 [58] and the 1600 AD Huaynaputina eruption in Peru [35],

and several large atmospheric and agriculturic pollution episodes after the eruption of Laki

from 1783 to 1984.

Many volcano observatories worldwide measure volcanic plume emissions as part of their

operational monitoring efforts. As “telegrams from Earth’s interior” [164], studying volatile

can aid in forecasting and understanding of volcanic unrest.

In this dissertation, the focus is placed on how volatiles species partition between melt,

crystals and gas bubbles under various conditions (during storage of magma at shallow

depth or ascent to the surface) and how volatile degassing impacts eruptions. In this

chapter, I will introduce the role of volatiles in volcanic eruptions as well as the most

abundant volatile species involved, and present an overview on various measurement and

detection methods. The climatic impact from volcanic eruptions due to degassing of SO2 is

also briefly mentioned. The central questions addressed in the dissertation and its structure

are discussed at the end of the chapter.

1.1.1 Volatiles in volcanic eruptions

Magma, initially formed by partial melting of upwelling mantle materials, is a mixture of

solids, melts, and volatiles. The mechanical and chemical interactions between these phases

control the physical and chemical evolution of magmas as they transit through the crust.

Among these phases, volatiles are of great importance in volcanic eruptions as they provide

the driving force for magma ascent and eruption. The abundances of volatile species in the
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primordial melts is controlled by the tectonic environment (subduction, extension, etc.).

In the environment of subduction zone, volatiles are produced by dehydration of sub-

ducting slab as shown in Fig. 1.1 [222]. Upon subducting, the slab can lose free water

through porous sedimenets when the temperature is higher and reaching 200–400 ◦C. Then,

the volatile (dominantly aqueous H2O) that is being expelled can be added to the fore-arc

mantle and to hydrate the fore-arc mantle via the breakdown of serpentine minterals (storage

of hydrous phase). The hydrated mantle then rises upward due to the corner flow advection

caused by subducting slab, and volatiles can be exsolved when their concentration equals

the volatiles concentration, and further volatiles can be degassed into the atmosphere in

volcanic eruptions [222].

Volatile species tend to be incompatible with crystal phases and hence remain mostly

dissolved in the melt until they reach saturation and start to exsolve (deeper for CO2

compared to water). After degassing and expulsion from their magma host, these volatiles

species are cycled back to the atmosphere [89].

Volatile degassing fundamentally controls volcanic eruption magnitudes and styles by

affecting the magma viscosity, buoyancy, and compressibility. [56, 59, 191, 207]. The melt

viscosity mainly depends on composition, temperature and dissolved water content, as the

latter controls the degree of polymerization in the melt [175]. The stress applied by decom-

pressing bubbles on the surrounding melt can also lead to melt fragmentation, a condition

for explosive eruptions [223]. Studying the fate of volatiles during exsolution is therefore a

central goal of physical volcanology.

Volcanic eruptions are rich in various types of volatiles, including H2O, CO2, SO2, H2S,

nitrogen, chlorine, fluoride, and noble gases (He, Ar, Ne, Kr, Xe) [59,191,207]. Their abun-

dance varies in different types of magma. Some of these species can have an effect on climate

once released to the atmosphere and some are toxic to life. Dissolved volatile concentra-

tions in magmas are typically estimated by analysis of melt inclusions. Melt inclusions

(MIs) are tiny beads of silicate melt trapped in phenocrysts during crystal growth. Their

composition is assumed to represent that of the silicate melts at the time of entrapment.

Erupted magmas lose their volatiles because of degassing during eruption, but silicate melt
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inclusions can maintain their original dissolved volatile concentrations because their rigid

host crystal serves as a pressure vessel during decompression. In this section, I will present

some facts about H2O, CO2, SO2, which are the volatiles that I have studied or will study

in the future.

1.1.1.1 H2O

H2O is the primary volatile species in most magmas [207]. One can trace the source of

water within magmas by measuring the oxygen isotopic composition of these magmas. It

was found that water in subduction zone magmas is mostly related to the dehydration of the

downgoing slab, while it may involve recycling and deep storage within the mantle for hot

spots volcanism [174,185,192]. Water is structurally bound to the aluminosilicate networks

in the form of OH− groups or as H2Omolecules when dissolved in the melt [123]. From many

MIs (melt inclusions) sampled from different magmas, water concentration in melt phase

span a range from below 1 wt.% to above 10 wt.% with the highest water concentration

measured in arcs. For rhyolitic magmas, the water concentration is typically 3–7 wt.%.

For basaltic magma, the value is lower, 0.2–1 wt.% for OIBS (ocenanic island basalts) and

< 0.4–0.5 wt.% for MORBS (mid-ocean ridge basalts) [39]. The gas saturation curves for

basalt and rhyolite at different depths are shown in Fig. 1.2. Water saturation depends on

the melt composition and pressure. For rhyolitic magma, its saturation depth is 1 kbar to

2.5 kbar; for basaltic magma, it is 2 to 5 kbar. Hence, melts tend to be saturated with water

at shallow pressure in arcs [207]. Once the water concentration exceeds its solubility (either

because of decompression or crystallization), bubbles nucleate once a finite activation energy

is overcome.

H2O exerts a first order control on bubble growth dynamics due to the fact that it is the

fastest diffusing major volatile species in silicate melts [224]. H2O influences bubble growth

in another way by affecting melt viscosity. By adding 2 wt.% H2O into originally H2O

free magma, the magma viscosity can drop off by several orders of magnitude according to

Giordano et al. [60].
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1.1.1.2 CO2

As the second most abundant species dissolved in magmas, the CO2 content in the mantle

is estimated to be 180 ∼ 1100 ppm [165], which makes the mantle the largest reservoir

of carbon on the Earth [33]. It dissolved in the melt as molecular CO2 (in rhyolite) and

CO2−
3 (in basalt) or both species (in andesite and dacite) [43]. For silicic magmas, the melt

concentration in CO2 is quite low and often below detection limits. For basaltic magma,

CO2 is relatively abundant with 50–400 ppm for MORBs and 2000–6500 ppm for OIBs [135].

Due to the much lower solubility of CO2 as compared to H2O (Fig. 1.2), arc basalt can be

sautrated with CO2 at greater crustal depths [3]. Wallace [207] suggested that the CO2

content in basaltic magma could be used to infer the initial volatile saturation depth of

magma if the saturation pressure < 5 kbar, because little is known about the solubility of

CO2 at pressure > 5 kbar.

1.1.1.3 Sulfur

SO2 is often considered the third most abundant volatile species released during volcanic

eruptions. Considerable work has been done with sulfur due to its role on on atmospheric

radiative balance and climate after large explosive eruptions [168,177] and on the formation

of ore deposits [135]. For silicic magma, the S concentration in the melt is typically below

200 ppm. For basaltic magma, the value is higher with 80–1500 ppm for MORBs and 2000–

6500 ppm for OIBs [135]. Sulfur speciates in the melt mostly under the form of S2− or

SO−2
4 [88,212]. Correspondingly, the dominant vapour phases are H2S and SO2 [25]. Unlike

H2O and CO2, the system redox state can alter the relative abundance of these two species.

The concentration of sulfur ranges typically from ∼ 1000 ppm to ∼ 40 ppm considering

magmas with SiO2 contents ranging from 45 to 75 wt. % [102].

Sulfur is experimentally and thermodynamically confirmed to partition strongly into va-

por phase in intermediate to silicic oxidized magma, especially when the temperature is be-

low 900 ◦C [90,167,168]. The sulfur bubble/melt partition coefficient (Kd = Cs,bubble/Cs,melt)

is 1 for basalt, ∼ 10 for andesite, > 100 for rhyolite [31].
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1.1.2 Measurements of volatiles

Volcanic volatile emission surveillance involves a combination of multidisciplinary activi-

ties, including direct sampling (Giggenbach bottles), groundbased or airborne ultraviolet

spectroscopy (correlation spectrometer (COSPEC) and successors), ground-based infrared

spectroscopy (Fourier transform spectroscopy and other infrared spectroscopic analyzers),

electrochemical sensing, spaceborne methods, and petrological approaches to characterizing

volatile abundances and emissions. The larger releases of volcanic volatiles to the atmo-

sphere defy synoptic measurements from the ground. Here, I briefly introduce three methods

that are widely used for explosive eruptions,

• Petrological method is the frequently utilized method that derives the volatile amount

based on melt inclusion (MI) sampled from eruptions [38].

Mgas = 2MmagmaFmelt(CMI − CMG) (1.1)

in which Fmelt is the melt mass fraction. CMI and CMG are the volatile concentration

from MI and matrix glass (MG), respectively. CMI is regarded to be representative of

the volatile concentration in the pre-eruptive magma. CMG is considered as the the

volatile concentration after eruption. By comparing these two quantities, this method

provides an estimate for the degassing yield of an eruption. This method is widely

applied because it provide a means to estimate the historic eruptions. It requires

samples that contain pristine melt inclusions [49].

• Ice-core (IC) sulfur measurement is considered to be able to preserve the targeted

deposited volatile species after travelling through the stratosphere [226]. The accuracy

of this method is severely hindered by the ability to date ancient eruptions and the

contamination related to simultaneous eruptions. The reliable signal for volcanic

sulfur deposition can be dated back to 100 ∼ 400 ka [200, 226]. The overall Sulfur

budget is also difficult to retrieve from ice core data and is highly model dependent.

• Romote sensing (RS) includes near-vent detection and satellite instrument (e.g., TOMS

from 1978–2006) measurements. It directly measures the volatile content in volcanic
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plumes. This method does not consider the volatile entrained by the fallout. Thus,

it shows a minimum amount of volcanic volatile release. This method provides a fast

measurement of the volatile content from volcanic eruption, typically in a few minutes

for an explosive eruption. This method is only available over the last decades.

H2O and CO2, which are the principal components of volcanic gases, are challenging to

measure accurately because of the high, and in the case of H2O, rapidly varying, atmospheric

background concentrations. Thus, more efforts in detecting volcanic gases are put on SO2.

The reasons for focusing measurements on SO2 are that (1) the background levels are very

low in the atmosphere (typical mixing ratios are ∼ 1 ppbv), while mixing ratios in volcanic

plumes can easily exceed 1 ppmv, and (2) several strong absorption bands for SO2 are found

in the ultraviolet and infrared regions of the spectrum [135].

1.1.3 Climate impact from volcanic eruptions

For explosive eruptions, the intensity of volcanic eruptions can be classified according to

the volcanic explosivity index (VEI). This index, denoted as k, extends from 0 to 8, and is

defined as,

k = log10M− 4, (1.2)

where M is the volume (m3) of erupted magma. Larger eruptions tend to occur less fre-

quently, and the occurrence rate λ decays with VEI [155,179],

log10 λ = 2.83 − 0.79k (1.3)

For example, the Mt. Pinatubo eruption in 1991 is characterized by a VEI of 6, a

magnitude of eruption that is observed only every hundreds of years [210].

Volcanic eruptions greatly impact the regional and global climate as the sulfide aerosols

formed from the SO2 released deflect the sunlight and decrease the fraction of solar radi-

ation that reaches the Earth’s surface. A schematic graph of SO2 transport is shown in

Fig. 1.3(a) [65]. After being injected into the stratosphere by large explosive eruptions, SO2

is transformed into sulfide aerosols and with a residence time that extends for years. Ac-

cording to observation of Total Ozone Mapping Spectrometer (TOMS) from 1978 to 2001,
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a yearly average of 1.3 Mt SO2 was detected from eruptions with VEI from 3 to 7 [22,155].

As presented in Fig. 1.3(b), a statistical study of 122 subduction zone volcanoes and 16

non-subduction zone volcanoes concluded that larger eruptions shall load more SO2 into

the atmosphere [128,155], following the empirical correlation

log10 MSO2
= 0.75k − 0.21, (1.4)

where mass of SO2, MSO2
, is in kilotons. Effusive eruptions can contribute comparably the

same amount of SO2 as explosive eruptions according to Refs. [18, 22].

Large explosive eruptions, especially super eruption, like Toba, can exert large anomalies

on global climate. A well studied case on sulfur release is the eruption of Mt. Pinatubo

in 1991. The stratospheric umbrella come out of Pinatubo was reported to reach 35 km

above the sea level. About 17 ∼ 20 Tg of dispatched SO2 spent almost 3 weeks and was

transported globally in the atmosphere [19, 65, 158]. Observations demonstrated greatly

increased optical depth, 5% growth of the global albedo, and the decreased net energy flux

only recovered background levels in March 1993 [124, 135, 159, 184, 214]. Toba (71 ka) was

thought to be able to emit hundreds times more sulfur than Pinatubo (1991), and it could

have played an important role on ancient climate [28].

1.2 Dissertation objectives and structure

The main objectives of this dissertation are advancing the understanding of volatile de-

gassing process [188, 189]. In particular, I want to answer two questions. Can one use

volatiles (sulfur in particular) to better understand the dynamics of volcanic eruptions?

And, can one use the kinetics of degassing to better constrain magma ascent conditions

during volcanic eruptions? In addition, I have also worked on understanding how bubbles

deform under shear flow, and how saturated porous media respond to transient stress defor-

mation [75,76]. Specific objectives of this dissertation, along with the dissertation structure

are:

• In Chap. 2, a new numerical model is established to quantify the amount of sulfur

being degassed from silicic arc magmas. The release of large amounts of sulfur to the
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stratosphere during explosive eruptions affects the radiative balance in the atmosphere

and consequentially impacts climate for up to several years after the event. Providing

quantitative estimates for the processes that control the mass balance of sulfur between

melt, crystals and vapor bubbles is needed to better understand the potential sulfur

yield of individual eruption events and the conditions that favor large sulfur outputs

to the atmosphere. The processes that control sulfur partitioning in magmas are

(1) exsolution of volatiles (dominantly H2O) during decompression (first boiling) and

during isobaric crystallization (second boiling), (2) the crystallization and breakdown

of sulfide or sulfate phases in the magma and (3) the transport of sulfur-rich vapor

transport (gas influx) from deeper unerupted regions of the magma reservoir. Vapor

exsolution and the formation/breakdown of sulfur-rich phases can all be considered as

closed system process where mass balance arguments are generally easier to constrain,

whereas the contribution of sulfur by vapor transport (open system process) is more

difficult to quantify. The ubiquitous “Excess Sulfur”, which refers to the much higher

sulfur mass released during eruptions than what can be accounted for by the melt

inclusion data (petrologic estimate), reflects the challenges in closing the sulfur mass

balance between crystals, melt and vapor before and during a volcanic eruption. In

this chapter, I quantify the relative importance of closed and open system processes for

silicic arc volcanoes using kinetic models of sulfur partitioning during exsolution. The

calculations show that crystallization-induced exsolution (second boiling) can generate

a significant fraction of the “Excess Sulfur” observed in crystal-rich arc magmas. This

result does not preclude vapor migration to play an important role in the sulfur mass

balance, but rather points out that second boiling (in-situ exsolution) can provide the

necessary yield to drive the excess sulfur to the levels observed for these eruptions.

In contrast, recharges of magma releasing sulfur-rich bubbles are necessary and most

likely the primary contributor to the sulfur mass balance in silicic crystal-poor units.

Finally, the model is applied to the Cerro Galan super-eruption in Argentina (2.08

Ma), and the results show the importance of second boiling in releasing a large amount

of sulfur to the atmosphere during the eruption of large crystal-rich ignimbrites. This
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chapter represents the work published in Ref. [189].

• In Chap. 3, I performed numerical simulations spannig a wide range of conditions

(eruption durations, magma decompression paths, and pre-eruptive volatile composi-

tions), to answer whether the volatile diffusion profiles around bubbles can be used

to go better constrain magma decompression rates. Magma ascent rate is one of the

key parameters that controls volcanic eruption style, tephra dispersion, and volcanic

atmospheric impact. Many methods have been employed to investigate the magma

ascent rate in volcanic eruptions and most rely on equilibrium thermodynamics. The

study focuses on the effects of the total magma ascent time, the non-linearity of de-

compression paths, and the influence of different initial CO2/H2O content on the

post-eruptive H2O and CO2 concentration profiles around bubbles within the melt.

Results show that, under most circumstances, volatile-diffusion profiles do not con-

strain a unique solution for the decompression rate of magmas during an eruption,

but, instead, provide a family of decompression paths with a well-defined trade off

between ascent time and non-linearity. An important consequence of my analysis is

that the common assumption of a constant decompression rate (averaged value) tends

to overestimate the actual magma ascent time. This chapter represents the work

published in Ref. [188].

• In Chap. 4, the behavior of exsolved bubbles of gas governs the style and intensity of

volcanic eruptions. Although, several studies have focused on bubble growth from a

silicate melt over the last decades, the models that have been proposed are based on a

suite of assumptions that limits their applicability to low vesicularity magmas. These

assumptions are: (1) bubbles are monodispersed and distributed as a periodic array,

(2) there are no confining boundaries that prevent/limit growth, (3) bubbles remain

spherical at all times and (4) bubbles do not interact hydrodynamically (no diffusion

coarsening, no coalescence). At high vesicularity, such as those inferred from pumice

samples, bubble-bubble interactions and bubble deformation by shear often become

significant and these idealized models offer limited insight into the coupling between
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the melt and bubbles as magma approaches a possible fragmentation level.

In this study, a new bubble dynamics model that alleviates most of these limiting

assumptions is proposed. The novelty of my model is that it allows the study of

evolution of a suspension of bubbles over a wide range of vesicularity and accounts for

hydrodynamical interactions (deformation, coalescence) between bubbles while they

grow, deform under shear flow conditions and exchange mass by diffusion coarsening

(Ostwald ripening). The model is based on a lattice Boltzmann method for free surface

flows. As such, it assumes an infinite viscosity contrast between the exsolved volatiles

and the melt. My model allows coalescence when two bubbles approach each other

because of growth or deformation. The parameter (disjoining pressure) that controls

the coalescence efficiency, i.e., drainage time for the fluid film between the bubbles,

can be set arbitrarily in my calculations. I decided to calibrate this parameter by

matching the measured time for the drainage of the melt film across a range of Bond

numbers (ratio of buoyancy to surface tension stresses) with laboratory experiments

of a bubble rising to a free surface. After a description of the model and validations for

bubble growth, Ostwald ripening and bubble deformation in simple shear conditions,

I discuss how bubble orientation and deformation in a suspension is influenced by the

presence of other bubbles over a range of Capillary numbers (ratio of shear to surface

tension stresses). By designing specific laboratory experiments, the proposed model

can be calibrated to reproduce accurately the physics of suspensions during the ascent

of magma to the surface during an eruption. I plan on performing new experiments

to calibrate the role of shear stresses on coalescence. This chapter represents the work

published in Ref. [76].

• In Chap. 5, the lattice Boltzmann method is used to study the dynamical response

of saturated porous media to transient stresses. I use pore-scale flow simulations

with four different porous media topologies to study the effect of pore geometry and

pore-size distribution on the dynamic response to transient pore-pressure forcing. I

find a good agreement with published theoretical work for all but one medium that
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exhibits the broadest pore-size distribution and therefore the largest degree of pore-

scale heterogeneity. The results suggest the presence of a resonance peak at high

frequency where the discharge, and therefore the effective permeability, is significantly

amplified compared to their values around the resonant frequency. Two possible

explanations have been suggested. This chapter represents the work published in

Ref. [75].

• Chap. 6 summarizes the significant findings and overall contribution of this disserta-

tion. Additional work and future research directions that build upon this dissertation

are discussed.
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CHAPTER II

SULFUR DEGASSING IN VOLCANIC ARC MAGMAS

Volcanic eruptions release more SO2 than what is assumed to be stored in the magma that

erupts, a phenomenon coined as the excess sulfur paradox [5, 206]. The assumed quantity

of sulfur stored in a magma body prior to the eruption is computed from the composition

of melt inclusions trapped within crystal phases before the onset of the eruption. The first

report of this mismatch between observed S release and melt inclusion data sets came from

the eruption of El Chichon volcano (1983), where the total ozone mapping spectrometer

(TOMS) data was used in comparison with data derived from melt inclusions.

Shinohara [177] summarized in total 31 eruptions and quantified this excess S release

(defined as the ratio of sulfur measured from remote sensing or ice cores to that constrained

from melt inclusions) in eruptions spanning a range of tectonic settings (spreading ridge,

hot spot, and subduction zone), magma composition (basalt, andesite, dacite and rhyolite)

and explosion styles (effusive to explosive). Excess sulfur values vary from 1 to about

100, with subduction zone explosive volcanism generally populating the high end of the

spectrum. Thus, the accuracy of the petrological method has been questioned as it tends to

underestimate the S yield from eruptions. An explanation for the discrepancy relates to the

presence of a pre-eruptive volatile phase where a portion of the S is already stored by the

time the melt inclusion forms [206]. As of yet, this conceptual idea has never been tested

quantitatively with kinetic models that include the main processes related to degassing and

bubble growth, as well as recent experimental constraints on S kinetics and partitioning

in silicic magmas. In this chapter, two numerical models for (1) syn-eruptive degassing

(first boiling) and (2) isobaric crystallization degassing (second boiling) are introduced to

quantity the excess sulfur phenomenon for silicic subduction zone volcanism. Other possible

sources for excess sulfur, including (3) the crystallization and breakdown of sulfide or sulfate

phases in the magma and (4) the transport of sulfur-rich vapor transport (gas influx) from
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deeper unerupted regions of the magma reservoir are discussed as well for their role in sulfur

degassing in closed system and open system. The content of this chapter has been published

in Ref. [189]. The numerical scheme designed in this chapter is shown in Appendix A and

Appendix B.

2.1 Introduction

Sulfur species are frequently monitored at active volcanoes because they are detected more

accurately in the atmosphere than H2O and CO2 [135]. They can strongly impact the

climate for years through the formation of aerosols [120,172]. The amount of sulfur released

to the troposphere and stratosphere can be significant during explosive eruptions at arc

volcanoes [168, 177]. There are three independent ways to estimate the mass of volatiles

released during volcanic eruptions: (1) remote sensing (RS) methods based on spectroscopy,

available for the past 3 decades [109], (2) sulfur record in ice-cores (IC) which are limited to

the past few tens of thousands of years [226], and (3) a comparison between melt inclusion

(MI) and groundmass glass (GG) compositions (petrological estimate) [2, 57,58]. All three

methods have limitations; RS is probably the most reliable but is available only for the last

3 decades; IC data suffer from a lack of spatial and temporal resolution; melt inclusions

may leak or trap a partially degassed melt. When comparing these different estimates, a

consistent signal appears where melt inclusion data generally underestimate the amount of

sulfur outgassed by 1 to 2 orders of magnitude especially in silicic arc-volcanoes, a deficit

referred to as “excess sulfur” [5, 30, 34, 38, 41, 57, 58, 67, 109, 113, 122, 140, 166, 170, 171, 173,

177,178,187,195,196,206,209].

One way to express excess sulfur is to compare the difference between the mass of total

released SO2 per km3 of magma and the mass of SO2 per km3 of magma that could be

supplied by degassing during the eruption [206]. Another way to express excess sulfur is to

calculate the ratio of the total amount of sulfur released to the atmosphere and the amount

of released sulfur measured by the traditional petrologic method [177], which I will refer here

to as the excess sulfur ratio. Both approaches have advantages under different applications

and should be thought as complementing each other. The first definition of excess sulfur
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is advantageous in that it provides an absolute estimate of the mass of the missing sulfur

reservoir, but it relies on the ability to constrain the initial sulfur concentration in the

melt pre-decompression. The second approach, proposed and followed here provides a

relative measure of the missing sulfur reservoir. And this method could give a possible

large uncertainty when the sulfur concentration concentrations in the groundmass could

be below analytical detection limits in eruptions of relatively low-temperature. I show in

Sec. 2.2.1 that the excess ratio is independent of the initial sulfur content of the magma,

which is often one of the most poorly constrained parameters that these excess metric rely

on.

The sulfur released to the atmosphere during an eruption is delivered by an exsolved

volatile phase in the magma. The delivery of sulfur to gas bubbles can occur in four possible

ways (Fig. 2.1) [18, 167, 177, 206, 210]. The first three are closed-system processes and can

be constrained from (non-equilibrium) thermodynamics: first boiling (decompression-driven

exsolution, contributing to Mdec
s,b ), second boiling (crystallization-induced exsolution under

quasi-isobaric conditions, contributing to MMR
s,b ) and the breakdown of S-bearing minerals

(sulfide or sulfates depending on the redox state of the magma, contributing to both MMR
s,b

and Mdec
s,b ). The excess sulfur ratio (E) generated in a closed-system magma body is defined

as,

E =
MMR

s,b +Mdec
s,b

Ms,MI −Ms,GG
(2.1)

where MMR
s,b is the mass of sulfur in bubbles in the magma reservoir and Mdec

s,b is the contri-

bution from syn-eruptive decompression [177,206]. The denominator, defined as the amount

of sulfur measured from traditional petrologic estimates, is calculated as the difference in

sulfur concentration between MI and GG. In order to interpret the excess sulfur ratio E

in terms of dynamical processes, I need to obtain a better understanding of each term in

Eq. 2.1. However, it is worth noting that Eq. 2.1 is only valid for closed systems, while

magma chambers are known to be open systems. I therefore correct this expression to ac-

count for the transport of S-rich volatiles from new magma recharge or degassing from an

underlying crystal mush which can also contribute to the sulfur mass balance via the term
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?
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Figure 2.1: The different contributions to the sulfur mass balance in volcanic gases and their
relation to the excess sulfur. Lengths of the bars represent the amount of sulfur emitted
from volcanic eruptions (not drawn to exact scale, for representational purpose only). The
top four bars have its own title above them. The first bar illustrates schematically the
three different contributions to the sulfur uptake by vapor bubbles in magmas and list the
three contributions to the total amount of sulfur that is emitted during a single eruption.
The processes associated with each contribution are listed in the second bar just below.
The third and fourth bars represent the relative amount of sulfur uptake when MI used in
traditional petrological estimate is early or late. The bottom panel is a cartoon illustration
of Eq. 2.1 when there is large excess sulfur.
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MOpen
s

E =
MMR

s,b +Mdec
s,b +MOpen

s

Ms,MI −Ms,GG
. (2.2)

Quantifying the relative importance of the open-system contribution is more challenging

because it requires constraints on the size and composition of the un-erupted magma source

as well as mechanical models for the transport and accumulation of these volatiles in the

magma column. By first quantifying the closed-system sources, I propose to evaluate what

is the minimum portion of the entire sulfur mass balance carried by open-system sources,

e.g., transport from un-erupted magma. Within this context, I propose two novel kinetic

models of bubble growth and uptake of sulfur (Fig. 2.2) to assess the relative importance of

the various S-degassing processes in building up the excess sulfur. Unless stated otherwise,

the conditions of the calculations in this work are set up for typical silicic arc magmas.

2.2 Methods

2.2.1 Insight into the excess sulfur ratio from equilibrium mass balance

In a closed system, the mass of sulfur is conserved and partitioned in up to three phases,

C0
m = CMI

m (1−XMI
b −XMI

c ) + CMI
b XMI

b + CMI
c XMI

c , (2.3)

where the subscripts m, b, and c refer to melt, bubble, and crystals, respectively, while the

superscripts MI and 0 refer to the concentration of sulfur in the respective phase at the

time melt inclusions are trapped and at the liquidus, respectively; X is the mass fraction of

the phase considered. From Eq. 2.3, I retrieve the well-known three phases version of the

law for equilibrium crystallization,

CMI
m

C0
m

=
1

DcXMI
c +DbX

MI
b + (1−XMI

c −XMI
b )

, (2.4)

CMI
b =

KbC
0
m

DcXMI
c +DbX

MI
b + (1−XMI

c −XMI
b )

, (2.5)

where Ks = CMI
b /CMI

m is the sulfur vapor/melt partition coefficient (assumed constant in

this simple argument, but varied in the numerical calculations below). I now consider two

cases. In the first case, there is either no exsolution or alternatively Ks = 0 and the vapor

phase does not fractionate sulfur and the crystal/melt partition coefficient for sulfur K∗

s = 0
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Figure 2.2: Schematic diagram for my numerical models. The upper left diagram shows
the bubble growth during ascent in the conduit (decompression) and the upper right shows
the bubble growth in the shallow magma chamber (second boiling). Each bubble lies at the
center of a spherical melt shell. The effect of crystallization is accounted for by reducing the
diffusion distance (I remove an outer layer of the melt shell with a volume equivalent to the
amount of crystals that formed. I assume that both H2O and sulfur species are incompatible
with the crystal phases. Different boundary conditions (BC) between simulation cells and
BCs for H2O and sulfur at the bubble/melt interface are illustrated in the diagram.
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(see justifications later in Sec. 2.2.3) which, considering for example 30 wt.% crystallization

yields a relative increase in sulfur concentration in the melt of

CMI
m

C0
m

≈ 1.42. (2.6)

If, on the other end, vapor exsolution takes places concurrently with crystallization

(2nd boiling) and assuming that the magma is water-saturated near the liquidus, about 2

wt.% water would exsolve over the crystallization of 30 wt.% of the magma assuming an

equilibrium process. In that context, assuming a vapor-melt partition coefficient for sulfur

of Ks = 100 and using Eq. 2.5, I get

CMI
m

C0
m

≈ 1

3
. (2.7)

In other words, the presence of a vapor phase, in which sulfur is strongly compatible,

decreases significantly the mass of sulfur in the melt (here about 4 times). This shows

the importance of considering the presence of a vapor phase during crystallization for the

partitioning of sulfur. Using these estimates to infer directly an excess sulfur ratio (as I

define it in Eq. 2.1) can be done under a set of simplifying assumptions.

The excess sulfur ratio can be reframed as

E = 1 +
CMI
b XMI

b

CMI
m (1 −XMI

b −XMI
c )−Cg(1−Xp

b −Xp
c )

, (2.8)

where Cg is the average concentration of sulfur in the GG and the superscript p refers to

various phases mass fractions in the pumice or scoria. Using my kinetic calculations I can

replace the denominator by

CMI
m (1−XMI

b −XMI
c )− Cg(1−Xp

b −Xp
c ) = f × CMI

m (1−XMI
b −XMI

c ), (2.9)

where f is an efficiency factor that introduces a kinetic limitation to syn-eruptive sulfur de-

gassing, this factor will be determined by numerical calculations of decompression degassing

in a later section.

The excess sulfur ratio then becomes

E = 1 +
KsX

MI
b

f(1−XMI
b −XMI

c )
(2.10)
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where E is independent of the initial sulfur concentration in the primordial melt, which is an

important advantage of the definition of E compared to an absolute excess mass of sulfur,

as the primordial (pre-degassing) sulfur concentration in the melt is hard to constrain.

Basically, Eq. 2.10 shows that the factors that lead to large possible excess sulfur ratio are

(1) a high mass fraction of the exsolved vapor XMI
b , (2) a lower the mass fraction of residual

melt 1 −XMI
b −XMI

c at the time of the entrapment of the melt inclusions, and (3) a low

efficiency of syn-eruptive sulfur degassing f due to kinetic limitations.

As an example, assuming that the magma contains initially about 6 wt.% of volatiles,

I find that 2 wt.% vapor is exsolved ( XMI
b = 0.02) after the crystallization of 30 wt.%

crystals (XMI
c = 0.3). Using an average Ks = 100 and f = 0.1, I get E ∼ 30 (see

Fig. 2.3), which shows that second boiling and kinetically-limited degassing during syn-

eruptive decompression can lead to large excess ratio values and that the excess ratio under

these assumptions does not depend on the initial composition of the melt explicitly.

These equilibrium mass balance calculations are not meant to quantify the contribution

of various sulfur degassing processes, but they are helpful to highlight some of the features

that control the excess sulfur. This model however suffers from the lack of kinetics, f is

unknown and assumes that the sulfur partition coefficient Ks between bubble and melt

is constant whereas Ks is a composition dependent value and will evolve as the magma

crystallizes. Thus, more sophisticated calculations are required. For this purpose, I propose

two kinetic multiphase vapor bubble growth models. The first model, focused on syn-

eruptive (decompression) degassing (Sec. 2.2.2.1) is designed mainly to characterize the

kinetic degassing limitation factor f . The second model involves sulfur kinetics within a

three phase magmas (crystals, melt, and vapor bubbles) during near isobaric conditions.

In this case, degassing is there promoted by the crystallization of mostly anhydrous phases

(Sec. 2.2.2.2). These models offer one the benefit of studying kinetics as well as using

composition dependent partition coefficients in Fig. 2.2.
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c at the point where
the melt inclusion is trapped. These trends are computed from the equilibrium model in
Eq. 2.10.
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2.2.2 Numerical models for sulfur kinetics in magmas

The numerical models are extensions to previous work on bubble dynamics and H2O kinetics

[44, 97], where sulfur is added as an additional diffusing species. Sulfur speciation is not

explicitly taken into account in my model. As shown in Fig. 2.2, the bubbles are spherical

with a uniform radius R̂(t̂). Each bubble is surrounded by a melt shell of radius Ŝ(t̂). In

the following, hatless variables are dimensionless unless specified otherwise. Bubbles grow

by diffusion and decompression. Nucleation is not considered here, because these kinetic

bubble growth models cannot account for it. At the start of each simulation, bubble seeds

(4 vol.% of the whole system) are set in a periodic array and no secondary nucleation event

is considered. Although secondary nucleation can occur during syn-eruptive decompression,

it is unlikely to play a major role during second boiling where the growth is slow enough

to approach equilibrium conditions for water. From my numerical simulations, the error in

sulfur mass balance related to the assumption of an initial 4 vol.% vapor is at most < 2

wt.% of the overall sulfur mass budget and it is therefore insignificant compared to the error

bars associated with measured excess sulfur ratio. The mass of volatiles and momentum

in and around bubbles are conserved. The pressure in bubbles P̂ (t̂) is calculated from

the bubble mass and an ideal gas law. The ideal gas law is applicable in the conduit and

the shallow magma chamber when the pressure is 50–250 MPa and temperature is up to

900 ◦C [29]. I solve the transport of dissolved H2O from the melt to the bubble’s interface

where the melt-bubble boundary condition for H2O concentration follows Henry’s law and

the boundaries between neighbor melt shells are set to no-flux conditions. H2O diffusivity

depends on temperature (here fixed) and H2O concentration [154].

My goal is to solve for a simplified version of sulfur kinetics in silicic melts and better

constrain the partitioning of sulfur between melt and bubbles during bubble growth by first

boiling and second boiling. I do not consider the presence of anhydrite, or sulfide phases

in the magma and their effects on sulfur partitioning at this stage due to that anhydrite is

rare in volcanic units because anhydrite saturation occurs at high sulfur concentrations in

the silicate melt (although has been seen by [108], [27], and [20]). The sulfur concentration

at anhydrite saturation (SCAS) in silicate melts decreases with increasing degree of melt
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polymerization (i.e., from mafic to felsic composition), and decreasing temperature and

pressure. At the average depth of upper crustal reservoirs (P = 200 MPa), for hydrous

magmas, the typical SCAS values would be ∼ 5000 to 10000 ppm for basaltic melts, ∼

2000 ppm for andesitic melts, ∼ 1000 ppm for dacitic melts, and ∼ few hundred ppm for

rhyolitic melts [10, 23, 24, 87, 220, 221]. Magmatic sulfides also occur in some arc magmas

[7, 31, 113, 202, 211]; however, their abundance is generally low and/or their occurrence is

largely limited to inclusions within other crystal phases, probably due to the fact that most

of the sulfur is dissolved in the silicate melt as oxidized sulfate species. Further discussion

on the effect of sulfur-bearing minerals is shown in Sec. 2.2.3.

Sulfur changes its oxidation state over a narrow range of fO2 (i.e., NNO and NNO+1)

from S2− dominated to S6+ dominated and most arc magmas are characterized by fO2

between NNO and NNO+2 log units [88, 91]. If fO2 is low enough to allow sulfur to be

dominantly present as sulfide species in the melt, saturation in pyrrhotite would occur in

various hydrous arc magmas at: ≥ 600 ppm for basaltic melts, ∼ 350 ppm for andesitic

melts, ∼ 250 ppm for dacitic melts, ∼ 150 ppm for rhyolitic melts [87, 169, 221]. The

influence of these S-bearing minerals will be re-evaluated in Sec. 2.3.3.

As I do not explicitly account for these S-bearing phases in sulfur partitioning, I treat it

as a trace element, and its diffusivity D̂s (5×10−14 m2/s) is set to be consistent with values

measured in silicic magmas (dacite to rhyolite) [46]. The partition coefficient Ks between

the bubble and the melt is kept constant, but I use different values to bracket the range of

published data (Ks = 40 and Ks = 600) [90, 169, 221]. The equations that describe sulfur

kinetics therefore reduce to,

∂Cs

∂̂t
+ vm

∂Cs

ˆ∂rs
=

1

r̂s
2

∂

∂r̂s

(

r̂s
2D̂s

∂Cs

ˆ∂rs

)

(2.11)

Cs,rs=R̂(t̂) = KsCs,b (2.12)

∂Cs

∂rs
|rs=Ŝ(t̂) = 0, (2.13)

where Cs and Cs,b are the sulfur concentration within the melt and bubble, respectively;

Cs,rs=R̂(t̂) is the sulfur concentration within the melt at the bubble/melt interface; vm is

the velocity of the melt-bubble interface [44].
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2.2.2.1 Syn-eruptive decompression model

The goal of the syn-eruptive degassing calculations is to estimate the efficiency factor f

in Eq. 2.7. In these calculations, I seeded the magma with a similar amount of exsolved

volatiles bubbles (4 vol.%). This value is consistent with other models of bubble growth

during eruptions [44, 97, 154]. The initial nuclei can be either S-free or be equilibrated

with the melt. Calculations show that the former S-free nuclei can lead to smaller f factor

in Eq. 2.9 and larger excess sulfur ratio as compared to S-equilibrated nuclei. Reported

results in this chapter are based on the latter case. I neglect nucleation events during the

rise of magma in the conduit in these calculations, as do all other kinetic models for volatile

exsolution.

I introduce τdec = P̂i/
˙̂
P as the time scale for the decompression.

˙̂
P is a constant

decompression rate, while P̂i is the initial magma chamber pressure. Three other time

scales emerge from my model, the viscous time scale τvis = 4η̂i/P̂i, the diffusive time scale

for H2O τdif = R̂2
i /D̂wi and for sulfur τdif = R̂2

i /D̂si. Three dimensionless numbers arise

from these time scales. The first two characterize the diffusion efficiencies for H2O and

sulfur (ΘDw ≫ ΘDs), and the last one represents the hydrodynamic response of bubble

growth ΘV to syn-eruptive eruptions [44,97],

ΘDw =
τdif,w
τdec

=
R̂2

i
˙̂
P

D̂wiP̂i

ΘDs =
τdif,s
τdec

=
R̂2

i
˙̂
P

D̂siP̂i

ΘV =
τvis
τdec

=
4η̂i

˙̂
P

P̂ 2
i

(2.14)

in which η̂eff is the effective viscosity which includes the dependence of melt viscosity on

H2O concentration [98,154]. In most of my decompression simulations, the ranges for ΘDw,

ΘDs and ΘV are around 10−4 → 10−1, 10−1 → 102 and 10−5 → 10−2, respectively. The

flowchart of this scheme is shown in Appendix A, and the related notation list is shown in

Appendix C.

In order to constrain the role of syn-eruptive decompression on the efficiency of sulfur

extraction from the melt, I define the apparent bubble-melt partition coefficient of sulfur

as the magma reaches the vent (atmospheric pressure)

〈Kd〉 = Cs,bubble/ 〈Cs,melt〉 (2.15)
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where Cs,bubble and 〈Cs,melt〉 are the sulfur concentration in the bubble and the average sulfur

concentration in the melt, respectively. The variation of 〈Kd〉 as function of decompression

rates, typical of silicic eruptions (Fig. 2.4, 104 Pa/s ≤ ˙̂
P ≤ 107 Pa/s) [197], highlights three

regimes for sulfur and H2O kinetics. At low decompression rates (< 105 Pa/s), the diffusion

time scales for H2O and sulfur are shorter than the decompression time scale, consequently,

〈Kd〉 approaches the actual partition coefficient. At intermediate decompression rates, sul-

fur uptake by bubbles is kinetically-limited, but H2O can reach near equilibrium conditions

because its diffusion coefficient is 3 orders of magnitude greater than sulfur. Lastly, at high

decompression rates (> 106 Pa/s), H2O and sulfur diffusion are both transport limited and

the chemical composition of the bubble remains close to that before syn-eruptive decom-

pression (here initial equilibrium state at P̂i ). Generally, the syn-eruptive sulfur uptake by

bubbles is kinetically-limited for explosive eruptions, and I find that under decompression

rates consistent with explosive silicic eruptions (106 Pa/s ≤ ˙̂
P ≤ 107 Pa/s), only a less than

about 10% of the total sulfur has time to degas to nearby bubbles, and consequently that

for explosive eruption of silicic magmas the efficiency factor f is close to 0.1.

2.2.2.2 Second boiling model

During second boiling, the driving force for exsolution is the crystallization of anhydrous

phases at relatively constant pressure. Crystallization drives the melt composition to be

supersaturated in H2O. In all simulations of crystallization-driven exsolution, the ambient

pressure P̂a is set to a constant value of 200 MPa. Because of the three coexisting phases

(crystals, melt, and bubbles), two additional partition coefficients are needed to constrain

the mass balance of H2O and sulfur species between the melt and solid phases K∗

w and K∗

s .

The partitioning equations act as a source (K∗

w < 1 and K∗

s < 1) or a sink term (K∗

w > 1

and K∗

s > 1) for the H2O and sulfur in the melt in my main conservation equations (The

flowchart of this scheme is shown in Appendix B and Appendix C).

d lnCw = (K∗

w − 1) d ln
(

1− χ(t̂)
)

(2.16)

d lnCs = (K∗

s − 1) d ln
(

1− χ(t̂)
)

. (2.17)

As discussed previously, I assume that no S-bearing minerals are present in the magma,
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Figure 2.4: Degassing of sulfur during syn-eruptive silicic eruptions. 〈Kd〉 /Kd (blue), bub-
ble volume fraction (black) and the weight percent of the sulfur degassed in melt (red) at
the end of decompression as a function of the imposed constant decompression rates. For
these calculations, I set the initial H2O and sulfur concentrations are 6 wt.% and 1000 ppm,
respectively. The bubbles and the melt are assumed to be in chemical equilibrium initially
before decompression starts. The range of partition coefficient Kd (= 40 for dashed line;
= 600 for solid line) does not impact significantly the efficiency of decompression on sulfur
degassing.
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and set K∗

w and K∗

s to 0 (see more details below). I assume that the crystallization rate

χ̇ = dχ/dt is constant, but varying it would not impact my results as long as the time scale

for crystallization τx = ∆χ/χ̇ is much longer than the viscous and diffusion time scales (τvis

and τdif). ∆χ is the crystallization interval over which second boiling occurs (starts when

the first bubble nucleates). Again, three dimensionless parameters emerge from the ratios

of the crystallization, diffusion, and hydrodynamic growth time scales,

Θ∗

Dw =
τdif,w
τx

=
R̂2

i χ̇

D̂w∆χ
Θ∗

Ds =
τdif,s
τx

=
R̂2

i χ̇

D̂s∆χ
Θ∗

V =
τvis
τx

=
4η̂iχ̇

P̂i∆χ
. (2.18)

In volcanic systems, Θ∗

Dw and Θ∗

V are on the order of 10−10 → 10−12 when τx ≈ 1000

yrs. If the crystallization rate is slow, then to a good approximation H2O diffusion, which

is much faster than sulfur diffusion, can be considered at equilibrium. This allows one to

simplify the kinetic equations for H2O diffusion, and it makes the calculations much more

efficient. However, because Θ∗

Ds (10−7) is 3 orders larger than Θ∗

Dw, I still consider sulfur

kinetics in all simulations. I note however that all three dimensionless terms Θ imply that

τx ≫ other time scales which justifies my simplified assumption for a linear crystallization

rate. The two conservation equations for H2O and sulfur in the melt are modified to include

the source term (Eqs. 2.16 and 2.17) associated with the fractionation of H2O and sulfur

between the melt and newly formed crystal phases. I assume that the vapor/melt partition

coefficient Ks for sulfur becomes higher as the crystallinity increases, i.e., Ks increases as

the melt evolves from a dacitic to a rhyolitic composition [90, 169, 221]. A linear trend of

Ks is applied to parametrize the effect of the melt composition on the partition coefficient

for sulfur,

Ks(t̂) = 70 + 1060∆χ(t̂) (2.19)

thus Ks1 = 70 at the beginning of second boiling (dacitic melt), and Ks1 = 600 when

∆χ = 50 vol.% as the melt becomes rhyolitic. The range of partition coefficients for sulfur

is motivated by experimental data [90,169,221].

In the second boiling simulations, I also start the calculations with 4 vol.% water va-

por and assume that the vapor bubbles and the melt are initially in chemical equilibrium

with respect to sulfur. This would present an upper bound for the efficiency of sulfur to
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partition into bubbles and it is important to calculate how this assumption impacts my

estimates for the excess sulfur ratio. Comparing kinetic calculations assuming (1) equilib-

rium sulfur content in the initial bubble fraction and (2) no sulfur in the bubble prior to

subsequent bubble growth, I obtain an overestimate the mass of sulfur contained in bubbles

post second-boiling of at most 1.5 wt.% after 10 wt.% crystallization and only 1.2 wt.%

after 45 wt.% crystallization. Moreover, calculations that start with a smaller initial vapor

volume fraction, e.g., 1 vol.%, do not affect my results significantly and the error associated

with bypassing the nucleation process in my simulation remains of the order of a percent of

the overall mass balance for sulfur. For second boiling, where crystallization is the driving

force behind exsolution, it is safe to assume that bubble growth dominates the exsolution

process over new nucleation events.

2.2.3 The influence of sulfur-bearing minerals on sulfur partitioning

In the isobaric degassing model (Sec. 2.2.1 and Eq. 2.17 in Sec. 2.2.2.2), I assumed the

bulk partition coefficient of sulfur K∗

s between solid phases and melt to be zero. This

simplification is motivated by the assumption that all crystals produced in my model are

sulfur-free, and no crystals such as sulfide or anhydrite are formed. Sulfides (or sulfates

depending on oxygen fugacity) are common, even in silicic magmas, but generally as a minor

phase (≪ 1 modal %) or sometimes trapped within other minerals (which prevents further

interactions with the melt and vapor). In this section, I discuss the merits and limitations

of this (K∗

s = 0) assumption and discuss how sulfur partitioning would be affected by the

presence of S-bearing phases under different scenarios. In Fig. 2.5, I consider schematically

different evolution paths for the sulfur concentration in the melt during the crystallization

of silicic magmas. I explore various scenario depending on the initial sulfur concentration

(below and above the sulfide saturation limit C ′

s), and the timing of the onset of water

vapor exsolution during crystallization. I take sulfide as an example for S-bearing minerals

in this conceptual argument, but it could apply similarly to sulfates. I define χc as the

critical crystallinity at which vapor bubbles exsolve and χs as the crystallinity when the

sulfur concentration in the melt reaches saturation with respect to sulfides.
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Figure 2.5: A qualitative description of the different evolution paths for the sulfur concen-
tration in the melt during the crystallization of silicic magmas.
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1. Magmas with initial sulfur content below the solubility of sulfides (C0 < C ′

s).

(a) Path a-b-c in Fig. 2.5. The sulfur concentration in the melt remains below the

solubility of sulfur (a-b). As the magma crystallizes S-free phases and before it

becomes saturated with water, the S-content dissolved in the melt increases. As

the melt becomes saturated with water at χc, sulfur strongly partitions into to

growing bubbles and the melt sulfur concentration drops with crystallinity. This

is the case I studied with my isobaric degassing model.

(b) Path I-II-II in Fig. 2.5 where χs < χc. Initially, crystallization leads to an

increase in sulfur concentration in the melt as for the previous case up to χs.

In this particular scenario, however, the solubility of sulfur is reached at lower

crystal content than that for water (χs < χc). After the exsolution of vapor

bubbles, the sulfur content decreases below C ′

s (the solubility of sulfides) and

sulfur mass transfer results in an uptake of sulfur by vapor bubble from the melt

and possibly a flux of sulfur from sulfide breakdown back into the melt. The latter

process may be kinetically-limited and may lead to the transient coexistence (out

of equilibrium) of vapor bubbles and sulfides in the magma.

2. Magmas with an initial sulfur concentration above the solubility of sulfides (C0 > C ′

s).

(a) χs < χc (A-B-C). As the sulfur concentration in the melt is initially above the

solubility of sulfides, sulfides crystallize out of the magma from the onset and

lead to a decrease in sulfur content in the melt. The sulfur content in the melt

decreases to C ′

s before the exsolution of water vapor (χc). After χc, water vapor

takes up sulfur from the melt and the melt concentration decreases below the

solubility of sulfides which leads to a chemical disequilibrium and the breakdown

of sulfides during subsequent exsolution (similar to path I-II-III).

(b) χc < χs (1-2-3). Sulfides form from the onset, but either the sulfur content

in the melt is large enough or the amount of dissolved water is large enough

that the sulfur concentration remains above C ′

s as second boiling starts (χc). In

this particular scenario, the three phases, melt+sulfides+vapor, can coexist and
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exchange sulfur up until the end of the path 2. The concurrent crystallization of

sulfides and exsolution of water vapor leads to an significant decrease in sulfur

in the melt, down to C ′

s. From then on (path 3) the net mass flux of sulfur is

towards the vapor phase only, because sulfides are no longer at equilibrium with

the melt.

Depending on the kinetic rate of sulfide breakdown there are two configurations under

which vapor bubbles and sulfides can co-exist. First, they can coexist transiently (if the

breakdown is slow), see paths b, C, 3, III in Fig. 2.5. In this context, the sulfides are not

growing and the partitioning of sulfur between the melt and the vapor phase follows the

assumption sulfur being incompatible with the crystal phases and compatible only with

vapor. The second possibility, is to start with a magma that contains a large amount of

sulfur (significantly above the solubility of sulfides) and enough water so that χc < χs. In

that case the vapor and sulfide phases can coexist in an equilibrium state over a finite range

of crystallinity (see path 2 in Fig. 2.5). That range in crystal content is most likely narrow,

because both sulfides and vapor will consume rapidly the sulfur contained in the melt to a

point where it decreases below the solubility of sulfides.

In my simulations of sulfur partitioning during second boiling, I focus on the most

common paths b, C, 3 or III where the only phase actively extracting sulfur from the melt

is vapor. This is not without saying that some sulfides can survive and be present along

those paths, but they are not growing (sequestering more sulfur as crystallization proceeds)

and they either decompose and deliver back their sulfur into vapor (either via the melt or

if they are wetting directly to bubbles) or will keep some sulfur trapped in a sulfide phase

that will not contribute to the measured sulfur released to the atmosphere.

2.3 Sulfur degassing in magmas

2.3.1 Syn-eruptive sulfur degassing

Decompression-driven exsolution and degassing are inherent to eruptions. Syn-eruptive sul-

fur exsolution is explicitly accounted for in the definition of the excess sulfur ratio (Eq. 2.1)

and therefore cannot be the cause for the large excess sulfur ratio. However, its overall
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contribution to the sulfur mass balance is important because it will provide constraints on

the contribution from other process. To this end I use the bubble growth model described

in Sec. 2.2.2.1. It is commonly accepted that water exsolution is transport-limited during

bubble growth under explosive eruption conditions (fast decompression rates) [97]. The

aim of my calculations is to quantify the amount of sulfur that can partition into bubbles

during decompression. As an illustration of the results, I discuss a calculation inspired by

the 1991 eruption at Mt Pinatubo (silicic magma and rapid ascent rate [141]). Starting

with ∼ 4 vol.% of pre-eruptive magmatic vapor phase, my model predicts that a maximum

of 15 percent of the total SO2 released in the atmosphere (for Pinatubo, 20 Mt [18]) can

be accounted for by decompression at a decompression rate around 5 × 105 ∼ 106 Pa/s.

Generally, I find that the syn-eruptive degassing of H2O and, in particular, sulfur by bub-

bles is kinetically-limited during the ascent of magmas for explosive eruptions due to the

short available time and the low diffusion coefficient of sulfur species in silicic magmas [46]

(Fig. 2.4). My modeling results indicate that at least 80% of the total sulfur released dur-

ing explosive silicic eruptions comes from an existing vapor phase before the eruption even

starts, consistent with findings of [167,206,210]. As a consequence of this kinetic limitation,

a mass balance argument based on equilibrium partitioning between melt and vapor bubbles

(Eq. 2.15) would severely overestimate the amount of sulfur that is extracted from the melt

during an eruption.

2.3.2 The contribution from pre-eruptive sulfur degassing by second boiling

Since syn-eruptive decompression is inefficient for extracting sulfur out of the melt and is

considered in the definition of the excess sulfur, another process must control its partitioning

into vapor bubbles before the eruption. Crystallization of anhydrous mineral phases under

close to isobaric conditions (second boiling) appears as an excellent candidate because:

(1) the crystallization process is slow (controlled by the cooling rate of the magma body)

and therefore less likely to be diffusion-limited even for sulfur and (2) arc silicic magmas

are typically volatile saturated around their liquidus temperatures in sub-volcanic magma

reservoirs [207]. The excess sulfur in a closed system defined in Eq. 2.1 can be recast in a

33



more compact and traditional form

E = ǫ+ 1, ǫ =
MMR

s,b

Mdec
s,b

≈
M2nd

s,b

Mdec
s,b

(2.20)

if I assume that the process that leads to pre-eruptive sulfur loading into bubbles in second

boiling, thus MMR
s,b ≈ M2nd

s,b . my calculations indicate that if the crystallization interval

in the presence of a volatile phase is > 20 vol.% then second boiling can account for a

factor of 10 or greater of excess sulfur ratio (E) (Fig. 2.6). I find that most of the range of

excess sulfur ratio measured for silicic explosive eruptions can be produced by up to about

20 vol.% crystallization in a volatile-saturated magma reservoir. This does not preclude

other processes to play a role on the sulfur accumulation in bubbles before the eruption,

but highlight that closed-system processes associated with second boiling are able to close

the sulfur mass balance in crystal-rich (> 20 vol.% ) silicic eruptions in arcs. From a

dynamical standpoint the relative importance of second boiling also depends on the ability

of the magma to retain its vapor bubbles during crystallization. On the basis of multiphase

numerical calculations, I observe that vapor bubbles can accumulate in crystal-poor regions

due to hydrodynamic interactions among bubbles and convective currents when magma

crystallinity remains < 50 vol.% [42,77,78,145,146].

There is an additional fundamental consequence to second boiling on the melt inclusion

record. This argument will affect the predicted excess sulfur because it impacts MMI
s in

Eq. 2.1, which is the amount of sulfur in the magma at the time melt inclusions are trapped.

Under volatile saturated conditions, the melt becomes more S-depleted as crystallization

proceeds (as expected from Fig. 2.5) and my calculations show that low temperature min-

eral phases (e.g., quartz) will sample a melt that is significantly depleted in sulfur. These

trends have been reported for a single eruption event when comparing MIs in different hosts

(Fig. 2.7a) [38, 207]. There are two plausible explanations for the negative-correlation be-

tween SiO2 and sulfur in a given magmatic system: (1) the crystallization of S-rich phases

such as anhydrite or sulfides and (2) the removal of sulfur by vapor bubbles during second

boiling. Interestingly, the decrease in sulfur content in a silicate melt saturated with anhy-

drite or sulfides is constrained thermodynamically to follow the solubility of these phases,
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which predicts greater sulfur concentrations in silicic melts at oxidizing conditions than ob-

served in these late MIs. On the contrary, sulfur is a trace element in vapor bubbles and its

partitioning is not limited by sulfur solubility. For instance, MIs trapped in quartz in the

Toba Tuff [28] or Cerro Galan (this study) record sulfur levels that are below the solubility

of sulfur (anhydrite) in these magmas, suggesting an influence of second boiling behind sul-

fur loss from the melt in these shallow magma reservoirs (Fig. 2.7b–d). As I see from MMI
s

in Eq. 2.1 and Fig. 2.7, the choice of host of melt inclusions is also important to determine

and interpret the excess sulfur. Consequently, in order to yield a more accurate estimate

of the mass balance of sulfur in shallow magma bodies, it is fundamental to determine the

timing of the trapping of MIs. When considering melt inclusions that do not suffer from

considerable post-entrapment leakage, the wide range in sulfur content that is sometimes

observed for a given magmatic system can be used qualitatively as a proxy for the stage at

which the melt inclusions have been trapped (Fig. 2.7b–d).

2.3.3 S-bearing minerals breakdown

Another source for sulfur in magmas comes from the decomposition of S-bearing minerals

such as as pyrrhotite in reduced magmas [211] and anhydrite in oxidized magmas [110]

illustrated in trends 3, III, b, and C in Fig. 2.5. These minerals are considered transiently

stable if χ > χs, and resorb as the magma exsolves an aqueous fluid phase as shown by the

following simplified reactions,

FeS(pyrrhotite) + H2O(m) = H2S(g) + FeO(m) (2.21)

CaSO4(anhydrite) + H2(g) = SO2(g) + CaO(m) + H2O(g) (2.22)

Note that the index (g) stands for the magmatic volatile phase, and the (m) phase

stands for the melt phase. In these reactions, the gas phase (g) is to be understood as

a dissolved component in the melt. S-bearing mineral breakdown has been proposed to

explain the excess sulfur ratio of some eruptions (e.g., eruption of EI Chichón volcano,

which is considered as S-saturated [107]).

As sulfide and anhydrite resorption is driven mainly by sulfur redistribution into the

exsolving volatile phase, the most important variable required to model this process is the
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concentration of sulfur in the volatile phase at anhydrite or pyrrhotite saturation. The

experiments of Zajacz et al. [220, 221] have shown that the sulfur content in the volatile

phase at P = 200 MPa and pyrrhotite saturation is in the 5 to 7 wt.% range from basaltic

to dacitic melt compositions. Zajacz et al. [220] has found similar sulfur concentration in

the volatile phase in equilibrium with andesite melts at anhydrite saturation (5.5 wt.%).

Scaillet and MacDonald [169] reported sulfur concentrations in the range of 4.8 to 16.7

wt.% in the volatile phase in equilibrium with slightly to moderately peralkaline rhyolite

melts at anhydrite saturation and P = 150 MPa. At pyrrhotite saturation, the same study

determined sulfur concentrations in the range of 6.1 to 11 wt.%. Hence, one can state

that the sulfur concentration in the volatile phase of an anhydrite- or pyrrhotite-saturated

arc magma at upper crustal depth, will broadly fall within the range of 5 to 17 wt.%.

To illustrate the efficiency of anhydrite breakdown by second boiling, the first 1 wt.% of

volatile phase exsolving from a magma with a bulk sulfur concentration of 2400 ppm would

incorporate one third of the total S-budget (assuming 8 wt.% sulfur concentration in the

volatile phase). When present, it is therefore a potent process for sulfur partitioning in

magmas.

The following conditions are necessary for anhydrite or sulfide breakdown to contribute

to the measured excess sulfur ratio: (1) these phases must be present and sequester a portion

of sulfur at the time of the trapping of melt inclusions and (2) their breakdown must operate

efficiently enough before or during the eruption so that sulfur can diffuse from the melt to

the vapor phase before fragmentation. The relevance of anhydrite or pyrrhotite to excess

sulfur therefore impinges on the ability of the sulfur released by these phases to diffuse from

the melt to bubbles provided that most bubbles do not nucleate on the surface of S-rich

minerals, which is a fair assumption in crystal-rich magmas. In other words, the process of

sulfur degassing is limited by the kinetics of mineral breakdown and sulfur transport in the

melt to bubbles by diffusion.

Assuming that the breakdown occurs during syn-eruptive decompression, Eqs. 2.21 and

2.22 become additional kinetic steps to consider besides the low efficiency of the sulfur

diffusion in the melt to bubbles. Based on my calculations for syn-eruptive degassing, I
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expect syn-eruptive breakdown during explosive eruptions to be inefficient and to contribute

only a small fraction of the total sulfur released to the atmosphere. Hence, it should not

contribute much sulfur syn-eruptively, as suggested by the data for the Pinatubo 1991

eruption [84].

If the breakdown of sulfides or anhydrite takes place in the magma reservoir, then it

would impact the measured excess sulfur only if sulfur is sequestered in these solid phases

at the time the MIs are trapped and is subsequently released by their breakdown as second

boiling proceeds. The growth of bubbles by second boiling is prone to scavenge significant

amounts of sulfur from the melt, which lowers the sulfur melt concentration (Figs. 2.5 and

2.7a) and drives the reactions Eqs. 2.21 and 2.22 to the right. In that context, instead of

the path “melt→ vapor” I modeled in my study, sulfur may follow a path “melt → S-rich

crystal phase → melt → vapor” which involves an additional kinetic step (decomposition

of S-bearing minerals). However, unless vapor nucleates on S-bearing minerals, the process

remains controlled by the diffusion of sulfur in the melt towards the bubbles, which is the

aspect my model focuses on. Crystallization-driven exsolution is a slow process and my

numerical calculations showed that the efficiency of crystallization to partition sulfur to the

vapor is mostly unchanged if I consider a process that lasts 1 year versus thousands of years

(it is not kinetically limited). Therefore, considering the long timescale available for sulfur

redistribution during crystallization, I expect that my model provides a reliable estimate for

the partitioning of sulfur to the vapor, even for cases where sulfides or anhydrite may play

an important role on the sulfur mass budget in the magma reservoir, because the transfer

of sulfur from S-bearing phases to the melt and its diffusion to bubbles is unlikely to be

kinetically-limited under most circumstances in the magma reservoir.

2.4 Concentration analyses of Cerro Galan (2.08 Ma)

The sulfur content in the magma of Cerro Galan (2.08 Ma) shown in Tab. 2.3 is measured

by SIMS, while other oxides are obtained by microprobe analyses. Oxides are renormalized

to anhydrous values. Major element compositions of melt inclusion glasses were analyzed on

the JEOL 8900 electron microprobe at the USGS, Menlo Park, California using a 15 keV,
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5 nA, and 10 um beam. Sulfur concentrations were determined using the Stanford-USGS

SHRIMP-RG ion microprobe in one session using a 0.8–1.3 nA O−

2 primary beam with

10 kV acceleration and focused to a ∼ 25 micrometer diameter spot. During this session,

the SHRIMP-RG instrument was tuned to a mass resolution of ∼ 7000 in order to resolve

any potential isobaric interferences. Positive secondary ions were measured using a single

electron multiplier over 3 mass scans with counting times of 2 (30Si+) to 10 sec (32S+). Sul-

fur concentration was calculated using a best-fit regression to count rate ratios normalized

to 30Si versus variable known concentration ratios normalized to wt.% SiO2 of experimen-

tal and natural glass standards [216]. Standards include natural volcanic glasses RLS37,

RLS140, RLS76-75 [112], Macusani [105] and synthetic NIST standards 611 and 613 [148].

Standard 2170 (experimental product of Mangan and Sisson, 2000) [117] was used as a

secondary standard, using sulfur concentration determined by Wright et al. [216]. All un-

certainties in S concentration are external uncertainties. External uncertainties (1 σ) were

calculated by propagating errors of standard concentrations and error from repeat analyses

through a modified York regression [219]. External uncertainties were greater than internal

uncertainties for all samples. Internal uncertainties (1 σ) were calculated from counting

statistics using SQUID 2 [106].

2.5 Discussion

My calculations of the kinetics of sulfur during exsolution clearly mark a distinction between

silicic crystal-poor (< 20%) and crystal-rich (> 20%) wet magmas. Second boiling can play

a important role on the mass balance of sulfur in the latter, as it can even explain excess

sulfur ratio of up to two orders of magnitude for some eruptions (Mount St. Helens in

1480 and 1980 and Pinatubo in 1991 as shown in Fig. 2.6b and Tabs. 2.1 and 2.2. My

results do not imply that open-system processes do not play an important role on the

sulfur mass balance for these systems, rather it means that the yield of second boiling

in terms of sulfur partitioning can generate the scale of excess sulfur ratio measured in

these eruptions. Conversely, second boiling must play only a secondary role on the sulfur

melt-bubble partitioning in crystal-poor magmas (very little crystallization to drive second
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Table 2.1: Observed excess sulfur of 3 crystal-rich and 3 crystal-poor eruptions: Mount St.
Helens [32, 54], Pinatubo [142], Minoan [178], Katmai [72], and Crater Lake [40, 114]. The
superscripts (a–f) correspond to the same labels in Fig. 2.6.

Volcano
Eruption
Year

V
(km3)

Whole-
rock com-
position

Crystallinity (vol.%)
Excess
S [177]

aMount St.
Helens

1480 ∼2 Dacite
Dominantly crystal-rich
25%

∼100

bMount St.
Helens

1980 <1 Dacite
Dominantly crystal-rich
20-40%

10∼15

cPinatubo 1991 ∼10 Dacite
Dominantly crystal-rich
40%

∼70

dMinoan 1645 BCE ∼40
Rhyodacite
to andesite

Dominantly crystal-
poor (10%) but up to
<50% in late-erupted
scoria

10∼15

eKatmai 1912 ∼13
Rhyolite to
andesite

Dominantly crystal-
poor (1-5%) but up
to 50% in late-erupted
scoria

10∼15

fCrater
Lake

7700 cal BP ∼50
Rhyodacite
to andesite

Dominantly crystal-
poor (10%) but up to
70% in later-erupted
scoria

5∼10

Table 2.2: Calculated excess sulfur of the eruptions listed in Tab. 2.1 when the syneruptive

sulfur degassing efficiency f = 0.25 by assuming a decompression rate
˙̂
P of 2×105 Pa/s and

the listed 6 magmas reach their H2O saturation levels after 5 vol.% of crystals are produced.
The results show that second boiling can generate large excess sulfur to match the measured
excess sulfur for crystal-rich eruptions, while the importance of the open system volatile
transport from new recharges provides a more important contribution to the excess sulfur
recorded by crystal-poor eruptions.

Volcano
Eruption
Year

χ (vol.%) ∆χ (vol.%)
Calculated Ex-
cess S

aMount St.
Helens

1480 25 20 ∼32

bMount St. He-
lens

1980 20-40 15-35 20∼80

cPinatubo 1991 40 35 ∼80
dMinoan 1645 BCE 10 5 ∼8
eKatmai 1912 1-5 0 ∼1
fCrater Lake 7700 cal BP 10 5 ∼8
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Table 2.3: Concentration analyses of Cerro Galan (2.08 Ma).

Name
n wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.% ppm 1 σ wt.%

(probe) SiO2 TiO2 Al2O3 FeO MnO MgO CaO NaO2 K2O Cl F P2OO Raw Total sulfur uncrtainty H2O

406N-2 2 77.1 0.09 12.8 0.27 0.04 0.01 0.8 3.5 5.1 0.11 0 0.05 97.41 51 6 2.4
491-B2 2 73 0.11 15.2 0.2 0.05 0 0.6 4.1 6.4 0.14 0.16 0.05 97.94 27 3 1
491-E2 1 72.1 0.04 15.6 0.27 0.05 0 0.5 4.8 6.1 0.21 0.26 0.04 97.05 10 1
491-E1 2 73.1 0.16 14.9 0.17 0.01 0 0.5 4.4 6.2 0.24 0.19 0.15 99.37 13 1 0.2
491-F1 2 72.2 0.17 15.5 0.19 0.08 0 0.6 4.6 6.3 0.18 0.13 0.08 98.47 26 3 0.3
491-F6 2 72.3 0.13 15.6 0.23 0.04 0 0.7 4.4 6.4 0.19 0.05 0.04 97.94 45 5
491-F2 2 72.8 0.14 15.4 0.07 0.05 0 0.6 4.3 6.3 0.14 0.13 0.08 98.27 11 1 0.3
491-F5 3 71.8 0.12 15.6 0.44 0.06 0.05 1.1 4.2 6.4 0.18 0 0.1 98.1 49 6
491-J1 5 75.5 0.06 13.7 0.62 0.06 0.05 1 3.6 5.1 0.18 0.15 0.05 93.37 57 6 0.7
491-B1 73 14 5
491-F3 73 51 20
406-I2 73 glass composition not determined for these melt inclusions 6 2
406-H1 73 10 4
406-H2 73 6 2
406-L5 73 6 2
406-

77.9 0.09 13.1 0.48 0.06 0.8 2.2 5.1 0.18 0.01 95.82 59 23groundmass
glass [215]

406-
77.9 0.09 13.1 0.48 0.06 0.8 2.2 5.1 0.18 0.01 95.82 25 10groundmass

glass [215]
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boiling). For eruptions that involved dominantly crystal-poor magmas (Minoan eruption

(1645 BC), Katmai (1912) and Crater Lake (∼ 7700 cal BP) in Fig. 2.6b and Tabs. 2.1

and 2.2), large excess sulfur cannot be leveraged by closed system processes and requires

transport and accumulation of S-rich bubbles from deeper sources to be the driving factor

to close the sulfur mass balance [78,145,180].

The 2.08 Ma Cerro Galan ignimbrite (∼ 630 km3 erupted) is a crystal-rich rhyodacite. It

is old enough to prevent the use of remote sensing and ice core analysis to infer the amount

of sulfur released during the eruptions [226]. The petrological method is the only way to

estimate the amount of sulfur released to the atmosphere and the potential impact of this

eruption on climate. The volumetrically dominant white pumice (95 vol.%) in the Cerro

Galan ignimbrite contains 44–57% phenocrysts on a vesicle-free basis [215]. Quartz crystals

separated from two white pumice clasts were analyzed for FTIR spectroscopic analysis in

a previous study [215]. These same doubly polished quartz wafers were mounted in epoxy

mounts in order to analyze major element and sulfur compositions. The sulfur content of

these melt inclusions measured by the SHRIMP-RG ranges from 6–57 ppm, which is at or

barely above the detection limit and are equivalent to the sulfur concentration measured in

the GG (25–59 ppm, Tab. 2.3). An uncorrected traditional petrologic estimate for sulfur

would therefore suggest that only a very limited amount of SO2 was released during the

eruption.

In order to establish the contribution of second boiling to degassing, I model the isobaric

crystallization of the magma at 245 MPa and = NNO+1.5 with an initial water content of 6

wt.% using Rhyolite-Melts [64] (sample input parameters and output crystallinity are shown

in Tab. 2.4), from which 20–40 vol.% crystallization is estimated to be produced during

second boiling. My second boiling simulations imply that approximately about 90–95 % of

sulfur has been depleted from the melt by the time the melt inclusions are trapped by their

host (quartz), and the estimated excess sulfur ratio E ranges from 32 to 100 when I assume a

syn-eruptive decompression rate of 2×105 Pa/s (f = 0.25). In order to estimate the amount

of sulfur released during the eruption of Cerro Galan (2.08 Ma), I also need to estimate the

sulfur concentration in the primitive magma. Assuming an initial sulfur concentration of 500
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ppm reasonable for sulfate saturated dacite to rhyodacite, I estimate that around 1 Gt vapor

sulfur could have been stored by bubbles before the onset of the eruption. Thus, by ignoring

the sulfur contribution associated with syneruptive decompression (contributes only a few

percent of the total S) as well as additional unconstrained open-system contributions, second

boiling alone would result in the release of about 1 Gt SO2, an amount comparable to Bishop

Tuff, 0.76 Ma [206] and Toba YTT, 75 ka [28]).

2.6 Conclusions

In this chapter, I present the results of numerical calculations of sulfur partitioning during

bubble growth in magmas and combine them with excess sulfur datasets to constrain the

relative importance of closed and open system degassing at active volcanoes. These calcu-

lations highlight that the dominant process that leads to the build-up of large excess sulfur

ratio are different for eruptions driven by crystal-rich and crystal-poor silicic magmas. For

instance, second boiling has the potential yield to explain the excess sulfur ratio observed for

magmas that underwent > 10–20 vol.% crystallization under volatile-saturated conditions.

However, the addition of S-rich bubbles from mafic recharges or from an underlying crystal

mush is necessary to close the sulfur mass balance when the primitive magma does not store

sufficient sulfur or in silicic crystal-poor magmas where second boiling is not sufficient to

pump enough sulfur into the bubbles [145].
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Table 2.4: White Pumice from Cerro Galan Ignimbrite and sulfur concentration from
Tab. 2.3. The whole-rock composition, crystallinity, and the vesicularity of the white
pumice are shown by Wright et al. [215]. The sulfur concentration data are summarized
from Tab. 2.3 in this study.

White Pumice - CG257 [215]

Whole-rock Composition

SiO2 69.7 MgO 1.26
TiO2 0.62 CaO 2.59
Al2O3 15.45 Na2O 3.31
FeO 3.05 K2O 4.58
MnO 0.05 P2O5 0.2

Crystallinity 44–57 (vol.%)

Vesicularity 24–69 (vol.%)

S concentration

Groundmass Glass 25–59 (ppm)

Melt Inclusion 6–57 (ppm)
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Table 2.5: Melt inclusion list in Fig. 2.7(b–d) [177]. Excess sulfur less than 1 (marked by
‘*’) could be caused by the underestimate of remote sensing and ice-core measurements (Pl:
Plagioclase Px: Pyroxene Ol: Olivine Hbl: Hornblende Mag: Magnetite Ccp: Chalcopyrite
Bt: Biotite).

Eruptions Pl. Px. Ol. Hbl. Mag. Bt. Excess sulfur

Agung, 1963 [171] X X ∼ 3
Arenal, 1985–1996 [187] X X ∼ 1
Bezymianny, 1956 [140] X ∼ 3
Chikurachki, 1986 [67] X X X ∼ 1
EI Chichon, 1982 [109] X X ∼ 41
Eldgja, 934 [195] X ∼ 0.5∗

Galungyung, 1982–1983 [34] X X ∼ 7
Hekla, 1104 [38] X ∼ 130
Hekla, 1980 [173] X X ∼ 1
Hekla, 2000 [173] X X ∼ 0.2∗

Mt. St. Helen, 1480 [140] X ∼ 100
Mt. St. Helen, 1980 [38] X ∼ 13
Mt. St. Helen, 1980–1986 [38] X ∼ 33
Huaynaputina, 1600 [30] X X ∼ 10
Katmai, 1912 [209] X X ∼ 13
Kilauca, 1992–1997 [38] X X X ∼ 1
Krafla, 1984 [173] X X ∼ 0.6∗

Krakatau, 1885 [113] X X X ∼ 7
Laki, 1783 [196] X ∼ 1
Lascar, 1989 [122] X X X ∼ 18
Mauna Loa, 1984 [173] X X ∼ 1
Minoan, 1645 B.C. [38] X ∼ 11
Pinatubo, 1991 [58] X ∼ 71
Redoubt, 1989–1990 [57] X X X X ∼ 9
Redoubt, 1990 [57] X X X X ∼ 35
Ruiz, 1985 [178] X X ∼ 8
Santa Maria, 1902 [140] X ∼ 7
Soufriene, 1995–1998 [41] X ∼ 11
Tambora, 1815 [170] X ∼ 1
Taupo, 181 [140] X ∼ 12
Unzen, 1991–1994 [166] X X X ∼ 0.9∗
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CHAPTER III

MAGMA SYN-ERUPTIC ASCENT HISTORY AND VOLATILE

DEGASSING

In this chapter, a similar numerical approach for syn-eruptive degassing as the model pre-

sented in Chap. 2 and study the volatile (H2O and CO2) diffusion profiles around bubbles.

As magmas ascend to the surface, the rate of decompression is expected to increase as they

approach the vent, because of the increasing buoyancy of the more vesicular magma. The

question that this chapter focuses on is whether these volatile profiles after eruption can be

used to constrain time-dependent magma decompression rates. The numerical simulations

cover a wide range of of ascent time, magma decompression paths, and pre-eruptive volatile

compositions. A significant difference with the model of bubble growth in the previous

chapter is that I simulate the H2O–CO2 coupled system which influences the kinetics and

solubility of each gas species. The content of this chapter is now under review in Journal

of Geophysical Research: Solid Earth [188].

3.1 Introduction

Characterizing the rate of magma’s ascent to the surface remains a central question to

understand the behavior of volcanic eruptions. Several kinetic processes, including phe-

nocryst breakdown and volatile diffusion, have been suggested as tracers for the magma

ascent rate [4, 81, 102, 163, 197]. These kinetic processes are suitable to study a range of

decompression rates depending on their inherent time scale.

For eruptions with low averaged decompression rates (e.g., lower than 2–9 kPa/s),

Rutherford and Hill [163] and Anderson [4] suggest constraining the decompression rate

with breakdown rims around amphibole crystals, or H2O concentrations dissolved in hour-

glass melt inclusions in quartz. For eruptions involving intermediate decompression rates

(e.g., between 1 kPa/s and 100 kPa/s), Liu et al. [102] proposed a technique that inte-

grates the measurements of CO2 diffusion profiles in quartz-hosted and microlites-free melt
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pockets with a model assuming constant decompression rates and volatile equilibrium be-

tween bubbles and melts. Shortly after, Humphreys et al. [81] developed an approach with

back-scattered electron microscope to correlate gray-scale intensity to H2O concentration

in plagioclase-hosted melt tubes. Assuming equilibrium condition outside the melt tube,

the authors were able to provide an upper bound for the decompression rate given that

(1) their values only constrain an average magma decompression rate and (2) that the de-

compression rate is low enough (< 0.25 MPa/s) to satisfy equilibrium condition. For high

decompression rates (e.g., > 2 MPa/s), Toramaru [197] developed a methodology based on

the bubble number density in erupted clasts, and was able to infer ascent rate of hundreds

of meters per second for Plinian eruptions.

While phenocryst breakdown can provide constraints on low decompression rates (< 1

kPa/s), volatile kinetics have been used to constrain fast decompression (> 1 kPa/s) in

explosive eruptions. Although volatile exsolution and diffusion are both pressure-sensitive

processes, one faces two important challenges when relying on gas exsolution to constrain

magma decompression rates. First, in eruptions where the decompression rate of the magma

can exceed 0.25 MPa/s, most volatiles cannot maintain equilibrium partitioning between

melt and bubbles, especially for volatiles species diffusing slower than H2O, such as CO2,

S, Cl, etc [1,9,55,208]. Second, because of feedbacks between decompression and buoyancy,

magmas do not actually ascend under a constant decompression rate, as discussed in several

studies such as Refs. [81,102] and shown by conduit model simulations (e.g., Refs. [63,121,

143], among others).

In this study, I focus my attention on whether diffusion profiles of H2O and CO2 around

bubbles record faithfully time-dependent decompression rates in silicic magmas. In other

words, can I use diffusion profiles around bubbles to go beyond the approximation of a

constant decompression rate? Using numerical simulations and considering a wide range

of eruption durations, magma decompression paths, and pre-eruptive volatile compositions,

I find that the disequilibrium of CO2 between bubbles and melt provides constraints on

the total magma ascent time at decompression rates > 0.25 MPa/s. I also find that the

assumption of a constant decompression rate generally yields an overestimated average
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decompression rate.

3.2 Methods

3.2.1 Decompression parameterization

The goal of this study is to test whether kinetics effects recorded in diffusion profiles of H2O

and CO2 around bubbles, post-decompression, carry any information that can be used to

point to and perhaps quantify deviation from constant decompression rates. During magma

ascent, decompression paths are complex because they reflect coupled non-linear processes

and feedbacks associated with exsolution, changes in rheology and increasing buoyancy as

magmas migrate closer to the surface. Numerical models of conduit magma flow dynamics

have shown, to a first order (and within the assumptions made in these models), that

magmas first ascend under near constant decompression rates (decompression and ascent

rates rapidly become non-linearly related, as the density of the magma changes during

ascent). As the magma vesicularity increases, a positive feedback between degassing and

ascent rate causes a non-linear increase in decompression rate, which further accelerates

either until fragmentation, or for effusive eruptions, until the magma is extruded at or

above the surface. To a first order, these typical non-linear decompression paths, reported

in many studies [62,63,121,143,153], can be parameterized with a relatively slow and near

constant decompression rate early on, with an acceleration up to the point of disruption. I

develop a simple parameterization that captures these essential features by introducing only

2 free parameters, the duration of the decompression event τ and the degree of non-linearity

of the decompression path λ

Pa (t)

Pi
= 1−eλ(

t

τ
) − 1

eλ − 1
, (3.1)

which, written as a decompression rate, reads

dPa

dt
=

λPie
λt

τ

eλ − 1
(3.2)

where Pa is the ambient pressure and t denotes time. Pi and τ are the magma chamber

pressure and total magma ascent time, respectively. As λ → 0, Eq. 3.1 leads to a linear

decompression Pa/Pi = 1−t/τ . Throughout the remainder of this chapter, “λ = 0” refers to
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linear decompression paths. As λ increases, decompression is initially slow and accelerates

as the magma approaches atmospheric pressure (Fig. 3.1a). To better illustrate how the

magma decompression rate varies along these paths, I calculated the average decompression

rate
〈

Ṗa

〉

when magma moves from an arbitrary pressure Ps to the atmospheric pressure

P0, where P0 ≤ Ps ≤ Pi. From Fig. 3.1b I see that λ = 7 can yield
〈

Ṗa

〉

up to 6 times

greater than
(

Ṗa

)

L
, the time-averaged decompression rate for λ = 0 and the same τ .

3.2.2 Bubble dynamics model

Both H2O and CO2 kinetics are considered in a homogeneous bubble growth model, in which

bubble growth is driven by syn-eruptive decompression and volatile diffusion (Fig. 3.2). In

the model, I simulate the volatile diffusion in the melt (Eq. 3.3) and the bubble growth

(Eq. 3.4).

∂Cx

∂t
+ vm

∂Cx

∂r
=

1

r2
∂

∂r

(

r2Dx
∂Cx

∂r

)

, (3.3)

P (t)− Pa(t) =
2σ

R(t)
+ 4

˙R(t)

R(t)
ηeff (3.4)

where t is time, r is the radial distance from the bubble/melt interface, C is the volatile

concentration in the melt, D is the volatile diffusion coefficient, the subscript “x” denotes

either H2O or CO2, vm is the melt radial velocity, R is the bubble radius, σ is the bubble

interfacial tension, P is the bubble pressure, Pa is the ambient pressure, ˙R(t) is the growth

rate of the bubble, and ηeff is the effective viscosity of the melt. Eq. 3.3 describes the

local mass balance of volatiles while Eq. 3.4 describe the hydro-dynamical force balance

for a bubble/melt interface. The periodic cell approach to bubble growth is inspired by

the seminal work of Proussevitch et al. [152], however, for numerical stability, I follow the

scheme developed by Forestier-Coste et al. [44] and later applied to sulfur degassing in silicic

magmas by Su et al. [189]. A detailed explanation of the numerical algorithm and closure

relationships is provided in Chap. 2 and Ref. [189]. Eqs. 3.3 and 3.4 are closed by a mass

balance statement for the entire bubble/melt system,

d

dt
M(t) = 4πρmF |r=R(t), (3.5)
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which describes the change of the mass (M) of a bubble which balances the volatile mass

flux (F ) at the bubble/melt interface (r = R(t)) where ρm is the density of melt.

The system is initialized with spatially periodic cells, each cell consisting of a bubble and

a surrounding melt region as illustrated in Fig. 3.2. The equation of state of the gas within

the bubbles is described by the ideal gas law. A no flux boundary condition is set between

neighboring cells. At the bubble/melt interface, I use the empirical mixed solubility model

(Eqs. 3.6 and 3.7) for H2O–CO2 in rhyolitic magmas [104] as the boundary condition,

H2O(wt.%) =
(354.94P 0.5

w + 9.623Pw − 1.5223P 1.5
w )

T
+ 0.0012439P 1.5

w

+PCO2
(−1.084 × 10−4P 0.5

w −1.362 × 10−5Pw), (3.6)

CO2(ppm) = PCO2

(5668 − 55.99Pw)

T
+ PCO2

(0.4133P 0.5
w +12.041× 10−3P 1.5

w ),(3.7)

where Pw and PCO2
(in MPa) are partial pressures of H2O and CO2 in the bubble (0 < P <

500 MPa), respectively, and 973 < T < 1473 is the temperature in Kelvin.

In the model, the total H2O diffusivity is set to [131]:

DH2O(m
2/s) = exp

(

−14.26 + 1.888P − 37.26X − 12939 + 3626P − 75884X

T

)

, (3.8)

where P is in GPa, T is in Kelvin, and X is the mole fraction of total H2O dissolved in

the melt on a single oxygen basis. This H2O diffusivity law works for normal metaluminous

and peraluminous rhyolite melts when 676 ≤ T ≤ 1900 K and P ≤ 1.9 GPa. I use the total

CO2 diffusivity (673 ≤ T ≤ 1773 K and P ≤ 1.5 GPa) [225],

DCO2
(m2/s) = exp

(

−13.99 − 17367 + 1944.8P

T
+ Cw

855.2 + 271.2P

T

)

, (3.9)

where Cw is the water content dissolved in the melt in wt.%.

The model is designed to track volatile kinetics in a H2O–CO2 coupled system. It allows

non-equilibrium degassing and time-dependent decompression rate. However, the model

does not include new bubble nucleation events, the effect of syn-eruptive crystallization,

and bubble/melt separation. These issues will be addressed in future studies.

I ran over one thousand decompression simulations over a wide range of initial gas CO2

content, magma decompression duration τ and decompression path λ. The parameters
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Figure 3.1: (a) With a greater λ, the decompression path deviates more from the linear
path. Such non-linear paths are motivated by the fact that magmas tend to accelerate as
they rise to the surface due to an increased buoyancy (bubble growth and nucleation). (b)
For each magma ascent time and ascent path, the average magma decompression rates over
different pressure intervals to the surface are calculated. The present contours are in unit
of the decompression rate obtained for the corresponding linear ascent path.

R S

H
2
O

CO
2

H
2
O

CO
2

H
2
O

CO
2

H
2
O

CO
2

H
2
O

CO
2

H
2
O

CO
2

Eqn. 3 (H
2
O)

Eqn. 4 (CO
2
)

No flux BC
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tested in my simulations are listed in Tab. 3.1. The magma chamber pressure Pi is fixed

throughout the entire simulations, while the value of XCO2
are varied. For different XCO2

,

C0
H2O

, and C0
CO2

are calculated from Eqs. 3.6 and 3.7, and are set as the initial concentration

of H2O and CO2 in the melt in order to maintain chemical equilibrium between bubbles

and melt before decompression. Following Ref. [207], the H2O content in rhyolitic melt at

2 kbar ranges from 4 to 6 wt.%, and the concentration of CO2 is generally < 500 ppm for

most silicic magmas, which results in initial XCO2
< 60 wt.% using Eqs. 3.6 and 3.7.

3.3 Results

In this section, I show the impact of the 3 parameters (λ, τ , and XCO2
) on the final

vesicularity, the bubble overpressure, the average volatile content in the melt and the degree

of chemical equilibrium between bubble and melt after eruption.

3.3.1 Final vesicularity

In explosive eruptions, magma vesicularity can be affected by various factors, including

magma composition and tectonic settings. Here, using a fixed initial bubble volume fraction

of 4 vol.%, I test how the final magma vesicularity Φf varies with the total magma ascent

time τ , the initial volatile composition of the magma XCO2
and the magma’s ascent path

λ. Fig. 3.3a shows the variation of the bubble volume fraction (vol.%) after eruption as

function of the total magma syn-eruptive time τ for conditions: (a) λ = 0 and XCO2
= 10

wt.%, (b) λ = 4 and XCO2
= 10 wt.%, (c) λ = 0 and XCO2

= 40 wt.%. All three curves

exhibit increasing Φf (from ∼ 10 vol.% to ∼ 80 vol.%) with longer magma ascent durations

τ (from 10 seconds to ∼ 2.7 hours). Eruptions with magmas sharing the same initial

volatile composition but different decompression paths (cases (a) & (b)) yield different

magma vesicularity Φf , i.e., Φf for case (b)(λ = 4) is about 10 vol.% lower than case

(a)(λ = 0). Magmas containing more CO2 (case (c)) yield a lower final vesicularity Φf than

their CO2-depleted counterpart (see case (c) versus (a) where the difference is about 5%).

To summarize, for a fixed decompression time τ , the final vesicularity Φf is greater for low

CO2 magmas and linear decompression paths (λ = 0).
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Table 3.1: List of major model parameters

Pi Magma chamber pressure 2 kbar
Φi Pre-erutive bubble volume fraction in the magma 4 vol.%
τ eruption duration 20 s–5.5 h
λ non-linearity of magma ascent paths 0–7
XCO2

pre-eruptive CO2 in bubbles 0–60 wt.%
C0
H2O

pre-eruptive H2O concentration in the melt 4.4–6.1 wt.%

C0
CO2

pre-eruptive CO2 concentration in the melt 0–470 ppm
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Figure 3.3: The variation of the bubble volume fraction vol.% (A), the bubble overpressure
(P − Pa)/Pi (B), the average water concentration 〈H2O〉 within melt (C), and the average
water concentration 〈CO2〉 within melt (D) after eruptions with respect to the total magma
syn-eruptive time τ for λ = 0,4 andXCO2

= 10 wt.%, 40 wt.%. The shaded regions highlight
decompression simulations that led to final vesicularity beyond 74%, where fragmentation
processes are likely to have truncated the decompression paths. I focus on cases where
fragmentation is less likely to interrupt the decompression path.
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3.3.2 Bubble Overpressure

Bubble overpressure is defined as the difference in pressure between bubbles (P ) and the melt

(Pa), and can play a major role to drive bubble nucleation [97] and magma fragmentation

[223]. Overpressure builds up when magmas ascend fast enough that the bubble pressure

can not diffuse out rapidly by creep in the surrounding melt shells. As demonstrated in

Fig. 3.3b, overpressure is more prominent in eruptions with faster ascent. Although I

do not explicitly evaluate bubble nucleation and fragmentation in this work, I test how the

overpressure builds up at the final stage of eruption for a range of τ , XCO2
, and λ conditions.

The curves in Fig. 3.3b represent variations of the normalized overpressure (P−Pa)/Pi after

eruptions for the same 3 cases as in Fig. 3.3a. Pi is the pressure in the magma chamber.

Increasing λ or XCo2 both cause increases in overpressure.

3.3.3 Average H2O and CO2 content in the melt

The H2O and CO2 content in the melt are quantities commonly measured from volcanic

samples. Rutherford et al. [161,162] have suggested that analytical data on the abundance

of the different volatile species lost from the melt to the gas phase during an eruption may

record the rate of magma ascent to the surface. Longer ascent time τ , when volatiles have

more time to diffuse into bubbles, yield a depletion of H2O and CO2 in the surrounding

melt, while increasing values of λ or XCO2
result in more H2O and CO2 left in the melt

after decompressions (Figs. 3.3c and 3.3d).

3.3.4 Degree of chemical equilibrium between bubble and melt

I analyzed all post-eruption H2O and CO2 diffusion profiles within the parameter space

of this study. Examples of these post-eruption profiles for H2O and CO2 are shown in

Fig. 3.4, a magma rising at a constant speed (λ = 0) and a range of total ascent time

τ . The concentrations of H2O and CO2 have been normalized with their solubility after

eruption (Pa = Patm). In Figs. 3.4a and 3.4b, H2O concentration profiles in the melt

display a greater disequilibrium as magmas ascend faster, while the steepness of CO2 profiles

reaches a maximum value around a magma ascent speed of about 20 m/s. For a fixed
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total ascent time τ , the extent to which the diffusion of H2O and CO2 erases the degree

of disequilibrium depends on the non-linearity of the magma ascent path. For greater λ

values, the disequilibrium in H2O between the bubbles and the melt increases (Fig. 3.4c).

Fig. 3.4d shows that the behaviour of CO2 is more complex. For example, considering the

total magma ascent time τ = 4.2 min, the degree of disequilibrium for CO2 is lower for

λ = 7 than λ = 0. For longer magma ascent durations, the trend is reversed and a highly

non-linear decompression path would lead to higher degree of diffusive equilibration for

CO2.

I introduce a parameter δ to quantify the disequilibrium between bubbles and the melt,

δ =
Cmax − Cmin

Cmax
(3.10)

where Cmax is the volatile concentration at the boundary between any two adjacent bubble-

melt cells in my simulations or the concentration far away from bubbles. Cmin is the volatile

concentration at bubble/melt interfaces. The dimensionless parameter δ (0 ≤ δ ≤ 1)

decreases to 0 as melt and bubbles approach equilibrium. As shown in Fig. 3.5a, δH2O is

characterized by a monotonous decrease with increasing τ , and H2O is close to equilibrium

when τ > 103 s, which agrees with experiments [8, 53, 82, 117]. Increasing λ or XCO2

drives H2O further away from equilibrium. In Fig. 3.5b CO2 displays higher degrees of

non-equilibrium than H2O (δCO2
is one order greater than δH2O), and behaves differently.

A local maximum is found when τ ∼ 100 s. I will thereafter define τc as the critical τ that

corresponding to the local maxima of δCO2
for a given set of XCO2

and λ. The critical

decompression time τc increases with the initial XCO2
or a greater degree of non-linearity

in the decompression path (λ). Fig. 3.5c is test plot that shows that the local maximum of

δCO2
no longer exists if the diffusivity of H2O and CO2 were the same (DH2O = DCO2

).

3.4 Discussion

I propose a parametric study of the effect of non-linear decompression paths on coupled

CO2–H2O degassing during magma eruptions. My goals are two-fold. First, I aim to test

whether the CO2–H2O content in the glass and other measurements such as the vesicularity

of erupted samples can provide some constraints on the decompression history. Second, I
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Figure 3.4: (a–b) H2O and CO2 diffusion profiles for linear eruption paths (different ascent
time) and an initial bubble composition with 30 wt.% CO2. The slower the ascent, the
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aim to quantify the error built in the assumption of constant magma decompression rate

when estimating the average magma decompression rate from non-linear decompression

paths.

1. When considering higher initial XCO2
values, the solubility of H2O in the melt de-

creases (see Eq. 3.6), and thus, the initial H2O content in the melt decreases since my

simulations start from equilibrium conditions between bubble and melt. Because of

the lower dissolved H2O content in the melt, (1) bubble experience less growth (i.e.,

smaller final vesicularity Φf ), (2) the overpressure in bubbles is greater because the

melt is more viscous (Fig. 3.3b), and (3) the diffusivity of H2O and CO2 is reduced as

predicted by Eqs. 3.8 and 3.9. One of the consequences of lower diffusion coefficients

is that higher concentrations of H2O and CO2 remain in the melt after the eruption

(Figs. 3.3c and 3.3d. The other consequence is that the degree of disequilibrium of

H2O increases as the characteristic diffusion time scale increases.

2. When the non-linearity (λ) of a magma decompression path increases, the final bubble

overpressure, 〈H2O〉, 〈CO2〉, and δH2O, increase as shown in Figs. 3.3–3.5. For a fixed

total magma ascent time τ , λ affects the eruptions by modulating the duration and

strength of the fast ascent period. From Fig. 3.1, I know that a path with higher

non-linearity (larger λ) is characterized by an early stage at a lower decompression

rate followed by a late stage of fast decompression. Slower decompression helps main-

tain near-equilibrium conditions, while faster decompression promotes the build-up of

bubble overpressure, and increase the disequilibrium of H2O between bubbles and the

melt. Thus, for a fixed total magma ascent time τ , a path with higher λ leads to a

lower final vesicularity, higher bubble overpressure, less volatile degassing, and higher

δH2O.

3. For shorter magma ascent time, δCO2
decreases as XH2O or λ increase, which contrasts

with δCO2
associated with longer ascent time (see Fig. 3.5b). In order to constrain

what factors control the existence of a maximum in δCO2
(λ, τ), I set some additional

simulations where the transport kinetics (diffusion) of H2O and CO2 are assumed
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identical (Fig. 3.5c). I find that the difference in transport kinetics (slow diffusion

for CO2) plays a fundamental role on the existence of a maximum for δCO2
. I ar-

gue that the combination of the delayed transport kinetics for CO2 and the implicit

coupling between H2O and CO2 that arises from the melt/bubble boundary condi-

tions (solubilities, Eqs. 3.6 and 3.7) and H2O–dependent DCO2
are responsible for this

feature.

3.4.1 Summary

My goal is to examine whether I can estimate the magma ascent time τ and the non-linearity

of the decompression path λ from variables that I can measure in erupted samples. It turns

out that Φf , over-pressure, 〈H2O〉, 〈CO2〉, δH2O share similar patterns as λ and τ vary.

The similarity suggests these variables are not independent of each other. The contours

of 〈H2O〉 and δH2O in λ-τ space are shown in Fig. 3.6 as examples. Isocontours for 〈H2O〉

and δH2O have a positive slope, which implies a trade-off between τ and λ. Therefore,

measurements of water content in the melt do not provide a unique decompression history,

but a family of possible decompression paths where an increase in assumed ascent time

τ requires a more non-linear decompression history (higher λ). By following one 〈H2O〉

contour line (e.g., the curved double arrows), I estimate dλ/d (log10 τ) to be around 2 ∼ 3,

so that ∆τ ≈ c(ln 10)τ∆λ where c is a constant ranging in 0.3 ∼ 0.5. The uncertainty

on the non-linearity of magma decompression λ could lead to large errors in the estimated

magma ascent time τ . For example, if one estimates the magma ascent time to be τ0 by

assuming a constant magma decompression rate (λ = 0), τ could be 5.8 ∼ 9τ0 if, in reality,

λ = 7. Under specific circumstances, however, δCO2
can provide additional (independent)

constraints on the decompression history.

I consider 3 scenarios based on measurements made on 〈H2O〉, δH2O, and δCO2
to discuss

the possibility of using the concentration of volatiles dissolved in the melt to invert for λ and

τ . Since the errors when measuring volatile content vary with different analytical methods,

I set the relative errors for 〈H2O〉, δH2O, and δCO2
to be around 10% [86]. However, when

the concentrations are very low and possibly near the detection limit, the relative error can
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creep up to 50%.

1. Scenario i

Considering 2.2 wt.% < 〈H2O〉 < 2.5 wt.%, 0.005 < δH2O < 0.015, and 0.45 < δCO2
<

0.55, the solution space for λ-τ is bounded by the limits of the red dashed curves

(〈H2O〉), the blue dashed curves (δH2O), and the green dotted curves (δCO2
). When

XCO2
= 10 wt.% in Fig. 3.7a, the solution space covers 0.8 ≤ λ ≤ 7 and 320 s ≤ τ ≤

2000 s with ∆λ = 6.2 and ∆τ = 1680 s. As XCO2
increases to 30 wt.% (Fig. 3.7b)

and 50 wt.% (Fig. 3.7c), the solutions differ in both τ and λ, and shift to a region

centered around a higher value for τ . From the region i shown in all three subplots of

Fig. 3.7, I can see clearly the trade-off between τ and λ and more specifically that a

linear decompression assumption would bias τ towards rapid magma ascent.

2. Scenario ii

Considering now 3 wt.% < 〈H2O〉 < 3.5 wt.%, 0.025 < δH2O < 0.035, and 0.65

< δCO2
< 0.75, the solution space is characterized by ∆λ = 5.5 and ∆τ = 205 s

(1.5 < λ < 7, 75 s < τ < 280 s) when XCO2
= 10 wt.% and shift to a higher range of

τ when XCO2
increases. For XCO2

= 10 wt.% and 30 wt.%, a solution with lower non-

linearity (λ) of the decompression path, e.g., λ < 2, is unlikely as shown in Figs. 3.7a

and 3.7b. However, when XCO2
= 50 wt.%, a low-λ solution can exists (Fig. 3.7c).

3. Scenario iii

When 3.5 wt.% < 〈H2O〉 < 4.1 wt.%, 0.035 < δH2O < 0.045, and 0.75 < δCO2
< 0.8,

the solution space iii is confined to 0 < λ < 2, 28 s < τ < 60 s with ∆λ = 2 and

∆τ = 32 s for XCO2
= 10 wt.% (Fig. 3.7a). For XCO2

= 30 wt.% (Fig. 3.7b), the

space of possible solutions shifts to longer total ascent times. I find no admissible

solutions for XCO2
= 50 wt.% (Fig. 3.7c). For these specific conditions, the solutions

space is tightly-confined and inversions would yield relatively small errors ∆λ, ∆τ .
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3.4.2 Applications

As illustrated by the 3 scenarios in Sec. 3.4.1, I can confine the solutions in a relatively small

region compared to the full space of λ-τ with (1) the measurement of the average 〈H2O〉,

δH2O, and δCO2
in the glass of the samples and (2) the estimate of a plausible range for the

initial XCO2
of the magma. My approach retrieves a family of solutions with a trade-off

between λ and τ .

Furthermore, assuming a constant decompression rate from volatile kinetics comes at the

cost of severely underestimating the true average decompression rate and the total ascent

time. To narrow down the choice of possible λ and τ , one should look for other constraints

independent of 〈H2O〉, δH2O, and δCO2
. One candidate would be to consider other volatile

species, such as SO2. SO2 is the third most abundant volatile species in magmas, and has

an even lower diffusion coefficient than CO2. In that regard, and considering that SO2 and

H2O are coupled through the partitioning of S between the bubbles and the melt, a local

maximum in δSO2
could exist and would most likely be shifted to greater τ compared to

δCO2
.

An interesting byproduct of my study is to use the combination of 〈H2O〉, δH2O, and

δCO2
to constrain the initial XCO2

present in the magma. My method for inverting for

λ and τ can potentially be applied to estimate the initial magma volatile content, e.g.,

XCO2
. For a set of measured 〈H2O〉, δH2O, and δCO2

, I could search for different λ-

τ solutions considering various XCO2
. For example, panels (a–c) in Fig. 3.7 show the

admissible solutions for λ–τ constrained by 〈H2O〉, δH2O, and δCO2
for 3 different initial

XCO2
. I find that scenario (iii) does not admit a solution for highXCO2

(50 wt.%). Although

I am not yet in measure to constrain the initial XCO2
of the magma by measuring 〈H2O〉,

δH2O, and δCO2
, I can restrict, in some cases, the range of possible XCO2

of the predegassed

magma. This perspective is encouraging because it suggest that I may be able to constrain

the starting XCO2
composition of the magma as well as λ and τ if I find an additional

constrain on decompression that is independent from 〈H2O〉, δH2O, and δCO2
.
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3.5 Conclusions

In this work, I use a bubble growth model with H2O–CO2 coupled kinetics to investigate

how the initial volatile composition, the magma ascent time, and the non-linearity of the

decompression path influence volatile kinetics during rhyolitic eruptions. The main findings

are: (1) the disequilibrium states of H2O and CO2 between bubbles and the melt are

different when magmas ascend following different non-linear decompression paths; (2) the

disequilibrium of CO2 between bubbles and the melt does not behave monotonically with

magma ascent time and the non-linearity of the decompression rate; (3) the solution space

of λ-τ exhibits a trade-off between the magma ascent time τ and the linearity of the magma

decompression path; (4) the methods relying on volatile diffusion and assuming a constant

decompression rate over-estimate the effective average magma decompression rate.
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CHAPTER IV

A NEW BUBBLE DYNAMICS MODEL TO STUDY BUBBLE

GROWTH, DEFORMATION AND COALESCENCE

In Chaps. 2 and 3, the models for simulating volatile degassing in silicic volcanic eruptions

include volatile kinetics and assume an idealized bubble geometry as well as no interac-

tions between bubbles. Although these models can yield predictions for volatile degassing

during volcanic eruptions, they have many limitations: (1) bubbles are monodispersed and

distributed as a periodic array, (2) there are no confining boundaries that prevents/limits

growth, (3) bubbles remain spherical at all times and (4) bubbles do not interact hydro-

dynamically (no diffusion coarsening, no coalescence). These limitations can be significant

when considering magmas with high vesicularity, or when attempting to use bubble defor-

mation as a strain tracer in the ascending magma. Since bubble-bubble interactions and

bubble deformation by shear often become significant as the magma approaches a possible

fragmentation level, it is important to go beyond these common assumptions and develop

a new bubble dynamics model.

In this chapter, a new bubble dynamics model is proposed and accounts for hydrody-

namical interactions among bubbles, e.g., bubble deformation and coalescence. The model is

then calibrated with laboratory experiment of a bubble rising to a free surface and validated

for bubble growth, Ostwald ripening and bubble deformation in simple shear conditions.

This chapter represents the work that I co-authored in Ref. [76]. My contribution to this

work was to participate in the development of the model and conduct the simulations and

analyses of the bubble shearing calculations. A notation list for this chapter is shown in

Appendix D.

4.1 Introduction

Exsolved volatiles provide the driving force for explosive volcanic eruptions. While the

magma is ascending to the surface, the melt becomes super-saturated with volatiles driving
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bubble nucleation and growth. The increasing vesicularity of the magma during decompres-

sion affects its buoyancy (provides an acceleration) and deeply affects the physical properties

of the magma [63]. The processes that control the nucleation and growth of gas bubbles

(water and CO2, mostly) are complex and highly non-linear.

Bubbles gain mass by diffusion during decompression as the solubility of gas in the sili-

cate melt is suppressed and, simultaneously, they grow by mechanical expansion due to the

compressibility of the gas phase. On the other hand, the viscosity of the surrounding melt

poses a resistance to bubble growth. The interplay between diffusion of volatiles, expan-

sion and viscous resistance during the growth of a single bubble or a periodic suspension

of monodisperse bubbles in an infinite silicate melt as been studied theoretically and nu-

merically with various levels of sophistication [50, 97, 99, 111, 152, 154, 182, 199, 217]. These

studies were able to identify different growth regimes: viscosity- and diffusion-controlled,

and also highlight the important effect of spatially variable viscosity and water diffusivity

in these processes. Even though some of the bubble dynamics models cited above differ in

terms of approaches, they share some common assumptions. The first assumption made is

that bubble have little to no hydrodynamic interactions between each other and also with

rigid/partially rigid confining boundaries. In other words, bubbles remain spherical at all

times, deformation between bubbles that are coupled hydrodynamically or of a bubble that

interacts with a boundary (conduit wall for example) are not taken into account. Even if

the studies of Refs. [51, 217] consider the effect of coalescence into their bubble population

dynamics model, it is introduced as a simple parameterization and does not account for the

actual mechanics of the process.

The inability of previous bubble growth models to account for bubble deformation,

coalescence and (3) bubble deformation under different flow environments (uniaxial decom-

pression, shear) hampers their applicability to magmas with low vesicularities. However,

the effect of bubbles on the evolution of the ascending magma increases with its vesicular-

ity. Ultimately, prior to the onset of fragmentation, it is the rheological state and pressure

distribution in a high vesicularity suspension (commonly greater than 50%) that controls

the eruption dynamics [61, 154, 182, 223]. In this chapter, I describe a new model that is
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designed to investigate the physical evolution of bubble suspensions in magmas across a

wide range of vesicularities (from a few to ≫ 50%) subjected to different decompression

and shear flow conditions.

In this contribution, I present the physical and numerical bubble model, provide vali-

dations of the model and explore the ability of the model to solve problems where bubble-

bubble or bubble-structure interactions become important. My model differs significantly

from other published bubble growth models in that it is based on different numerical ap-

proach that allows one to deal with deformed bubbles and resolve the hydrodynamical

interactions between bubbles in the suspension. In Sec. 4.2, I review in greater details the

existing bubble dynamics models in physical volcanology. I also discuss the advantages and

limitations of my model in the light of the existing models. The physical and numerical

model is presented in Sec. 4.3. Model validations for the growth of bubbles by expansion

and diffusion are presented in Sec. 4.4. It is followed by tests of the model’s ability to go

beyond the limitations of existing bubble growth models. The first set of calculations con-

sists of the ascent of a single bubble (no mass change) to a free surface and the subsequent

film drainage that results in the bubble bursting at the surface. These calculations serve to

calibrate a free parameter in my model, the disjoining pressure, that controls the efficiency

of the drainage process, and by extension of coalescence. I use a set of experiments with an

identical design to calibrate the disjoining pressure as function of the bubble Bond’s number

(ratio of buoyancy to surface tension stresses). The objective of the next series of calcu-

lations is to test the model accuracy with scenarios of bubble-bubble or bubble-structure

interactions. I focus first on Ostwald ripening, where the thermodynamical coupling be-

tween two neighbor bubbles of different sizes leads the growth of the larger bubble at the

expense of the smaller one in response to chemical potential gradients between bubbles of

different sizes. Lastly, I test the models ability to resolve accurately the viscous and capil-

lary coupling between bubbles and the ambient melt in simple shear flow conditions. When

inertia can be neglected, it is known that single bubbles are expected to reach a known

steady shape (deformed when viscous stresses are important) and a known final orientation

that depends on the balance between shear and capillary stresses. Finally, I use my model
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to study the evolution of the distribution of deformation and orientation of a suspension of

bubbles and contrast it to single bubble calculations. This allows one to quantify the effect

of bubble-bubble hydrodynamic interactions on a sheared suspension.

In subsequent studies, I plan on focussing on (1) the resultant drag and lift forces between

a suspension and the melt in shear flow conditions, (2) the dependence of the coalescence rate

in a suspension as function of shear at constant and time-dependent (growth) vesicularity

and (3) introduce water-dependent viscosity and diffusivity. The ultimate objective behind

the development of these numerical investigation of bubble dynamics is to provide conduit

flow models with a parameterization of bubble-melt interactions that covers a wide range

of dynamical conditions and vesicularity.

4.2 Bubble dynamics models

The understanding of bubble growth in viscous silicate melts has made significant progress

over the last three decades, thanks to a combined experimental [52,93,95,111,117,126,132–

134], theoretical and numerical efforts [17,97,99,152,154,182].

In this section, I present a brief overview of the field of bubble dynamics models in

physical volcanology. Since the seminal work of Ref. [203], it has been recognized that

exsolved volatiles (bubbles) can play a significant role on the behavior of magmas during

volcanic eruptions. A few decades later, Sparks [182] developed a model of a single bubble

growing in an infinite melt, where the growth of the bubble is caused by expansion and mass

transfer (diffusion) during decompression and is hampered by the viscosity of the melt. The

transport of dissolved volatiles to the bubble’s interface was not explicitly solved for, but

the growth rate due to diffusion was parameterized according to a parabolic growth law.

In the late 1980’s and early 1990’s two different categories of multiple bubble growth

models were simulaneously developed. In the first family of models, diffusion of volatiles

to the bubbles is parameterized (mean-field approach), but polydispersed bubble size dis-

tribution are allowed [50, 99, 198, 199, 217]. These models assume that the bubbles remain

spherical (no deformation) and, in the exception of Ref. [51], coalescence is not taken into

account. An advantage of these models, over the second family of models discussed just
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below, is that they allow to include several nucleation event, although the competition for

dissolved water during growth is not explicitly taken into account.

The second family of models is based on the work of Ref. [152], where the multiphase

magma is represented as a monodisperse periodic array of spherical bubbles surrounded by

a viscous melt shell [17,97,111,154]. This idealization was made to solve for the evolution of

a single bubble-melt shell system with a radial symmetry. The model solves for the diffusive

transport of dissolved volatiles to bubbles explicitly, as well as for the existence of radial

gradients in water concentration and its effects on the melt viscosity and water diffusivity

[17, 97, 154]. These models draw an accurate representation of the coupled momentum

balance and diffusive transport of volatiles at the cost of an ideal geometry and a suspension

that remains monodisperse at all time.

The two types of approaches have lead to important results about the different regimes of

bubble growth [97,152], the effect of viscosity and diffusivity radial heterogeneities on bubble

growth [17,97,154], the effect of supersaturation on the nucleation of new bubbles and how

it translates into changes in bubble number density and size distributions [198, 199, 217].

Nevertheless, all these models are limited to low versicularity by several assumptions. The

first assumption concerns the limited hydrodynamic coupling between the bubbles and

between the melt and bubbles. Bubbles are not allowed to deform and remain spherical.

The behavior of a bubble of radius r during shear deformation can be constrained by the

capillary number

Ca =
ρνǫ̇r

σ
, (4.1)

where σ is the surface tension, ρ is the melt density, ǫ̇ is the shear-rate and ν the dynamic

viscosity of the melt. At high capillary numbers (Ca > 0.1) bubbles are expected to

accomodate a large portion of the shear and the spherical assumption becomes invalid

[115,116]. Although shear deformation of bubbles should be expected to play a significant

role mostly in melts with high viscosity or for large bubbles, the hydrodynamic coupling

between bubble and melt and between multiple bubbles is also expected to play a significant

role in magmas with high vesicularity. The second argument that restricts the standard

bubble growth models to low vesicularity is that they do not account explicitly for the
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competition for dissolved volatiles during the growth of bubbles of different sizes, or with

different separation distances. Bubbles with different spacing, different size and different

internal pressures will be responsible for variable gradients in dissolved water content in

the melt, this effect may lead to some implicit non-linear interactions among neighbor

bubbles. The dynamics of coalescence has been avoided, at least explicitly (besides the

Smoluchowsky approach of Ref. [51]), but it has been shown that, at vesicularity of about

40 percent, expansion and growth can lead to significant coalescence and that this effect

becomes even more important at lower vesicularity in a suspension subjected to shear [21,

133, 134]. Another implicit assumption common to all previous models is that there is no

respective motion between the center of mass of a bubble and the ambient melt, this is a

good approximation for small bubbles and melts with high viscosity, but it is expected to

break down in the other cases or when connected pathways start to form between coalesced

bubbles and gas-melt segregation occurs.

In this study, I develop a new bubble dynamics model to attempt to remediate to

some of the common limitations listed above. The aim of this model is to keep an explicit

description of the mass transport of dissolved water by diffusion in the melt, free ourselves

from the radial symmetry and allow bubbles to interact hydrodynamically with the melt

and other bubbles. In other words, the new model should provide the ability to solve for

bubble deformation and coalescence. I also want to be able to consider enough bubbles at

the same time (orders of hundreds at this stage) and distribute them randomly in space

so as to follow the evolution of the bubble size distribution (variable bubble growth rate

in a given suspension) and coalescence rate during decompression. Finally, I want the new

model to allow one to investigate the effect of an imposed shear-rate on the rheological

behavior of the suspension and on the bubbles coalescence rate, this requires a model that

can solve for a finite and spatially variable motion between each bubble center of mass

on the melt surrounding bubbles. The model I present below allows one to study these

processes, but the aim of this chapter is limited to a few case studies (see Introduction). I

plan on considering more sophisticated problems in future studies. My goal with this model

is to address some of the fundamental processes associated with bubble interactions, such
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as those expected at vesicularities > 10–20%, and better understand the behavior of the

multiphase mixture prior to fragmentation (if any) or closer to vent conditions.

Before describing the new model in details, I step back and list some of the present

(should be overcome in future studies) and absolute limitations of my model.

1. The model is discretized in space on a homogeneous grid, it is therefore not accurate

in terms of water concentration profile at the early stage of degassing. The model of

Proussevitch et al. [152] is expected to yield more accurate results at low vesicularity.

However, at later stages, when the vesicularity is greater (more advanced diffusion

profiles) the model is expected to perform well. Although the spatial resolution is an

issue for the accuracy of the diffusion model at early times (steep gradients), I want

to emphasize that film drainage between bubbles and coalescence, which are solved

by a Volume-of-Fluid method (see below), use a mass balance description that has a

subgrid spatial resolution (see below).

2. The model is, as of now, limited to 2-D calculations. An extension to 3-D is not

trivial (calculation time) but nothing should prevent it in the near future. Although

the existing models discussed above are intrinsically 3-D, they assume a perfect ra-

dial symmetry (which is unlikely to be exact) and therefore reduce the physics to 1

dimension.

3. In this study, water-dependent melt viscosity and diffusivity were not taken into ac-

count. As discussed in the next section, this does not betray an intrinsic limitation of

my model and these dependence will be added in a subsequent study.

4.3 Numerical method

The bubble model I propose is based on the lattice Boltzmann method for free surface

flows [92]. The lattice Boltzmann method (LBM) has emerged as an efficient alternative to

traditional computational fluid dynamics (CFD) solvers and was developed as an extension

to cellular automata [48, 71]. The LBM solves for the evolution of particle distribution

functions according to simple rules and follows a discretized form of Boltzmann’s kinetic
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equation. The model I use for bubble dynamics is an extension of the model proposed by

Körner [92] where the fluid inside bubbles is assumed inviscid and interfaces between the

two fluids are treated as a free surface boundary condition. In this section, I describe the

model and introduce some of the extensions that were required to adapt it to decompression

and shear flow conditions.

4.3.1 The lattice Boltzmann model for free surfaces

The lattice Boltzmann free surface method on which my bubble model is based has been used

successfully by different authors to measure dynamic contact angles, study metal foaming

processes and free surface flows [6,92]. Within the LBM, Boltzman’s equation is commonly

discretized in physical and velocity spaces so that particle distribution functions, at a given

lattice site, can stream along a finite number of directions (lattice velocity vectors) and

reach a neighbor site at the next time step. In general, in 2-D (my model is limited to

2-D so far, but the model would remain similar in 3-D), a topology with one rest velocity

e0 = (vx,0 = 0, vy,0 = 0) and 8 finite velocity vectors connecting the site to its nearest

neighbors is used. This 9-velocity lattice topology is usually referred to as the D2Q9 lattice

(see Fig. 4.1a) with velocities ei

ei =























(0, 0) if i = 0
(

cos
(

(i−1)π
2

)

, sin
(

(i−1)π
2

))

i = 1, . . . 4
(

cos
(

(2i−1)π
4

)

, sin
(

(2i−1)π
4

))

i = 5, . . . 8.

(4.2)

The evolution equation for the particle distribution functions fi (where i stands for the

discrete velocity vector along which the particles are moving) uses a simplified (linearized)

collision operator, often referred to as the BGK or single relaxation time operator [156].

The update of the distribution between two consecutive timesteps (t and t+ 1) is given by

fi(x+ ei, t+ 1) = fi(x, t) +
1

τF
[f eq

i (x, t)− fi(x, t)] + Fi, (4.3)

where x are the spatial coordinates on the lattice, t is time, f eq
i is the equilibrium distri-

bution (defined below) and Fi represents a body force acting on the distribution fi. The
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relaxation time τF is explicitly related to the kinematic viscosity of the fluid

ν = c2s

(

τF − 1

2

)

, (4.4)

where c2s is a constant of the lattice (1/3 on the D2Q9). The local fluid density and momen-

tum (and hence velocity) can be retrieved as moments of the particle distribution functions

ρ(x, t) =

8
∑

i=0

fi and ρ(x, t)u(x, t) =

8
∑

i=0

eifi. (4.5)

The equilibrium distribution is a quadratic function of the local fluid velocity and de-

pends linearly on the density

f eq
i (x, t) = wiρ(x, t)

[

1 +
u · ei
c2s

+
1

2

(u · ei)2
c4s

− 1

2

u · u
c2s

]

, (4.6)

where wi are the lattice weights, w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36. This generic

lattice Boltzmann model was shown to recover Navier-Stokes and the continuity equations

with second order accuracy in space and first order in time [71, 156]. For simplicity, I

subdivide Eq. 4.3 into two steps: the collision step

fout
i (x, t) = fi(x, t) +

1

τF
[f eq

i (x, t)− fi(x, t)] + Fi, (4.7)

and the streaming step

f in
i (x+ ei, t+ 1) = fout

i (x, t). (4.8)

The free surface model developed by Körner and co-workers [92] uses an approach similar

to the Volume-of-Fluid method, where a continuous scalar occupancy field m allows to track

the position and evolution of the interface between the two fluids (here bubble and silicate

melt). The lattice is divided among three cell-types, gas, melt and finally interface cells

(see Fig. 4.1b). With this approach, there is no direct contact between gas and melt cells.

The type of each cell is updated dynamically according to the local evolution of the scalar

quantity m. The field variable m represents the fluid mass content of the cell and is given

by

m(x, t) =























0 if x ∈ Gas cell

ρ(x, t) if x ∈ Melt cell

ρ(x, t)ǫ(x, t) if x ∈ Interface cell.

(4.9)

73



g
1

g
2

g
3

g
4

D Q2 4

D Q2 9

f
0

f
1

f
2

f
3

f
4

f
5

f
8

f
6

f
7

n

p
g

Magma cellsinterface

cell

gas cells

a.

b.

c.

Figure 4.1: Discretization of the particle distribution functions in velocity space. The two
choices of lattice used (a) for the advection-diffusion equation for the dissolved volatile con-
centration (D2Q4) and (c) for the viscous fluid flow around bubbles (D2Q9). (b) Illustration
of the Volume of Fluid approach used for the lattice Boltzmann free surface model. The
domain is divided among three cell types, bubble cells where no dynamics is computed,
melt/fluid cells where Navier-Stokes and the advection-diffusion equations are solved, and
interface cells that separate the other two types and act as boundary conditions between
bubbles and ambient melt.
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where ǫ is the volume fraction of melt at site x and time t (between 0 and 1). An evolution

equation for the distribution of each cell-type is required because gas bubbles (hereafter

referred to as bubbles) and the melt can move with respect to the lattice, while, simul-

taneously, bubbles can expand (mechanical work) and grow during decompression. The

evolution equation for m follows the procedure described in Ref. [92] and consists of track-

ing the mass exchange between neighbor site of each cell-type

∆mi(x, t) =























0 if x ∈ Gas cell

∆fout
i ≡ fout

ī
(x+ ei, t)− fout

i (x, t) if x ∈ Melt cell

1
2(ǫ(x, t) + ǫ(x+ ei, t))∆fout

i if x ∈ Interface cell.

(4.10)

where eī = −ei. Ref. [92] showed that this scheme conserves mass locally and that m can

now be updated at each site using

m(x, t+ 1) = m(x, t) +

8
∑

i=0

∆mi(x, t). (4.11)

Obviously, the mass content of each cell must stay bounded 0 < m(x, t) < ρ(x, t). To

enforce this bounds, I impose the following set of rules: if m ≥ ρ, the cell is converted to

a melt cell, if m < 0, then it is converted to a gas (bubble) cell. Similarly, new interface

cells are created when a former melt cell evolves so that m < ρ or a gas cell mass content

becomes greater than 0 (m > 0). A more complete description of the mass redistribution

algorithm can be found in Ref. [92].

Because the viscosity ratio between the melt and the gas in the bubbles is generally

greater than 107, I assume that the fluid inside bubbles is inviscid. That allows one to

treat bubbles as boundary conditions similar to free surfaces, i.e., no tangential stress, but

existing normal (pressure) drop at the interface between the two fluids. If the gas pressure

is known, I can apply a pressure boundary condition on the melt. I assume that the gas in

the bubble is ideal

pg =
nRT

V
, (4.12)

where n is the number of moles of gas molecules in a given bubble, V its volume, T the

ambient temperature (here assumed constant) and R the ideal gas constant. At any given

interface cells, some elements fi of the particle distribution functions are missing because
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they carry information from a gas-cell (outside of the domain where the fi’s are defined)

to the interface-cell. These missing distributions are reconstructed to impose the correct

boundary condition on the melt, using informations from the gas pressure in the bubble and

the curvature of the interface at the interface site. For more details about this procedure,

the reader is referred to Ref. [92]. The effect of the surface tension σ between the two fluids

can be added easily to the gas-interface boundary conditions

pg(x, t) =
n(t)RT

V (t)
− 2κ(x, t)σ, (4.13)

where n(t) and V (t) are the number of moles of gas molecules (here I focus on water) and the

volume of the bubble respectively, and κ(x, t) is the local curvature of the interface. When

considering multiple bubbles interacting with each other, or the interaction of a bubble

with a free surface, an additional term is included in the pressure boundary condition: the

disjoining pressure Π

pg(x, t) =
n(t)RT

V (t)
− 2κ(x, t)σ −Π. (4.14)

The disjoining pressure is defined as the variation of Gibbs free energy with distance asso-

ciated with the interaction of two melt-gas interfaces associated with different objects (e.g.,

two different bubbles or a bubble and a free surface)

Π = − 1

A

(

∂G

∂x

)

, (4.15)

here A is the surface area of the interacting surfaces and G is the Gibbs free energy. The

disjoining pressure term has a fundamental impact on controlling the coalescence rate be-

tween bubbles and therefore the stability of foams. For simplicity, the disjoining pressure

can be taken as a linearly decreasing function of the distance between the two interacting

objects with a finite range drange

Π(dint) =











0 if dint ≥ drange

cΠ|dint − drange| if dint < drange.
(4.16)

The disjoining pressure is therefore set by two constants: its amplitude cΠ and range

drange, as well as the distance between the two interacting interfaces neighbor objects dint. I

discuss how the disjoining pressure model is calibrated from experiments in section Sec. 4.4.
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A more detailed explanation of the method can be found in Ref. [92]. I note however, that

keeping track of the mass content in each interface nodes allows one to accurately model

the coalescence of bubbles (if the disjoining pressure term is correctly calibrated) which

occurs when the fluid content of the interface node separating to adjacent bubbles has fully

drained out of the interface. Finally, for all calculations involving solid surfaces, the contact

angle between the interface separating the two fluid phases and the solid boundaries is such

that the gas phase is non-wetting.

4.3.2 Decompression scheme

During volcanic eruptions, decompression exerts a major control on the physical state of the

magma. The change in pressure influences the density of the gas phase (through my assumed

ideal gas law) and also the solubility of the volatile species dissolved in the melt (here again I

limit the study to water). A large number of experiments were designed to study the growth

regime of suspension under different decompression conditions, from a static decompression

(instantaneous pressure drop) to constant decompression rates [21,52,55,94]. While many of

these studies focused on the transition from equilibrium to non-equilibrium bubble growth

as function of imposed decompression rates and melt viscosity [52, 55, 126], other studies

investigated the effect of bubble-bubble interactions on the growth rate of a suspension [94],

the vesicularity at the onset of coalescence [21, 93] and the effect of shear on coalescence

and the formation of outgassing permeable pathways [132].

During decompression, two processes lead to bubble growth: (1) mechanical expansion

(no mass exchange between the melt and the suspension) and (2) degassing by diffusion

from a supersaturated melt to adjacent bubbles. In this section, I focus first on mechanical

expansion. In order to account for decompression, I modified the scheme presented above

to allow for the pressure in the gas phase to evolve in response to the change of ambient

pressure. For simplicity, in the light of my model, I assume a pressure reference frame where

the pressure in the ambient melt pamb (which is supposed to follow closely the decompression

pressure path) is constant over a given run. In that reference frame, the pressure in bubbles

is expected to increase if the bubble overpressure develops, i.e., if the decompression rate is
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fast enough for the growth of the bubble to be impeded by the viscous melt. Assuming a

decompression rate in the melt (dp/dt)dec (< 0 for decompression), the pressure evolution

in bubbles does not follow Eq. 4.12, but rather

dpg
dt

= RT

[

1

V

dn

dt
− n

V 2

dV

dt

]

−
(

dp

dt

)

dec

, (4.17)

where the number of moles of gas n is allowed to evolve with time (in the case of exsolution),

the volume V can change in response to mechanical expansion and because the number of

moles increases by diffusion if the solubility of dissolved water decreases during decompres-

sion (see next subsection). The effect of surface tension and the disjoining pressure can be

added into the boundary condition similarly to Eq. 4.14. In the limit where diffusion of

dissolved water is neglected, the pressure evolution reduces to

dpg
dt

= −RT
n

V 2

dV

dt
−
(

dp

dt

)

dec

, (4.18)

where the pressure equilibrium between the melt and the bubbles (no residual overpressure)

is reached when the volume change of bubbles accomodates all the decompression of the

modeled magma parcel, which occurs only when the growth of bubbles is not viscously

limited.

The decompression model presented here does not restrict one from studying the effect

of non-uniform decompression rates (although not the focus of this chapter). Nevertheless,

Eq. 4.17 can limit the choice of timesteps (small time steps) for large decompression rates,

as the pressure in the bubble must remain > 0. The scheme was found to be stable over

the whole range of calculations presented in this study.

4.3.3 Volatile diffusion and bubble growth

In order to allow for the degassing of dissolved volatiles, the model needs to account for

diffusion of dissolved volatiles in the melt. I use a similar approach to Ref. [92], where

a second set of distribution functions gj is used to model an advection-diffusion equation

with imposed concentration boundary conditions at the bubble-melt interfaces. Because

the advection-diffusion equation requires less symmetry than the momentum conservation

in the lattice Boltzmann method, I use a different lattice topology with four velocities
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(D2Q4, see Fig. 4.1c). The lattice nodes for gj coincide with the D2Q9 lattice used for the

flow calculations. A similar discretized Boltzmann equation can be solved for the dissolved

volatile concentration

gj(x+ ej, t+ 1) = gj(x, t) +
1

τG
[geqj (x, t)− gj(x, t)], (4.19)

where the velocity index j = 1, . . . , 4 (see Eq. 4.2). The relaxation time τG is related to the

diffusion coefficient of the dissolved volatiles in the melt

DH2O = c2sG

(

τG − 1

2

)

, (4.20)

and the constant c2sG = 1/2 for the D2Q4 lattice. The local dissolved water content is

retrieved from the distribution with

C(x, t) =

4
∑

j=1

gj(x, t), (4.21)

and the equilibrium distribution is given by

geqj (x, t) = wj,GC(x, t)

(

1 +
ej · u
c2sG

)

, (4.22)

where the velocity u is obtained from the Navier-Stokes solver (from the distributions fi),

wj,G = 1/4 for i = 1, . . . , 4 are the lattice weights for the distributions gj corresponding

to the four discrete velocity vectors ej which point (East-North-West-South, see Fig. 4.1).

The equilibrium distribution are therefore a function of the local flow velocity and the local

concentration only. The water-dependence of the diffusivity can be easily included in the

model by setting the relaxation time τG to be function of the dissolved water content C. This

effect will not be explored here, but will part of a subsequent study. This lattice Boltzmann

model for advection diffusion was shown to recover the advection-diffusion equation [190]

∂C

∂t
+ u · ∇C = ∇ · (DH2O∇C) . (4.23)

I impose the dissolved water content in the melt at a bubble-melt boundary to follow

Henry’s law

Cb(x, t) = S
√
pg, x ∈ Interface cell (4.24)
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with S the Henry’s constant and pg the bubble’s pressure [182]. This boundary condition at

the interface site is imposed by setting the missing distributions (coming from the adjacent

gas-cell) gx to

gx = geqx (Cb,u) + geqx̄ (Cb,u)− gx̄(Cb,u), (4.25)

while the other gj ’s are set to gj(Cb,u). In Eq. 4.25, the overbar defines the opposite velocity

direction, e.g., 1̄ = 3. The bubble model, including the diffusion of the dissolved volatiles,

at the exception of the decompression scheme, has been validated in previous studies [92].

As one of my long term interests is to allow for degassing and bubble growth during

decompression, the decompression rate (dp/dt)dec should be included into the advection-

diffusion scheme for dissolved water in the melt. As the pressure exerts only a second order

effect on the diffusivity of dissolved water in the melt, I will not consider this effect here.

Following the decompression scheme described above, where the pressure reference-frame

follows the pressure of the ambient melt, the decompression rate is expected to play a role in

the solubility of water at the bubble-melt interface. I therefore introduce the decompression

of the suspension into the boundary condition with

Cb(x, t) = S

√

√

√

√

√pg +

t
∫

0

(

dp

dt

)

dec

dt. (4.26)

A first note concerns the sign of (dp/dt)dec, because it is negative the decompression term

leads to a decrease in solubility with time. It is important to note, however, that if the

bubble growth is limited by the viscosity of the ambient melt, the overpressure buildup in

the bubble in response to the decompression can ideally compensate for the decompression

of the magma and, in that particular case, the solubility of water at the bubble interface

should remain constant as is expected from the expression above.

4.4 Validations

A detailed description of benchmark problems solved with the generic free surface lattice

Boltzmann model can be found in Ref. [92]. Here, I focus on validations regarding the

additions I made to the model: the decompression scheme.
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4.4.1 Single and multiple bubble growth by expansion during decompression

The following calculations are meant to test if the pressure evolution equation (Eq. 4.17)

allows one to solve for the expansion of a bubble or a bubble suspension (up to 120 differ-

ent bubbles) during a constant decompression rate experiment, in the absence of degassing

(no diffusion growth). All the runs presented here use similar initial conditions, I nor-

malize pressure with regards to the initial ambient pressure pamb(t = 0) = 1, and start

with N = 1, 5, 40, 120 bubbles with a given initial radius r0 (initially monodisperse size

distribution). The physical domain can be decomposed in two main regions, the suspension

(melt+bubbles) that occupies the lower half and a free surface with a fictitious atmosphere

in the upper half. The presence of the free surface and atmosphere is required to allow

for the suspension to expand (increase in volume). The whole domain is bounded by solid

walls and is isochoric (constant total volume during decompression). In all the following

calculations, I use a constant decompression rate with a duration ∆t (5000 time steps in

my simulation) so that
(

dp

dt

)

dec

∆t = −3

4
pamb(t = 0). (4.27)

For a single bubble, I should therefore expect the final volume of the bubble to be four

times greater than its initial volume, given that enough time is allowed for the bubble-melt

system to relax to a new steady-state. In Fig. 4.2, I show the evolution of a single bubble

during a decompression experiment (the decompression lasts for only half of the calculation

time, i.e., 5000 time steps). In general, starting with N bubbles each with an initial volume

V0 and a volume of melt (incompressible, constant) Vm, I get by mass conservation between

the initial and final stages

NV0

NV0 + Vm
= C 4×NV0

4×NV0 + Vm
, (4.28)

where C is the expansion factor and Vm can be calculated from the vesicularity φ of the

suspension at t = 0. I can compare the value of C obtained theoretically with Eq. 4.28 with

the ratio of final to initial suspension vesicularity in my calculations. In Tab. 4.1, I use the

initial vesicularity in my calculations to compute the theoretical expansion factor and final

vesicularity, these results are then compared graphically with the timeseries of increasing

81



vesicularity obtained numerically with my decompression model (see Fig. 4.3). I observe

that in all cases, even when coalescence is prominent (the run containing intially 120 bubbles

reaches a steady-state with 29 bubbles), the agreement is excellent between the numerical

model and the theory. Because coalescence does not have a significant importance on the

final steady-state vesicularity of a decompressed suspension, I used an arbitrary value for the

constant cΠ that controls the amplitude of the disjoining pressure term. In the following

calculations, the coalescence rate becomes important and I will calibrate the disjoining

pressure constant value with laboratory experiments.

4.4.2 Growth of a single bubble

An empirical test for my model is to reproduce the qualitative features observed in other

numerical models and laboratory experiments during the growth of a single bubble by

diffusion and expansion during a linear decompression event. First, when the bubble is

small and the diffusive flux of water to the bubble interface can be neglected, the growth of

the bubble is delayed [97,103,152,154,182]. Ref. [97] showed that under this growth regime

(often referred to as viscous-limited growth regime), the bubble radius grows exponentially

and the argument of the exponential growth depends on the timescale for viscous relaxation

tvisc and the timescale for decompression tdec [63, 97]

R(t)

Ri
= exp

(

t∗2
2

tdec
tvis

)

, (4.29)

where t∗ = |dp/dt|t,

tvis =
4µ

pi
(4.30)

tdec =
pi

|dp/dt| , (4.31)

with the subscript i referring to an initial condition (prior to decompression), pi the initial

ambient melt pressure and µ is the dynamical viscosity of the melt, here assumed constant.

In Fig. 4.4, I show the volume and radial growth of the bubble obtained with my model. The

different insets correspond to snapshots taken at different times during the growth. I clearly

observe an early exponential growth stage that is consistent with the time-delay process

observed in other numerical models [97,103,152,154]. As the bubble grows, the balance for
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Table 4.1: Summary of results from the decompression of a bubble suspension

N(t = 0) φ(t = 0) N(∆t) C theory C calculated φ(t = ∆t)

1 0.019 1 4 4 0.076
5 0.0099 5 3.08 3.11 0.0308
40 0.077 27 3.27 3.273 0.252
120 0.22 29 2.42 2.418 0.532

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2000 4000 6000 8000 10000

V
(t

)/
V

(t
=

0
)

time

LB
theoretical final volume

Decompression stage

Figure 4.2: Linear decompression of a bubble. The decompression phase lasts for 5,000
iterations. Here only mechanical expansion is allowed (no diffusion) and the bubble reaches
its final expected size (see dashed line) after decompression. The oscillations observed
around the steady state are caused by capillary waves generated at the free surface by the
growth of the bubble during the decompression phase.
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growth becomes different and displays the usual sigmoidal radius growth observed in other

models [152,154].

4.5 Bubble-bubble interactions

The interaction between bubbles in a suspension is highly non-linear and has been neglected

in existing bubble dynamics models in physical volcanology. This results in serious limi-

tations of these models when applied to magma ascent during eruptions. The focus of

my model is to account for these non-linear interactions between bubbles under a range of

realistic magmatic conditions. In this section, I demonstrate the ability of the model to

treat bubble thermo and hydrodynamic interactions during diffusion (Ostwald ripening),

deformation and coalescence.

4.5.1 Diffusion and Ostwald ripening

In a polydisperse bubble suspension, diffusion coarsening, often referred to as Ostwald

ripening, can lead to the growth of large bubbles at the expense of smaller ones [96]. A

similar process is known to operate during the growth of crystals in magmatic and high

temperature metamorphic environment [127,144]. This process occurs because the growth

of large bubbles (or crystals) and the disappearance of smaller ones is more favorable in

terms of surface energy.

This coarsening process was first recognized by Ref. [138], but it took about 60 years to

establish a theory that yields quantitative predictions. The physics underlying the coars-

ening is simple: because of surface tension, small bubbles have a higher gas pressure than

larger ones. In fact, assuming static conditions the difference in pressure between two

spherical bubbles with radius r1 and r2 is

∆p = p1 − p2 = 2σ

(

1

r1
− 1

r2

)

. (4.32)

The pressure difference increases with bubble volume differences and surface tension. The
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but it did not affect the accuracy of the decompression scheme.
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onset of the growth. Panel (b) shows a fit of my results with the exponential growth derived
for early growth by Ref. [97].
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diffusion of dissolved water from a small to a large bubble is caused by the the pressure-

dependence of the solubility condition at the bubble-melt interface (Henry’s law)

C1 = S

√

pamb +
2σ

r1
(4.33)

C2 = S

√

pamb +
2σ

r2
, (4.34)

if r1 < r2, then C1 > C2 and water will diffuse from the small to the large bubble, further

increasing the capillary pressure difference and the coarsening process. The development of

analytical models with predictive capabilities is however not simple.

A major difficulty for modeling this process arises from the boundary conditions, the

concentration of dissolved water changes over time and so does the position of the two

boundaries as one bubble shrinks and the other grows. The first predictive models were

based on highly idealized bubble population statistics, such as the LSW model developed by

Lifshitz and Slyozov [100] and Wagner [205]. These models assumed that the bubble remains

spherical at all time, and more importantly, that the suspension is dilute, the interaction

between bubbles was replaced by a mean-field interaction. These models predict that, during

steady coarsening, the average bubble radius increases with time1/3 for diffusion-controlled

growth. Recently, more sophisticated models of population dynamics emerged, like the

model of Ref. [37] where the mean-field approximation was replaced by a nearest-neighbor

interaction. Theoretical models of transient coarsening are still built on a large number

of simplifying assumptions and a theoretical model that allows to account qualitatively for

Ostwald ripening processes remains challenging.

For magmatic suspensions, Refs. [118,119] discussed vesicle size distribution in basaltic

magmas (VSD, equivalent to BSD) erupted either effusively or explosively. Although the

importance of diffusive coarsening was not directly measured in the skewed VSD distribu-

tion, the faster diffusion and also broader range of radii among coexisting bubbles make

basaltic magmas more prone to display efficient diffusion coarsening. Estimates of the du-

ration for the diffusive exchange of water between bubbles separated by a melt film was

discussed by Proussevitch and co-workers, using again some important assumptions such
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as steady-state diffusion and simple geometry [152]. Under these assumptions, they an-

ticipated that the radius of the shrinking bubble had to decrease with the square-root of

time. This model does not take into account the change in film thickness that is expected

to happen during the process. Ref. [96] presented laboratory experiments to study Ostwald

ripening in magmas with different compositions (mafic andesite to rhyolite). They showed

that, in agreement with a multitude of other laboratory experiments, the temporal evolution

of the bubble’s radius expected from the LSW theory is not obtained. They concluded that

transient coarsening with widely variable growth rates was more susceptible to be relevant

during fast degassing event such as during the ascent of bubbles in a volcanic conduit.

Available bubble growth models in physical volcanology can not account for diffusive

coarsening. This is because these models are either assuming that the suspension is monodis-

persed (no gradients of solubility) or because they do not solve explicitly for volatile diffusion

around individual bubbles [50,199,217]. Recently, Ref. [217] expanded on the polydispersed

model of Ref. [199] and introduced a critical radius below which bubbles where made to

disappear to the benefit of larger bubbles. To a first order, they argued that the forced dis-

appearance of bubbles smaller than this critical radius could account for Ostwald ripening,

but the process is not explicitly solved for. In realistic scenarios, at high vesicularity, it is

likely than the coarsening of a volcanic foam can involve more than two partner bubbles of

different sizes.

My model allows one to model diffusive coarsening, because I can solve explicitly for the

dynamics of multiple bubbles with various sizes and water diffusion from and to neighboring

bubbles. In Fig. 4.5, I show an attempt of modeling Ostwald ripening, where two bubbles

of different initial sizes (r1 = 7 and r2 = 30 grid spacing) are initially separated by 4 lattice

nodes. The large bubble is initially in chemical equilibrium with the host melt. While the

smaller bubble loses water over time by diffusion, the pressure and temperature remain fixed

during this run. Although a comparison of the model with an analytical or asymptotical

solution remains mostly qualitative, this calculation highlights the potential of the method

to resolve complex thermodynamical interactions between neighbor bubbles. As I expect,

the total volume/mass of exsolved volatiles remains constant throughout the run (dotted
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line in the two upper panels), but the volume of the small bubble decreases with time while

the larger bubble grows.

Assuming steady-state diffusion, bubble growth in melt has been shown to follow a

parabolic growth rate r2 ∝ t. Similarly, the diffusive exchange of water across a melt film

separating two close bubbles of different sizes is expected to yield a parabolic shrinking

rate [152]

r20 − r2 ∝ (t− t0), (4.35)

where r0 is the bubble radius at time t0 < t. This scaling between the shrinking rate and

time is valid mostly for the early stage of the mass exchange, when the size of the small

bubble has not changed significantly. In Fig. 4.6, I compare the numerical results for the

evolution of the small bubble size with the scaling above and find a great agreement for

the first phase of the calculation. The latter stage of the calculation is marked by an faster

shrinking rate. The acceleration in shrinking rate is caused by two effects. The first effect is

that while the bubble’s volume decreases, the boundary of the small bubble recedes faster

than the large bubble boundary advances because of the different surface to volume ratios of

the two bubbles. This leads to a change in film thickness that affects the idealized parabolic

shrinking law. The second effect is merely numerical; when the shrinking bubble becomes

small, the spatial resolution becomes more limited and the results less accurate.

4.5.2 Calibration of the model for coalescence with laboratory experiments

During bubble coalescence, a melt film separating the bubbles drains and shrinks until a

critical thickness (δcrit) is reached and the film suddenly ruptures. Capturing the exact

physics of this phenomenon is impossible from the numerical point of view, because the

complex dynamics in the film occurs ultimately at scales significantly smaller than the

effective radius of the bubbles (δcrit ∼ 10−7m), and the dynamics of the film rupture is much

faster than the drainage and poorly constrained. The model I propose offers two advantages

over standard multiphase LB models where bubble coalescence occurs automatically when

the two free surfaces approach each other to within a computational grid cell. First, the

mass conservation during the drainage of film fluid is resolved locally to a subgrid-scale
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(Eq. 4.10). Second, and most importantly, an additional pressure term is introduced in

the stress boundary condition at each free surface to account for the interaction between

neighbor free surfaces, the disjoining pressure (Eq. 4.14). The disjoining pressure term is

expected to become significant for surfactant rich interfaces, where foams can become stable

over much longer timescales. I use cΠ as a free parameter to account for the subgrid effects

of lubrication forces on the stabilization of the film prior to rupture.

In order to calibrate the disjoining pressure term, I designed the simplest experiment

that accounts for two approaching and distinct free surfaces: a bubble approaching and

bursting at a free surface. In the laboratory, air bubbles where injected into silicon oil

(using a range of oil viscosity) [130]. I decided to use these experiments to calibrate the

disjoining pressure dependence on the Bond number Bo= ∆ρgR2/σ. Fig. 4.7 shows a

visual comparison between two selected experiments and a numerical calculation with my

free surface model. The duration of the film drainage between the bubble and the free

surface was measured over a range of bubble radii. In the experiments, the flow regime

is viscous, i.e., inertial forces are negligible. The reader is referred to Ref. [130] for a

thorough description of the experimental setup. The experiments revealed the existence of

two regimes of film drainage at low Re, depending on the balance between buoyancy and

surface tension stresses (Bond number). At Bo < 0.25, in the capillary-dominated regime,

the film drainage is caused by surface tension, and the characteristic timescale for drainage

was found theoretically and experimentally to be

tc = Cc ln

(

δ0
δcrit

)

µR

σ
, (4.36)

where sigma is the surface tension between the two immiscible fluids, R the effective bubble

radius, µ the dynamic viscosity of the ambient fluid, δ0 the initial film thickness (before

drainage) and Cc a constant which value was found experimentally to be about 20 [36,130].

The ratio δ0/δcrit was estimated from natural samples to be of the order of 102 to 103.

As buoyancy stresses become more important (Bo > 0.25), the drainage regime is gov-

erned by the balance between buoyancy and viscous stresses. The drainage time is then

tg = Cg ln

(

δ0
δcrit

)

µ

∆ρgR
=

Cg

Cc
Bo tc, (4.37)
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where ∆ρ is the density difference between the bubble and the ambient fluid. The two

empirical constant Cc and Cg were found experimentally to be 20 and 5 respectively.

The same general setup was used for the numerical calculations, a buoyant bubble is

initially emplaced about 10 bubble radii below the unperturbed free surface. I compute

the bubble’s ascent, deceleration as it approaches the free surface and record the drainage

time leading to the bubble rupture at the surface. The drainage time is defined similarly

between the experiment and the calculations, it consists of the time interval between the

sharp slowdown of the bubble as it approaches the free surface (the center of mass decelerates

from a velocity close to the free ascent velocity for the bubble to rest) and the rupture of

the film when it reaches its critical thickness δcrit.

The disjoining pressure defined in Eq. 4.16 includes two constants cΠ and the range

of the interaction between free surfaces drange. The latter was fixed to the same distance,

3 gridpoints, as in the study of Ref. [92]. I decided to keep drange fixed and calibrate the

disjoining pressure by varying the constant cΠ so as to reproduce the dimensionless drainage

time observed experimentally over a range 0.1 ≤ Bo ≤ 4 that overlaps both drainage regimes

(capillary and gravity-driven). As expected, an increasing magnitude for cΠ yields a longer

drainage time, as shown in Fig. 4.8 taken at Bo = 1. One can clearly see the bubble slowing

down as it interacts with the free surface and the subsequent film drainage leading to the

bubble’s rupture.

I repeated similar calculations over a range of Bo varying the value of cΠ (Fig. 4.9). I

ran each calculations for about 200,000 iterations (in all case much longer than the expected

experimental drainage time) to map the regime where coalescence occured. I found that

there is a critical disjoining pressure constant value where the two bubbles remained stable,

and, that this value depends on Bo.

The experimental normalized drainage time was found to satisfy

td
tx

=











1 if Bo < 0.25 and x = c

1 if Bo > 0.25 and x = g.
(4.38)

Fig. 4.10b shows the best fit for cΠ to match the experimental results. Because of the
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two drainage regimes (below and above Bo = 0.25), the calibrated value for cΠ becomes

cΠ(Bo) =











1.57 × 10−3Bo + 1.59 × 10−5 if Bo < 0.25

1.27 × 10−4Bo2.1 + 6.6× 10−4 if Bo > 0.25.
(4.39)

In the near future, I plan to conduct similar type of combined experimental-numerical

effort to constrain the dependence of the disjoining pressure Π on the Capillary number

(shear to surface tension stresses). In the latter case, bubble deformation and its feedback

into capillary stresses can significantly impact the film drainage rate during coalescence.

4.5.3 Sheared suspensions

The effect of dispersed bubbles on the rheology of magmas has been studied theoretically

and experimentally [115,116,183,186,193]. It was found that the presence of bubbles induces

a shear thining behavior, i.e., the effective viscosity decreases with increasing strain-rates.

Bubbles influence on the effective viscosity are strongly controlled by the capillary number.

At low Ca, when bubbles remain spherical because surface tension dominates the force

balance at the scale of the bubbles, the effective viscosity is greater than for a melt with

no bubbles. At large Ca (> 0.1), when bubbles can accomodate a substantial part of the

deformation in the suspension, bubbles decrease the effective viscosity of the mixture. The

importance of the suspension vesicularity has also been studied extensively and it was shown

that the viscosity of the suspension increases weakly with vesicularity, at least in the limit

of low vesicularity studied (< 10% in most cases). Here, I discuss the effect of a constant

imposed shear-rate on a suspension and, more specifically, I focus on the deformation and

orientation of these bubbles in response to an imposed simple shear.

The evolution of a sheared suspension is important because the rheology of the mixture is

sensitive to the bubble size distribution, i.e., small bubbles can increase the effective viscosity

of the mixture because of their resistance to deformation (low Ca), whereas large bubble

will tend to accomodate most of the strain and therefore reduce the effective viscosity of

the suspension. In this study, I explore the behavior of suspension over a range of imposed

shear-rates (I fix the initial bubble size, and hence the initial bubble Ca), but I do not

account for degassing. The aim of these calculations is (1) to validate my bubble dynamics
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calculations under shear conditions with published theory and experiments for a single

bubble, and, (2) to investigate the role of bubble interactions on the distribution of bubble

shapes and orientations.

I present three sets of calculations. First, I compare and validate my numerical results

for the steady shape and final orientation of a single bubble under simple shear conditions

with theoretical and experimental results obtained by Refs. [73, 157, 160]. The second set

of calculations aims at characterizing how the presence of other bubbles with the same

size (dealing now with a monodisperse suspension) affects the distribution (average and

standard deviation) of deformation and orientation in a suspension. Finally, introducing a

bimodal initial bubble size distribution, I test the effect that smaller bubbles (more difficult

to deform) have on the deformation and orientation of larger ones.

The LBM offers a very convenient approach to impose velocity boundary conditions on

solid sites. I use the boundary condition of Ref. [227] to impose a velocity (Uw, 0) at the

lower wall and a standard bounceback of the distribution for the no-slip boundary condition

on the top wall (see Fig. 4.11). The missing distribution in melt-sites adjacent to the lower

boundary (moving wall) are f2, f5 and f6, i.e., the distributions i with ei · ny > 0, where

ny is the upward (+y) normal to the wall

ρ = f0 + f1 + f3 + 2 (f4 + f7 + f8) (4.40)

f2 = f4 (4.41)

f5 = f7 +
1

2
(f3 − f1) +

ρUw

6
(4.42)

f6 = f8 +
1

2
(f1 − f3)−

ρUw

6
. (4.43)

The capillary number Ca that represents the ratio of viscous to surface tension stresses is

defined as

Ca =
ρνUwr

Hσ
, (4.44)

where r is the initial bubble size, ρ and ν refer respectively to the melt density and kinematic

viscosity [186]. If the capillary number is identical for each bubble initially, coalescence

will lead to a polydisperse bubble size distribution and therefore lead to a range of Ca in

the suspension. In all these calculations, the domain is bounded on the sides by periodic
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boundaries and the whole system is oriented perpendicular to the direction of gravity (no

buoyancy effect).

If the viscous stresses are negligble with respect to surface tension stresses (Ca ≪ 1),

the bubble remains undeformed (spherical) and remains invariant under the rotation. With

increasing Ca, the bubble starts to deform and loses its spherical symmetry. The bubble

therefore rotates until the drag force applied by the melt to the bubble balances surface

tension (here I only consider flows where inertia can be neglected). The elongation of the

bubble, once it reaches a steady shape, is often characterized by the dimensionless quantity

D =
l − b

l + b
, (4.45)

where l and b are respectively the long and short semi-axis of the elliptic or pseudo-elliptic

final shape [73,160]. It is easy to see that 0 ≤ D < 1, where the two bounds hold respectively

for an undeformed spherical bubble (D = 0) and an infinitely elongated bubble. Finally,

the angle between the long axis of the bubble and the direction of the shear is defined as θ

(see Fig. 4.11 for an illustration of these definitions on results from calculations conducted

at Ca = 0.2 and 0.5).

4.5.3.1 Validation of the model for the deformation of a single bubble under simple
shear

Since the seminal work of G.I. Taylor, the deformation of inviscid or nearly inviscid bubbles

under shear flow conditions as been studied extensively [73, 157, 160]. These studies have

yield many important results, in a context of a single deforming bubble, I will focus on the

following set of theoretical and experimental results to test my model. First, for moderate

Ca, i.e., Ca < 103, such as those expected under most magmatic conditions, bubbles are

expected to reach a steady configuration and not break into smaller bubbles [11,73]. Second,

for low Ca, i.e., Ca ≤ 0.5, the deformation of the bubble follows

D ≃ Ca (4.46)

as shown by Ref. [193]. Under the same conditions (low Ca), the orientation of the bubble

reaches

θ =
π

4
− 0.6Ca. (4.47)
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At greater Ca (≥ 1), Ref. [73] derived theoretically that the ratio of the steady of the

elongated semi-axis of the bubble to its initial radius R follows

l

R
≃ 3.45Ca1/2, (4.48)

which, assuming a 2-D ellptical bubble, yields

D ≃ 11.9Ca − 4

11.9Ca + 4
. (4.49)

Similarly, they showed that, for large Ca, the orientation of the bubble at steady-state is

given by

θ = arctan
(

0.359Ca−3/4
)

. (4.50)

Rust and Manga demonstrated the validity of these relationship experimentally and pinned

the transition from low to high Ca regimes to occur around Ca = 0.5.

I run simple shear calculations in a 200×100 gridpoints domain over a range of shear-rate

conditions (0.1 ≤ Ca ≤ 4). For each run, the bubble shape and orientation was measured

at steady-state. My first test consist in a comparison between my numerical results, theory

and the laboratory experiments of Ref. [160] for the shape and orientation of the bubble

across a range of Ca. Fig. 4.12 shows a very good agreement between both datasets and

with Eqs. 4.46 and 4.49. It is important to remember, however, that my calculations are

limited to 2-D (temporarily, as I work on a 3-D extension). As such, some of the small-

scale discrepancies could be associated with the planar velocity field imposed by the 2-D

symmetry in my calculations. The final orientation of the bubble agrees very well with the

experiments of Ref. [160] and the scaling relationships presented in Eqs. 4.47 and 4.50. I

also find the transition between surface tension to viscous stress dominated regime to be

around Ca = 0.5, similarly to Ref. [160]. Finally, the relationship between the deformation

D of the bubble and its orientation θ also follows the experimental results of Rust and

Manga. This gives good confidence that my model captures accurately the stress balance

at the interface between a bubble and the ambient melt.
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4.5.3.2 Deformation and orientation of a mono-disperse suspension of bubbles

I conducted similar simple shear flow calculations with a suspension of 20 bubbles with an

initial radius of R. The initial position of each bubble was set randomly and I repeated each

calculation (for each choice of Ca) 3 times to get a sense for the variability of my results

with respect to these random initial conditions. The goal of these calculations is to study

the effect of other bubbles (suspension) on the distribution of θ and D values over a range

of capillary numbers and contrast those results with those for a single bubble.

In a suspension, the existence of a steady state is not guarantied, especially when Ca

becomes large. This is because shear promotes coalescence [132,133] and coalescence affects

the effective Ca of the suspension (as the average bubble radius increases at the detriment of

the bubble number density). Therefore, instead of focusing on the steady deformation and

orientation of the bubbles, I consider their temporal evolution parameterized in terms of

accumulated strain (ǫ = Uwt/H) and measure the distribution of D and θ at a few discrete

values of ǫ. This also allows one to compare the behavior of the suspension under different

shear conditions. I tried, as much as possible, to consider calculations where the amount

of coalescence was minimal and where the effect of bubbles on neighbor bubbles is mostly

limited to the deformation of streamlines.

In Fig. 4.13, I show the evolution of the average deformation 〈D〉m and average orien-

tation 〈θ〉m of the suspension over strain accumulation ǫ for Ca=0.1, 0.25, 0.5, 1, where

〈D〉m =
1

Nb

k=Nb
∑

k=1

Dk (4.51)

〈θ〉m =
1

Nb

k=Nb
∑

k=1

θk, (4.52)

Nb is the total bubble number. Figs. 4.13c and 4.13d illustrate the state of the suspension

with color coding for the melt velocity for Ca = 0.1 and Ca = 1 respectively at ǫ ≈ 6.923.

Suspension reaches a quasi-steady state after ǫ ≈ 2 − 3 as seen from panels a-b. The

steady state is defined as fluctuation around a constant value of 〈D〉 and 〈θ〉. At lower

Ca (< 0.5), when interfacial tension stresses σ dominate, the steady state is characterized

by 〈D〉m > Ds, where
′m′ denotes multi-bubbles cases, while ′s′ is for single bubble case.
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At higher Ca, when viscous shear stresses dominate, I can get the reverse result that is

〈D〉m < Ds. For the average orientation, 〈θ〉m is higher than θs at higher Ca. However, at

lower Ca, it is not very obvious that which is larger from the figure.

The bubble number Nb being modest and their initial distributions being random, I

ran 3 realizations for each set of calculation with different random initial positions for the

bubbles. Fig. 4.14 presents results at Ca = 0.1 and Ca = 1. In case Ca = 0.1, the three

runs match each other perfectly, all of which are almost overlap each other; for the Ca = 1,

the curves still match each other very well except for some slight differences. The results

are therefore reproducible regardless of initial bubble positions.

Generally, bubbles deform less compared to a single bubble at a given Ca above 0.5,

whereas the deformation in the suspension exceeds prediction from a single bubble at Ca <

0.5. Bubble volume fraction Φ, which is fixed in my multi-bubble suspension tests (Φ ≈

0.14), and bubble shape and orientation can affect the effective Ca∗ of suspensions by

influencing the effective viscosity ν∗. From Eqn(44), the effective Ca∗ of bubbly suspension

can be defined as follows,

Ca∗ =
ρν∗Uwr

Hσ
. (4.53)

Previous studies showed that low Re suspensions, with Ca in the range of (0, O(1)) are

shear thinning [45,68,116,160], which is to say the effective viscosity ν∗ is decreasing when

increasing Ca through increasing shear strain rate ǫ̇ = Uw/H. Although ν∗ is decreasing

with increasing Ca, ν∗ of multi-bubbles suspension system behaves differently in different

range of Ca with respect to ν of the suspension melt. The ratio of ν∗ and ν is above one

(0 < Ca < Cac), and lower than one (Cac < Ca < O(1)), where the critical capillary number

Cac ≈ 0.5−−0.7. Fig. 6 in Ref. [116] explained it in the following way: At lower Ca, bubbles

stay spherical, the effective viscosity increases with Φ because the deformed streamline

provide a net increase of viscous dissipation that is not compensated by the volume of quasi

inviscid bubbles. At higher Ca, the elongated bubbles tilt almost horizontally providing the

resistance to the flow of ambient melt. In addition, deformed bubbles can slide over each

other in higher Ca, which, due to bubble wall’s free surface properties, can help to reduce

the viscous dissipation. Fig. 5 in Ref. [160] showed their experiment results of relation
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between ν∗

ν and Ca. Bubbles with Ca < Cac experience a greater ν∗ of ambient melt with

increasing Φ, while bubbles at higher Ca experience a reduced ν∗. My results are in good

agreement with their studies.

My model offers a accurate description of bubble-bubble and bubble-melt hydrodynamic

interactions. In the near future, I plan to explain how bubble deformation under shear flow

conditions affects growth by exsolution. Bubble deformation leads to a greater interfacial

area btween bubbles and melt which can promote faster degassing than expected from the

models of Refs. [50, 97,99,111,152,154,199].

4.6 Conclusions

The goal of this study was to develop a bubble growth model in magmas that accounts for

bubble-bubble interactions hosted in a melt at rest or subjected to shear flow conditions, and

obtain a more accurate description of the dynamics of bubbles during the ascent of magma

to the surface. The model I propose is based on an adaptation of the free surface lattice

Boltzmann model. I added a decompression algorithm to study the growth of bubbles by

mechanical expansion and diffusion. The model was validated against analytical solutions

and results from other bubble growth models. The advantages of this model over existing

bubble dynamics models is that it allows to account for the complex non-linear dynamics

of bubbles growing in a silicate melt as the vesicularity increases and bubble-bubble and

bubble-structure (shear flow near conduit walls for instance) interactions become more

important. The model also includes a free parameter (the disjoining pressure constant) that

allows one to fine tune the model against laboratory experiments to reproduce accurately

coalescence.

After the description and validation of the model, I conducted bubble dynamics calcula-

tions that involve non-linear dynamical aspects that are not accounted for in other models

such as Ostwald ripening and bubble(s) deformation under simple shear flow conditions

over a range of capillary numbers. The model is able to reproduce the scaling expected

for Ostwald ripening, which confirms its ability to handle mass transfer of dissolved water

between bubbles of different sizes. On the other hand, the simple shear flow calculations for
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a single bubble follow accurately the scalings and experimental results obtained in previous

studies, confirming that my model solves accurately the viscous coupling between a bubble

and the melt.
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Figure 4.5: (a) Volume of each bubble during the mass exchange caused by Ostwald ripening
between two bubbles (see evolution below). Panel (b) Normalized volume change for each
of the bubbles as function of time.
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Figure 4.6: Comparison between the numerical results for the small bubble radius change
with time. The early trend is in good agreement with a parabolic law, as expected. See the
text for more details.
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5 mm

t1 = 6.294 s t2 = 7.194 s

t3 = 9.296 s t4 = 15.602 s t5 = 46.940 s
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Figure 4.7: Examples of sequences of photographs taken during the bubble rise and film
drainage in two experiments and comparison with my numerical results.
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200,000 iterations.
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Figure 4.11: Illustration of the measurments used to characterize the bubble final orientation
and shape. The actual bubbles shown here come from two calculations with Ca = 0.2 (left)
and 0.5 (right).

104



0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

D

C/

1345678/9 65:39;:
<>C/

?4 @ aC 9A11E/?4 - aC 9A11E<F

0

10

20

30

40

GH

0 HAG 1 IAG 2 JAG 3 KAG 4

θ

Ca

1345678/9 65:39;:
θ=πLM OHAP C/

/;/QEHAKGR C/-3/4?

0

10

20

30

40

GH

0 HAJ HAM HAP HAS 1

<

1345678/9 65:39;:
θ>OTGAJM <2@PAHG < @ MMAHI

θ

UW

XW cW dW

Figure 4.12: (a) Deformation of streamlines by the bubble (Ca = 0.5). (b) Results for the
steady bubble shape D as function of Ca in my simple shear calculations. The dashed lines
represent the theoretical trends and match closely the experimental results of Rust and
Manga. (c) Same for θ and (d) for the correlation between the bubble’s orientation and
elongation.

105



0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

〈D
〉

 

 

a

0 2 4 6 8 10 12
10

20

30

40

50

ǫ

〈θ
〉

 

 

b

y

c

Ca=0.1
 

 

x

y

d

Ca=1

Ca=1
Ca=0.5

Ca=0.25
Ca=0.1 0      Uw

Figure 4.13: (a) Evolution of average deformation 〈D〉m of bubbles with strain accumula-
tions under four different Ca (0.1, 0.25, 0.5, 1).(b) Evolution of average orientation 〈θ〉m
of bubbles under the same Ca numbers as (a). Standard errors for each data points are
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CHAPTER V

OTHER TOPICS

Over the previous chapters, the focus was on the chemical and dynamical coupling be-

tween bubbles and melts. I have also worked on other topics over the course of my Ph.D.

study. This chapter discusses an example of this additional work. I present a study of

the dynamical response of saturated porous media to transient stresses using a pore-scale

modeling approach. Four different porous media topologies are used to study how they

respond dynamically to transient pore-pressure forcing. This chapter represents the work

that I co-authored published in Ref. [75]. My contribution to this work was running the lat-

tice Boltzmann model for the various geometries and analyzing the dynamical permeability

simulation outputs.

5.1 Dynamic response of saturated porous media to transient stresses

5.1.1 Introduction

The Earth’s crust is porous and heterogeneous over a wide range of length-scales [83].

In the upper few kilometers, the pore space is generally saturated with aqueous fluids

that play a significant role in water-rock chemical reactions. Pore fluids also affect the

physical properties of the heterogeneous medium. One of the most important properties

for mass and heat transport is the permeability of the matrix to the flow of fluids. Besides

long-term changes in permeability associated with chemical reactions and pore clogging,

the response to rapid stress transients (dynamic stresses) can also significantly affect the

effective permeability of saturated porous media because of poroelastic effects [14–16,194].

Biot [14, 15] developed the first theoretical model of the propagation of acoustic waves

in saturated porous media in the mid 1950s. Biot found two independent solutions to the

propagation of acoustic waves in porous media that he referred to as waves of the first and

second kind. For both types of waves, the net drag force exerted by the solid matrix on

the fluid controls the dissipation of mechanical energy and by extension the attenuation of
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the propagating waves. At low frequency, the wave of the second kind, sometimes referred

to as Biot Slow wave, consists of pressure transport by diffusion (darcy transport) and can

lead to larger attenuation over the seismic frequency band [151]. An important concept

that emerged from the work of Biot is that the drag force that couples the fluid to the

solid matrix is frequency dependent and can be represented as a dynamic correction on the

effective fluid viscosity.

Following the seminal work of Biot, several groups studied the discharge of pore fluids

subjected to harmonic pressure forcing and found, in agreement with Biot’s analysis, the

effective permeability of the medium to be frequency-dependent and complex valued at

high frequency (π/2 phase lag between the forcing and the discharge) [12,16,85,181]. The

frequency-dependent permeability is often referred to as the dynamic permeability of a

medium. The JKD dynamic permeability model offered the first scaling relationship to

model the frequency-dependence of permeability [85]. It relies on a single free parameter,

the rollover frequency ωc, which depends on fluid and matrix properties. This critical

frequency represents the transition from viscous to inertia-dominated momentum balance

in a homogeneous porous medium (order of kHz or higher for water saturated sandstones)

[151]. Later, the model was verified experimentally and numerically using simple geometries.

Additionally, Smeulders et al. [181] provided a more rigorous mathematical validation of

the model using standard homogenization methods.

For the most part, pore-scale calculations have been limited to simple and highly sym-

metric geometries because of computational limitations. Numerical results showed a good

agreement with the existence of a single scaling function (related to the critical frequency)

that was assumed in Ref. [85]. Recently, a pore-scale study using a lattice Boltzmann

flow solver was able to extend the range of validation to more realistic geometries [147].

Their study actually solved for the dynamic permeability with a different problem setup.

The porous medium is periodic and therefore infinite (no boundary conditions), the flow

is buoyancy-driven and the forcing is homogeneous and applied through a transient har-

monic perturbation of the bulk force responsible for the flow. In this study, I use a lattice

Boltzmann pore-scale flow model to investigate different porous media topologies and their
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effect on the dynamic permeability and verify the scaling of the JKD model. Each domain

has finite dimensions and the flow is pressure-driven. The dynamic forcing is introduced

by an imposed pore pressure oscillation at one of the boundary. Although the difference in

these two models is subtle, the choice of setup can lead to significantly different outcomes,

and the effect of finite domains and pressure boundary conditions need to be studied. I

observe that the dynamic permeability response is generally in good agreement with the

scaling proposed by Johnson et al. [85] and Smeulders et al. [181]. I discuss these results in

analogy to well-known properties of electric circuit involving a resistor and a capacitor in

parallel (Debye relaxation).

In specific cases, however, I observe a significant departure from the JKD (or Debye

relaxation) model. In particular, I observe features that suggest a resonance behavior which

is not consistent with the theory of Johnson et al. [85] and Smeulders et al. [181]. I propose

two alternative explanations for the existence of resonance. First, using a continuum scale

argument, I discuss the importance of a correction term to Darcy’s law for transient flows

that allows one to derive an hyperbolic version of the mass conservation equation. I show

that this new mass conservation equation converges to the standard parabolic diffusion of

pore pressure at low frequency, but allows the propagation of damped waves and resonance

at high frequency. Although this continuum-scale model offers a satisfying framework to

explain the occurrence of resonance in one medium, it fails to explain the lack of resonance

in the three other media. Alternatively, I suggest that pore-scale effects, such as different

pore-size distributions (PSD) can facilitate pore pressure excitation between heterogeneous

flow pathways in response to forced pore-pressure excitations.

5.1.2 Background

Biot [16] introduced a model for the propagation of acoustic waves in saturated porous

media by computing the net drag force between the fluid and an oscillating matrix under

simplified geometry such as poiseuille and duct flows. He showed that the drag associated

with harmonic forcing leads to an effective fluid viscosity that can become complex and

that displays a frequency-dependence. It is important to note that Biot’s approach was
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conducted at the pore-scale and used an unsteady version of Stokes equation for the flow in

the limit of a compressible fluid. The momentum equation represented therefore a balance

between three terms, inertia, pressure and viscous stresses.

Johnson et al. [85] and Smeulders et al. [181] showed that by matching inertial forces

associated with the transient forcing with viscous forces a critical frequency emerges

ωc =
η

ρfk0α∞

(5.1)

where η is the dynamic viscosity of the pore fluid, ρf its density, k0 the static permeability,

φ the porosity of the medium and lastly α∞ is the dynamic tortuosity at infinite frequency

of the medium which is related to the formation factor F = φ/α∞ [85].

The ratio of the forcing frequency ω to ωc controls the dynamic response of saturated

(homogeneous) porous media to transient pore pressure forcing. It is important to note that,

in isotropic homogeneous media, the effect of the microstructure of the porous medium only

emerges through three independent scalar parameters, the static (ω → 0) permeability, the

porosity and the formation factor of the medium. As discussed by Pride et al. [151], once

corrected for the dynamic permeability response, using mass conservation, the partial differ-

ential equation that describes the evolution of the pore pressure is a diffusion equation and

therefore is parabolic and dissipative. I therefore expect that the forced pressure oscillations

decay with time as expected from a diffusion equation.

5.1.3 Methods

5.1.4 Computation of the formation factor

I constructed four porous media synthetically, either by using a stochastic algorithm of

crystal nucleation and growth following the method described by [70] (textures referred

to as Rectangles and Spheres) or creating void space with simple geometrical shapes (e.g.,

spheres, tubes and wave-looking tubes). Fig. 5.1 shows the pore structure of the four media.

The formation factor of a heterogeneous medium is defined as the effective electric

conductivity of the medium normalized to that of the pore-filling fluid assuming the solid

matrix is a perfect insulator. I use the analogy between the steady-state solution of the
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(heat) diffusion equation and the solution to poisson’s equation for the electric potential in

heterogeneous media.

I apply a 3-D lattice Boltzmann model for heat conduction in porous media. In the

lattice Boltzmann method, the diffusion equation is modeled following a statistical approach

it is replaced by a discrete version of Boltzmann’s equation. Boltzmann’s equation describes

the evolution of particle probability functions g(x,v, t) that represent the probability of

finding a particle at position x, traveling with velocity v at time t. Particles stream through

the domain and collide with each other, which leads to the following equation for the

evolution of the gis

gi(x+ eidt, t+ dt) = gi(x, t)−
1

τh

[

gi(x, t)− g0i (x, t)
]

(5.2)

where it is assumed that the collision operator reduces to a single relaxation time [13]. The

index i refers the discrete set of possible trajectories ei on the lattice (nearest neighbors),

τh is the relaxation time (related to the thermal diffusivity) and g0i are the local equilib-

rium particle probability distribution functions. The macroscopic field of interest, here

temperature T (x, t), is obtained by summing the local distribution functions

T (x, t) =
∑

i

gi(x, t). (5.3)

The equilibrium distributions are linearly dependent on the local temperature

g0i (x, t) = tiT (x, t) (5.4)

where ti are lattice weights, which in my model with 7 discrete velocity ei are t0 = 1/4,

t1−6 = 1/8 (see Fig. 5.2).

This method has been shown to recover the diffusion equation, in 3-D, and allows for

a simple treatment of the internal solid-fluid boundaries (no heat flux). This is done with

the bounceback rule that specifies that distributions are reflected on solid obstacles

gi(x, t) = gī(x, t) x ∈ Solid (5.5)

where the overbar denotes the velocity direction opposite to i, in other words, the dis-

tributions are all reflected backwards when they encounter a solid node in the physical
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Spheres Cuboids Wave Sphere+tube

Figure 5.1: Pore-scale representation of the four porous media. Warm colors (red) show
larger pores. All texture are synthetically constructed, Spheres and Rectangles are con-
structed with a stochastic nucleation and growth algorithm following the procedure de-
scribed by Hersum and Marsh [70].

Figure 5.2: Diagram showing the velocity discretization used for the lattice Boltzmann mod-
eling. On the left the 7 velocities ei (including a rest velocity e0) model for the calculation
of the formation factor is shown. On the right the 19 velocity model ci used for the flow
calculations at the pore-scale is illustrated.
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domain [79, 80]. In these calculations, the temperature at the inlet (z = 0) and outlet

(z = Lz) are fixed to 1 and 0 respectively. The calculations are run until a steady-state is

reached. For more information about lattice Boltzmann models for the diffusion equation,

the reader is referred to Ref. [213].

5.1.4.1 Lattice Boltzmann model for fluid flow

My pore-scale flow simulations are also based on the lattice Boltzmann method. I use the

Palabos open source library (www.palabos.org), to compute the 3-D flow field at the pore

scale in each medium. Similarly to the calculations of the formation factor discussed above,

I compute the evolution of particle probability density functions f(x,v, t) subjected to

streaming (free flow) and collisions with other particles or boundaries where mass and mo-

mentum are conserved locally. The discretized form of the evolution equation for f(x,v, t)

is similar as well

fi(x+ cidt, t+ dt) = fi(x, t) −
1

τf

[

fi(x, t) − f0
i (x, t)

]

(5.6)

where τf is the relaxation time to the local equilibrium distribution functions f0
i and i is

an index that discretizes the space of available trajectories for particles. Because of the

four scalar fields that are conserved locally (one for mass and three for momentum), the

particle motion is now limited to 19 directions, see Fig. 5.2. After assigning the first statis-

tical moments of the particle probability distribution functions fi to conserved macroscopic

quantities such as local density and momentum

ρ(x, t) =
∑

i

fi(x, t), ρu(x, t) =
∑

i

cifi(x, t), (5.7)

a multiscale expansion yields a compressible version of Navier-Stokes equations [47,48,71].

In the expansion, the kinematic viscosity of the fluid v is identified with

v =
η

ρ
= c2sdt

(

τf − 1

2

)

(5.8)

where c2s is a constant that depends on the choice of spatial discretization (1/3 here). In

each calculation, pressure boundary conditions are applied at z = 0 and z = Lz. In a first
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stage, steady boundary conditions are applied to obtain a steady discharge through the

medium. It allows one to calculate the static permeability

k0 =
ηLzq0
∆p0

(5.9)

where ∆p0 is that steady pressure drop imposed on the medium and the discharge is com-

puted with

q0 =
1

V

∫

V
v(x) · nzdx

3 (5.10)

with v(x) is the steady-state pore-scale velocity field and nz the direction along the pressure

gradient. After reaching a steady discharge, the outlet pressure is varied harmonically

around its static value P 0
out

Pout(t) = P (Lz, t) = P 0
out +∆p sin(ωt). (5.11)

I compute the flow field and therefore calculate the discharge with a high temporal reso-

lution during many pressure cycles to calculate the dynamic permeability. The amplitude of

the pressure fluctuations and gradients are small enough that compressibility effect remain

limited in my lattice Boltzmann simulations.

5.1.4.2 Post-processing of transient discharge data

In response to the dynamic pore pressure condition, the flux qout becomes

qout = q0out +∆q sin(ωt− ϕ), (5.12)

when the system reaches a quasi-steady state. ϕ is the phase lag between the flux and the

imposed pressure oscillations. I fit the outlet discharge with a sine function A sin(ωt+B)+C

to obtain the amplitude ∆q and the phase ϕ. The dynamic permeability k(ω) is calculated

as,

k(ω) =
η∆q(ω)

∆p(ω)/Lz
. (5.13)

By conducting simulations over a wide range of frequency, I can establish the spectral

response of each medium to the pressure oscillations.

115



5.1.5 Results

5.1.5.1 Expected dynamical response

I selected four porous media structures to provide a test to the predicted self-similar nature

of the dynamic response of the permeability in terms of frequency [85,181]. These textures

range from about 30 to 60% porosity, the formation factors vary by a factor of 3 and the

static permeability by a factor of 6. It is interesting to note that the JKD model for the

dynamic permeability only depends on these three factors. I am also interested, within

the limits of the number of porous media structures tested here, to investigate whether the

pore-size distribution (PSD) can affect the dynamical response independently from these

three parameters.

The pore-size distribution for each medium is computed with the model of Yang et

al. [218], where in each pore, the largest sphere that can be fully included into the volume

of the pore defines its effective radius (pore size). The results of these PSD calculations are

shown in Fig. 5.3. I note that the range of pore-sizes for Rectangles, Spheres-Tubes and

Wave are comparable, but that Spheres displays a significantly greater range of pore sizes

with several pores with radius > 20 grid units.

The formation factors are computed according to Sec. 5.1.4, where a 3-D diffusion model

is relaxed to steady-state. An example of steady-state temperature distribution in the

Rectangles texture is shown in Fig. 5.4 for reference and the results are listed in Tab. 5.1.

For each porous medium, I conducted between 15 and 20 simulations with different forcing

frequencies to obtain the effective permeability of the medium over a range of frequency

that extends over three orders of magnitude.

In Fig. 5.5a, I show the un-normalized results for three of the four media. I can clearly

observe similar trends with a sudden decay of effective permeability as the forcing frequency

approaches the critical frequency of each medium ωc (see vertical lines). Once the frequency

is normalized with ωc (Fig. 5.5b) the data collapses as expected for the self-similar trend

observed and documented by several authors [85, 125, 147, 176, 181]. I find an excellent

agreement with the theory developed by Johnson et al. [85] and Smeulders et al. [181]

irrespective to the PSD of the medium. The complex nature of the dynamic permeability is
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Figure 5.3: Pore-size distribution for the four media calculated from the model of Yang et
al. [218]. In this model, the radius of each pore is determined by the largest sphere that
can be fully included into the pore.

Figure 5.4: Thermal field in the porous medium (Rectangles) at steady-state. Here the
solid fraction is assumed as a perfect insulator. The formation factor is computed from the
effective thermal conductivity of the medium at steady-state.

117



better portrayed by the phase lag between the harmonic pressure forcing and the computed

discharge (Fig. 5.6) and again show an excellent agreement with previous studies [85, 125,

147,176,181].

5.1.5.2 Anomalous behavior

I conducted the same simulations on the last porous medium (Spheres) and obtained a

significantly different result. The work remains preliminary, however the runs were checked

for reproducibility and the results are robust. The dynamic response of the permeability

and phase lag with the harmonic forcing are similar to what I observe for the other media

except for the existence of a peak at high frequency ω > ωc (see Figs. 5.7 and 5.8). The

phase lag displays an excursion to negative phases (or in that context positive phase with

ϕ > π to satisfy causality) that coincides with the resonant permeability peak. I note that,

although not shown here, I observed a similar behavior in another medium that displayed

sharp heterogeneities at the pore-scale.

The existence of a permeability peak at high frequency is unexpected from the existing

theory and suggests a resonance-like behavior over a narrow range of forcing frequencies. It

is important to realize that neither Darcy’s equation, even corrected for frequency-dependent

permeability, nor the groundwater flow equation (diffusion) can cause a resonance-like be-

havior. Resonance occurs generally as a response to transient forcing of hyperbolic partial

differential equations. In the discussion section, I present an analogy between the standard

JKD theory for the dynamic permeability and electric circuits and show that this theory

fails to explain the peak observed in Fig. 5.9. I discuss two possible causes for the peak in

dynamic permeability: the resonance is governed by the dynamics at the continuum scale

(modified Darcy flux) or by micro-structural properties.

5.1.6 Discussion

5.1.6.1 Analogy of Debye relaxation

The linear theory of flow in porous media is often compared to linear electric circuit theory

because of the many analogies between the two fields. First, Ohm’s law is equivalent

to Darcy’s law with the hydraulic conductivity replacing the electrical conductivity and
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Table 5.1: Summary of the steady flow calculations.

Name Porosity φ
Formation Permeability k0 JKD critical
factor F (dimensionless) frequency ωc

Spheres+tubes 0.49 0.3 2.98 6.2× 10−4

Waves 0.21 0.11 0.48 1.4× 10−3

Spheres 0.61 0.15 0.89 1.05 × 10−3

Rectangles 0.61 0.39 1.16 2.04 × 10−3
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Figure 5.5: Effective (dynamic) permeability as function of frequency for three of the four
porous media used in this study. Left panel shows how differences in porosity, static per-
meability k0 and formation factor influence the response. The right panel shows that the
rollover frequency ωc provides a satisfying normalization factor to observe a self-similar
behavior between the different media.
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Figure 5.6: The phase lag ϕ between the pore pressure forcing at the outlet and the discharge
in the porous medium as function of frequency (left) and normalized frequency (right). The
results are consistent with previous studies.
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Figure 5.7: Same as Fig. 5.5 but with the last porous medium (Spheres). Note that the
medium referred to as Spheres has the broadest pore-size distribution.
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Figure 5.8: Phase lag between the pore pressure fluctuations and the discharge as function
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the head potential (or pseudo-potential) as defined by Hubbert [74] replacing the electrical

potential. It is therefore natural to yield analogies between the dynamic permeability model

presented by Johnson et al. [85] and complemented by Smeulders et al. [181] and the spectral

response of electric circuits. The two equations that define the dynamic permeability and the

dynamic tortuosity in the JKD model, once written in the frequency domain, are reminiscent

to Ohm’s law and the dynamical response of a capacitor respectively

v = −k(ω)

ηϕ
∇p

−iωρfα(ω)v = −∇p. (5.14)

The second equation highlights the importance of inertia and shows that a phase lag

exists at high frequency between the discharge φv and the pressure forcing. The π/2 phase

between the current and the potential introduced by inertia is reminiscent of the effect of

adding a capacitor to an electric circuit. If a resistor is set in parallel with a capacitor (see

Fig. 5.9), the relative importance of the resistor and capacitor on the impedance of the

circuit will be controlled by the imposed frequency and a Debye relaxation similar to the

dynamical response of the permeability is obtained.

The transition from creep to inertia dominated momentum dissipation in porous media

is therefore similar to the response of a parallel RC circuit. I can even push the analogy

further and use it to estimate the frequency at which I expect the transition to occur. The

Debye frequency is obtained by matching the Imaginary part of the capacitor impedance

to that of the resistor

Im(Zc) = ZR

1

ωC
= R (5.15)

and hence ωD = 1/RC. By analogy, the resistance in the dynamic version of Darcy’s law is

ZR =
ηφ

k(ω)
, (5.16)

while, using Eq. 5.14, the inertia associated with the capacitor can be defined as

Im(Zc) = ωρfα(ω). (5.17)
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Matching the two impedance allows one to retrieve the general form of the critical

frequency of the JKD model

ωc =
ηφ

ρfα∞k0
. (5.18)

This analogy is useful because it also provides some clues as to what is problematic with

the results that display resonance-like features.

5.1.6.2 Resonance and the importance of hyperbolic effects

One of the limitations of Darcy’s law is that it represents a continuum approximation of a

steady-state flow through a porous medium. The justification for using a time-independent

momentum closure equation is that the Reynolds number that characterizes the flow is ≪ 1.

Interestingly, regardless of this approximation, one can still derive a time-dependent mass

conservation equation (a simple form of the groundwater flow equation) from Darcy’s law

that describes the pressure or head distribution in time and space in the porous medium

1

Kf

∂p

∂t
= −k

η

∂2p

∂x2
(5.19)

where for simplicity the flow is assumed perpendicular to gravity, the permeability is ho-

mogeneous and Kf refers to the fluid’s bulk modulus. To be consistent with the theory

developed by Johnson et al. [85] and Smeulders et al. [181], the solid matrix is viewed as

incompressible for the sake of this argument. Eq. 5.19 is a diffusion equation with the hy-

draulic diffusivity Dh = Kfk/η. The diffusion equation is parabolic and, consequently, the

pore pressure can propagate at an infinite speed from the boundaries inside the domain.

Consider an initial Dirac delta function of elevated pore pressure centered at x = 0 at t = 0.

At any t = dt, for any small dt, the pressure profile that results from Eq. 5.19 will have finite

(non-zero) pressure values except at x → ±∞. The propagation of pressure is therefore

instantaneous.

In reality, I know that it will take a finite time for pressure to propagate a finite distance

in a porous medium. It is therefore necessary to introduce a transient term to modify

Darcy’s equation (even in the frequency domain, but I will restrict the analysis to the time

domain here). A similar argument has been developed for heat transfer and the development
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of heat waves. Cattaneo [26] and Vernotte [204] arrived independently at the conclusion

that a proper account of heat transfer by conduction should include an additional term in

Fourier’s law to consider that there is a finite time τ for the propagation of heat that depends

on material properties. Following the same strategy, I arrive at the following definition for

the transient Darcy’s equation that satisfy a finite speed of pressure propagation

τ
∂q

∂t
+ q = −k

η

∂p

∂z
(5.20)

where q is the discharge in the z-direction. Although this equation is different from Biot’s

equations and the equations used by Johnson et al. [85] and Smeulders et al. [181], it is

important to note some similarities. First this equation is quite similar to the definition

of unsteady Stokes flows and it is therefore not a novel concept. Also, in Biot’s model,

two separate but coupled equations were used to describe the displacement of each phase

(fluid and solid) and Biot used an unsteady Stokes equation for the flow field that is not

identical but quite similar to Eq. 5.20. The Cattaneo-Vernotte (CV) term in Eq. 5.20 (time

derivative) introduces a phase lag for a finite value of τ , in agreement with the JKD model.

The main difference here is that both Darcy’s flux and the CV terms are balancing the

pressure forcing in Eq. 5.19. The partitioning between the inertial term and the darcian

behavior depends on the value of the relaxation time τ and the forcing frequency ω, it is

therefore not identical to Eq. 5.14.

The addition of a transient or unsteady term to the flux equation is not entirely novel,

it is important to draw attention to its effect on the mass conservation equation. I argue

that when Eq. 5.20 is introduced in the continuity equation I retrieve a simple hyperbolic

Telegraph equation

τ

Kf

∂2p

∂t2
+

1

Kf

∂p

∂t
=

k

η

∂2p

∂x2
. (5.21)

If the relaxation time τ ≪ 1, then the parabolic groundwater flow equation is retrieved.

One can directly conclude that this hyperbolic equation admits the propagation of damped

waves that travel with a finite velocity c = (KfF/ρf )
1/2, where I identified the relaxation

time τ with ρfk0/η = 1/ω. This means that my model is consistent to that of JKD where

the transition between inertia and viscous dominated regimes occurs around the rollover
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frequency ωc. The adequate boundary conditions with respect to my study are

p(0, t) = p1

p(Lz, t) = ∆p0 +∆p sin(ωt) (5.22)

where ∆p0 is the static pressure difference across the sample and ∆p is the amplitude of

the harmonic pressure perturbation. Using sine transforms

p(z, t) =
∞
∑

n=1

Sn(t) sin(nπz/Lz), (5.23)

the mass conservation equation unfolds into n second order non-homogeneous ODE

d2Sn

dt2
+

1

τ

dSn

dt
+

n2π2

L2
z

kKf

ητ
Sn =

2nπ

L2
z

kKf

ητ

[

p(0, t+ (−1)n+1p(Lz, t)
]

. (5.24)

The homogeneous equations which do not include the harmonic forcing yield solutions

Sh
n(t) = An exp

[

−γ

2

(

1 +
√

1− 4ω2
nτ

2
)

t
]

+Bn exp
[

−γ

2

(

1−
√

1− 4ω2
nτ

2
)

t
]

(5.25)

where An and Bn are constant that are constrained by the initial and boundary conditions,

and the characteristic frequencies ωn = n2π2kKf/ηL
2
z and finally γ = 1/τ . These solutions

are dissipative (damping) and the damping increases when τ → 0, which is consistent with

the diffusive behavior of the equation in this limit.

Because the harmonic forcing has no influence over the homogeneous solution it is more

important to study the particular solution for resonance effects. Because of the harmonic

forcing, it is convenient to write the particular solutions as

Sp
n(t) = Cn sin(ωt) +Dn cos(ωt). (5.26)

The coefficients Cn and Dn are obtained after inserting Eq. 5.26 into Eq. 5.24

Cn =
2(−1)n+1τ2[(ω′

n)
2
−ω2]ω′

n

ω2+τ2[(ω′

n)
2
−ω2]2

Dn = 2(−1)nτωω′

n

nπ[ω2+τ2[(ω′

n)
2
−ω2]2]

(5.27)

where the characteristic frequency of the medium ω′

n is defined by

ω′

n =

√

wn

τ
. (5.28)
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The overall amplitude the waves associated with the particular solution in response to

the forcing at frequency ω is

Xn =
√

C2
n +D2

n = 2ω′

nτ

[

ω
nπ − τ

[

(ω′

n)
2 − ω2

]

ω2 + τ2 [(ω′

n)
2 − ω2]2

]

(5.29)

which implies a finite resonance when the forcing frequency ω approaches (but not equals)

ω′

n. The actual solution for the resonant frequency requires finding the roots of a fifth order

polynomial f(ω) that also depends on the choice of relaxation time τ and the order of the

harmonic considered n. It is beyond the scope of the present work to provide an analysis

of this polynomial. It is however instructive to reflect on the amplitude of the particular

solution as the forcing approaches resonance ω → ω′

n

Xn(ω
′

n) =
2τ

nπ
(5.30)

which shows that the amplitude of high frequency harmonics may become small. Only the

lowermost modes may display visible resonance peaks. Moreover, in the limit where τ → 0,

no resonance is observed, which is consistent with the character of the partial differential

equation in that limit.

My hyperbolic model for the mass conservation in a porous medium subjected to tran-

sient forcing therefore admits a resonant behavior if the relaxation time t becomes impor-

tant, i.e., when ωτ > 1. Alternatively, resonance may occur when the forcing frequency

approaches nπc/Lz, where c is the pressure wave propagation speed that depends on the

compressibility of the fluid and the formation factor of the medium. There are obviously

some simplifying assumptions in this model. For instance, I have assumed that τ was in-

dependent of frequency and I use the asymptotic limits for the permeability (k0) and the

dynamic tortuosity to identify what governs the relaxation time using the standard equa-

tions for dynamic permeability. I therefore assume that τ is controlled by the physical

properties of the porous medium and pore fluid and that it does not depend on the applied

forcing. This assumption, although not justified, is consistent with the theory developed

for heat wave propagation in heterogeneous media [136,137,139].

In the light of this hyperbolic description of the mass balance in porous media, I can

estimate the expected range of frequency that should display resonance for the different
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porous media. A satisfying model should be able to explain the peak observed with the

Spheres topology and be consistent with the absence of resonance observed for the three

other media. I first compute ω′

n for n = 1 for all media. The actual resonance is not expected

to take place exactly at ω′

n, but from a visual inspection of the roots of the polynomial

f(ω) the actual position of the resonance is ω′

n < ω∗ < 2ω′

n. In Fig. 5.10, I compare

the set of forcing frequencies tested in my simulations to ω′

n. The approximate range of

frequency where the continuum hyperbolic mass balance equation predicts a resonant effect

is consistent with my results with the Spheres medium. However, I note that my calculations

should have allowed one to observe a resonant peak in each medium. This informs one that

while the continuum-scale hyperbolic model may be consistent for one of my medium at

high frequency, the lack of resonance in the other media indicates that it is not sufficient to

explain my results.

One could argue that the absence of resonance reflects that the amplitude of the par-

ticular solution is negligible and that the resonance is therefore difficult to measure. The

hyperbolic model is generally consistent with the transient Stokes equation at the base of the

theory of linear poroelasticity developed by Biot, however it does not provide a satisfying

explanation for my pore-scale simulations.

Alternatively one can argue that pore-scale processes control the existence of the reso-

nant peak. The porous media constructed by a stochastic process (Spheres and Rectangles)

display more heterogeneity in terms of pore scale structures. More specifically, the Spheres

medium was built with a broader pore-size distribution than the other three media. In

heterogeneous media, at the pore-scale, one should expect the plane wave assumption for

the pressure propagation at the continuum scale to fail. In media that display competing

pathways with different hydraulic responses, pore pressure gradients can become significant

perpendicular to the main direction of propagation, and mass/pressure exchanges between

different pathways may significantly affect the stress propagation. The visualization of the

pore pressure distribution in the Spheres medium over time during one period can yield

important information about the propagation of stress transients in the porous medium.

Fig. 5.11 shows snapshots of the pore-pressure field. I observe pressure waves propagating
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Figure 5.9: Analogy between the dynamic permeability model of Johnson et al. [85] and
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from the outlet (right) into the medium. An important feature worth noting is that far a

fixed distance from the dynamic boundary (outlet) the pore pressure can vary significantly

spatially. A possible explanation for the resonant behavior is that a heterogeneous porous

medium can be viewed as a collection of connected primary and secondary pathways for

the fluid and by extension pressure wave propagation. One clearly observes from Fig. 5.11

that pressure fluctuations can propagate further into the medium along the main flow path-

ways forming some important pressure gradients perpendicular to the main flow direction.

This should lead to significant mass exchanges between connected pathways with different

transient responses to stress propagation.

The resonant behavior may be associated with the existence of a finite time-delay for

the pore pressure to relax between primary and secondary pathways. If the response time

for the pore pressure exchange between competing but connected pathways approaches the

period of the forcing, I argue that resonance may possibly occur. Because these features

in the Spheres medium are sub-REV, it could explain the shortcomings of the continuum-

scale interpretation to explain resonance. It is interesting to reflect on the major differences

between my study and that of Pazdniakou and Adler [147] where they do not observe res-

onance. Pazdniakou and Adler [147] introduce the forcing as a homogenous oscillatory

perturbation of a bulk force in the fluid and consider periodic and, therefore, infinite media.

The homogeneous forcing applied in their study does not allow the build-up of significant

pore scale pressure gradients as the fluid responds uniformly to the perturbation instanta-

neously. There is no transport of the information on the changing pore-pressure from the

boundaries of the domain (there are no boundaries) and therefore no finite time response

of the domain to the excitation. This could explain the different results between the two

studies.

In the future, I plan on developing more highly heterogeneous structures at the pore

scale and test whether resonance is promoted by pore-scale heterogeneities. In parallel,

I suggest that an idealized theoretical model that decomposes the porous medium as a

collection of regions according the fluid’s mobility (dual and multirate mass transfer models

by Harvey and Gorelick [69,101,149]). Such a framework including a finite relaxation time
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Figure 5.11: 3-D visualization of the pore-pressure field (normalized) at the forcing fre-
quency corresponding to the maximum of the resonance peak in the Spheres medium. The
four images show the temporal evolution of the pressure field every quarter period. Note
the regions with large lateral pore pressure gradients (the imposed gradient is left to right)
highlighted in red. It shows that flow pathways with different hydraulic connectivity have
different response time to the forcing and that large pore-scale pore pressure imbalance can
emerge, violating the assumption of planar pressure wave propagating from the outlet.
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for pressure (leakage) between the more mobile and less mobile subsets of the medium could

provide a framework to test if pore-scale heterogeneity can influence a significant departure

to the theory of JKD and even lead to resonant effects.

5.1.7 Conclusions

The propagation of pore-pressure transients in saturated porous media is complex at high

frequency, when the short wavelength can interact with the heterogeneous structure of the

medium. Over the last three decades, successful models for the dynamic response of porous

media to harmonic pressure forcing have been developed and tested. They highlight that

only three continuum scale descriptors of the complex pore structure are important in ho-

mogeneous and isotropic media to characterize the spectral response of permeability. These

descriptors are the porosity of the medium, its formation factor and its static permeability.

I have constructed four synthetic porous medium from the pore-scale with different porosity,

formation factors and permeability. Using a lattice Boltzmann method to compute the fluid

flow at the pore-scale I find a very good agreement between my results and the theory for

porous media with relatively narrow pore size distributions.

The medium that shows the broadest range of pore sizes however has a distinctive re-

sponse to the imposed pressure transients. I observe a feature that resembles a resonance

peak for the effective permeability at high frequency. Drawing from analogies with electric

circuits and heat wave models, I postulate that the resonance feature is either governed by

processes that operate at the continuum scale or by pore scale processes that arise because

of significant pore-scale heterogeneity. The development of a mass conservation equation at

the continuum scale that corrects for the finite time required for pore pressure to propagate

in the medium allows for resonance behavior to take place. It predicts resonance over the

correct range of frequency for the case where my numerical results display resonant features.

It however fails to explain the absence of resonance observed for the other media. Based

on my numerical results I argue that the resonance I observe is rather caused by pore-scale

processes, whereby significant local pore pressure gradients can form between heterogeneous
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flow pathways characterized by different response timescales to the imposed pressure exci-

tations. Future studies focused on the distribution of pore pressure in heterogeneous media

will potentially shed light on the dynamical processes that control the existence and the

factors that govern the resonance of highly heterogeneous and saturated porous media.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

This dissertation has mainly contributed towards quantifying volatile degassing processes.

Degassing and the behavior of bubbly suspensions under shear (another aspect of the re-

search presented here) are two fundamental aspects that govern the ascent of magmas to

the surface and their behavior during eruptions. Key contributions are as follows:

1. In Chap. 2, I carried out numerical simulations for the mass balance of sulfur in

degassing magmas. I found that the excess sulfur can mostly come from isobaric

crystallization processes in crystal-rich magmas. This contrasts with eruptions in-

volving crystal-poor magmas, where I argue that open system processes (recharge of

gases from below and bubble accumulation) play a dominant role on the sulfur mass

balance.

2. In Chap. 3, I propose a method where volatile (H2O and CO2) diffusion profiles

around bubbles quenched in pyroclasts can be used to infer the non-linear nature

of the decompression rate experienced by magmas as they rise to the surface. I

found that (1) when magmas ascend following different decompression paths, the

disequilibrium states of H2O and CO2 between bubbles and the melt are different;

(2) the effective average magma decompression rate is overestimated if one assumes a

constant decompression rate.

3. Chap. 4 extends the bubble dynamics models proposed Chaps. 2 and 3 by taking into

account the hydrodynamical interactions between bubbles, e.g., bubble deformation

and coalescence. Bubbles are allowed to deform, i.e., they are not restrained to be

spherical. Bubble dynamics calculations based on this new model is conducted to

replicate Ostwald ripening and bubble deformation under simple shear flow conditions
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over a range of capillary numbers. This new generation of bubble dynamics model

is complex but has the potential to allow one to better understand the mechanical

coupling between bubbles and melt during magma ascent.

4. Chap. 5 represents part of my Ph.D. work that is not directly related to the chemical

and dynamical coupling between bubbles and melts. In this chapter, the dynamical

response of saturated porous media to transient stresses is studied using a pore-scale

modeling approach. The influence of the porous media topology on its dynamical

response to dynamic stresses is explored and it is shown that small degrees of hetero-

geneity (pore size and shapes) can have a large impact on the dynamic permeability

of the medium and by extension on seismic attenuation (at high frequency).

6.2 Recommendations for future work

Some possible extensions of the work presented in this dissertation and future directions

are discussed below.

6.2.1 Further improvement of the spherical cell bubble growth model for mag-
mas

In Chap. 2 and 3, the bubble growth model is formulated under isothermal conditions.

These models work under a suite of assumptions such as,

• Decompression model

– linear decompression rate

– constant bubble/melt partition coefficient for sulfur

– constant sulfur diffusivity

• Second boiling

– linear crystallization rate

– linear fit of bubble/melt partition coefficient for sulfur

– constant melt/solid partition coefficient for water and sulfur

– constant sulfur diffusivity and no redox constraint on the sulfur species
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These assumptions can be refined as more experimental data are published. However,

for most of these assumptions, the results I obtain will only be adjusted slightly as some

of these assumptions are quite robust (e.g., linear crystallization rate for second boiling

simulations).

Moreover, in the current model, sulfur speciation in the melt is not included, because

in Chap. 2, most subduction zone volcanism that exhibit large excess sulfur are oxidized

system, and sulfate is considered to be dominant species in these oxidized melts. Over

a range of redox conditions applicable to arc magmas, it is possible that multiple sulfur

species can coexist in the melt (S2− and S6+) [167]. When the oxygen fugacity fO2 is greater

than NNO + 1, pyrrhotite is almost depleted and the bubble/melt partition coefficient is

largely determined by the solublity of anhydrite. In reduced magmas (fO2 < NNO+1), the

bubble/melt partition coefficient could approach 1, while at oxidized state (fO2 > NNO+1),

the bubble/melt partition coefficient is almost 1000. The oxygen fugacity of a melt is also

varying with respect to crystallization and degassing and it would then be important to

include sulfur speciation in these degassing models. Sulfur speciation would also allow one

to consider stable S isotopes in those calculations, which would provide information about

the kinetics and state of the magma during degassing.

6.2.2 Bubble hydrodynamical interactions and volatile kinetics

The model proposed in Chap. 4 can reproduce the mass transfer for Ostwald ripening and

bubble deformation under simple shear flows. There are several improvements for this model

that could be addressed in the future.

3D expansion The model in Chap. 4 only represents a 2D model for bubble dynamics,

which means that what the model simulates is actually a cylinder instead of a 3D

bubble. However, in some cases, such as rising bubbles of large Eo number (ratio

of the gravitational force to the surface tension force) and low Ga number (ratio

of the gravitational force to the viscous force), 2D simulations could provide results

that are not consistent with 3D simulations, yet fail to describe the inherent bubble

dynamics [201].
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Compressibility Most of the existing lattice Boltzmann BGK models (LBGK) can be

viewed as compressible schemes to simulate incompressible fluid flows. The compress-

ible effect might lead to some undesirable errors in numerical simulations [66]. The

LBM model in Chap. 4 also relies on such a compressible scheme. Without abrupt

change of ambient pressure, such scheme works well. However, a more interesting

problem for volcanologist is to study volatile degassing when bubbly magma is under

decompression. In such case, a compressible LBGK scheme for the melt may fail to

provide correct results. Therefore, an imcompressible LBGK scheme [66] is called

upon to solve such problems.

High performance computing The current model in Chap. 4 is implemented as a se-

quential scheme, and a single test run for 20 bubbles in a 200 × 100 grid box in

Fig. 4.13 takes 2 ∼ 3 days to get the results. It represents a simulation of a bubbly

flow of a volume fraction of 14 vol.%. In the future, this number could be larger,

and based upon the current the computing efficiency, the running time for each case

could be weeks. Thus, efficiently parallelizing the current model is important in order

to shorten the computing time especially to model a large system. LBM is an ideal

candidate for parallelization.

Integration with other numerical methods As compared to the finite-difference meth-

ods (FDM) and finite-element methods (FEM), LBM is a relatively novel scheme. It is

a powerful tool to study complex fluid flow problems including single and multiphase

flow in complex geometries. However, when dealing with highly irregular interfaces,

the errors that are generated from the calculation of the local normal direction and

curvature could cause large errors in the system. While an irregular interface is com-

mon in multiphase flow, e.g., a cluster of bubble in a viscous melt, scheme that can

track the interface geometry accurately would allow more sophisticated calculation

of interface stresses between bubbles and melt, which would be important to study

fragmentation processes, for example. The boundary integral method (BIM) [150] can

be used to estimate the interface geometry and the physical values at the interface.
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BIM has been used to simulate bubble evolution in a gravity field with various am-

bient flow conditions, and it is considered to be able to provide more accurate result

at the bubble/melt interface. By combining the BIM to track the interface and LBM

(calculating the ambient melt and volatile diffusion in the melt), it may be possible

to improve the understanding of bubble dynamics in deforming melts significantly.
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APPENDIX A

NUMERICAL SCHEMES FOR THE DECOMPRESSION MODEL

tn+1 = tn + dt (A.1)

Pn+1
a = 1− Ṗ tn+1 (A.2)

Rn+1 = (Rn − dt
Σ

ΘV η
n
eff

)(1− dt
Pn − Pn

a

ΘV η
n
eff

)−1 (A.3)

rn+1
i = ((r30i −R3

0) + (Rn+1)3)1/3, 0 ≤ i ≤ N (A.4)

Fn+1
w,i = Dn+1

w,i

2(rn+1
i )2

Cw,i − Cw,i−1
, 1 ≤ i ≤ N − 1 (A.5)

Fn+1
w,N = 0 (A.6)

Cn+1
w,i = Cn

w,i +
dt

ΘDw

3(Fn+1
w,i+1 − Fn+1

w,i )

(rn+1
i+1 )

3 − (rn+1
i )3

, 1 ≤ i ≤ N − 1 (A.7)

Cn+1
w,0 = KH

√
Pn (A.8)

Fn+1
w,0 = Fn+1

w,1 − ΘDw

3dt
((rn+1

1 )3 − (rn+1
0 )3)(Cn+1

w,0 − Cn
w,0) (A.9)

Mn+1
w = Mn

w + 3ρmdt
Fn+1
w,0

ΘDw
(A.10)

1Fn+1
s,i = Dn+1

s,i

2(rn+1
i )2

Cs,i − Cs,i−1
, 1 ≤ i ≤ N − 1 (A.11)

1Fn+1
s,N = 0 (A.12)

1Cn+1
s,i = Cn

s,i +
dt

ΘD

3(Fn+1
s,i+1 − Fn+1

s,i )

(rn+1
i+1 )

3 − (rn+1
i )3

, 1 ≤ i ≤ N − 1 (A.13)

1Cn+1
s,0 = Kn

s Cs,b (A.14)

1Fn+1
s,0 = Fn+1

s,1 − ΘD

3dt
((rn+1

1 )3 − (rn+1
0 )3)(Cn+1

s,0 − Cn
s,0) (A.15)

1Mn+1
s = Mn

s + 3ρmdt
Fn+1
s,0

ΘD
(A.16)

Mn+1 ≈ Mn+1
w (A.17)

Pn+1 = Mw/(R
n+1)3 (A.18)
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dt < ΘV
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∣

∣

∣

∣
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n+1
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Σ
,
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n+1
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|Pn+1 − Pn+1
a |
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(A.20)

dt <
ΘDw

6
min

[

(rn+1
i+1 )

3 − (rn+1
i )3)

rn+1
i+1 − rn+1

i−1

Dn+1
w,i (rn+1

i )2

]

(A.21)

Above is the numerical scheme for the decompression model, and the non-dimentiona

process is the same as those in Ref. [44]. The diffusion equations are solved by the finite

volume schemes, detailed derivation can be found in Ref. [44]. A flow chart of this decom-

pression model was shown in Fig. A.1. Temperature is needed to calculate the gas density

ρ from the ideal gas law, and later this ρ̂ would be used as the density unit to quantify

dimensionless magma density ρm. Eqs. A.19, A.20, and A.21 are required to calculate dt at

each time step to make sure: 1, bubbles can grow; 2, the radius of bubble is always greater

than 0; 3, the volatile concentration is also greater than zero.

1Equations added in this work
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Input initial conditions 

 Input serveral constants

Ambient pressure

temperature

bubble radius

bubble volume fraction

volatile concentrations etc.

Bubble inital pressure (ideal gas law)

Calculate 

valatile diffusivity

Henry’s constant

partition coefficient

decompression rate etc.

Ambient pressure decreases (A.2)

Ambient pressure > 0
Y

END

N

Y

N

Figure A.1: Flowchart for decompression calculations.
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APPENDIX B

NUMERICAL SCHEMES FOR THE SECOND BOILING MODEL

tn+1 = tn + dt (B.1)

2Fn+1
m = Fm,ini − χ̇dt (B.2)

Rn+1 =

(

Mn+1

Pn+1

)1/3

(B.3)

2Sn+1 = ((S3
0 −R3

0)F
n+1
m + (Rn+1)3)1/3 (B.4)

2rn+1
i = ((r30i −R3

0)F
n+1
m + (Rn+1)3)1/3, 0 ≤ i ≤ N (B.5)

Pn+1 = (Pa +
Σ

Rn+1
) (B.6)

2λn+1 = (K∗

w − 1)
dFm

Fn
m

(B.7)

2λn+1
s = (K∗

s − 1)
dFm

Fn
m

(B.8)

2Cn+1
w,i = (1 + λn+1)KH

√
Pn+1, 1 ≤ i ≤ N − 1 (B.9)

Cn+1
w,0 = CH

√
Pn+1 (B.10)

2λn+1
1 = 1− (1 + λn+1)

Fn+1
m

Fn
m

(B.11)

2Mn+1
w,shell = ρm

N−1
∑

n=0

Cn+1
w,i ((rn+1

i+1 )
3 − (rn+1

i )3)) (B.12)

2Mn+1
w,solid = λ1ρm

N−1
∑

n=0

Cn+1
w,i ((rn+1

i+1 )
3 − (rn+1

i )3)) (B.13)

2Mn+1
w = Mw,total −Mn+1

w,shell −Mn+1
w,solid (B.14)

2C
′

s,i = (1 + λn+1)Cn
s,i, 0 ≤ i ≤ N − 1 (B.15)

2Fn+1
s,i = Dn+1

s,i

2(rn+1
i )2

Cs,i − Cs,i−1
, 1 ≤ i ≤ N − 1 (B.16)

2Fn+1
s,N = 0 (B.17)

2Cn+1
s,i = C

′

i +
dt

ΘD

3(Fn+1
s,i+1 − Fn+1

s,i )

(rn+1
i+1 )

3 − (rn+1
i )3

, 1 ≤ i ≤ N − 1 (B.18)
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2Cn+1
s,0 = Kn

s C
n
s,b (B.19)

2Fn+1
s,0 = Fn+1

s,1 − ΘD

3dt
((rn+1

1 )3 − (rn+1
0 )3)(Cn+1

s,0 − Cn
s,0(1 + λn+1

s )) (B.20)

2Mn+1
s = Mn

s + 3ρmdt
Fn+1
s,0

ΘD
(B.21)

2Cn+1
s,b =

Mn+1
s

Mn+1
s +Mn+1

w
(B.22)

Mn+1 ≈ Mn+1
w (B.23)

dt < min

(

Rn+1ΘV η
n+1
eff

Σ
,

ΘV η
n+1
eff

|Pn+1 − Pn+1
a |

)

(B.24)

dt <
ΘDs(1 + λn+1)

6
min

[

(rn+1
i+1 )

3 − (rn+1
i )3)

rn+1
i+1 − rn+1

i−1

Dn+1
s,i (rn+1

i )2

]

(B.25)

Above is our second boiling scheme, in which we used the melt fraction Fm instead of

crystallinity χ. A flow chart is shown if Fig. B.1. The derivations of Eqs. B(7–17) are

from the conservation of the total water and sulfur mass respectively. And similar to the

decompression scheme, in order to stabilize the simulation, the time step dt should satisfy

only need to satisfy Eqs. B(23–24) are required to calculate dt at each time step to make

sure: 1, the radius of bubble is always greater than 0; 2, the volatile concentration is also

greater than zero.

2Equations added in this work
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Check time step dt (B.23-24)

New radius, shell size, and grids (B.3-5)

Effective viscosity

Water fractionation & fast diffusion 

(B.7, 9-13)

Water uptake (B.14)

Sulfur fractionation (B.8, 15)

Sulfur diffusion (B.16-20)

New bubble mass (B.23)

Input initial conditions 

 Input serveral constants

Ambient pressure

temperature

bubble radius

bubble volume fraction

volatile concentrations etc.

Bubble inital pressure (ideal gas law)

Calculate 

valatile diffusivity

Henry’s constant

partition coefficient

crystallization rate etc.

Update new bubble pressure (B.6)

The end of crystallization Y

END

N

Y

N

Sulfur uptake (B.21-22)

Figure B.1: Flowchart for simulating second boiling
.
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APPENDIX C

NOTATION LIST FOR CHAPTER 2

b coefficient for diffusivity (12.574).
Cn
w,i water concentration at ri at nth step.

Cn
s,i sulfur concentration at ri at nth step.

C
′

s,i sulfur concentration at ri at nth step after fractionation.

〈Cs〉 average sulfur concentration in the melt shell.
Dwi initial water diffusivity (3.16 × 10−11m2 · s−1).
Dsi initial sulfur diffusivity (5× 10−14m2 · s−1).
Dn

w,i water initial diffusivity at ri at nth step.

Edry
η activation energy for the viscosity (3.045 J ·mole−1).

EDw activation energy for the water diffusivity (87300J ·mole−1).
Fn
w,i water flux at ri at nth step.

Fm,ini initial melt fraction.
Fn
m melt fraction at nth step.

Fn
s,i sulfur flux at ri at nth step.

Mn bubble mass at nth step.
Mn

w water mass in gas phase at nth step.
Mn

w,shell water mass in melt phase at nth step.

Mn
w,solid water mass in solid phase at nth step.

kη volatile correction coefficient for viscosity.

KH Henry’s constant (3.44 × 10−6kg−1/2m1/2).
Ks sulfur partition coefficient between the gas and melt.
〈Ks〉 effective sulfur partition coefficient between the gas and

melt.
Kw

∗
water partition coefficient between the solid and melt.

Ks
∗

sulfur partition coefficient between the solid and melt.
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P bubble pressure.

Ṗ decompression rate.
Pa ambient pressure (Pa).
Pi initial ambient pressure (108Pa for decompression and 2 ×

108Pa for second boiling).
r radial distance to the bubble-melt interface.
R bubble radius.
Rgas ideal gas constant (8.31J ·mole−1 ·K−1).
S the radius of the melt region.
t time.
dt time step.
T melt temperature (K).
η melt viscosity.
ηeff melt effective viscosity.
ρm melt density (2354kg ·m−3).
ρ bubble gas density.
αi initial bubble volume fraction (0.041 for decompression and

0.001 for second boiling).
χ crystallinity.
χ̇ crystallization rate.
∆χ interval of crystal content that magma experienced during

second boiling.
σ bubble surface tension (0.1J ·m−2).
Σ dimensionless bubble surface tension.
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APPENDIX D

NOTATION LIST FOR CHAPTER 4

A surface area of gas-melt interface surfaces.
Bo Bond number.
cΠ amplitude of the disjoining pressure.
cΠ lattice speed in LBM model.
C concentration of dissolved water content.
Cb concentration of dissolved water content at the bubble-melt

interface.
drange range of the disjoining pressure.
dint distance between interacting interfaces neighbor objects.
D parameter of deformation of bubbles.
DH2O diffusion coefficient of the dissolved volatile.
ei lattice velocity in i direction of LBM model.
fi distribution function in i direction of D2Q9 model.
Fi body force in i direction on fi.
gi distribution function in i direction of D2Q4 model.
G Gibbs free energy.
H distance between two walls in simulation model of shear ef-

fect on bubbles.
n moles of gas molecules.
pg gas pressure.
r bubble radius.
R ideal gas constant.
S Henry’s constant.
t time.
tdec decompression timescale.
tvis viscosity timescale.
tc drainage time (Bo < 0.25).
tg drainage time (Bo > 0.25).
td experimental normalized drainage time.
T temperature.
Uw bottom wall velocity in simulation model of shear effect on

bubbles.
V gas volume.
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wi lattice weights in LBM model.
ρ density.
ν kinetic viscosity.
µ dynamic viscosity.
ǫ strain.
ǫ̇ strain rate.
τF relaxation time for melt in LBM model.
τG relaxation time for gas in LBM model.
κ curvature of gas-melt interface.
σ surface tension.
Π disjoining pressure.
δ critical thickness of the melt film between bubbles.
δi initial melt film thickness.
∆ρ density difference betwwen the bubble and the ambient fluid.
θ orientation of bubbles, angle between the long axis of bubble

and the shear flow.
t time
tdec decompression timescale
tvis viscosity timescale
tc drainage time (Bo < 0.25)
tg drainage time (Bo > 0.25)
td experimental normalized drainage time
T temperature
Uw bottom wall velocity in simulation model of shear effect on

bubbles
V gas volume
ρ density
ν kinetic viscosity
µ dynamic viscosity
ǫ strain
ǫ̇ strain rate
κ curvature of gas-melt interface
σ surface tension
Π disjoining pressure
δ critical thickness of the melt film between bubbles
δi initial melt film thickness
∆ρ density difference betwwen the bubble and the ambient fluid
θ orientation of bubbles, angle between the long axis of bubble

and the shear flow
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éliminant le paradoxe d′une propagation instantanée. Paris: Gauthier-Villars, 1958.

[27] Chambefort, I., Dilles, J. H., and Kent, A. J. R., “Anhydrite-bearing andesite
and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits,” Geol-
ogy, vol. 36, no. 9, pp. 719–722, 2008.

[28] Chesner, C. A. and Luhr, J. F., “A melt inclusion study of the Toba Tuffs, Suma-
tra, Indonesia,” J. Volcanol. Geotherm. Res., vol. 197, no. 1–4, pp. 259–278, 2010.

148



[29] Churakov, S. and Gottschalk, M., “Perturbation theory based equation of state
for polar molecular fluids: I. Pure fluids,” J. Volcanol. Geotherm. Res., vol. 67, no. 13,
pp. 2397–2414, 2003.

[30] Costa, F., Scaillet, B., and Gourgaud, A., “Massive atmospheric sulfur load-
ing of the AD 1600 Huaynaputina eruption and implications for petrologic sulfur
estimates,” Geophys. Res. Lett., vol. 30, no. 2, p. 1068, 2003.

[31] Costa, F., Scaillet, B., and Pichavant, M., “Petrological and experimental
constraints on the pre-eruption conditions of holocene dacite from Volcán San Pedro
(36◦S, Chilean Andes) and the importance of sulphur in silicic subduction-related
magmas,” J. Petrol., vol. 45, no. 4, pp. 855–881, 2004.

[32] Criswell, C. W., “Chronology and pyroclastic stratigraphy of the May 18, 1980,
eruption of Mount St. Helens, Washington,” J. Geophys. Res.: Solid Earth, vol. 92,
no. B10, pp. 10237–10266, 1987.

[33] Dasgupta, R. and Hirschmann, M. M., “The deep carbon cycle and melting in
earth’s interior,” Earth Planet. Sci. Lett., vol. 298, no. 1–2, pp. 1–13, 2010.

[34] de Hoog, J. C. M., Koetsier, G. W., Bronto, S., Sriwana, T., and van

Bergen, M. J., “Sulfur and chlorine degassing from primitive arc magmas: Temporal
changes during the 1982–1983 eruptions of Galunggung (West Java, Indonesia),” J.
Volcanol. Geotherm. Res., vol. 108, no. 1–4, pp. 55–83, 2001.

[35] de Silva, S. L. and Zielinski, G. A., “Global influence of the AD 1600 eruption of
Huaynaputina, Peru,” Nature, vol. 393, no. 6684, pp. 455–458, 1998.
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