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A Generalized Linear Mixed Models Approach for Detecting Incident Clusters of 
Disease in Small Areas, with an Application to Biological Terrorism

Ken Kleinman, Ross Lazarus, and Richard Platt

Since the intentional dissemination of anthrax through the US postal system in the fall of 2001, there has been
increased interest in surveillance for detection of biological terrorism. More generally, this could be described as the
detection of incident disease clusters. In addition, the advent of affordable and quick geocoding allows for
surveillance on a finer spatial scale than has been possible in the past. Surveillance for incident clusters of disease
in both time and space is a relatively undeveloped arena of statistical methodology. Surveillance for bioterrorism
detection, in particular, raises unique issues with methodological relevance. For example, the bioterrorism agents of
greatest concern cause initial symptoms that may be difficult to distinguish from those of naturally occurring disease.
In this paper, the authors propose a general approach to evaluating whether observed counts in relatively small
areas are larger than would be expected on the basis of a history of naturally occurring disease. They implement the
approach using generalized linear mixed models. The approach is illustrated using data on health-care visits (1996–
1999) from a large Massachusetts managed care organization/multispecialty practice group in the context of
syndromic surveillance for anthrax. The authors argue that there is great value in using the geographic data.

bioterrorism; communicable diseases; epidemiologic methods; generalized linear mixed model; population 
surveillance; spatial analysis

Abbreviations: GLMM, generalized linear mixed models; ICD-9-CM, International Classification of Disease, Ninth Revision, 
Clinical Modification; NT, number of tests.

Recent bioterrorist attacks have highlighted the public
health need to detect bioterrorism events as quickly as
possible. In the case of anthrax, the initial clinical presenta-
tion of persons with acute lower respiratory infection could
precede the laboratory diagnosis of anthrax by several days
(1). This suggests that surveillance based on rapid reporting
of an unusually large number of incident episodes of lower
respiratory illness in a community might present an opportu-
nity for early detection of a bioterrorism event. Less dramat-
ically, episodes of small-scale foodborne illness,
intentionally caused or otherwise, may currently go unre-
marked but could be detected through improved surveillance
methods.

The data are increasingly available in a timely fashion as 
electronic medical records and other real-time data collec-
tion systems are adopted. Additionally, geographic informa-
tion is often available (2). Spatial data are important: 
Clusters of interest may be localized and of insufficient size 
to be detected in analyses that consider only an entire region, 
and/or a lack of a specific location may interfere with treat-
ment and prevention.

Available techniques that can be used with such data
include scan statistic (3) and cu-sum (4) approaches, which
explicitly aim at surveillance. The referenced articles also
offer comprehensive surveys of spatiotemporal surveillance
methods. In addition, time-series methods (5) could be
employed, and spatial clustering techniques (6) could be
adapted to temporal surveillance. As an alternative, we
propose a method based on generalized linear mixed models
(GLMM) (7).

One way to improve surveillance is to develop methods of 
identifying temporal and geographic clusters of events that 
may merit additional evaluation, rather than rely on merely 
temporal methods. This improvement can be efficient in that 
data suitable for such analysis are collected routinely by 
health maintenance organizations and physicians’ groups. 

http://aje.oxfordjournals.org/
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MATERIALS AND METHODS

Statistical method

The method we propose is based on logistic regression.
Consider as a conceptual exercise a logistic regression model
predicting caseness on a given day, with predictors
describing the day of observation:

logit(Pr[case]) = β0 + β1spring = β2summer + β3fall +
β4weekday,

where “spring,” “summer,” “fall,” and “weekday” are indi-
cator variables describing the season and a nonweekend day.
For a given day, we could generate an estimate of the proba-
bility that an individual is a case using the estimated β
parameters from the above model.

An improvement to this approach would be to incorporate
geographic data. This would allow for the possibility that
some areas contained populations more likely to become
sick, such as older people, or more likely to seek health care,
as might be the case for certain cultural groups. We might
then modify the conceptual model:

logit(Pr[case]) = β0 + β1spring = β2summer + β3fall +

β4weekday + (1)

where i indexes the areas and each γi is the log odds of being
a case in area i relative to the Ith of the I areas.

Instead of the ordinary logistic regression discussed
conceptually above, we propose the use of GLMM (7) to
estimate the probability that each subject under surveillance
is a case, in each area, on a given day. (The approach can be
used for other summary periods, but we use day as an
example.) The proposed model takes the form

E(yijt|bi) = pijt and logit(pit) = xijtβ + bi, (2)

where yijt indicates whether person j in area i is a case on day
t, pijt is the probability that he/she is a case, xijt is a set of
covariates measured for person j and/or area i and/or day t, β
is a vector of fixed effects, and bi is a random effect for area
i. One can think of the bi’s as allowing different baseline
risks in each area i. The bi’s are typically assumed to have a
multivariate normal distribution with a mean of 0.

The estimated bi’s are sometimes called the “shrinkage”
estimators, because they are, loosely, a weighted average of
the log odds ratio γi from model 1 and the mean of these odds
ratios. The weights depend on the number of persons in area
i, among other things. The fewer persons in area i, the greater
the weight of the overall mean; that is, the greater the
shrinkage. The shrinkage estimators have a smaller mean
squared error than the simple logistic regression estimators
for the areas, though they are not unbiased. Shrinkage esti-
mators are sometimes described as “borrowing strength”
across the clusters (6). The borrowed strength is why we
generally prefer the GLMM to the simple logistic regression.

The covariates xijt could include 1) measures on the indi-
viduals j, such as their age and gender; 2) measures on area i
or its population, such as the population density or the
median income; or 3) descriptors of day t, such as measures
of yearly patterns (be they seasonal indicators or trigono-
metric functions, etc.), the relative humidity, or the day of
the week. Any covariates could vary over time. Finally, the
model might incorporate autocorrelation by including recent
days’ counts as predictors.

We recommend that individual-level covariates be used
whenever possible, since their predictive value may be great.
In practice, however, their inclusion can make fitting models
computationally difficult. In such cases, where individual-
level covariates are excluded, the data are effectively a count
of the number of cases and noncases in each area i on each
day t. A simpler form of the model can then be used, with the
notation

E(yit|bi) = nitpit and logit(pit) = xitβ + bi, (3)

where

 ,

γ1,
i 1=

I 1–

∑

yit yijt
j 1=

nit

∑=

nit is the number of individuals in area i on day t, and pit is the
probability that any resident of community i is a case on day
t. Covariates that differ between members of any community
are omitted from xijt, leading to the simpler xit. Model 3 might
be referred to as “binomial logistic regression,” as opposed
to the Bernoulli logistic regression depicted in model 2,
which is commonly referred to simply as logistic regression.
The practical effect of this change is wholly computational,
assuming that no individual-level covariates are used in
either case. The interpretation of the model estimates is iden-
tical, but instead of

nit  

lines of data for each day, there are only i lines of data for
each day.

i
∑
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In most practical applications, including the example
presented below, we expect that individual-level covariates
will be impractical, and we use the representation shown in
model 3 throughout the remainder of the article.

The model is fitted using data from a “historical period”
including only days before the surveillance day. Days
included might be all available previous days, or certain days
could be omitted because of known anomalies in count or
conditions such as weather. After fitting of the model, esti-
mated values  of the fixed effects β and the random
effects bi are used to calculate , the estimated probability
of being a case for a given surveillance day t in a given area i:

Note that day t is specifically excluded from the historical
period. This is the surveillance problem: to use the past to
evaluate the present.

The probability of seeing z or more cases is calculated
from , using the binomial probability mass function:

Pr(≥z cases) = (Z = s) = 1 – (Z = k);

Pr(Z = k) = 

This probability can be thought of as a p value for the null
hypothesis that the cases in the area came from a binomial
distribution with parameter .

There can be many areas, and the surveillance is repeated
daily. Thus, there may be a considerable problem with
multiple testing. To avoid this, we suggest not reporting the
p value directly. Instead, consider the following transforma-
tion: ( p value × NT)–1 = “expected time,” where NT is a rele-
vant number of tests.

The expected time is the number of times NT tests would
have to be performed so that one would expect to see exactly
one p value as small as or smaller than the one that was
observed. For example, if NT = 100, a p value of 0.005
would be expected to appear once in two sets of 100 tests,
that is, (0.005 × 100)–1 = (0.5)–1 = 2. A p value of 0.0001

would be expected to appear once in 100 sets of 100 trials.
Note that because of the discrete nature of the binomial
distribution, the expected time may be conservative (8). A
useful NT would be the number of tests performed in a year;
this would allow statements such as “the observed event is
expected once every 10 years.” One advantage of this
approach is that larger values of the expected time are more
alarming or unusual, as opposed to the counterintuitive inter-
pretation of smaller p values as more unusual. It also allows
the user to focus on the unusualness of the observed data in
terms of time, rather than on attempting to evaluate the
meaning of a p value in this context.

Example setting and data

We previously described surveillance that uses an auto-
mated electronic medical record system among members of
a Massachusetts health maintenance organization (2).
Briefly, for each health-care encounter, a clinician enters
diagnoses, to which International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM), codes
are attached. Diagnoses are then grouped into syndromes (2).
The diagnosis is available for data analysis immediately. The
work was approved by the Harvard Pilgrim Health Care
(Boston, Massachusetts) institutional review board.

Patients’ addresses are geocoded, which provides the US
Census tract of residence. Although the accuracy of
commercial geocoding has recently been called into question
(9), the geocoding used in this article attached an exact loca-
tion to 94 percent of addresses. A census tract location was
found for an additional 1 percent of subjects. The addresses
are used for billing and other business purposes, which
suggests that they are sufficiently accurate for surveillance.
The data set used here represents the ambulatory medical
encounters of approximately 240,000 geocodable individ-
uals—about 10 percent of the population in the region of
eastern Massachusetts described below.

A cluster of inhalational anthrax is one of the conditions
the system is intended to identify. Typically, inhalational
anthrax begins with a nonspecific prodromal phase in which
the sufferer may experience fever, dyspnea, cough, and chest
discomfort. During this phase, neither physical examination
nor any widely used diagnostic test suggests an unusual
illness. Diagnosis usually occurs after 2–4 days, when respi-
ratory failure and hemodynamic collapse may ensue. By that
time, chest radiographs show an unusual pattern of medias-
tinal widening (1).

The lower respiratory infection syndrome used in our
system was designed to capture cases of anthrax in the
prodromal phase. It incorporates 119 ICD-9-CM codes
including influenza, pneumonia, bronchitis, and cough. As
would be expected, incidence rates are much higher in the
winter than in the summer (2). Spatial clusters as well as
temporal clusters are expected, because of the contagious
nature of illnesses that dominate the visits associated with
lower respiratory infection.

The proposed statistical method is intended to alert author-
ities when local increases in lower respiratory infection
occur. This will allow health officials to perform additional
evaluation of affected individuals and/or advise clinicians to

β̂ b̃i,( )
p̂it

p̂it
expxitβ̂ b̃i+

1 expxitβ̂ b̃i++
--------------------------------------= .

p̂it

Pr
s z=

∞

∑ Pr
k 0=

z 1–

∑

nit
k 

  p̂it
k 1 p̂it–( )

nit k–
.

p̂it

have heightened suspicion when evaluating other persons
with respiratory illnesses. If the local increases reflect
prodromal cases of anthrax, the system will help to alert
authorities in a timely fashion. The nonanthrax cases of
lower respiratory infection are the “noise” against which a
“signal” of anthrax-related complaints must be detected.
Because of the prodrome, an unusual cluster of cases caused
by anthrax might be detected in this way before it was
possible to diagnose its cause.

http://aje.oxfordjournals.org/
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The data set used here incorporates cases of lower respira-
tory infection syndrome that occurred between January 1,
1996, and October 31, 1999. There were 80,683 lower respi-
ratory infection episodes during this period for which the
patient’s residence was in one of the 529 census tracts with
centroids in the Greater Boston, Massachusetts, area,
between west longitudes 70.85 and 71.4 and north latitudes
42.15 and 42.65. A map depicting the number of patients
residing in each census tract in October 1999 shows that
while a handful of tracts had very few subjects, most had
more than 400 (figure 1).

The model we discuss below was generated as an example
and is not intended to be exhaustive, parsimonious, or
prescriptive. We modeled incident episodes of lower respira-
tory infection that occurred during the 1,394 days between
January 1, 1996, and October 24, 1999. To account for
seasonality, we fitted indicator variables for 11 of the
calendar months. To adjust for within-week patterns, we
included indicators for 6 days of the week. We also included
a linear secular time trend to account for any changes in the
incidence of disease or in ICD-9-CM coding-choice habits.
We did not include any individual-level covariates, since this
was impossible computationally. The census tracts are used
as the areas discussed in the previous section. We did not
include covariates describing the census tracts.

The model was fitted using the GLIMMIX macro (10) in
SAS, version 8.2 (11). Note that GLIMMIX uses penalized
quasilikelihood estimation, which causes some bias (12); the
many repeated values for each census tract should have
diminished the bias here. The advantage of this fitting
method is that it uses a great deal less computer memory and
time than methods that employ numeric integration. This is a
meaningful advantage for data sets as large as the one used
in this example. (In general, closed-form solutions are not
available, so either approximation or numeric integration is
necessary.)

We assumed that the random effects for the census tracts
were independent. An assumption of spatially correlated
random effects could also be appropriate; including spatial
correlation would imply that areas close to one another have
similar baseline risks of illness. However, a practical
problem with incorporating such correlation is that much
available software (e.g., S-Plus (13) or Stata (14)) does not
allow spatially correlated random effects with longitudinally
repeated nonnormal observations. SAS (10, 11) allows it
with some modification but could not be employed in this
large data set using available hardware. While BUGS (15),
which uses Markov chain Monte Carlo methods to fit
Bayesian models, might be suitable, this method requires a
great deal of care and time, which would preclude the timely
repeated fitting of the model necessary for ongoing surveil-
lance. Use of a computationally complex method would also
limit applicability because of the specialized knowledge
required.

There is also a plausible rationale for avoiding spatial
correlation in this example. This region around Boston is
made up of many demographically and economically
distinct towns and neighborhoods. Towns that border one
another may share little besides physical proximity. In this
context, smoothing across area may actually not be helpful;
there is little reason to think that neighboring areas should
have similar baseline risks.

RESULTS

The results of fitting the model are presented in tables 1
and 2. Table 1 shows that the number of cases varies signifi-
cantly from month to month. For example, the odds of a
health-care visit are twice as high in December as in May.
There is little difference between December and January,
however. Similarly, the odds of a visit are highest on
Mondays, nearly three times the odds on Saturday, while the
two weekend days have similar odds. There is a statistically
significant linearly increasing trend over the 4 years.
However, this trend is small, with the relative odds of a visit
for lower respiratory infection increasing by only 3.3 percent
each year. Not tabulated is the fact that the global likelihood
ratio tests for a month effect and a day-of-the-week effect
were both statistically significant, with p values less than
0.0001.

The fact that the variance of the random effects, σb
2, is

significantly greater than 0 implies that the differences
between tracts contribute meaningfully to the model. The
inclusion of census tract-specific covariates might reduce the
variability among the random effects, but it is unlikely that
all unique features of a census tract could be accounted for in
this fashion. The random census tract effect absorbs the
unmodeled unique features of the census tract.

FIGURE 1. Number of subjects covered by a health maintenance
organization in each census tract in a region of eastern Massachu-
setts as of October 1999.

http://aje.oxfordjournals.org/
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Table 2 shows 11 census tracts approximately at the
deciles of the random effects; we show the exact rank. We
chose these 11 census tracts as an illustrative sample of the
525 populated census tracts in the model. In the table, we
show the exponentiated random effects (interpreted as the
odds ratio in the tract relative to the average tract), the esti-
mated parameter  from the model, the number nit of
subjects living in the census tract, the number of visits on
October 25, 1999, and the probability of seeing this many or
more cases. Note that only data through October 24, 1999,
were used in estimating the model. A detailed example of the
calculation of  is provided in the Appendix.

Among these 11 census tracts, only one, tract 250173336,
has a count that seems unusual, with a p value for two or
more visits of 0.0062. This is Pr(≥2 cases) = 1 – Pr(0 cases) –
Pr(1 case) = 1 – (0.000633)315 – 315 × (0.000367) ×
(0.999633)314, using the estimated  from table 2. For a
day, NT = 525, so the expected time is 0.31 of a day ((0.0062 ×
NT)–1 = 0.31)—that is, more than three times every day. This
count is unlikely to merit further attention.

This simple example mimics surveillance: We fit the
model using all of the data available up to a given point, esti-

mate the parameters of the binomial distribution for a future
point, and evaluate the observed counts. Table 2 shows the
extent of the variability between census tracts and the effect
that this can have. Three census tracts in the table had two
visits, but while the numbers of subjects living in those
census tracts were roughly similar, the p values differ by a
factor of 3. Of the three, the census tract with the largest
random effect has the largest p value, despite being only 80
percent the size of the largest census tract of the three.

We carry the example further in figure 2, where we plot
the three census tracts with the smallest p values. (This limit
was selected because three census tracts could be plotted
comfortably with text.) We note the number of cases seen in
these census tracts and the p value associated with that
observed count. A p value of 0.0062 was calculated above to
have an expected time of 0.31 days. A p value of 0.0036 has
an expected time of 0.52 days. A p value of 0.00005 has an
expected time of 38 days, meaning that we should expect
counts this unusual only once every 38 days if the model is
correct. This is unusual enough that a public health depart-
ment might investigate further by evaluating the individuals

TABLE 1.   Parameter estimates and odds ratios for being a case from a model including an intercept, a 
month, a secular time trend (centered, measured in years), and a random effect for each US Census 
tract in the study region, eastern Massachusetts, 1996–1999*

* The model was based on 250,000 subjects covered by a health maintenance organization in eastern
Massachusetts between 1996 and 1999.

† CI, confidence interval.

Parameter 
estimate

95% CI† Odds 
ratio

95% CI p value

Intercept –8.652 –8.690, –8.615

Month (relative to December)

January 0.005 –0.024, 0.034 1.005 0.976, 1.035 0.7732

February 0.076 0.047, 0.106 1.079 1.048, 1.111 <0.0001

March –0.369 –0.401, –0.337 0.691 0.670, 0.714 <0.0001

April –0.606 –0.640, –0.571 0.546 0.527, 0.565 <0.0001

May –0.717 –0.752, –0.682 0.488 0.471, 0.506 <0.0001

June –0.807 –0.843, –0.771 0.446 0.430, 0.463 <0.0001

July –1.051 –1.089, –1.012 0.350 0.336, 0.366 <0.0001

August –1.001 –1.039, –0.963 0.368 0.354, 0.382 <0.0001

September –0.677 –0.711, –0.642 0.508 0.491, 0.526 <0.0001

October –0.303 –0.334, –0.271 0.739 0.716, 0.762 <0.0001

November –0.096 –0.128, –0.063 0.909 0.880, 0.938 <0.0001

Day (relative to Saturday)

Sunday –0.022 –0.060, 0.016 0.978 0.942, 1.016 0.2614

Monday 1.087 1.056, 1.118 2.966 2.875, 3.059 <0.0001

Tuesday 0.972 0.941, 1.003 2.644 2.562, 2.278 <0.0001

Wednesday 0.901 0.869, 0.933 2.463 2.386, 2.542 <0.0001

Thursday 0.838 0.806, 0.870 2.312 2.239, 2.388 <0.0001

Friday 0.806 0.774, 0.838 2.238 2.167, 2.312 <0.0001

Year 0.033 0.300, 0.036 1.0335 1.030, 1.037 <0.0001

σb 0.033 0.028, 0.038 <0.0001

p̂it

p̂it

p̂it

http://aje.oxfordjournals.org/


6

contributing to the unusual count; these persons can be easily
identified from health-care-provider records.

We replicated this process for two other days—February
11, 1999, and August 6, 1999—using the data between
January 1, 1996, and the previous day to estimate . We

chose these months because their odds of lower respiratory
infection are relatively high and low, respectively, and these
specific days because in each case there was an unusual-
seeming count. Smaller counts make the census tracts
unusual in the summer than in the winter. For February 11,
an observed count of six had a p value of 0.00000022, or an
expected time of 8,641 days (23.7 years). For August 6, a
count of three had a p value of 0.000014, or an expected time
of 135 days.

DISCUSSION

The proposed approach can accommodate temporal clus-
tering, secular and seasonal trends, and arbitrarily numerous
geographic regions. In addition, it can be fitted using widely
available software. Finally, the results of the analysis are
adjusted for the size and unique features of the population
residing in each region. The results of the model can be
presented using a probability-based metric that is adjusted
for covariates and unmeasured features, as well as multiple
testing. For the data set described here, 3–6 cases in a census
tract in one day are often unusual enough to be expected to
appear only once in a given month (16).

The logistic GLMM is not the only way to estimate the
probability of being a case. An ordinary logistic regression
model could be used, with an indicator variable for each
area. We recommend the GLMM mainly because the size of
the population under surveillance in each area is often vari-
able, and mixed models are often used in such cases to
“borrow strength” across the areas (6). A Poisson regression
analysis, either using GLMM or with indicators, could also
be an appropriate substitute. Finally, this is a relatively crude
space-time model. More sophisticated models have appeared
(17, 18) and could be adapted to the current surveillance

TABLE 2.   Eleven US Census tracts, the rank of their random effects, and their , , 
and nit for t = October 25, 1999; the actual number of health-care visits observed on 
that day; and the probability that this many or more visits would be made in that 
census tract on that day, eastern Massachusetts, 1996–1999* 

* The model was based on 250,000 subjects covered by a health maintenance
organization in eastern Massachusetts between 1996 and 1999.

† Tract numbers shown omit the state code (“25”) and a leading 0 from the county code.

Census 
tract† Rank nit

No. of 
health-care 

visits

Probability 
of that no. of 
visits or more

173531 1 0.642 0.000247 499 0 1

173689 54 0.812 0.000312 527 1 0.1516

251010 106 0.879 0.000338 2,231 0 1

250814 161 0.920 0.000353 275 0 1

173336 208 0.959 0.000367 315 2 0.0062

173734 261 0.997 0.000383 487 0 1

250820 314 1.038 0.000399 435 1 0.1593

092111 367 1.083 0.000416 186 0 1

214194 420 1.138 0.000437 467 2 0.0182

214042 469 1.220 0.000469 1,250 0 1

092102 523 1.486 0.000571 376 2 0.0200

e
b̃i p̂it

e
b̃i

p̂it

FIGURE 2. Census tracts with the most unusual counts of lower
respiratory illness episodes (p < 0.01), based on the probability mass
function derived from the model for October 25, 1999. The model was
based on 240,000 subjects covered by a health maintenance organi-
zation in eastern Massachusetts between 1996 and 1999.

p̂it
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purpose. However, the implementation of a sophisticated
model in a large data set would be costly in time and effort.
The relatively large scale of surveillance data sets does make
some compromise attractive. This is particularly relevant
because of the appeal of expanding real-time cluster detec-
tion to include considerably larger populations.

Data on individuals can be included with individual-level
covariates, summarized within area, or stratified by some
individual-level covariates and then summarized within
area. We have alluded to the computational advantage of
summarizing the data. Another advantage of summarizing
within area is that tables with threshold values can be gener-
ated ahead of time, reducing surveillance to a simple look-up
task once the model has been fitted. If individual-level cova-
riates were included, the p value and the expected time
would depend on which subjects were cases on a given day,
making this useful and simple implementation impossible.

The proposed method has advantages and disadvantages
relative to alternative techniques. Scan statistic (3) and
spatial cu-sum (4) approaches can detect elevated counts
over several contiguous areas in a natural fashion, while the
proposed technique cannot. On the other hand, these tech-
niques cannot easily incorporate continuous covariates and
may be less sensitive to elevated rates in a single area. Time-
series methods (5) detect elevated rates across an entire
region—a situation the proposed method may lack power
against—but would be less sensitive to a smaller number of
spatially focused cases, a particular strength of the proposed
method.

There are several important limitations of the proposed
statistical approach. Problems associated with any division
of space are well known in cluster-identification research.
For instance, a cluster divided between two areas may fail to
attract attention (19). A similar question is how to choose
among available spatial divisions. A conservatism of the
“expected time” procedure is that it assumes that all tests are
independent. This would be troubling if spatially correlated
random effects were found useful; there would then be a
discrepancy between the model and the evaluation method.

No analysis of a data set of this type is likely to detect an
occurrence like the 2001 US bioterrorism attack using
anthrax: There were too few cases, and they were more
connected by work site than by home address. Nonetheless,
it is easy to imagine an attack that could be detected in this
kind of data set: exposure through the ventilation system of a
restaurant, for example. In general, the data collection
system described has an advantage in detecting ailments
with nonspecific prodromes, such as anthrax, or nonspecific
symptoms more generally. Arguably, this includes anthrax,
botulism, plague, smallpox, and tularemia—all of the
Centers for Disease Control and Prevention category A bio-
terrorism agents except viral hemorrhagic fever (20).

There are other limitations of the type of data considered
in the example. The nonrepresentativeness of the population
under surveillance raises questions about its suitability for
bioterrorism surveillance. This concern is heightened by the
fact that 5 percent of addresses in the data set could not be
geocoded. Persons subject to surveillance under this system
are generally better educated, wealthier, and more likely to
be White than the general public. To the extent that these

characteristics would protect them from exposure or
decrease the chances that they would seek health care, the
example data set would be less likely to reflect bioterrorism
than a representative population. However, while the sample
is not representative, it is quite large, which would help offi-
cials avoid completely missing a bioterrorist attack just by
chance.

Additional work in statistical models for cluster surveil-
lance will be required to resolve some of the limitations
described here. One important practical development will be
to assess adjacent areas with p values that are small but not
small enough to suggest further investigations by them-
selves. A formal preliminary step for determination of the
best spatial areas might be developed. The impact on sensi-
tivity of varying proportions under surveillance in different
areas should be assessed. Finally, as computing speed
increases and coding efficiency improves, it may become
practical to fit models that consider each individual, rather
than summing data within an area.
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APPENDIX

Here we show examples of the calculation of . Suppose
we were planning surveillance for a Tuesday in January
2005, in census tract 250214194, using effect estimates from
tables 1 and 2. The estimated logit would be –8.652(inter-
cept) + 0.005 (January effect) + 0.9722 (Tuesday effect) +
0.165 (secular time trend) + 0.129 (tract effect) = –7.3808.
The  for that day in that tract would be e–7.3808/(1 + e–7.3808) =
0.0006, meaning that the estimated probability that a person
in that tract will be a case on that day is 0.0006. Alterna-
tively, consider a Sunday in July 2004. The estimated logit
would be –8.652 – 1.051 – 0.022 + 0.149 + 0.129 =
–9.447. The  would be 0.00008, meaning that in that tract,
the probability of being a case is approximately 7.5 times
greater on a Tuesday in January than on a Sunday in July. In
an actual application, we would expect to use more recent
data to estimate model parameters.

p̂it

p̂it

p̂it
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