University of Massachusetts Amherst ScholarWorks@UMass Amherst

Cranberry Station Extension meetings

Cranberry Station Outreach and Public Service Activities

2017

2017 Pesticide Safety - Fruit Rot and Other Diseases

Erika Saalau Rojas *UMass Amherst - Cranberry Station,* esaalau@umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension Part of the <u>Agriculture Commons</u>

Recommended Citation

Saalau Rojas, Erika, "2017 Pesticide Safety - Fruit Rot and Other Diseases" (2017). *Cranberry Station Extension meetings*. 250. Retrieved from https://scholarworks.umass.edu/cranberry_extension/250

This Article is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Station Extension meetings by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

FRUIT ROT AND OTHER DISEASES

Pesticide safety

Erika Saalau Rojas Plant Pathology UMass Cranberry station Spring 2017

Why do fungicide applications fail?

- Fungicide ineffective against pathogen
- Improper timing
- Poor coverage / application method
- Fungicide resistance

UMassAmherst

How to choose the right product?

- Proper diagnosis is critical
- Background information
 - History of bed
 - Management practices *****
 - Weather

Why do fungicide applications fail?

- Fungicide ineffective against pathogen
- Improper timing
- Poor coverage / application method
- Fungicide resistance

Timing for fungicide applications?

- Indar or Abound are best options.
- Apps in early summer ineffective
- Drench fungicide into root zone
- Water 0.2 gal/ft² to ring + 10ft buffer
- Repeat for 3 years

- 2 applications in newly diagnosed beds
- Read label for PHI restrictions.

Fruit rot management

- Fungicide ineffective against pathogen
- Improper timing
- Poor coverage / application method
- Fungicide resistance

UMassAmherst

Fungicides available

Group		FRAC	Risk Resistance	Spectrum of Activity	Efficacy
DMI	Indar Prolin	e	М	Gaps	HIGH
Qol	Aboun	d	Н	Gaps	HIGH
Polyoxins	Oso, Ph	- D	М	Unknown	LOW?
chloronitr	Brave	о ⁵	L	Broad	HIGH
dithioca	Manza	te	L	Broad	HIGH

UMassAmherst

Fungicides available

Group	FRAC	Risk Resistance	Spectrum of Activity	Efficacy
SDHI	7	M to H	?	?
Biofungicides	Var	Unknown	?	?
DMI	3	М	Gaps	HIGH
Qol	11	Н	Gaps	HIGH
Polyoxins	19	М	Unknown	LOW
chloronitriles	M5	L	Broad	HIGH
dithiocarbamates	M3	L	Broad	HIGH

GROUP 7 FUNGICIDE

KENJA 400SC

ACTIVE INGREDIENT: Isofetamid*	36.09
OTHER INGREDIENTS:	64.09
Total	100.09
*N_[1_1_dimethyl_2_[2_methyl_4_(1_methylethovy)nhenyl]_	

N-[1,1-dimethyl-2-[2-methyl-4-(1-methylethoxy)phenylj 2-oxoethyl]-3-methyl-2-thiophenecarboxamide
Contains 3.33 pounds Isofetamid Per Gallon (400 grams per liter)

KEEP OUT OF REACH OF CHILDREN CAUTION

See side panel for additional precautionary statements. Read entire label carefully and use only as directed.

Distributed by:

Anthracnose (bitter rot pathogen)

Botrytis (miscellaneous rots-storage)

SPECIMEN LABEL

A plant extract to boost the plants' defense mechanisms to protect against certain fungal and bacterial diseases, and to improve plant health.

Active ingredient: Extract of Reynoutria sachalinensis	%
Other ingredients:	9%
Total:) %

EPA Reg. No. 84059-3

EPA Est. No. 84059-MI-001

Efficacy Stevens 1

TRT	1 st Application	2 nd Application	3 rd Application
1	Kenja (full rate)	Kenja (full rate)	Kenja (full rate)
2	Kenja+ Regalia	Kenja+ Regalia	Kenja+ Regalia
3	SDHI (full rate)	SDHI (full rate)	SDHI (full rate)
4	Oso (full rate)	Oso (full rate)	Oso (full rate)
5	Ph-D (full rate)	Ph-D (full rate)	Ph-D (full rate)
6	Regalia (full rate)	Regalia (full rate)	Regalia (full rate)
7	Bravo	Bravo	Bravo

Results Stevens 1

TRT	3 Applications	% Field Rot
1	Kenja (full rate)	30.8% a
2	Kenja+ Regalia	39.0% a
3	SDHI (full rate)	18.8% ab
4	Oso (full rate)	26.0% ab
5	Ph-D (full rate)	24.7% ab
6	Regalia (full rate)	37.6% a
7	Bravo	6.8% b

Efficacy Stevens 2

TRT	1 st App.	2 nd App.	3 rd App.
1	Kenja (full rate)	Kenja (full rate)	Bravo
2	Oso (full rate)	Oso (full rate)	Bravo
3	Oso+Regalia (full rate)	Oso+Regalia (full rate)	Bravo
4	Oso (half rate)	Oso (half rate)	Bravo
5	Ph-D (full rate)	Ph-D (full rate)	Bravo
6	Proline	Proline	Bravo
7	Proline	Proline	Manzate

Last application: Broad spectrum, high efficacy

Efficacy Stevens 2

TRT	2 Applications	% Field Rot		
1	2XKenja (full rate)+1XBravo	18.1% a		
2	2XOso (full rate)+1XBravo	22.2% a		
3	2XOso+Regalia (full rate)+1XBravo	14.1% a		
4	2XOso (half rate)+1XBravo	15.9% a		
5	2XPh-D (full rate)+1XBravo	16.1% a		
6	2XProline+1XBravo	17.0% a		
7	2XProline+1XManzate	11.1% a		
No statistical differences				

Main options against fruit rot

In order of efficacy (best to worst):

- Chlorothalonil Bravo, Equus, Echo
- EBDC's Manzate, Dithane, Roper
- Prothioconazole Proline
- Fenbuconazole Indar
- Azoxystrobin Abound
- Ferbam
- Coppers Champ, Kocide

Main options against fruit rot

In order of efficacy (best to worst):

- Chlorothalonil Bravo, Equus, Echo
- EBDC's Manzate, Dithane, Roper
- Prothioconazole Proline
- Fenbuconazole Indar
- Azoxystrobin Abourd
- Ferbam
- Coppers Champ, K

SPECIMEN

PA Reg. No. 84059-

For Control of Fungal Diseases of Listed Vegetable and Fruit Cro

Why do fungicide applications fail?

- Fungicide ineffective against pathogen
- Improper timing
- Poor coverage / application method
- Fungicide resistance

Timing of applications fruit rot

UMassAmherst

UMassAmherst

Field and storage rot 2015

Results 2016

Timing of applications

UMassAmherst

Why do fungicide applications fail?

- Fungicide ineffective against pathogen
- Improper timing
- Poor coverage / application method
- Fungicide resistance

Where are the pathogens hiding?

Caruso McManus Oudemans

Colletotrichum acutatum

Cultural practices that impact pathogens

Phyllosticta elongata Physalospora vaccini

Fusite Sanding + trash flood (eliminates infection

from old woody tissues, leaf debris, cull fruit)

Phyllosticta vaccinii

Phyllosticta elongata Coleophoma empetri

(Rotten fruit)

- Pruning and fertilization (better coverage)

(1- and 2-year leaves) Phyllosticta vaccinii Phyllosticta elo Physalospora Eate water (even bloom, better coverage) Fusicoccum putrefaciens

Phyllosticta elongata Coleophoma empetri

water

Colletotrichum acutatum

(Duff--leaves)

Phyllosticta elonga

Coleophoma empetri Colletotrichum gloeosporiodes (Duff--fruit) Coleophoma empetri

Why do fungicide applications fail?

- Fungicide ineffective against pathogen
- Improper timing
- Poor coverage / application method
- Fungicide resistance

UMassAmherst

Fungicides available

Group		FRAC	Risk Resistance	Spectrum of Activity	Efficacy
DMI	Indar Prolin	e	М	Gaps	HIGH
Qol	Aboun	d	Н	Gaps	HIGH
Polyoxins	Oso, Ph	-D	М	Unknown	LOW?
chloronitr	Brave	D 5	L	Broad	HIGH
dithiocal Manza		te	L	Broad	HIGH

Indar (FRAC 3) + Abound (FRAC 11) or Proline (FRAC 3) + Abound (FRAC 11)

Indar (FRAC 3) + Abound (FRAC 11) or Proline (FRAC 3) + Abound (FRAC 11)

Indar (FRAC 3) + Abound (FRAC 11) or Proline (FRAC 3) + Abound (FRAC 11)

Combine or alternate modes of action Use FRAC codes for guidance Single-site fungicides (Indar, Abound, Proline Multi-site fungicides Medium-high risk of Low risk of resistance resistance 'cleanup application'

Indar (FRAC 3) + Abound (FRAC 11) or Proline (FRAC 3) + Abound (FRAC 11)

Combine or alternate modes of action Use FRAC codes for guidance

> No carryover of resistant pathogens to next growing season

UMassAmherst

Acknowledgements

2015 Summer Crew

- Tom Giorgio
- Jessica Braley
- Jared Hass
- Michael Kwang

Collaborators Fruit Firmness

- Matt Beaton
- Peter Beaton, Rob Rubini
- Gary Garretson, John Mason
- Glenn Reid, Louis Lemmertz MakePeace
- Rod Serres and David Nolte (OS)

Cranberry Station team

Funding and Resources

