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Four different study designs to evaluate vaccine safety were
equally validated with contrasting limitations

Jason M. Glanz, David L. McClure, Stanley Xu, Simon J. Hambidge, Martin Lee,
Margarette S. Kolczak, Ken Kleinman, John P. Mullooly, Eric K. France

Abstract

Objective: We conducted a simulation study to empirically compare four study designs [cohort, case—control, risk-interval, self-
controlled case series (SCCS)] used to assess vaccine safety.

Study Design and Methods: Using Vaccine Safety Datalink data (a Centers for Disease Control and Prevention-funded project), we
simulated 250 case sets of an acute illness within a cohort of vaccinated and unvaccinated children. We constructed the other three study
designs from the cohort at three different incident rate ratios (IRRs, 2.00, 3.00, and 4.00), 15 levels of decreasing disease incidence, and two
confounding levels (20%, 40%) for both fixed and seasonal confounding. Each of the design-specific study samples was analyzed with
a regression model. The design-specific [3 estimates were compared.

Results: The B estimates of the case—control, risk-interval, and SCCS designs were within 5% of the true risk parameters or cohort
estimates. However, the case—control’s estimates were less precise, less powerful, and biased by fixed confounding. The estimates of SCCS
and risk-interval designs were biased by unadjusted seasonal confounding.

Conclusions: All the methods were valid designs, with contrasting strengths and weaknesses. In particular, the SCCS method proved to
be an efficient and valid alternative to the cohort method. © 2006 Elsevier Inc. All rights reserved.

Keywords: Simulation study; Cohort; Case—control; Risk-interval; Self-controlled case series (SCCS); Bias (epidemiology); Confounding factors (epidemiology)

1. Introduction

The most widely accepted methods for evaluating vac-
cine safety have been study designs that compare distinct
exposed and unexposed, or diseased and nondiseased pop-
ulations. These study methods include prospective designs
such as the cohort, and retrospective designs such as the
case—control. This investigation evaluates these traditional
study designs as well as two newer designs in a simulated
analysis of a known, rare, and acute vaccine reaction: idio-
pathic thrombocytopenic purpura (ITP) after measles-
mumps-rubella (MMR) vaccination [1,2].

In a cohort study, a group of healthy vaccinated and unvac-
cinated individuals are followed forward in time, and the in-

cidence of illness in the two groups is compared. This design
provides a direct estimate of effect (the incidence rate ratio,

IRR), is well suited for rare exposures, and can be used to
analyze multiple outcomes [3,4]. It can, however, be difficult
and costly to implement when the disease is rare, and because
vaccine safety studies typically involve populations with
high vaccine coverage rates, there may be few unvaccinated
controls available. The design is also susceptible to biases
that can be introduced by comparing vaccinated and unvacci-
nated populations, as these groups may differ by ethnicity,
socioeconomic status, and underlying health states [5].

In nested case—control studies, individuals who experi-
enced a particular event over a defined time period are iden-
tified. This group of cases is then compared to a control
group of event-free individuals from the same time period,
who are often matched to the cases on variables such as
gender, managed care organization (MCO), and age [1,6—
8]. This design is economical and well suited for rare ill-
nesses. In addition, because the cases are typically matched

to the controls by age and calendar time (e.g., the age at the
date of diagnosis), particular time-varying confounders,
such as age and seasonality, are adjusted for by proxy. As
with the cohort method, however, confounding variables re-
lated to both the outcome and vaccination status—as well
as other time-varying factors such as underlying health
states—will bias the case-control design.

Since 1995, alternative methods known as the risk-interval
(or vaccinated cohort) and self-controlled case series (SCCS)
study designs have been used for vaccine safety studies
[2,7,9-15]. These designs differ from more traditional
methods in that time intervals both before and after vaccina-
tion within the same individual are used to classify a person
as exposed or unexposed. In the risk-interval design, inci-
dence rates for risk and nonrisk time periods are compared,
but only vaccinated individuals are included in the study. A
time period immediately following vaccination is designated
as the risk-interval, and events that occur during this period
are classified as exposed cases. Time periods outside of the
risk-interval—before and after the vaccination—are consid-
ered the nonrisk (or control) periods, where occurrences of
illness are classified as unexposed cases. Because only vacci-
nated individuals are included in the study, biases introduced
by comparing vaccinated and unvaccinated populations are
minimized. In addition, because control time periods both
before vaccination and after the risk period are included in
the analysis, the design is ideal for assessing the risk of acute,
self-limiting events following vaccination.
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The SCCS method is a similar design in which incidence
rates for risk and nonrisk time periods are compared, but only
cases are necessary for the analysis [14—17]. The study pop-
ulation comprises only cases that occur over a predefined ob-
servation period, and each case acts as its own control,
thereby controlling for both measured and unmeasured con-
founding variables that do not vary over time. With the SCCS
method, multiple occurrences of independent events within
an individual can be analyzed. Theoretical calculations have
also demonstrated that the method’s statistical power closely
approximates that of a cohort study when the vaccination
coverage rate is high and the periods of risk following vacci-
nation are short [14,15]. To our knowledge, however, these
assertions have not been validated empirically.

Possible limitations of the risk-interval and SCCS
methods stem from their ability to implicitly control for
time-varying confounders, such as seasonality or age. In
contrast to the case—control analysis, these covariates can-
not be adjusted for by proxy in the risk-interval and SCCS
analyses. Instead, time-varying confounders must be ex-
plicitly defined as either continuous functions or categorical
variables and added to multiple Poisson regression models
[12,14]. Mis-specifying such variables can lead to biased
results—particularly when the event is rare [18].

To address some of the gaps in the current literature, we
conducted a simulation study that evaluated the bias and
precision of the four study designs’ IRR estimates, the sta-
bility of the design-specific IRR estimates at different levels

of disease incidence, and each design’s ability to handle un-
measured confounding.

2. Materials and methods
2.1. Data

This study was conducted under the Vaccine Safety
Datalink (VSD), a Centers for Disease Control and Preven-
tion-funded project that links large administrative databases
from eight MCOs located across the United States. The fo-
cus of the VSD is to conduct epidemiologic studies of vac-
cine safety [19]. Currently, the VSD databases contain
health care data from 1991 to 2003, representing a cohort
of over 5,000,000 children younger than 18 years of age.
For this study, we used VSD data through year 2000 from
five of the MCO sites.

2.2. Cohort construction and simulation

We first constructed a retrospective cohort study popula-
tion using the following VSD data fields: MCO, birth date,
gender, membership dates, and MMR vaccination dates. To
ensure a balanced distribution of important variables among
the study groups, each MMR vaccinated child was matched
to one unvaccinated child by gender, MCO, and age (within
7 days) at the date of the vaccination (n = 2,774,122). Up
to 365 days before and after the matched dates were used
as follow-up times (i.e., the observation periods). Unvacci-
nated children did not receive a vaccination during their en-
tire follow-up time of up to 730 days surrounding the
matched date. In the exposed children, the 42-day period fol-
lowing vaccination was defined as exposed person-time. The
6-week postvaccination period is an exposure time interval in
which ITP has been attributed to the MMR vaccine [1,2]. All
of the time outside of the 42-day risk period was designated
as unexposed person-time. On average, each cohort member
contributed 591 days of person-time follow-up.

After the study population was constructed, cases of ITP
were simulated on a specific date (diagnosis date) within
the defined follow-up times at a fixed IRR. Exposed cases
were simulated in the 42-day risk periods, while unexposed
cases were simulated in the time periods outside of the risk
periods. In the unexposed (or unvaccinated) subjects, cases
were simulated within the entire 365-day periods before or
after the matching date. The following probabilistic model
was used to simulate the cases:

1
|+ o (Bo+Bx)

where Tt is the probability of being a case, B is the inter-
cept of the model, B; is the main parameter of interest, x;
is the exposure indicator (1 = exposed and 0 = unex-
posed), and pt represents person-time contributed. For un-
exposed individuals (x; = 0), 7 is a function of pr and
Bo. To approximate By, we used the estimated annual
incidence rate of ITP (eight cases per 100,000 children)
[20]. In the cohort population, the estimated incidence rate
(cases per person-day) among the unexposed was 2.19 X
10~7; the natural log of this number is By. The B;s were
chosen to be 0.693, 1.099, and 1.386 for IRR levels 2.00,
3.00, and 4.00, respectively. We chose these IRR levels be-
cause they represent strengths of associations that tend to
influence vaccination policy.

(1)

T = pt



The form of equation 1 implies that the probability of
being a case is proportional to the amount of person-time
contributed. The second term of eq. (1) represents the prob-
ability of being a case on any day during the follow-up
period. But, because our study population was so large, it
was not feasible to simulate cases based on each day’s prob-
ability. Instead, we used eq. (1) to simulate the cases within
each subject’s predefined follow-up periods: prevaccination
unexposed, postvaccination exposed, and postvaccination
unexposed. Given the maximum amount of person-time
contributed (i.e., 730 days) and the range of B, and B, the
probability of being a case could never be greater than 1.

The goal of the simulation was to compare the gold stan-
dard Blestimates of the cohort to those of the risk-interval,
SCCS, and case—control study designs. Therefore, we first
created a cohort gold standard population from the actual
VSD data and simulated the cases to create each of the
three fixed B, levels IRR = 2.00, 3.00, and 4.00). We then
used these cohort populations to build the populations for
the three remaining study designs. Each design was nested
within the cohort so that direct comparisons could be made.
In addition, the Bl estimates of all four designs were com-
pared to the true, fixed B; values.

To determine a suitable number of iterations, we simu-
lated 100, 250, 500, 1,000, 1,500, and 2,000 cohort popula-
tions at an IRR of 2.00. As the number of iterations
increased, the variances of the Bl estimates expectedly de-
creased, but the differences between the mean Bl estimates
demonstrated little variability. The differences between the
mean Bl estimates and the true B; (B; = 0.693) remained
within 2.5 to 3.0% as the number of iterations increased
from 250 to 2,000. Thus, at each of the three IRR levels,
we constructed 250 cohort, risk-interval, SCCS and case—
control study populations—the latter three of which were
nested within the cohort. Each of the 250 simulated study
populations was analyzed with an appropriate regression
model, and the design-specific B, estimates of the nested
designs were compared to those of the cohort and to the
true B values (Fig. 1).

To evaluate the stability of the different study designs, we
continuously reduced the case population by 20% in the co-
hort design and repeated the simulation. The case populations
were decreased by lowering the baseline disease incidence
rate, that is, decreasing the value of B, in the probabilistic
model used to simulate the cases. For each successive case
population, the amount of person-time contributed (the
denominator of the incidence rate) remained constant. The
objective of this study component was to demonstrate—at

Make a cohort of vaccinated and unvaccinated
individuals from the VSD cohort, matched on age
at vaccination, gender and MCO

Randomly assign
confounding variable status
at fixed or time-varying
confounding levels

Evaluate
confounding?

YES

»| At afixed incidence rate ratio and incidence level,
randomly assign case status (250 simulations)

v

Construct 250 study populations for the risk-interval,
SCCS and case-control study designs

v

Analyze the data from the four study designs

A 4

Calculate mean estimate, mean squared error
(MSE), percent bias and empirical power for each

design*
v

To evaluate stability, reduce case population
size by 20% and repeat simulation

Fig. 1. Summary of steps for the simulation study. *See text for definitions.

various IRR levels—how the design-specific regression esti-
mates differ as the incidence of disease decreases.

2.3. The nested study designs

2.3.1. Case—control

The simulated cases from the cohort were identified and
matched to nondiseased controls by age (within =7 days) at
the simulated diagnosis date, MCO, and gender. Cases and
all of their matched controls represented risk sets [21]. In
our primary analysis, four controls were randomly sampled
from each risk set. A 1:4 case-to-control match was sufficient
to detect an odds ratio of 1.95 with a case population size of
400 and 80% power (two-sided, o = 0.05). We also conducted
analyses using case-to-control matches of 1:10, 1:100, and
1:n (all available controls). For the 1:n design, there were 2
to 1,326 (median, 629) available controls for each case.

A case or matched control was considered exposed if an
MMR vaccination date was within 42 days prior to the diag-
nosis date of the matched case. The sampled risk sets repre-
sented matched strata, which were included in conditional
logistic regression models to estimate odds ratios (OR) for
the risk of the event in the 42-day risk period. The B esti-
mates for the ORs of the case—control design were compared



to the B estimates for the IRRs of the cohort design and to the
true B; values; the OR approximates the IRR when the inci-
dence of disease is rare and the risk periods are short [14,22].

2.3.2. Risk-interval

The risk-interval analysis was limited to the MMR vacci-
nated children from the cohort population (n = 1,387,061).
The 42-day periods following vaccination represented the
exposed risk intervals, and the time outside of this peri-
od—up to 365 days before and 42 to 364 days after vaccina-
tion—represented the unexposed nonrisk intervals. Because
this study population was half the size of the cohort popula-
tion, only cases that had been simulated during the obser-
vation periods (i.e., up to 365 days before and after the
vaccination date) of the vaccinated cohort subjects were
included. The risk-interval data were analyzed with Poisson
regression.

2.3.3. Self-control case series (SCCS)

The simulated cases from the cohort population were in-
cluded in the SCCS analysis. Once the cases were identi-
fied, the follow-up times—up to 365 days before and
after the matched cohort vaccination date—were used to as-
certain exposure status. The incidence of simulated ITP in
the 42-day risk period following vaccination was compared
to the incidence in the time periods outside of the risk pe-
riod. Conditional Poisson regression was used to estimate
the IRR of ITP in the 42-day risk window, treating each
case as a unique stratum [15].

2.4. Confounding

The final objective was to examine how well each design
handled unmeasured confounding, which we simulated in
two different forms. The first form was a fixed confounding
variable that did not vary over time, and the second was
a time-varying confounder that represented a fluctuating
risk of illness across the follow-up periods.

2.4.1. Unmeasured/unknown fixed confounding

First, we simulated a hypothetical secondary disease
state (the confounder) in the cohort, so that the prevalence
of disease was both higher in the vaccinated than in the
unvaccinated and associated with the primary outcome of
interest (ITP). The overall prevalence of the secondary dis-
ease state was 10%, representing the percentage of VSD co-
hort members with a hypothetical preexisting condition that
rendered them at high-risk for developing ITP. This 10%
prevalence was disproportionately distributed so that 16%
of the vaccinated and 4% of the unvaccinated were classified
as high risk. Then, using the form of eq. (1) with vaccination
exposure (x;) and high-risk status (x;) as dichotomous
covariates, we simulated two sets of 250 cohort populations
at a vaccine-associated IRR of 2.00 (f; = 0.693) and at two
different high risk-associated IRRs of 4.50 (8, = 1.50) and
12.20 (B, = 2.50). At both of the fixed B,s of 1.50 and 2.50,
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the mean coefficient estimate for vaccination exposure (Bl)
was 0.671 (IRR = 1.95). When the high risk variables were
removed from both sets of regression models, the B 1 values
increased by 20% (8, = 0.805, IRR = 2.24) and 40% (B, =
0.939, IRR = 2.56), respectively. Although evaluating
confounding in a regression model is somewhat arbitrary,
a change of 20% or more is often described as meaningful
[23,24].

From each of the 250 simulated cohort populations, the
study populations for the other designs were created. The
design-specific data were analyzed as if the confounding
bias was unmeasured or unknown, and the results were
compared to the adjusted regression coefficient estimates
of the cohort.

2.4.2. Seasonal time-varying confounding

Next, we simulated 20 and 40% seasonal, time-varying
confounding in the cohort. We created a seasonal effect in
which the probability of being simulated as a case depended
on calendar time as well as vaccination status. A greater per-
centage of MMR vaccinations were given in the summer
months between May and August, mainly due to the vacci-
nation pattern of children ages 4-12 years (school physi-
cals). To create the seasonal effect, we simulated an
increased risk for developing ITP between December
through March, even though a seasonal pattern of ITP is
not known to exist. As with the fixed confounding, we used
eq. (1) with vaccination exposure (x;) as the main effect and
added a covariate (x,) for the time-varying, seasonal factor.
Specifically, we simulated 250 cohort populations at two
different seasonal, time-varying effect (f3,) levels of 1.30
(IRR = 3.67) and 2.90 (IRR = 18.11). These relatively large
effect levels were necessary because of the mild seasonal
distribution of MMR administration: 42.5% were given in
the four summer months vs. 26.1% during the 4-month,
high-risk, winter period. At the two seasonal effect levels,
the mean exposure coefficient estimates (Bl) were 0.679
(IRR = 1.97) and 0.702 (IRR = 2.02), respectively. When
the seasonal covariates were removed from the regression
models, the mean ﬁls decreased to 0.538 and 0.417, repre-
senting changes of approximately 20 and 40%, respectively.
From these simulated cohorts with the infused time-varying,
seasonal confounding, we created the other design-specific
study populations and observed how the nested designs
handled the confounding bias. We examined the bias both
as if season was unmeasured and with the seasonal covari-
ates adjusted in the regression analyses.

2.5. Outcome measures

After the design-specific analyses were completed, each
of the 250 design-specific regression estimates at each IRR
level was compared to the corresponding regression esti-
mate from the simulated cohort design and to the true B,
values. The differences between regression estimates were
expressed as percent biases.
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2.5.1. Bias
Bias is presented in two forms:

1. The percent bias from the truth measures the percent dif-
ference between the true parameter (B;) and the regres-
sion estimates (3;) of the four study designs [eq. (2)].

Percent Bias from True =

nested design estimate — true parameter
& P X 100

true parameter
(2)

2. The percent bias from the cohort is defined as the per-
cent difference between the cohort regression estimates
and the corresponding regression estimates of the risk-
interval, SCCS and case—control designs [eq. (3)].

Percent Bias from Cohort =

nested design estimate — cohort gold standard estimate

cohort gold standard estimate
X 100

3)

Percent biases are presented at each IRR level using the
largest case incidence level (average case population size
across the three IRR levels = 392; estimated incidence
rate = 8 cases per 100,000 person-years).

2.5.2. Mean squared error

The mean squared error (MSE) measures the average
squared difference between the parameter estimate and its
true value [eq. (4)]. It contains two components: the vari-
ance of the 250 parameter estimates (precision) and the
square of the average bias (accuracy).

> (b-8) > BB
MSE == 2;0 =var(B) + iilzslo

4)

2.5.3. Empirical power

Empirical power demonstrates, at each incidence level,
what percentage of the 250 design-specific IRR estimates
was positive and significant (P < .05). It is the proportion
of the statistical models that had enough cases to generate
IRR estimates that rejected the null hypothesis. As the case
population decreases, it is less likely the null hypothesis
will be rejected.

3. Results
3.1. Bias and precision

The mean estimates, mean percent biases, and MSEs for
each design are displayed in Table 1. Across the three IRR

Table 1

> (standard errors) with respect to the cohort and true risk parameter, by design, by incidence rate ratio (IRR) level,

Mean estimates of B; (mean squared error) and mean percent biases®

based on 250 simulations®

1.386

True value of B,
(IRR = 4.00)

1.099

True value of B,
(IRR = 3.00)

True value of B; = 0.693
(IRR = 2.00)

% Bias true (SE)

0.8 (0.7)
—04 (0.7
—1.7 (0.7

% Bias cohort (SE)

1 (MSE)

% Bias true (SE)

2.9 (1.0)
—3.0 (1.0)
—4.0 (1.0)

% Bias cohort (SE)

B (MSE)

% Bias true (SE)

-32(L.9)
—2.7 (2.0)
—47 (2.0)

% Bias cohort (SE)

B (MSE)

Study designs

Cohort

1.376 (0.022)
1.380 (0.023)
1.363 (0.024)

1.067 (0.029)
1.066 (0.030)
1.055 (0.032)

0.671 (0.044)
0.674 (0.048)
0.661 (0.048)

0.4 (0.3)
—0.9 (0.3)

0.0 (0.3)
—1.1 (0.4)

—0.6 (1.4)
—2.7 (1.8)

Risk interval
sccs?

Case control®

~1.2 (0.9
~1.0 (0.8)
—1.3(0.8)
—13(0.8)

—0.4 (0.7)
—0.3 (0.5)
—0.6 (0.4)
—0.5 (0.4)

1.369 (0.043)
1.372 (0.034)
1.368 (0.029)
1.369 (0.028)

—2.3 (1.4)
—2.8 (1.1)
—-3.3(1.0)
—-3.2(1.0)

0.6 (1.0)
0.3 (0.7)
—0.3 (0.5)
—0.2 (0.5)

1.074 (0.056)
1.068 (0.039)
1.063 (0.033)
1.063 (0.033)

—-52(2.5)
—42(22)
—4.6 (2.0)
—45 (2.0

—2.7(1.9)
—0.8 (2.1)
—2.6 (1.7)
2.6 (1.6)

0.657 (0.075)
0.664 (0.056)
0.661 (0.049)
0.662 (0.049)

1:4

1:10

1:100

X 100.

nested design estimate — cohort gold standard estimate
cohort gold standard estimate

* Percent bias cohort

X 100.

nested design estimate — true parameter

b Percent bias true

1
1+ e Bo+Bin

true parameter

¢ The following probabilistic model was used to simulate the cases: 7T = person time

4" Self-controlled case series.

= 0.693, 1.099, or 1.386.

> where By = —15.3 and B,

¢ Matched case-to-control ratios 1:4, 1:10, 1:100, 1:n (all available).



levels, the cohort design produced mean biases of —3.2 to
—0.8% when compared to the true value of ;. The mean
percent biases with respect to the cohort estimates or to
the true parameters ranged from —5.2 to 0.6% across the
four study methods and three IRR levels. These measures
for the case—control design remained within the same range
when the case-to-control ratio increased to 1:10, 1:100,
and 1:n.

The MSEs of the estimates for the risk-interval and
SCCS were within 11.0% of the cohort’s MSEs across
the three IRR levels, while the MSEs of the case—control
(1:4) were from 70.5 to 95.5% larger than those of the co-
hort (Table 1). The case—control’s MSEs for case-to-control
ratios of 1:10, 1:100, and 1:n were between 11.4 to 54.5%
larger than those of the cohort. When compared to the co-
hort, the percentage differences for ratios 1:100 and 1:n
were approximately equivalent, suggesting no additional
efficiency was gained by using more than 100 controls.

Across the three IRR levels, the mean coefficient esti-
mates of the four designs remained within 5.0% of each
other as the incidence rate decreased (Fig. 2). However, be-
low an incidence rate of 0.66 cases per 100,000 person-
years (33 cases), all of the designs produced mean coeffi-
cient estimates that were approximately 5.0 to 50.0%
greater than the true effect. At the low incidence levels,
fewer of the regression models were able to generate stable,
bounded B1 estimates due to zero cells, that is, either no
simulated exposed or unexposed cases. When the models

6

did converge at the low incidence levels, the resulting re-
gression estimates tended to overestimate the true effect,
with wide confidence intervals. This occurred because a re-
gression model needed at least one exposed case to gener-
ate a bounded estimate. Often, at the low incidence levels,
the incidence rate in the exposed with only one case was
disproportionately larger than the unexposed incidence rate,
leading to a mean B estimate that overestimated the true
effect.

Overall, at each IRR level, the MSEs of the regression
estimates increased as the incidence rate decreased, but
the differences between the MSEs of the designs varied
(Fig. 3). As the case population declined, the MSEs of
the case—control were consistently higher than those of
the other designs, and the magnitude of the difference in-
creased as the incidence rate decreased. This pattern was
observed with all of the case-to-control ratios.

3.2. Empirical power

Across all of the IRR levels, the empirical power of the
risk-interval and SCCS designs were within 15.4% of the
cohort values (Fig. 4). With decreasing case population
sizes, the empirical power of the case-control design (1:4)
was up to 75.0% lower than that of the other designs. As
the case-to-control ratio increased from 1:4 to 1:n, the
case—control’s power approached that of the cohort design,
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and it remained within 11.9% of the cohort as the case pop-
ulation decreased (data not shown).

3.3. Confounding

3.3.1. Unmeasured/unknown fixed confounding

In the presence of 20 or 40% confounding, the mean per-
cent biases of the risk-interval and SCCS designs ranged
from —4.8% to 0.5% when compared to the adjusted cohort
estimates or to the true parameters (Table 2). In contrast,
when compared to the adjusted cohort or to the truth, the
mean percent biases of the case—control for all case-to-
control ratios were approximately 20 and 40% for the two
respective levels of confounding.

3.3.2. Seasonal time-varying confounding

At 20 or 40% confounding, the mean percent biases of
the case—control estimates for all case-to-control ratios
were within 4.9% of the adjusted cohort estimates or the
true parameters (Table 3). The estimates of the unadjusted
risk-interval and SCCS designs, on the other hand, were bi-
ased by approximately —20 and —40% when compared to
the adjusted cohort estimates or to the truth. Conversely, the
mean percent biases of the adjusted risk-interval and SCCS
designs were within 1.8% of the adjusted cohort estimates
or the true parameters.

4. Discussion

In this study using vaccine safety databases and simu-
lated cases of a rare, acute illness (ITP) after MMR vacci-
nation, the risk-interval, SCCS, and case—control study
designs produced valid IRR estimates that were within
3% of a cohort gold standard. The case—control design
was associated with the highest MSEs, the lowest empirical
power, and the highest mean percent bias in the presence of
unmeasured, fixed confounding. Its estimates, nonetheless,
were not biased when the confounding was simulated as
a seasonal effect because the cases were matched to the
controls by age and diagnosis date. The SCCS and risk-in-
terval designs, in contrast, proved to be as powerful as the
cohort (corroborating previously published theoretical re-
sults) [14,15], demonstrated the ability to control for un-
measured fixed confounding, and produced mean percent
biases that were considerably higher than those of the
case—control when the effect of seasonality was not ad-
justed in the analysis.

While the case—control design proved to be more vari-
able and less powerful than the other designs, the degree
of difference decreased as the number of controls for each
case increased. At 100 or more controls for each case, the
MSE and power of the case—control design approached
those of the cohort. When conducting a case—control study
(particularly if the analysis is limited to electronic data on-
ly), more controls than the customary 4:1 ratio are chosen
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to increase power and to detect effect modification [25,26].
However, when additional data is collected through medical
chart review, the case—control design is no longer econom-
ical at these higher case-to-control ratios.

We demonstrated empirically that the SCCS and risk-in-
terval designs are biased if a seasonal effect is overlooked.
However, we also showed that seasonality can be adjusted
in a self-controlled design if a seasonal effect is suspected

Table 2

a priori [12,18]. The challenge of conducting such an anal-
ysis is that the form of seasonal variable must be explicitly
defined prior to conducting the analysis. This can be partic-
ularly difficult if the event is rare, as there may not be
enough information to estimate the seasonal effect. The
nested case—control design, on the other hand, provides
a seasonal adjustment by proxy, since the cases are matched
to the controls by age and calendar time. We believe that

Mean estimates of Bl (mean squared error) and mean percent biases™® (standard errors) with 20 and 40% unmeasured/unknown fixed confounding,
by design, based on 250 simulations and a true B; value = 0.693 (IRR = 2.00)

20% Fixed confounding

40% Fixed confounding

Study designs [3] (MSE)

% Bias cohort (SE)

% Bias true (SE)

Bi (MSE)

% Bias cohort (SE)

% Bias true (SE)

Cohort* 0.671 (0.030) — —3.1(1.6)
Risk interval? 0.674 (0.032) 0.3 (0.4) —2.8 (1.6)
sccsde 0.660 (0.032) —1.9 (0.5) —4.8 (1.6)
Case—control®
1:4 0.838 (0.076) 26.1 (1.8) 20.9 (2.1)
1:10 0.825 (0.059) 24.5 (1.2) 19.0 (1.9)
1:100 0.822 (0.052) 24.3 (0.9) 18.7 (1.7)
I:n 0.823 (0.052) 24.3 (0.8) 18.7 (1.7)

0.671 (0.015) — -3.2(L.1)
0.673 (0.015) 0.5 (0.2) —2.7 (L.1)
0.661 (0.016) 1.5 (0.3) —4.7 (1.1)
0.961 (0.101) 45.0 (1.4) 38.7 (1.6)
0.965 (0.094) 453 (0.9) 39.2 (1.3)
0.965 (0.091) 45.4 (0.8) 39.2 (1.2)
0.965 (0.091) 45.4 (0.7) 39.3 (1.2)

# Percent bias cohort =

nested design estimate — cohort gold standard estimate

cohort gold standard adjusted estimate

nested design estimate — true parameter

Percent bias true =

a

¢ Self-controlled case series.

true parameter

Controlling for x,, the fixed confounding factor.
Analyzed as if the confounding was unmeasured or unknown.

X 100.

Matched case-to-control ratios 1:4, 1:10, 1:100, 1:n (all available).

X 100.
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Table 3

Mean estimates of f; (mean squared error) and mean percent biases™® (standard errors) with 20 and 40% seasonal time-varying confounding, by design,
based on 250 simulations and a true B; value = 0.693 (IRR = 2.00)

20% Seasonal time-varying confounding

40% Seasonal time-varying confounding

Study Designs [31 (MSE) % Bias cohort (SE) % Bias true (SE) Bl (MSE) % Bias cohort (SE) % Bias true (SE)
Cohort
Adjusted® 0.672 (0.025) — —=2.1(1.4) 0.696 (0.007) — 0.5 (0.8)
Unadjustedd 0.540 (0.048) —20.8 (1.1) —22.1 (1.4) 0.423 (0.080) —39.8 (0.3) —38.9 (0.8)
Risk interval
Adjusted® 0.681 (0.028) 0.2 (0.4) 1.8 (1.5) 0.698 (0.008) 0.2 (0.2) 0.7 (0.8)
Unadjustedd 0.534 (0.053) —23.1 (0.6) —229 (1.5) 0.417 (0.084) —40.8 (0.4) —39.8 (0.8)
SCCS®
Adjusted® 0.681 (0.029) 0.2 (0.6) 1.8 (1.6) 0.696 (0.010) —0.1 (0.4) 0.5 (0.9)
Unadjustedd 0.537 (0.052) —22.5(0.7) —22.5(1.5) 0.419 (0.083) —40.4 (0.4) —39.5 (0.8)
Case—control®f
1:4 0.706 (0.043) 4.9 (1.6) 1.9 (1.9) 0.694 (0.013) —0.3 (0.7) 0.1 (1.1)
1:10 0.684 (0.034) 1.0 (1.1) 1.3 (1.7) 0.694 (0.011) —0.3 (0.5) 0.2 (0.9)
1:100 0.678 (0.030) —0.1 (0.8) —2.1(1.6) 0.695 (0.009) —0.3 (0.4) 0.2 (0.8)
1:n 0.679 (0.029) —0.1 (0.7) —2.1(1.6) 0.695 (0.008) —0.2 (0.3) 0.2 (0.8)

a

Percent bias cohort =

nested design estimate — cohort gold standard estimate

X 100.

cohort gold standard estimate

b . nested design estimate — true parameter
Percent bias true =

true parameter
Adjusted for the seasonal covariate.
Unadjusted without the seasonal covariate in the regression model.
¢ Self-controlled case series.
Matched case-to-control ratios 1:4, 1:10, 1:100, 1:n (all available).

[=%

epidemiologists should be aware of this distinction when
designing their studies of vaccine safety.

It should also be noted that our results do not suggest
that the cohort is the best method for conducting studies
of vaccine safety. We used the cohort as the gold standard
because it represents the traditional standard in epidemio-
logic studies. All other study designs, including the risk-
interval, SCCS, and case—control designs, are derived from
a cohort study design [27]. For a study of vaccine safety,
the cohort would be an ideal design if the investigator
had access to a large study population of a million or more
subjects and if all potential confounding factors could be
precisely measured. These caveats are important because,
in most instances, potential vaccine-associated adverse
events are rare, few unvaccinated controls are available,
and vaccinated and unvaccinated populations may differ
by confounding variables that are absent from medical da-
tabases [5]. When these critical requirements cannot be ad-
dressed in practice, alternate designs should be considered.
To evaluate these designs, we simulated a perfectly con-
trolled cohort population and constructed the alternative de-
signs from the cohort. This allowed us to make direct, valid
comparisons.

A theoretical limitation of our results is that the various
study designs used different analytic techniques to generate
risk estimates. It is possible that differences between the de-
signs may have been due to the regression methods, rather
than inherent differences in the designs themselves. But, in
theory, if the study is properly constructed—that is, the

X 100.

outcome and exposure are well measured and biases are
minimized—the estimates derived from these designs
should be unbiased estimates of the gold standard parame-
ter. In other words, a well-executed case—control study
should generate an unbiased estimate of a cohort relative
risk estimate. We believe our simulation study created this
scenario.

Another limitation is the simplicity of the simulation.
Our study compared the four designs in the presence of
one vaccination pattern (MMR), one type of time-varying
confounding (seasonality), and a perfectly measured expo-
sure and outcome. We did not explore several factors that
can influence vaccine safety studies, including variable
vaccination patterns (e.g., the administration of other
routine vaccines, multiple vaccinations given concurrently),
confounding by indication, confounding by contraindica-
tion, underlying health states that fluctuate over time, and
misclassification of exposure and outcome [5]. We also
did not evaluate the effect of time-varying confounding var-
iables on each design as the incidence of disease decreases,
or with a vaccine with a strong seasonal distribution, such
as influenza vaccination. Additional studies are required
to explore these other factors.

Another important area requiring further research is
a form of bias known as the “healthy vaccinee effect”
[28,29]. This refers to the notion that physicians may tend
to either administer vaccinations during periods in which
children are at their healthiest or withhold vaccinations
from children with certain illnesses [5]. Thus, the time



period immediately preceding vaccination may represent an
unusually healthy period where the incidence of illness is
an underestimate of the true background rate of illness. In-
cluding this period in a self-controlled analysis could add
a disproportionate amount of unexposed person-time into
the analysis, which would lead to overinflated relative risk
estimates. Suggested remedies for the healthy vaccinee bias
include censoring a time period preceding the vaccination
from the analysis [29] or starting person-time follow-up
after vaccination [15].

Although we used the cohort design as the gold stan-
dard, its estimates appeared to be biased when compared
to the true values of B,. To investigate this further, we in-
creased the incidence of disease by increasing [, to
—14.50, —13.80, and —13.10—holding B, fixed at 0.693
(IRR = 2.00). The mean B, estimates (MSE) from 250 sim-
ulations with these By values were 0.676 (0.022), 0.686
(0.010), and 0.693 (0.004), respectively. The mean disease
incidence rate at each successive B, value was approxi-
mately 17, 38, and 81 cases per 100,000 person-years, re-
spectively. The bias, therefore, appears to diminish as the
incidence of disease increases, corroborating previously
published data demonstrating that logistic regression tends
to underestimate the relative risk when the outcome is rare
[30]. Based on these published results, Poisson regression
would also underestimate the true IRR because Poisson
models approximate logistic models when the incidence
of disease is low (<5%).

As a validation exercise, we conducted 2,000 simulations
(in increments of 250) across the four designs at an IRR of
2.00 and for two case incidence levels of approximately
eight cases/100,000 person-years (n ~ 400 cases) and 1.4
cases/100,000 person-years (n ~ 64 cases) per simulation.
The mean estimates within and between the designs re-
mained relatively stable across the various simulation num-
bers. When compared to the cohort design, the mean
percent bias for each design remained within 3% as the
number of simulations increased. Therefore, our final re-
sults would not have changed had we increased the number
of simulations from 250 to 2,000.

Our simulation study represents a typical scenario when
evaluating the safety of a vaccine. We constructed a cohort
with a common exposure (MMR) and an acute exposure pe-
riod (42 days), and we simulated a rare, self-limiting illness
(ITP). In this setting, the risk-interval, SCCS, and case—
control designs were valid methods. However, each design
demonstrated several different strengths and limitations.
The case—control design minimized bias in the presence
of seasonality, but it was less powerful than the other de-
signs and produced comparatively high MSEs. Its IRR es-
timates were also biased when the confounding was
unmeasured and stable across time (i.e., fixed). The risk-in-
terval design, in contrast, produced stable, unbiased esti-
mates when the unmeasured confounding was fixed, but
its estimates were biased when the seasonal covariates were
not incorporated into the Poisson regression models.

11

Moreover, it required 50.0% (1,387,061/2,774,122) of the
total cohort for analysis. The SCCS design displayed simi-
lar characteristics to those of the risk-interval, but required
only 0.01% of the total study population for analysis. Thus,
the SCCS method proved to be a valid and economic design
that controls for unmeasured confounding variables unaf-
fected by the passage of time.
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