
c12) United States Patent
Harrold et al.

(54) SYSTEMS AND METHODS FOR
VISUALIZATION OF EXCEPTION
HANDLING CONSTRUCTS

(75) Inventors: Mary Jean Harrold, Atlanta, GA (US);
Carsten Goerg, Atlanta, GA (US); Hina
Shah, Atlanta, GA (US)

(73) Assignee: Georgia Tech Research Corporation,
Atlanta, GA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 301 days.

(21) Appl. No.: 12/560,689

(22) Filed: Sep.16,2009

(65) Prior Publication Data

US 2011/0066959 Al Mar. 17, 2011

(51) Int. Cl.
G06F 3100 (2006.01)

(52) U.S. Cl. .. 7151762; 715/763
(58) Field of Classification Search 715/762,

715/763; 714/48
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,412,109 Bl* 612002 Ghosh 717/155
7,559,060 B2 * 712009 Schmidt et al. 718/100
7,577,961 Bl* 8/2009 Bissett et al. 719/318
7,844,975 B2 * 1112010 Yajaman et al. 719/319

200710150900 Al* 6/2007 Hankins et al. 718/108
2007 /0266444 Al* 1112007 Segal 726127
2008/0127205 Al* 5/2008 Barros 719/313
2008/0148259 Al* 6/2008 Hankins et al. 718/100
200910172713 Al* 712009 Kim et al. 719/331
2009/0327665 Al* 12/2009 Sperber et al. 712/222
2010/00707 53 Al* 3/2010 Kido et al. 713/150

OTHER PUBLICATIONS

Gosling, James, et al., "The Java Language Specification Third Edi

tion", Prentice Hall, 2005 (Entire book).

700

\--.

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
USOOS 1223 66B2

(10) Patent No.: US 8,122,366 B2
Feb.21,2012 (45) Date of Patent:

Tollis, I.G., et al., "Graph Drawing: Algorithms for the Visualization
of Graphs", Prentice Hall, 1998, pp. 280-293.

S. Sinha and M. J. Harrold, "Analysis of programs with exception
handling constructs," in Proceedings of the International Conference
on Software Maintenance, Nov. 1998, pp. 348-357.
B. G. Ryder, D. Smith, U. Kremer, M. Gordon, and N. Shah, "A static
study of Java exceptions using JESP," in Proceedings of the 9th
International Conference on Compiler Construction, Mar. 2000, pp.
67-81.
C. F. Schaefer and G. N. Bundy, "Static analysis of exception han
dling in Ada," Software-Practice and Experience, vol. 23, No. 10,
pp. 1157-1174, Oct. 1993.

H. Shah, C. Gorg, and M. J. Harrold, "Why do developers neglect
exception handling?" in Proceedings of the 4th International Work
shop on Exception Handling, Nov. 2008, pp. 6248.

S. Sinha, A. Orso, and M. J. Harrold, "Automated support for devel
opment, maintenance, and testing in the presence of implicit control
flow," in Proceedings of the 26th International Conference on Soft
ware Engineering, May 2004, pp. 336-345.

(Continued)

Primary Examiner - Boris Pesin
Assistant Examiner - Daeho Song
(74) Attorney, Agent, or Firm - Thomas, Kayden,
Horstemeyer & Risley, LLP

(57) ABSTRACT

Disclosed are various embodiments for visualization of
exception-handling constructs. In one embodiment, among
others, a system includes at least one computing device; a
program maintained in a memory accessible to the at least one
computing device; and logic executable in the at least one
computing device configured to analyze the program to deter
mine exception-handling information; generate a graphical
user interface based upon the exception-handling informa
tion; and provide the graphical user interface for display on a
display device.

14 Claims, 6 Drawing Sheets

350

ciJ<DO®e>®o
nel/n3/nanoxmllXMLParserFactorycraateXMLParser:157
Altribute:EmptyCatchHandler

US 8,122,366 B2
Page 2

OTHER PUBLICATIONS

D. Reimer and H. Srinivasan, "Analyzing exception usage in large

Java applications," in Workshop on Exception Handling in Object
Oriented Systems, Aug. 2003, pp. 10-19.
M. P. Robillard and G. C. Murphy, "Designing robust Java programs
with exceptions," in Proceedings of the 8th ACM SIGSOFT Interna
tional Symposium on Foundations of Software Engineering, Nov.
2000, pp. 2-10.
S. Sinha and M. J. Harrold, "Analysis and testing of programs with
exception handling constructs," IEEE Transactions on Software
Engineering, vol. 26, No. 9, pp. 849-871, Sep. 2000.
C. Fu and B. G. Ryder, "Exception-chain analysis: Revealing excep
tion handling architecture in Java server applications," in Proceed
ings of the 29th International Conference on Software Engineering,
May 2007, pp. 23&239.
M. P. Robillard and G. C. Murphy, "Analyzing exception flow in Java
programs," in Proceedings of the 7th European Software Engineering
Conference held jointly with the 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Sep. 1999, pp.
322-337.
M.P. Robbilard, et al., "Static analysis to support the evolution of
exception structure in object-oriented systems," ACM Transactions
on Software Engineering and Methodology, vol. 12, No. 2, pp. 191-
221, Apr. 2003.
C. Fu and B. G. Ryder, "Navigating error recovery code in Java
applications," in Proceedings of the 2005 OOPSLA Workshop on
Eclipse Technology exchange, Oct. 2005, pp. 40-44.

C. Fu and B. G. Ryder, "Testing and understanding error recovery
code in Java applications," in Exception Handling in Object Oriented
Systems: Developing Systems that Handle Exceptions, Jul. 2005, pp.
15-26.
B.-M. Chang, J.-W. Jo, and S. H. Her, "Visualization of exception
propagation for Java using static analysis," in Proceedings of the
Second IEEE International Workshop on Source Code Analysis and
Manipulation, Oct. 2002, pp. 173-182.
I. Vessey, "Expertise in debugging computer programs: A process
analysis," International Journal of Man-Machine Studies, vol. 23,
No. 5, pp. 459494, Nov. 1985.
S. G. Eick, J. L. Steffen, and J. Eric E. Sumner, "Seesoft-a tool for
visualizing line oriented software statistics," IEEE Transactions on
Software Engineering vol. 18, No. 11, pp. 957-968, Nov. 1992.
B. Shneiderman, "The eyes have it: A task by data type taxonomy for
information visualizations," in Proceedings of the IEEE Symposium
on Visual Languages, Jul. 1996, pp. 336-343.
R. Lintern, J. Michaud, M.-A. Storey, and X. Wu, "Plugging-in
visualization: Experiences integrating a visualization tool with
Eclipse," in Proceedings of the 2003 ACM Symposium on Software
Visualization, Jun. 2003, pp. 47-56.
M. W. Van Someren, Y. F. Barnard, and J. A. C. Sandberg, The Think
Aloud Method: a Practical Guide to Modelling Cognitive Processes.
Academic Press, London, San Diego, Aug. 1994.
R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V.
Sundaresan, "Soot-a Java bytecode optimization framework," in
Proceedings of the Conference of the Center for Advanced Studies on
Collaborative Research, Nov. 1999, pp. 125-135.

* cited by examiner

U.S. Patent Feb.21,2012 Sheet 1of6

{ 100

Analyze program to determine
exception-handling information

Generate GUI based upon
determined information

Provide GUI for display

FIGURE 1
200 ~

110

120

130

Number of throw-catch pairs at PACKAGE LEVEL
ITJ !2:1~§21 k\s-10:;,j f&1Q-?Q8812b< I

210 260

~ \
280

240

US 8,122,366 B2

270

--~------.0-i Pair Count: 11

_
250 Throw in: nanoxml

290 Catch in:nanoxml.sax

FIGURE 2

350

~ao· Q~AAAAAAAAAAAO
(u v ·.· v w 0 0 o o v v v o o v v ·

I nanoxml/XMLElementaddedMethod:2039 I
340

FIGURE 3

d
rJl.

_,,OIO

"'"" N
N
w
0--,
0--,

= N

public class Example {
public static void main(String[] args)

try { 400~
1. A()

2. B() ~405
3. c ()

catch (PrinterException e) { 4.
5. System.out.println("PrinterException caught.");

6.

static void A() {
try {

throw new IOException();

catch (IOException e) { 7.
8. System.out.println("IOException caught.");

9. finally {
10. System.out.println("Normal flow through finally.");

11.

static void B() throws PrinterException
try {

throw new PrinterException ();
)

12. finally {
13. System.out.println("Deactivation in finally.");
14. return;

15.

static void B() throws PrinterException
try {

throw new PrinterException ();

16. finally {
17. System.out.println("Normal flow through finally.");

FIGURE 4

410~

(
420

(
430

440

455

~o<:
i-cFf~

:(\ ~~ ~o .0,e
<'-i-c,e'V . ,,..,f(~~ ov ~,,.

x,o\'\ ?J.~V:i'V
. ,....i'O .• ?J.\
\" \?>"

~ .,,, c/' :.J.;~ R\e· R\e·
<c,i-'l>~~ I <(;,i-?J.~ ni-?J.~

~-:--i. c;:'<Q
:-,e· :-,e·

?J.~'V I ?>~~ '(;_-j: <(;,"!'

I :-,er·
~~

c·J..'O

~
00
•
~
~
~
~ = ~

""f'j
('D

?'
N
~

N
0
N

1J1

=('D
('D
(.H

0
O'I

d
rJl
00
~
N
N
w
0--,
0--,

= N

I Example java
--·--~~~~t.

!ik¥::'_;,

1~'.~~""--:.~
iio,.,f\.f•'· 1;1!':.

(
500

nanoxml

r~~p:::~.:~ce~ll·~-~LElement
~~;::~

u~ -'i:i;§§- - - ~ii-~.::~----

-~~i~--
~;: .. ·-__
:~~=---

~~~~- (I~~= 

~~--

-------
-~-

-~~~~--
~~----

~---::.:~-

-~=~---·"_ .. _ 
-~~ 

~k---

-~~~;,;. __ _ 

. =::.."=---

~--

~·~--
~---

. ::,..::=..::...._ ___ _ 

~--

~~--
~~-
-~=---

"'2.::::-

~~~~-
~~---

'~~ -

=.=..'!:L_ __ _

~~-

-~~~-
'===-

~~"--
~~~ 

-~~:r---· 

~=--=-

~ 550 fu;;;;;:~-- -11 · ~~;;;:;::_ 

~~-

FIGURE 5 

·~.:~_ 

~~ 540a 
iE.5:"-'--·

.·~··--

;~~~-----

'~~~::--·-

'===-=---...·-
=~;;::.-:;::;.-;:,. 

~.o;c::-,;;-

-~-~~= 

:=;,,_..,,. ____ _ 

___ Jk*°f 

~ 
00 
• 
~ 
~ 
~ 
~ = ~ 

""f'j 
('D 

?' 
N .... . 
N 
0 .... 
N 

1J1 

=('D 
('D ..... 
.i;... 

0 ..... 
O'I 

d 
r.r;_ 

"'QIO 

"'"" N 
N 
w 
0--, 
0--, 

= N 



U.S. Patent 

" 

Feb.21,2012 Sheet 5 of 6 US 8,122,366 B2 

Processor 
System 

800 

Processor 
803 

'"' 
., ,. 

. . .... ·: 600 

J 

FIGURE 6 

Memory 806 

I Operating System 853 

I Exception Visualization 856 

I Program File(s) 859 

I Exception-Handling Info 863 

.h 

(809 ., , 

D ca:D ca:D ca:D CID •• External 
Storage 
Device 

1111111111111! 1~1 
819 823 

829 

FIGURE 8 

v 



700 

~ 
770 

FIGURE 7 

oJava - NanoXML(2)/versions.alt/component/seeded/v1/net/n3/nanoxml/XMLParserFactory.java - Eclipse SOK rn0 
Eile Edit ~ource Refac!or Navigate Seg_rch .E.roject B.un Window ]:ielp ' 

· ct • 121 ~ n3 n · • ~ · ® • ~ • · 13 e o • · ~ '9 ~ · ~ • ~1 • -.:? <:=i • ·:> - a~ 
'o EQualizelineNumbers.iavaf o XMLParseException .iava(o XMLParserFactory.java '\: 

els - Class.forName(XMLParserFactory.VALIDATOR CLASS); 
validator= (IXMLValidator) cls.newinstance() ; 

.I: ·ff7~~~~~~~~P::!~~i~fa-~hw~w·:~i.v•W~~~Wt1d~s:h~f~.·:·:•:.::••···.:·: ..• :: .••••.•. :.:·:········· 

Catch Statements 
s G1I w (default package) 
· $ g o EqualizelineN 

' Iii QI o. Equalizelin 760 

neUn3/nanoxml/XM LParserF actory.createXMLParser: 157 

Ill 

l!!!!!!!!!!!!!!!!!!!!!~!!!!!!!!!!!!•!!!!!!!!!!!!!J~====================f Attribute: Empty Catch Handler !========~ 

II 

~ 
00 
• 
~ 
~ 
~ 
~ = ~ 

""f'j 
('D 

?' 
N .... 
"' 
N 
0 .... 
N 

1J1 

=-('D 
('D ..... 
O'I 
0 ..... 
O'I 

d 
rJl. 

"'QIO 

"'"" N 
N 
w 
0--, 
0--, 

= N 



US 8,122,366 B2 
1 

SYSTEMS AND METHODS FOR 
VISUALIZATION OF EXCEPTION 

HANDLING CONSTRUCTS 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

2 
Reference will now be made in detail to the description of the 
embodiments as illustrated in the drawings, wherein like ref
erence numbers indicate like parts throughout the several 
views. 

Object-oriented programming languages utilize excep
tions to handle the occurrence of conditions that change the 
normal flow of program execution. In general, an exception is 
handled by saving the current state of execution and switch
ing (or throwing) the execution to a specific subroutine or 

This invention was made with U.S. Goverrnnent support 
under agreement nos. CCR-0205422, CCF-0429117, CCF-
0541049, and CCF-0725202, awarded by the National Sci
ence Foundation. The Goverrnnent has certain rights in this 
invention. 

BACKGROUND 

10 exception (or catch) handler. There exist two different kinds 
of exceptions: exceptions that are explicitly thrown in the 
code (checked exceptions) and exceptions generated by the 
virtual machine at runtime, such as out of memory exceptions 
(unchecked exceptions). In the current disclosure, exception-

15 handling constructs are discussed in the context of the Java 
programming language. However, one of ordinary skill in the 
art would understand that the principles discussed in relation 
to Java can be expanded to include other object-oriented 

Object-oriented progranmiing languages, such as Java or 
C#, provide native constructs for handling exceptions that 
occur during a program's execution. These constructs specify 
mechanisms to define exceptions, to raise exceptions, to 
address exceptions by executing designated code, and to 
return to the regular control flow of the program after an 20 

exception is raised. While developers make frequent use of 
these exception handling constructs, the mechanisms to 
handle an exception are not applied locally within a program, 
but are scattered across different methods, classes, or even 
packages. Despite the native support of progranmiing lan
guages, exception handling constructs and their behaviors at 
runtime are often the least understood parts of a program. 
Visualization of exception handling can aid in understanding 
the complex mechanisms of exception handling in a large 
software system, allowing the developer to efficiently main-

programming languages. 
The following program illustrates the way in which excep

tions are used in a Java program that computes the factorial of 
an integer. The class definition of the exception and the 
method to read the input data are omitted because of space 
constraints. This program will be used for the discussion of 

25 exception-handling constructs. 

public class Fae { 

tain, test, and debug the system. 30 
private static int i,fac; 
public static void main( String args[]) { 

i=fac= 1; 1. 
int n ~ readlnt( ) ; 
try { 

2. BRIEF DESCRIPTION OF THE DRAWINGS 
3. 

Many aspects of the invention can be better understood 
with reference to the following drawings. The components in 35 

the drawings are not necessarily to scale, emphasis instead 
being placed upon clearly illustrating the principles of the 
present invention. Moreover, in the drawings, like reference 
numerals designate corresponding parts throughout the sev
eral views. 40 

4. 
5. 
6. 

7. 
8. 
9. 

} 

while ( i <~ n) { 
mull(); 
i++; 

catch ( ValueExceededException vee ) { 
System.out.println( "value exceeded" ); 
return; 

} 
FIG. 1 is a flow diagram 100 illustrating a method for 

visualization of exception flows and the related exception
handling constructs within a program using a graphical user 
interface (GUI) in accordance with an embodiment of the 

10. 
11. 

finally { 
System.out.println( "Program terminated."); 

present disclosure; 
45 

FIG. 2 illustrates a high-level view of the GUI of FIG. 1 in 
accordance with an embodiment of the present disclosure; 

private static void mull() throws 
ValueExceededException { 

if( fac * i > MAXVAL) 

FIG. 3 illustrates an intermediate-level view of the GUI of 
FIG. 1 in accordance with an embodiment of the present 
disclosure; 

12. 
13. 
14. 
15. 

throw ( new ValueExceededException( ) ); 
fac = fac * i; 
System.out.println( "fac(" +i+ ")~" + fac ); 

FIG. 4 illustrates another intermediate-level view of the 50 

GUI of FIG. 1 in accordance with an embodiment of the 
present disclosure; 

FIG. 5 illustrates a low-level view of the GUI of FIG. 1 in 
accordance with an embodiment of the present disclosure; 

FIG. 6 illustrates a condensed contextual view of the GUI 
of FIG. 1 in accordance with the present disclosure; 

FIG. 7 illustrates a view of a GUI of FIG. 1 in accordance 
with an embodiment of the present disclosure; and 

FIG. 8 is a schematic block diagram of one example of a 
system employed to visualize exception flows and the related 
exception-handling constructs according to an embodiment 
of the present disclosure. 

DETAILED DESCRIPTION 

Disclosed herein are various embodiments of methods 
related to visualization of exception-handling constructs. 

In Java, checked exceptions are modeled as regular objects 
and can be raised using the throw statement (e.g., line 13 of 
the above program). To handle exceptions, Java provides try, 

55 catch, and finally statements. A try block (e.g., lines 3-6) 
contains a sequence of statements and is executed until an 
exception is thrown or until the block is completed. A try 
block is followed by one or more catch blocks, by a finally 
block, or by both. A catch block (e.g., lines 7-9) is associated 

60 with a try block, defines the type of the exception it handles, 
and contains a set of statements. A finally block (e.g., line 
10-11) is also associated with a try block and contains a set of 
statements. 

If an exception occurs in a try block, the associated catch 
65 blocks are checked for a matching type (i.e., for the exception 

type or a superclass of the exception type). Ifamatching catch 
block is found, its body is executed and the program continues 



US 8,122,366 B2 
3 

its execution with the statement following the try block. Oth
erwise, the call stack is searched for a matching catch block. 
If a match is found, the program continues with the execution 
of that catch block's code; otherwise, the program terminates. 
If a finally block is present in a try-catch-finally sequence, its 
code is always executed: either after the try block (if no 
exception is raised or no matching catch block is found for a 
raised exception) or after the catch block (if a matching catch 
block is found for a raised exception). Thrown exceptions can 
be deactivated by a matching catch handler or by a finally 
block containing a statement that transfers the control flow 
outside the finally block (e.g., a return or a continue state
ment). 

FIG. 1 is a flow diagram 100 illustrating a method for 
visualization of exception flows and the related exception
handling constructs within a program. Initially, in block 110, 
a program is analyzed to determine the exception-handling 
constructs and their relationships within the program. An 
analysis tool, operating on a computer system, is used to 
analyze the program to determine the exception-handling 
construct information (e.g., flow of the exception and code 
location). The flow of an exception consists of two parts: (1) 
the flow from the exception's type definition to reachable 
throw statements and (2) the flow from those throw state
ments to reachable catch statements. A throw statement is 
reachable from a type definition if an execution path exists 
from the type definition to the throw statement; a catch state
ment is reachable from a throw statement if an execution path 
exists from the throw statement to the catch statement and no 
statement along the path deactivates the raised exception. 
Analysis techniques related to exception flow are presented in 
"Exception-chain Analysis: Revealing Exception Handling 
Architecture in Java Server Applications" by C. Fu and B. G. 
Ryder in the Proc. of the ICSE 2007, "Automated Support for 
Development, Maintenance, and Testing in the Presence of 
Implicit Control Flow" by S. Sinha, A. Orso, and M. J. Har
rold in the Proc. of the ICSE 2004, and "Static Analysis to 
Support the Evolution of Exception Structure in Object-Ori
ented Systems" by M. P. Robillard and G. C. Murphy in the 
ACM Trans. on Software Eng. and Methodology, April 2003, 
all of which are incorporated herein by reference. 

In block 120, a graphical user interface (GUI) is generated 
by a computer system based upon the determined exception
handling information. The GUI provides three views, each 
offering a different perspective on exception flows and the 
related exception-handling constructs. The views represent 
the exception-related information with three levels of detail: 
a high-level (quantitative) representation that provides quan
titative information about exception constructs with respect 

4 
analyzed program. For example, the tri-level visualization 
helps users to understand cyclic dependencies, tight coupling 
among structural elements, exception construct concentra
tion in a particular element, and structural complexity of the 
program with respect to exceptions. High-level views are 
useful to see information about the number of exceptions of a 
particular type within a method, a class, or a package. Lower
level visualizations showing detailed contextual information 
about an exception's origin, its type, and its complete propa-

10 gation path aid in better understanding of the exception flows. 
Additionally, such views also aid in quickly understanding 
change-impact details (e.g., how modifying a catch block's 
type may affect the set of exceptions it may handle). 

In FIGS. 2-4, exemplary embodiments of the three exem-
15 plary views of visualization (quantitative, flow, and contex

tual) are presented with respect to a version of the Java pro
gram nanoxml3 to present examples of the different views. 
The nanoxml program has approximately 2700 lines of code, 
three packages, five classes, and 85 methods. The packages 

20 include the default package in the program and two other 
packages designated as nanoxml and nanoxml.sax. 

FIG. 2 illustrates an exemplary embodiment of the high
level qualitative view 200 of the GUI of FIG. 1 in accordance 
with the present disclosure. The quantitative view 200 pro-

25 vides information about throw-catch pairs at different struc
tural levels of a program's hierarchy (i.e., package level, class 
level, and method level). This high-level view 200 also gives 
an overview, in the form of a matrix 210, of the exception 
dependencies between structural elements. The colunms in 

30 the matrix 210 represent structural elements 220 containing 
throw statements and the rows represent structural elements 
230 containing catch statements. Thus, a cell 240 (i.e., col
unm-name, row-name) in the matrix represents throw-catch 
pairs between the two intersecting structural elements 220 

35 and 230. In other embodiments, the colunms in the matrix 210 
represent structural elements containing catch statements and 
the rows represent structural elements containing throw state
ments. 

In the embodiment of FIG. 2, a circle 250 in a cell 240 
40 indicates that there exists at least one throw-catch pair 

between the two intersecting structural elements 220 and 230. 
In some embodiments, the visualization uses distinct shades 
of a color to provide relative information of the throw-catch 
pair density. Alternatively, a color scale including a different 

45 color associated with each level may be utilized. The shade or 
color may be allocated using a three step process: (1) calcu
late the range of the number of throw-catch pairs, (2) partition 
this range into a predetermined number of discrete sets of 
values, and (3) assign one shade or color to each set such that 

50 the darkness of the shade or the color scale increases with the to overall program structure, an intermediate-level (flow) 
view focuses on flow information of different exception-han
dling constructs, and a low-level (contextual) representation 
that provides contextual details with respect to each excep
tion-flow within the program. The intermediate view provides 
more specific details than the high-level quantitative view but 55 

abstracts the contextual details of the low-level view. This 
approach lets a user focus only on the flow details of the 
exception-handling constructs in the program (type, throw, 
catch, and finally). The intermediate-level view not only 
facilitates concentrating on the exception-handling con- 60 

structs and their flow information, but also provides a smooth 
mental transition from the general high-level quantitative 
information to the specific low-level contextual information. 

set values. In other embodiments, the color or shade scale is 
predetermined. In the example of FIG. 2, the shading scale 
260 is divided into five discrete sets. Thus, a circle 250 with 
the darkest shade indicates that the intersecting structural 
elements 220 and 230 are strongly exception-dependent on 
each other. 

In some embodiments, the high-level visualization 200 
uses a static color scheme where the number of throw-catch 
pairs in the entire program under consideration is used to 
calculate the range of number of throw-catch pairs. This 
choice of color scheme assures that the color assignment is 
consistent across the different structural levels. In some cases, 
however, using such a static scheme could result in most cells 
belonging to the same set of values and making them indis
tinguishable. To address this, other embodiments use a 
dynamic color scheme where the number of throw-catch pairs 
in the currently displayed set of packages, classes, or methods 

The GUI is provided for display on a display device in 
block 130. The user may then interact with the GUI to gather 65 

general insights that developers might need to better under
stand exception-handling constructs within the context of the 



US 8,122,366 B2 
5 

is used to calculate the range of number of throw-catch pairs. 
The dynamic color scheme may be an on-demand feature or 
automatically implemented by the GUI. 

6 
Parser class. Selecting an element may allow the user to view 
different level views. For example, a single click can select an 
element (multiple selections are possible using the CTRL key 
function), and a double click can switch to the next lower level 
while keeping the selected elements in focus. In such a 
scheme, a SHIFT double click can switch to the next higher 
level (using the up-arrow of the SHIFT key as metaphor). The 
user may make multiple selections by using a "rubberband" 
mechanism (e.g., using a mouse to press and drag). 

To help the user navigate between different level views of 
the GUI, the quantitative visualization 200 may use color 
variations on the row and column headers of the matrix 210 
(i.e., the topmost row 280 and the leftmost colunm 290 in the 
matrix 210) to indicate differences in their levels. For 

The quantitative view 200 of FIG. 2 is a plain design that 
does not display additional information in the circles 250 to 
allow the view to scale a reasonable size. In other embodi
ments, the circle 250 may include the display of information 
(e.g., the number of throw-catch pairs between intersecting 
structural elements) or, alternatively, the circle 250 may be 
replaced by the number of throw-catch pairs between the two 10 

intersecting structural elements 220 and 230. Using cells 240 
with a size of approximately 15x15 pixels, the quantitative 
view 200 can display a matrix 210 of up to 50 packages at 
standard screen resolution when the labels for the colunms 
elements 220 are presented vertically. 15 example, dark orange for the package level, light orange for 

the class level, and cream for the method level. The selected 
color variations belong to the same color group and take the 
level hierarchy into account (e.g., the higher the level is in the 

The exemplary embodiment of FIG. 2 shows the quantita
tive view 200 for nanoxml at the package level: each of the 
three rows and columns in the matrix represents one package 
in the subject. The first package, labeled "(default)", repre
sents the default package in the program. The two other 20 

packages are labeled as "nanoxml" and "nanoxml.sax". The 
circle 250 at cell 240 between the two intersecting structural 
elements [nanoxml, nanoxml.sax] 220 and 230 indicates that 
the package nanoxml 220 may throw exceptions that are 
caught by catch blocks within the package nanoxml.sax 230. 25 

Similarly, the circle between the two intersecting structural 
elements [nanoxml, nanoxml] indicates that the package nan
oxml 220 may throw exceptions that are caught by catch 
blocks within the same package (nanoxml). With the excep
tion-dependency information that the qualitative view 200 30 

provides, a user can get an overview of how well the program 
is implemented with respect to exception-handling con
structs. For example, if all circles on the package level are on 
the top-left to bottom-right diagonal in the matrix 210, the 
program has no cross-package dependencies in terms of 35 

exceptions. 
The qualitative view 200 may also be implemented at a 

class level or at a method level. The qualitative view 200 may 

hierarchy, the darker is its color). 
While the quantitative view 200 displays information 

about the throw-catch pairs at different structural levels, it 
does not provide information about the types and flows of the 
exceptions. FIG. 3 illustrates an exemplary embodiment of 
the intermediate-level flow view 300 of the GUI of FIG. 1 in 
accordance with the present disclosure. The flow view 300 
provides further details about exception-handling constructs 
by showing a graph 310 (i.e., the exception-flow graph) that 
includes nodes representing four components of exception 
handling: exception types 320, throw statements 330, catch 
statements 340, and finally statements (not shown in FIG. 3). 

The flow view 300 represents the components using differ
ent shapes: triangles for type nodes 320, squares for throw
statement nodes 330, and circles for catch-statement nodes 
340. In addition, octagons may be used for finally-statement 
nodes. In other embodiments, a different combination of 
shapes may be used to represent the nodes. Circles with a 
white hole in the center (e.g., circle 350) represent empty 
catch handlers (i.e., catch blocks that do not contain any 
executable statements). An edge 360 between a type node 320 be toggled or switched between levels. At the class level, each 

of the rows and columns in the matrix represents a class. At 
the class level, the qualitative view 200 visualizes the catch
throw pairs between some or all of the classes in the program 
at the intersecting cells. Similarly, at the method level, the 
qualitative view 200 visualizes the catch-throw pairs between 
methods in the program. In some embodiments, all methods 

40 and a throw-statementnode 330 indicates that an exception of 
that type reaches that throw statement in the program. If an 
exception type is not explicitly defined but the throw state
ment throws the exception directly using its constructor, the 
edge 360 between the throw node 330 and the type node 320 

45 is colored differently (e.g., gray instead of black) to indicate 
that no explicit flow exists. An edge 370 between a throw
statement node 330 and a catch-statement node 340 indicates 
that an exception thrown at that throw statement can reach 
that catch statement. 

of the program are displayed, while in others, methods of 
selected classes are displayed. Throw-catch pairs within the 
same class or between different classes may be visualized. 
For example, the methods of one or more classes may be 
displayed as throws and the methods for the same or a differ- 50 

ent combination of classes may be displayed as catches. 
Because the matrix in the quantitative view 200 can be large, 
in some embodiments, filters can be used to address scalabil
ity. For example, filters may be selected to (1) filter structural 
elements by their names (e.g., consider only elements that 55 

have the term "parse" in their names), (2) reduce the size of 
the matrix by showing only the rows and colunms that have at 
least one entry, and/or (3) select specific elements of interest. 

The GUI can provide for a plurality of operations that allow 
the user to interact with the quantitative view 200. For 60 

example, moving the mouse to place the cursor icon over a 
cell 240 may cause a tooltip 270 to display with exception
handling information such as, but not limited to, the actual 
number of throw-catch pairs between the two intersecting 
structural elements. In the exemplary tooltip 270 of FIG. 2, 65 

there are 11 throws in the nanoxml.XMLElement class that 
may be caught by catch blocks in the nanoxml.sax.SAX-

In the embodiment of FIG. 3, all nodes (320, 330, and 340) 
have the same coloring except for an exit node 380, which has 
a different color indicating that it is a special kind of catch
statement node, or a finally-statement node, which has a 
different color indicating that it has at least one path that 
deactivates an exception (e.g., using a return statement). For 
example, all nodes (320, 330, and 340) may be colored green 
except for the exit node 380 or a finally-statement node, 
which may be colored in red. Edges 370 from throw nodes 
330 reaching an exit node 380 indicate that exception occur
ring at those throw statements may go uncaught and thus, 
reach the program's exit. In addition, in some embodiments, 
inappropriate coding patterns such as, but not limited to, 
empty catch handlers, deactivations of exceptions in finally 
blocks, rethrows of exceptions in catch blocks, and excep
tions that reach the program's exit are highlighted. 

A hierarchical graph layout algorithm may be utilized to 
determine the layout for the exception-flow graph 310. If no 



US 8,122,366 B2 
7 8 

finally-statement is present in the exception flow, the graph 
310 consists of three layers of nodes, which are assigned to 
one of the three layers: all type nodes 320 are assigned to the 
top layer, all throw-statement nodes 330 are assigned to the 
middle layer, and all catch-statement nodes 340 are assigned 5 

to the bottom layer. Within a layer, the nodes may be sorted to 
minimize edge crossings using a heuristic algorithm. In some 
embodiments, the names of some or all of the nodes may be 
displayed. The node names may be displayed over the edges 
or may be toggled to display behind the edges or, alterna- 10 

tively, removed from the view. 

The flow view 300 may also help in observing patterns in 
the flow of exceptions within a program. For instance, edges 
370 from one throw-statement node 330 to different catch
statement nodes 340 indicate that there are different paths that 
an exception at that throw-statement 33 0 may follow, depend
ing on the program conditions. Three perspectives of an 
exception-flow graph 310 (each producing a subgraph of the 
exception-flow graph) may be selected to aid the user: 

1) a type-centric perspective with respect to a type-node 
definition statement sn: the node set of this subgraph 
consists of the set of defined type-nodes Sn itself, all 
throw nodes that are reachable from Sn, and all catch 
nodes that are reachable from those throw nodes; The exemplary embodiment of FIG. 3 shows the flow view 

300 for the program nanoxml. In some embodiments, flow 
view 300 can be reached by selecting both circles in the 

15 
quantitative view 200 of FIG. 2 and switching to the flow view 
300. The highlighted path (shown with thicker edges in FIG. 

2) a throw-centric perspective with respect to a throw-node 
definition statement sr: the node set of this subgraph 
consists of the set of type-nodes that can reach the set of 
defined throw-nodes s n Sr itself, and all catch nodes that 
are reachable from sr; and 3) shows that an exception of type "java/io/FilenotFoundEx

ception" can be thrown from the throw-statement 330 at line 
2038 in method nanoxml/XMLElement.addedMethod and 20 

3) a catch-centric perspective with respect to catch-node 
definition statement sc: the node set of this subgraph 
consists of the set of throw-nodes that can reach the set 
of defined catch-nodes s0 all type-nodes that can reach 
those throw nodes, and Sc itself. 

this exception can be caught at the catch-statement at line 
2039 in method nanoxml/XMLElement.addedMethod. 

In the flow view 300, users can select nodes or edges using 
the cursor icon and a single mouse click. Selecting a node 
(320, 330, 340) highlights all exception-flow paths (360, 370) 
to which the selected node belongs. Selecting an edge (360, 
370) highlights only the two adjacent nodes. Selection of 
multiple nodes and/or edges is possible using the CTRL key 
function. 

The flow view 300 may be provided with different layouts 
of the graph 310. For example, the nodes (320, 330, 340) are 
arranged to minimize edges crossings in the graph 310. In 
other layouts, the nodes (320, 330, 340) may be clustered 
accordingly to their package and class structure. In some 
embodiments, the nodes (320, 330, 340) are clustered by class 
and ordered by the line number of the statements they repre
sent. As can be seen in FIG. 3, a single catch-statement node 
340 can catch throws from multiple throw-statement nodes 
330 and a throw-statement node 330 can throw to multiple 
catch-statement nodes 340. Furthermore, the exception from 
all throw-statement nodes 330 except one may reach the 
program exit node 380 and there seem to be some unreachable 
catch handlers. 

To learn more about the unreachable catch handlers, the 
flow view 300 may be focused on the flow to catch handlers 
while also taking rethrows into account. Catch handlers may 
rethrow a caught exception, which can be indicated by a 
dotted or dashed line from the catch node 340 to the throw 
node 330. In some embodiments, the rethrow may be colored 
(e.g., red) to distinguish it from other edges 370. In this way, 
catch handlers that catch runtime exceptions and use a 
rethrow can be visualized. 

The flow view 300 visually displays the exception-han
dling flow information to allow users to infer information 
about the statements represented by the nodes. For example, 
a catch-statement node 340 with several incoming edges 370 
may indicate the impact of that catch block on the rest of the 
exception flow in the program. Many edges into a catch
statement node 340 can indicate that the node 340 represents 

The edge sets of these perspectives are derived from the 
25 feasible control flow defined by the given node sets. The type 

centric perspective leads to two patterns: single type to single 
throw and single type to multiple throws. The throw centric 
perspective leads to four patterns: single type to single throw; 
multiple types to single throw; single throw to single catch; 

30 and single throw to multiple catch. The catch centric perspec
tive leads again to two patterns: single throw to single catch 
and multiple throws to single catch. The different perspec
tives may be selected by a user through the GUI. 

FIG. 4 illustrates another exemplary embodiment of the 
35 intermediate-level flow view 400 of the GUI of FIG. 1, which 

includes the visualization of finally statements. The program 
405 in FIG. 4 is used as an example to illustrate how finally 
statements are integrated in the flow view 400. The program 
405 includes three methods A, B, and C that are called in the 

40 try block of the main method. Method A throws an exception 
in a try block, the exception is caught in a catch block, the 
finally block is executed, and the method returns. Method B 
throws an exception and deactivates it using a return state
ment in the finally block. Method C throws an exception, 

45 executes the finally block, and the exception is caught in the 
main method. 

The graph 410 of flow view 400 corresponds to the pro
gram 405. One or more additional layers may be added to 
visualize the finally nodes. In the embodiment of FIG. 4, two 

50 additional layers (between the throw and catch node layers 
and after the catch node layer) are added for the finally nodes 
450 and 455 to reflect the two possible flows. If a try block has 
both a catch and a finally block, and the exception is caught in 
the catch block, then the finally block is executed after the 

55 catch block. If the catch block does not catch the exception 
(because the type does not match) or no catch block is present, 
the finally block is executed after the try block and before the 
control flow leaves the method. The leftmost nodes represent 
the flow in method A (throw 430, catch 440, finally 455), the 

60 nodes in the middle represent the flow in method B (throw 
430, deactivation in finally 450), and the rightmost nodes 
represent the flow in method C (throw 430, finally 450, catch 
440). As can be seen, because methods B and C are of the 

a catch-statement that is responsible for handling a number of 
exceptions and thus, changing such a catch block may impact 
different parts of the program. In addition, tracing complete 
paths of a node tuple [type 320, throw 330, catch 340] in the 
flow view 300 may help to determine the type of a catch block. 
For example, a catch-statement node 340 handling different 65 

types of exceptions implies that catch block's type is a super
type of all the exception types it handles. 

same type, they both flow from a single type node 420. 
FIG. 5 illustrates an exemplary embodiment of a low-level 

contextual view 500 of the GUI of FIG. 1 in accordance with 
the present disclosure. While a flow view displays flow infor-



US 8,122,366 B2 
9 

mation about the exceptions at the statement level with 
respect to throw and catch statements, flow information in the 
presence of the statements' context with respect to the pro
grams hierarchical structure (e.g., to which class and method 
a statement belongs) is not shown. The contextual view 500 
provides information about the complete propagation path of 
an exception including the methods through which the excep
tion may propagate before reaching the catch (i.e., methods 
that use the throw construct) by extending the exception-flow 
graph to show exception-propagation information in an 
exception-propagation graph 510. This graph 510 is embed
ded in a hierarchical representation of the source code of the 
program. 

In the exemplary embodiment of FIG. 5, the hierarchy, 
representing the package, class, and method levels, is com
posed of three levels of rectangles embedded within each 
other. An outermost rectangle 520 represents a package, inter
mediate rectangles 530 represent the classes within the pack
age, and innermost rectangles 540 represent the methods 
within these classes. To help the user navigate between dif
ferent level views of the GUI, the contextual view 500 may 
use color variations to indicate differences in their levels as in 
the quantitative visualization 200 of FIG. 2. For example, 
dark orange may be used for outermost rectangles 520 repre
senting the highest package level, light orange may be used 
for the intermediate rectangles 530 representing the class 
level, and cream may be used forthe innermost rectangles 540 
representing the method level. The selected color variations 
belong to the same color group and take the level hierarchy 
into account (e.g., the higher the level is in the hierarchy, the 
darker is its color). Within the method rectangles 540, the 
contextual view 500 visualization may display the method's 
code in a small font. Although the code may not be readable, 
the preserved line structures and indentations of the code help 
to quickly identify locations in the source code. In some 
embodiments, the GUI may allow a user to zoom in on the 
code text. Code outside of method blocks, such as the variable 
declaration and import statements, may be ignored because it 
does not directly relate to exception-handling constructs. 

In some embodiments, a simple heuristic can be used to 
recursively compute the layout of the hierarchy of the con
textual view 500. The maximal height of an outermost rect
angle 520 representing a package is defined using the avail
able screen real estate of the GUI. Based on this maximal 
height, the technique computes the height of the intermediate 
rectangles 530 representing each class. The innermost rect
angles 540 representing methods are arranged in columns 
within the intermediate class rectangles 530. In some embodi
ments, the innermost method rectangles 540 may be wrapped 
accordingly to the maximal height. The intermediate class 
rectangles 530 may be arranged the same way in the outer
most package rectangles 520. 

10 
The exemplary contextual view 500 ofFIG. 5 illustrates the 

propagation path of an exception across two packages. The 
contextual view 500 shows two packages, nanoxml and nan
oxml.sax (outermost rectangles 520a and 520b, respectively), 
of the nanoxml program and their contained classes and 
methods. The embedded exception flow graph 510 shows that 
a throw (node 330) in the method XMLElement.skipBo
gusTag (innermost rectangle 540a) in package nanoxml (out
ermost rectangles 520a) is caught by the catch block (node 

10 340) in method SAXParser.parse (innermost rectangle 540b) 
in package nanoxml.sax (outermost rectangles 520b) after it 
is propagated through five other methods. Embedding the 
exception flow graph 510 into the contextual view 500 of the 

15 
entire source code helps the developer to maintain a mental 
model of the visualization when switching from one flow to 
another. Embedding graph 510 also lets the user visualize 
multiple flows at once and as such supports comparison. In 
addition, the propagation of catch-throw-finally and throw-

20 finally relationships may be similarly depicted in the contex
tual view 500 of the program. 

In some embodiments, moving the cursor icon over an 
element in the contextual view 500 displays further details of 
that element in a tooltip. For example, the name and line 

25 number may be displayed for throw-statement nodes 330 and 
catch-statement nodes 340 and the method name may be 
displayed for nodes 550 representing intermediate points in 
the propagation path. Similarly, information about a package, 
class, or method may be presented by selecting the appropri-

30 ate rectangle. 
The contextual view 500 aids the user in understanding 

how different parts of a program are involved in exception 
flows. For example, the contextual view 500 can show how 
any changes made, with respect to exceptions, to the interme-

35 diate methods involved in the exception-propagation path 
(e.g., removing a throw construct and introducing a catch 
block) may affect the flow of the exception. The contextual 
view 500 may also help to understand an inappropriate coding 
pattern such as a large distance between throw and catch pair. 

40 The exception-propagation path provides the context of this 
large-distance pattern by showing the methods through which 
the exception propagates and helps the developer to decide 
whether refactoring is necessary. 

Because the approach may not scale for larger programs, a 
45 user may select to view a condensed contextual view that 

includes only methods that are involved in the exception flow. 
FIG. 6 illustrates an exemplary embodiment of a condensed 
contextual view 600. In the exemplary condensed contextual 
view 600, a throw (node 330) in method XMLElement.skip-

50 Whitespace (innermost rectangle 620) in package nanoxml 
reaches the program exit (node 380) after it is propagated 
through five other methods; only the methods involved in the 
propagation are shown in this condensed contextual view 
600. The exception-propagation graph 510 consists of nodes 

and edges. Nodes are exception-related or non-exception 55 

related. In some embodiments, exception-related nodes use 
the same color and shape representation as the associated flow 
view (e.g., flow view 300 of FIG. 3): squares represent throw
statements nodes 330, circles represent catch-statement 
nodes 340, and octagons represent finally statements. For 60 

example, as with flow view 300, the nodes may be colored 
green unless they are involved in an inappropriate coding 
pattern in which case they are colored red. Non-exception 
related nodes 550, represented as smaller black circles, 
denote the methods within the propagation path of the excep- 65 

tion flow. Edges 560 indicate the flow of the exception along 

A graphical user interface (GUI) may be used to imple
ments the three views: qualitative, flow, and contextual. FIG. 
7 illustrates a view of a GUI 700 in accordance with an 
embodiment of the present disclosure. In the exemplary 
embodiment of FIG. 7, the three views are integrated as three 
separate tabs 701, 702, and 703 in a single GUI display 700. 
The GUI 700 allows a user to select one of the three visual-
izations (i.e., the quantitative view, the flow view, or the 
contextual view) using tabs 701, 702, and 703. In other 
embodiments, two or more views may be simultaneously 
displayed by the GUI. 

In addition, the left column of the exemplary GUI 700 
provides five filters for controlling the three views: its propagation path. 



US 8,122,366 B2 
11 

An Exception Type filter 710 that allows a user to select an 
exception type(s) for which details will be provided in 
the three views; 

12 
information 863. The program files 859 may be analyzed for 
visualization by the graphical user interface. The exception
handling information 863 may be associated with corre
sponding ones of the program files 859. The program files 859 
and the exception-handling information 863 may be stored in 
the external storage device 829 as needed. 

The exception visualization system 856 is executed by the 
processor 803 in order to visualize exception-handling con
structs as described above. A number of software components 

Three location filters for throw-statements 720, catch
statements 730, and finally statements 740 that allow a 
user to select one or more structural elements to which 
the throw, catch, and finally statements belong. The 
related quantitative, flow and contextual views provide 
filtered information about the exception-handling con
structs of the selected structural elements based upon the 
filter definitions; and 

A patterns filter 750 that allows a user to select a pattern and 
view exception flows that form the selected pattern. The 
patterns represent the six edge flow patterns discussed 
previously. In the embodiment of FIG. 7, the top row of 
the patterns filter represents the patterns of single type to 
single throw 751, multiple types to single throw 752, and 
single type to multiple throws 753. The bottom row of 
the patterns filter represents the patterns of single throw 

10 are stored in the memory 806 and are executable by the 
processor 803. In this respect, the term "executable" means a 
program file that is in a form that can ultimately be run by the 
processor 803. Examples of executable programs may be, for 
example, a compiled program that can be translated into 

15 machine code in a format that can be loaded into a random 

to single catch 754, single throw to multiple catch 755, 20 

and multiple throw to single catch 756. This filter 750 is 
specific to the flow view and is disabled when one of the 
other views is used. 

The GUI 700 may also provide two kinds of filtering 
mechanisms: filtering by selecting and interacting directly 25 

with the entities in one of the three views (as described pre
viously) or filtering by using any combination of the five 
provided filters 710-750. Because the three views in the 
embodiment of FIG. 7 are organized as tabs 701, 702, and 
703, it is possible to switch between the views while main- 30 

taining the same context defined by the filters. In other 
embodiments, two or more views may be simultaneously 
displayed by the GUI. 

In the example of FIG. 7, the tab 702 forthe flow view has 
been selected. An exemplary flow view 760 for the nanoxml 35 

program is displayed with the focus on the edges. The flow 
view 760 shows that five of the six edge set patterns discussed 
above exist in the nanoxml program (the multiple types to 
single throw pattern is not present). The visualization of GUI 
700 also shows that there exists only one empty catch handler 40 

(node 350). Its code is shown in the editor view 770 located at 
the top of the GUI window 700 in FIG. 7. 

Referring next to FIG. 8, shown is one example of a system 
that performs various functions related to visualization of 
exception handling constructs according to the various 45 

embodiments as set forth above. As shown, a processor sys
tem 800 is provided that includes a processor 803 and a 
memory 806, both of which are coupled to a local interface 
809. The local interface 809 may be, for example, a data bus 
with an accompanying control/address bus as can be appre- 50 

ciated by those with ordinary skill in the art. The processor 
system 800 may comprise, for example, a computing device 
such as a desktop computer, laptop, personal digital assistant, 
server, or other system with like capability. 

Coupled to the processor system 800 are various peripheral 55 

devices such as, for example, a display device 813, a keyboard 
819, and a mouse 823. In addition, other peripheral devices 
that allow for the storage of exception-handling information 
or program files may be coupled to the processor system 800 
such as, for example, an external storage device 829. 

Stored in the memory 806 and executed by the processor 
803 are various components that provide various functional-

60 

ity according to the various embodiments of the present 
invention. In the example embodiment shown, stored in the 
memory 806 is an operating system 853 and an exception 65 

visualization system 856. In addition, stored in the memory 
806 are various program files 859 and exception-handling 

access portion of the memory 806 and run by the processor 
803, or source code that may be expressed in proper format 
such as object code that is capable of being loaded into a of 
random access portion of the memory 806 and executed by 
the processor 803, etc. An executable program may be stored 
in any portion or component of the memory 806 including, for 
example, random access memory, read-only memory, a hard 
drive, compact disk (CD), floppy disk, or other memory com
ponents. 

The memory 806 is defined herein as both volatile and 
nonvolatile memory and data storage components. Volatile 
components are those that do not retain data values upon loss 
of power. Nonvolatile components are those that retain data 
upon a loss of power. Thus, the memory 806 may comprise, 
for example, random access memory (RAM), read-only 
memory (ROM), hard disk drives, floppy disks accessed via 
an associated floppy disk drive, compact discs accessed via a 
compact disc drive, magnetic tapes accessed via an appropri
ate tape drive, and/or other memory components, or a com
bination of any two or more of these memory components. In 
addition, the RAM may comprise, for example, static random 
access memory (SRAM), dynamic random access memory 
(DRAM), or magnetic random access memory (MRAM) and 
other such devices. The ROM may comprise, for example, a 
programmable read-only memory (PROM), an erasable pro
grammable read-only memory (EPROM), an electrically 
erasable programmable read-only memory (EEPROM), or 
other like memory device. 

The processor 803 may represent multiple processors and 
the memory 806 may represent multiple memories that oper
ate in parallel. In such a case, the local interface 809 may be 
an appropriate network that facilitates communication 
between any two of the multiple processors, between any 
processor and any one of the memories, or between any two of 
the memories etc. The processor 803 may be of electrical, 
optical, or molecular construction, or of some other construc
tion as can be appreciated by those with ordinary skill in the 
art. 

The operating system 853 is executed to control the allo
cation and usage of hardware resources such as the memory, 
processing time and peripheral devices in the processor sys
tem 800. In this manner, the operating system 853 serves as 
the foundation on which applications depend as is generally 
known by those with ordinary skill in the art. 

Referring back to FIG. 1, shown is a flow chart 100 that 
may be viewed as depicting steps of an example of a method 
implemented in the processor system 800 (FIG. 8) for visu
alization of exception-handling constructs as set forth above. 
The functionality of the method as depicted by the example 
flow chart of FIG. 1 may be implemented, for example, in an 
object oriented design or in some other programming archi
tecture. Assuming the functionality is implemented in an 



US 8,122,366 B2 
13 

object oriented design, then each block represents function
ality that may be implemented in one or more methods that 
are encapsulated in one or more objects. The exception visu
alization system may be implemented using any one of a 
number of programming languages such as, for example, C, 
C++, or other programming languages. 

14 
6. The system of claim 1, wherein the GUI is configured to 

~lter the flow vie~ to graphically represent a selected excep
t10n-flow pattern m response to a user input. 

7. The sys~em of claim 6, wherein the selected exception
fl.ow pattern 1s one of the group consisting of single type to 
s~ngle throw patte~s, multiple types to single throw patterns, 
smgle type to m~lt1ple throws patterns, single throw to single 
catch patterns, smgle throw to multiple catch patterns and 
multiple throw to single catch patterns. ' 

It should be emphasized that the above-described embodi
me.nts of the pr~sent disclosure are merely possible examples 
of.1mplementat10ns set forth for a clear understanding of the 
pnnc1ples of the disclosure. Many variations and modifica
ti~ns may be ~ade to the above-described embodiment(s) 
without ~epartmg substantially from the spirit and principles 
of the disclosure. All such modifications and variations are 
intended to be included herein within the scope of this dis
closure and protected by the following claims. 

10 
8. ~he system of claim 1, wherein the exception-flow graph 

graphically represents type-throw-catch-finally relationships 
of the exception-handling constructs. 

. 9. ~he system of claim 1, wherein the GUI is configured to 
highlight all type-throw-catch relationships associated with a 
selec!ed node of the exception-flow graph in response to a 

15 user mput. 

Therefore, at least the following is claimed: 
1. A system, comprising: 

10. The system of claim 1, wherein the contextual view 
incl~des a P.lurali1J'. of exception-propagation graphs embed
de~ m the hierarchical representation, each exception-propa
gat10n graph correspondmg to a catch-throw relationship of at least one computing device including at least one pro

cessor; 
20 the exception-handling constructs. 

a program maintained in a memory accessible to the at least 
one computing device; and 

logic executable in the at least one computing device con
figured to: 
an~lyze th~ program to determine exception-handling 

25 

mformat10n about exception-handling constructs 
within the program and relationships between the 
exception-handling constructs within the program; 

generate a graphical user interface (GUI) based upon the 
exception-handling information, the GUI including a 

30 

qualitative view of the exception-handling constructs 
within the program, wherein the qualitative view 
includes a matrix that represents throw-catch relation
ships of the exception-handling constructs at a pack
age level, a flow view of the exception-handling con-

35 

structs within the program, wherein the flow view 
includes an exception-flow graph that graphically 
represents type-throw-catch relationships of the 
exception-handling constructs, and a contextual view 
of the exception-handling constructs within the pro-

40 

~ram, wherei~ the contextual view includes an excep
t10n-propagat10n graph of a catch-throw relationship 
of the exception-handling constructs, the exception
propagation graph embedded within a hierarchical 
representation of the source code of the program; and 

45 

provide the GUI for display on a display device. 
~· The system of claim 1, wherein the GUI is configured to 

switch between the qualitative view, the flow view, and the 
contextual view in response to a user input. 

3. The system of claim 1, wherein the qualitative view 
50 

includes a matrix that represents throw-catch relationships of 
the exception-handling constructs at a class level. 

4. The system of claim 1, wherein the qualitative view 
includes a matrix that represents throw-catch relationships of 
the exception-handling constructs at a method level. 

55 

~· The system of claim 1, wherein the GUI is configured to 
switch the qualitative view between a package level view a 
class level view, and a method level view in response to a u~er 
input. 

11. The system of claim 1, wherein the contextual view is 
a condensed contextual view including only methods of the 
program that are involved in the exception propagation 
through the program. 

12. The system of claim 1, wherein the contextual view 
includes an exception-propagation graph of a catch-throw
finally .relationship of the exception-handling constructs, the 
except10n-propagation graph embedded within a hierarchical 
representation of the source code of the program. 

13. A non-transitory computer readable storage medium 
embo~y!ng logic executable by a computer system, the logic 
compnsmg: 

code that analyzes a program to determine exception-han
dling information about exception-handling constructs 
~ithin the program and relationships between the excep
t10n-handlmg constructs within the program; 

code that generates a graphical user interface (GUI) based 
upon the exception-handling information the GUI 
including a ~ua.litative view of the excepti;n-handling 
constructs w1thm the program, wherein the qualitative 
view includes a matrix that represents throw-catch rela-
tionships of the exception-handling constructs at a pack
age level, a flow view of the exception-handling con
structs within the program, wherein the flow view 
includes an exception-flow graph that graphically rep
resen~s type-throw-catch relationships of the exception
~andlmg c?nstructs, and a contextual view of the excep-
t10n-handlmg constructs within the program, wherein 
the contextual view includes an exception-propagation 
graph of a catch-throw relationship of the exception
handling constructs embedded within a hierarchical rep-
resentation of the source code of the program; and 

code that provides the graphical user interface for display 
on a display device. 

14 .. The non-tra~sitory computer readable storage medium 
of claim 13, wherem the GUI is configured to switch between 
the qualitative view, the flow view, and the contextual view in 
response to a user input. 

* * * * * 


