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ABSTRACT

ACHIEVING PERFECT LOCATION PRIVACY
IN LOCATION BASED SERVICES

USING ANONYMIZATION

FEBRUARY 2017

ZARRIN MONTAZERI

B.Sc., SHARIF UNIVERSITY OF TECHNOLOGY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Hossein Pishro-Nik

The popularity of mobile devices and location-based services (LBS) have created great con-

cerns regarding the location privacy of the users of such devices and services. Anonymization is

a common technique that is often being used to protect the location privacy of LBS users. This

technique assigns a random pseudonym to each user and these pseudonyms can change over time.

Here, we provide a general information theoretic definition for perfect location privacy and prove

that perfect location privacy is achievable for mobile devices when using the anonymization tech-

nique appropriately. First, we assume that the user’s current location is independent from her past

locations. Using this i.i.d model, we show that if the pseudonym of the user is changed before

O(n
2
r−1 ) number of anonymized observations is made by the adversary for that user, then she has

perfect location privacy, where n is the number of users in the network and r is the number of all

possible locations that the user might occupy. Then, we model each user’s movement by a Markov

chain so that a user’s current location depends on his previous locations, which is a more realistic

v



model when approximating real world data. We show that perfect location privacy is achievable

in this model if the pseudonym of the user is changed before O(n
2

|E|−r ) anonymized observations

is collected by the adversary for that user where |E| is the number of edges in the user’s Markov

model.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the past decades, the number of cellphones, laptops and other electronic devices capable

of network communications have increased significantly. In the past few years, mobile devices

have started to be equipped with high-precision localization capabilities such as Global Position-

ing System (GPS) or Global System for Mobile (GSM) technologies, such as WiFi or Bluetooth.

Communication between these devices range from communicating over the Web to automobiles

connected to various types of traffic safety networks. Such communicating mobile devices offer

a wide spectrum of services based on their geographic location such as navigation, ride-sharing,

dining recommendation, auto collision warning and advertisement. These applications that uti-

lize the geographic location of their users to provide them with services are called location-based

services (LBS). LBS applications, as a part of Ubiquitous Computing (ubicomp), have attracted a

lot of attention in recent years, e.g., Uber [66], Google Maps [1, 21], and Yelp [67] serve tens to

hundreds of millions of mobile users per day.

While LBSs provide so many services to their users, considering their unrestricted access to

the user’s location information, they impose significant privacy threats to their users. These ser-

vices are mostly offered at no money expense to the users but users have to pay with their private

information to enjoy these services. Such privacy compromises can also be launched by various

types of adversaries including third-party applications, nearby mobile users and cellular service

providers. Based on the adversary’s purposes, the leaked private information goes far beyond just

the geographic location of the users. By sending location information to such services, potential

adversaries could establish profiles for the users about their daily routines and habits. The inte-
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gration of LBS in online social networks leads to more privacy risks. By aggregating the leaked

information over time and combining them with the information that users publish on social net-

works, the adversary can infer a wide range of other sensitive information about the users such as

their habits, relationships, employments, hobbies and even sensitive private or corporate secrets.

Advanced data storage gives governments and other corporations the power to profile the grow-

ing number of users and keep their traces for a long period of time. There may be various incen-

tives behind such tracking such as financial, strategic or security reasons or even in order to provide

other useful services to the users. On the other hand, with the continuous cost reduction for such

storage systems and the probable benefit of keeping such data in the future, their data never gets

erased. The tools required to analyze trace data have also made progress. Sophisticated data min-

ing algorithms can leverage on fast growing storage and processing power, thus facilitating the

joint analysis of multiple data-sets in parallel. The privacy risks are getting amplified using such

low-cost data storages and empowering computation algorithms as well as the public access to

powerful data analytics software such as Google’s recently published [34] TensorFlow machine

learning software [2].

Such privacy compromises can be launched by various types of adversaries. The LBSs can

learn users’ personal or corporate secrets by using various inference algorithms. They may also

compromise users’ privacy by selling private location information to advertisers; malevolent staff

of LBS systems can access users’ private information for fun or profit (as exemplified in a recent

Uber scandal [3, 70]); and cybercriminals may break into the location database of an LBS sys-

tem [4, 5] or launch a Sybil attack [12, 80] on an LBS system to steal large amounts of private

location information. These can expose people to unwanted advertisements and location-based

scams, it can affect their social reputation or even make them victims of blackmail or physical

violence [60]. More importantly, leaked information gives power to the informed corporation or

government which they may use against those individuals. In order to protect the privacy of users,

we need to protect their private information from being reached by any irrelevant entity.
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Some mechanisms have been proposed in order to protect location privacy of LBS users, [9,

28, 33, 37, 49, 63, 65] , generally referred to as location privacy protection mechanisms (LPPM).

An LPPM is a system which perturbs users’ location information before it reaches the operator

of the LBS system or other users. Todays LPPMs can be classified in to two different categories.

First, identity perturbation LPPMs [28, 49, 63], which modify the identity of the mobile users in

order to protect their location privacy (e.g., through anonymization techniques like mix-zone). In

other words, they aim at improving location privacy by concealing the mapping between users and

location observations. Second, location perturbation LPPMs [9, 33, 37, 63, 65], which add noise

to mobile users’ location coordinates to protect their location privacy (e.g., adding dummy loca-

tions or hiding locations for periods of time). This can potentially improve the location privacy

of the user by returning an inaccurate location information to the LBS application. Some LPPMs

combine the two approaches. These mechanisms tend to deliberately decrease the quality of infor-

mation in some way to protect the privacy of the individual to whom that information refers. The

improvement in location privacy by these LPPMs usually comes at the price of performance degra-

dation for the underlying LBS systems, e.g., the service it is offering to the users based on their

location information. For instance, an LPPM that perturbs automobile traffic safety messages to

increase the privacy of the user, will degrade the effectiveness of the underlying collision preven-

tion LBS system. Finding an optimal choice of LPPM which provide both satisfying performance

and adequate privacy is still problem.

In this master thesis, we provide a mathematical framework for the location privacy of mobile

devices using information theory by defining an information theoretic notions of Perfect Location

Privacy. In the proposed framework, we employ the anonymization technique to hide the identity

of users over time. First, we assume that each user’s current location is independent from her

past locations to simplify the derivations. Then, we model the user’s movements by Markov chain

which is a more realistic setting by considering the dependencies between locations over time.

Also, we assume the strongest model for the adversary, i.e., we assume that the adversary has

complete statistical knowledge of the users’ movements. We formulate a user’s location privacy

3



based on the mutual information between the adversary’s anonymized observations and the user’s

actual location information. We define the notion of perfect location privacy and show that with a

properly designed anonymization method, users can achieve perfect location privacy.

1.2 Related Work

Over the past few years, researchers have tried to improve LPPMs to protect location privacy

of the users. LPPMs have been classified in to two different categories, location perturbation

mechanisms and identity perturbation mechanism. The former methods try to hide the identity

information of the users sending the data and the latter methods try to confuse the adversary by

either adding noise to the location coordinates of the user or other techniques such as hiding their

location for a period of time or adding dummy locations.

In identity perturbation methods, the common approach is to hide the identity of the user within

a group of users in the area. In this approach, the adversary gets confused between all the users

in the region and cannot distinguish between them. Bugra Gedik et al., [31], defined a frame-

work in which users are able to set the minimum level of anonymity and also add levels of spatial

and temporal noise that is acceptable by the LBSs. Another common approach in identity per-

turbation LPPMs is called mix-zone, [8, 29, 36, 55]. In this approach users have pseudonyms

and they exchange their assigned pseudonyms in specific areas called mix-zones. Mix-zones are

pre-determined regions in which each user in the mix-zone can exchange her pseudonym with an-

other user in the same mix-zone. In order to be well protected, some cryptography mechanisms

has been used in the exchanging areas to encrypt messages passing through the mix-zones so that

the adversary would not be able to access those messages [76]. The mix-zone strategy may be

costly in managing pseudonyms and may not be efficient in an area with low user density. In or-

der to measure the effectiveness of mix-zone approach the measure anonymity has been proposed

which shows how unidentifiable a user is within a set of users, called an anonymity set, [24].

K-anonymity is the most well known approach that hides a user’s identity within k − 1 other

users [9, 19, 23, 30, 33, 39, 47, 51, 53, 68, 69, 77, 79]. Game theoretic approaches [27, 52] and

4
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Figure 1.1: Reducing location precision by reporting larger area.

user’s actual location is r15, reported location is r = {r8, r9, r10, r14, r15, r16, r20, r21, r22}.

location cryptography [32, 40, 56] approaches have also been taken. Using game theoretic algo-

rithms and combining them with the mix-zone, Manshaei et al. [52] enhanced the privacy of the

users in vehicular networks. Also, Shokri et al. [65] utilize Stackelberg Bayesian game to for-

malize the users’ location privacy and adversary’s correctness of localization. They show that this

optimal LPPM works better in the face of a localization attack.

In location perturbation methods, different approaches has been proposed. In order to protect

users’ privacy, techniques beyond simply omitting the identifier of the user is required. Since

the spatial and temporal characteristics in location data can give useful information about the user,

some techniques protect the re-identification of users by modifying these characteristics of the data

in traces. In peer-to-peer mobile communication, spatial path cloaking has been used to protect the

mobile users’ privacy, [7, 9, 10, 16, 17, 25, 26, 30, 31, 33, 37, 38, 41, 53, 64, 71, 73, 74, 78, 81].

Several location perturbation LPPMs work by replacing each users location information with a

larger region (e.g., Figure 1.1), [10, 33, 37, 73], and some by dummy locations, [18, 42–44, 48, 59].
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Differential privacy is an approach which protects the location privacy of users in the loca-

tion information datasets [9, 14, 45, 50, 54, 72]. This technique insures that the presence of no

single user could significantly change the outcome of the aggregated location information. For

instance, Ho et al. [35] proposed a differentially private location pattern mining algorithm using

quadtree spatial decomposition. Dewri [22] combined k-anonymity and differential privacy to

improve location privacy. Some location perturbation LPPMs are based on ideas from differential

privacy [6, 9, 13, 15, 61]. For instance, Andres et al. hide the exact location of each user in a region

by adding Laplacian distributed noise to achieve a desired level of geo-indistinguishability [6].

Shokri et al. [62, 63] define the expected estimation error of the adversary as a metric to evaluate

LPPMs. On the other hand, Ma et al. [49] use uncertainty about users’ location information to

quantify users’ location privacy in vehicular networks. Li et al. [46] define metrics to quantify the

tradeoff between the privacy and utility of LPPM systems. Shokri et al. [65] design LPPMs that

will defeat localization attacks.

Previously, the mutual information has been used as a privacy metric in different topics, [11,

20, 57, 58, 75]. However, in this thesis we specifically use the mutual information for location

privacy. We provide an information theoretic definition for location privacy using the mutual in-

formation. We show that mobile devices can achieve provable perfect location privacy by using

the anonymization method in the suggested way.

1.3 Contribution

Different frameworks aim to improve the location privacy of users. These different privacy

preserving methods have different impacts on the LBSs’ performance. Based on the services that

LBSs are providing to their users, they utilize different methods to protect privacy of their users.

In this master thesis, a new theoretical framework is proposed to protect the location privacy of

mobile users when using LBSs. Using information theory, the notion of perfect location privacy

is defined for mobile users. An identity perturbation LPPM, known as anonymization technique,

allows users to change their pseudonyms over time. However, changing pseudonyms is costly and

6



overusing it may degrade the performance of the service. In this framework, using the anonymiza-

tion technique in the proposed way allows users to reach perfect location privacy. The upper

bound on the frequency of changing pseudonyms is derived and proven here so that the strongest

adversary, who has all the statistical information about users’ movement, would not be able to dis-

tinguish between users by observing their anonymized locations over time. It is proven here that

perfect location privacy is indeed achievable if the LPPMs are designed appropriately.
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CHAPTER 2

PRELIMINARIES

2.1 Defining Perfect Location Privacy

Let us consider a network with a large number of users. In the proposed framework, an identity

perturbation LPPM known as anonymization technique is used to protect the privacy of the users

which assigns random pseudonyms to users over time. An adversary is observing this network over

time and her intention is to identify anonymized users by tracking their traces over time. In this

framework, the strongest adversary is assumed to be observing the network. This adversary has the

complete statistical knowledge of the users’ movement from her past observations or other sources

and she can describe the users’ movement as a random process on the corresponding geographic

area.

Users start moving at time zero while the adversary starts observing the network. Over time,

users move from one place to another. Let Xu(k) be the actual location of user u at time k.

X1(1) X1(2) X1(3) · · · X1(m) X1(m+ 1) · · ·

X2(1) X2(2) X2(3) · · · X2(m) X2(m+ 1) · · ·

X3(1) X3(2) X3(3) · · · X3(m) X3(m+ 1) · · ·
...

...
...

...
...

...
...

Xn(1) Xn(2) Xn(3) · · · Xn(m) Xn(m+ 1) · · ·

Xn+1(1) Xn+1(2) Xn+1(3) · · · Xn+1(m) Xn+1(m+ 1) · · ·
...

...
...

...
...

...
...

The adversary is observing this network and what she collects is the anonymized version of Xu(k)

over time produced by the anonymization method.
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Let us assume we have n number of users in our network, u = 1, 2, · · · , n and we just have

access to these n users’ locations. Also, The adversary observes m anonymized locations for all

the n users over time before they change their pseudonyms.

X1(1) X1(2) X1(3) · · · X1(m) X1(m+ 1) · · ·

X2(1) X2(2) X2(3) · · · X2(m) X2(m+ 1) · · ·

X3(1) X3(2) X3(3) · · · X3(m) X3(m+ 1) · · ·
...

...
...

...
...

...
...

Xn(1) Xn(2) Xn(3) · · · Xn(m) Xn(m+ 1) · · ·

Xn+1(1) Xn+1(2) Xn+1(3) · · · Xn+1(m) Xn+1(m+ 1) · · ·
...

...
...

...
...

...
...

The adversary’s intention is to assign the path that she observed to the user that created it. Let

Y(m) be the collection of anonymized observations available to the adversary. We define perfect

location privacy as follows

Definition 1. User u has perfect location privacy at time k with respect to the adversary, if and

only if

lim
n→∞

I
(
Xu(k); Y(m)

)
= 0,

where I(.) shows the mutual information and m is the number of previous observations of the

adversary.

The above definition shows that over time, the adversary’s observations does not give any

information about the user’s location. The assumption of n → ∞ is valid for all the applications

that we consider since the number of users in those applications are significantly high.
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2.2 Defining the Anonymization Technique

In this framework, to achieve location privacy, the LPPM performs an anonymization method

and changes the identifier of each user with a random pseudonym. That is, it performs a random

permutation Π(n) on the set of n users and then assigns the pseudonym Π(n)(u) to user u.

Π(n) : {1, 2, · · · , n} → {1, 2, · · · , n}

Here, the permutation Π(n) is chosen uniformly at random among all n! possible permutations on

the set of all n users, {1, 2, · · · , n}.

For u = 1, 2, · · · , n and time k = 1, 2, · · · ,m, let X(m)
u = (Xu(1), Xu(2), · · · , Xu(m))T be a

vector which shows the uth user’s locations up to time k. Using the permutation function Π(n), the

adversary observes a permutation of users’ location vectors, X(m)
u ’s. In other words, the adversary

observes

Y(m) = Perm
(

X(m)
1 ,X(m)

2 , · · · ,X(m)
n ; Π

)
=
(

X(m)

Π−1(1),X
(m)

Π−1(2), · · · ,X
(m)

Π−1(n)

)
=
(

Y(m)
1 ,Y(m)

2 , · · · ,Y(m)
n

)
Y(m)
u = X(m)

Π−1(u), Y(m)
Π(u) = X(m)

u

where Perm(.) shows the applied permutation function. Then,

Y(m)
Π(u) = X(m)

u = (Xu(1), Xu(2), · · · , Xu(m))T .

2.3 Example

Here we provide a simple example to further elaborate the problem setting. Assume that we

have only three users, n = 3, and five locations, r = 5, that users can occupy (Figure 2.1). Also,

10



3

2

4

5

1

Figure 2.1: An area is divided into five regions that users can occupy.

let us assume that the adversary can collect m = 4 observations per user. Each user creates a path

as below:
user path

user 1 1→ 2→ 3→ 4

user 2 2→ 1→ 3→ 5

user 3 4→ 5→ 1→ 3

X(4)
1 =



1

2

3

4


, X(4)

2 =



2

1

3

5


, X(4)

3 =



4

5

1

3


, X(4) =



1 2 4

2 1 5

3 3 1

4 5 3


To anonymize the users, we will assign a pseudonym to each. The pseudonyms are determined

by the function defined by a random permutation on the user set:

Π(3) : {1, 2, 3} 7→ {1, 2, 3}

For this example, suppose that the permutation function is given by Π(1) = 3, Π(2) = 1, and

Π(3) = 2. The choice of the permutation is the only piece of information that is not available to

the adversary. So here, the adversary observes anonymized users and their paths:

11



pseudonym observation

user 1 2→ 1→ 3→ 5

user 2 4→ 5→ 1→ 3

user 3 1→ 2→ 3→ 4

Y(4) =



2 4 1

1 5 2

3 1 3

5 3 4


and she wants to find which user (with the pseudomym user3) actually made 1→ 2→ 3→ 4, and

so on for the other users. Based on the number of observations that the adversary collects for each

user,m = 4, and also the user profiles which are the statistical knowledge of the users’ movements,

she aims at breaking the anonymization function and de-anonymizing the users. The accuracy of

this method depends on the number of observations that the adversary collects, and thus our main

goal in this paper is to find the function m(n) in a way that the adversary is unsuccessful and the

users have perfect location privacy.
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CHAPTER 3

ACHIEVING PERFECT LOCATION PRIVACY

3.1 Perfect Location Privacy for Two-State i.i.d Model

To get a better insight about the location privacy problem, here we consider a simple scenario

where there are two locations, location 0 and 1. At any time k ∈ {0, 1, 2, · · · }, user u has probabil-

ity pu ∈ (0, 1) to be at location 1, independent from previous locations and other users’ locations.

Therefore, Xu(k) ∼ Bernoulli(pu).

To keep things generic, we assume that pu’s are drawn independently from some continuous

density fP (p) on the (0, 1) interval. Specifically, there are δ2 > δ1 > 0 such that


δ1 < fP (p) < δ2 p ∈ (0, 1)

fP (p) = 0 p /∈ (0, 1)

The values of pu’s are each user’s profile that are known to the adversary. Note that our results do

not depend on the choice of fP (p).

Theorem 1. For two locations with the above definition and anonymized observation vector of the

adversary, Y(m), if all the following holds

1. m = cn2−α, which c, α > 0 and are constant

2. p1 ∈ (0, 1)

3. (p2, p3, · · · , pn) ∼ fP , 0 < δ1 < fP < δ2

4. P = (p1, p2, · · · , pn) be known to the adversary

13



then, we have

∀k ∈ N, lim
n→∞

I
(
X1(k); Y(m)

)
= 0

i.e., user 1 has perfect location privacy.

3.1.1 The Intuition Behind the Proof

Here we provide the intuition behind the proof. The formal proof for Theorem 1 is given in 3.2.

Let us look from the adversary’s perspective. The adversary is observing anonymized locations of

the first user and she wants to figure out the index of the user that she is observing, in other words

she wants to obtain the mapping between users and observations. Note that the adversary knows

the values of p1, p2, · · · , pn. To obtain X1(k), it suffices that the adversary obtains Π(1). Since

Xu(k) is a Bernoulli random variable with parameter pu, to do so, the adversary can look at the

averages

Y Π(u) =
YΠ(u)(1) + YΠ(u)(2) + ...+ YΠ(u)(m)

m
.

In fact, Y Π(u)’s provide sufficient statistics for this problem. Now, intuitively, the adversary is

successful in recovering Π(1) if two conditions hold:

1. Y Π(1) ≈ p1.

2. For all u 6= 1, Y Π(u) is not too close to p1.

Now, note that by the Central Limit Theorem (CLT),

Y Π(u) − pu√
pu(1−pu)

m

→ N (0, 1) .

That is, loosely speaking, we can write

Y Π(u) → N

(
pu,

pu(1− pu)
m

)
.
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Consider an interval I ⊂ (0, 1) such that p1 ∈ I and the length of I is equal to `n = 1
n1−η

where 0 < η < α
2

. Note that for any u ∈ 1, 2, · · · , n the probability that pu is in I is larger than

δ1`
n = δ1

n1−η . In other words, since there are n users, we can guarantee that a large number of pu’s

be in I . On the other hand, we have

√
Var(Y Π(u))

`n
=

√
pu(1−pu)

m

1
n1−η

= n
α
2
−η →∞.

Note that here, we will have a large number of normal random variables Y Π(u) whose expected

values are in interval I (that has a vanishing length) with high probability and their standard de-

viation is much larger than the interval length. Thus, distinguishing between them will become

impossible for the adversary. In other words, the probability that the adversary will correctly iden-

tify Π(u) goes to zero as n goes to infinity. That is, the adversary will most likely choose an

incorrect value j for Π(u). In this case, since the locations of different users are independent, the

adversary will not obtain any useful information by looking at Xj(k).

3.2 Proof of Theorem 1 (Perfect Location Privacy for Two-State Model)

Here, we provide a formal proof for Theorem 1. In the proposed setting, we assume we have

an infinite number of potential users indexed by integers, and at any step we consider a network

consisting of n users, i.e., users 1, 2, · · · , n. We would like to show perfect location privacy when

n goes to infinity. Remember that Xu(t) shows the location of user u at time t.

In a two-state model, let us assume we have state 0 and state 1. There is a sequence p1, p2, p3, · · ·

for the users. In particular, for user u we have pu = P (Xu(k) = 1) for times k = 1, 2, · · · . Thus,

the locations of each user u are determined by a Bernoulli(pu) process.

When we set n ∈ N as the number of users, we assume m to be the number of adversary’s

observations per user,

m = m(n) = cn2−α where 0 < α < 1.

So, we have n→∞ if and only if m→∞.
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As defined previously, X(m)
u contains m number of user u’s locations and X(m) is the collection

of X(m)
u ’s for all users,

X(m)
u =



Xu(1)

Xu(2)

...

Xu(m)


, X(m) =

(
X(m)

1 ,X(m)
2 , · · · ,X(m)

n

)
.

The permutation function applied to anonymize users is Π(n) (or simply Π). For any set A ⊂

{1, 2, · · · , n}, we define

Π(A) = {Π(u) : u ∈ A}.

The adversary who knows all the pu’s, observes n anonymized users for m number of times

each and collects their locations in Y(m)

Y(m) = Perm
(

X(m)
1 ,X(m)

2 , · · · ,X(m)
n ; Π

)
=
(

Y(m)
1 ,Y(m)

2 , · · · ,Y(m)
n

)

where Y(m)
u = X(m)

Π−1(u),Y
(m)
Π(u) = X(m)

u .

Based on the assumptions of Theorem 1, if the following holds

1. m = cn2−α, which c > 0, 0 < α < 1 and are constant

2. p1 ∈ (0, 1)

3. (p2, p3, · · · , pn) ∼ fP , 0 < δ1 < fP < δ2

4. P = (p1, p2, · · · , pn) be known to the adversary,

then we want to show

∀k ∈ N, lim
n→∞

I
(
X1(k); Y(m)

)
= 0

i.e., user 1 has perfect location privacy and the same applies for all other users.
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3.2.1 Proof procedure

Steps of the proof are as follows:

1. We show that there exists a sequence of sets J (n) ⊆ {1, 2, · · · , n} with the following prop-

erties:

• 1 ∈ J (n)

• if N (n) = |J (n)| then, N (n) →∞ as n→∞

• let {jn}∞n=1 be any sequence such that jn ∈ Π(J (n)) then

P
(
Π(1) = jn|Y(m),Π(J (n))

)
→ 0

2. We show that

X1(k)|Y(m),Π(J (n))
d−→ Bernoulli(p1).

3. Using 2, we conclude

H
(
X1(k)|Y(m),Π(J (n))

)
→ H (X1(k))

and in conclusion,

I
(
X1(k); Y(m)

)
→ 0.
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3.2.2 Detail of the proof

We define S(m)
u for u = 1, 2, · · · , n to be the number of times that user u was at state 1,

S(m)
u = Xu(1) +Xu(2) + · · ·+Xu(m).

Based on the assumptions, we have S(m)
u ∼ Binomial(m, pu). One benefit of S(m)

u ’s is that they

provide a sufficient statistic for the adversary when the adversary’s goal is to obtain the permutation

Π(n). To make this statement precise, let’s define S(m) as the vector containing S
(m)
u , for u =

1, 2, · · · , n:

S(m) =
(
S

(m)
1 , S

(m)
2 , · · · , S(m)

n

)
Note that

S(m)
u = Xu(1) +Xu(2) + · · ·+Xu(m)

= YΠ(u)(1) + YΠ(u)(2) + · · ·+ YΠ(u)(m) for u = 1, 2, · · · , n.

Thus, the adversary can obtain Perm
(
S(m),Π(n)

)
, a permuted version of S(m), by adding the ele-

ments in each column of Y(m). In particular, we can write

Perm
(
S(m),Π(n)

)
= Perm

(
S

(m)
1 , S

(m)
2 , · · · , S(m)

n ; Π(n)
)

=
(
S

(m)

Π−1(1), S
(m)

Π−1(2), · · · , S
(m)

Π−1(n)

)
.

We now state and prove a lemma that confirms Perm
(
S(m),Π(n)

)
is a sufficient statistic for the

adversary when the adversary’s goal is to recover Π(n). The usefulness of this lemma will be clear

since we can use the law of total probability to break the adversary’s decision problem into two

steps of (1) obtaining the posterior probability distribution for Π(n) and (2) estimating the locations

Xu(k) given the choice of Π(n).
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Lemma 1. Given Perm
(
S(m),Π(n)

)
, the random matrix Y(m) and the random permutation Π(n) are

conditionally independent. That is

P

(
Π(n) = π

∣∣∣∣ Y(m) = y,Perm
(
S(m),Π(n)

)
= s

)
= P

(
Π(n) = π

∣∣∣∣ Perm
(
S(m),Π(n)

)
= s

)
(3.1)

Proof. Remember

Y(m) = Perm
(

X(m)
1 ,X(m)

2 , · · · ,X(m)
n ; Π(n)

)
=
(

X(m)

Π−1(1),X
(m)

Π−1(2), · · · ,X
(m)

Π−1(n)

)
.

Note that Y(m) (and therefore y) is an m by n matrix, so we can write

y = (y1, y2, · · · , yn) ,

where for u = 1, 2, · · · , n, we have

yu =



yu(1)

yu(2)

...

yu(m)


.

Also, s is a 1 by n vector, so we can write

s = (s1, s2, · · · , sn) .

We now show that the two sides of Equation 3.7 are equal. The right hand side probability can

be written as
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P

(
Π(n) = π

∣∣∣∣ Perm
(
S(m),Π(n)

)
= s

)
=

P

(
Perm

(
S(m),Π(n)

)
= s

∣∣∣∣ Π(n) = π

)
P
(
Π(n) = π

)
P

(
Perm

(
S(m),Π(n)

)
= s

)

=

P

(
Perm

(
S(m), π

)
= s

∣∣∣∣ Π(n) = π

)
n!P

(
Perm

(
S(m),Π(n)

)
= s

)
=

P
(
Perm

(
S(m), π

)
= s
)

n!P

(
Perm

(
S(m),Π(n)

)
= s

) .

Now note that

P
(
Perm

(
S(m), π

)
= s
)

= P

(
n⋂
j=1

(
S

(m)

π−1(j) = sj

))

= P

(
n⋂
u=1

(
S(m)
u = sπ(u)

))

=
n∏
u=1

P
(
S(m)
u = sπ(u)

)
=

n∏
u=1

(
m

sπ(u)

)
p
sπ(u)
u (1− pu)m−sπ(u)

=
n∏
k=1

(
m

sk

) n∏
u=1

p
sπ(u)
u (1− pu)m−sπ(u)

Similarly, we obtain

P

(
Perm

(
S(m),Π(n)

)
= s

)
=

∑
all permutations π′

P

(
Perm

(
S(m), π′

)
= s

∣∣∣∣ Π(n) = π′
)
P
(
Π(n) = π′

)
=

1

n!

∑
all permutations π′

n∏
k=1

(
m

sk

) n∏
u=1

p
sπ′(u)
u (1− pu)m−sπ′(u)

=
1

n!

n∏
k=1

(
m

sk

) ∑
all permutations π′

n∏
u=1

p
sπ′(u)
u (1− pu)m−sπ′(u) .
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Thus, we conclude that the right hand side of Equation 3.7 is equal to

∏n
u=1 p

sπ(u)
u (1− pu)m−sπ(u)∑

all permutations π′
∏n

u=1 p
sπ′(u)
u (1− pu)m−sπ′(u)

.

Now let’s look at the left hand side of Equation 3.7. First, note that in the left hand side

probability in Equation 3.7 we must have

su =
m∑
k=1

yu(k) for u = 1, 2, · · · , n. (3.2)

Next, we can write

P

(
Π(n) = π

∣∣∣∣ Y(m) = y,Perm
(
S(m),Π(n)

)
= s

)
= P

(
Π(n) = π

∣∣∣∣ Y(m) = y

)
.

This is because Perm
(
S(m),Π(n)

)
is a function of Y(m). We have

P

(
Π(n) = π

∣∣∣∣ Y(m) = y

)
=

P

(
Y(m) = y

∣∣∣∣ Π(n) = π

)
P
(
Π(n) = π

)
P
(
Y(m) = y

)
We have

P

(
Y(m) = y

∣∣∣∣ Π(n) = π

)
=

n∏
u=1

p
∑m
k=1 yπ(u)(k)

u (1− pu)m−
∑m
k=1 yπ(u)(k)

=
n∏
u=1

p
sπ(u)
u (1− pu)m−sπ(u) Using Euqation (3.2)

Similarly, we obtain

P
(
Y(m) = y

)
=

1

n!

∑
all permutations π′

n∏
u=1

p
sπ′(u)
u (1− pu)m−sπ′(u)
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Thus, we conclude that the left hand side of Equation 3.7 is equal to

∏n
u=1 p

sπ(u)
u (1− pu)m−sπ(u)∑

all permutations π′
∏n

u=1 p
sπ′(u)
u (1− pu)m−sπ′(u)

,

which completes the proof.

Next, we need to turn our attention to defining the critical set J (n). First, remember that

m = cn2−α where 0 < α < 1.

We choose real numbers θ and φ such that 0 < θ < φ < α
2(2−α)

, and define

εm ,
1

m
1
2

+φ
βm ,

1

m
1
2
−θ
.

We now define the set J (n) for any positive integer n as follows: Set J (n) consists of the indices of

users such that the probability of them being at state 1 is within a range with εm difference around

p1,

J (n) = {i ∈ {1, 2, . . . , n} : p1 − εm < pi < p1 + εm}.

Clearly for all n, 1 ∈ J (n). The following lemma confirms that the number of elements in J (n)

goes to infinity as n→∞.

Lemma 2. If N (n) , |J (n)|, then N (n) →∞ as n→∞. More specifically, as n→∞,

∃λ, c′′ > 0 : P (N (n) > c′′nλ)→ 1 as n→∞.

22



Proof. Remember that we assume pu’s are drawn independently from some continuous density

function, fP (p), on the (0, 1) interval which satisfies


δ1 < fP (p) < δ2 p ∈ (0, 1)

fP (p) = 0 p /∈ (0, 1)

So given p1 ∈ (0, 1), for n large enough (so that εm is small enough), we have

P (p1 − εm < pi < p1 + εm) =

∫ p1+εm

p1−εm
fP (p)dp,

so we can conclude that

2εmδ1 < P (p1 − εm < pi < p1 + εm) < 2εmδ2.

We can find a δ such that δ1 < δ < δ2 and

P (p1 − εm < pi < p1 + εm) = 2εmδ.

Then, we can say that N (n) ∼ Binomial(n, 2εmδ), where

εm =
1

m
1
2

+φ
=

1

(cn2−α)( 1
2

+φ)
.

The expected value of N (n) is n2εmδ, and by substituting εm we get

E[N (n)] = n2εmδ =
n2δ

(c′n2−α)( 1
2

+φ)
= c′′n(α

2
+αφ−2φ).

Let us set λ = α
2

+ αφ− 2φ. Since φ < α
2(2−α)

, we have λ > 0. Therefore, we can write

E[N (n)] = c′′nλ,
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V ar(N (n)) = n(2εmδ)(1− 2εmδ)→ nλ(1 + o(1)).

Using Chebyshev’s inequality

P (|N (n) − E[N (n)]| > c′′

2
nλ) <

nλ(1 + o(1))
c′′2

4
n2λ

→ 0

P (N (n) >
c′′

2
nλ)→ 1 as n→∞.

The next step in the proof is to show that users that are identified by the set J (n) produce a

very similar moving process as user 1. To make this statement precise, we provide the following

definition. Define the set A(m) as the interval in R consisting of real numbers which are within

the mβm distance from mp1 (the expected number of times that user 1 is at state 1 during the m

number of observations),

A(m) = {x ∈ R,m(p1 − βm) ≤ x ≤ m(p1 + βm)}.

Lemma 3. We have

P

 ⋂
j∈J(n)

(
S

(m)
j ∈ A(m)

)→ 1 as n→∞

Proof. Let j ∈ J (n) and p1 − εm < pj < p1 + εm. Since S(m)
j ∼ Binomial(m, pj), by the Large

Deviation Theory (Sanvo’s Theorem), we can write

P
(
S

(m)
j > m(p1 + βm)

)
< (m+ 1)2−mD(Bernoulli(p1+βm)‖Bernoulli(pj))

By using the fact that for all p ∈ (0, 1)

D (Bernoulli(p+ ε)‖Bernoulli(p)) =
ε2

2p(1− p) ln 2
+O(ε3),
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we can write

D (Bernoulli(p1 + βm)‖Bernoulli(pj)) =
(p1 + βm − pj)2

2pj(1− pj) ln 2
+O

(
(p1 + βm − pj)3

)
.

Note that |p1 − pj| < εm, so for large m we can write

|p1 + βm − pj| ≥ βm − εm =
1

m
1
2
−θ
− 1

m
1
2

+φ
>

1
2

m
1
2
−θ
.

so we can write

D (Bernoulli(p1 + βm)‖Bernoulli(pj)) =
1

8pj(1− pj)m1−2θ ln 2
+O((p1 + βm − pj)3)

and for some constant c′ > 0

D (Bernoulli(p1 + βm)‖Bernoulli(pj)) >
c′

m1−2θ
⇒

mD (Bernoulli(p1 + βm)‖Bernoulli(pj)) >
mc′

m1−2θ
> c′m2θ ⇒

P (S
(m)
j > m(p1 + βm)) < m2−c

′m2θ

.

So in conclusion

P

 ⋃
j∈J(n)

S
(m)
j > m(p1 + βm)

 < |J (n)|m2−c
′m2θ

|J (n)|m2−c
′m2θ

< nm2−c
′m2θ

< m22−c
′m2θ → 0 as m→∞.

Similarly we obtain

P

 ⋃
j∈J(n)

S
(m)
j < m(p1 − βm)

→ 0 as m→∞,

which completes the proof. This shows that for all users j for which pj is within ε range around p1,

i.e. it is in set J (n), the average number of times that this user was at state 1 is within mβm from

mp1 with high probability.
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We are now in a position to show that distinguishing between the users in J (n) is not possible

for an outside observer (i.e., the adversary) and this will pave the way in showing perfect location

privacy.

Lemma 4. Let {am}∞m=1, {bm}∞m=1 be such that am, bm are in setA(m) and also {im}∞m=1, {jm}∞m=1

be such that im, jm are in set J (n). Then, we have

P
(
S

(m)
im

= am, S
(m)
jm

= bm

)
P
(
S

(m)
im

= bm, S
(m)
jm

= am

) → 1 as m→∞.

Proof. Remember that

A(m) = {x ∈ R,m(p1 − βm) ≤ x ≤ m(p1 + βm)}

where βm = 1

m
1
2−θ

and S(m)
j ∼ Binomial(m, pj). Thus, S(m)

im
∼ Binomial(m, pim) and S(m)

jm
∼

Binomial(m, pjm),

P (S
(m)
im

= am) =

(
m

am

)
pamim (1− pim)m−am ,

P (S
(m)
jm

= bm) =

(
m

bm

)
pbmjm(1− pjm)m−bm .

In conclusion,

∆m =
P
(
S

(m)
im

= am, S
(m)
jm

= bm

)
P
(
S

(m)
im

= bm, S
(m)
jm

= am

) = (
pim
pjm

)am−bm(
1− pjm
1− pim

)am−bm

ln ∆m = (am − bm) ln(
pim
pjm

) + (am − bm) ln(
1− pjm
1− pim

)

and since {im, jm} ∈ J (n) we have

|pim − pjm| ≤ 2εm =
2

m
1
2

+φ
.
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Also, since {am, bm} ∈ A(m) we can say that

|am − bm| ≤ 2mβm.

Since pim ≤ pjm + 2εm and 1− pjm ≤ (1− pim) + 2εm and

ln(1 + εm) = εm +O(ε2m)

we can write

ln ∆m ≤ 2mβmεm + 2mβmεm + 2mβmO(ε2m)

and since φ > θ,

mβmεm = m
1

m
1
2

+φ

1

m
1
2
−θ

=
1

mφ−θ → 0,

⇒ ln ∆m → 0

⇒ ∆m → 1.

Note that the convergence is uniform.

This shows that for two users i and j, if the probability of them being at state 1 is in set J (n),

pi, pj ∈ J (n), and also the observed number of times for these users to be at state 1 is in set A(m),

then distinguishing between these two users is impossible.

Lemma 5. For any j ∈ Π(J (n)), we define W (n)
j as follows

W
(n)
j = P (Π(1) = j|Y(m),Π(J (n))).

Then, for all j(n) ∈ Π(J (n)),

N (n)W
(n)
j

p−→ 1.

More specifically, for all γ1, γ2 > 0 , there exists no such that if n > no:

∀j ∈ Π(J (n)) : P
(∣∣∣N (n)W

(n)
j − 1

∣∣∣ > γ1

)
< γ2.
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Proof. This is the result of Lemma 4. First, remember that

∑
j∈Π(J(n))

W
(n)
j = 1,

and also note that

|Π(J (n))| = |J (n)| = N (n) →∞ as n→∞.

Here, we show that for any {jn}∞n=1 ∈ Π(J (n)),

W
(n)
jn

W
(n)
1

=
P (Π(1) = j|D)

P (Π(1) = 1|D)

p−→ 1

where D =
(
Y(m),Π(J (n))

)
.

Let ai, for i ∈ Π(J (n)), be the permuted observed values of S(m)
i ’s. Then note that

P (Π(1) = j|D) =
∑

permutation
such that Π(1)=j

∑
i∈Π(J)

P (S
(m)
i = ai).

Then, in
W

(n)
jn

W
(n)
1

=
P (Π(1) = j|D)

P (Π(1) = 1|D)

the numerator and denominator have the same terms. In particular, for each term

P (S
(m)
j = ajn)× P (S

(m)
1 = bjn)

in W (n)
j , there is a corresponding term

P (S
(m)
j = bjn)× P (S

(m)
1 = ajn)

in W (n)
1 . Since by Lemma 4

P (S
(m)
j = ajn)× P (S

(m)
1 = bjn)

P (S
(m)
j = bjn)× P (S

(m)
1 = ajn)
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converges uniformly to 1, we conclude

W
(n)
jn

W1

→ 1.

We conclude that for any ζ > 0, we can write (for large enough n)

(1− ζ) <
W

(n)
jn

W1

< (1 + ζ),

∑
j∈Π(J(n))

(1− ζ)W
(n)
1 <

∑
j∈Π(J(n))

W
(n)
jn

<
∑

j∈Π(J(n))

(1 + ζ)W
(n)
1

and since
∑

j∈Π(J(n)) W
(n)
jn

= 1, |Π(J (n))| = N (n), we have

(1− ζ)N (n)W
(n)
1 < 1 < (1 + ζ)N (n)W

(n)
1

so, we conclude that N (n)W
(n)
1 → 1 as n→∞. We can repeat the same argument for all users in

set j ∈ J (n) and we get N (n)W
(n)
j → 1 as n→∞.

Now to finish the proof of Theorem 1,

P
(
X1(k) = 1|Y(m),Π(J (n))

)
=∑

j∈Π(J(n))

P
(
X1(k) = 1|Y(m),Π(1) = j,Π(J (n))

)
× P

(
Π(1) = j|Y(m),Π(J (n))

)
=

∑
j∈Π(J(n))

1
[Y

(m)
j (k)=1]

W
(n)
j , Zn.

But, since Y (m)
j (k) ∼ Bernoulli(p

(n)
j ) and p(n)

j → p1 for all j ∈ Π(J (n)), by the law of large

numbers we have:
1

N (n)

∑
j∈Π(J(n))

1
[Y

(m)
j (k)=1]

→ p1

Zn =
1

N (n)

∑
j∈Π(J(n))

(1
[Y

(m)
j (k)=1]

)(N (n)W
(n)
j ).

Using N (n)W
(n)
j → 1 in the previous equation, we obtain Zn → p1.
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In conclusion X1(k)|Y(m),Π(J (n))
d−→ Bernoulli(p1) which means that

H
(
X1(k)|Y(m),Π(J (n))

)
→ H(X1(k))

⇒ H
(
X1(k)|Y(m)

)
≥ H

(
X1(k)|Y(m),Π(J (n))

)
→ H(X1(k))

⇒ I
(
X1(k); Y(m))

)
→ 0

3.3 Perfect Location Privacy for r-States i.i.d. Model

Here we extend the results to a scenario in which we have r ≥ 2 locations or regions, locations

0, 1, · · · , r−1. At any time k ∈ {0, 1, 2, · · · }, user u has probability pu(i) ∈ (0, 1) to be at location

i, independent from previous locations and other users’ locations. At any given time k, we show

the probability of user u being at location i as follows:

pu(i) = P (Xu(k) = i),

pu = (pu(0), pu(1), · · · , pu(r − 1)) .

We assume that pu(i)’s are drawn independently from some r− 1 dimensional continuous density

function fP (p) on (0, 1)r−1. Let

RP = {(x1, x2, · · · , xr−1) ∈ (0, 1)r−1 : xi > 0, x1 + x2 + · · ·+ xr−1 < 1}.

Then, ∃δ1, δ2 > 0 such that 
δ1 < fP (p) < δ2 pu ∈ RP

fP (p) = 0 pu /∈ RP

(3.3)
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Figure 3.1: RP for case r = 3, (d = 2).

Theorem 2. For r locations with the above definition and the adversary’s observation vector Y(m)

if all the following holds,

1. m = cn
2
r−1
−α, which c, α > 0 and are constant

2. p1 ∈ (0, 1)(r−1)

3. (p2,p3, · · · ,pn) ∼ fP , 0 < δ1 < fP < δ2

4. P = (p1,p2, · · · ,pn) be known to the adversary

then, we have

∀k ∈ N, lim
N→∞

I
(
X1(k); Y(m)

)
= 0

Proof of the Theorem 2 is analogous to the proof of Theorem 1. Here, we provide the general

intuition.
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Figure 3.2: p1 = (p1(0), p1(1), · · · , p1(r − 1)) is in set J (n) in RP .

Let p1 = (p1(0), p1(1), · · · , p1(r− 1)) and d = r− 1. As you can see in figure 3.2, there exists

a set J (n) such that p1 is in this set and also we have:

V ol(J (n)) = (l(n))d.

We choose l(n) = 1

n
1
d
−η , where η < α

2
. Thus, the average number of users with their p vector in

J(n) is

n
1(

n
1
d
−η
)d = ndη →∞. (3.4)

So, we can guarantee a large number of users in J (n). Here, the number of times each user is at any

location follows a multinomial distribution and in the long-term observations these numbers have

a jointly gaussian distribution.

The standard deviation of these variables are in the form of const√
m

. In particular, the standard

deviation over the length of this interval is large.
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Figure 3.3: Markov chain model with r states and |E| edges.

const.√
m

l(n)
=
const. n

1
d
−η

√
m

∼ n
1
d
−η

(n
2
d
−α)

1
2

= n
α
2
−η →∞ (3.5)

Again, we have a large number of asymptotically jointly normal random variables that have a

much larger standard deviation compared to the differences of their means. Thus, distinguishing

between them becomes impossible.

This proves that it is impossible for the adversary to find a specific user to map to the observa-

tions even by having P and Y(m). So, all the users have perfect location privacy.

3.4 Perfect Location Privacy in Markov Chain Model

Assume there are r possible locations which users can occupy. We use a Markov chain with r

states to model movements of each user. We define E, the set of edges in this Markov chain, such

that (i, j) is in E if there exists an edge from i to j with probability p′(i, j) > 0.

We assume that this Markov structure chain gives the movement pattern of each user and what

differentiates between users is their transition probabilities. That is, for fixed locations i and j,

two different users could have two different transition probabilities. For simplicity, let us assume

that all users start at location (state) 1, i.e., Xu(1) = 1 for all u = 1, 2, · · · . This condition is not

necessary and can be easily relaxed; however, we assume it here for the clarity of exposition. We

now state and prove the theorem that gives the condition for perfect location privacy for a user in

the above setting.
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Theorem 3. For an irreducible, aperiodic Markov chain with r states and |E| edges, if m =

cn
2

|E|−r−α, where c > 0 and α > 0 are constants, then

lim
n→∞

I(X1(k); Y(m)) = 0, ∀k ∈ N, (3.6)

i.e., user 1 has perfect location privacy.

Proof. LetMu(i, j) be the number of observed transitions from state i to state j for user u. We first

show that MΠ(u)(i, j)’s provide a sufficient statistic for the adversary when the adversary’s goal is

to obtain the permutation Π(n). To make this statement precise, let us define M
(m)
u as the matrix

containing Mu(i, j)’s for user u:

M(m)
u =



Mu(1, 1) Mu(1, 2) · · · Mu(1, r)

Mu(2, 1) Mu(2, 2) · · · Mu(2, r)

· · · · · · · · · · · ·

Mu(r, 1) Mu(r, 2) · · · Mu(r, r)


Also, let M(m) be the ordered collection of M(m)

u ’s. Specifically,

M(m) =
(
M

(m)
1 ,M

(m)
2 , · · · ,M(m)

n

)

The adversary can obtain Perm
(
M(m),Π(n)

)
, a permuted version of M(m). In particular, we can

write

Perm
(
M(m),Π(n)

)
= Perm

(
M

(m)
1 ,M

(m)
2 , · · · ,M(m)

n ; Π(n)
)

=
(
M

(m)

Π−1(1),M
(m)

Π−1(2), · · · ,M
(m)

Π−1(n)

)
.

We now state a lemma that confirms Perm
(
M(m),Π(n)

)
is a sufficient statistic for the adver-

sary, when the adversary’s goal is to recover Π(n). Here, Y(m) is the collection of anonymized

observations of users’ locations available to the adversary.
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Lemma 6. Given Perm
(
M(m),Π(n)

)
, the random matrix Y(m) and the random permutation Π(n)

are conditionally independent. That is

P

(
Π(n) = π

∣∣∣∣ Y(m) = y,Perm
(
M(m),Π(n)

)
= m

)
= P

(
Π(n) = π

∣∣∣∣ Perm
(
M(m),Π(n)

)
= m

)
(3.7)

Lemma 6 is proved in Section 3.4.1.

We assumed the Markov chain to be irreducible and aperiodic so that when we are determining

p(i, j)’s, there are d degrees of freedom, where d is equal to |E| − r. This is because for each state

i, we must have

r∑
j=1

p(i, j) = 1.

Thus, the Markov chain of the user u is completely determined by d values of p(i, j)’s which we

show as

Pu = (pu(1), pu(2), · · · , pu(d))

and Pu’s are known to the adversary for all users. Note that the choice of Pu is not unique; nev-

ertheless, as long as we fix a specific Pu, we can proceed with the proof. We define Ed as the set

of d edges whose p(i, j)’s belong to Pu. Let Rp ⊂ Rd be the range of acceptable values for Pu.

For example, in Figure 3.4 we have |E| = 6 and r = 3, so we have three independent transitions

probabilities. If we choose p1, p2, and p3 according to the figure, we obtain the following region

Rp = {(p1, p2, p3) ∈ R3 : 0 ≤ pi ≤ 1 for i = 1, 2, 3 and p1 + p2 ≤ 1}.
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Figure 3.4: Three states Markov chain example

The statistical properties of each user are completely known to the adversary since she knows

the Markov chain of each user. The adversary wants to be able to distinguish between users by

having m observations per user and also knowing Pu’s for all users.

In this model, we assume that Pu for each user u is drawn independently from a d-dimensional

continuous density function, fP(p). As before, we assume there exist positive constants δ1, δ2 > 0,

such that 
δ1 < fP(p) < δ2 p ∈ Rp

fP(p) = 0 p /∈ Rp

We now claim that the adversary’s position in this problem is mathematically equivalent to the

the i.i.d model where the number of locations r is equal to d+1 where d = |E|− r. First, note that

since the Markov chain is irreducible and aperiodic, it has a unique stationary distribution which

is equal to the limiting distribution. Next, define Qu to be the vector consisting of all the transition

probabilities of user u. In particular, based on the above argument, we can represent Qu in the

following way:

Qu = [Pu,PuB],

where B is a non-random d by |E| − d matrix. Now, note that PuB is a non-random function of

Pu. In particular, if Mu(i, j) shows the observed number transitions from state i to state j for user
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u, then we only need to know Mu(i, j) for the edges in Ed, as the rest will be determined by the

linear transform defined by B. This implies that the decision problem for the adversary is reduced

to the decision problem on transition probabilities in Pu and the adversary only needs to look at the

Mu(i, j)’s for the edges in Ed. Now, this problem has exactly the same structure as the i.i.d model

where the number of locations r is equal to d+ 1 where d = |E| − r. In particular, Mu(i, j)’s have

multinomial distributions and the statement of Theorem 3 follows by applying Theorem 2.

3.4.1 Proof of Lemma 6

Here, we provide a formal proof for Lemma 6 which we restate as follows. In the Markov

chain setting of Section 3.4, we have the following: Given Perm
(
M(m),Π(n)

)
, the random matrix

Y(m) and the random permutation Π(n) are conditionally independent. That is

P

(
Π(n) = π

∣∣∣∣ Y(m) = y,Perm
(
M(m),Π(n)

)
= m

)
= P

(
Π(n) = π

∣∣∣∣ Perm
(
M(m),Π(n)

)
= m

)
(3.8)

Proof. Remember

Y(m) = Perm
(

X(m)
1 ,X(m)

2 , · · · ,X(m)
n ; Π(n)

)
=
(

X(m)

Π−1(1),X
(m)

Π−1(2), · · · ,X
(m)

Π−1(n)

)
.

Note that Y(m) (and therefore y) is an m by n matrix, so we can write

y = (y1, y2, · · · , yn) ,

where for u = 1, 2, · · · , n, we have
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yu =



yu(1)

yu(2)

...

yu(m)


.

Also, m is a collection of n matrices so we can write

m = (m1,m2, · · · ,mn) .

For an r×rmatrix m = [m(i, j)], let us defineD(m) as the set of sequences (x1, x2, · · · , xm) ∈

{1, 2, · · · , r}m that satisfy the following properties:

1. x0 = 1;

2. The number of transitions from i to j in (x1, x2, · · · , xm) is equal to mij for all i and j. That

is, the number of indices k for which we have xk = i and xk+1 = j is equal to m(i, j).

We now show that the two sides of Equation 3.8 are equal. The right hand side probability can

be written as

P

(
Π(n) = π

∣∣∣∣ Perm
(
M(m),Π(n)

)
= m

)
=

P

(
Perm

(
M(m),Π(n)

)
= m

∣∣∣∣ Π(n) = π

)
P
(
Π(n) = π

)
P

(
Perm

(
M(m),Π(n)

)
= m

)

=

P

(
Perm

(
M(m), π

)
= m

∣∣∣∣ Π(n) = π

)
n!P

(
Perm

(
M(m),Π(n)

)
= m

)
=

P
(
Perm

(
M(m), π

)
= m

)
n!P

(
Perm

(
M(m),Π(n)

)
= m

) .
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Now note that

P
(
Perm

(
M(m), π

)
= m

)
= P

(
n⋂
j=1

(
M(m)

π−1(j) = mj

))

= P

(
n⋂
u=1

(
M(m)

u = mπ(u)

))

=
n∏
u=1

P
(
M(m)

u = mπ(u)

)
=

n∏
u=1

∑
(x1,x2,··· ,xm)∈D(mπ(u))

P (Xu(1) = x1, Xu(2) = x2, · · · , Xu(m) = xm)

=
n∏
u=1

∑
(x1,x2,··· ,xm)∈D(mπ(u))

∏
i,j

pu(i, j)
mπ(u)(i,j)

=
n∏
u=1

(
|D(mπ(u))|

∏
i,j

pu(i, j)
mπ(u)(i,j)

)

=

(
n∏
k=1

|D(mk)|

)(
n∏
u=1

∏
i,j

pu(i, j)
mπ(u)(i,j)

)

Similarly, we obtain

P

(
Perm

(
M(m),Π(n)

)
= m

)
=

∑
all permutations π′

P

(
Perm

(
M(m), π′

)
= m

∣∣∣∣ Π(n) = π′
)
P
(
Π(n) = π′

)
=

1

n!

∑
all permutations π′

(
n∏
k=1

|D(mk)|

)(
n∏
u=1

∏
i,j

pu(i, j)
mπ′(u)(i,j)

)

=
1

n!

(
n∏
k=1

|D(mk)|

) ∑
all permutations π′

(
n∏
u=1

∏
i,j

pu(i, j)
mπ′(u)(i,j)

)
.

Thus, we conclude that the right hand side of Equation 3.8 is equal to

∏n
u=1

∏
i,j pu(i, j)

mπ(u)(i,j)∑
all permutations π′

(∏n
u=1

∏
i,j pu(i, j)

mπ′(u)(i,j)
) .

Now let us look at the left hand side of Equation 3.8. We can write
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P

(
Π(n) = π

∣∣∣∣ Y(m) = y,Perm
(
M(m),Π(n)

)
= m

)
= P

(
Π(n) = π

∣∣∣∣ Y(m) = y

)
.

This is because Perm
(
M(m),Π(n)

)
is a function of Y(m). We have

P

(
Π(n) = π

∣∣∣∣ Y(m) = y

)
=

P

(
Y(m) = y

∣∣∣∣ Π(n) = π

)
P
(
Π(n) = π

)
P
(
Y(m) = y

)
We have

P

(
Y(m) = y

∣∣∣∣ Π(n) = π

)
=

n∏
u=1

P (Xu(1) = yπ(u)(1), Xu(2) = yπ(u)(2), · · · , Xu(m) = yπ(u)(m))

=
n∏
u=1

∏
i,j

pu(i, j)
mπ(u)(i,j).

Similarly, we obtain

P
(
Y(m) = y

)
=

1

n!

∑
all permutations π′

n∏
u=1

∏
i,j

pu(i, j)
mπ′(u)(i,j)

Thus, we conclude that the left hand side of Equation 3.8 is equal to

∏n
u=1

∏
i,j pu(i, j)

mπ(u)(i,j)∑
all permutations π′

(∏n
u=1

∏
i,j pu(i, j)

mπ′(u)(i,j)
) ,

which completes the proof.
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CHAPTER 4

SIMULATION

4.1 I.I.D. Model

In the two states model with n number of users, let pu be the probability of user u being at state

1 and the observation vector Y(m) consists of m observation for each user.

If the following holds,

1. m = cn2−α, which c, α > 0 and are constant

2. p1 ∈ (0, 1)

3. (p2, p3, · · · , pn) ∼ fP , 0 < δ1 < fP < δ2

4. P = (p1, p2, · · · , pn) be known to the adversary

then, we have perfect location privacy for all the users, e.g. for the first user we have,

∀k ∈ N, lim
n→∞

I
(
X1(k); Y(m)

)
= 0.

4.1.1 Threat Model

In this framework, we assume that the adversary knows the exact profile of each of the users.

Here, by observing Y(m), the adversary aims to break the permutation function and map each

anonymized collection of m observations to a user.

In this framework we assume that the adversary breaks the permutation function using the

maximum likelihood method. Suppose the number of observations that the adversary collects for
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each user in the two state model is m = αn2 and she performs maximum likelihood to recover the

mapping Π(n). For anonymized user u, she counts the number of times that the user was at state 1

during m observations and then she compares that with probability of all n users being at state 1

and matches the anonymized user to the user with the closest probability of being at state 1.

4.1.2 Error Probability of The Adversary

Using maximum likelihood, the adversary finds the permutation function Π̃(n). She obtains the

probability of each anonymized user being at state 1 from her observations, compares them with

her prior knowledge and matches the closest ones and de-anonymizes the users.

We define the error probability of the adversary to be

Pe(α, n) = E

[
|{i : Π̃(i) 6= Π(i)}|

n

]
. (4.1)

Theorem 4. In the above setting, define

Pe(α) = lim
n→∞

Pe(α, n). (4.2)

Then, the following statements hold:

1. The function Pe(α) is well defined (the limit exists) for all α ∈ R+.

2. 0 < Pe(α) < 1 for all α ∈ R+.

3. Pe(α) is a decreasing function of α.

4. limα→0 Pe(α) = 1 and limα→∞ Pe(α) = 0.

Figure 4.1 shows Pe(α) as a function of α when users’ probabilities (i.e., pi’s) are uniformly

distributed in (0, 1). In this simulation, we generated n number of pus as the adversary’s prior

knowledge. Then we generated an observation vector for each user based on the probability of
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Figure 4.1: Error probability of the adversary Pe(α) vs. α. Pe(α) and Pe(α,N) when p has
uniform distribution in (0, 1) for n = {100, 300}.

that user being at state 1. Having the observation vector, we tried to match users and observation

vectors using maximum likelihood. By obtaining Π̃(n), we computed the error probability that is

shown in Fig. 4.1 for different number of users.

Simulation results in Figure 4.1 shows that as α grows, the adversary’s error probability goes

to zero which shows that the adversary maps users with low error probability. On the other hand,

as α becomes smaller, the error probability approaches 1. These results are consistent with the our

main result that users have perfect privacy if the adversary obtains less than O(n
2
r−1 ) observations

per user.

4.2 Markov Chain Model

With n number of users, observation vector Y(m) consists of m observations for each user.
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For an irreducible, aperiodic Markov chain with r states and |E| edges, if m = cn
2

|E|−r−β ,

where c > 0 and β > 0 are constants, then

lim
n→∞

I(X1(k); Y(m)) = 0, ∀k ∈ N, (4.3)

i.e., user 1 has perfect location privacy.

4.2.1 Threat Model

In this framework, we assume an adversary who is the strongest adversary and has all the

statistical knowledge of the users’ movements. Here, by observing Y(m), the adversary aims to

break the permutation function and map each anonymized collection of m observations to a user.

In this framework we assume that adversary breaks the permutation function using the maxi-

mum likelihood method. Suppose the number of observations that the adversary collects for each

user is m = αn
2

|E|−r and she performs maximum likelihood to recover the mapping Π(n).

4.2.2 Error Probability of the Adversary

Here, we provide some simulation results that verify the result in Theorem 3. We consider

a network with n users and r locations. The possible path of each user can be modeled as an

irreducible, aperiodic Markov chain with r states and |E| number of edges. After obtaining m

observations per user, the adversary estimates transition probabilities p̃u(i, j). If we consider the

number of transition from state i to j as m(i,j) and the number of times the user was at state i

as mi then m(i,j)

mi
gives the transition probability from state i to j for that user. By using nearest

neighbor decoding in Rd, the adversary matches a user with the closest transition probabilities to

the observed paths.

In our simulations we consider r = 3 and m = αn
2

|E|−r . We used four different Markov chains

as users’ movement models and tried to de-anonymize the users by observing them m times.
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We define the error probability of the adversary to be

Pe(α) = E

[
|{i : Π̃(i) 6= Π(i)}|

n

]
. (4.4)

We see that if the adversary’s number of observations, m, is more than O(n
2

|E|−r ), then the

adversary’s error probability goes to zero. On the other hand, if the number of observations is

much smaller, then the error probability goes to one, suggesting that users might have perfect

location privacy.

First, we model each user’s path as a Markov chain MC1 shown in figure 4.2. Since in this

model |E| = 4 we can write m = αn2.

1

1

''
2

1

��

3

1−a

HH

a

VV

Figure 4.2: The Markov chain MC1 which models of users’ path.

For n users, we create a ∈ (0, 1) which are i.i.d. We then generate m observations for each

user. Here, m1 is the number of times that a user was at state 1. m2 and m3 are defined in the same

manner. m(3,1) was the number of jumps from state 3 to state 1. By calculating ã =
m(3,1)

m3
for all

users and comparing ã for each path to all the users’ probability a , we matched the closest a and

ã. Figure 4.3 shows the error probability that we obtain in simulating users moving in MC1 model.
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Figure 4.3: Pe(α) vs. α for Markov chain MC1 with n = 500.

Second, we model each user’s path as a Markov chain MC2 shown in Figure 4.4. Since in this

model |E| = 5 we can write m = αn.

1

a

''
1−a
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2

1

��

3

1−b

HH

b

VV

Figure 4.4: The Markov chain MC2 which models of users’ path.

For n users, we create (a, b) ∈ (0, 1) which are i.i.d. We then generate m observations for each

user. By calculating ã =
m(1,2)

m1
and b̃ =

m(3,1)

m3
for all users and comparing ã, b̃ for each path to all
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the users’ probabilities a and b , we matched the closest (a, b) and (ã, b̃) in R2. Figure 4.5 shows

the error probability that we obtain in simulating users moving in MC2 model.
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Figure 4.5: Pe(α) vs. α for Markov chain MC2 with n = 500.

Third, We model each user’s path as a Markov chain MC3 shown in Figure 4.6. Since in this

model |E| = 6 we can write m = αn
2
3 .

1
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''

1−a
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2 1−b
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VV

Figure 4.6: The Markov chain MC3 which models of users’ path.
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For n users, we create (a, b, c) ∈ (0, 1) which are i.i.d and assumed them to be known to the

adversary. We then generate m observations for each user. By calculating ã =
m(1,2)

m1
and b̃ =

m(2,3)

m2

and c̃ =
m(3,2)

m3
for all users and comparing ã, c̃ for each path to all the users’ probabilities a, b and

c, we matched the closest (a, b, c) and (ã, b̃, c̃) in R3. Figure 4.7 shows the error probability that

we obtain in simulating users moving in MC3 model.

Figure 4.7: Pe(α) vs. α for Markov chain MC3 with n = 500.

For a fixed α = 5, Figure 4.8 shows that as n increases, the error probability of the adversary

converges to a fix positive value. We have repeated this for different values of α and have observed

the same effect. This is consistent with our result that m = O(n
2

|E|−r ) is the threshold for perfect

privacy.
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Figure 4.8: Pe(n) vs. n for Markov chain MC3 with α = 5.

Then, we model each user’s path as a Markov chain MC4 shown in Figure 4.9. Since in this

model |E| = 7 we can write m = α
√
n.
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Figure 4.9: The Markov chain MC4 which models of users’ path.
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For n users, we create (a, b, c, d) ∈ (0, 1) which are i.i.d and assumed them to be known to the

adversary. We then generate m observations for each user. By calculating ã =
m(1,2)

m1
and b̃ =

m(2,1)

m2

and c̃ =
m(2,3)

m2
and d̃ =

m(3,1)

m3
for all users and comparing ã, b̃, c̃, d̃ for each path to all the users’

probabilities a, b, c, d, we matched the closest (a, b, c, d) and (ã, b̃, c̃, d̃) in R4. Figure 4.10 shows

the error probability that we obtain in simulating users moving in MC3 model.
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Figure 4.10: Pe(α) vs. α for Markov chain MC4 with n = 500.

Simulation results in Figures 4.3, 4.5, 4.7, 4.10 show that as α grows, the adversary’s error

probability goes to zero which shows that the adversary maps users with low error probability.

On the other hand, as α becomes smaller, the error probability approaches 1. These results are

consistent with the our main result that users have perfect privacy if the adversary obtains less than

O(n
2

|E|−r ) observations per user.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

We provided an information theoretic definition for perfect location privacy using the mutual

information between users actual location and the anonymized observation that the adversary col-

lects. Here, we assumed the strongest adversary who has all the statistical knowledge of the users’

movements. The anonymization technique creates a pseudonym for each user at any time using a

random permutation on the set of all users, {1, 2, · · · , n}.

First, we model users movements independent from their previous locations. In this model,

we have n users and r locations. We prove that if the number of observations that the adver-

sary collects, m, is less than O(n
2
r−1 ), then users will have perfect location privacy. So, if the

anonymization method changes the pseudonyms of the users before m observations made by the

adversary for each user, then the adversary cannot distinguish between users.

We assumed that the location of a user is independent from his previous locations and also

independent from other users’ location. This assumption will fail immediately using this frame-

work for real world data. Markov chain models are known to be more realistic models in terms

of modeling users’ movement rather than independent patterns. In Markov chain models, users’

next location depends on the current location. Then, we extended our framework by using Markov

chain model, a more realistic model, to model users’ movements. By using the same notion of per-

fect location privacy we show the feasibility of achieving perfect location privacy using Markov

chain.

Using Markov chains we prove that perfect location privacy is achievable if the pseudonym of

the user is changed before O(n
2

|E|−r ) observations is made by the adversary. If the anonymization
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method changes the pseudonyms of the users before m observations made by the adversary for

each user, then all the users have perfect location privacy.

Several issues may arise in such a framework. Achieving perfect location privacy is dependent

on how unique the Markov chain of a user is. In the best case, all the users have a same Markov

chain model of movements with similar transition probabilities. In this case, adversary cannot

distinguish between them by observing even for large amount of time. On the other hand, some

users may have a very unique Markov model for their movements in which case, the adversary

is able to find the user with very limited number of observations. Users can be classified in to

two groups: (1) users who have perfect location privacy if the number of observations collected

by the adversary, m, is below some threshold, (2) users who will never achieve perfect location

privacy when only anonymization is used. That is, a finite number of observations is enough to

give the adversary a strictly positive probability of identifying a user correctly. The key to the

above analysis seems to be in defining a uniqueness measure for the user’s Markov chain. That

is, users who have too unique transition graphs are insecure in terms of location privacy and other

privacy protecting mechanisms have to get involved.

Extending this work using other location privacy protecting mechanisms can help users to

protect their location information. Other LPPMs such as location obfuscation LPPMs allow users

to report their location less precisely. Users are able to add noise or hide their location for certain

amounts of time. By adding this method to our framework, users are able to both change their

pseudonyms over time and also slightly change their location before reporting it. This may result

to achieve more common Markov models for all the users’ movements and since this change may

decrease the uniqueness of users’ Markov chain, they are more likely to achieve perfect location

privacy.
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