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Evaluating spatial surveillance: detection of known
outbreaks in real data

Ken Kleinman, Allyson Abrams, W. Katherine Yih, Richard Platt
and Martin Kulldor�

SUMMARY

Since the anthrax attacks of October 2001 and the SARS outbreaks of recent years, there has been
an increasing interest in developing surveillance systems to aid in the early detection of such illness.
Systems have been established which do this is by monitoring primary health-care visits, pharmacy
sales, absenteeism records, and other non-traditional sources of data. While many resources have been
invested in establishing such systems, relatively little e�ort has as yet been expended in evaluating their
performance.
One way to evaluate a given surveillance system is to compare the signals it generates with known

outbreaks identi�ed in other systems. In public health practice, for example, public health departments
investigate reports of illness and sometimes track hospital admissions. Comparison of new systems
with extant systems cannot generate estimates of test characteristics such as sensitivity and speci�city,
since the actual number of positives and negatives cannot be known. However, the comparison can
reveal whether a new or proposed system’s signals match outbreaks detected by the existing sys-
tem. This could help support or reject the new system as an alternative or complement to the extant
system.
We propose three methods to test the null hypothesis that the new system does not signal true 

outbreaks more often than would be expected by chance. The methods di�er in the restrictiveness 
of the assumptions required. Each test may detect weaknesses in the new system, depending on the 
distribution of outbreaks and can be used to construct con�dence limits on the agreement between the 
new system’s signals and the outbreaks, given the distribution of the signals. They can be used to assess 
whether the new system works in that it detects the outbreaks better than chance would suggest and 
can also determine if the new systems’ signals are generated earlier than an extant system. 

KEY WORDS: surveillance; spatial methods; evaluation; permutation tests; scan statistic
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INTRODUCTION

Since the bioterrorist attacks using anthrax in October 2001 and the SARS outbreaks in
subsequent years, there has been increased interest in surveillance to detect such outbreaks.
Traditional public health surveillance generally relies on post-diagnosis reporting of cases by
care providers. Many resources have been devoted to systems that attempt earlier detection
by collecting data on the patterns of illness in the community [1–7]. For naturally occurring
disease, these general patterns may provide an earlier warning than other systems; for bioter-
rorist attack, an unusual number of sick individuals may be the �rst sign of an attack, barring
detection of the bioterrorist agent in the environment.
The systems have many aspects, ranging from the way data is collected to how it is analysed

and the responses generated if the analysis proves alarming [8]. While some guidance on the
construction of such systems is available, there is little speci�c information on how to assess
them. Such evaluation can be based on the retrospective ‘performance’ of the system in the
presence of real outbreaks, on fully simulated data, or on simulated attacks laid over real
historical data. In the present article, we consider the case of how the system would have
performed at detecting outbreaks known to have occurred in the past. Due to the happy
dearth of known bioterrorist attacks, we provide an example based on known outbreaks of
gastrointestinal illness. However, the statistical approach we take is general with respect to
the kind of outbreaks that are used for comparison.
On the other hand, we limit our interest to systems that contain spatial (geographical)

data on the cases [4, 6]. These systems, when coupled with statistical techniques that use the
spatial data [9–11], hold out the promise of greater sensitivity and speci�city than is possible
in methods that ignore geographic location [10].
There are two substantive questions we wish to address in this context: (1) Can the

surveillance system detect known outbreaks? (2) Can the surveillance system detect known
outbreaks before they would otherwise have been detected? Both questions speak to the
value of a proposed system relative to the method that identi�ed the real outbreaks. If the
new system can detect the outbreaks well, it might be considered as a replacement sys-
tem, and would certainly be viewed as having some face validity with respect to these real
results. Similarly, earlier detection of real outbreaks would improve public health to some
degree and would point to the value of a new system. The proposed methods address both
questions.
In the methods section, we �rst lay out some notation, including formalizing the notion

of a ‘hit’ as a signal from a surveillance system that can be related to a real outbreak. We
then motivate and describe three tests of the null hypothesis that the observed number of
hits is no more than chance association between signals and outbreaks, given the distributions
of outbreaks and signals. The goal of assessing the co-location of two series of points in
space and time has been addressed previously by Klauber [12]. One of our proposed tests
resembles a special case of the framework proposed there; the other two tests lie outside it. In
addition, our setting introduces events that contain multiple points in space and time. Finally,
the application to signals generated from surveillance is novel.
In the results section, we �rst provide a simple arti�cial data example in which various

violations of the assumptions needed for the tests may be violated, demonstrating that the tests
can be misleading if applied without examining the assumptions carefully. We then show an
example in real data. In the discussion section, we examine the utility of the tests and make
observations on their limitations. We also outline the method by which de�nitions of a ‘hit’
can be altered to address the question of the timing of signals.
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METHODS

Suppose that surveillance data is available over some time period comprising days 1; : : : ; T .
Also, suppose that in the same period Nreal ‘real’ outbreaks have been con�rmed by an
epidemiologically accepted method. Each of the outbreaks also has a location, typically the
site of the exposure to a disease-causing agent. This could be an arbitrary region, a zip code,
a census tract, or a latitude and longitude pair. Arbitrarily index the outbreaks i=1; : : : ; Nreal,
and let REALLOCi and REALSTARTi designate the location where and time when outbreak
i began. Note that outbreaks often continue for more than one day; let REALENDi be the
last day of outbreak i.
Now, suppose that a new system has collected data over the same period; assume the sys-

tem includes some speci�c outbreak-identifying statistical analysis. To clarify the distinction
between the real outbreaks and the putative outbreaks identi�ed by statistical analysis of the
new data, we refer to the latter as signals generated by the system. To best emulate
the performance that would have been seen had the system been used contemporaneously
as the data was collected, a statistical technique must be applied for each day t, using only
data from days 1; : : : ; t to signal outbreaks, as opposed to including ‘future’ days t + 1; : : : ; T
when looking for outbreaks on day t.
Each signal found in the new data would have a location as well. Label the signals

s=1; : : : ; Nstat with locations SIGNALLOCs and start date SIGNALSTARTs. Note that with
some statistical techniques, the location may be a single zip code or census tract while oth-
ers generate some geometric or general shape with a focus at some map point. As with the
outbreaks, signals may identify a suspected anomaly having occurred across a period of time.
Of course, the signal itself is generated at a single time point, but the putative outbreak so
identi�ed may have a depth in time; denote the end of the signal as SIGNALENDs.
With this notation established, we can proceed to evaluate the performance of the new

system. De�ne a ‘hit’ for each signal as the event that the signal overlaps both spatially and
temporally with at least one real outbreak, though, of course, other de�nitions are defensible.
Symbolically, a hit for signal s is de�ned as

∃outbreaki
[
([REALSTARTi ;REALENDi]∩ [SIGNALSTARTs;SIGNALENDs]) �= ∅
and (REALLOCi ∩SIGNALLOCs) �= ∅

]

using the standard set and logic notation for ‘there exists’ (∃), ‘intersect’ (∩) and the empty
set (∅). Let HITs=1 if the signal has a hit and 0 if not. Then the performance of the system
with respect to its identifying outbreaks also found by the external data could be measured
as TOTALHITS=

∑
sHITs.

However, this statistic is not of much use in a vacuum. To demonstrate this, consider a
proposed system that generated a large number of signals, each with duration over days 1
to T and with location including the whole study region. Then the number of hits would
necessarily equal the number of signals without suggesting actual practical utility. Relatedly,
one should consider the speci�city of the signals, equivalent to the proportion of false positive
signals generated. To determine the value of the statistical method, we need some sense of
the variability and expectation of this statistic. However, there is no obvious way to obtain
these.
We provide three alternative randomization-based tests that can demonstrate whether the

observed number of hits is more or less than would be expected if the signals had no rela-
tionship with the outbreaks. Note that we do not address here the important question of how
to compare statistical signal-generation methods. This question is complicated by the possibil-
ity of di�erent numbers of signals generated by di�erent methods and by the incompleteness
of the known outbreaks with respect to all outbreaks.
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Test I : random signals

Suppose the statistical method employed by the new system was limited to generating signals
of identical duration and size. In addition, suppose that the population was distributed uni-
formly across space and more speci�cally that there was no spatial pattern to the outbreaks.
Suppose that there was no seasonal pattern to the outbreaks, and that they were also of a
single duration.
In that case, we could generate the null distribution for the number of hits by choosing

Nstat points from a two-dimensional uniform distribution and choosing for each point a random
(discrete uniform) date from the surveillance period. We would then declare a hit for these
randomly generated signals as we did for the signals generated by the surveillance system.
Summing the hits for the random signals would give one instance of the number of hits
observed under the null hypothesis. We would repeat this experiment many times, and thus
discover the probability of 0 hit, 1 hit, 2 hits; : : : ; Nstat hits under the null hypothesis that
signals were randomly assigned to the space–time universe of the surveillance period. Using
this, we could express a p-value for the observed number of hits in the real data as the
probability that as many or more hits would be found under the null hypothesis.
Unfortunately, these conditions will rarely, if ever, be plausible, and the test will have

little value if applied when they are violated. For example, suppose the population were
unevenly distributed on the map, as would happen if the region included urban and suburban
or rural areas. In that case, signals that included the urban region might be more likely
to overlap with outbreaks. The random signals would include the urban region only in the
proportion of the surveillance region covered by the urban area. Thus, a statistical test that
included the urban region preferentially without reference to the observed data—for example,
by preferentially selecting areas with high population density—would falsely appear to have
more hits than expected under the null. Violations of the other assumptions would have similar
anticonservative e�ects on the supposed null distributions.

Test II : random dates for observed signals

Seen another way, the problem with violating the assumption of uniform population distri-
bution is that too many of the random signals land in uninteresting places; systems under
consideration may inadvertently or intentionally take advantage of this by specifying signals
to appear in more interesting places with greater frequency.
Suppose instead that, more realistically, the outbreaks were not distributed uniformly in the

surveillance area, but maintain the assumption that there is no seasonality to the outbreaks.
We could then take every signal location and assign to it a random (discrete uniform) date on
the calendar. Having assigned random dates to the signals, we could then count the number
of hits, as above, generating one instance of the number of hits found under the null. Then,
as above, we would repeat this many times, and discover the null distribution of the number
of hits that happen to occur if the observed locations were chosen.
In this case, too, an anticonservative bias may be introduced if the assumption of no

seasonality is violated. To see this, imagine that there is seasonality in the data, as would be
the case for lower respiratory complaints, for example [3]. Then if a statistical test generated
more signals in the seasons when the condition of interest was more prevalent, the null could
appear to be rejected without any real ability of the method to �nd an outbreak on the map.
For example, a cu-sum method [2] that did not account for seasonality would tend to generate
signals in seasons with larger numbers of cases. If one wanted to test that method in a context
with spatial data, one might de�ne the spatial extent of such cu-sum signals to cover the whole
surveillance region. In this case the test described would spuriously suggest the system has
more hits than expected under the null distribution.
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Test III : permutation test

Permutation tests generally refer to exact tests that calculate the test statistic under every
possible arrangement of the data. These arrangements would in this case be used to generate
the distribution of the number-of-hits test statistic under the null hypothesis. The proportion of
arrangements with as many or more hits than in the observed data would be the p-value, as
above. A closely related approach uses many Monte Carlo re-arrangements of the data rather
than enumeration of all of the possible arrangements [13]. If the number of Monte Carlo
re-arrangements is ‘large’, and each arrangement has equal probability in each Monte Carlo
replicate, then the exact and Monte Carlo permutation tests will have very similar results; the
Monte Carlo permutation test is asymptotically equivalent to the exact permutation test [14].
(We do not discuss what ‘large’ means in the current case.) Monte Carlo approaches are
useful if it is di�cult or impractical to enumerate all possible arrangements of the data.
The di�cult part of this process is de�ning what constitutes an arrangement of the data.

Good [15] describes the canonical experimental case as ‘losing the labels’ that identify which
samples are experimental and which are control cases. We de�ne an arrangement as the
pairings of outbreak locations with outbreak dates. Every arrangement would consist of pairing
each date of an outbreak with the location of some possibly di�erent outbreak. The di�erent
arrangements would include all possible pairs of dates with locations. The permutation version
of this test was proposed in a generic form by Klauber [12], which considers only point-located
events but is otherwise similar to the current proposal.
Note that under this test, neither a system that preferentially signals in more densely pop-

ulated areas nor one that preferentially signals in outbreak-heavy seasons will falsely appear
to reject the null. For signals that preferentially favour urban regions or seasons with dis-
proportionate numbers of outbreaks, both the observed data and the permutations will result
in hits at those times or places. This means the null distribution will have a relatively large
probability of having as many hits as were observed. Similarly, if a statistical method were
constructed that preferred urban regions in particular seasons, the permutation test would �nd
the observed number of hits to be typical, not unusual.
There are Nstat! possible permutations (approximately 1064 if 50 signals), so enumeration

in this case will often be implausible, and Monte Carlo testing is recommended. The Monte
Carlo approach would begin by making a list of the dates of outbreaks and an unlinked list
of locations of outbreaks. It would proceed in each Monte Carlo iteration to re-order the
dates of the outbreaks in a random fashion and attach them to the list of observed locations
(which could be kept in their original order). Then the number of signals with hits in the
outbreaks with randomly paired dates and locations would be recorded. As above, this would
be repeated many times. After many iterations, the null distribution of the number of hits
would be obtained.
In the above discussion, we refer to dates and locations, ignoring the duration and size

aspects of outbreaks. In theory, these could also be permuted, meaning that each arrangement
would include a date matched to a random duration, a random location, and a random size.
We do not recommend this; if a system always generated larger sizes for urban locations or
longer durations during seasons with more outbreaks, the null distribution generated using this
permutation would wrongly appear to result in fewer hits than the statistical method oftener
than appropriate. Instead, we include duration with date and size with location. These pairings
make sense, as they keep the temporal features of outbreaks linked and the spatial aspects
linked as well.
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A more formal discussion of the test may be warranted. Our test statistic is the number of
hits among a given set of signals. The null hypothesis is that the system performs no better
than random chance, de�ned as applying the signals to outbreaks with the same marginal
temporal and spatial distributions of the outbreaks but with no conceivable relationship to the
signals. Under the null hypothesis, the arrangement we happened to observe in the real data
is typical of arrangements with those temporal and spatial features; if that is the case, then
the proportion of arrangements resulting in as many or more hits will be large. Under the
alternative, the system performs better by using the data. In that case, few of the arrangements
will result in as many hits.

RESULTS

Here, we �rst provide a conceptual example based on applying each test to arti�cial data,
where exact calculations of p-values are possible, under various violations of the required
conditions. We then show an example of applying tests to real data collected in Minnesota.

Example 1: arti�cial data

Imagine a region made up of 4 squares of equal size. Let us consider outbreaks and signals
of one day and one square only. Now, suppose a surveillance period of 10 days. We will
consider 5 outbreaks distributed across space and time in three patterns. In all cases, there is
one outbreak on day 8 in square 3. The other 4 outbreaks are as follows: Pattern 1: they are
concentrated so that all 4 occur in the �rst square, on days 1, 4, 7, and 9, as might occur
if the vast majority of the population lived in square 1, and thus violating the assumption
needed for test I. Pattern 2: they are concentrated so that all 4 occur on the �rst day, one in
each square, violating the lack of ‘seasonality’ assumption needed for tests I and II. Pattern
3: they are distributed so that one occurs in square 1 on day 1, one on day 2 in the second
square, 1 on day 3 in the third square, and one on day 10 in the fourth square, not violating
any assumptions of any of the tests.
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Table I. The three outbreak patterns, methods, and tests.

Outbreak patterns Systems Tests

1 First 4 days, square 1, A Square 1, every day I Random allocation of
plus day 8 square 3 outbreaks to square-days

2 All four squares, day 1, B Every square, day 1 II Random dates for
plus day 8, square 3 each outbreak

3 Three di�erent days C Always �nds every III Permute location/size
for square 1, 2, and 4, outbreak of outbreaks with
two other days for square 3 date/duration of outbreaks

Day
    1     2     3     4     5     9     8     7     6    10 

Outbreak Pattern 
2: Temporal trend 

Outbreak Pattern 3: 
No violations 

Outbreak Pattern 1: 
Geographic pattern 

‘System’ A: choose 
high-pop area 

‘System’ B: Choose all 
in season 

‘System’ A, applied to 
Pattern 1.  Are these 4 
hits impressive?  

‘System’ B, applied to 
Pattern 2.  Are these 4 
hits impressive?  

Figure 1. Schematic diagram of the arti�cial data. Stars are outbreaks; circles are signals. Stars appearing
within circles are hits for the statistical system. Surveillance system 3 is not shown: regardless of
outbreak pattern, it includes only circles around all stars. Square 1 is in the upper left-hand quadrant

and the remaining squares are numbered clockwise.

Now, consider the following ‘surveillance systems’: System A: the system generates a signal
every day in the �rst square and no other. System B: the system generates a signal in each
square on the �rst day and no other. System C: the system always signals all outbreaks. Note
that systems A and B have no relationship to the data, though they will sometimes get lucky
and will also do quite well if they preferentially signal in areas or times when and=or where
outbreaks are likely to appear. For example, an unscrupulous surveillance system designer
could design a system with a signal every day in the most populous neighbourhood of those
under surveillance; this would be like system A. Similarly, a system could be designed that
generated a respiratory signal in every neighbourhood during the �u season; this would be
like system B.
We summarize the outbreak patterns, systems, and the three tests in Table I and Figure 1.

In this simpli�ed example, we can easily derive the asymptotic or theoretical results of each
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Table II. Three ‘systems’ evaluated by the three proposed tests. Bold font indicates a
system for which at least one test’s assumptions are violated by the outbreak pattern,
as well as the tests the assumptions of which are violated. Bold Italic font indicates
tests which do not require the violated assumptions. System A signals in square 1 each
day. System B signals on day 1 in each square. System C correctly signals all out-
breaks. Test I requires uniform outbreak distribution in space. Test II requires uniform
outbreak distribution in time. Test III has no assumptions. All outbreak patterns contain 5

outbreaks; details are included in the table.

Observed
hits Test I Test II Test III

Outbreak pattern 1: 4 outbreaks in square 1 plus one in square 3 on day 8
System A 4 P= 0:027 P= 0.618 P= 1
System B 1 P=0:414 P=0:460 P=1
System C 5 P¡0:0001 P=0:0026 P=0:2

Outbreak pattern 2: outbreaks in each square on day 1 plus one in square 3 on day 8
System A 1 P=0:737 P=0:651 P=1
System B 4 P= 0:0002 P= 0:0002 P= 1
System C 5 P¡0:0001 P¡0:0001 P=0:2

Outbreak pattern 3: outbreak in square 1 on day 1, no other outbreaks in square 1 or on day 1
System A 1 P=0:737 P=0:651 P=1
System B 1 P=0:414 P=0:4168 P=1
System C 5 P¡0:0001 P¡0:0001 P=0:017

test. Details are presented in the Appendix. In Table II we report the number of observed hits
and the probability of this number of hits under each of the three tests for each ‘system’. The
table demonstrates several interesting features. First of all, note that the methods that are not
based on the data perform well when the outbreaks violate the assumptions of the test. System
A has a small p-value (0.027) for test I, when the outbreaks have a geographic pattern as in
outbreak pattern 1. System B has a small p-value (0.0002) under test II when the outbreak
is focused in time, as in outbreak pattern 2. These values are bolded in the tables.
The random date test (test II) successfully protects against the spatial pattern of outbreak

observed in outbreak pattern 1, returning a p-value of 0.618. In contrast, the permutation test
(test III) protects against both kinds of violations of the null. Test III suggests little evidence
against the null has been found, meaning that the observed number of hits in these systems
and any of the outbreaks is extremely likely. These values for the less restrictive tests are in
bold and italic in the tables.
Another feature demonstrated by the example is that test III may lack power in this context,

even when the statistical method performs perfectly. In fact, if the 5 outbreaks all happen to
occur in the same region, test III will return a p-value of 1. The minimum p-value for test
III in this setting is 0.017, observed in outbreaks patterns such as pattern 3, when all four
regions have signals on di�erent days, and the �fth signal (which must appear in a duplicate
region) occurs on a �fth day. In addition, for system A applied to outbreak pattern 1, test II
returns a smaller p-value than test III. Since all of the assumptions for test II are met, this
is a sign that test II, with more assumptions, has greater power than test III, which is more
(unnecessarily) robust.
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Example 2: gastrointestinal illness surveillance in Minnesota

As part of a nationwide system, the National Bioterrorism Syndromic Surveillance Demonstra-
tion Project, data is collected in Minnesota regarding the number of gastrointestinal complaints
recorded at visits to primary care providers among a de�ned set of individuals [16]. Reports
are summarized daily by zip code. We used data collected after 1=1=2001 to attempt to �nd
outbreaks between 1=2=2001 and 31=1=2003. Our statistical technique used to generate sig-
nals in this system was a space-and-time scan statistic [11] adjusted to remove the e�ects of
season, weekday, and other temporal trends [17]. We implemented the scan statistic using the
freely available SaTScanTM software (www.satscan.org). SaTScan returns a centroid, radius
(R), and p-value for the most unusual cluster of cases. As signals, we consider only case
clusters with p-values below 0.04, i.e. clusters that should be expected by chance only once
in every 25 days [10] though this may not be practical in some surveillance settings. It is
possible to generate signals of multiple days’ length, i.e. with duration backwards in time
from the day of signalling; here we allowed only single-day signals. There were 33 such
signals, about twice as many as expected under the null.
The Minnesota Department of Health (MDH) is responsible for identifying and investigating

outbreaks of illness in the state, including gastrointestinal illness caused by food- and water-
borne organisms. The MDH provided us with a list of outbreaks investigated between 1/2/2001
and 31/1/2003, as well as the date the MDH was noti�ed that there might be an outbreak to
investigate, the date of the retrospectively identi�ed �rst case, and the location (zip code) of
the outbreak [18]. We omitted those outbreaks including fewer than 5 cases, those occurring
in institutional environments, and those occurring outside the catchment area of the data
collection. The data would be extremely unlikely to detect these outbreaks, and any observed
agreement between the outbreaks and signals in those cases would almost certainly be spurious.
There were 71 remaining outbreaks. Note that these are unlikely to include all of the outbreaks
meeting our criteria.
We de�ne a hit for a given signal as the case that an outbreak centroid is within R+ 25

kilometers of the SaTScan centroid on a date between 7 days before the �rst known exposure
and 7 days after the MDH began its investigation. These choices were made a priori, for the
purposes of example only.
There were 22 hits. The null distribution of the number of hits under tests II and III is

shown in Table III and one year of surveillance is summarized in Figure 2. Test I cannot be
applied since the signals are of varying radius and the outbreaks of varying duration. The table
shows that the p-value for the observed number of hits is 0.11 under test II, and 0.42 under
test III. Since the assumptions required for test II to be valid are violated, it is unsurprising
that the p-value observed for test II is much smaller than under test III. To be explicit, there
are spatial patterns to the population density and seasons when more outbreaks occur. Thus,
the test that selects random dates for the outbreaks results in a purported null distribution
that contains fewer hits than appropriate. Under the appropriate test, test III, there is little
evidence to reject the null hypothesis that the observed hits merely re�ect a plausible number
to be obtained with outbreaks with the same marginal temporal and spatial features of the
observed outbreaks.
We emphasize here that it is not only the statistical method but the whole surveillance

system, including the population covered, coding method, syndrome construction and innu-
merable other features, that is being assessed here, and an appropriate inference based on
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Table III. Random date and permutation approach to generating null distributions with
the proportion of randomized data sets with that number of hits the and associated
p-value for the observed range of hits across the simulations. The italic row highlights the

observed number of hits from the example.

Test II Test III

Number of hits Proportion randomizations p-value Proportion randomizations p-value

10 0.0046 1.0000 0 1
11 0.0035 0.9954 0 1
12 0.0081 0.9919 0 1
13 0.0277 0.9838 0 1
14 0.0358 0.9561 0 1
15 0.0589 0.9203 0 1
16 0.1028 0.8614 0.0021 1
17 0.1351 0.7587 0.0043 0.9979
18 0.1132 0.6236 0.0461 0.9936
19 0.1628 0.5104 0.1104 0.9475
20 0.1455 0.3476 0.1758 0.8371
21 0.0901 0.2021 0.2390 0.6613
22 0.0485 0.1110 0.1994 0.4223
23 0.0381 0.0635 0.1404 0.2229
24 0.0162 0.0254 0.0686 0.0825
25 0.0058 0.0091 0.0129 0.0139
26 0.0012 0.0035 0 0.0011
27 0.0023 0.0023 0.0011 0.0011

this test might be that the surveillance system, as implemented with the described space–time
scan statistic may be no better than chance. Di�erent inferences might result when using other
statistical methods or even the space–time scan statistic with di�erent parameters, as well as
more obviously with di�erent surveillance data sources, in di�erent time periods, in di�erent
geographical regions, applied to di�erent syndromes, or compared to other sets of outbreaks.

DISCUSSION

We have described three tests that can be used to assess whether surveillance systems—
including both data collection and data analysis features—perform better than random chance
in generating signals from real data. The tests have di�erent assumptions regarding the
underlying spatial and temporal distribution of outbreaks; each can be appropriately used
when their assumptions are met. We provided a detailed discussion of when such tests can
be appropriately used and the implications for power of the choice of test. We see these tests
as useful when evaluating syndromic surveillance systems.
It may be worthwhile to note the distinctions between the proposed permutation test and a

recently proposed space–time permutation version of the scan statistic [19]. While the proposed
permutation test involves a permutation over space and time, is applied to surveillance data,
and is used in the example to evaluate a system which uses a space and time scan statistic,
the current application is wholly distinct from the space–time permutation scan statistic. The
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Figure 2. Relationship between known gastrointestinal outbreaks and gastrointestinal signals in health
plan data, Minnesota, 2001–2002. The horizontal line running the width of the plot separates signals that
are hits (below) from signals that are not (above the line, jittered vertically). Hit criteria are described in
the text. Stars across the bottom of the plot represent investigation dates for outbreaks described in the
text. Short horizontal lines extend from the retrospectively determined date of �rst exposure to the date
of investigation. The small maps represent the core of the catchment area, around Minneapolis-St. Paul.
The maps are placed horizontally at the date the signal was generated and vertically at the distance from
the outbreak to the signal which hit it. Within each map, the dot represents the area of the SaTScan
signal. If the SaTScan area had a radius of zero (i.e. consisted of a single zip code), a small circle
is placed. The star in the map indicates the centroid of the zip code associated with the outbreak.
Occasionally, symbols appear outside the core area; they represent events in the larger catchment area
and are located accurately with respect to the corresponding map. Numbers of cases are shown above
each map, black for the cases in the signal and grey for the outbreak. A hit is indicated by a line. If
a linkage line’s slope is negative, the signal appeared before the date the outbreak investigation began.
The most negative slopes are for linkages in which the signal was both early and close in distance.

space–time permutation scan statistic [19] describes a method for performing scan statistics
to identify clusters in the absence of an observed denominator, and has nothing to do with
assessing the co-location of two sets of events in space and time. In fact, the space–time
permutation scan statistic (or any other cluster identi�cation tool) could be used as the signal-
generation method that would later be evaluated with the current permutation test.
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The conceptual example shows the e�ects of violating the various assumptions can be anti-
conservative in that they can tend to generate p-values smaller than appropriate. In addition,
it shows that the power of the most general test may be small in comparison with a test
that uses the assumptions, when the assumptions are tenable. The gastrointestinal data demon-
strates an actual application in public health surveillance and reinforces the negative e�ects
of violating the assumptions.
The nature of a discrete statistic like the count of hits is that the di�erence between a

statistically signi�cant number of hits and an ordinary number of hits is one hit. As a concep-
tual example only, imagine that a system generated 50 hits, with a p-value of 0.0015. This
would allow one to reject the null and conclude enthusiastically that the system’s signals hit
outbreaks better than random chance. But the test might also show that 49 hits would have
had a p-value of 0.4. If that were the case, the system might seem less attractive.
We would like to be able to place con�dence limits around the number of hits that should

be expected if the method works. In contrast, the tests described above can provide only
con�dence limits for the number of hits that should occur under a given distribution of
signals, under the null.
Finally, some comment on the use of test III may be warranted. With a small number of

signals, Monte Carlo methods may not be required. A rough rule is that with 6 or fewer
signals, exact calculations would be preferable, since there are only 720 permutations. Using
exact calculations in these cases would also protect one from inadvertently ascribing more
precision to the p-value than can actually exist.
Note that some latitude in de�ning a ‘hit’ may be appropriate. For example, it is possible

that the statistical method could detect an outbreak earlier than traditional surveillance. This
would be the case if the traditional surveillance only provides the date of the �rst ascertained
case as opposed to the timing of the initial possibility of exposure to the agent. In this case,
one could de�ne the duration of the outbreaks to extend further back into the past than the
�rst ascertained case.
One could de�ne a useful statistical method as one which can detect outbreaks before

traditional methods. In that case, one would de�ne the duration of outbreaks as lasting only
from the initial possibility of outbreak to the time that the public health department was
noti�ed of the outbreak. This would re�ect the reality that syndromic surveillance systems
will never replace traditional surveillance in public health practice, the purpose of the analysis
being to demonstrate that statistical analysis can aid traditional surveillance by occasionally
providing earlier warning of outbreaks for which public health departments may later identify
causative organisms.
However, these tests do not address three important features of traditional surveillance

and new systems. First, there is the question of what proportion of the outbreaks have been
detected by the system. A system that identi�es 10 per cent of outbreaks and a system that
identi�es 100 per cent of outbreaks will have di�erent practical utility, and either or neither
may provide signals that allow a rejection of the null. Nor does the tool address the question
of the proportion of false positives—signals which are not hits. These may be so numerous
as to preclude the use of the tool even if it is shown to be useful via a test suggested above.
Finally, signals that are ‘misses’ may re�ect true events that went undetected by whatever
mechanism generated the outbreak list.
These are issues of cost and bene�t that are essentially non-statistical in nature. They

serve as a reminder that in public health practice, statistical results are just one source of
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information in the decision-making process. In addition, however valuable a system may be,
merely attaching a signal to an outbreak is not equivalent to determining the source of an
outbreak, or even �nding cases caused by that outbreak. The ultimate utility of a system is
shown only if signals it generates can be linked to exposures to disease organisms of public
health signi�cance.
In conclusion, the presented tests can help public health o�cials determine whether a par-

ticular surveillance system is better than randomly suggesting signals without reference to the
data. By rede�ning the end of the outbreak as described, the test can be used to address
the question of whether the system can detect outbreaks before they would otherwise have
been detected. The tests describe the behaviour of the system if random outbreaks can be
assigned uniformly over space and time (test I); uniformly over time, conditioning on dif-
ferent probabilities of outbreak over space (test II); or with the same marginal spatial and
temporal distributions as seen in the data (test III). The test results alone cannot recommend
a particular surveillance system as having any great utility in practice, but they can rule out
systems that can neither replicate nor improve on traditional surveillance.

APPENDIX A: PROBABILITIES OF NUMBERS OF HITS IN THE ARTIFICIAL
DATA EXAMPLE

For the purposes of calculation, it is more economical to discuss the probability calculations
by test than by outbreak pattern. Recall that under ‘statistical’ system A, there are 10 signals,
under B, 4 signals, and under C, 5 signals, regardless of the outbreak pattern. In addition,
it may be useful to consider randomization or permutation of the signals rather than the
outbreaks. These are equivalent.

Test I

Under test I, the number of hits is distributed binomial (p;N ), with parameters p=0:125
(=5=40, the proportion of square-days with outbreaks) and N =number of signals. Thus, for
system A, N =10, for B, N =4, and for C, N =5. We need only calculate 5 probabilities:
the probability of 1 or more hits under systems A and B, the probability of 4 or more hits
under systems A and B, and the probability of 5 hits under system C. These probabilities can
easily be found using the binomial probability mass function (PMF).

Test II

Under test II, we must calculate the probability of a hit when a random date is applied to
the square identi�ed for each signal. For system A, outbreak pattern 1, this probability is 0.4,
since the signals all occur in square 1 and 4=10 days also have outbreaks in square 1. The
probability of 4 or more hits can be found using the binomial PMF with p=0:4, N =10.
For system B outbreak 1, we need two probabilities. First, the probability of one or more

hits from the binomial with p=0:4, N =1, for the probability of a hit among signals in
cell 1. Here, p=0:4 because the one signal in square 1 must be randomized to any of the
4 days with outbreaks in that square in order to be a hit. We also need the probability of
a hit for a binomial with p=0:1, N =1, since the signal in cell 3 could be randomized
to day 8 and be declared a hit. The probability of one or more hits from these two is
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0:4(0:9) + 0:6(0:1) + 0:4(0:1)=0:46—the probability of a hit in cell 1 and not cell 3, a miss
in cell 1 and a hit in cell 3, and a hit in cells 1 and 3.
For system C outbreak 1 we must use conditional reasoning to establish the probability of

5 hits as (0:4)4(0:1). (The signals in square 1 must be randomized to one of the days on
which outbreaks were observed, while the one in square 3 must be randomized to that day.)
For system A outbreak 2, the test II probability is determined from the binomial PMF with

N =10, p=0:1, since the signal in square 1 must be randomized to day 1. We use this to
�nd the probability of 1 or more hits. For system B outbreak 2, we can reason directly that
3 of the 4 independent signals (those not in cell 3) each have a 0.1 probability of being
assigned to the correct day, while the fourth has a 0.2 probability of being assigned to a day
with an outbreak and the probability that all are assigned to a correct day is (0:1)3(0:2). For
system C outbreak 2, three of the signals must be randomized to exactly one day (probability
0.1) while two may be randomized to one of two days (probability 0.2) so that the total
probability of exactly 5 hits is (0:1)3(0:2)2.
For system A outbreak 3, the probability may be calculated as for outbreak 2 since there is

again only one outbreak in square 1. For system B outbreak 3, we can most easily �gure the
probability of no hits is the product of no hits in each cell, or 0:9× 0:9× 0:9× 0:8, since three
cells have a 0.9 probability of no hit and the cell with two outbreaks has a 0.8 probability.
The probability of at least 1 hit is therefore 1 − (0:9)3(0:8). For system C outbreak 3, the
probability is as for system C outbreak 2, since there is again one outbreak in each of three
squares and 2 outbreaks in the remaining square.

Test III

For test III, we must count the number of permutations which generate as many or more
hits than were observed. One can think of this as sampling dates for the observed signals
without replacement, so that the dates are reassigned to the signals. Fortunately, for systems
A and B, it is easy to see that the number of hits that were observed are guaranteed under
any permutation. That is, under system A, every day will have a signal in square 1 in
every permutation, and under system B, day 1 will have a signal in every square in every
permutation. So any signals that were hits in square 1 (system A) or on day 1 (system B) in
the observed data will recur in every permutation. This means that the probability of seeing
that many hits is exactly 1 for both systems for all outbreaks.
For system C, outbreak 1, there are 5 permutations that are di�erent. One has all �ve signals

occurring when there are outbreaks, and 4 have the signal on day 8 appearing in square 1 (or
equivalently the signal in square 3 appearing on day 1, 4, 7 or 9). An alternative reasoning
is that there are 5! possible orders of the squares in the signals, and that 4! have 5 hits. In
either case, the probability of 5 hits is 1=5=4!=5!=0:2. (In addition, the probability of 3 hits
is 0.8.) Parallel reasoning �nds a probability of 0.2 for outbreak 2. For outbreak 3, there are
again 5! permutations, but now only two of them have 5 hits; these two are the ones with
hits in square 3, with the order of those two reversed. Thus, the probability of 5 hits is 2=5!,
or 1=60=0:017.
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