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ABSTRACT 

GOLD NANOPARTICLE BIODISTRIBUTIONS AND STABILITY IN VIVO FROM 

MASS SPECTROMETRIC IMAGING 

 

FEBRUARY 2017 

 

SUKRU GOKHAN ELCI  

 

B.S., IZMIR INSTITUTE OF TECHNOLOGY 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Richard W. Vachet 

 

  

 Their smaller size, inherent non-toxicity and tunable properties of gold 

nanoparticles (AuNPs) attract researchers for their use in biological applications such as 

drug delivery, imaging and therapeutics. Understanding the in vivo fate of these AuNPs are 

essential for their potential effects in both the environment and the body. In this 

dissertation, mass spectrometric imaging methods using laser ablation inductively-coupled 

plasma mass spectrometry (LA-ICP-MS) and laser desorption/ionization (LDI-MS) have 

been investigated to monitor the in vivo fate of AuNPs. AuNP injected mouse tissue 

samples can be obtained and readily imaged to track the injected AuNPs using these 

methods. A first-ever imaging of 2 nm monolayer protected AuNPs in vivo using LA-ICP-

MS is described. In addition, sub-organ biodistribution of AuNPs using LA-ICP-MS has 

been investigated. An alternative quantification strategy that can be used for LA-ICP-MS 

is expressed. A dual mode imaging method that can be used to monitor the stability of 

AuNPs by combining LA-ICP-MS and LDI-MS is reported. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Gold nanoparticles in history 

Gold is a precious metal that has a characteristic beautiful and bright golden yellow 

color with an Earth abundance of only 5 part per billion (ppb).1,2 In the global market, 50% 

of Au is used in jewelry, 40% in investments and 10% in other industries.3 Its relative 

scarcity makes Au one of the most precious metals in the world and is the reason why it 

was used as a currency over centuries. The malleable properties of Au allow it to be 

processed and easily formed into different shapes. It can even be hammered into very thin 

sheets or stretched into fine threads.4 In ancient times, goldsmiths knew how to hammer 

Au into very thin leafs (500 atoms thick, i.e., 144 nm). These thin leafs contributed to the 

development of modern science, providing one of the critical components (Au foil 

bombarded by α particles) for the Rutherford backscattering experiment that led to the 

establishment of the atomic nucleus model. 

Further developments allowed processing of Au into sub-100 nm structures with 

unique properties distinct from bulk Au. One of the most famous examples of nanoscale 

Au is found in the Lycurgus Cup, which displays green or red color based on how it is 

exposed to light (Figure 1.1).5 After the Lycurgus Cup, Au flakes were widely used in 

stained glass to produce church windows of various colors, noticeably the ruby red color.6 

These examples represent the early use of manmade nanomaterials. Although nanoscale 
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Au was used at the time, the nature of it was not well known due to the lack of analytical 

tools to characterize such minuscule structures.  

 

Figure 1.1. Lycurgus cup under different light exposures (Reproduced from Ref 6)  

 The first known example of gold nanoparticles was reported in 1857 by Michael 

Faraday.7 In his work, he discovered “fine particles” by reacting aqueous HAuCl4 with 

phosphorous dissolved in CS2. The “fine particles” suspension showed a ruby red color, 

completely distinct from bulk Au’s golden yellow color, but at the time, there was no theory 

that could explain this observation. Other studies conducted within the last few decades 

have demonstrated an entire spectrum of varying colors of Au “fine particles.” After 

Faraday’s discovery, researchers, including Richard Zsimondy and Theodor Svedberg, 

investigated these “fine particles” and identified them as nanoscale structures made of Au.8  
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1.2. Gold nanoparticles in biological applications 

Besides the optical features of Au nanomaterials, Au has a variety of inherent 

properties that make it attractive to researchers for its use in biological applications. Gold 

is known to be the least reactive metal and can be stored for years without any oxidation.9 

This non-reactive and bioinert nature of Au makes it an excellent candidate for in vitro and 

in vivo applications. The low toxicity of Au nanomaterials has been reported in in vitro 

studies, and preliminary results indicate biocompatibility in vivo and in clinical studies.10,11 

In addition to the bio-inert nature of Au nanoparticles, Au has the well-known 

ability to form strong bonds with compounds containing thiol (-SH) or disulfide (S-S) 

groups.12 Using thiol chemistry, a wide range of self-assembled monolayers (SAM), which 

are mostly long alkanethiol or alkyl disulfides, can be attached onto the Au surface (Figure 

1.2).13 These self-assembled monolayers have been further engineered to give 

functionality, solubility in water, biocompatibility and stability to the particles.14-16 Figure 

1.3 represents the schematic structure of the monolayer attached on the Au nanoparticles 

used in this dissertation. 
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Figure 1.2. Schematic illustrations of a self-assembled monolayer (SAM) of alkanethiolate 

formed on the surface of a Au substrate. (Reproduced from Ref 13) 

   

 

Figure 1.3. Schematic representation of monolayer structure 

 The unique properties and development of monolayer structures open up many 

biomedical applications such as drug delivery,17,18 imaging,19 sensors20 and therapeutics.21  

 1.3. Characterization of monolayer protected AuNPs 

The need for development of better analytical tools to characterize, detect, map and 

quantify nanomaterials has increased significantly in the 21st century. For the quality 

control purposes of the nanomaterials, their characterization is essential for defining 

physical properties such as size, shape and surface chemistry.  

Different techniques have been applied to characterize the physical properties of 

nanoparticles (NPs). For the measurement of the core size and shape, atomic force 

microscopy (AFM),22 transmission electron microscopy (TEM),23 and scanning tunneling 

microscopy (STM)24 are most commonly used. Although these techniques are capable of 

measuring core sizes of NPs, they cannot characterize SAMs attached on the surface of the 

NPs.  In addition to the above mentioned techniques, X-ray diffraction (XRD),25 and small 
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angle X-ray scattering (SAXS),26 have been utilized for characterization of NPs. Even in 

using these techniques, the characterization of SAMs on NPs remains challenging. It is 

essential to investigate new approaches for the characterization of SAMs to better 

understand the interactions of SAMs with biological molecules.27,28 

Thermogravimetric analysis (TGA)29 and nuclear magnetic resonance (NMR)30 are 

used to obtain information from SAMs. TGA provides ligand-to-core mass ratio of the 

NPs, but it cannot characterize the structure of the SAM. NMR, on the other hand, can be 

used to get structural information of the SAMs; however, peak broadening and the large 

sample size required for NMR are major drawbacks of this method. Alternatively, Fourier 

transform infrared spectroscopy (FT-IR) and UV-Vis are capable of approximate 

identification of the surface monolayers.  

 1.4. Mass spectrometric characterization of AuNPs 

Used universally as a measurement tool for the characterization of various 

compounds, mass spectrometry (MS) is a promising tool for the characterization of AuNPs. 

Laser desorption/ionization (LDI),31,32 matrix-assisted laser desorption/ionization 

(MALDI),33 electrospray ionization (ESI),34 and ion-mobility (IM) MS35 have previously 

been applied for characterization of NPs.  

The first examples of LDI-MS analysis of Au nanoparticles provided information 

for intact Au clusters but very little information was obtained for the SAMs.31 Further 

analysis was performed on AuNPs with LDI-MS and MALDI-MS.36 In those reports, 

signals from the alkanethiol monolayer and its fragments were detected. Until recently, 

these studies were limited to only certain types of AuNPs with certain number of gold 

atoms and SAMs. A wide range of core sizes have been successfully detected by MALDI-
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MS,33,37 but intact analysis of AuNPs has still been limited to NPs with certain types of 

monolayers and core sizes. 

AuNPs with intact SAMs have also been investigated by other MS techniques such 

as ESI34 and IM-MS.35 ESI-MS has been shown to provide information for intact Au cores 

with the surface monolayer attached.38 It is able to provide information on the exact 

composition of the AuNPs, but, NPs that are detectable by ESI-MS are only limited to 

certain number of core metal atoms and types of ligands attached. Ligand segregation 

information provided by IM-MS have been shown to be useful for quantifying surface 

components of NPs.39 The application of IM-MS to characterize the monolayers in 

complex matrices such as cells or tissues are undoubtedly will be challenging.  

 1.5. Detection of AuNPs 

Besides being able to characterize AuNPs for different applications, detecting them 

in a sensitive and selective way is crucial for understanding their biodistribution and 

environmental fate.40-43 Previously, AuNPs were monitored in complex systems such as 

bacteria,44 plants,45 cells46 and animal47 for understating their fate. Detection of NPs in 

complex biological systems requires analytical techniques that have a high tolerance to 

biomolecules and good selectivity. Given the complexity of biological systems, the 

techniques described above for characterization of NPs may not be suitable in order to 

analyze AuNPs in biological systems. Besides their applicability in biological systems to 

obtain quantitative information are challenging. 

Optical methods, such as confocal microscopy,48 can be used to monitor 

nanoparticles in biological systems. These techniques often require specialized optical 

equipment, though, and accurate quantitative information is typically not obtainable. 
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Alternatively, NPs can be labeled to allow their detection in biological systems.49,50 

Although this technique overcomes the challenge caused by the complexity of the 

biological system, the additional labeling may cause changes in the behavior of the NPs. 

Also, design of numerous labels for various applications are challenging. 

Elemental analysis methods like inductively-coupled plasma mass spectrometry are 

widely used for detection of AuNPs in complex biological samples.51,52 For example, using 

ICP-MS, the effect of surface properties on biodistribution of AuNPs was investigated in 

cells,53 fish54 and plants.55  Both the effect of surface charge and size on the cellular uptake 

of AuNPs have been investigated.56 In this particular work, four different AuNPs with 

different sizes and surface charges were prepared and uptake efficiencies were measured 

with ICP-MS. The quantitative Au amounts revealed the changes in the uptake of AuNPs 

with different core sizes and surface charges (Figure 1.4).  Although this method provides 

total Au amounts present in the biosystem, there is no information obtained from the SAMs 

present on the AuNPs. 
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Figure 1.4. a) Structure of the AuNPs investigated in this study with cationic, zwitterionic 

and anionic headgroups b) Cellular uptake of AuNPs with different core size by HeLa cells 

after 3 h incubation in serum-free media. ICP-MS used for determination of gold per cell 

amounts and values are indicated in the histogram. c) Uptake trend of AuNPs with different 

sizes. Efficiency of the uptake of 4 and 6 nm NP was normalized to that of 2 nm NP with 

the same surface charge. Mean values ± standard deviation, n = 3. (Reproduced from Ref 

56) 

 Several other mass spectrometric methods, such as LDI, MALDI, ESI and IM have 

been investigated for the detection of monolayers in pure samples. Although successful 

detection of monolayers have been shown with these methods, applicability of them in 

biological matrices are challenging. During analysis of the AuNPs in biosystems with 

MALDI-MS and ESI-MS, ionization of biomolecules can cause interferences that could 

prevent detection of the monolayers.57,58  LDI-MS is the most promising method in terms 

of obtaining interference-free information from the intact monolayers on the AuNPs.59 It 

can also provide multiplexed detection of monolayer simultaneously in complex 

biosystems.59,32  

In LDI-MS, a laser irradiates the sample and the energy provided from the laser is 

absorbed by the NP core.60,61 This absorbed energy is then transferred to the monolayer on 

the NP surface, which then desorbs/ionizes. Using this method, characterization of a wide 

range of NPs with various NP core materials can be achieved since most core materials 

bound to the monolayer on the NPs surface can efficiently absorb at wavelengths such as 

337 and 355 nm, which are the laser wavelengths commonly used in commercial mass 

spectrometers. For example, alkanethiol compounds attached to the AuNPs surface can be 
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detected using this method because the Au core can readily absorb the laser energy and 

transfer it to cleave the Au-S bond to desorb/ionize the monolayer.62 This localized energy 

transfer between the NP core and the monolayer allows us to obtain interference-free 

signals from the monolayer attached to the NP core and very high selectivity. These 

advantages of LDI-MS enable its use in biological applications. Previously, our group 

demonstrated the detection of AuNPs in biological samples such as cells32 and tissues59.  

In addition, other researchers have also utilized this selective ionization process for various 

applications including use of AuNPs as MALDI matrices.63,64 

1.6. Imaging of AuNPs using mass spectrometry 

Monolayer protected AuNPs are widely investigated in biological applications 

because they provide desired functionalities, protection and biocompatibility for these 

applications.65,66 The environmental exposure of these AuNPs and their biodistribution is 

a growing concern. For this reason, there is an urge for development of new methods that 

could track AuNPs in complex biosystems.67 Different approaches, such as magnetic 

resonance imaging (MRI),68 Raman spectroscopy,69,70 surface plasmon resonance 

(SPR),71,72 and fluorescence microscopy73,74 have been used to obtain site-specific 

information of nanomaterials. However, each of these techniques require specific 

properties to allow the detection of the NPs. Another method known as the radionuclide-

labeling also has similar limitations as described.75 Although these techniques are capable 

of providing useful information about NPs distribution in biological systems, it is very 

challenging to obtain site-specific quantitative measurements. In addition, simultaneous 

monitoring of multiple NPs is not easy with these methods. To overcome the described 
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challenges of monitoring NPs with quantitative information, alternative tools are 

necessary.  

A most common method for obtaining biodistribution information for AuNPs is 

ICP-MS. Quantitative information from the core material of any metal NP can be obtained 

with high sensitivity using ICP-MS. Since every species transforms into an atomic form in 

the plasma, any metallic NP in any biological matrix can be monitored after sample 

digestion. While, the total amounts of the NPs can be detected in any matrices, any site-

specific information is lost due to sample digestion. In addition, the sample preparation is 

time-consuming and it is unclear whether the NPs are still intact in vivo or not. 

In the last decade mass spectrometric imaging techniques allowed researches to 

monitor biomolecules such as proteins,76,77 peptides,78 lipids,79 and other biomolecules80,81 

in tissue samples. Besides biomolecules, hyphenated sample introduction systems [i.e. 

laser ablation (LA)] with ICP-MS allowed monitoring the biodistribution of metals present 

in tissue samples.82,83 The applicability of LA-ICP-MS for NPs has been also demonstrated 

in biosystems such as cells,53,84 tissues85,86 and plants.87 Although LA-ICP-MS can 

successfully monitor the NPs in vivo, it still cannot identify if the NPs are still intact in the 

tissues. It is also challenging to obtain multiplexed information for the NPs with same core 

material. On the other hand, LDI-MS can provide the desired information for the 

monolayer of the NPs, even in complex biosystems such as cells32 and tissues.59 This 

technique can also monitor the NPs in a multiplexed fashion to obtain site-specific 

information of the biodistribution of the NPs. Quantitative imaging of these nanomaterials 

are possible with the appropriate standards.  



 

11 

While LA-ICP-MS has been used to detect NPs in biological systems, it has not 

been used to measure very small NPs that are commonly used in biomedical applications. 

Much of the work described in this dissertation will demonstrate the first examples of 

quantitative imaging of 2 nm monolayer protected AuNPs using LA-ICP-MS in mouse 

tissues. Previously, LA-ICP-MS have been used to monitor biodistribution of NPs in vivo 

with sizes up to 13 nm.82 Most of the previous works revealed the overall biodistributions 

of the NPs in tissue. To better understand in vivo fate of the NPs, the research described 

here will show sub-organ biodistribution information for AuNPs in tissues.  Furthermore, 

using a combination of both elemental and molecular mass spectrometric imaging methods, 

it will be shown if the NPs are still intact or not in mouse tissues. 

1.7. Dissertation overview 

LA-ICP-MS has been shown to monitor AuNPs in complex biological systems such 

as cells53,80 and tissues.81,82  This method is based on ablation of solid materials with a laser 

and transfer of the ablated material via a carrier gas into the plasma of the ICP-MS. Highly 

sensitive detection of NPs are achieved with this method and quantitative information for 

the biodistribution of NPs is obtained with appropriate standards.88,89 Information 

regarding whether or not the AuNPs are intact in vivo is provided with LDI-MS imaging.59 

Similar to LA-ICP-MS, this method is based on selective desorption/ionization of the 

monolayer on the NPs surface with laser irradiation. Use of mass barcodes instead of any 

other labeling strategies allows monitoring the biological fate of NPs on their uptake and 

monolayer stability.90 For effective use of NPs, their biodistribution needs to be monitored 

in order to modulate their potential environmental, health and safety effects. Currently, 

there are limited analytical tools for tracking, quantifying, and imaging NPs in biological 
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and environmental systems. In this dissertation quantitative biodistribution of AuNPs and 

their stability in mouse tissues will be revealed by mass spectrometric imaging techniques. 

In Chapter 2, the first-ever imaging of 2 nm monolayer protected AuNPs in vivo 

using LA-ICP-MS will be described. How LA-ICP-MS imaging can be used to quantify 

and monitor 2 nm monolayer protected AuNPs in vivo will be demonstrated. Three 

different AuNPs with varying surface charges (positive, negative, neutral) have been 

investigated. The findings show that to obtain accurate quantitative information for AuNPs 

in vivo, it is critical to choose a matrix that is well matched with the tissue of interest. In 

addition, initial observation showed that the surface charge affected the biodistribution of 

the AuNPs.  

In Chapter 3, an alternative quantification method that could be used for LA-ICP-

MS imaging will be described. Matrix-matched quantification methods require time-

consuming sample preparation and the matrix choice is critical for accurate quantification. 

Inkjet printing is explored as an alternative and is used to obtain standard samples that 

could be used for quantification of AuNPs in vivo. It will be demonstrated how inkjet 

printing can be used to print that standard samples and how that can be used for 

quantification of AuNPs in tissue samples.  

The initial differences observed on the biodistribution of AuNPs will be further 

investigated using LA-ICP-MS in Chapter 4. Four different AuNPs with varying surface 

charge were investigated. In three different mouse tissues, our observations show that the 

surface charge dictates the biodistribution of the AuNPs. In addition, using the 

Hematoxylin and Eosin Y (H&E) staining, sub-organ regions of the tissue were identified 

and quantitative information about the biodistribution of AuNPs were determined.  
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Finally, to better understand the in vivo fate of the AuNPs, a dual-mode imaging 

method that can monitor the stability of AuNPs in a site specific manner will be 

investigated. Three different parameters that can affect the stability of the particles (time, 

organ, NP surface chemistry) were investigated. Time dependent results indicate that the 

stability of the particles are lost over time. It was also discovered that organ bio-

composition dramatically affects the stability of the particle. The NP surface chemistry 

design is also important to obtain stability within same tissue environment.  
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CHAPTER 2 

 

QUANTITATIVE IMAGING OF 2 nm MONOLAYER PROTECTED GOLD 

NANOPARTICLE DISTRIBUTION USING LASER ABLATION 

INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY (LA-ICP-MS)  

 

This chapter is adapted from a paper published as: Elci, S. G.; Yan, B.; Kim, S. T.; Saha, 

K.; Jiang, Y.; Klemmer, G. A.; Moyano, D. F.; Yesilbag Tonga, G.; Rotello V. M.; Vachet, 

R. W. Analyst 2016, 141, 2418-2425. 

2.1 Introduction 

Nanomaterials are widely used in biomedical applications such as drug delivery, 

therapeutics, sensors and other nanodevices.1-3 Functionalized nanoparticles (NPs) have 

tailorable sizes and surface properties that allow them to be tuned for a wide range of 

biomedical applications. For example, NP surface chemistry can be designed to influence 

their absorption, distribution, metabolism, excretion, and toxicity.4,5  Gold NPs (AuNPs), 

in particular, have been widely studied because they possess unique qualities that make 

them appealing for biomedical applications. Especially, gold’s inherent non-toxicity is the 

main property for its selection on biological applications. Besides, AuNPs can be readily 

synthesized to have a range of sizes, and their surface properties can be easily modified by 

taking advantage of gold-thiol chemistry.6,7 In recent years, there has been a rapid increase 

in the use of AuNPs in drug delivery,8 sensing,3 cancer diagnosis and therapy,9 and even 

environmental studies.10,11  
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Several approaches have been applied to understand the fate of the AuNPs in vivo. 

A commonly used approach is surface-enhanced Raman spectroscopy (SERS), which 

relies on the plasmonic properties of AuNPs and how these properties change during 

interactions with each other and with biological systems.12-15 The use of SERS for 

quantitation, however, has been very limited.  Electron microscopy is commonly used to 

image NPs in biological samples. This technique is typically low throughput, though, and 

does not broadly lend itself to reliable quantitative information, despite some recent 

nanopipette-based approaches to address this issue.16 X-ray spectroscopies have also been 

used to image AuNPs17,18 and other NPs,19,20 but these techniques require difficult to access 

instrumentation such as synchrotron sources.  

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an 

emerging method for imaging NP distributions in biological systems21-23 This technique 

has high sensitivity, multi-element detection capability, and spatial resolutions in the 25-

50 µm range that make it suitable for tissue analyses. In addition, quantitative images can 

be obtained when using the appropriate standardization approaches.24-26 To date, several 

reports have described the imaging of nanomaterials in cells,27-29 tissues30-32 and plants.33 

A few of these studies have involved AuNPs, yet all but one33 have measured AuNPs with 

core sizes between 13 and 50 nm. AuNPs with smaller core sizes (< 5 nm) are biomedically 

interesting because these systems have high payload to carrier ratios. Also, together with 

their monolayer coatings these NPs are just large enough to avoid being cleared by the 

kidney but small enough to have sufficient circulation times for therapeutic applications.34 

The challenge of detecting and imaging these smaller AuNPs, however, is the fact that they 
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contain much less gold than their larger counterparts. For example, a AuNP with a 2 nm 

core diameter has 1000 times less gold than a AuNP with a 20 nm core.  

In this chapter, quantitative imaging of functionalized AuNPs with 2 nm cores will 

be demonstrated. It is demonstrated that LA-ICP-MS imaging provides sub-tissue 

biodistribution information that is valuable for understanding the biological fate of AuNPs 

in vivo. Moreover, we find that the AuNPs remain intact in vivo as different surface 

monolayers cause distinct sub-tissue distributions. Overall, these measurements open the 

door for studying how surface chemistry influences AuNP biodistributions, with important 

implications for the design of NP-based therapeutics.  

2.2 Results and Discussion 

Three different AuNPs (Figure 2.1, AuNPs 1-3) were selected to investigate the 

ability of LA-ICP-MS to image AuNPs in mouse tissues. The AuNPs consist of a 2 nm Au 

core (Figure 2.10) and monolayers attached to the core via a thiol group (Figure 2.1). The 

design of the monolayer structure provides biocompatibility, solubility in water and 

stability for these AuNPs.8 Indeed, previous studies have shown that this NP design is 

biocompatible in fish and mice35-37 and that this design allows the NPs to remain intact in 

vivo.37 Spleen, liver, lung, and kidney tissues were selected for imaging because separate 

ICP-MS experiments on tissue homogenates indicated that these tissues were the main sites 

of Au accumulation after NP injection (Table 2.1). Moreover, these organs represent a 

range of tissue types with various sub-tissue features. 
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Figure 2.1. Structures of AuNPs used in this study. 

 

Table 2.1. Summary of ICP-MS quantification of homogenized tissue samples from mice 

injected with AuNPs. 

 ICP-MS (ng/g)
a
 

Mouse 

Tissue 

AuNP 1 AuNP 2 AuNP 

3
b 

Control 

Spleen 6000 ± 

400 

600 ± 

100 

1200 ± 

300 

8 ± 1 

Liver 3400 ± 

400 

1000 ± 

200 

2600 ± 

500 

2 ± 1 

Lung 700 ± 

100 

110 ± 

40 

40 ± 5 3 ± 2 

Kidney 60 ± 30 55 ± 10 60 ± 5 2 ± 1 

a The standard deviations (n = 3) are obtained by averaging the ICP-MS results obtained 

from three different mice injected with the indicated NP. 

b The standard deviations (n = 2) are obtained by averaging the ICP-MS results obtained 

from two different mice injected with the indicated NP (Three mouse used for injection 

initially but the injection on one of the mouse was not successful, to avoid more mouse 

sacrifice, two of the successfully injected mouse were used). 



 

25 

 

To arrive at the optimal parameters for quantitative laser ablation analysis of the 

AuNPs, we deposited AuNPs on glass slide using an inkjet printer in a manner similar to 

that described previously.38 Laser energy, frequency, scan rate, and spot size were 

investigated, and laser energy and scan rate were found to be particularly important for 

obtaining homogeneous Au signals for images with optimal resolution (Figure 2.2). We 

found that the best images were obtained with a laser energy of 3.34 J (40% power) and a 

scan rate of 10 µm/sec, which is slower than most LA-ICP-MS imaging applications that 

typically use a scan rate above 30 µm/sec. 

 

 

Figure 2.2. Identification of laser ablation condition for optimal resolution. a) 

Optimization of the laser scan rate showing the homogeneous ablation at 10 µm/s. b) 

Optimization of the laser energy showing homogeneous signal at a laser energy percentage 

of 40%, which corresponds to 3.34 J. Optimal values were identified by finding conditions 

that lead to relatively constant signals over a 500 μm space of inkjet-printed AuNPs. 

Upon identifying optimal imaging conditions, we first examined spleen tissues 

because its distinct histological regions (i.e. red pulp and white pulp) particularly reveal 



 

26 

the value of LA-ICP-MS imaging (Figure 2.3 and Figure 2.4). From Figure 2.3, it is clear 

that Au accumulates in the red pulp region (i.e. red/orange color in optical image of Figure 

2.3a) but not in the white pulp region (i.e. white circles in optical image of Figure 2.3a and 

pale red regions in the 57Fe images in Figure 2.3c) of the tissue after injection of AuNP 1. 

The role of the red pulp is to remove antigens, microorganisms and dead erythrocytes from 

the blood, while the white pulp contains different lymphocytes that are important in 

immune responses. These images suggest that AuNP 1 is filtered from circulation but is 

not taken up by the lymphocytes that comprise the white pulp. 

 

Figure 2.3. a) Optical image of a spleen tissue taken from a mouse injected with AuNP 1. 

The red pulp is red/orange in color, whereas the white pulp is white and can be challenging 

to distinguish from the area surrounding the organ in this image. Selected red pulp regions 

are indicated with red arrows, whereas selected white pulp regions are indicated with black 

arrows. b) LA-ICP-MS image of the same spleen showing the distribution of gold. c) LA-

ICP-MS image of the same spleen showing the distribution of the iron. (cps=counts per 

second) 
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Figure 2.4. H&E staining images of the spleen tissue (black arrows illustrating the white 

pulp regions and the rectangle zoom in region gives a closer look to the white pulp region 

in the yellow dashed line). 

LA-ICP-MS images of spleens taken from mice injected with AuNPs 2 and 3 are 

also readily obtained (Figure 2.5), even though these AuNPs accumulate in the spleen to a 

much lesser extent than AuNP 1 (Table 2.1). The images in Figure 2.5 illustrate that the 

red pulp is the primary site of accumulation for both NPs; however, AuNP 2 clearly 

distributes to some extent in the white pulp as well. This observation is in stark contrast to 

the behavior of AuNPs 1 and 3, indicating that NP surface chemistry influences how the 

NPs distribute internally. Importantly, because the different AuNPs show different 

distributions, the NPs very likely remain intact in vivo, highlighting the fact that our 

measurements are reporting on the AuNP distributions and not just total gold. Previously, 

we have investigated the particles with tetra ethylene glycol (TEG) and without TEG group 

on C11 chain particles. The particle with TEG showed high stability in cell and imaging 

them in spleen tissue with LDI-MS showed that the particles were still intact.39,47  
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Figure 2.5. a) Optical image of a spleen tissue taken from a mouse injected with AuNP 2. 

b) False color optical image of a spleen tissue taken from a mouse injected with AuNP 2. 

c) LA-ICP-MS image of the same spleen tissue showing the distribution of gold. The light 

gray regions indicate the white pulp. d) Optical image of a spleen tissue taken from a mouse 

injected with AuNP 3. e) False color optical image of a spleen tissue taken from a mouse 

injected with AuNP 3. The light gray regions indicate the white pulp. f) LA-ICP-MS image 

of the same spleen tissue showing the distribution of gold. (cps=counts per second) 

We were also able to obtain valuable images from liver, kidney, and lung tissues 

(Figure 2.6). The liver, which typically accumulates the second highest level of AuNPs in 

our experiments (Table 2.1), is responsible for removing toxic substances from circulation 

by storing or detoxifying them. In general, the liver shows a more homogeneous 

distribution of AuNPs than the spleen; however, we do find that AuNP 1 accumulates more 

in liver tissue surrounding the blood vessels rather than in the blood vessels themselves 

(Figure 2.6b). This observation can be confirmed by comparing the images of the Au 

distributions with the images of 57Fe distributions (Figure 2.6c). Fe is more homogeneously 

distributed throughout the liver tissue, including in the blood vessels. Significant levels of 

Au are not found in the blood vessels, suggesting rapid uptake of AuNP 1 into the 

surrounding tissue and clearance from circulation. Interestingly, AuNPs 2 and 3 show a 

broader distribution throughout the liver, including in the blood vessels (Figure 2.7). The 
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fact that AuNPs with different surface chemistries distribute differently highlights the fact 

these images are revealing AuNP distributions and not just bulk gold distributions. 

Somewhat surprisingly we also find AuNPs in lung tissue, even though the NPs 

were injected intravenously (Figure 2.6d and e). Gold measurement in this tissue is likely 

due to the large amount of blood circulating through the lungs to remove gaseous 

molecules. Presumably, the AuNPs are taken up by the tissue surrounding the alveolar 

spaces, which are seen as black in the optical image of Figure 2.6d. Lastly, we have also 

obtained images of kidney tissues (Figure 2.6f and g), which is remarkable in that these 

tissues typically accumulated less than 100 ppb of Au as determined from the tissue 

homogenate samples (Table 2.1). While the Au levels were low in the kidney, it is clear 

that Au is distributed throughout the kidney with certain regions having higher 

concentrations. In addition, removal of particle that are greater than 5 nm size is not 

possible from kidney40 and as a result of that the particles might be accumulating in the 

spleen and liver at a higher extent. The full implications of these distributions are not clear.  
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Figure 2.6. a) Optical image of a liver tissue taken from a mouse injected with AuNP 1. 

The red spots in the optical image represent the blood vessels that traverse through the liver 

(black arrows indicate the portal veins present. b) LA-ICP-MS image of the same liver 

showing the distribution of gold. c) LA-ICP-MS image of the liver showing the distribution 

of Fe. d) Optical image of a lung tissue taken from a mouse injected with AuNP 1. e) LA-

ICP-MS image of the same lung tissue showing the distribution of gold. f) Optical image 

of a kidney tissue taken from a mouse injected with AuNP 1. g) LA-ICP-MS image of the 

same kidney tissue showing the distribution of gold. (cps=counts per second) 
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Figure 2.7. a) Optical image of a liver tissue taken from a mouse injected with AuNP 2. b) 

LA-ICP-MS image of the same liver tissue showing the distribution of gold. c) Optical 

image of a liver tissue taken from a mouse injected with AuNP 3. d) LA-ICP-MS image of 

the same liver tissue showing the distribution of gold. (cps=counts per second) 

Having established that LA-ICP-MS can indicate the distributions of functionalized 

2 nm AuNPs in mouse tissues, we next investigated the possibility of generating 

quantitative images. To achieve this quantitation, we investigated a matrix-matching 

approach in which we spiked known concentrations of AuNPs into sets of tissue 

homogenates (Scheme 2.1). Ideally, appropriate mouse tissues would be used as the matrix 

for the organs of interest, but the small size of mouse organs and the unnecessary sacrifice 

of mice caused us to study more readily available tissues. We investigated chicken breast 

and beef liver as tissue phantoms for matrix matching and found that chicken breast worked 

well as a matrix match for the spleen, kidney and lung, whereas beef liver was more 

appropriate for liver tissues. 
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Figure 2.8. a) Example calibration curve obtained for AuNP 3 using chicken breast 

homogenate as the matrix. b) Quantitative LA-ICP-MS image of a spleen taken from a 

mouse injected with AuNP 3 with the zoomed in region of the white pulp. c) Quantitative 

LA-ICP-MS image of a spleen taken from a mouse injected with AuNP 2 with the zoomed 

in region of the white pulp. 

Using the matrix-matching strategy we were able to quantify AuNP distributions in 

tissues. Figure 2.8 shows the data for spleen tissue from a mouse that was injected with 

AuNP 3. Using chicken breast homogenate, we obtained the calibration curve for the spleen 

tissue using five different NP concentrations (Figure 2.8a). The calibration curve was 

obtained by averaging the Au signal from the entire tissue homogenate slice, and then this 

curve was used to obtain quantitative images for the spleen (Figure 2.8b). As was seen in 

Figure 2.8b, AuNP 3 is distributed solely in the red pulp, but now AuNP amounts at specific 

locations are apparent. Site-specific quantitation is particularly valuable for spleen images 

of AuNP 2 (Figure 2.8c), which show significant levels of Au in the white pulp regions. 

The quantitative images indicate that 50 ± 25 ppb (or about 10%) of the NPs is found in 

the white pulp regions, whereas 300 ± 80 ppb (or about 60%) is found in the red pulp and 

a remarkable 150 ± 50 (or about 30%) is found in the one pixel-wide regions that surrounds 
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each white pulp region. This latter narrow (~ 40 μm) region around the white pulp is known 

as the marginal zone and is the location where the spleen’s immune response is initiated.41 

The full implications of these results are beyond the scope of this work and will be 

investigated in future work. 

To help validate these data, we compared the average quantity obtained across this 

entire spleen slice to a part of the same spleen tissue that had been homogenized and 

analyzed by ICP-MS. In doing so, we find that the average Au amount in the tissue slice is 

within a factor of 2 of the tissue homogenates (Table 2.2). This level of agreement is 

excellent, given that the tissue slice represents only a very small fraction of this 

heterogeneous tissue, whereas the ICP-MS results were obtained from approximately one 

half of the entire spleen tissue.   

Quantitative images were also obtained for several other tissues and NPs. For the 

spleen, lung, and kidney we find good agreement between the LA-ICP-MS data and the 

ICP-MS results from the tissue homogenates when chicken breast is used as the calibration 

matrix (Table 2.2). For liver tissues, chicken breast was not found to be a reliable matrix 

for quantification, as the LA-ICP-MS and ICP-MS results usually did not compare well 

(Tables 2.1 and 2.2). Instead, beef liver homogenates were found to be a more reliable 

matrix, allowing for a more reasonable comparison between the LA-ICP-MS and ICP-MS 

results (Tables 2.1 and 2.2). Upon applying the appropriate calibration curves for each 

tissue, we are able to estimate detection limits for this LA-ICP-MS imaging method. Gold 

amounts around 10 ng/g (i.e. 10 ppb) or higher in tissue sections provide useful quantitative 

information, as is evident in the images of kidney tissue (Figure 2.9 and Table 2.1). This 
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concentration is similar to the detection range seen in previous LA-ICP-MS of transition 

metals, which were found to be detectable in the 10 – 300 ng/g (i.e. 10 – 300 ppb) range.21  

 

Figure 2.9. Quantitative LA-ICP-MS images of a lung (a) and a kidney (b) taken from a 

mouse injected with AuNP1. 

 

Table 2.2. Summary of LA-ICP-MS quantification results of tissues slices from mice 

injected with AuNPs. 

Mouse Tissue LA-ICP-MS 

(ng/g)
a
 

Spleen (AuNP1) 9000±2000* 

Spleen (AuNP2) 500±150** 

Spleen (AuNP3) 6000±4000** 

Liver (AuNP1-liver homogenate) 10000 

Liver (AuNP2-chicken breast 

homogenate) 

11000 

Liver (AuNP2-liver homogenate) 450 

Liver (AuNP3-liver homogenate) 3700 
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Lung (AuNP1) 300 

Kidney (AuNP1) 80 

a The LA-ICP-MS quantitative data obtained by summing the data obtained for each pixel. 

*n=2, **n=3 

2.3. Conclusion 

In this work, we demonstrate that LA-ICP-MS can be used to quantitatively image 

the biodistributions of monolayer-protected AuNPs with 2 nm cores. To our knowledge, 

this is the first report on quantification of < 10 nm core AuNPs in animal tissues using LA-

ICP-MS. We achieve excellent sensitivity and spatial resolution in these imaging 

experiments, allowing us to determine how AuNPs with different monolayer coatings 

distribute in vivo. Thus, our approach provides useful insight into not only how NPs 

distribute but also how they are processed in vivo. This latter information is accessible from 

the sub-organ NP distributions in tissues such as the spleen and liver. We also find that the 

proper choice of matrix for the calibration standards is essential for obtaining quantitative 

images. Taken together, this imaging approach will provide important tissue/organ 

distribution data that will greatly facilitate the design and study of nanomaterials for 

biomedical applications.  

2.4. Experimental 

2.4.1. Synthesis of 2 nm AuNPs 

The AuNPs used in this study (Figure 2.1) were synthesized by the Brust-Schiffrin 

two-phase method, and were post-functionalized using the Murray place exchange 

reaction.42,43 The details of the synthetic procedure for the NPs used in this study are 
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reported in previous work.44-46 After synthesis, the AuNPs were dialyzed for 72 h against 

MilliQ water using Spectra/Por Dialysis Membranes (molecular weight cutoff of 1,000 Da) 

to separate the free ligands from the AuNPs. The core sizes of the NPs were then measured 

by transmission electron microscopy (TEM) on a JEOL100S electron microscope and were 

found to have core diameters that are 2.0 ± 0.1 nm, 1.8 ± 0.2 nm and 2.0 ± 0.4 nm for AuNP 

1, 2, and 3, respectively (Figure 2.10). They were also characterized by laser-

desorption/ionization mass spectrometry to confirm the monolayer coating.47 

 

Figure 2.10. a) TEM image and b) core size distribution of AuNP 1, c) TEM image and d) 

core size distribution of AuNP 2, e) TEM image and f) core size distribution of AuNP 3. 

2.4.2. Animal Experiments 

Animal care: All animal experiments were conducted in accordance with the 

guidelines of Institutional Animal Care and Use Committee (IACUC) at University of 

Massachusetts Amherst. Female Balb/c mice were purchased from Jackson Laboratory 

(Bar Harbor, ME). Food and water intake were assessed daily. 
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Intravenous injection of AuNPs: 50 μL of each AuNP at a concentration of 2 μM 

was administered intravenously to the Balb/c mice. Because the average NP core sizes are 

about 2 nm, the total gold amount of injected in case was approximately 4000 ng, which is 

expected given that around 200 gold atoms are present in each AuNP.48 After 24 h, the 

mice were sacrificed by the inhalation of carbon dioxide and cervical dislocation. The 

organ samples were then harvested for analysis. Following sacrifice, organs were collected 

and cut into two parts, except the kidneys and lungs of which each mouse has two. One 

part or one of the duplicate organs (in the case of the lung and kidney) was homogenized 

and analyzed by ICP-MS for total gold, while the other was used for LA-ICP-MS imaging.   

 

Tissue preparation for imaging: Using a LEICA CM1850 cryostat, tissue samples 

were sliced to a thickness of 12 μm (for spleen and liver) or 20 μm (for kidney and lung) 

at -20 °C. Then, the sliced tissues were attached to regular glass slides.  

2.4.3. ICP-MS sample preparation and measurements 

Using a 3:1 (v:v) mixture of HNO3 (68%) and H2O2 (30%), each organ was digested 

overnight. The next day 0.5 mL of aqua regia was added, and the sample was then diluted 

to 10 mL using de-ionized water. (Aqua regia is highly corrosive and must be handled 

with extreme caution.) Au standard solutions (gold concentrations: 20, 10, 5, 2, 1, 0.5, 0.2 

and 0 ppb) were prepared prior to each experiment. A Perkin Elmer NEXION 300X ICP 

mass spectrometer was used for the analysis of samples. Prior to the analysis, daily 

performance measurements were done to ensure the instrument was operating under 

optimum conditions. Using the standard mode, 197Au signals were obtained. The RF power 
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for the ICP was 1.6 kW, and the nebulizer gas flow rate was within a range of 0.9-1 L/min. 

The plasma gas flow rate and auxiliary gas flow rate were 16.5 L/min and 1.4 L/min, 

respectively. The analog stage voltage and pulse stage for the detector were -1600 V and 

950 V, respectively. The deflector voltage was set to -12 V, and 50 ms was selected for the 

dwell time during the operation of the ICP-MS.   

2.4.4. LA-ICP-MS measurement conditions and imaging 

For imaging of the tissue samples, a CETAC LSX-213 G2 laser ablation system 

(Photon Machines, Omaha, NE, USA) attached via a 2 m length of tubing to the ICP mass 

spectrometer was used. Optimization of the laser ablation conditions was first performed 

using pure AuNP samples on glass slides. As described in the results and discussion, the 

optimal conditions were found to be: a laser energy of 3.34 J, a spot size of 50 µm, a scan 

rate of 10 µm/sec, and laser shot frequency of 10 Hz. The energy value obtained directly 

from the instrument’s indicator of the laser parameter where it shows the laser energy. 

Laser scanning was done in the line scan mode. Transfer of the ablated material from the 

ablation chamber to the plasma was accomplished using a 600 mL/min flow of He gas and 

a 10 sec shutter delay. The mass spectrometer was operated using the kinetic energy 

discrimination mode, which was especially important for measurements of 57Fe. 

2.4.5. Data analysis and image generation 

ICP-MS data were analyzed using Excel and Origin 9.0 (from OriginLab, 

Northampton, MA, USA). Using Excel, each of the line data collected were processed to 

obtain the pixel size of 50 µm x 50 µm. This is achieved by summing up 5 seconds of the 

data collected (10 µm/s scan rate x 5 second leads to 50 µm length) and used as the single 
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individual pixels.49 Images of the LA-ICP-MS data were generated using the software 

ImageJ. Optical images of the tissues were processed with Adobe Photoshop. 

 

2.4.6. Matrix-matched standard preparation for LA-ICP-MS 

Homogenate preparation: Chicken breast and beef liver were purchased from a 

local market and used as the matrix-matched standards. Small pieces of these tissues were 

cut and placed in 15 mL plastic tubes. Water was added to the tubes, and the tissues were 

homogenized using a PowerGen 125 homogenizer (Fisher Scientific). Homogenized 

tissues were transferred into 1.5 mL centrifuge tubes and were centrifuged at 12000 rpm 

for 10 minutes. Using a pipette, excess water in the supernatant was removed from each 

centrifuge tubes, and 50 mg homogenates were weighed and transferred into 0.5 mL tubes. 

50 μL of 2 µM AuNP solutions were then mixed with the 50 mg homogenates. The AuNP-

homogenates mixtures were then placed into a homemade sample holder and frozen prior 

to slicing at the desired thickness on the cryostat.  

Sample holder preparation: To prepare the sample holder for matrix matched 

standards, a 50 mL centrifuge tube was cut at the 35 mL line and the top part of the tube 

with the cap was used. The tube was then filled with optical cutting temperature (OCT) 

solution. Five Edvotek 0.5-10 µL ultra pipet tips were attached to a piece of tape and slowly 

placed into the OCT solution. The resulting set up was placed in a freezer until the OCT 

solution was completely frozen. The embedded tips were then removed with tweezers, and 

the gold nanoparticle-tissue homogenate mixture was deposited into the five spaces that 

remained in the frozen OCT. 
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Scheme 2.1. Illustration of matrix-matched standard preparation. 
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CHAPTER 3 

 

QUANTITATIVE IMAGING OF GOLD NANOPARTICLES IN TISSUES USING 

INKJET-PRINTED STANDARDS 

3.1. Introduction 

 Several approaches have been applied to understand the fate of the AuNPs in vivo, 

including laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 

imaging.1-4 Although most of these techniques are capable of generating biodistribution 

maps for the AuNPs in vivo, they lack of quantitative abilities. In this sense, LA-ICP-MS 

imaging is a promising tool with available quantification methods.5,6 

 The most commonly used quantification strategy for LA-ICP-MS imaging is to use 

matrix-matched calibration standards.7 In this approach, calibration standards are prepared 

from materials that are as similar to the sample that is analyzed.8 Although, this procedure 

is widely applied in LA-ICP-MS imaging, the laborious sample preparation, heterogeneous 

distribution of standards, and the difficulty of matching with the original sample’s 

composition are the major drawbacks of the method. Several other approaches, such as 

spin coating,9 internal and external calibration,6,10 and certified reference materials 

(CRMs),6 have also been applied for quantitative LA-ICP-MS imaging to overcome the 

drawbacks of matrix matched calibration standards. Although these methods provide 

successful quantification for some samples, in many cases they still do not adequately 

match with the matrix of the original sample. For this reason, developing alternative 

strategies for quantification are required for further improvement. 
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 Inkjet printing is a convenient way to deposit controlled amounts of material in a 

spatially defined way. The homogeneous printout, easy sample preparation and cheap 

instrumentation makes it a potentially promising approach for creating standards for LA-

ICP-MS imaging. Previously, inkjet printing has been used for internal standardization to 

improve signal reproducibility in LA-ICP-MS imaging,11,12 but there are a few reports on 

its use for calibration standards for quantitative imaging.13  

In this chapter, we describe the use of inkjet printing as an alternative approach for 

quantitative LA-ICP-MS imaging of AuNPs in vivo. We have explored whether inkjet-

printed standards can be added as internal standards to tissues of interest in a standard 

addition-type approach. By adding the standards to the tissue that is being imaged, we 

surmised that ‘matrix-matching’ would be ideal.  

3.2. Results and Discussion 

 

Figure 3.1 Structure of the AuNP used in the study 

 

 Positively charged AuNPs with tetraalkylammonium head group (referred to as 

TTMA throughout the chapter) were selected for preparation of inkjet-printed standards. 

The AuNP consists of a 2 nm core and monolayer attached to the core via thiol group 
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(Figure 3.1). The TTMA AuNP solution was prepared by dissolving the NPs in an ink 

formulation, that consisted of 69% water, 20% glycerol, 10% 1,2 hexanediol, 1% 

triethanolamine.14 This formulation was found to be critical for obtaining successful 

printouts from the printer.  

 

Figure 3.2. Illustration of quantification of the printed Au amounts. 

 

Using the CD printing software (Print CD) provided with the printer, different 

printing conditions were investigated in order to find the amounts of Au printed on the 

glass surface. Different black percentages (100, 95, 90, 85, 80, 66, 60, 47, 33, 0 %) were 

selected and printed onto glass surfaces (Figure 3.2). The slides were washed with 10 % 

aqua regia to dissolve the printed gold amounts and soaked for 2 hours prior to the analysis 

with ICP-MS. Quantitative recoveries were obtained from washing the glass slides with 

this method, and the obtained results were plotted in order to generate calibration curves 

for the amounts of Au printed as a function of the % black that was used (Figure 3.3). The 

results indicate that below 60 % black values no amounts of Au are detected. Using % 

black values of 66 % to 100 % allowed a linear calibration curve to be achieved with an 

r2=0.99951 (Figure 3). 
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Figure 3.3. Quantification results of printed amounts of AuNP at different black percentage 

values. 

 Day-to-day variation is one of the major concern for the inkjet-printed standard 

preparation.13 In order to investigate the variability of the printouts from different days, 

calibration curves were generated for selected black percentage values on two different 

days (Figure 3.4). The results indicate that the variation from day-to-day printouts was 

insignificant.  
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Figure 3.4. Day-to-day variation comparison of the printouts obtained from printer 

 

 Following successful quantification of printed Au amounts, the feasibility of inkjet-

printed standards for LA-ICP-MS imaging was investigated. In chapter 2, a quantitative 

LA-ICP-MS imaging method for 2 nm monolayer protected AuNPs using matrix-matched 

standards was developed.15 Optimum instrumental parameters obtained in chapter 2 with 

the matrix-matched standards were also used in this work. Selected black percentages were 

printed as line patterns onto glass slides and a blank control mouse liver tissue sliced was 

placed on top of the printed standards (Figure 3.5).  

 

Figure 3.5. An illustration of the sample preparation procedure for quantitative LA-ICP-

MS imaging with inkjet-printed standards.  

 

Upon placement of the control mouse tissue, the sample was imaged using LA-

ICP-MS. 57Fe signals were used to locate the tissue and generate an image of it as Fe is 

located throughout the tissue. At the same time, 197Au signals were obtained to generate 

images of the inkjet-printed samples. The results obtained from inkjet-printed standards 

were then used to plot calibration curves. Linear calibration curves with r2=0.99296 were 

obtained from the inkjet-printed standards in LA-ICP-MS imaging (Figure 3.6). 
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Figure 3.6. Quantification results obtained from a control mouse tissue placed on top of 

the inkjet-printed standards.  

3.3. Future direction 

 Initial experiments allow us to quantify the printed amounts of the AuNPs from 

different black percentages. Using this information, we can select 6 different black 

percentages to be used for inkjet-printed standards. With the selected inkjet-printed 

standards, a calibration curve can be plotted and linear calibration curves can be achieved 

from these samples with the blank mouse tissue. Overall, these results are promising to 

move forward to use inkjet-printed standards for exact matrix matching with tissues of 

interest. This could be achieved by placing only small part of the tissue on the edge of the 

inkjet-printed standards (Figure 3.7). The inkjet-printed standards and the tissue could be 

imaged simultaneously with the LA-ICP-MS system, and the obtained data could be further 

processed to generate calibration curves.  

 



 

51 

Figure 3.7. An illustration of the usage of the inkjet-printed standards for quantification of 

AuNPs in tissue samples from mice injected with AuNPs. 

 

 Data analysis of the samples could be done by generating histogram bins for each 

of the printed lines. The results could then be extracted to separate the signals coming from 

the tissue samples and the inkjet-printed standards. The obtained averages from the 

histogram bins could be used to generate the calibration curve for the quantification of Au 

amounts in the tissue (Figure 3.8).  
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Figure 3.8. a) Illustration of histogram calculation for generation of calibration curve from 

inkjet-printed standards. b) Calibration curve plotted using the average values of the 

intensity bins obtained from inkjet-printed standards. 

3.4. Conclusion 

 In conclusion, the inkjet-printed standards could possibly be used as an alternative 

strategy for LA-ICP-MS imaging. Quantitative recoveries obtained from the different 

printed AuNP amounts and negligible day-to-day variation suggest that it is a potentially 

promising approach for LA-ICP-MS quantification. Linear calibration curves were also 

obtained from the experiments with blank mouse liver tissue. With the application towards 

AuNP injected mouse tissues, this method might be used for better matrix matching and 

thus better quantitative imaging.   

3.5. Experimental 

3.5.1. Instrumentation 

For all printing experiments, an Epson Artisan 50 inkjet printer was used. It was 

selected over other brands and types due to its piezoelectric print head that does not cause 

any issues with the experimental materials. For example, some brands uses heat-based print 

heads that can affect to the composition of the materials and the quality of the printouts 

obtained.  

3.5.2. Synthesis of AuNP 

 The AuNP used in this study were synthesized using Brust-Schiffrin two-phase 

method.16 Using Murray place exchange reaction, the AuNPs were functionalized with the 
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desired monolayer.17 The details of the synthetic procedure for the synthesis of the 

monolayer can be found in Chapter 2. Following place exchange reaction, AuNPs were 

dialyzed for 72 hours against MilliQ water using Spectra/Por Dialysis Membranes 

(molecular weight cutoff of 1000 Da) to remove excess free ligand.   

3.5.3. Inkjet printing formulation 

 For successful printouts from a piezoelectric print head, the formulation viscosity 

was optimized. As previously noted, we used an organic solvent system that is known to 

enable reliable printouts. The formulation consisted of 69% water, 20% glycerol, 10% 1,2 

hexanediol, and 1% triethanolamine that was then mixed with 1:1 ratio of the AuNPs 

solution. 10 mL of this mixture was then placed into an empty black ink cartridge (obtained 

from Inksupply.com) to be printed.  

3.5.4. Printing of inkjet-printed standards 

 Using the CD printing software, a rectangular shape and a 6 line pattern was created 

for obtaining quantification of AuNPs amount and inkjet-printed standards, respectively. 

Rectangular shapes were drawn using the shape tool in the Print CD software. Using font 

size of 4 and the letter “I” in horizontal orientation, 6 lines of the selected black percentages 

were also printed out. The printed sample were dried overnight and a blank control mouse 

tissue was placed on top of the printed samples prior to their analysis with LA-ICP-MS.  

3.5.5. Quantification of Au amounts printed 

 Using the CD printing software (Print CD) provided with the Epson Artisan 50 

printer, we printed different black percentages (100, 95, 90, 85, 80, 66, 60, 47, 33, 0 %). 
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Glass slides (from Fisher Scientific) were placed onto the CD printing tray and rectangular 

regions of the different black percentages were printed out. Two rectangular regions 

(approximately 3.5x1.7 cm) were printed onto the same glass slide and the slides were cut 

into half. Each half was placed into a different 50 mL centrifuge tube and they were washed 

with 1 mL aqua regia (Aqua regia is highly corrosive and must be handled with extreme 

caution.). After washing the slides with aqua regia, samples were diluted to 10 mL and 

slides were soaked for 2 hours. Following digestion of the samples, the glass slides were 

removed from the solution and the samples were analyzed with ICP-MS. The parameters 

used for ICP-MS analysis were described in Chapter 2. Au standard solution were prepared 

prior to the each experiment (20, 10, 5, 2, 1, 0.5, 0.2, 0 ppb). 
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CHAPTER 4 

 

SURFACE CHARGE CONTROLS THE SUB-ORGAN BIODISTRIBUTION OF 

GOLD NANOPARTICLES  

 

This chapter is adapted from a paper published as: Elci, S. G.; Jiang, Y.; Yan, B.; Kim, S. 

T.; Saha, K.; Moyano, D. F.; Yesilbag Tonga, G.; Jackson, L. C.; Rotello, V. M.; Vachet, 

R. W. ACS Nano 2016, 10, 5536-5542. 

 

4.1. Introduction 

Recent advances in the synthesis and functionalization of nanoparticles (NPs) has 

led to an increasing number of applications in imaging,1,2 drug delivery3,4 and therapeutics.5 

Effective use of nanomaterials as drug delivery vehicles requires them to overcome 

biological barriers, accumulate in specific tissue and sub-tissue regions, and resist rapid 

clearance.6,7  For both active and passive targeted drug delivery applications, it is therefore 

important to understand the effect of NP surface functionality on biological distributions.8 

Several studies have investigated the in vivo biodistributions of differently sized NPs9,10 

but relatively few report the effect of surface functionality of the NPs in vivo.11,12  NP size 

influences how NPs are cleared or stored in the reticulo-endothelial system organs (e.g. 

liver, spleen, etc.) after their uptake by the mononuclear phagocyte system in blood 

stream.13,14 While smaller NPs (< 5 nm) are excreted from the body by renal clearance, 

larger particles (> 100 nm) are filtered by the spleen and sequestered by the liver.15 Particles 

with sizes between these two extremes (5 - 100 nm) typically have longer circulation 
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times.16,17 In this size range the fate of NPs in vivo is likely to be influenced by a range of 

factors, including NP shape and surface chemistry.  

Surface chemistry is a particularly important determinant, influencing cellular 

uptake,18-20 immune system activation,21 and the composition of the protein ‘corona’ that 

develops around NPs in vivo.22,23 To date,  most in vivo applications of nanomaterials have 

involved PEG-functionalized NPs to minimize protein corona formation and concomitant 

rapid NP removal from circulation via opsonization,13,24-26 although binding to plasma 

proteins is still possible, including interactions with IgG and fibrinogen.27 A few studies 

have explored how modification to PEG surface coatings, such as the introduction of 

charged moieties, influences protein corona formation and subsequent interactions with 

components in the blood and uptake by macrophages.12,28-33 Not surprisingly, surface 

chemistry can influence protein adsorption, 31,32 but it also affects uptake by macrophages28-

30,33 and perhaps even plays a more important role than size in NP-cell interactions.12,27,29,33 

Overall, existing work indicates that the influence of NP surface chemistry on the fate of 

the NPs in vivo is complex. Quantitative information about the effect of surface chemistry 

on NP biodistributions will improve our understanding of NP fate in biological systems. 

Moreover, site-specific quantitative information about nanomaterial sub-organ 

distributions, which is, with a few exceptions,34,35 lacking in nanomaterial studies in vivo, 

will yield a deeper understanding of how NP surface chemistry influence biological 

pathways inside organisms.   

In this chapter, we investigate the sub-organ biodistribution of AuNPs with 

different surface charge that have been intravenously injected into mice. We focus on the 

distributions of these AuNPs in the kidney, liver and spleen, as these organs not only tend 
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to accumulate the highest levels of NPs, but they also have distinct cell types that are 

involved in different biological functions, including clearance and immune responses. We 

use laser ablation inductively-coupled plasma imaging (LA-ICP-MS) to quantitatively 

track the sub-organ distributions. Compared to common imaging techniques, such as TEM, 

confocal microscopy, and AFM, the biggest advantage of LA-ICP-MS imaging is the 

ability to provide quantitative information about distributions. Moreover, the technique 

does not require any specific physical property, such as fluorescence, for detection. Our 

studies here show that surface charge influences the sub-organ biodistributions of the 

AuNPs, and the imaging results clearly reveal that surface charge affects the response of 

the immune system to the injected NPs.  

4.2. Results and Discussion 

Functionalized AuNPs with 2 nm cores were injected into mice to explore how 

surface chemistry influences NP sub-organ distribution. Each of the AuNPs has the same 

hydrophobic interior to confer stability, and a tetra(ethyleneglycol) layer to provide 

compatibility and solubility (Figure 4.1). The surface chemistry was varied via the 

headgroup of the attached ligand, giving rise to NPs that differ in charge (Figure 4.1). 

AuNPs 1 and 2 also differ in hydrophobicity. Our previous work showed that the presence 

of serum influences the uptake of these NPs to different extents, making it edifying to study 

their difference in vivo.36 As was observed previously with similar AuNPs,14 differences in 

surface chemistry can have a dramatic effect on the biodistributions of these NPs in the 

mice, as indicated by the total amount of gold accumulated in each organ (Figure 4.2). In 

most cases, the positively-charged AuNPs (AuNPs 1 and 2) accumulate to the greatest 

extent in each organ. Moreover, the liver and spleen accumulate the highest concentrations 
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of the NPs, which is similar to previous observations for cells and tissues.37,38 This 

biodistribution profile likely arises because the reticuloendothelial system plays a dominant 

role in NP clearance.19,39 The liver and spleen are major detoxifying and filtering organs in 

mammals. With a high proportionate blood-flow to these organs together with the 

propensity of positively-charged NPs to been readily taken up into cells,14 it is perhaps not 

surprising that AuNPs 1 and 2 are found most extensively in these organs. 

  

 

Figure 4.1. Design and structure of the AuNPs used in the study 
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Figure 4.2. AuNP concentrations in different organs after 24 hours of injection as 

determined by ICP-MS. The AuNP concentrations were calculated by the gold amount (ng) 

divided by organ weight (g). The error bars correspond to the standard error of the mean 

from measurements of organs from 4 mice.  

Beyond organ-by-organ distributions, we were interested in understanding whether 

surface chemistry influences NP distributions within the different structures of the kidney, 

lung, spleen, and liver. To address this question, we used LA-ICP-MS to quantitatively 

image the NP biodistributions in these organs. Strictly speaking, LA-ICP-MS is an element 

specific technique and thus reports on total gold concentrations, but previous work from 

our groups has shown that AuNPs with the same design remain intact in vivo.40 Moreover, 

the NP surface coating has a noticeable influence on the distribution of these NPs, 

indicating that the technique is probing the locations of the AuNPs. 

The lung and kidney contain relatively low concentrations of AuNPs as compared 

to the liver and spleen, but AuNP distributions in these organs can be readily obtained using 

LA-ICP-MS imaging. The lung tissues are somewhat difficult to image because of the 

fragile nature of this organ. As a result the images do not reveal much beyond the fact that 

all four AuNPs are absent in the alveolar spaces of the lung (Figure 4.3). This observation 

is not surprising given that the alveolar space is a gas-filled region in the lungs.  

 



 

61 

  

Figure 4.3. Imaging results for the lung tissues. (a) optical and (b) quantitative LA-ICP-

MS images of AuNP 1; c) zoomed-in area illustrating the amount of AuNP 1 in a selected 

area of the lung tissue with various alveolar spaces indicated in black dotted lines; (d) 

optical image after H&E staining of the same region shown in (c), indicating the alveolar 

spaces in black dotted lines.  (e) optical and (f) quantitative LA-ICP-MS images of AuNP 

2; (g) optical and (h) quantitative LA-ICP-MS images of AuNP 3 (i) optical and (j) 

quantitative LA-ICP-MS images of AuNP 4. All scale bars correspond to 0.5 mm. 

 

More provocative is the finding that the AuNPs are distributed in a surface charge-

dependent fashion in the kidney. Images of this organ from mice injected with the 

positively-charged AuNPs 1 and 2 have a more punctate appearance than the images from 

mice injected with AuNPs 3 and 4 (Figure 4.4). Comparing the LA-ICP-MS images with 

H&E stains of the kidney (Figure 4.4c and d) indicate that AuNPs 1 and 2 accumulate in 

the glomeruli (the initial step in filtration in the nephron) of the kidney, whereas AuNP 3 

and 4 do not selectively accumulate in these regions of the kidney. Indeed, AuNP 3 
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accumulates extensively in the arteries that transport blood into the kidney, and AuNP 4 is 

more homogeneously distributed in the organ. Another interesting observation is that 

AuNPs 1, 2, and 4 do not appear to accumulate in the arteries. 

The concentration of the positively-charged AuNPs in the glomeruli of the kidney 

suggests that surface charge influences how these AuNPs are filtered by the kidney. 

Glomeruli are part of the initial stage of filtering by the kidney, playing an important role 

in a process that eventually ends with the excretion of materials from the blood into urine.41 

Glomeruli have pores that are less than 10 nm in diameter, and their membranes are 

negatively-charged, which might explain why the positively-charged AuNPs preferentially 

accumulate in this region of the kidney. Filtering of intact NPs by the kidney is expected 

to be slow because particles larger than 5 nm in hydrodynamic size are not excreted 

efficiently by this organ.42 Quite likely the accumulation of AuNPs 1 and 2 in the glomeruli 

influences the rate at which these particular NPs are excreted relative to AuNPs 3 and 4. 

Future work will investigate this possibility via a more thorough study of the metabolism 

and excretion characteristics of these materials. Clearly, though, surface charge influences 

NP distributions, and LA-ICP-MS images reveal valuable information for better 

understanding biological responses to injected NPs.  
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Figure 4.4. Imaging results for the kidney tissues. (a) optical and (b) quantitative LA-ICP-

MS images of AuNP 1; c) zoomed-in area illustrating the amount of AuNP 1 in a selected 

area of the kidney tissue with an artery vein and glomeruli indicated in yellow and white 

dotted lines, respectively; (d) optical image after H&E staining of the same region shown 

in (c), indicating the artery vein and glomeruli indicated in yellow and white dotted lines. 

(e) optical and (f) quantitative LA-ICP-MS images of AuNP 2; (g) optical image showing 

the artery veins indicated in black arrows and (h) quantitative LA-ICP-MS images of AuNP 

3 and (i) optical and (j) quantitative LA-ICP-MS images of AuNP 4. All scale bars 

correspond to 0.5 mm. 

Upon imaging spleen tissues by LA-ICP-MS, we found that the AuNPs are 

heterogeneously distributed in this organ (Figure 4.5). All four AuNPs accumulate to a 

significant extent in the red pulp region of the spleen, but AuNP 3 (Figure 4.5h) and to a 

lesser extent AuNP 4 (Figure 4.5j) accumulate in the white pulp and the marginal zone 
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between the red and white pulp (Figure 4.5h and Table 4.1). The positively-charged AuNPs 

(i.e. AuNP 1 and AuNP 2) accumulate very little in the white pulp and marginal zone (Table 

1). In fact, in most images, no statistically significant levels of the positively-charged NPs 

are found in the white pulp. 

The observed AuNP distributions provide interesting insight into how surface 

chemistry affects NP fate in vivo, especially in light of the physiological role of the spleen. 

The primary role of the red pulp is to clean the blood of particulate matter, antigens, and 

dead blood cells, whereas the white pulp acts as part of the immune system. The marginal 

zone is the exchange or sieving region between the white and red pulp, and much of the 

immune response generated by the spleen starts in this region.43,44 Consequently, the 

observation that the neutral AuNP 3 is found to the greatest extent in the marginal zone 

and white pulp suggests that this NP may have elicited an immune response to a greater 

extent than the others. It is known that antigen exposure in the marginal zone of the spleen 

can cause the transport of bacteria from the marginal zone to the periarteriolar lymphoid 

sheath of the white pulp.45 It is possible that AuNP 3 is being transported in an analogous 

way, giving rise to its accumulation in this region of the spleen. 

The reasons for the surface chemistry-dependent difference in the AuNP 

distributions are not clear at this point, but it is likely that AuNP 3 is coated with an 

immune-competent protein. Previous work with functionalized NPs having varying PEG 

chain lengths suggested that the protein corona around these NPs was formed by the 

immune-competent proteins IgG and fibrinogen.27 In contrast, the positively-charged 

AuNPs 1 and 2 are almost certainly interacting with negatively charged proteins such as 

serum albumin, which do not elicit an immune response. Perhaps the negatively-charged 
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NPs are coated to a lesser extent with immune-competent proteins, causing them appear to 

a lesser extent in the white pulp than the neutral NP. 

 

Figure 4.5. Imaging results for spleen tissues. (a) optical and (b) quantitative LA-ICP-MS 

images of AuNP 1; c) zoomed-in area illustrating the amount of AuNP 1 around a selected 

white pulp region of the spleen; d) optical image after H&E staining of the same region 

shown in (c), indicating the white pulp region in dark purple, the red pulp region in light 

purple and the marginal zone (region circled by the yellow dashed lines). (e) optical and 

(f) quantitative LA-ICP-MS images of AuNP 2;  (g) optical and (h) quantitative LA-ICP-

MS images of AuNP 3 (i) optical and (j) quantitative LA-ICP-MS images of AuNP 4. All 

scale bars correspond to 0.5 mm.  
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Table 4.1. Percent accumulation of each AuNPs in different regions of the spleen with data 

averaged from three images for each AuNP. 

 Red pulpa* Marginal zoneb* White pulpc* 

AuNP 1 79 ± 8 % 17 ± 5 % 2.1 ± 0.8 % 

AuNP 2 75 ± 3 % 21 ± 2 % 3 ± 1 % 

AuNP 3 60 ± 15 % 30 ± 10 % 10 ± 5 % 

AuNP 4 70 ± 9 % 27 ± 9% 5 ± 2 % 

a The red pulp regions in each image were identified from the H&E stains, optical 

images, and the 57Fe LA-ICP-MS images of the spleen (Figure 4.6).  

b The marginal zone is the ~ 40 µm thick region between the red pulp and white pulp, 

and in the LA-ICP-MS images, this corresponds to a single pixel area surrounding each 

white pulp region.  

c The white pulp regions in each image were identified from the H&E stains, optical 

images, and the 57Fe LA-ICP-MS images of the spleen (Figure 4.6).  

*Average values are calculated based on three images obtained from three separate tissue 

slices (n=3). See experimental section for details about how the gold percentages were 

determined in each case. 
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Figure 4.6. 57Fe images of the spleen tissues. Higher concentrations of Fe are found in the 

red pulp as this region is infused with blood, whereas lower Fe concentrations are found in 

the white pulp. 

 

A comparison of LA-ICP-MS liver images reveals that the positively-charged NPs 

distribute themselves in a more heterogeneous fashion than the neutral or negatively-

charged NPs (Figure 4.7). AuNPs 1 and 2 accumulate in the hepatocytes and endothelial 

regions of the tissue that comprise a large percentage of the liver46 and accumulate very 

little in the Kupffer cells (e.g. Figure 5c and d). In contrast, AuNP 3 (Figure 4.7h) and 

AuNP 4 (Figure 4.7j) distribute more broadly in the liver.  In particular, AuNP 3 seems to 

be equally distributed through the hepatocytes and Kupffer cells. A quantitative basis for 

this conclusion can be found by counting the number of pixels in the LA-ICP-MS images 

that show no detectable gold signal. For AuNP 3, only 7.3% of the pixels are found without 

gold, whereas 26.3%, 44.1%, and 23.5% of the pixels are found without gold for AuNPs 

1, 2, and 4, respectively. 

Another interesting observation is that the positively-charged AuNPs do not appear 

in the blood vessels that transverse the liver. This conclusion is based upon comparisons 

of the Au and 57Fe distributions from the LA-ICP-MS imaging results (e.g. Figure 4.7b and 

4.7f vs. Figure 4.8).  The blood vessels in the Au images for AuNP 1 and 2 have no gold, 

whereas the blood vessels in the images of AuNPs 3 and 4 have significant levels of gold. 

These data are consistent with the low levels of AuNPs 1 and 2 and the relatively high 

levels of AuNP 3 measured in the blood by ICP-MS (Figure 4.2). 
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Just as with the spleen data, the AuNP distributions in the liver suggest that AuNP 

3 is interacting to a greater extent with the immune system than the positively-charged 

AuNPs. This conclusion comes from the homogeneous distribution of AuNP 3, including 

with the Kupffer cells, and the corresponding absence of AuNPs 1 and 2 in these cells 

(Figure 4.7c and d). Kupffer cells have endocytic activity against blood-borne materials 

entering the liver and act as part of the host immune system to clear pathogens and waste 

materials.47 Kupffer cells are effective at removing foreign material from circulation, and 

particular matter and microorganisms are known to adhere to Kupffer cells.48 As speculated 

earlier in the context of the spleen images, it is possible that differential protein corona 

formation around the AuNPs leads to different biodistributions in liver. Another interesting 

conclusion from the liver images is that the positively-charged AuNPs are removed from 

circulation more quickly than neutral and negatively-charged AuNPs as revealed by the 

absence of AuNPs 1 and 2 in the blood vessels 24 h after injection. 
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Figure 4.7. Imaging results for the liver tissues. (a) optical and (b) quantitative LA-ICP-

MS images of AuNP 1; c) zoomed-in area illustrating the amount of AuNP 1 in a selected 

area of the liver tissue with a blood vessel, hepatoctyes and Kupffer cells indicated in 

yellow, white and black dotted lines, respectively; (d) optical image after H&E staining of 

the same region shown in (c), indicating the blood vessel, hepatoctyes and Kupffer cells in 

yellow, white and black dotted lines.  (e) optical and (f) quantitative LA-ICP-MS images 

of AuNP 2; (g) optical and (h) quantitative LA-ICP-MS images of AuNP 3 (i) optical and 

(j) quantitative LA-ICP-MS images of AuNP 4. All scale bars correspond to 0.5 mm. 

 

Figure 4.8. 57Fe images of the liver tissues.  

4.3. Conclusion 

In conclusion, surface charge has a notable effect on NP biodistributions in vivo, 

specifically their sub-organ distributions. LA-ICP-MS images of the kidney show that the 

positively charged AuNPs concentrate in the glomeruli, whereas the neutral and 

negatively-charged AuNPs do not. This observation suggests that the NPs might be 

excreted at different rates that depend on their surface chemistry. Future work will explore 

this finding in greater detail. LA-ICP-MS imaging results also suggest that neutral AuNPs 

are more likely to interact with the immune system, as evidenced by their greater relative 

accumulation in the marginal zone and white pulp regions of the spleen and with the 



 

70 

Kupffer cells of the liver. Positively-charged NPs, on the other hand, are found more 

extensively in the filtering regions of the spleen and the detoxifying hepatocytes of the 

liver. In addition, because no measurable gold is found in the liver blood vessels 24 h after 

injection of the positively-charged AuNPs, it is likely that these AuNPs are rapidly cleared 

from circulation, whereas the neutral and negatively-charged NPs circulate longer. The 

negatively-charged AuNPs are cleared more slowly than the positively-charged AuNPs, 

but they do not interact with the immune system as extensively as the neutral AuNPs, as 

suggested by their distributions in the spleen and liver. Overall, LA-ICP-MS imaging gives 

quantitative sub-organ information that can provide a deeper understanding of how NP 

properties affect the biological responses to the injected NPs. Moreover, observations about 

the effect of NP surface functionality on sub-organ biodistribution may provide additional 

valuable information to improve the design of nanotherapeutics for both passive and active 

targeting strategies. For example, some surface coatings may cause NPs to interact with 

the immune system to a greater or lesser extent, and understanding this effect is essential 

for realizing the full implications of a NP-based delivery system.  

4.4. Experimental 

4.4.1. Material 

All the reagents required for the AuNPs syntheses were purchased from Fisher 

Scientific or Sigma-Aldrich, with the exception of chloroauric acid, which was obtained 

from Strem Chemicals Inc. The 8-10 weeks old Balb/C type mice required for the animal 

experiments were obtained from Jackson Laboratory (Bar Harbor, ME). Animals were 

housed in the University of Massachusetts Amherst Animal Care facility. All of the animal 
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experiments were conducted in accordance with the guidelines of the Institutional Animal 

Care and Use Committee (IACUC) at the university. Food and water intake of the mice 

were assessed. Chicken breast and beef liver were purchased from a local market (Big Y). 

The H&E staining kit, nitric acid, hydrochloric acid and hydrogen peroxide were purchased 

from Fisher Scientific. The daily performance solution and Au standard were purchased 

from Perkin Elmer.  

4.4.2. Gold nanoparticle synthesis and characterization 

Using the Brust-Schiffrin two-phase synthesis method, 2 nm core AuNPs were 

synthesized.49 The AuNPs are initially synthesized with pentanethiols as the capping 

monolayer. Once these AuNPs were synthesized, the Murray place exchange method was 

used to functionalize the AuNPs with desired ligand functionality.50,51 Detailed syntheses 

of the ligands that were used in this work can be found in previous work.52 The place 

exchange reaction involved taking 10 mg of the pentanethiol-conjugated AuNPs and 

mixing with 30 mg of the ligand of interest in a mixture of dry dichloromethane (3 mL) 

and methanol (1 mL). This mixture was stirred under nitrogen (N2) for 3 days at 25 °C. 

Then, the precipitate was collected (place-exchanged particles precipitate out) and 

dissolved in distilled water and dialyzed for three days to remove excess ligands, 

pentanethiol, and other salts present in the nanoparticle solution. The products of the 

synthesis, including the ligands and the final nanoparticles, were characterized using NMR 

and mass spectrometry. Figure 1 represents the structure of the AuNPs used in the study. 

For the characterization of AuNPs, the core sizes of the NPs were measured by 

transmission electron microscopy (TEM) on a JEOL100S electron microscope and were 

found to have core diameters of 2.1 ± 0.2 nm (AuNP 1), 2.0 ± 0.1 nm (AuNP 2), 1.8 ± 0.2 
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nm (AuNP 3) and 2.0 ± 0.4 nm (AuNP 4) (Figure 4.9). The AuNPs were also characterized 

by laser-desorption/ionization mass spectrometry (LDI-MS) to confirm the monolayer 

coating.53 Hydrodynamic size and the zeta potential of the particles were measured with 

Malvern NanoZetaSizer (1µM NP concentration in 5 mM phosphate buffer pH=7.4). 

 

Figure 4.9. TEM images of the AuNPs studied in this work and summary of the TEM, 

DLS and zeta potential measurements of the particles. 

4.4.3. Intravenous administration of AuNPs in normal mice 

Solutions of individual AuNPs were prepared at concentrations of 2 μM, and 50 μL 

of each AuNP solution was injected into Balb/c mice via the tail vein. After 24 h, the mice 

were sacrificed via inhalation of carbon dioxide and cervical dislocation. Organs were then 

collected and prepared for analysis. Each organ that was collected was cut into two parts, 

except the kidneys and lungs which are present as a pair in the body. One of the two organs, 

in the case of the kidneys and lungs, or one part of the organs was homogenized and 
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analyzed by ICP-MS for total gold amount. The remaining organ or part of the organ was 

then used for LA-ICP-MS imaging analysis.    

4.4.4. Tissue preparation for imaging  

Liver and spleen tissue samples were sliced to a thickness of 12 μm at -20 °C using 

a LEICA CM1850 cryostat microtome instrument. The sliced tissues were then attached to 

regular glass slides and stored at room temperature until they were analyzed.  

4.4.5. Hematoxylin & Eosin Y (H&E) staining  

Tissue slices were stained using a kit that was obtained from Thermo Fisher 

Scientific. Adjacent slices of the tissues were taken and fixed onto a glass slide. Following 

fixation, the tissues were immersed into distilled water, hematoxylin, bluing reagent, 95% 

ethanol, eosin-y, 100% ethanol and xylene in the order described by the kit’s manual.  

4.4.6. ICP-MS sample preparation and measurements  

Tissue homogenates of the organs were prepared using a 3:1 (v:v) mixture of nitric 

acid (68%) and hydrogen peroxide (30%) to digest each organ overnight. The next day, 0.5 

mL of aqua regia [3:1 (v:v) mixture of nitric acid and hydrochloric acid] was added and 

the sample was then diluted to 10 mL using de-ionized water. (Aqua regia is highly 

corrosive and must be handled with extreme caution.) Gold standard solutions (gold 

concentrations: 20, 10, 5, 2, 1, 0.5, 0.2 and 0 ppb) were prepared prior to each experiment. 

A Perkin Elmer NEXION 300X ICP mass spectrometer (Waltham, MA) was used to 

analyze these samples. Prior to the analysis, daily performance measurements were done 

to ensure the instrument was operating under optimum conditions. The 197Au signals were 
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obtained using the standard operating mode. The ICP-MS conditions can be found in 

Chapter 2.  

4.4.7. LA-ICP-MS measurement conditions and imaging 

A CETAC LSX-213 G2 laser ablation system (Photon Machines, Omaha, NE) that 

was attached to the ICP mass spectrometer via a 2 m length of tubing was used to image 

the tissue samples. Optimization of the laser ablation conditions was first performed using 

pure AuNP samples on glass slides. The optimal conditions can be found in Chapter 2. The 

mass spectrometer was operated using the kinetic energy discrimination mode, which was 

especially important for measurements of 57Fe. 

4.4.8. Data analysis and image generation  

ICP-MS data was analyzed using Excel and Origin 9.0 (from OriginLab, 

Northampton, MA). Images of the analyzed LA-ICP-MS data were generated using the 

software ImageJ. Optical images of the tissues were processed with Adobe Photoshop. 

4.4.9. Matrix-matched standard preparation for ICP-MS 

 This information can be found in experimental section of Chapter 2. 

4.4.10. Gold percentage determination in spleen tissue regions 

The gold concentration in each pixel of the red pulp was determined after 

comparison to a calibration curve as described in the experimental section. The 

concentrations from each pixel were then summed to obtain the total gold concentration in 

the red pulp region, and the percentage was calculated after summing the total gold from 
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each of the three parts of the spleen. We determined the amount in each marginal zone by 

summing the gold concentrations in a single pixel area surrounding each white pulp region. 

The gold concentrations were obtained via comparison to a calibration curve, and the 

reported percentage was calculated in the same manner as with the red pulp. The gold 

concentrations were obtained via comparison to a calibration curve, and the reported 

percentage was calculated in the white pulp in the same manner as with the red pulp and 

marginal zone.  
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CHAPTER 5 

 

NANOPARTICLE STABILITY MONITORING IN TISSUES USING DUAL 

MODE MASS SPECTROMETRIC IMAGING  

5.1. Introduction 

Monolayer-protected nanoparticles (NPs), which are composed of an inorganic 

core and an organic monolayer, are used in a variety of biological applications including 

delivery1,2 and imaging.3,4 For example, functionalized gold NPs (AuNPs) have been 

investigated for siRNA and DNA delivery applications in which the oligonucleotides are 

attached either covalently or via physisorption.5 Similarly, quantum dots (QDs) with 

different surface coatings have been explored for their use in imaging applications in vivo.6 

Effective use of NPs for these applications requires an accurate assessment of monolayer 

stability7 especially in vivo as aggregation and/or degradation of the core, due to monolayer 

instability, can compromise the intended purpose of the NP.8-10 In addition to protecting 

the NP from aggregation and degradation, the monolayer provides additional control over 

NP physical and chemical properties, particularly when interacting with biomolecules.11-14 

The integrity of the monolayer is also crucial because it is known to dictate a particle’s 

fate, including its uptake,15 corona formation,16-18 distribution,19 interactions with the 

biomolecules,20 and clearance. 

Because the application of monolayer-protected NPs depends on the presence of 

the monolayer, the release and/or exchange of these surface molecules must be considered 

to optimally use them in biological settings.21 For example, a robust monolayer is a 

prerequisite for quantum dots (QDs)22,23 to prevent aggregation that deteriorates their 
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fluorescence emission properties. In addition, unstable monolayers lead to direct exposure 

of the core materials to a biological system, which can trigger cell toxicity.24 Semi-stable 

monolayers, however, are desirable for certain applications. For instance, NP monolayers 

can be tailored to respond to stimuli such as biogenic thiols or other biomolecules to release 

cargo for delivery applications, and these stimuli work through destabilization of the 

monolayer.24-26 Hence, monolayer stability control is crucial to fully exploit the potential 

of monolayer-protected NPs in biological applications.  

Characterization of monolayer exchange and release has relied on a variety of 

techniques, including nuclear magnetic resonance (NMR), fluorescence microscopy, 

dynamic light scattering (DLS) and high performance liquid chromatography (HPLC).26-28 

These tools have provided valuable insight into the chemical and structural factors that 

influence NP monolayer stability,29,30 but they are limited to relatively pure samples of 

NPs. Applying these techniques to more complex samples such as cells or tissues is 

considerably more challenging. Gaining insight into the chemical and biochemical factors 

that influence NP stability in vivo is essential for NPs with diagnostic or therapeutic 

potential. Moreover, information about how different tissues influence NP stability is 

important to more deeply understand the biological effects of NPs in vivo.  

Here, using monolayer functionalized AuNPs as a testbed, we describe a dual-mode 

imaging approach that can reveal NP monolayer stability in a site-specific manner. We use 

laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) imaging to 

report on the distributions of Au,31,32 while using laser desorption/ionization (LDI) MS 

imaging to report on the distributions of AuNPs that have intact monolayers.33 A site-

specific comparison of the two images then reveals the extent to which the NPs are still 
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intact. Previously, we demonstrated that ICP-MS and LDI-MS could be used to determine 

the monolayer stability of AuNPs and QDs in cell culture.3,34 The combined imaging 

approach described in the current chapter goes much further, allowing us to reveal how 

different organs and sub-organ cell types influence NP stability in vivo. 

5.2. Results and Discussion 

 

Figure 5.1. Structure of the AuNPs used in this study. 

AuNPs (Figure 5.1) with 2 nm cores that were synthesized and characterized as 

described in experimental section were injected into mice intravenously. After certain time 

points the mice were sacrificed and their organs were collected. To demonstrate the ability 

of the combined imaging approach to report on NP stability, we first investigated the 

stability of selected AuNPs in the liver and spleen. These organs are known to accumulate 

IV-injected NPs to a significant extent due to their role in blood clearance and 

filtration.32,33,35 The liver and spleen differ substantially in their thiol content36,37 and the 

cell types involved in blood clearance, however, meaning that they will influence the 

stability of AuNPs to different extents. The liver has a much higher thiol content than the 

spleen, so one would expect that AuNPs with thiol-linked monolayers would be less stable 

in the liver. To test this idea, we compared the LDI-MS and LA-ICP-MS images of spleen 
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and liver slices from mice injected with AuNP 1 (Figure 5.2). A comparison of these 

images demonstrates that the monolayer stability of AuNP 1 is low in the liver but is 

relatively high in the spleen 24 h after injection. We arrive at this conclusion by comparing 

the signal associated with the monolayer ligand in the LDI-MS images (Figure 5.2b and e) 

with the signal from Au in the LA-ICP-MS images (Figure 5.2c and f). Previously we had 

shown that monolayer ligands are only detected by LDI-MS when they are attached to the 

NP core,34 so the absence of ligand signal in the LDI-MS image of the liver indicates that 

the ligands have been displaced in this organ, presumably by the high concentration of 

thiols. An alternate explanation is that LDI-MS does not work in liver tissue, but this 

possibility is ruled out by control experiments in which AuNPs that are added to liver tissue 

slices give rise to significant ligand ion signal (Figure 5.3). Interestingly, AuNPs with 

dithiol linkers (AuNP 2), which were previously found to be very stable in cell culture, 

including liver cells,34 are also not stable in the liver after 4 h in vivo (Figure 5.4). 

 

Figure 5.2. Comparison of the stability of AuNPs in spleen and liver slices from mice IV-

injected with AuNP 1. Optical images of the spleen (a) and liver (d). LDI-MS images of 

AuNP 1 that report on the monolayer signal for the spleen (b) and liver (e). LA-ICP-MS 
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images that report on the Au signal for the spleen (c), and liver (f). See the experimental 

section and Chapter 2 for instrument parameters and measurement details. 

 

Figure 5.3. LDI mass spectrum of a selected spot in a 12 µm thick liver tissue after pipette 

spotting 1 µL of a 0.5 µM solution of AuNP 1. LH+ = molecular ion signal of the ligand 

attached to AuNP 1 and L-H2S+ = fragment ion signal arising from the loss of H2S from 

the intact ligand. 
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Figure 5.4. LDI-MS and LA-ICP-MS images of liver tissue slices from a mouse injected 

with AuNP 2. 

We next investigated the stability of the particles at different time points (4, 24, and 

48 h) after their injection into the mice. AuNPs 1, 3, and 4 were simultaneously injected, 

and LDI-MS images for each NP’s monolayer signal were generated. We predicted that 

the ligand signal in the LDI-MS images would decrease after longer time points as the 

AuNPs are degraded over time. Similar to other data from the liver, no significant 

monolayer signal is observed during LDI-MS (data not shown) even at the shortest time 

point (i.e. 4 h). This finding suggests that the elevated levels of biogenic thiols in the liver 

rapidly degrade AuNPs in this organ.  The Au distributions from LA-ICP-MS images (e.g. 

Figure 5.5) indicate that the Au amounts first increase and then decrease over time, which 

may indicate some early accumulation of Au despite loss of monolayer stability; however, 

it is difficult to fully conclude this because the data comes from different mice. 

 

Figure 5.5. Time dependent LA-ICP-MS images of the liver tissue slices from three 

separate mice. a), b), and c) are images of Au distributions in the liver slices obtained from 

LA-ICP-MS. d) Bar plots indicating the normalized Au intensity. The normalized intensity 

is calculated by summing the relative pixel intensity for each image (see calculation 

below), dividing this sum by the size of each tissue slice and further normalizing by the 
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total gold amounts in these organs as determined by ICP-MS of partial homogenates. For 

easier comparison of the three time points, the resulting value for the 24 h time point was 

set to 1. 

 

LDI-MS images of the spleen reveal that the monolayer signal for each AuNP 

decreases over time as expected (Figure 5.6a). An evaluation of the ion intensities in these 

images (Figure 5.6b), after normalizing for the size of the tissue, confirms this observation 

and further indicates that the signal drop for each AuNP is similar. In contrast, the Au 

distributions in the spleen, as determined by LA-ICP-MS imaging, indicates that the Au 

amounts remain somewhat constant when the data is properly normalized for mouse-to-

mouse variations (e.g. Figure 5.7 and 5.8). Taken together, the LDI-MS and LA-ICP-MS 

imaging results suggest that greater than 50% of the monolayer stability is lost in the spleen 

over a 48 h time period. 

 

Figure 5.6. a) Time-dependent LDI-MS images of spleen tissue slices for AuNPs 1, 3, and 

4. b) Bar plot of the normalized ion intensities for AuNPs 1, 3, and 4, calculated from 

relative pixel intensities as described in the experimental section. 
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Figure 5.7. An example data set showing the changes in the total Au amount over time in 

the spleen of 3 different mice after IV injection of AuNPs 1, 3 and 4.  

 

 

Figure 5.8. Comparison of time dependent LA-ICP-MS images of the spleen tissues (Error 

bars represent pixel to pixel deviation.) The normalized ion intensity is calculated by 

summing the relative pixel intensity for each image, dividing this sum by the size of each 

tissue slice and further normalizing by the total gold amounts in these organs as determined 

by ICP-MS of partial homogenates. For easier comparison of the three time points, the 

resulting value for the 4 h time point was set to a value of 1. 
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We next examined the effect of monolayer structure on NP stability in vivo. AuNP 

1 and AuNP 5 were compared because we had previously demonstrated in cells that AuNPs 

without the tetraethyleneglycol (TEG) group are less stable.34 NPs with slightly different 

headgroups had to be chosen because the slides used to mount the tissues gave an isobaric 

interference for the monolayers containing a TEG group and a tri-methyl ammonium 

headgroup. LDI-MS and LA-ICP-MS images of the spleen are consistent with our previous 

in vitro work in that the TEG-containing AuNP 1 is found to be more stable than AuNP 5, 

which is missing the TEG group (Figure 5.9). To best compare the two sets of images so 

that this conclusion can be made, we imaged two sets of tissues that had similar total gold 

amounts based on ICP-MS measurements of tissue homogenates (Figure 5.13). In separate 

experiments we found that the relative LDI ionization efficiencies of the two ligands are 

similar (Figure 5.10), allowing for a better comparison of the ion abundances in the LDI-

MS images. Upon comparing the images in Figure 5.9 (left), the LDI-MS signals (shown 

in green) are brighter for AuNP 1, which indicate higher ligand signals, whereas the gold 

signals (shown in yellow) in the LA-ICP-MS images are similar for the two AuNPs. A 

more quantitative comparison can be made by summing the ion abundances in each pixel 

and dividing this value by the total area of the image (Figure 5.9 (right)), while also 

correcting for the slight differences in ionization efficiencies of the two monolayers (Figure 

5.10). From such an analysis, both AuNPs are found to have similar abundances per unit 

area in the LA-ICP-MS images but quite different ion abundances are observed per unit 

area in the LDI-MS images (Figure 5.9 (right)). These comparisons indicate that the 

monolayer of AuNP 5 is less stable than the monolayer of AuNP 1. 
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Figure 5.9. Comparison of the stability of AuNP 1 and AuNP 5 in the spleen. (Left) LDI-

MS and LA-ICP-MS images showing the intact NP and Au distributions, respectively, in 

the spleens of mice IV-injected with either AuNP 1 or AuNP 5. The expanded zoomed-in 

regions illustrate the signal differences observed for AuNP 1 and AuNP 5 in the marginal 

zones of the spleen. (Right) Summed relative ion abundances of the Au and ligand ions 

from the LA-ICP-MS and LDI-MS images in the top part of the figure. The relative pixel 

intensity calculations are described in experimental section. 
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Figure 5.10. Comparison of the LDI-MS ionization efficiencies of AuNP 1 and AuNP 5. 

As described in our previous work,11 cell lysate samples were used to determine the 

ionization efficiencies. A mixture of AuNPs (AuNP 1 = 1 pmol; AuNP 5 = various 

amounts) were spiked into HeLa cell lysate, and the mixture was transferred into a 

centrifuge tube to be centrifuged at 14000 rpm to obtain the pellet.  The obtained pellet 

then was transferred onto the MALDI target. The slope of the graph indicates the ratio of 

the ionization efficiencies, and this value was used to modify the images of the spleen to 

enable an accurate comparison of the results. 

 

More intriguing insight is obtained upon comparing the stability of AuNP 1 and 5 

in different regions of the spleen. The stabilities of the AuNPs are different in two of the 

three regions of the spleen. H&E staining and Fe images from the LA-ICP-MS experiments 

identify these three regions of the spleen (Figure 5.11).  
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Figure 5.11. Example LA-ICP-MS and H&E staining images of a spleen tissue slice from 

a mouse injected with AuNP 5. The Fe image reflects the presence of the blood in the organ 

and can be used to readily distinguish between the red pulp and white pulp regions. The 

red pulp and marginal zone regions of the spleen filter the blood and therefore contain the 

highest concentration of Fe. Less Fe is found in the white pulp because the blood does not 

flow through this region of the spleen. The black regions in the Fe image represent the 

white pulp, and red regions indicate the red pulp. The marginal zone is the interface 

between the red and white pulp regions and extends ~ 40 µm from the white pulp. In the 

H&E stains, the pale pink color indicates the red pulp region, while the dark purple regions 

indicate the white pulp regions. Again, the marginal zone surrounds the white pulp regions 

but also can be seen in the H&E stains as a region with less dense coloring. 

 

To compare NP stability in these different regions, the average ligand and gold 

signals for each spleen region were determined, as described in experimental section. From 

the comparison of the signals from AuNP 1 and AuNP 5, we observe that the ligand signals 

are different in certain spleen regions, while the gold signals are similar. Since ligand loss 

indicates the stability loss, we compared the ligand signals in each of the spleen regions in 
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reference to the gold levels. Analysis of the data in this way indicates that AuNP 1 and 

AuNP 5 have similar stability in the red pulp and white pulp, but AuNP 1 is slightly more 

stable in the marginal zone (Figure 5.12). The reason for the differences in AuNP stability 

in the different regions of the spleen can be somewhat explained by how blood is filtered 

in the spleen. Blood primarily flows through and is filtered in the red pulp, and not 

surprisingly relatively high levels of IV-injected NPs are found here.38,39 In mice, there are 

monocytes in the red pulp that might act to phagocytose and thus destroy some of the 

filtered NPs,40 but evidently both NPs have similar stability in this region. As for the 

marginal zone, only a portion of blood transits this region, where antigen-presenting cells 

are present and the exchange of the blood between the red and white pulp occurs. The 

immune response that can occur in this region might explain why the less stable AuNP 5 

shows greater instability in this region. The similar stability in the white pulp may be due 

to the fact that both AuNPs are somewhat unstable in this region where high concentrations 

of lymphocytes are present that could equally degrade both NPs.   
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Figure 5.12. Overlayed LDI-MS and LA-ICP-MS histograms for the site specific regions 

of AuNP 1 and AuNP 5, indicating the signal intensity distributions of the ligands and Au, 

respectively, for AuNP 1 and AuNP 5. The larger bin numbers represent higher ion 

intensities. The most significant differences between the two AuNPs are found in the 

marginal zone, where the monolayer ligand signals for AuNP 1 have notably higher LDI-

MS signal intensities. 

5.3. Conclusion 

In summary, we have demonstrated that LA-ICP-MS and LDI-MS imaging can be 

used together to monitor NP monolayer stability in vivo. In our approach, LA-ICP-MS 

imaging reports on the distribution of Au in tissues, and LDI-MS images reports on the 
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distributions of AuNPs containing intact monolayers. A comparison of the two images 

from adjacent tissue slices indicates whether or not the AuNPs are intact. The validity of 

this comparison was demonstrated first by observing the expected differences in the 

relative Au and monolayer ligand signals in the spleen and liver and then by observing the 

expected decrease of the ligand signal over time. The utility of obtaining site-specific 

stability information was then demonstrated by comparing the stability of two AuNPs in 

the spleen, where we find that NP stability is most different in the marginal zone of this 

organ, which is consistent with the biological makeup of this region. In future work we 

will develop quantitative imaging protocols that will enable a more quantitative measure 

of the site-specific stability of NPs in vivo. Such methods will provide critical insight into 

how to design NPs of the desired stability, from semi-stable materials used in drug delivery 

to more stable materials that are required in commercial products. 

5.4. Experimental 

5.4.1. Synthesis and characterization of the AuNPs 

Using the Burst-Schiffrin two-phase synthesis method, 2 nm core AuNPs were 

synthesized.41 Briefly, the Brust-Schiffrin two-phase synthesis method was used to 

synthesize pentanethiol-coated AuNPs with core diameters around 2 nm by reducing the 

Au salt. Once these AuNPs were synthesized, the Murray place exchange method was used 

to functionalize the AuNPs with the desired functionality.42,43 Previously synthesized 

ligands were mixed in excess with the pentanethiol-coated AuNPs and allowed to place-

exchange. After the place exchange reaction, the sample was filtered and dialyzed for three 

days to remove the excess ligand/pentanethiol mix.  
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The structures of the AuNPs used in the study can be found in Figure 5.1. The 

AuNP sizes were determined by transmission electron microscopy (TEM) and dynamic 

light scattering (DLS), and their surface charges were obtained from zeta potential 

measurements as previously described.33,34 Table 5.1 shows the TEM, DLS and zeta 

potential measurements of all the AuNPs studied in this work. All AuNPs were also 

characterized by laser-desorption/ionization mass spectrometry (LDI-MS) to confirm the 

identity of the monolayer coating.44  

 

Table 5.1. Summary of the TEM, DLS, and zeta potential results for the studied AuNPs. 

 TEM (nm) DLS (nm) Zeta potential 

AuNP 1 2.0 ± 0.1 14 ± 4 + 21± 6 

AuNP 2  2.2 ± 0.3 8 ± 2 + 26 ± 9 

AuNP 3 1.9 ± 0.2 11 ± 2 + 24 ± 9 

AuNP 4 1.9 ± 0.2 13 ± 2 + 22 ± 8 

AuNP 5 2.2 ± 0.3 8 ± 1 + 24 ± 4 

 

5.4.2. Animal experiments 

Solutions of individual AuNPs were prepared at concentrations of 2 μM, and 50 μL 

of each AuNP solution was injected into Balb/c mice via the tail vein. After certain time 

points, the mice were sacrificed via inhalation of carbon dioxide and cervical dislocation. 

Organs were then collected and prepared for analysis. Each organ that was collected was 

flash-frozen using liquid N2. These frozen tissues were then sliced to 12 µm using a LEICA 

CM1850 cyrostat and placed on either an ITO glass slide (for AuNP 1-4 containing 

samples) or a metal slide (for AuNP 1 and AuNP 5 for the spleen comparison) for LDI-MS 
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imaging. Adjacent slices were placed on a regular glass slide for LA-ICP-MS imaging and 

H&E staining.   

5.4.3. H&E staining 

Tissue slices were stained using a kit that was obtained from ThermoFisher 

Scientific. Adjacent slices of the tissues were used by immersing the tissues into distilled 

water, hematoxylin, bluing reagent, 95% ethanol, eosin-y, 100% ethanol and xylene in the 

order described by the kit’s manual.  

5.4.4. LDI-MS instrument parameters 

LDI-MS imaging was done using a Bruker Autoflex III MALDI-TOF mass 

spectrometer (Bruker Daltonics, Bremen, Germany), which is equipped with a Smartbeam 

2 Nd:YAG laser. LDI-MS images were constructed using the FlexImaging 2.1 software 

package. LDI-MS operating conditions were as follows: ion source 1 = 19.00 kV, ion 

source 2 = 16.60 kV, lens voltage = 8.44 kV, reflector voltage = 20.00 kV, reflector voltage 

2 = 9.69 kV, and positive reflectron mode with a mass range of 100−1200 Da. A total of 

50 laser shots were measured per position. In almost all cases, the step width between laser 

shots was 25 μm. The laser energy was optimized to ~ 61 μJ/pulse. 

5.4.5. LA-ICP-MS instrumental parameters 

A Perkin Elmer Nexion 300 X ICP-MS (Perkin Elmer, Shelton, CT, USA) and a 

CETAC LSX-213 G2 laser ablation system (Photon Machines, Omaha, NE, USA) were 

used for the LA-ICP-MS imaging experiments. The optimum parameters for the imaging 

are given in Chapter 2. 
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5.4.6. Relative pixel intensity calculation 

Using ImageJ for each tissue image, a histogram of the pixel intensity distribution 

was obtained in the RGB mode (RGB corresponds to the red green blue color channels 

present in a given image). These histogram values were then copied to Excel into 

corresponding two columns; one with the RGB value and the second one with the intensity 

count. The relative pixel intensities were then calculated by multiplying the RGB value 

with the pixel count and divided by the total number of pixel count. Using ImageJ, the 

areas of the tissues were obtained and used to calculate the relative pixel intensity per area. 

The relative pixel intensity calculation is given below. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  
Σ(𝑝𝑖𝑥𝑒𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)𝑥 (𝑝𝑖𝑥𝑒𝑙 𝑛𝑢𝑚𝑏𝑒𝑟)

Σ 𝑝𝑖𝑥𝑒𝑙 𝑛𝑢𝑚𝑏𝑒𝑟
 

5.4.7. ICP-MS sample preparation and measurements 

The organs were dissolved using a 3:1 (v:v) mixture of nitric acid (68%) and 

hydrogen peroxide (30%) to digest each organ overnight. The next day, 0.5 mL of aqua 

regia [3:1 (v:v) mixture of nitric acid and hydrochloric acid] was added and the sample was 

then diluted to 10 mL using de-ionized water. (Aqua regia is highly corrosive and must 

be handled with extreme caution.) Gold standard solutions (gold concentrations: 20, 10, 

5, 2, 1, 0.5, 0.2 and 0 ppb) were prepared prior to each experiment. A Perkin Elmer 

NEXION 300X ICP mass spectrometer (Waltham, MA) was used to analyze the samples. 

Prior to the analysis, daily performance measurements were done to ensure the instrument 

was operating under optimum conditions. The 197Au signals were obtained using the 

standard operating mode.  
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Figure 5.13. Total gold amounts in ng/g in mouse tissue homogenates from ICP-MS 

measurements. Mice were IV injected with 50 µL of a 2 µM solution of the indicated 

AuNP. (n = 3 for AuNP 1, but n = 1 for AuNP 5 because of two unsuccessful injections of 

the NPs into the three mice). 
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CHAPTER 6 

 

SUMMARY AND FUTURE WORK 

6.1 Dissertation Summary 

 In this dissertation, the mass spectrometric imaging of AuNPs investigated to reveal 

their sub-organ biodistribution and stability in vivo. Using elemental imaging technique 

ICP-MS and its hyphenation with a laser ablation system provided sub-organ 

biodistribution information about AuNPs. Using this method, the quantities of AuNPs in 

sub-organ regions were also assessed. In addition, the dual mode imaging of AuNPs 

provided by LA-ICP-MS and LDI-MS allowed us to monitor the stability of the AuNPs in 

a site-specific manner.  

 First, using LA-ICP-MS imaging, quantitative images of the AuNPs were obtained. 

The matrix-matched quantification approach was investigated to select an appropriate 

matrix that could be used to quantify AuNPs in tissue. Chicken breast and beef liver were 

found to be appropriate for obtaining accurate quantification. During these analyses, 

differences were observed in the biodistribution of AuNPs with varying surface 

functionalities and these findings were further investigated. Our approach provides useful 

insight into not only how NPs distribute but also how they are processed in vivo. In 

addition, proper matrix selection is essential for accurate quantification of AuNPs in 

tissues.  

 Second, inkjet printing as an alternative quantification approach was studied for 

LA-ICP-MS imaging. Initial findings show no variation in the day-to-day printing and 

demonstrate that linear calibration curves can be obtained. Printing of the standard pattern 
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and imaging with a AuNP free mouse tissue also showed linearity in calibration curve. 

Application towards its use with AuNP injected mouse tissues will be investigated in the 

future. In addition to be an alternative quantification strategy for the LA-ICP-MS imaging, 

this method will also provide a standard addition like approach, which will be adding 

standards to the tissue that is being imaged. By doing so, the “matrix matching” will be 

ideal.  

 Third, the initial observation of the differences in the biodistribution of AuNPs in 

mouse tissues was further investigated. Different AuNP surface functionalities lead to 

differences in the biodistribution of the AuNPs. With the help of H&E staining, the sub-

organ regions were located, and the amounts of AuNPs in these sub-organ levels were 

determined using the quantitative images obtained.  

 Finally, a dual mode imaging approach that combined both elemental and 

molecular imaging was used to investigate the stability of AuNPs. Organ biocomposition, 

time of exposure, and NP surface chemistry, were examined to determine the stability of 

the particles in vivo. A comparison of the stability in liver and spleen revealed that different 

biochemical compositios of the organ can substantially affect the stability of NPs in vivo. 

NPs slowly lose their stability over time within the same organ, indicating degradation of 

AuNPs. Different surface monolayer attached to the AuNPs also caused changes in their 

stability within same organ biocomposition. 

 Overall, the findings obtained in this dissertation should improve our understanding 

of the in vivo fate of AuNPs. It also opens up new areas of research that could help us 

design better monolayers for AuNPs used in drug delivery applications. Possible areas of 

future work are described in the next section. 
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6.2 Future directions 

 In the following sections, potential new applications and improvements for mass 

spectrometric imaging of AuNPs will be described to understand more about the interaction 

of AuNPs with biosystems. 

6.2.1 Quantitative dual mode imaging for stability of AuNPs in vivo 

 Qualitative results demonstrate that the stability of NPs are affected by three 

parameters. Although it was concluded that NP stability differed under these parameters, 

it is important to quantify the stability of the NPs. Chapters 2 and 3 demonstrated the 

quantitative ability and methods that can be applied for LA-ICP-MS imaging. These same 

strategies could also be applied for obtaining quantitative images of the AuNPs in LDI-MS 

imaging. Matrix-matched quantification standards or inkjet-printed standards could be 

prepared, and they could be used for quantification of both the surface monolayer and the 

core of the AuNPs. One of the biggest challenge for the applicability of these methods is 

to accurately obtain the monolayer amount that is present in the standard samples. That can 

be done by digesting the AuNPs with KI/I2 solution and then analyzing the resulting 

solution by HPLC to find the quantity of the monolayer present on the AuNPs. 

6.2.2 Dual mode imaging to track nanocapsules in vivo 

 For the delivery of the drug molecules, nanocapsules can be used to effectively 

encapsulate the therapeutic cargo.1-3 Nanocapsules encapsulate the drug molecules, which 

can then carry the cargo to the desired location in the biosystem. Among various types of 
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nanocapsules, nanoparticle-stabilized nanocapsules (NPSCs) provide better stability 

compared their microcapsule counterparts and the oil-in-water emulsion created is ideal 

for delivery of hydrophobic drugs.3 Dual mode imaging could be used to both track the 

delivery of the drug molecules and to understand the effects of the remaining nanoparticles 

in vivo. Elemental imaging of the AuNP core using LA-ICP-MS would provide the location 

of the AuNPs, while, the molecular imaging using LDI-MS would reveal the location of 

the drug molecules and it would allow us to track and obtain information pertaining to the 

success of the delivery.  

6.2.3 Modulation of the design of the NPs for immune response 

 Investigating the sub-organ biodistribution of AuNPs demonstrated that the NPs 

surface charge dictates the biodistribution. One of the findings showed us that AuNPs with 

a neutral charge accumulate more in the immunogenic parts of the tissues. This information 

can be used to modulate AuNPs surfaces to control the immune response generated.4 These 

newly designed AuNPs could then be used in therapeutic applications. Previously, 

hydrophobic surface functionalities were investigated for their immune response capability 

and findings demonstrated that a linear relationship between the immune response 

generated and the hydrophobicity of the AuNPs exists.5 Although these results are 

promising, one of the concerns with the hydrophobic AuNPs are their cytotoxicity. Since 

our results demonstrated that the neutral surface functionalities can also trigger the immune 

response, design of new particles that having both of these monolayers to modulate the 

immune response generated could overcome this problem. For initial design, mixed 

monolayer AuNPs with neutral and hydrophobic ligands could be synthesized readily and 

used as a testbed.  



 

107 

6.2.4. 3D imaging of whole tissue using LA-ICP-MS 

 A 3D imaging approach would be beneficial since the 2D representation of the 

tissues are limited to a certain section of the tissue and the tissue inhomogeneity may result 

in an uncharacteristic representation of small scale features within individual 2D sections. 

In addition, 3D imaging could reveal isolated hotspots in larger volumes within the organ 

that might not be seen in a single cross-section. Consecutive sections of the tissue samples 

can be obtained by carefully slicing the tissue samples and images of the tissues can be 

generated using LA-ICP-MS. With a house built software (e.g MATLAB script), the 

images obtained from LA-ICP-MS analysis would compiled to form the 3D image of the 

whole tissue. Developments in the LA system and ICP-MS instrumentation would also 

help reduce the time required for the analysis of the samples.  
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APPENDIX  

CHANGES MAY OCCUR IN LIVER BIOCOMPOSITION AFTER THE LOSS 

OF AUNPS STABILITY 

 

AuNP stability in the liver is low even only 4 hours after injection. It is known that liver 

has a high concentration of biogenic thiols, such as glutathione (GSH), cysteine (Cys) and 

homocycteine (Hcys).1,2 The main role of these biomolecules are to detoxify the liver and 

remove the reactive oxygen species (ROS). GSH is one of the most common and abundant 

biogenic thiol in the liver and it takes places in oxidative detoxification, especially the 

removal of the peroxidation products.3,4 Biogenic thiols, such as GSH, are likely to 

compete with the monolayers for binding to the surface of the Au core.5 The stability loss 

of the AuNPs in liver indicates that the biogenic thiols successfully displace the 

monolayers. As a result of these stability loss, it is possible that the concentration of active 

biogenic thiols is decreased due to the presence of the AuNPs. To confirm this hypothesis 

further analysis would be required. If the biogenic thiols in liver do decrease in 

concentration, then less thiols would be available for scavenging ROS,6 an associated 

increase in ROS levels could lead to the cell and organ dysfunction. The extent to which 

this occurs, however, would depend upon the levels of biogenic thiols that are recruited to 

destabilize the AuNPs. One might also predict that oxidative damage to the liver would 

increase, and this occurrence could be confirmed by measuring the extent of protein 

oxidation in this tissue.  
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