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Abstract. An approach for the verification of autonomous behavior-based ro-

botic missions has been developed in a collaborative effort between Fordham 

University and Georgia Tech. This paper addresses the step after verification, 

how to present this information to users. The verification of robotic missions is 

inherently probabilistic, opening the possibility of misinterpretation by opera-

tors. A human study was performed to test three different displays (numeric, 

graphic, and symbolic) for summarizing the verification results. The displays 

varied by format and specificity. Participants made decisions about high-risk 

robotic missions using a prototype interface. Consistent with previous work, the 

type of display had no effect. The displays did not reduce the time participants 

took compared to a control group with no summary, but did improve the accu-

racy of their decisions. Participants showed a strong preference for more specif-

ic data, heavily using the full verification results. Based on these results, a dif-

ferent display paradigm is suggested. 
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1 Introduction 

Robotics has the potential to be a key technology for combating weapons of mass 

destruction [1]. This domain presents new challenges for autonomous robotic systems. 

In these types of missions, failure is not an option. Human operators must be confi-

dent in the success of a robotic system before the technologies can be applied. To 

address these problems our research, conducted for the Defense Threat Reduction 

Agency (DTRA), has successfully developed the methods and software to perform 

robotic mission verification [2]. 

While robotic mission verification is similar to traditional software verification, 

there are several additional complications. The real world is continuous, and both 

robotic sensors and actuators are noisy. The robotic controller is only one piece, and 

the result of a mission is also determined by the physical robot and its interaction with 

the environment, and modeling of both will always be imperfect. This means any 

verification is fundamentally probabilistic. 

This presents a new challenge. People do not use all the available data or systemat-

ic methods when assessing probabilistic data. Instead, heuristics are applied to simpli-
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fy the analysis, which can lead to systematic errors and bias [3]. The methods of dis-

playing the information must ensure an operator can easily and accurately interpret 

the data. This paper explores methods to achieve this goal. 

2 Related Work 

Research on the presentation of probabilistic data and uncertainty has shown that 

participant’s decisions in various tasks are not significantly affected by the format the 

data is presented in (graphical, numerical, or verbal) [4]. Though numeric statements 

offer more precision and consistency than linguistic phrases, it’s hypothesized that 

people treat all probabilities in a vague manner, utilizing membership functions [5].  

These results were extended in [6] where both display format and specificity level 

were varied. Display formats included linguistic, numeric, and multiple graphical 

icons. Specificity level was the size of the range of probabilities represented by a 

single icon or expression. Results agreed with previous research, showing that display 

format had no significant effects. However, specificity did have significant effects on 

performance in a simulated stock purchasing task. 

This work expands on these results in two ways related to the application of robotic 

mission verification. First, participants in this study have access to more information 

than a single measure of probability. Success in a robotic mission is tied to multiple 

criteria, such as time to completion or allowable distance from a goal location, whose 

values may have some variability. The full verification results have probabilities of 

achieving each criterion independently over a range of values. This information is 

important to operators, and will affect their decisions, so it must be included. Second-

ly, the context of the tasks is significantly different. Participants were asked to make 

decisions on high-risk missions, where lives are (hypothetically) at risk. These types 

of risks/costs are difficult to quantify and participants may resort to different methods 

of reaching a decision. 

3 VIPARS – The Verification Tool 

VIPARS, or Verification in Process Algebra for Robot Schemas, is a robot mission 

verification tool [7] designed for use with MissionLab, a graphical programming envi-

ronment for behavior-based robots [8]. Informally, VIPARS determines how likely a 

robot mission is to succeed. In formal terms it takes as input a behavior-based robotic 

controller (software), models of the robot hardware and environment, and perfor-

mance criteria. With this information, VIPARS can calculate and return a probability 

of success. All of these components are descriptions of the physical system except for 

performance criteria, which define what a successful mission is. The two most fun-

damental criteria, and those used for this study, are time (how long a robot may take 

to achieve its goal) and space (how far from a goal a robot may be).  

VIPARS achieves verification by defining the state of the system as a set of ran-

dom variables. Flow functions, created from the robot’s behaviors and the environ-

mental models, describe how these random variables map from one time step to the 

next. This allows VIPARS to avoid the state-space explosion, caused by the continu-



ous dynamics and noisy sensing/actuation of the real world, that plague traditional 

verification techniques such as model checking [9]. This paper will not go deeper into 

the description of VIPARS. For a thorough description of the verification process 

please see [2]. 

 
Fig. 1. Example verification results compared to empirical validation from real robots. Rmax is 

the spatial criterion, or the max distance from the goal location that still counts as a successful 

mission. The y-axis is the probability that both robots, r1 and r2, meet their spatial criterion. 

 

Though VIPARS can produce a single probability for specific performance criteria, 

a more complete understanding of a mission can be gathered from observing how the 

probability changes over a range of criteria. See Figure 1 above for the results of a 

multi-robot mission verification from [7]. The red curve is the VIPARS verification 

result, while the blue curve is experimental data gathered from real executions of the 

robot mission for validation purposes. Results can be broken down into three regions. 

In the Unsuccessful region, the performance criterion is so strict that success is im-

possible, i.e., the precision or speed demands exceed the capabilities of the system. In 

the Successful region, the criteria are easy enough to guarantee success (ignoring 

unmodeled possibilities). Both of these regions are high-confidence, where it is cer-

tain the actual mission probability will match the verification results. In between lies 

the uncertain region, where uncertainty is introduced in two ways. First, the results are 

between 0% and 100%, so mission success is uncertain even with a perfect verifica-

tion. Second, in this region small errors or simplifications in modeling can create 

moderate differences between the predicted and actual probability of success. Thus, 

the results of the verification itself are low-confidence. With a basic understanding of 

VIPARS and the data it produces, the experiment described in this paper and the dis-

plays used can be discussed. 



4 Experimental Design 

4.1 Task 

 

Participants were asked to make decisions on whether to execute high risk autono-

mous robotic missions based on situational information and the verification results. 

Participants were presented scenarios appropriate for a mobile robot mission. They 

were given access to the VIPARS graphical interface via a laptop under the assump-

tion the robot (hardware) and controller (software) had been decided and are fixed. 

The participants reviewed information on a scenario (robot’s task, risk factors, time or 

spatial constraints) and then executed the VIPARS verification. Using the information 

VIPARS provided, the participant made a decision on whether to execute the robot 

mission or defer to a human team, and rated their confidence in both the mission and 

their decision. Scenarios included some limited information about the performance 

and risk for human teams. 

Each participant was presented five total scenarios. The scenarios were divided in-

to two categories. Certain scenarios were made to have a clear correct decision, with 

probabilities of success either being 0% or 100%, and high confidence in the verifica-

tion. There were three certain scenarios, two successful and one unsuccessful. The 

uncertain scenarios had probabilities of success at 30% and 70%, as well as low con-

fidence in the verification. 

4.2 Independent Variable – The Displays 

Participants were divided into four conditions. Every condition had the low-level 

display available, which showed the full verification results. For three conditions (A-

C), subjects were presented a variant of a high-level display and could switch to the 

low-level display at will, while in the control condition (D) subjects could only view 

the low-level display.  

The Low-Level Display 

The low-level display provides the full probabilistic information given by VIPARS. 

This display is based on the validation graphs discussed in section 3. The graph is a 

cumulative distribution function (CDF) for the probability of achieving a performance 

criterion over a range of values. Figure 2 shows an example of the graph. It is aug-

mented in several ways to aid a user. Areas with 0% or 100% success probabilities 

make up the “high-confidence success” or “high-confidence failure” regions. These 

are colored for rapid identification. The threshold a user has selected for the specific 

criteria is marked with a dashed line. In addition, the scales of the presented graph are 

selected relative to this threshold; from zero to twice the value. This presentation is 

limited to one criterion at a time, so a user must manually switch which criteria they 

are viewing. 



 

Fig. 2. Example low-level display for a spatial criterion set at 10 meters. 

The High-level Displays 

 

The high-level display summarizes the verification results in two ways. First, only the 

probability at the selected criteria value is used. This means information on the effect 

of changes in mission criteria is lost. Second, the results of all criteria are combined to 

give a total probability of success. This removes mental calculations from the user, 

but hides potential causes of failure. Three display types were chosen that vary with 

respect to type and specificity.  

At the high end of the specificity scale is a simple numeric display of the final mis-

sion probability, which can be considered the most basic approach. A less precise 

means of displaying a percentage is graphically, using a bar. A bar was selected be-

cause reading position along a common scale has been shown to be the most accurate 

task for extracting quantitative information from a graphical representation [10] and it 

is commonly used in decision support systems (e.g. [11][12]). At the lowest level of 

specificity, a symbolic system only presenting three options (success, failure, and 

uncertain) could be used for the high-level display. This scheme takes advantage of 

the current predictions of VIPARS which typically have low confidence in probabili-

ties between 0% and 100%. In this symbolic system a green thumbs up represents 

success, a red thumbs down represents failure, and a question mark represents uncer-

tain results. Figure 3 presents the options along a scale of specificity. 

4.3 Dependent Variables 

For each scenario five dependent variables were recorded, shown in Table 1 below. 

The first three variables were automatically recorded by the software, while the last 

two are selected by the participant. Mission and decision confidence were presented 

as Likert scales with values ranging from 1 to 9. For participants in the control group,  



 

Fig. 3. The high-level displays. The numeric display was used for condition A, the graphic for 

B, and symbolic for C. Condition D was the control group. 

time-to-decision is equal to time-on-raw-data, as they can only view the low-level 

display.  

Table 1.  The five dependent variables recorded in the study 

User-decision Binary choice on whether to execute the robotic mission 

Time-to-decision The time between VIPARS execution and final decision 

Time-on-raw-data Time spent viewing the low-level display 

Mission-confidence Confidence the robotic mission would be successful if ran 

Decision-confidence Confidence the user’s decision (to execute or not) is correct 

4.4 Hypotheses 

Based on the related work discussed previously, three hypotheses were formed. This 

section covers the hypotheses and their predictions on the dependent variables.  

 

Hypothesis 1: Displays summarizing VIPARS results can 

improve the comprehension accuracy and speed of users 

over the direct display of VIPARS output. 

 

Hypothesis 1 predicts that time-to-decision and time-on-raw-data will be reduced 

when using high level displays versus the control case, and that the accuracy of user-

decision will increase for certain scenarios. If participants in the control cases achieve 

perfect accuracy (i.e. always select correct decision) for certain scenarios, then it will 

be assumed that perfect accuracy on the high-level displays validates this hypothesis. 

 

Hypothesis 2: Various representations of the VIPARS out-

put will provide similar understanding of the mission prob-

ability. 

 



Hypothesis 2 predicts that between the high level displays, user-decision will not vary 

significantly for uncertain scenarios. 

 

Hypothesis 3: More precise representations of probability 

will bias operators towards interpreting higher certainty in 

the result. 

 

Hypothesis 3 predicts that decision-confidence will increase as the specificity of the 

high-level display increases. 

Finally, additional analysis is performed to look for effects that do not have explicit 

hypotheses. For example, if one particular display has a higher time-on-raw-data on 

the average, it may indicate that users find the representation inadequate for decision 

making. 

4.5 Execution Details 

A total of 45 participants were tested. Participants were screened for color blindness 

with a shortened version of the Ishihara colorblind test, two failed and were excluded. 

In addition, two participants performed the tasks incorrectly1, their data was also ex-

cluded. The results include 41 participants, 23 male and 18 female, with an average 

age of 24.3 (range from 18 to 54). 

Each participant first went through a tutorial session that introduced the VIPARS 

system and allowed them to try an example scenario. Afterwards, they were given 

information on one scenario at a time by the proctor. The proctor was nearby and 

available for questions, but not able to view the computer or participant’s choices. 

Sessions were video recorded, and the time taken for questions and answers during 

the test was removed from the measurements of time-to-decision and time-on-raw-

data. 

5 Results 

5.1 Hypothesis 1 

The first hypothesis made two predictions. First, that users would make faster deci-

sions when provided with the high-level displays, lowering time-to-decision and time-

on-raw-data. The second was that the accuracy of user’s decisions on certain scenari-

os would be improved when using high-level summaries. First we examine the data 

on time-to-decision and time-on-raw-data. 

Both time-to-decision and time-on-raw-data were analyzed using one-way 

ANOVA over the four conditions. For time-to-decision, or the total time a user took, 

there was no significant difference between display types when all scenarios were 

averaged together ( P = 0.688 ). Scenarios were also tested independently, and showed 

no significant differences. Figure 4 shows the time-to-decision for each display type. 

In contrast, there was a statistically significant difference between time-on-raw-data   

                                                           
1 Participants used prior situational information for new scenarios 



( P = 0.012 ). Post hoc tests using Games-Homell showed only display A had a signif-

icant reduction (alpha = 0.05) compared to the control (means = 32.22, 56.84, SD = 

24.47, 41.27). 

 

 
Fig. 4. Average time-to-decision per display type for all scenarios plotted with 95% confidence 

intervals. 

 

 
Fig. 5. Average time-on-raw-data per display type for all scenarios plotted with 95% confi-

dence intervals. 

 

For decision accuracy, uncertain scenarios were excluded as no correct decision could 

be assumed. This left the three certain scenarios. For each user and display, a correct 

decision was an “execute” for missions with 100% probability of success, and a “do 

not execute” for missions with a 0% probability of success. The table of decisions for 

each display is shown below. The reader can see that the control case D has a larger 

number of incorrect decisions. As the table is sparsely populated, Fisher’s exact test 

was used to test for statistical significance.  A significant difference between display 



types was found ( P = 0.026 ). Thus hypothesis one is partially confirmed; the accura-

cy of users improved with the high-level displays, but their times to decisions were 

not reduced. 

Table 2.  All decisions for the certain-scenarios, sorted by condition. 

 Display Type 

A B C D 

Decision Correct 28 33 32 22 

Incorrect 2 0 1 5 

5.2 Hypothesis 2 

The second hypothesis predicted that between the high level displays, the understand-

ing of mission probability and thus user-decision, would not vary significantly for 

uncertain scenarios. As these scenarios had different probabilities of success (70% 

and 30%) they will be analyzed separately. The decisions for each scenario are broken 

down in Tables 3 and 4, and a Fisher’s exact test reported the difference between 

display types was not statistically significant. (P = 0.906, 0.526 for scenarios one and 

two, respectively). Thus hypothesis two is confirmed. 

Table 3.  User-decisions for the first uncertain scenario, total probability of success = 70% 

 Display Type 

A B C D 

Decision Execute 6 8 8 7 

Don’t 4 3 3 2 

Table 4.  User-decisions for the second uncertain scenario, total probability of success = 30% 

 Display Type 

A B C D 

Decision Execute 5 5 6 7 

Don’t 5 6 5 2 

5.3 Hypothesis 3 

The final hypothesis predicted that more precise representations of probability will 

bias operators towards interpreting higher certainty in the results, thus decision-

confidence will increase as the precision of the high-level display increases. This hy-

pothesis needs to be tested per scenario, as different risks and probabilities with each 

scenario should affect the confidence of the user. Performing an ANOVA for deci-

sion-confidence versus display type showed no significant differences between dis-

plays. Table 5 and Figure 5 below display the P values and average values for each 

scenario. Thus hypothesis three is rejected. 



Table 5.  ANOVA results for decision-confidence versus display type for each scenario. 

Scenario 1 2 3 4 5 

P Value 0.56 0.48 0.09 0.49 0.52 

 

 
Fig. 5. Average decision-confidence per display type, per scenario, and plotted with 95% confi-

dence intervals. 

6 Discussion 

This section will cover the key results from this study, and how they have impacted 

the design of the VIPARS interface. 

 

1. Users wanted the most detail possible 

 

Almost all users in high-level display conditions heavily utilized the low-level display 

as well. The author predicted the high-level displays would decrease the time a user 

needs, but the opposite was true. Users in the control condition had the lowest time-to-

decision, though it was not statistically significant. The reason is obvious from test 

data, users spent time reviewing both levels of displays when they were available.  As 

seen in Section 5.1, only condition group A (having the most specific high-level dis-

play) had a statistically significant reduction in time-on-raw-data compared the con-

trol group. This is consistent with previous work which found preferences for higher 

specificity [6]. 

 

 2. The type of high-level display had almost no effect 

 

There was no significant difference between the numeric, symbolic, or graphical dis-

plays except for time-on-raw-data. This is consistent with the previous work [6],[4] 



that showed display format has little impact, but in this experiment specificity was 

also varied. Does this disagree with previous results that showed specificity had a 

significant effect? The authors do not believe so. In this experiment, users had access 

to a more specific information source in the low-level display. As most participants 

heavily utilized the low-level display, it seems likely that the variance in specificity at 

the high-level was overshadowed by the information from the low-level display.  

 

3. The high-level displays helped reduce errors 

 

Due to either misinterpreting the low-level graphs, or improperly combining the re-

sults of multiple criteria, more mistakes were made in the control group. While in a 

more realistic setting users would have additional training (reducing the likelihood of 

errors), the actual situations may be more complex and include several extra criteria 

(increasing the likelihood of errors). 

Initial designs for the VIPARS user interface, and the prototype display for this ex-

periment, utilized a layered system, where a user is presented with a high-level sum-

mary first, and would only view low-level detailed information if necessary. These 

results indicate that while a summary of results is useful, it likely should not be the 

primary focus. Instead, the complete verification results should be the primary output, 

with automatic summaries displayed alongside as a mental check for users. See Figure 

6 below for an example design. The choice of display format for the summary is not 

critical, as no option showed superior performance, however results suggest users 

may prefer the numerical display due to its greater precision. 

 

 
Fig. 6. New example display design that combines the high-level summary with the complete 

low-level results. 

7 Conclusion 

This paper has presented research on the display of uncertainty towards robotic mis-

sion verification. A human study on the display of probabilistic data for robot mis-



sions was performed. Three high-level summaries were chosen to present the results 

of a mission verification software toolkit. Surprisingly, the high-level summaries did 

not affect the time a user took, or their confidence with their decision. Instead, partic-

ipants preferred to utilize the low-level detailed results. The control group, without 

access to the summarized data, made more mistakes. This implies some value in the 

high-level displays for the purpose of ensuring a user has accurately interpreted the 

verification results. The outcomes of this study have improved the design paradigm of 

the VIPARS interface; helping to ensures users will be able to quickly and accurately 

interpret the probabilistic information. 

Acknowledgments. This research is supported by the United States Defense Threat 

Reduction Agency, Basic Research Award #HDTRA1-11-1-0038. 

References  

1.  Doesburg, J.C., Steiger, G.E.: The Evolution of Chemical, Biological, Radiological, and 

Nuclear Defense and the Contributions of Army Research and Development. NBC Report, 

the United States Army Nuclear and Chemical Agency (2004) 

2.  Lyons, D. M., Arkin, R. C., Jiang, S., Liu, T. M., & Nirmal, P.: Performance Verification for 

Behavior-based Robot Missions IEEE Trans. on Rob. 31(3) (2015) 

3.  Tversky, A., & Kahneman, D.: Judgment under uncertainty: Heuristics and 

biaes. Science, 185(4157), 1124-1131 (1974) 

4. Budescu, D. V., Weinberg, S., & Wallsten, T. S.: Decisions based on numerically and ver-

bally expressed uncertainties. Journal of Experimental Psychology: Human Perception and 

Performance, 14(2), 281 (1988) 

5. Wallsten, T. S., & Budescu, D. V.: A review of human linguistic probability processing: 

General principles and empirical evidence. The Knowledge Engineering Review, 10(01), 

43-62.4 (1995) 

6. Bisantz, A. M., Marsiglio, S. S., & Munch, J.: Displaying uncertainty: Investigating the 

effects of display format and specificity. Human Factors: The Journal of the Human Factors 

and Ergonomics Society, 47(4), 777-796 (2005) 

7.  Lyons, D. M., Arkin, R. C., Jiang, S., Harrington, D., & Liu, T. M.: Verifying and validating 

multirobot missions. IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS) (2014) 

8.  MacKenzie, D. C., Arkin, R. C., & Cameron, J. M.: Multiagent mission specification and 

execution. In Robot colonies (pp. 29-52). Springer US (1997) 

9.  Jhala R., Majumdar R.: Software Model Checking. ACM Computing Surveys 41(4) 21:53 

(2009) 

10. Cleveland, W. S., & McGill, R.: Graphical perception: Theory, experimentation, and appli-

cation to the development of graphical methods. Journal of the American statistical associa-

tion, 79(387), 531-554 (1984) 

11. Daradkeh, M., Churcher, C., & McKinnon, A.: Supporting informed decision-making under 

uncertainty and risk through interactive visualisation. In Proceedings of the Fourteenth Aus-

tralasian User Interface Conference, Volume 139 (pp. 23-32). Australian Computer Society, 

Inc. (2013) 

12. Masalonis, A., Mulgund, S., Song, L., Wanke, C., & Zobell, S.: Using probabilistic demand 

predictions for traffic flow management decision support. In Proceedings of the 2004 AIAA 

Guidance, Navigation, and Control Conference. American Institute of Aeronautics and As-

tronautics (2004) 


