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ABSTRACT 

EVALUATING THE IMPACTS OF DRIVER BEHAVIOR IN THE SPEED 

SELECTION PROCESS AND THE RELATED OUTCOMES 

FEBRUARY 2017 

 

B.S.C.E. OREGON STATE UNIVERSITY 

M.S.C.E. UNIVERSITY OF MASSACHUSETTS, AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 

Directed by: Michael A. Knodler Jr.  

In the United States, traffic crashes claim the lives of 30,000 people every year and 

is the leading cause of death for 5-24 year olds. Driver error is the leading factor in over 

90 percent of motor vehicle crashes, with the roadway and the vehicle each only accounting 

for about 2 percent of crashes. In the United States, nearly a third of fatal crashes are due 

to speeding and therefore, a critical step in improving traffic safety is research aimed to 

reduce speeding, such as crash data analysis, outreach campaigns, targeted enforcement, 

and understanding speed selection. In this dissertation, a multi-faceted approach was taken 

to improve roadway safety by examining the speeding-related crash designation, 

improving speed limit setting practices, and understanding the causes of speeding. Multiple 

experiments were conducted under this overarching goal. These experiments included an 

analysis of speeding-related crashes in Massachusetts, a naturalistic driving study, and a 

driving simulator study which investigated the causes of speeding. Collectively, the 

findings from these experiments can expand upon existing speed prediction models, 

improve crash data influence speed limit setting practices, guide speed management 

programs such as speed enforcement, and be used in public safety outreach campaigns. 
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CHAPTER 1 

EXECUTIVE SUMMARY 

 This dissertation consisted of four projects, each relating to traffic safety, 

specifically focused upon the topic of speed. The first project explored the 

commercialization potential of the UMass Safe Traffic Data Warehouse through the NSF 

I-Corps program. During this semester long course, over one hundred crash data 

stakeholders were interviewed. From these interviews, tremendous insights were gained as 

to how crash data was collected, utilized, and distributed within the Commonwealth of 

Massachusetts. During the I-Corps course, our team developed and iterated upon a business 

model for our hypothetical start-up company. While our team ultimately decided upon a 

“No-go” decision for incorporating our hypothetical startup, the information learned from 

these 100+ interviews provided a foundational understanding of how crash was used and 

what data quality deficiencies existed. 

 Using the knowledge gained from I-Corps, the second project was designed around 

one of these data quality issues, the speeding-related crash designation. In this project, 

logistic regression models were built to generate the probability of each crash being 

speeding-related. The accuracy of these models were then evaluated by conducting a 

double-blind crash narrative review of 600 crashes strategically sampled from the logistic 

regression models. The results of this review indicated that the model did perform well at 

identifying crashes which should have been designated as being speeding-related but were 

not originally designated as such. After this, a more detailed review of crashes with the 

“Driving too fast for conditions” (DTFFC) driver contributing code was conducted. This 

review indicated that the DTFFC code was being used to indicate driving too fast for: 

weather conditions, traffic conditions, or roadway geometry. From this finding, the 
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recommendation was made to split the DTFFC driver contributing code into three separate 

codes to give engineers more detail as to the nature of the safety problems on a roadway.  

 From I-Corps, we also learned that engineers use not only crash data when 

designing safety-oriented projects, but also make use of field data. One type of field data 

commonly used is assessing vehicle speeds. Based upon this knowledge, and the 

knowledge of known deficiencies in the speeding-related crash designation, the third 

project sought to develop a method to collect continuous speeds on a roadway. This 

method, which involved equipping trial drivers with a smartphone app, would allow 

engineers to target speed mitigation measures at the specific areas with the most extreme 

speed concerns. Additionally, this continuous speed method was compared to traditional 

spot speed methods of data collection and tested for use in USLimits2, an expert system 

for recommending rational speed limits. While only four locations were tested with 

USLimits2, ultimately a method could be designed to automate the system so that a 

continuous speed limit recommendation could be generated from continuous speed data. 

Although minimum segment lengths exist for the size of a speed zone, these continuous 

speed limit recommendations could be used as a tool by engineers to select the most 

appropriate speed limit for a roadway and to also place advisory speed signs. 

 After reviewing speeding-related crash data to identify problems and make 

recommendations, we then looked to improve speed data collection by comparing 

traditional spot speed methods to continuous speed data collection. In the final project, we 

wanted to examine, in a laboratory setting, how one of the previously identified main 

causes of speeding, being late, influenced driver behavior. This investigation was achieved 

by conducting a driver simulator experiment with 36 participants. These participants were 
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split into three groups, a control group with no time pressures, an experimental group with 

an easily achievable time goal (Hurried), and an experimental group with a difficult to 

achieve time goal (Very Hurried). Consistent with the previous survey studies, the Very 

Hurried drivers selected higher speeds, accelerated faster, and made more aggressive 

maneuvers than the control group. Interestingly, Hurried drivers exhibited all of these 

differences as well, although unlike the Very Hurried group, these different were not 

significant from the control.  

 Ultimately, this dissertation has potential impacts on various transportation 

segments. Engineers could make use of a more accurate speeding-related designation and 

an improved method to collect speeds for targeting design locations and setting speed 

limits. Law enforcement officers could see value in the recommendations generated from 

the crash narrative review and could also apply a continuous speed collection technique to 

target enforcement to locations where the largest safety benefits could be achieved. Finally, 

vehicle manufacturers could make use of the findings from the driving simulator 

experiment. By understanding how time pressures impact driving behavior, autonomous 

vehicles could be programmed to understand the user’s perception of time and select speeds 

which are likely to keep the user in autonomous mode rather than switching to manual 

driving because they are running late.  
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CHAPTER 2  

INTRODUCTION 

2.1 Problem Statement 

In the United States, traffic crashes claim the lives of 30,000 people every year (1) 

and is the leading cause of death for 5-24 year olds (2). Globally, 1.2 million people die in 

traffic crashes (3). Driving consists of three components: the roadway, vehicle, and driver. 

Driver error is the leading factor in over 90 percent of motor vehicle crashes, with the 

roadway and the vehicle each only accounting for about two percent of crashes (4). As 

such, designing roadways and vehicles that minimize the effects of driver error is a critical 

step in improving traffic safety. 

Speed is one of the most important factors in traffic safety. In the United States, 

“the driver behavior of exceeding the posted speed limit or driving too fast for conditions” 

is designated as “speeding-related”, as defined by the National Highway Traffic Safety 

Administration (NHTSA). As speed increases, the risk of a crash increases greatly in both 

rural and urban areas (5). As does the severity of crashes involving pedestrians, (6) and not 

involving pedestrians (7). Nearly a third of fatal crashes in the United States are designated 

as “speeding-related” (8), highlighting the continued need to study crash data quality, speed 

capturing techniques, speed limit setting practices, and human factors in order to mitigate 

the frequency and severity of speeding-related crashes.  

2.2 Overarching Dissertation Objectives 

Based upon the identified problem statement, the overarching goal of this 

dissertation is to investigate speed selection and its impact on transportation. There are 

many specific methods aimed to reduce speeding, such as crash data analysis, outreach 

campaigns, targeted enforcement, and understanding speed selection. Within these existing 
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methods to reduce the safety impacts of speeding, there is a need for innovative approaches 

to data quality, speed data collection, and its utilization. In this dissertation, a multi-faceted 

approach was taken to improve roadway safety by examining the speeding-related crash 

designation, improving speed limit setting practices, and understanding the causes of 

speeding. Within the framework of this overarching goal, a series of research objectives 

has been developed. Background relating to each of the four objectives is found in Chapter 

2. 

Objective 1: Investigate how crash data is collected, distributed, and utilized within 

the state of Massachusetts. Data is the foundation of good decision making and it is 

hypothesized that crash data is utilized differently depending on the user. Understanding 

these different uses of crash data is an essential first step in studying transportation safety. 

Objective 2: Improve the classification of speeding-related crashes. Classification 

of a crash as speeding-related or not speeding-related is at the discretion of the officer 

responding to the scene. The responding officer fills out a crash report which includes crash 

details, a narrative of what occurred, and a crash diagram. Previous analyses of speeding-

related crashes show a need for better classification for these types of crashes. An improved 

classification of speeding-related crashes, would allow engineers to more accurately direct 

highway safety improvement funds and enable law enforcement to more efficiently target 

their speed-management campaigns. 

Objective 3: Develop a method to capture continuous speed profiles. Current 

methods of speed data collection, while generally cost effective, are only accurate at a finite 

number of locations. MassDOT acknowledges this deficiency and states that “it would be 

ideal to have speed checks at an infinite number of locations so that the 85th percentile 
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speed could be computed at all points.” (9) Previously, infeasible, recent advances in 

smartphone technology enable this type of data collection process for setting speed limits. 

Continuous speed profiles may improve speed limit setting practices and could also be an 

input for autonomous vehicle speed selection under free flow conditions. 

Objective 4: Examine how a driver’s “perception of time” influences their driving 

behavior. Previous research on hurried driving has indicated that drivers and pedestrian 

engage in riskier behavior when under time pressures. However, most of these insights 

have been qualitative. Driving simulation with positive and negative incentives would 

allow for the quantification of the effects from being late or in a hurry. In order to reduce 

speeding-related crashes, it is necessary to understand the psychological reasons behind 

why drivers consciously, or unconsciously, choose to speed. 

2.3 Dissertation Organization 

 This dissertation focuses upon four projects which directly investigate speed’s 

effect on traffic safety. Chapter 2, provides a background on previous work that is relevant 

to the four projects. Chapters 3-6 each contain one of the four projects. Within each chapter 

the specific motivation for that project is discussed, followed by the methods, results of the 

study, discussion of significant findings and limitations, and a conclusion. Chapter 7 

contains the overall conclusions from this dissertation work along with possible areas of 

future work relating to each project. 
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CHAPTER 3  

BACKGROUND 

A literature review was conducted throughout the dissertation process. Any 

research regarding speeding-related crashes, speed data collection techniques, and the 

causes of speeding was reviewed to better understand the gaps in the literature to mold this 

research to maximize impact.  

3.1 Speeding-Related Crash Data 

Nearly a third of fatal crashes in the United States are designated as “speeding-

related”, which is defined by the National Highway Traffic Safety Administration 

(NHTSA) as “the driver behavior of exceeding the posted speed limit or driving too fast 

for conditions.” (8). This speeding-related crash designation is critical as the American 

Association of State Highway Transportation Officials (AASHTO) Strategic Highway 

Safety Plan recommends the use of targeted conventional speed enforcement as a strategy 

to reduce speeding-related crashes (10). This type of strategy requires accurate data related 

to roadways with a high frequency of speeding-related crashes. However, an inherent 

challenge with the speeding-related designation is the manner in which it is derived. The 

law enforcement officer who responds to a crash and completes the subsequent crash report 

must select one or more Driver Contributing Codes (DCCs) which are supposed to explain 

why the crash occurred. This discretionary decision is often made following an 

investigation of the scene and interviews with the motor vehicle operator(s) and any 

witnesses.  

 Numerous studies have investigated speeding-related crashes, and while none 

investigated the reliability of the speeding-related designation, each acknowledged the 

limitations of the designation. For example, the Oregon Department of Transportation 
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conducted a study where high speeding-related crash locations were identified for possible 

mitigation. In their discussion they note, “the analysis relies on crash reports, which are 

subject to the interpretations of a variety of individuals completing the crash report form.  

Specifically, the fact that a crash has been identified as speeding-related is not based on a 

scientific analysis, and may be the result of opinion or best judgment” (11). 

 The Federal Highway Administration (FHWA) funded a study which developed a 

speeding-related typology and compared data from two different states which used 

differing definitions for speeding-related crashes. The study noted several crash 

characteristics which were more commonly found in crashes designated as speeding-

related. Additionally, they concluded that the NHTSA definition was most appropriate for 

the speeding-related classification. Finally, the report cautioned against the type of analyses 

which was conducted in Oregon stating, “it is difficult to know whether an identified 

variable shows a true higher association with speed or whether the association shown is 

partially due to an officer bias” and “treatment  programs oriented to these factors may not 

be as successful as if oriented to other characteristics where such a bias is not expected” 

(12).  

 In 2014, a Speed Management Plan was developed jointly by NHSTA, FHWA, and 

the Federal Motor Carrier Safety Administration (FMCSA). The plan sought to reduce 

speeding-related fatalities and injuries and improve the safety experience for all road users. 

While the plan recommends a data driven approach using the speeding-related designation, 

it also cautioned that “the precise role of speeding in crashes can be difficult to ascertain, 

as speeding is often defined in broad terms. Further, the determination of whether speeding 
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was involved in a fatal crash is often based on the judgment of the investigating law 

enforcement officer.” (13) 

 The crash narrative is the responding officer’s written account of what occurred 

before, during, and after the crash. Crash narratives can be used to more thoroughly 

investigate the cause of a crash as crash narratives often provide information beyond what 

is captured in the pre-defined fields of the crash report. Examples highlighting the utility 

of crash narratives are present throughout the traffic safety related literature. In one of the 

more in depth studies, McKnight and McKnight reviewed 2,000 crash narratives to 

determine if crashes involving younger drivers were due to carelessness or inexperience 

(14). Crash narratives have also been utilized previously to conduct in-depth investigations 

of crashes involving military vehicles (15), work zone crashes (16), helmet status in 

motorcycle crashes (17), and distraction-related crashes (18) 

3.2 Speed Data Collection Techniques 

 There are many ways to conduct a speed study, each with its own strengths and 

weaknesses. An objective of this dissertation was to compare a new data collection 

technique with some existing methods. Existing methods of speed data collection include: 

 Pneumatic Tubes with Automated Traffic Recorders (ATRs) 

 RADAR/LiDAR Speed Guns 

 Probe Vehicles 

 Inductive Loops 

 Side-fire RADAR Units 

 On Board Diagnostic (OBD) Black Boxes 

 GPS Smartphone Apps 

 

ATRs capture volume, vehicle class, gap and speed data over long time periods. 

ATRs are commonly used to capture speed data over one week and to measure average 

annual daily traffic (AADT). ATRs can accurately capture vehicle speeds (19) and do not 
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influence driver behavior (20), but cannot easily distinguish whether or not a vehicle is 

traveling in free-flow conditions. As mentioned above, an ATR is installed in a single 

location. If multiple data collection locations are desired, then multiple ATR installations 

are required, which can be costly. 

 RADAR and LiDAR speed sensors are the preferred method of speed detection by 

law enforcement as they can provide the speed of a selected vehicle. They differ in that a 

RADAR gun can be easily used while moving, while a LiDAR gun functions more 

effectively while stationary (21). However, LiDAR guns are more effective at longer 

ranges and can be more accurate as a laser sight allows the user to know exactly which 

vehicle is being captured. While other states stipulate larger samples, in Massachusetts a 

spot speed study using a RADAR or LiDAR gun involves an inconspicuous observer 

capturing a sample set of 100 vehicle speeds in free-flow conditions (9). On rural roads 

with low volumes this can often take several hours to collect. If more locations are needed, 

speed studies using a RADAR or LiDAR gun can be costly in terms of person-hours. 

Additionally, the LiDAR gun itself costs $2000-$3000. 

 Inductive loops installed consecutively in a roadway provide a more permanent 

method to capture vehicle speeds. Loops use magnetic fields to detect the presence of 

passing vehicles and typically cost $1000 per installation before traffic control expenses 

(22). A single inductive loop can be used to calculate vehicle speeds but require algorithms 

to be installed on the traffic signal controller (23). 

 Side-fire RADAR units are portable devices which can be installed on utility poles 

and can capture multiple lanes of bi-directional traffic speeds. The units are easy to install 

and capture speeds accurately, but require a clear line of sight and measuring the geometry 
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of the roadway prior to installation. Additionally, the high cost of the unit, $4000-$5000, 

may make this form of data collection prohibitive for smaller agencies (24). 

 Trial runs, or probe drives, are usually conducted in addition to one of the methods 

described above. MassDOT’s guidelines for probe drives stipulate that three drivers are to 

drive the portion of roadway being studied with an observer seated directly behind them 

recording their speed every 1/10th of a mile (9). Probe drives are conducted in order to 

provide a more complete speed profile than the spot speed observations. However, the 

effect of the passenger observer is significant on the driver’s performance as they feel like 

they are being studied. This effect is lessened when the probe drive is monitored via vehicle 

instrumentation. The 100-Car Naturalistic Driving Study found that participants had a 

lower incident rate in the first hour of the study, but quickly forgot they were being 

monitored and resumed normal driving behavior (25). Probe drives provide more granular 

data than the previous methods but are not as granular as the following two methods. 

 There are various devices which plug into a vehicle’s OBD port and function 

similar to an airplane’s black box. An OBD black box can capture the vehicle’s GPS 

position, speed, steering wheel position and RPM one to three times per second (26). The 

data is a large step up from trial runs in terms of accuracy and OBD devices have less of 

an impact on driver behavior. However, these devices are similar in cost to LiDAR guns 

and require after-market installation in vehicles. Additionally, these devices cannot 

distinguish when the vehicle is traveling in free-flow conditions. 

 Smartphone apps can have similar functionality to an OBD black box by recording 

a user’s GPS position and speed using the phone’s built-in location services. Specifically 

in this study, we used Ubipix, a smartphone app that captures speed and position every 
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second and combines that with video captured from the smartphone (27). Users upload 

captured data to a cloud-based database where it can be shared publicly or kept private, 

depending on the users’ preference. The data is displayed graphically on their platform and 

the user can place tags at certain locations such as when free-flow conditions are or are not 

present. Ubipix is significantly less expensive than OBD devices as there is no cost for the 

app and the user pays on an as needed basis. Ubipix implementation is cost-effective and 

has a minimal learning curve associated with data processing, which will be described 

further in the methodology. 

3.3 Speed Limit Setting Practices 

 Engineers use an assortment of traffic control devices to communicate simple 

messages to vehicle drivers, with speed limit signage being the primary mechanism for 

conveying appropriate roadway speeds to the motoring public. More specifically, speed 

limits are the front lines of speed management and serve as a valuable tool in promoting 

roadway safety. Speed limits that are too low lead to high non-compliance rates (28). By 

comparison, speed limits violate driver expectancy if they are set above safe operating 

speeds. Speed limits should reflect the roadway environment and driver expectation. In 

1998, the American Association of State Highway and Transportation Officials 

(AASHTO) published its Strategic Highway Safety Plan which set a target of halving 

fatalities within two subsequent decades. Within the AASHTO plan, “Setting Appropriate 

Speed Limits” was identified as an objective to reduce speed-related crashes (29).  

 To set appropriate speed limits it is important to understand the differences in the 

designated design speed, inferred design speed, and operating speeds. The designated 

design speed is defined by AASHTO as “a selected speed used to determine the various 

geometric design features of the roadway” (30). The inferred design speed differs from the 
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designated design speed in segments of roadway where all design elements exceed 

criterion-limiting values (31). For example, if the designated design speed on a roadway 

sets a minimum sight distance requirement, the inferred design speed would exceed the 

designated design speed when longer sight distance is present.  The inferred design speed 

could, in theory, be less than the design speed if the road was improperly designed. Often, 

speed limits are set to the critical inferred design speed, or the segment of roadway where 

the inferred design speed is at a minimum and most near the designated design speed. This 

results in operating speeds on the adjacent segments that greatly exceed the posted speed 

limit, leading to challenges for law enforcement as to how to set a threshold for 

enforcement. 

Over the course of the past decade the concept of rational speed limits has evolved 

while being promoted on a national level. Rational speed limits are based upon speed data 

analysis to establish a speed limit that is clear to motorists, provides logical enforcement, 

and creates a safe roadway environment (32). By this logic, the speed limits on some 

roadways may be increased or decreased in the effort to improve safety. Various studies 

have shown that an increased speed limit, combined with enforcement, can lead to fewer 

speeders, a decrease in standard deviation of speeds, and decreases in crash frequency (33). 

Education is also critical to implementation, as rational speed limits are more effective 

when motorists are aware of the increased enforcement (34, 35).  

NCHRP Report 500 which provides guidance on the AASHTO Strategic Highway 

Safety Plan states that a speed limit should depend on four factors: design speed, crash 

frequencies and outcomes, speed tolerance and enforcement threshold, and finally vehicle 

operating speed measured as “a range of 85th percentile speeds taken from spot speed 
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surveys of free-flowing vehicles at representative locations along the highway” (10). Free-

flowing conditions exist when drivers are able to choose their desired speed without 

constraints from other vehicles on the road. 

The Federal Highway Administration (FHWA) has taken this a step further with 

the development of USLimits2, a “web-based expert advisor system designed to assist 

practitioners in determining appropriate speed limits in speed zones” (Srinivasan et al., 

2006, 2008). The inputs include: type of surrounding development, access frequency, road 

function, crash history, pedestrian activity, and existing vehicle operating speeds. The 

system takes 85th and 50th percentile speeds from segments that do not have adverse 

alignments. System guidance suggests that speed data should be taken from a 24-hour 

weekday period, which differs from many states’ guidelines which require a spot speed 

study of 100-200 free-flow vehicles (38). With either method, the location(s) of data 

collection is subject to engineering judgement as time, equipment, and cost restraints limit 

the amount of data collection points. 

3.4 Causes of Speeding and Risky Behaviors 

A variety of survey studies have been performed to try to determine why people 

speed. In 2011, NHTSA conducted a nationwide survey of 6,144 households to ask people 

the reasons why they did, or did not, speed. The survey results included 30% of people 

admitted to being “speeders” with an additional 40% classifying themselves as “sometime 

speeders”. When asked the reason as to why people sped, the most common response was 

“I’m Late”, which accounted for 35% of all responses. “Emergency/illness” was the next 

most common, which tallied to 31% of all responses. “In a hurry” and “traffic flow” each 

accounted for 7% of the responses (39).   



15 

Beck et al. conducted a telephone survey of 796 licensed drivers to compare hurried 

drivers to unhurried drivers, they found that hurried drivers were more likely to admit to 

risky behaviors such as speeding and not wearing a seat belt (40). This work was followed 

up by another survey of 769 college students. The results of this survey indicated that 

hurried drivers were more likely to be frustrated with other drivers, more impatient, more 

aggressive, and take more risks. Additionally, drivers who self-reported a ticket in the 

previous month were more likely to be hurried drivers (41). While these surveys point to 

reasons for speeding, there is a need to quantify how perception of time impacts driver 

performance. 

 Additional research involving pedestrians in a hurry has provided further evidence 

of how time impacts risky behaviors. Zhang et al. built a model to predict pedestrians’ 

likelihood to “red-light-run”, or cross when they did not have a crossing signal, in China. 

One of the significant inputs into their models was whether the pedestrian was in a hurry 

and was thus unlikely to accept the delay of waiting for the crossing signal (42). Similarly, 

Charron et al. utilized a pedestrian simulator to see if children perform unsafe crossing 

maneuvers when they are in hurry. The study, with 80 ten-year-old participants found that 

the children who were in a hurry more frequently exhibited the risky behaviors of running 

across the street or not using the pedestrian crossing (43). A driving simulator study would 

enable a similar analysis of how perception of time impacts drivers’ willingness to engage 

in speeding and other risky behaviors. 

 To date, only one driving simulator has been conducted which investigates this time 

phenomenon. Bertola et al. constructed a study which investigated how driver inattention, 

familiarity, and time pressure affected driving performance on rural two-lane horizontal 
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curves. The study consisted of 14 total participants, of which 6 of them were subjected to 

two different time pressure methods. The first was simply a scenario where drivers were to 

imagine that they were running late for a doctor’s appointment. The second method added 

to that scenario a timer and small ($4) financial incentives for meeting goal completion 

times. The results indicated that the drivers with the time pressure had a higher mean 

average speed than the control group. However, possibly due to the small sample size, there 

was no difference between the methods. The lack of penalties, either for crashes or 

excessive speeding within the scenarios, may have resulted in a biased result as speeds 

would go unchecked. Additionally, the only aggressiveness metric that was evaluated was 

mean average speed across the drive (44). While the results of this study began to quantify 

how time pressure, or drivers’ perception of time, impacts speed choice, there is a need for 

a more robust driving simulator study which can investigate speed in more detail along 

with additional driver aggressiveness measures. 
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CHAPTER 4 

INVESTIGATING THE USE OF CRASH DATA AND ITS 

COMMERCIALIZATION POTENTIAL 

4.1 Summary 

The UMassSafe Traffic Safety Data Warehouse contains over 15 years of crash 

data that can be utilized in safety research. In addition to academia, these datasets might be 

of interest to transportation engineers, insurance companies and police departments. To 

fully understand crash data in the Commonwealth of Massachusetts and determine the 

potential commercialization of the UMassSafe Traffic Safety Data Warehouse, our team 

of John Collura, Principal Investigator (PI); Michael Knodler, Co-PI; Paul Shuldiner, 

Business Mentor; and Cole Fitzpatrick, Entrepreneurial Lead participated in the National 

Science Foundation (NSF) I-Corps program. As a result, we gained an understanding of 

the strengths and deficiencies regarding how crash data is collected, accessed, and utilized 

in the Commonwealth of Massachusetts. Additionally, a hypothetical business model was 

developed, which highlighted how key crash data stakeholders could be served by the 

UMass Safety Data Warehouse.  

4.2 Project Motivation 

The initial task of this dissertation research was to thoroughly investigate how crash 

data is collected, distributed and utilized. When a crash occurs, the law enforcement officer 

who responds to the crash is responsible for completing a crash report. How that crash 

report reaches the state database varies depending on the municipality and how that crash 

report is analyzed depends on the user. The objective of this initial project was to fully 

understand the crash data environment so that future projects could directly target known 

deficiencies with the data. 



18 

4.3 Methods 

The main objective of this initial research step was to become familiar with crash 

data in Massachusetts and discover any deficiencies which might exist before further work 

was conducted using the data. The NSF Innovation Corps (I-Corps) program was utilized 

to gain familiarity with crash data. The NSF I-Corps program seeks to “prepare scientists 

and engineers to extend their focus beyond the laboratory and broaden the impact of select, 

NSF-funded, basic-research projects.” (45) This program involved conducting over 100 

interviews with key crash data stakeholders and iteratively developing a hypothetical 

business model.  

The business model focused upon the commercialization potential of the MassSafe 

Data Warehouse, Figure 1. The UMassSafe Traffic Safety Data Warehouse has been 

developed as a tool for maximizing the use of highway safety data.  The data warehouse 

includes “administrative” datasets collected by state agencies and other organizations; 

including crash, citation, roadway inventory, etc.  Currently, 14 such datasets are housed 

in the UMassSafe Traffic Safety Data Warehouse, with over 15 years of data 

available.  Crash, citation, hospital, death certificate, and roadway inventory data have 

been linked using advanced statistical methodologies to create a single dataset that allows 

analysts to consider the comprehensive crash experience; including driver behavior, crash 

characteristics, roadway environment, and crash outcomes such as injuries and costs. 

Researchers in the UMassSafe research group have successfully used the Data Warehouse 

for many years on projects for the Massachusetts State Police, Executive Office of Public 

Safety and the Massachusetts DOT, among others. 
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Figure 1. UMass Safety Data Warehouse. 

The I-Corps program involved two intensive workshops that focused on the 

development of our business model. The two workshops, which were held at University of 

Southern California in Los Angeles, were separated by eight weeks during which we 

conducted 100 stakeholder interviews and presented weekly webinar updates on the 

progress of our hypothetical company “Safety Data Express”. The two workshops, and the 

online weekly updates, were attended by: John Collura, Principal Investigator (PI); Michael 

Knodler, Co-PI; Paul Shuldiner, Business Mentor; and Cole Fitzpatrick, Entrepreneurial 

Lead. 

4.4 Findings 

 Over 100 interviews were conducted with transportation engineers, researchers, 

insurance agents, police officers, personal injury attorneys, and transportation expert 

witnesses. This section outlines the key findings from the interviews with these crash data 

stakeholders. 
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 Transportation engineers are one of the most frequent users of crash data. Within 

the Commonwealth of Massachusetts, any safety improvement project requires crash data 

analysis. This analysis consists of gathering all the reported crashes on that intersection or 

section of roadway. In the case of an intersection, the crashes are then compiled into an 

intersection collision diagram which visually depicts the common crash types and locations 

within an intersection, Figure 2. Finally, a road safety audit is conducted by a team of 

engineers and other stakeholders to identify other safety concerns that may not have been 

revealed by the intersection collision diagram. 

 

Figure 2. Example intersection collision diagram provided during an interview with a 

transportation engineer. 

 The common complaint made by transportation engineers was with respect to the 

first step of the process, gathering all the reported crashes. Engineers began the crash report 

gathering process by obtaining reports from the Massachusetts Department of 

Transportation. However, these data were only in the form of a summary rather than 

individual crash reports. Next, engineers would contact the local police station to request 
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full crash reports. This request often took multiple months to fulfill. After conversations 

with records clerks with police departments, we learned that this delay is because most 

departments do not log reports by location but rather just by the year. Additionally, some 

smaller towns only have one records clerk, making larger requests even more challenging. 

Many of the police chiefs we interviewed expressed a desire for a system that would ease 

the burden on their records clerks. 

 Data quality and timeliness of the data were also cited as concerns by engineers. 

From experience, many engineers expressed a distrust of certain fields within the crash 

report or a general mistrust of data collected in a specific municipality. Timeliness of the 

data caused frustration as often projects are initiated after a fatal crash, or string of fatal 

crashes. However, it often takes up to two years for a crash to become part of the accessible 

database. From conversations with the Registry of Motor Vehicles (RMV), who manages 

the crash data repository for Massachusetts, and police departments we learned the causes 

of this delay. When a police officer completes a crash report, it is then stored at their local 

police department. Then, periodically, police departments send their crash data to the 

RMV. This frequency varies between police departments and can be as frequent as weekly 

or as in-frequently as once every three months. Next, the RMV has to add this data to their 

database. This process is not challenging when police departments digitally send their 

records, as many do. However, many departments still send the RMV paper copies of their 

crash records, although most said that they are working on transitioning to digital reporting.  

 The primary concern of insurance companies was related to the aforementioned 

time in obtaining a crash report and the cost for acquiring an individual report, for most 

police departments this cost $10 to insurance companies. Unlike transportation engineers, 
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personal injury attorneys and transportation expert witnesses were unable to obtain 

historical data. This was because the provider of the data, MassDOT or police departments, 

were often the possible defendant in a lawsuit from the attorney and thus did not have the 

same motivation to share data as they would with engineers. 

4.5 Conclusion 

 A specific objective during the program was to make a “go/no-go” decision on 

whether or not to incorporate our hypothetical start-up company after engaging in this 

intensive process comprised of many customer interviews. A benefit that resulted from this 

specific objective, and the entire I-Corps program, was a thorough understanding of the 

strengths and deficiencies regarding how crash data is collected, accessed, and utilized in 

the Commonwealth of Massachusetts. 

 As described previously, the UMass Safety Data Warehouse, is a collection of 14 

datasets from a multitude of data suppliers. The diverse data sets allows researchers and 

practitioners to investigate traffic safety questions that are otherwise unanswerable. This 

Data Warehouse was the initial focus of our business model, and by the end of the program 

we had determined that a commercial market for the resale of crash reports and crash data 

was limited. However, there was a potential market for a service that provided on-demand 

intersection collision diagrams. The progression of the business model throughout the 

course is depicted in Figure 3. 
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Figure 3. Business models developed during NSF I-Corps program. 

 During the project, our team wanted to investigate if there was a demand for our 

product outside of these large public agencies. Through our initial conversations with 

transportation engineers we found that there was limited demand for our additional datasets 

as engineers only needed one of them for their projects and they were able to obtain it, 

upon request, from the State DOT.  

 We shifted the investigation to insurance companies to examine how they use crash 

data and whether our product would be of interest to them. We discovered that insurance 

companies routinely request the police reports from the jurisdiction that responded to the 

crash. While this data exists within the UMass Safety Data Warehouse, the individual 

reports are anonymized and would thus be of limited use to insurance companies. 

Identifying the potential opportunity that lied with insurance companies and the frequent 
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need for crash reports, we spoke with police officers and police chiefs specifically to gauge 

their interest in a partnership where our company would provide the service of responding 

to these requests for reports in exchange for a portion of the fee charged. Most police chiefs 

were very receptive to the idea as their records clerks are frequently overburdened by 

requests for crash reports. However, we also discovered that a company, Appriss, provides 

this very service in the Northeast US through getcrashreports.com. 

 Identifying Appriss’ lead and the fact that our idea to partner with police was not 

novel, we shifted back to transportation engineers with the thought that we could provide 

a service using our Safety Data Warehouse. Similar to how transportation consulting firms 

subcontract traffic data collection, we asked consultants if they would consider 

subcontracting safety analyses. Results were mixed as some engineers felt that conducting 

these analyses in-house led to a more complete understanding of the problem they were 

trying to fix. Others felt that subcontracting the often tedious task of safety analysis could 

save them money and free up time to focus on other aspects of the project. 

 While our team decided on a no-go decision as we still needed to better understand 

the size of the market opportunity, the program revealed some key flaws in the crash data 

environment that would need to be hashed out before a commercial effort could take place. 

Not only did I-Corps provide a crash course in business development, but it also resulted 

in a foundational understanding of how crash data is collected, distributed, and analyzed 

within the Commonwealth of Massachusetts. This underlying understanding was crucial 

during successive research projects, specifically Chapter 4, which investigated the 

speeding-related designation. 
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CHAPTER 5  

AN INVESTIGATION OF THE SPEEDING-RELATED CRASH 

DESIGNATION THROUGH CRASH NARRATIVE REVIEWS 

SAMPLED VIA LOGISTIC REGRESSION 

5.1 Summary 

 While many studies have utilized the speeding-related designation in safety 

analyses, no studies have examined the underlying accuracy of this designation. Herein, 

we investigate the speeding-related crash designation through the development of a series 

of logistic regression models that were derived from the established speeding-related crash 

typologies and validated using a blind review, by multiple researchers, of 604 crash 

narratives. The developed logistic regression model accurately identified crashes which 

were not originally designated as speeding-related but had crash narratives that suggested 

speeding as a causative factor. Only 53.4% of crashes designated as speeding-related 

contained narratives which described speeding as a causative factor. Further investigation 

of these crashes revealed that the driver contributing code (DCC) of “driving too fast for 

conditions” was being used in three separate situations. Additionally, this DCC was also 

incorrectly used when “exceeding the posted speed limit” would likely have been a more 

appropriate designation. Finally, it was determined that the responding officer only utilized 

one DCC in 82% of crashes not designated as speeding-related but contained a narrative 

indicating speed as a contributing causal factor. The use of logistic regression models based 

upon speeding-related crash typologies offers a promising method by which all possible 

speeding-related crashes could be identified. 

5.2 Project Motivation 

The primary objective of this study was to improve the identification of speeding-

related crashes by investigating commonalities in the types of crashes that are routinely 
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misclassified as either speeding-related or not speeding-related. Logistic regression models 

based upon established speeding-related crash typologies were developed to predict the 

probability that a specific crash would be designated as speeding-related.  The model 

outputs were then used to strategically sample crash narratives in order to identify potential 

crashes where the model prediction disagreed with officer’s recorded crash causation (i.e. 

driver contributing code). The resulting evaluation of crash narratives was based upon two 

hypotheses that were tested: 

Hypothesis 1: model predictions correlate with crash causation determinations 

resulting from crash narrative reviews.  

Hypothesis 2: commonalities exist among the crashes with a misclassified 

speeding-related designation as determined through the crash narrative reviews. 

 The resulting output of the hypothesis testing would be an improved methodology 

to identify speeding-related crashes and any crash commonalities identified from 

misclassified crashes would be used to improve the classification of speeding-related 

crashes.  

5.3 Methods 

This study consisted of three primary phases. First, a series of logistic regression 

models were developed to assign a probability that a crash was, or was not, designated via 

the crash report as being speeding-related. Second, these models were utilized to sample 

crash reports for subsequent crash narrative reviews by multiple researchers that were 

unaware of the crash designation (i.e. a double blind narrative review). Finally, based upon 

the crash narrative review, specific crashes which had crash narratives that did not align 

with the officer’s speeding-related designation were manually reviewed to identify shared 

characteristics. This section will describe the methods for the three phases of this study.  



27 

5.3.1 Logistic Regression Model 

 Three years of crash data from the state of Massachusetts from 2012-2014 were 

obtained. The roadway inventory database, maintained by the Massachusetts Department 

of Transportation (MassDOT) was utilized in order to link the crash to the roadway on 

which it occurred. Initially, 373,205 unique crashes were included in the database with an 

individual entry for each driver involved in the crash. Next, any crashes with an improperly 

coded driver age (e.g., driver age > 110) or driver sex (driver sex ≠ male or female) were 

removed from the database. For interstate crashes, entries were removed which had 

recorded speed limits which differed between the crash report and the roadway inventory. 

This was not conducted on other functional classifications as the speed limits reported on 

the crash report were inconsistent with those from the roadway inventory file. Instead, 

speed limit was not included in these models due to the low confidence in the data accuracy. 

Finally, only entries involving “Person Number: 1”, also known as motor vehicle operator 

#1 (MV1), were included in the model development. This decision was made to conform 

to one of the fundamental assumptions of logistic regression models which states that all 

observations must be independent from one another. MV1 was selected for inclusion in the 

model as MV1 was more commonly at fault for exceeding the posted speed limit or driving 

too fast for conditions (DTFFC). Specifically, in 4.2% of all crashes MV1 was at fault due 

to speeding, compared to only 1.1% of crashes being the fault of MV2-5 for speeding. The 

crashes were then filtered by the functional classification of the roadway on which they 

occurred in order to create five logistic models. Multiple models were developed in order 

to improve the prediction capabilities of the model. The grouping of functional 

classifications and sample size for each model is presented in Table 1. Altogether, 161,419 
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crashes, both injury and property-damage crashes, were used to develop five different 

logistic regression models. 

Table 1. Sample Sizes of the Five Functional Classification Models 

Federal 

Function 

Classification 

Number 

Functional Classification No. of Crashes 
No. of Speeding- 

Related Crashes 

1,2 

Interstate, Principal 

Arterial (Freeways and 

Expressways) 

28667 2353 

3 Principal Arterial (Other) 45966 1235 

4 Minor Arterial 43458 1774 

5, 6 
Major Collector, Minor 

Collector 
17670 1306 

7 Local 25658 1851 

  

 The five logistic regression models were developed based upon the speeding-

related crash typology from (12). Two crash characteristics were expressed in different 

ways in order for the model to better fit the data. First, a crash occurring at night can be 

identified either by the time at which the crash occurred or the light conditions. Second, 

the crash type input was either single vehicle crash or first harmful event occurring outside 

of the roadway. The data field which resulted in a better model fit was selected. It was not 

possible to use both as the fields described are highly correlated. Including multiple 

correlated variables violates one of the main assumptions of logistic regression modeling 

which cautions against multicollinearity (46). Table 2 displays the coefficients for the 

variables included in each model, when a coefficient is not present, that variable was not 

included in the model. The constant and significant variables are used to calculate Y’ which 

is the principal component of the logistic regression equation which calculates the 

probability (P) of the event occurring: P(1) = eY’/(1 + eY’). 
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Table 2. Variable Coefficients for the Logistic Regression Models to Calculate Y’ 

Variable 
Federal Functional Classification Model 

1/2 3 4 5/6 7 

Driver Age 

(continuous) 
-.026 -.032 -0.034 -0.038 -0.045 

Speed Limit 

(continuous) 
-.021 - - - - 

Driver Sex:  

(0: Female 1: Male) 
0.347 .270  0.652 0.576 0.558 

Road Surface:  

(0: Dry, 1: Not Dry) 
2.354 1.691 1.558 1.411 1.224 

Light Conditions:  

(0: Light, 1: Not 

Light) 

- - 0.209  0.344 - 

Time of Crash:  

(0: 6am-10pm  

1: 10pm to 6am) 

- 0.450 - - 0.303 

Injury Severity 

(0: Not Fatal or 

Incapacitating  

1: Fatal or 

Incapacitating)  

0.664 
0.523  

(p = 0.018) 
1.068 0.777 - 

First Harmful Event: 

(0: Within Roadway  

1: Outside Roadway) 

 

- - 1.668 - 1.365 

# of Vehicles 

Involved: 

(0: More than one 

1: One) 

1.305 1.893 - - - 

Crash Location 

(0: Not at Intersection 

1: At Intersection) 

- - - -0.991 - 

Constant -2.409 -4.046 -3.79 -2.134 -2.634 

Hosmer-Lemeshow 

Model P-value 
0.340 0.714 0.122 0.307 0.168 

Hosmer-Lemeshow 

Model Chi-square 
9.03 5.40 12.71 9.43 11.64 

Note: All variable p-values < 0.01 unless otherwise noted. Df = 8 for all five models. 
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 The goodness of fit for each model was evaluated using the Hosmer-Lemeshow 

test. The test compares the number of observed events to the expected number of events in 

equally sized subgroups (47). A p-value of 0.05 or less signifies that the hypothesis that 

the model fits the data can be rejected, thus p-values above 0.05 are acceptable with higher 

p-values implying a better model fit. Hosmer-Lemeshow test p-values for each of the five 

models are shown at the bottom of Table 2. 

5.3.2 Crash Narrative Sampling 

 Crash narratives were sampled from six groups based on the logistic regression 

models. The six groups were based on the two officer-designations: Speeding-Related, Not 

Speeding-Related, and the three model outputs: high probability, medium probability and 

low probability of crash being speeding-related. High probability was defined as the 30 

highest outputs from each functional classification model. Low probability was defined as 

the 30 lowest outputs. Medium probability was defined by calculating the median 

probability in that model’s high probability group. For example, if the median probability 

of the 30 crashes in the high probability group was 0.60, the median probability in the 

medium probability group would be 0.30. Nine hundred crash reports were initially 

sampled. Of the 900 reports sampled, only 604, or about two-thirds contained a valid crash 

narrative. Of note, all crash reports sampled from the interstate and freeway model 

contained a valid narrative. While there was a slight overrepresentation of 

interstate/freeway crashes, this overrepresentation was constant across the six groups. 

Table 3 displays the sample of crash narratives sampled from the six groups. Figure 4 

displays a graphical example for Minor Arterials: Speeding-Related Designation of how 

crash narratives were sampled.   
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Table 4 displays the various crash types that were captured within the sampling. Single 

vehicle crashes were captured more frequently than other crash types due to the variables 

included in the logistic regression models. 

 

Figure 4. Data tree showing the sampling strategy from logistic regression models. 

Table 3. Number of Sampled Crash Narratives from the Six Groups  

Officer 

Designation 

Model 

Output 

Functional Classification Model 
Total 

1 & 2 3 4 5 & 6 7 

Not  

Speeding-

Related 

High 30 19 12 20 12 93 

Med 30 18 17 20 18 103 

Low 30 16 20 17 22 105 

Speeding-

Related 

High 30 20 19 17 15 101 

Med 30 24 12 19 17 102 

Low 30 17 21 13 19 100 

Total 180 114 101 106 103 604 

Note: Refer to Table 1 for functional classification number definitions. 
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Table 4. Crash Types within the Sample Separated by Officer Speeding Designation 

Manner of Collision 
Not Speeding-

Related 

Speeding-

Related 
Total 

Single Vehicle - Collision in 

roadway/median/roadside 
135 166 301 

Single Vehicle - Ran off road 36 42 78 

Rear-end 35 46 81 

Angle 54 28 82 

Sideswipe 27 11 38 

Head-on 7 6 13 

Unknown 7 4 11 

5.3.3 Double Blind Narrative Review 

 The sampled crash narratives were assigned to a team of six reviewers who were 

research assistants within the UMass Transportation Program. The reviewers were trained 

with example crash narratives where there was a clear and known answer.  In addition, 

several narratives that were not included within the sample were reviewed by all reviewers 

on the review team to make sure that there was agreement. The narratives were distributed 

in such a manner so that each person reviewed an equal number of crashes from each of 

the six groups. Each crash was reviewed by two of the six reviewers, with each reviewer 

being blind to the group from which the crash belonged and blind to the identity of the 

other person reviewing that narrative. To eliminate the effect that reviewer bias or 

tendencies may have on the results, the narratives were assigned to reviewers in a manner 

that ensured that each reviewer reviewed an equal number of crash reports. In total, each 

reviewer read around 200 crash narratives. Each crash narrative review, which were 

compiled digitally into a spreadsheet, took one to three minutes to complete, depending on 

the length of the narrative. 

 Reviewers were also blind to the objectives and hypotheses of the study. They were 

instructed to decide whether the “Narrative indicates that the officer determined the crash 
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was at least partially caused by Motor Vehicle Operator 1 (MV1) speeding and/or driving 

too fast for conditions?”  

 The Cohen’s kappa test was conducted in order to measure the agreement between 

reviewers. The test evaluates the level of agreement against the probability of the reviewers 

agreeing by chance (48, 49). The test outputs a kappa value between 0 and 1 with 1 meaning 

perfect agreement and 0 meaning no agreement. The cases in which the reviewers did not 

agree were reviewed by a graduate researcher whose review counted as the tiebreaker. The 

results of the double-blind narrative review were then compared to six categories sampled 

from the logistic regression model.  

5.4 Results and Discussion 

A total of 604 crash narratives were reviewed by a team of six undergraduate 

students to answer the question of “does the crash narrative indicate that operator #1 was 

at fault due to exceeding the posted speed limit or traveling too fast for conditions?” The 

reviewers agreed on 542 of the 604 narratives (89.7%).  

 The kappa values between each of the six reviewers are shown in Table 5. The 

overall calculated kappa value of 0.77 suggests a good level of agreement not based on 

random chance. Thus, the results of these reviews were significant and can be utilized in 

further analyses. Prior to completion of further analyses, the 62 crashes in which the 

reviewers did not agree were reviewed by a graduate researcher whose review counted as 

the tiebreaker. Of the 62 disagreements, 26 were ultimately determined to have narratives 

indicating that the crash was speeding-related. 
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Table 5. Inter-Rater Agreement Test 

Reviewer 

1 

Reviewer 

2 

Reviewer 1 Response/Reviewer 2 

Response κ 

Yes/Yes Yes/No No/Yes No/No 

1 2 17 0 2 23 0.90 

1 3 8 2 3 26 0.67 

1 4 10 4 2 25 0.66 

1 5 11 4 2 20 0.66 

1 6 12 3 1 26 0.81 

2 3 9 0 0 31 1.00 

2 4 16 1 3 22 0.81 

2 5 13 1 5 19 0.68 

2 6 12 0 3 27 0.84 

3 4 6 3 5 27 0.47 

3 5 6 1 2 30 0.75 

3 6 9 0 2 31 0.87 

4 5 14 2 0 20 0.89 

4 6 12 5 1 24 0.69 

5 6 12 5 0 24 0.74 

Total 167 31 31 375 0.77 

Response to question: “Does narrative indicate the crash was speeding-related?” 

5.4.1 Comparing review results to crash narrative length 

 It was earlier hypothesized that the logistic regression model could predict which 

crashes truly would or would not be speeding-related based on its crash narrative. As shown 

in Table 6, the model accurately identified crashes which were not originally designated 

as speeding-related but had narratives which indicated that speed was a causative factor. 

For crashes originally designated as speeding-related, the model was less accurate. This 

may have been due to the fact that only 164 of these 303 (54.1%) crashes designated by 

the officer as being speeding-related contained narratives which described speed as a 

reason for the crash. This low percentage may be partially explained by investigating the 

length of the crash narratives, Table 7. When examining these 303 crashes which had an 

officer designation of speeding-related, the 164 narratives which indicated speed as the 

crash causation had a mean narrative length of 174 words (St. Dev: 134). By contrast, the 
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139 crash narratives that did not indicate speed as a cause had a mean narrative length of 

101 words (St. Dev: 101), a statistically significant difference (two sample t-test, p= 

<0.001). This relationship was also observed within the 301 crashes that were not officer-

designated as speeding-related. The 29 narratives which contradicted the original 

designation to indicate speed as the causative factor had a mean length of 215 words (St. 

Dev: 171) as compared to a mean length of 131 words (St. Dev: 126) for the 272 narratives 

which did not indicate speeding-related, another statistically significant difference (p = 

0.015). 

Table 6. Crash Narrative Review Results Based on Sampling Category 

Officer 

Designation 

Model 

Prediction 

# Speeding-Related 

Indicated by 

Narratives 

Total 

Reviewed 

% Narratives 

Indicating 

Speeding-Related 

Not  

Speeding-

Related 

High 18 93 19.4 

Med 8 103 7.8 

Low 3 105 2.9 

Speeding-

Related 

High 62 101 61.4 

Med 44 102 43.1 

Low 58 100 58.0 

Table 7. Crash Narrative Review Results versus Narrative Length 

Officer Designation Narrative Indication n 
Mean Length 

(words) 

Standard 

Deviation 

Not Speeding-Related 
Not Speeding-Related 272 131 126 

Speeding-Related 29 215 171 

Speeding-Related 
Not Speeding-Related 139 174 134 

Speeding-Related 164 116 101 

Note: Both differences are statistically significant (p < 0.05) 

5.4.2 Exceeding the Posted Speed Limit versus Driving Too Fast for Conditions 

 The low percentage (54.1%) of speeding-related crashes which contained narratives 

describing speed as a causative factor warranted additional investigation into the two 

Driver Contributing Codes (DCCs) which classify a crash as speeding-related. As shown 
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in Table 8, crashes with a DCC of “exceeding the posted speed limit” contain a narrative 

which mentions speed nearly 75% of time. However, crashes with “driving too fast for 

conditions” (DTFFC) as the DCC have narratives mentioning speed only 47.1% of the 

time, a statistically significant difference (p = <0.001, t-test). Interestingly, a small sample 

of crashes contained both driver contributing codes but only one contained a narrative 

which indicated speed as the crash causation. 

Table 8. DCC-Based Narrative Results for Crashes Designated as Speeding-Related 

Driver Contributing 

Code 

Narrative Indicated 

Speeding-Related 

Total 

Reviewed 
Percent 

Exceeding the Posted 

Speed Limit 
64 87 73.5% 

Driving Too Fast for 

Conditions 
99 210 47.1% 

Both DCCs 1 6 16.7% 

Based upon this observation, the narratives of crashes with DTFFC as the DCC 

were investigated further. It was found that DTFFC was being utilized by officers in four 

situations: (1) too fast for weather conditions, (2) too fast for the roadway geometry (e.g. 

down a hill, around a curve), (3) too fast for congested traffic conditions, and (4) exceeding 

the posted speed limit (i.e. officer should have used “exceeding the posted speed limit” 

DCC). The narratives of crashes with DTFFC were further classified into these four 

situations, Figure 5. 
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Figure 5. Conditions referred to in “driving too fast for conditions” narratives. 

 The majority of crashes coded as DTFFC were related to crashes which occurred 

in inclement weather. The second most common use for DTFFC was related to roadway 

geometry, which unsurprisingly overlapped often with weather conditions. Finally, the 

least common use for DTFFC was in congested traffic conditions. Often times in these 

crashes, drivers were cited for “Failure to Use Care While Stopping”. Twelve out of the 

100 crashes simply involved speeding and not DTFFC and should have been instead 

categorized as “exceeding the posted speed limit”.  

 These findings suggest that, while weather is the most common use for DTFFC, the 

DCC is also being used in situations referring to roadway geometry or congested traffic. If 

engineers and researchers were not aware of this fact, they may simply assume that DTFFC 

implies driving too fast for weather conditions. Perhaps separating DTFFC into three 

separate DCCs, relating to weather, roadway geometry, and traffic, would help officers 

select the most appropriate DCC and would improve safety analyses performed by 

engineers and researchers. 
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5.4.3 Identifying speeding-related crashes originally misclassified 

 The sampling method using the logistic regression model identified 29 crashes with 

narratives indicating speeding as a factor which were not originally designated as speeding-

related. Of these crashes, 82% (24 of 29) contained a DCC of “Failure to keep in proper 

lane or running off road” and “Operating vehicle in erratic, reckless, careless, negligent or 

aggressive manner”. These DCCs could be incorporated into the speeding-related crash 

typology and utilized when performing future analyses such as the one conducted in this 

paper. 

 Interestingly, 24 out of 29 (82%) of the misclassified crashes only contained one 

DCC when officers have the ability to enter two. While the use of only one DCC is a 

potential reason these crashes were misidentified, crashes originally identified as speeding-

related contained only one DCC in 225 out of the 303 reviewed (74%), a statistically 

insignificant difference (p = 0.25). Officers should be encouraged to use more than one 

DCC when completing a crash report and should be educated as to how this additional 

information is useful to engineers and safety practitioners.  If officers were to indicate a 

second DCC more often, it is less likely that speeding-related crashes, in addition to all 

other crashes, would be incorrectly classified. 

5.4.4 Recommendations 

 Based upon the investigation of crashes involving the DCC of “driving too fast for 

conditions” (DTFFC), it is recommended that this DCC be separated into three DCCs: 

“driving too fast for weather conditions”, “driving too fast for traffic conditions”, and 

“driving too fast for roadway geometry”. While these specific details can be obtained from 

the crash narratives, such a change would benefit engineers and researchers when 

conducting safety analyses. Crash and speeding mitigation strategies greatly depend on the 
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types of crashes occurring on a specific roadway, and more specific DCCs would increase 

accuracy. The “driving too fast for conditions” DCC is currently an all-encompassing 

option of officers, and officers would be better equipped with more distinct and intuitive 

DCCs. In the past, paper crash reports necessitated concise crash report forms. However, 

the recent digitization of crash reporting allows for more crash report fields. This change 

should be considered when states are updating their crash report forms. 

 When conducting analyses using existing speeding-related crash data, engineers 

should attempt to obtain full crash narratives whenever possible. The crash narrative, in 

combination with the standard crash information, can provide additional insight into why 

speeds are of concern at a particular location. 

5.4.5 Future Work and Limitations 

The crash narrative review was conducted manually as the speeding-related 

designation is very subjective and it was important to accurately review data. In the future, 

an automated crash narrative review process as demonstrated by (50) could be developed 

for speeding-related crashes. An automated narrative review process could be used in 

conjunction with the standard crash information to most accurately identify crashes which 

were related to speeding. Additionally, the length of the crash narrative may be used in 

future models to gauge the confidence in the model’s prediction. For example, a two 

paragraph crash narrative is likely to encompass all of the crash details, including the 

causation, whereas a one or two sentence narrative is not likely to provide sufficient detail. 

The crash narratives which were reviewed only encompassed crashes occurring in 

Massachusetts. A more robust study could sample crash narratives from multiple states to 

see if the findings match the conclusions from this research. Another interesting analysis 

would be to stratify the model results by agency type to determine the extent to which 
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reporting practices may be consistent within an agency. Crash reports filled out on 

highways and interstates always had a crash narrative, whereas only two-thirds of all 

crashes originally sampled contained a valid narrative. This may be due to the fact that 

these crashes fall within State Police jurisdiction, which may be indicative of consistent 

reporting practices and increased training within a single agency. Future studies could 

investigate the accuracy of the speeding-related crash designation as it relates to the 

responding officer’s jurisdiction. 

5.5 Conclusions 

 In order to investigate the speeding-related crash designation, logistic regression 

models were developed based upon established speeding-related crash typologies. These 

models were used to sample 604 crash reports for a double-blind crash narrative review 

conducted by a team of six reviewers to determine if the officer deemed MV1 at fault for 

speeding and/or driving too fast for conditions. The resulting reviews were in agreement 

89.7% of the time and disputed narratives were further analyzed by a member of the 

research team.  

 Hypothesis 1, related to the level of correlation between the developed logistic 

regression models and the crash causations.  This hypothesis is partially accepted. The 

logistic regression model accurately identified crashes which were not originally 

designated as speeding-related but had crash narratives that suggested speeding as a 

causative factor. However, little agreement was seen between the model and crashes 

originally designated as speeding-related, which may have been due to the fact that only 

53.4% of these narratives described speeding as a causative factor.  

 Hypothesis 2, was related to the ability to identify commonalities between crashes 

that are misclassified with respect to their speed related crash causation level. This 
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hypothesis was accepted. Further investigation of misclassified crashes revealed that the 

DCC of “driving too fast for conditions” was being used in three separate situations. 

Additionally, this DCC was also incorrectly used when “exceeding the posted speed limit” 

would have been more appropriate. Finally, it was determined that the responding officer 

only utilized one DCC in 82% of crashes not designated as speeding-related but contained 

a narrative indicating speed as a factor. 

 In summary, the use of logistic regression models based upon speeding-related 

crash typologies offers a promising method by which all possible speeding-related crashes 

could be identified. The review of crash narratives associated with speeding-related crashes 

revealed three distinct ways in which the DCC of “driving too fast for conditions” was 

being used. Whenever feasible, crash narratives should be reviewed when selecting safety 

countermeasures at a high crash location. 
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CHAPTER 6  

THE APPLICATION OF CONTINUOUS SPEED DATA FOR 

SETTING RATIONAL SPEED LIMITS AND IMPROVING 

ROADWAY SAFETY 

6.1 Summary 

Research on rational speed limits suggests that simply lowering speed limits does 

not necessarily result in safer roadways; thus, there is a need to revisit the process by which 

speed limits, which are the front lines of any speed management program, are established. 

Traditionally, speed studies are conducted by taking spot speed observations at varying 

intervals along a roadway, however it would be ideal to have speed values continuously 

along a roadway.  The specific objective of this research effort was to compare a continuous 

data collection method with existing methods and develop a methodology for integrating 

them to improve roadway safety. In this study, a group of drivers were equipped with a 

smartphone application which continuously captured video, vehicle speeds, and location 

data. The continuous speeds were then compared to speeds captured at eight fixed points. 

The results identified similarities in the 85th percentile speeds observed using the various 

data collection methods and a case study was conducted using FHWA’s expert system, 

USLimits2. The results provide evidence for a successful proof of concept for mapping 

continuous speed data to traditional speed data collection points that may help in the speed 

limit setting process as well as the establishment of appropriate advisory speed zones. This 

research endeavor outlined a methodology which may be utilized to improve the process 

by which engineers determine speed limits and advisory speed zones. 

6.2 Project Motivation 

Traffic engineers typically employ conventional processes for the task of setting 

speed limits using operating speed data collected at fixed points. However, these data may 
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be misleading as they do not capture the entire speed profile, and the selection of the data 

collection location may ultimately bias the resulting speed data and established speed limit. 

As an example, the Massachusetts Department of Transportation (MassDOT) 

acknowledges in their ‘Procedures for Speed Zoning on State and Municipal Roadways’ 

that “it would be ideal to have speed checks continuously along the roadway so that the 

85th percentile speed could be computed at all points.” However, as of the last edition of 

the guidelines in 2012, MassDOT concedes that this type of data collection would not be 

practical. Given recent advances in smartphone technology, it is prudent to revisit the data 

collection process for setting speed limits. The advent and proliferation of mobile phone 

devices with GPS capabilities allows data aggregators such as Inrix ®, Google ®, and 

TomTom ® to report real-time traffic conditions. These crowd sourced data sets use speeds 

that are calculated nearly instantaneously and continuously updated.  These anonymous 

data sets could likely be used to sample the traveling public and utilized as a basis for speed 

limit determination. 

Traditionally, speed limits on new construction are based on the design speed of 

the roadway segment.  Many speed limits remain vestiges of the highway building boom 

era of the 20th century and remain inappropriate for the current conditions. Present-day 

speed limit modifications are prompted by several means: town or city officials may have 

received complaints, the roadway may be under a rehabilitation, or crash history may 

warrant a speed limit change.   

Crowd-sourced data would provide agencies with an active approach to speed 

management.  Instead of waiting for crashes, road redesign or complaints, agencies could 

utilize these robust data sets to improve road safety.  In addition, police departments could 
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use the data to determine uniform and consistent speed enforcement thresholds, and town 

engineers could use the data to identify differences between speed limits and active free-

flow speeds. 

The specific objective of this research is to explore the feasibility of linking and 

integrating continuous speed data collection with traditional speed limit setting practices.  

In this study a methodology was developed which utilizes Ubipix, a traffic and video data 

collection smartphone application (app), in order to generate continuous speed profiles for 

use in setting speed limits and determining speed advisory zones.   

6.3 Methods 

Speed data was captured on a 1.75 mile stretch of rural road in Amherst, 

Massachusetts, Figure 6. South East Street was selected for its varying speed limit and 

popularity among commuters. Additionally, the roadway has a frequent history of speeding 

violations and is under review by the Town of Amherst to explore possible speed 

management strategies. Despite the high prevalence of speeding, this location has an 

average crash frequency, meaning operating speeds are more influential in the speed limit 

setting process. Speed data was captured using three different methods: equipped volunteer 

drivers with the Ubipix app, eight installations of pneumatic tubes with automated traffic 

recorders (ATRs), and LiDAR spot speed collections at the same eight locations of the 

ATRs.  
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Figure 6. Study location, South East St in Amherst, Massachusetts. 

6.3.1 Pneumatic Tubes with Automated Traffic Recorders 

 Eight ATRs were installed along the road at 1,000 to 1,500 foot intervals. To verify 

the results of the smartphone app, Ubipix, the ATRs were installed during the same time 

period that the trial drives occurred. 

6.3.2 LiDAR Spot Speed Collection 

 One hundred free-flow vehicle speeds were captured from each direction of travel 

during daylight hours. Data were collected at the same eight locations along the route where 

ATRs were deployed. Ideally, LiDAR data collection would have been conducted 

concurrently with the probe drives and ATRs. However, in order to not influence the trial 
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drivers’ behavior, LiDAR data collection occurred after these drives occurred when the 

ATRs were not installed. LiDAR data were collected during the same time of day, under 

similar weather conditions, and during the same time of year as the probe drives and ATRs. 

6.3.3 Smartphone App 

 Twenty sample drives were collected by five subject drivers. Drivers were asked to 

download and install Ubipix on their smartphone, and were then provided with a mount so 

that their phone would be positioned to capture video as they drove. Each of the five drivers 

drove the 1.75-mile route twice in each direction. The volunteers consisted of two males 

in their mid-20’s, two females in their mid-20’s and a 60+ year old female. Admittedly, the 

sample size and range of ages was limited, however, this research was intended to be a 

proof of concept. In the future, a more diverse sample would be desired, and this would be 

possible when using data obtained from one of the large traffic data providers. The drivers 

were asked to simply drive as they normally do and they were informed that the app would 

not be capturing audio.  

6.3.4 Smartphone Data Output 

 After the four trial drives for each driver, the app data was uploaded. The standard 

Ubipix web interface and data platform is presented in Figure 7. 
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Figure 7. Standard output from the Ubipix app. 

 The smartphone app’s graphical interface consists of three primary sections, the 

map view, camera view and speed/altitude graph. On the map to the left, the blue pin 

marker represents the starting point of the drive and the red pin markers are tags that show 

the 1.75 mile segment of road being studied. The drive began approximately 2.5 miles in 

advance of the test segment to engage drivers in the regular driving task prior to the 

experimental segment. It was our hope that this 2.5 mile warmup period would be 

sufficiently long for the drivers to forget that their drive was being recorded and their 

behavior would not be altered for the trial segment in any meaningful way. The yellow dot 

represents the position of the vehicle at the corresponding video point with the sight 

triangle indicating the direction of travel. In the example shown in Figure 7, one of the 

ATR setups is visible just above the dashboard. 
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6.3.5 Data Manipulation 

 As seen in the graphical user interface, the speeds are only presented graphically. 

It is challenging to do more than a visual inspection of the data based upon this graph. 

However, the raw data of the drive can be extracted from the app’s platform. The data is 

exported in an unformatted ‘.json’ file which, when formatted, can then be converted into 

a spreadsheet file. The raw data recorded at a 1 hz frequency included vector data of 

latitude, longitude, bearing, and speed. From the given coordinates the distance between 

the last data point was calculated using the formula for distance between Latitude and 

Longitude points on a WGS-84 coordinate system as shown in Equation 1. 

Equation 1: Vincenty’s Ellipsoidal Formula (51). 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 =  𝑐𝑜𝑠−1(𝑠𝑖𝑛(𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒1)) ∗ 𝑠𝑖𝑛(𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒2) +
 𝑐𝑜𝑠(𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒1) ∗ 𝑐𝑜𝑠(𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒2) ∗ 𝑐𝑜𝑠(𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒2 − 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1) ∗  𝛼  

𝑤ℎ𝑒𝑟𝑒 𝛼 = 3958.756 𝑀𝑖𝑙𝑒 (𝑇ℎ𝑒 𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑎𝑟𝑡ℎ 𝑖𝑛 𝑊𝐺𝑆 −
84 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)  

 

 Next, by calculating the cumulative distance traveled, a speed versus position 

relationship was developed similar to the graph seen in the graphical interface. 

6.3.6 Overlaying ATR Locations with Ubipix Data 

 Using the app’s built in geotagging system, video from one of the drives was 

utilized to tag the coordinates of the eight ATRs to determine their exact location. Using 

these coordinates in conjunction with the coordinates from the Ubipix drives, the location 

of the ATRs were geotagged on the speed versus location graph. 

6.4 Results 

 Using the continuously collected speeds from the smartphone data, a comparison 

was made between the other two data collection methods. These speed data points were 
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calculated every 50 feet for the Ubipix drives and at the eight fixed locations for the ATRs 

and the LiDAR spot speed observations. 

6.4.1 Verification of Smartphone Data Accuracy 

 ATRs and LiDAR guns have been shown to be accurate to 0.5 m/s (~1 mph) (19), 

and GPS devices which capture ground speed, have been shown to have similar accuracy 

(52). However, it is prudent to verify Ubipix specifically. Since the Ubipix drives occurred 

when the ATRs were active, the ranges of speeds observed in the drives can be compared 

to the ranges of speeds collected by the pneumatic tubes. While ATRs are unable to 

automatically link an observation to a specific driver, visual inspection of the graphs in 

Figure 8 and Figure 9 show that the ranges of speeds observed in the ten drives match (i.e. 

in each direction of travel) closely to the ranges of speeds measured by the ATRs. 

 

 

Figure 8. Northbound Ubipix drives versus eight ATR locations. 
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Figure 9. Southbound Ubipix drives versus eight ATR locations. 

6.4.2 Comparison of Data Collection Techniques 

 Spot speed data was collected via a LiDAR gun. Unlike the ATR data, all spot 

speed measurements consisted of vehicles in free-flow conditions. As such, most 15th and 

85th percentile speeds collected via LiDAR were higher than the speeds collected by the 

ATRs. These comparisons are demonstrated for the northbound and southbound drives in 

Figure 10 and Figure 11, respectively. The trial drives with the smartphone app provide 

speed data between the eight fixed points. The size of each bar represents the difference 

between the 15th percentile and 85th percentile speed. This allows for an inspection of the 

speed variability along the 1.75 mile route. For both the northbound and southbound drives, 

the trial drive variability falls within the range of the ATR and LiDAR data at the eight 

fixed points. This suggests that while ten drives in each direction may not be enough to 

generate a representative sample, a continuous data collection method may necessitate 

smaller sample sizes than other spot speed methods. 
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Figure 10. Speeds and variance across data collection methods, NB direction. 

 

Figure 11. Speeds and variance across data collection methods, SB direction. 
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6.4.3 USLimits2 Case Study 

 In order to compare the three speed data collection techniques employed in this 

study, the 35 mph posted speed limit segment in the northbound direction was evaluated 

using USLimits2. As explained previously, USLimits2 is an expert system developed by 

FHWA to assist practitioners in determining a safe and sensible speed limit on a given 

roadway segment. The system considers operating speeds, roadway geometry, surrounding 

land use, and crash history in order to recommend the most appropriate speed limit. The 

segment, which can be seen on Figure 10 from approximately 4300 feet to approximately 

8400 feet, was selected due to its relatively high variance in speed. The variable inputs for 

the 0.8 mile segment are shown in Table 9. Crash history was obtained via MassDOT’s 

Crash Portal. For the segment in question, nine years of crash history were available with 

17 total crashes including four non-fatal injury crashes. The crash rates and injury rates 

were compared against the rates included in USLimits2 which were obtained from the 

Highway Safety Information System database (53). 
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Table 9. Variable Inputs for USLimits2 Case Study 

Category Selected Option 

Route Type Road Section in Developed Area 

Section Length (miles) 0.8 

Average Annual Daily Traffic 2000 

Adverse Alignment No 

Statutory Speed Limit for this Type of Road 40 mph 

Is this a one-way street? No 

Divided/Undivided Undivided 

Number of Through Lanes 2 

Area Type Residential-Collector 

Total number of driveways and unsignalized 

access points in the section 
28 

Total number of signals in the section 0 

On Street Parking and Usage Not High 

Pedestrian/Bicyclist Activity Not High 

 

The inputs for 50th and 85th percentile speed were varied depending on the three data 

collection methods and the location at which data were collected. Determining which 

speeds to input relies heavily upon “engineering judgment”. The USLimits2 User Guide 

does provide the following guidance, “The 85th percentile speed used in the analysis for a 

general speed limit should not be taken from data collected in the adversely aligned 

section.” (37) As shown in Table 10, eight data points were selected for input into the 

system, six points from the two fixed locations where ATR and LiDAR data were collected, 

and two points between those fixed points. The results show that the recommended speed 

limit varies at the two locations with all three methods of speed data collection. This 

demonstrates how a practitioner may utilize continuous speed data. If a change to the speed 
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limit was desired, the continuous data could determine the exact location where that change 

should occur. 

Table 10. USLimits2 Speed Limit Recommendations for Each Method 

Collection 

Point (feet) 

Method of Data 

Collection 

 50th 

Percentile 

Speed (mph) 

85th 

Percentile 

Speed (mph) 

USLimits2 

Recommended 

Speed Limit (mph) 

5500* 

ATR  32 35 35 

Ubipix  33 35 35 

LiDAR  33 37 35 

6600 Ubipix  34 37 35 

7000 

LiDAR  35 40 40 

ATR  36 41 40 

Ubipix  37 42 40 

4700 Ubipix  38 43 40 

Note: The collection point refers to the distance traveled scale on Error! Reference source not found.. The p

osted speed limit for this segment is currently 35 mph. 

(*) indicates that data was collected at “adversely aligned section” 

 

 Currently, practitioners must decide which location and which method of data 

collection to use. Smartphone applications have the ability to provide continuous data, 

which when presented graphically, can provide extra context when engineering judgment 

is needed. For example, speed peaks can be identified and explained by viewing the video, 

as demonstrated on the southbound drive shown in Figure 12. 
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Figure 12. Southbound Ubipix drives with 15th to 85th percentile speed variance, showing 

four screenshots from the graphical interface. 

6.5 Discussion 

 Based on the relationships explored in Figure 10 and Figure 11, Ubipix data 

satisfies the need for continuous speed data along roadway segments and may, in certain 

situations, be a substitute for ATR or LiDAR data. Continuous speed provides numerous 

benefits over traditional data collection techniques such as: inexpensive collection, no need 

for specialized equipment beyond a smartphone, and short data turnaround time. The 

availability of continuous speed data has significant positive implications for both 

engineers and law enforcement, alike. 

 With the adoption of expert speed setting systems, such as USLIMITS2, 85th 

percentile speeds are no longer the sole input when determining a posted speed limit. While 

operating speeds are still the most valuable input into the system, spot speeds are no longer 

the sole determinant in the speed limit decision. With the push to set more appropriate 

speed limits, continuous speed data collection techniques, such as the one outlined in this 
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paper, may be a substitute for, or complement to, traditional spot speed methods. While 

these traditional methods may have more accuracy at a specific location due to larger 

sample sizes, these methods do not provide data along the entire speed zone being studied. 

For example, in the USLimits2 case study, the recommended speed limit was the same for 

all three methods when looking at the fixed points of data collection. However, the system 

recommended a higher speed limit at one point meaning a decision must be made as to the 

location of the speed zone change. In Massachusetts and Ohio for example, a speed zone 

must be at least 0.5 miles long and be rounded to 0.1 mile increments (32). Data collection 

via a smartphone app could help practitioners decide the optimal speed zone length or 

provide information as to where additional data collection is needed. 

 This research endeavor outlined a methodology which may be used by engineers 

when setting speed limits. Ideally, continuous speed data obtained from trial runs, would 

be collected in coordination with ATR or spot speed data. As was presented in Figure 8 

and Figure 9, the speed data captured using ATRs can be used to verify the accuracy of 

the continuous speed data and simultaneously provide a larger sample of valid data points. 

This would allow continuous speed data to be used in analysis between the fixed points of 

ATR data collection. By plotting the continuous data versus the posted speed limit, 

roadway segments which may be good candidates for additional advisory speed signage, 

could be easily identified. Admittedly, there remains several next steps related to 

partnerships that would need to be established between large data suppliers and the 

agencies wishing to make use of the data; however the frequency of these partnerships is 

increasing on a routine basis. 
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 Companies which monitor and provide real time traffic conditions mine data 

through continuous collection of their users’ operating speeds. Access to this data would 

allow an agency to analyze vehicle speeds on any roadway. While these data would not 

include video and may not be as granular as the data in this study, it would allow engineers 

to alter speed limits or implement traffic calming designs. The main challenge associated 

with these partnerships would be the privacy issues of using these data. Perhaps it may 

require users to opt-in which may skew the pool of users or prohibitively reduce the sample 

size. Such partnerships would require unknown up-front costs and encounter possible 

privacy concerns. A future study should attempt to establish a partnership in order to 

quantify these costs and establish a methodology to mitigate privacy issues. 

6.6 Conclusions 

Continuous speed data was collected via a smartphone app, Ubipix, on a 1.75 mile 

rural road. These data were compared to spot speed data collected at eight locations along 

the route via a LiDAR gun and pneumatic tubes with ATRs. Despite the limited sample 

size of the continuous data, this method of collection still exceeded the three trial drives 

that are used to supplement the spot speed data as specified in the MassDOT guidelines. 

Ranges of continuous speeds observed were consistent with speeds collected via LiDAR 

and ATRs. A USLimits2 case study demonstrated the importance of data collection 

location to the outputted recommendation and suggested that continuous speed collection 

may provide valuable context to the practitioner conducting the speed study. In the future, 

partnerships may be developed with large data suppliers such as Inrix, Google, and 

TomTom to obtain this data without the need for trial runs. Future research should target 

refining the procedure outlined in this paper, establishing pilot partnerships with large data 

suppliers, and developing methods to automatically pull and analyze these data obtained 
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from such partnerships. These partnerships and methods would allow agencies to cost-

effectively monitor operating speeds on their roadways. These data could enable a 

preventative approach to enforcement and speed management rather than waiting for 

serious or fatal crashes to occur. 
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CHAPTER 7  

PERCEPTION OF TIME’S INFLUENCE ON DRIVER BEHAVIOR 

7.1 Summary 

Speeding greatly attributes to traffic safety with approximately a third of fatal crashes in 

the United States being speeding-related. Previous research has identified being late as a 

primary cause of speeding. In this driving simulator study, a virtual drive was constructed 

to evaluate how time pressures, or hurried driving, affected driver speed choice and driver 

behavior. In particular, acceleration profiles, gap acceptance, willingness to pass, and 

dilemma zone behavior were used, in addition to speed, as measures to evaluate whether 

being late increased risky and aggressive driving behaviors. Thirty-six drivers were 

recruited with an equal male/female split and a broad distribution of ages. Financial 

incentives and completion time goals calibrated from a control group were used to generate 

a Hurried and Very Hurried experimental group. As compared to the control group, Very 

Hurried drivers selected higher speeds, accelerated faster after red lights, accepted smaller 

gaps on left turns, were more likely to pass a slow vehicle, and were more likely to run a 

yellow light in a dilemma zone situation. These trends were statistically significant and 

were also evident with the Hurried group but a larger sample would be needed to show 

statistical significance. The findings from this study provide evidence that hurried drivers 

select higher speeds and exhibit riskier driving behaviors. These conclusive results have 

possible implications in areas such as transportation funding and autonomous vehicle 

design. 

7.2 Project Motivation 

The objective of this current study was to determine how time pressures, or 

drivers’ perception of time, influenced speed choice and driver aggressiveness. This 
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objective was addressed by manipulating participants’ perception of time and investigating 

the different outcomes. There were three overarching hypotheses: 

1. Drivers in the control group, who are given no incentives, will make 

appropriate speed choices based on roadway conditions and posted speed 

limits and will not exhibit overly risky behaviors. 

2. Drivers who are given an incentivized completion time goal, based on the 85th 

percentile completion time from the control group, will choose higher speeds 

and exhibit more aggressive driving behaviors than the control group as a 

whole. 

3. Drivers who are given an incentivized completion time goal equal, based on 

the 15th percentile completion time from the control group, will similarly 

choose higher speeds and make riskier maneuvers than the control group but 

not the aggressive group.   

7.3 Methods  

A between subject experimental design was developed based upon existing 

literature to examine the effect that peoples’ “perception of time” influences their driving 

behavior. The following section outlines the research tasks that were employed to address 

the objectives of this study.  

7.3.1 Apparatus 

 A Realtime Technologies Inc. (RTI) driving simulator, depicted in Figure 14 used 

in the current study is a full-cab, fixed-base, setup that includes a fully equipped 1996 

Saturn sedan, with three screens subtending 135 degrees horizontally. At a resolution of 

1024 x 768 pixels and at a frequency of 60Hz, the virtual environment is projected on each 

screen through a network of four advanced Realtime Technologies (RTI) simulator servers 
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equipped with high-end, multimedia chips. The participant sits in the driver’s seat and 

operates the controls, just as he or she would in a normal car. A Dolby surround system 

consisting of side speakers and two sub woofers located under the hood of the car provides 

realistic wind, road and other vehicle noises with appropriate direction, intensity and 

Doppler Shift. 

 

Figure 13. Driving simulator at Arbella Insurance Human Performance Lab, University 

of Massachusetts Amherst. 

7.3.2 Measures and Associated Hypotheses 

The independent variables were elements within the virtual drive listed in Table 

11, which were the same for both the control and experimental groups. These various 

elements were used to evaluate drivers’ aggressiveness and included: unprotected left turns 

with oncoming vehicles, red lights, a slow lead vehicle within a passing zone, progress 

updates throughout the drive, and dilemma zones. The dependent variables were the 

participants’ reaction to these situations. Table 11 contains the independent and dependent 

variables along with the hypothesized results from these variables.  
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Table 11. Variables and Associated Hypotheses 

Independent Variable Dependent Variable Hypothesized Result 

Speed checkpoints Speed 
Drivers in the experimental groups 

would select higher speeds. 

Red lights 

Acceleration profile 

after light turned 

green 

Drivers in the experimental groups 

would accelerate faster after a red 

light. 

Unprotected left turn 

with oncoming vehicle 

gaps: 3s, 3s, 1.5s, 2s, 

2.5s, 3s, 3.5s, 4s, 4.5s, 

6s, 10s 

Size of gap accepted 

Drivers in the experimental groups 

would accept smaller gaps than the 

control group. 

Slow lead vehicle in 

passing zone 
Willingness to pass 

A larger percentage of drivers in 

the experimental groups would be 

willing to pass. 

Dilemma zones 

Willingness to 

abruptly stop for 

yellow light 

A higher percentage of drivers in 

the experimental groups would be 

willing to run a yellow light in a 

dilemma zone situation.  

7.3.3 Participants & Procedure 

 Before recruiting participants, three years of crash data (2012-2014) from the state 

of Massachusetts were analyzed to determine a logical distribution of participant ages. 

Since speed and driver aggression were a large focus of this study, the proportion of 

speeding-related crashes as a function of age was examined. While the proportion of 

crashes caused by speeding declined with age for both males and females, there seemed to 

be an inflection point around 30 years old when the decline became less pronounced. This 

inflection point is visualized in Figure 14 by linear best fit lines for before and after 30 

years old. Based on this data, participants were recruited to achieve an equal split of 

participants under 30 years old and over 30 years old in addition to an equal male/female 

split.  
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Figure 14. Proportion of crashes caused by speeding by age for males and females. 

A total of 36 licensed drivers (18 years and older; 18 males and 18 females) from 

the greater Amherst, Massachusetts area were recruited as simulator participants. During 

recruitment, it was advertised that participants would be paid $15-30 compensation for 

their time. Participants were provided five minutes to drive in a practice training scenario 

to become familiar with the performance capabilities of the driving simulator prior to their 

experimental drive.  

 The experiment consisted of three groups, all of which drove the same virtual 

scenario, Figure 15.  The first 12 subjects were placed in the control group. The overall 

travel times from the control group were then utilized to determine the incentive times used 

in the experimental groups. Each group consisted of three males and three females under 
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30 years old and three males and three females over 30 years old. One participant in the 

Very Hurried experimental group withdrew due to simulator sickness resulting in a partial 

dataset. A full comparison of participant demographics by group is shown in Table 12. 

Table 12. Participant Demographics 

Group 
Male 

Participants 

Female 

Participants 

Driver Age (yr) 

Mean ± Std. 

Dev. 

Driving Experience 

(yr) 

Mean ± Std. Dev. 

Control 6 6 31.1 ± 12.0 14.9 ± 12.1 

Experimental 

(Hurried) 
6 6 32.9 ± 13.9 15.9 ± 14.3  

Experimental 

(Very 

Hurried) 

6 6 30.6 ± 9.2 13.3 ± 9.5 

Before the virtual drive, participants completed a questionnaire which evaluated the 

frequency at which they exhibited aggressive driving tendencies. Participants were asked 

to rate each question either “Never”, “Rarely”, “Sometimes”, or “Often”. The questionnaire 

included 13 actions such as “Tailgate others to force move” and “Deliberately prevent other 

from passing”. By assigning a value of 1-4 for Never to Often, a mean aggressiveness score 

could be computed for each participant and thus each group. The mean scores, with a lower 

value meaning less aggressive, were 1.74 (control), 1.56 (Very Hurried), and 1.72 

(Hurried). None of these differences were statistically significant. When coupled with the 

balancing of age and sex the lack of statistical differences in the aggressiveness scores 

suggests that each of the groups were identical. 

Control group: Participants in the control group were instructed to drive as they 

normally would. They were informed that the compensation range was simply used for 

recruiting purposes and that they would receive the full $30. Drivers in the control group 



65 

saw pop-up notifications throughout the drive at 25%, 50% and 75% drive progress. These 

notifications only displayed the percentage of drive complete and made no mention of time 

elapsed. The 85th percentile drive time was approximately 14 minutes and the 15th 

percentile time was approximately 16 minutes. These values were used as the incentive 

times for the aggressive and passive experimental groups, respectively.  

Experimental groups: Participants were informed that they would receive $30 if 

they i) avoided getting in any crashes, ii) avoided any “tickets” and iii) finished the drive 

in under 14 minutes (Very Hurried) or under 16 minutes (Hurried). Otherwise, they would 

receive the baseline $15 as compensation. In order to conform to IRB requirements, all 

participants in the experimental group had to receive the full $30 compensation regardless 

of driving performance. However, this information was withheld from participants until 

after the drive to ensure that the incentive remained. Participants in these groups were also 

informed that they would see progress markers pop-up on the simulator screen at 25%, 

50% and 75% drive progress. In addition to the drive progress, these pop-ups displayed the 

percentage of the 14/16 minutes that had elapsed and allowed participants to quickly 

evaluate whether they needed to speed up to meet the 14 or 16-minute deadline. These pop-

ups would be analogous to drivers comparing their time remaining from GPS navigation 

versus their clock. 

All procedures including informed consent, payment, and participant recruitment 

followed Protocol ID#: 2016-3343 as approved by the Institutional Review Board (IRB) of 

the University of Massachusetts. 

7.3.4 Experimental Design 

The entire drive consisted of a rural two-lane roadway with a 40-mph posted speed 

limit and contained nine signalized intersections, Figure 15. At two of the intersections, 
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drivers were instructed to turn left, and oncoming vehicles were scripted to test 

participants’ gap acceptance while making a left turn. Four intersections were scripted to 

remain red until drivers reached the stop bar, and then would turn green. Sensors were built 

in so that participants’ acceleration profile could be easily measured after each intersection. 

Two intersections near the end of the virtual drive were scripted so that the light turned 

from green to yellow when drivers were four seconds away, putting the driver in a dilemma 

zone situation.  

There were five left horizontal curves and three right horizontal curves.  Each curve 

had a length of 157 m and radius of 100 m. Lanes were 3.66 m wide (12 ft) with a 0.30 m 

shoulder (1 ft). There were no significant roadside objects or hazards.  

Near the halfway point of the drive, a truck pulled out in front of the participants 

and traveled at 35 mph along a straightaway. A “Pass with Care” sign reminded participants 

that passing was allowed at that segment. After about a quarter mile, the slow-moving truck 

turned right at an un-signalized intersection which allowed participants who chose not to 

pass the truck to resume traveling at a free-flow speed. Ambient traffic throughout the drive 

was individually scripted so that oncoming traffic was consistent for all participants. 

Progress updates were placed at the 25, 50, and 75% points of the drive and speed 

collection points were placed in a manner to capture speeds before and after each of these 

three updates. The total drive lasted 14-16 minutes. A full layout of the virtual drive is 

depicted in Figure 15. 
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Figure 15. Schematic of virtual drive depicting elements participants encountered. 
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7.4 Results and discussion 

 The current driving simulator study examines how time pressures, or a driver’s 

perception of time, impact driving performance. A between-subjects experimental design 

was utilized where each participant was placed in either the control, the Hurried 

experimental group, or the Very Hurried experimental group. The controlled laboratory 

settings allowed for the consistent manipulation of critical variables as well as the direct 

measurement of dependent variables.   

All statistical tests conducted were unpaired two-sample Student’s t-tests using the 

software package Minitab. All error bars represent 95% confidence intervals and a 

statistically significant difference (p < 0.05) from the control group is denoted by (*). 

Statistical significance (p < 0.05) between checkpoints within a group is denoted by a black 

bar. 

7.4.1 Speed and Acceleration 

 The mean speed collected at five separate checkpoints is displayed in Figure 16. 

The drivers in the control chose a consistent speed throughout the duration of the drive, 

only statistically increasing their speed after the urban crosswalk section of the drive; 

checkpoint three (M = 39.8, SD = 5.1), checkpoint four (M = 45.3, SD = 4.7); t(21) = -

2.74, p = 0.012. Participants within the Hurried group chose similar speeds as the control 

group and also only statistically increased their speed after the urban crosswalk setting, 

checkpoint three (M = 41.1, SD = 5.0), checkpoint four (M = 46.5, SD = 5.0); t(21) = -

2.69, p = 0.017. This indicates that the time pressure placed on Hurried drivers was not 

enough to significantly alter their speed choice. Similar to the control and Hurried groups, 

Very Hurried drivers also statistically increased their speed after the urban crosswalk 
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setting, checkpoint three (M = 46.6, SD = 5.7), checkpoint four (M = 50.8, SD = 3.2); t(15) 

= -2.13, p = 0.050.  

In the control and Hurried experimental groups, participants reduced their speed in 

the urban area with two crosswalks (speed checkpoint #3) as compared to their initial speed 

choice (speed checkpoint #1). By contrast, participants in the Very Hurried experimental 

group still selected a higher speed in the urban crosswalk setting as compared to their initial 

speed choice. While these differences were not statistically significant, this observation 

supports the overall hypothesis that Very Hurried drivers would be more likely to engage 

in riskier behavior. 

 
Figure 16. Mean speeds for each group at the five speed checkpoints. 

The Very Hurried drivers initially selected a speed similar to both the control and 

Hurried drivers, indicating that all drivers initially had the same perception of time. After 

the first progress update, the Very Hurried participants drove at statistically higher speeds 

than the control group for the rest of the drive, (checkpoints 2-5, Table 13).  

 

  

* 
* 

* * 
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Table 13. Statistical Speed Checkpoint Comparison Versus Control Group 

Checkpoint 
Hurried Very Hurried 

df T P-Value df T P-Value 

1 20 -0.72 0.478 20 -1.76 0.093 

2 21 -0.90 0.381 21 -3.40 0.003* 

3 21 -0.64 0.528 20 -3.01 0.007* 

4 21 -0.57 0.573 19 -3.27 0.004* 

5 21 -0.44 0.666 20 -3.74 0.001* 
(*) indicates statistical significance at 95% confidence. 

With the exception of within the urban crosswalk setting, Very Hurried drivers 

statistically increased their speed after the first speed checkpoint, Table 14. The increased 

speed selection can be attributed to drivers gaining a better perception of time from the first 

progress update. 

Table 14. Statistical Speed Checkpoint Comparisons Within Very Hurried Group 

 1 vs. 2 vs. 3 vs. 4 vs. 
 2 3 4 5 3 4 5 4 5 5 

df 21 17 20 18 18 19 19 15 19 16 

T -3.06 -0.96 -4.13 -4.19 1.53 -0.57 -1.40 -2.13 -2.64 -1.05 

P-

Value 
0.006* 0.349 0.001* 0.001* 0.143 0.575 0.176 0.050* 0.016* 0.310 

(*) indicates statistical significance at 95% confidence. 

Vehicle speeds were continuously collected 600 feet downstream of the four red 

lights, enabling average acceleration to be calculated over that segment. Participants in the 

control group, accelerated slower after red lights (M = 1.579, SD = 0.34) than participants 

in the Very Hurried experimental group (M = 1.963, SD = 0.32); t(91) = -5.63, p = 0.000. 

Participants in the Hurried experimental group accelerated faster than the control group 

but not as fast as the Very Hurried group, however these differences were not statistically 

significant, Table 15. 
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Table 15. Mean Accelerations after Red Lights and Inferential Statistics 

Group 
Sample 

Size 

Mean Acceleration 

after Red Light 

(ft/sec2) 

Statistical Comparisons to 

Control 

df T P-Value 

Control 48 1.579 - - - 

Hurried 48 1.658 93 -1.10 0.273 

Very 

Hurried 
46 1.963 91 -5.63 0.000* 

(*) indicates statistical significance at 95% confidence. 

7.4.2 Gap Acceptance 

 Drivers in all three groups encountered two unprotected left turns with oncoming 

vehicles with fixed gap sizes which became progressively larger. The critical gap, defined 

as the gap size at which 50% of drivers will accept and 50% will reject, was found by 

plotting the cumulative acceptance rate of the nine gap sizes presented to participants in 

the virtual drive, Figure 17. Similar to speed and acceleration results, drivers in the Very 

Hurried group were most aggressive and had the smallest critical gap (4.8 sec). Hurried 

drivers had a critical gap (6.0 sec), which was higher than the Very Hurried group but lower 

than the control (6.4 sec). 
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Figure 17. Cumulative gap acceptance rate for left turns with critical gaps.  

 Since a statistical test of the critical gap is not possible, a further examination of the 

differences was conducted by calculating the mean accepted gaps for the three groups, 

Table 16. For all three groups, the mean accepted gap was higher than the critical gap, 

which was likely due to the scripting of oncoming vehicles. If 7, 8, or 9 second gaps had 

been scripted, the mean for all three groups would likely have been lower. Nevertheless, 

the mean accepted gaps followed the same trends as the critical gap with the Very Hurried 

group selecting the most aggressive gap which was statistically different from the control.  

Table 16. Mean Accepted Gaps for Unprotected Left Turns 

Group 

Mean 

Accepted Gap 

(sec) 

Statistical Comparisons to Control 

df T P-Value 

Control 8.5 - - - 

Hurried 7.5 42 1.53 0.134 

Very Hurried 6.7 41 2.68 0.011* 
(*) indicates statistical significance at 95% confidence. 
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7.4.3 Other Aggressiveness Measures 

 In addition to speed, acceleration, and gap acceptance as dependent measures, 

participants had the opportunity to pass a slow-moving vehicle and were subjected to 

dilemma zones, Figure 18. These scenarios further tested how time pressures affect driver 

performance. Around the halfway point of the virtual drive, a truck turned out in front of 

participants and drove at 35 mph, below the posted speed limit of 40 mph, and the 

participants did not know that the truck was going to turn off the road in a quarter mile. In 

the control group, only one driver chose to pass the slow-moving truck (8.3%). In the 

experimental groups, 4 of 12 Hurried drivers and 5 of 11 Very Hurried drivers passed the 

truck before it turned off the roadway, with the latter representing a statistically significant 

difference from the control (p = 0.029). 

 

Figure 18. Willingness to (left) pass a slow vehicle and (right) run a yellow right. 

When drivers were nearing the end of the drive, two signalized intersection put 

drivers in a dilemma zone situation forcing a stop or go decision. Specifically, these final 

two intersections were coded to be green as the drivers approached, but turn yellow when 

the driver was four seconds from the intersection. Participants in the control group ran the 

yellow light 9 of 24 times (38%), Hurried drivers ran the yellow 13 of 24 times (54%), and 

* 

* 



74 

Very Hurried drivers ran the yellow 15 of 22 times (68%). While Hurried drivers displayed 

riskier tendencies than the control group, this difference was not statistically significant. 

However, the difference between Very Hurried drivers and the control group was 

statistically significant (p = 0.029). 

7.5 Conclusions 

 Thirty-six drivers participated in a driving simulator study which evaluated how 

time pressures, or a drivers’ perception of time, impacted driving behavior. Travel times 

from a control group were used to determine the incentive thresholds for the experimental 

groups. The Hurried group had a goal time based on the passive drivers in the control and 

the Very Hurried group had a goal time based on the aggressive drivers in the control. 

Speeds, accelerations, gap acceptance, dilemma zones, and a passing zone all tested 

participants’ aggressiveness and risk tolerance. 

7.5.1 Evaluation of Hypotheses  

  The overarching hypothesis of this research project was that drivers would choose 

higher speeds and make riskier decisions when subjected to greater time pressures.  Five 

specific hypotheses related to elements within the virtual drive were used to investigate the 

overarching hypothesis. 

 The first hypothesis predicted that drivers in the experimental groups would select 

higher speeds. After receiving the first progress update, Very Hurried drivers selected 

statistically higher speeds than the control. While Hurried drivers selected higher speeds 

than the control at all five speed checkpoints, these differences were not statistically 

significant. 

The second hypothesis predicted that drivers in the experimental groups would 

accelerate faster after a red light. In the 600-foot segment following a red light, Very 
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Hurried drivers accelerated statistically faster than control drivers. While Hurried drivers 

also accelerated faster than the control, this difference was not statistically significant. 

The third hypothesis predicted that drivers in the experimental groups would accept 

smaller gaps than the control group. Very Hurried and Hurried drivers had lower critical 

gaps and lower mean accepted gaps than the control group for the two unprotected left 

turns in the virtual drive. While a statistical comparison is not possible for critical gaps, the 

mean accepted gap for Very Hurried drivers was found to be statistically lower than the 

control group. 

The fourth hypothesis predicted that a larger percentage of drivers in the 

experimental groups would be willing to pass. More Hurried drivers passed the slow-

moving truck than control drivers, however due to the small sample this difference was not 

statistically significant. However, the Very Hurried drivers passed even more often than 

the control, resulting in a statistically significant difference. 

The fifth, and final, hypothesis predicted that a higher percentage of drivers in the 

experimental groups would be willing to run a yellow light in a dilemma zone situation. 

Both Hurried and Very Hurried drivers were more likely than control drivers to run a 

yellow light in the two dilemma zone situations. However, only the Very Hurried group 

displayed a statistically significant difference from the control group. 

The hypotheses examined in this study all showed that time pressures placed on 

drivers resulted in more aggressive, riskier behavior. The most notable statistical 

differences came from a comparison of the control and the Very Hurried group. The 

Hurried group, who had less of a time pressure, also displayed the same qualities of the 

Very Hurried drivers such as increased speeds and accelerations, a smaller critical gap, and 
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increased willingness to pass and run a yellow light as compared to the control. These 

findings between the Hurried and control would most likely become statistically significant 

with a larger sample size.  

7.5.2 Limitations & Future Work 

 In this study, for the experimental groups, the consequences of getting in a crash or 

getting a ticket were equal to the consequence of not making the goal time, a loss of $15. 

In real life, the consequence of a crash would be demonstrably higher than being a few 

minutes late and the consequences of a ticket would also be higher. This alignment of risks 

and benefits likely exaggerated some of the results of this study. While it is not possible in 

a driving simulator to simulate physical harm from a crash or financial hardship from a 

speeding ticket, future studies could use different incentive and penalty structures in an 

attempt to validate the findings from this study.  

 An instrumented driver study could further investigate the impacts of time pressures 

by pairing the naturalistic driving data with a journal or log of the participant’s daily 

schedule. Such a log would enable the linkage of the participant’s time pressure on a 

specific day with their recorded driving performance. 

7.5.3 Practical Implications 

 The practical implications from this research are abstract but nonetheless 

significant. The findings from this research indicate that drivers who are in a hurry select 

higher speeds and make riskier driving decisions. With the proliferation of GPS, drivers 

can monitor their projected arrival time in real-time and reroute themselves through local 

or neighborhood roads to avoid congestion. Projects primarily focused on relieving 

congestion, may also yield safety benefits on surrounding roads in the network, as drivers 

may make more aggressive decisions based on the difference between their remaining 
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projected travel time and their desired remaining travel time. This finding is important as 

funding agencies often have one pot of money for congestion projects, and another pot of 

money for safety projects. The results of this study indicate that a project aimed to reduce 

congestion may also legitimately claim safety benefits as well.  

 Finally, the findings from this study may influence autonomous driving design. As 

autonomous vehicles begin to join the market, manual driving will still be possible. In order 

to achieve maximum safety benefits, the vehicle should seek to have its driver remain in 

autonomous mode as often as possible. If the car can learn the driver’s schedule and sense 

when they may be more hurried than usual, the autonomous mode may drive a little faster 

and be a little more aggressive than usual in order to meet the operator’s preference to 

minimize their travel time. While this aggressive autonomous mode would be sub-optimal 

compared to factory settings, this mode would likely still be safer than a human driver. 
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CHAPTER 8  

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

 In the United States, nearly a third of fatal crashes are due to speeding (8). There 

are many specific methods aimed to reduce speeding, such as crash data analysis, outreach 

campaigns, targeted enforcement, and understanding speed selection. Within these existing 

methods to reduce the safety impacts of speeding, there is a need for innovative approaches 

to data quality, speed data collection, and its utilization. In this dissertation, a multi-faceted 

approach was taken to improve roadway safety by examining the speeding-related crash 

designation, improving speed limit setting practices, and understanding the causes of 

speeding.  An in-depth analysis of speeding-related crashes was constructed to build a 

logistic regression model to predict the probability of specific crashes being designated as 

speeding-related. A crash narrative review of the crashes identified by the model revealed 

that the Driver Contributing Code (DCC) in crash report could be improved, which would 

result in better crash data. A method was developed to capture continuous speed profiles 

from drivers instrumented with only a smart phone. These continuous profiles showed 

promise as a more accurate methodology to set speed limits. To understand driver speed 

choice and behavior, a driver simulator study was conducted to place drivers under 

different time pressures. When participants were hurried and very hurried, they chose 

higher speeds and engaged in riskier behavior, highlighting that projects to minimize 

congestion should also be able to use safety funding due to the safety benefits on the 

surrounding network. Overall, these projects targeted three specific areas of speeding 

research in an effort to improve traffic safety.  
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8.2 Practical Implications to Specific Stakeholders 

 The findings and recommendations that resulted from this dissertation work have 

practical implications to various groups such as the Massachusetts Department of 

Transportation, transportation engineers, police departments, and vehicle manufacturers. 

8.2.1 MassDOT 

 The Massachusetts Department of Transportation may be one of the stakeholders 

most interested in this work specifically the projects discussed in chapters four, five, and 

six, which have direct implications to the agency. Currently, MassDOT is responsible for 

distributing crash data to consultants on roadway improvement projects. This process can 

consume considerable manpower and can often result in delays to the design of the project. 

MassDOT may be interested in working with a group, such as UMass Safe, who could 

alleviate the work load on MassDOT by distributing these data in a timely fashion and 

adding additional value by addressing know data quality concerns. 

 Data quality is always a concern to MassDOT, the recommendations from the work 

regarding speeding-related crashes would be of interest to the department as they play a 

large role in shaping the specifics of the crash report. Additionally, the logistic regression 

method, if refined, could be applied to other fields within the crash report and could 

increase the accuracy and completeness of crash data, overall. 

The continuous speed collection method developed in this dissertation may be of 

interest to MassDOT as a replacement for the “Trial Runs” required in the state guidelines 

for speed studies. These trial runs require three people in the vehicle, one person driving, 

another monitoring the odometer, and the third monitoring the speed. A continuous speed 

method may require the same number of people, but the data would be easier to collect and 

provide more insight into the speed conditions of the roadway than trial runs. 
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8.2.2 Transportation Engineers 

 Transportation engineers could be interested in a service which provides crash 

reports in a timely manner and constructs the collision diagrams necessary for safety 

improvement projects. Engineers would also be invested in working with the most accurate 

data possible on their projects. While engineers would be unable to dedicate the time to 

perform their own analyses to improve the data, if the findings from the speeding-related 

crash work were applied then transportation engineers would surely benefit. For example, 

if the driver contributing code of “Driving too fast for conditions” was split into three 

separate codes, as recommended, engineers would be able to choose the most appropriate 

safety countermeasures Finally, the continuous speed method could be of great use to 

engineers working on traffic calming projects as such a method would allow specific 

locations along a roadway to be targeted for speed countermeasures. 

8.2.3 Law Enforcement 

 Law enforcement officers are one of the primary stakeholders relating to the crash 

report form. During the first project, one of the common complaints we heard was that the 

various fields on the crash report were ambiguous. The speeding-related crash data project 

addressed one of these ambiguous fields, “Driving too Fast for Conditions”, and 

recommended that the field be changed to be more intuitive. Having a more intuitive crash 

report would allow officers to be accurate on their reports and fill them out faster. The third 

project, developing a continuous speed data collection technique, could be of benefit to law 

enforcement. This procedure could allow for targeted speed enforcement. By having a 

continuous speed profile, officers could look for locations where the 85th percentile speeds 

are near the posted speed limit. Then, at this location the threshold for pulling a vehicle 

and issuing a speeding citation would be lower than what they may usually use. By 
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targeting enforcement in such a manner, law enforcement could increase safety by 

addressing the specific locations which may be unsafe. It may be the case that 5 mph over 

the speed limit in one location is more unsafe than 15 mph over the speed limit in another 

location, continuous speed profiles would enable officers to know when this is the case. 

8.2.4 Researchers 

 While all the work contained in this dissertation would be of interest to researchers, 

project four, understanding how perception of time influences driver behavior, would be 

of particular interest to researchers working on connected and autonomous vehicles. Trust 

will be a main hurdle to overcome when introducing autonomous vehicles, by 

understanding the user’s perception of time, the autonomous vehicle can make decisions 

that gain the user’s trust. If the autonomous vehicle drives too slowly or too passively for 

the user’s perception of time, the user may disable autonomous mode for manual mode, 

lessening the safety impacts of the technology. Smartphones can already learn your 

schedule and provide traffic notifications when you are on your way to or from work, 

vehicles will be able to do the same thing. If the vehicle knows that the user left the house 

too late, or if it reads the user’s calendar and sees an appointment, the vehicle can drive a 

little more aggressively to appease the user’s desire to minimize travel time. Ultimately, 

autonomous vehicles seek to remove the human element completely from the driving task, 

but until manual driving becomes illegal, humans will have the ability to override their 

autonomous vehicle if they are unhappy with its driving behavior. 

8.3 Future Work 

In this dissertation, recommendations to the crash report were identified, a new 

method to collect speeds continuously was developed, and the effect of time pressures on 

speed selection and driver behavior was better understood. Future work should include 
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furthering model prediction to improve crash data quality, integrating advanced 

technologies into transportation research and practices, and better understanding driver 

behavior through driving simulation.  

8.2.1 Speeding-Related Crashes 

The crash narrative review was conducted manually as the speeding-related 

designation is very subjective and it was important to accurately review data. In the future, 

an automated crash narrative review process as demonstrated by (50) could be developed 

for speeding-related crashes. An automated narrative review process could be used in 

conjunction with the standard crash information to most accurately identify crashes which 

were related to speeding. Additionally, the length of the crash narrative may be used in 

future models to gauge the confidence in the model’s prediction. For example, a two 

paragraph crash narrative is likely to encompass all of the crash details, including the 

causation, whereas a one or two sentence narrative is not likely to provide sufficient detail. 

The crash narratives which were reviewed only encompassed crashes occurring in 

Massachusetts. A more robust study could sample crash narratives from multiple states to 

see if the findings match the conclusions from this research. Another interesting analysis 

would be to stratify the model results by agency type to determine the extent to which 

reporting practices may be consistent within an agency. Crash reports filled out on 

highways and interstates always had a crash narrative, whereas only two-thirds of all 

crashes originally sampled contained a valid narrative. This may be due to the fact that 

these crashes fall within State Police jurisdiction, which may be indicative of consistent 

reporting practices and increased training within a single agency. Future studies could 

investigate the accuracy of the speeding-related crash designation as it relates to the 

responding officer’s jurisdiction. 
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Finally, a similar method of prediction could be applied to every field within the 

crash report. Such a method could predicts the most likely input for each field within the 

crash report along with the confidence associated with that prediction. Validation of the 

model would include conducting a manual review of the fields, narrative and crash 

diagrams of 200 crash reports.  The outcome of this potential research would be a statistical 

model which could be broadly applied to crash datasets to quickly identify inaccuracies. 

8.2.2 Continuous Speed Data 

 Companies which monitor and provide real time traffic conditions mine data 

through continuous collection of their users’ operating speeds. Access to this data would 

allow an agency to analyze vehicle speeds on any roadway. While these data would not 

include video and may not be as granular as the data in this study, it would allow engineers 

to alter speed limits or implement traffic calming designs. The main challenge associated 

with these partnerships would be the privacy issues of using these data. Perhaps it may 

require users to opt-in which may skew the pool of users or prohibitively reduce the sample 

size. Such partnerships would require unknown up-front costs and encounter possible 

privacy concerns. A future study should attempt to establish a partnership in order to 

quantify these costs and establish a methodology to mitigate privacy issues. 

The rise of unmanned aerial vehicles (UAVs), or drones, provides an opportunity 

to revolutionize traffic data collection techniques. Previously, aerial studies were infeasible 

due to the high costs of helicopters and studies conducted at ground level could only 

capture a specific location. A future study should compare the use of UAVs to traditional 

speed data collection instruments in order to evaluate the feasibility of UAVs as a traffic 

data collection tool. 
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8.2.3 Perception of Time 

Future studies could use different incentive and penalty structures in an attempt to 

validate the findings from this dissertation. By testing other incentive/penalty structures, 

the cost/benefit balance of speeding can be manipulated. For example, in this research, a 

crash was equal in consequence to getting a speeding ticket, and both were equal 

consequence to being late to the destination. Future studies should make the cost of a crash 

higher than a speeding ticket, and make the cost of a speeding ticket higher than the cost 

of being late.  

 An instrumented driver study could further investigate the impacts of time pressures 

by pairing the naturalistic driving data with a journal or log of the participant’s daily 

schedule. Such a log would enable the linkage of the participant’s time pressure on a 

specific day with their recorded driving performance. 
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