
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

March 2017

Time Domain SAR Processing with GPUs for Airborne Platforms Time Domain SAR Processing with GPUs for Airborne Platforms

Dustin Lagoy
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the Aerospace Engineering Commons, Geophysics and Seismology Commons, and the Signal

Processing Commons

Recommended Citation Recommended Citation
Lagoy, Dustin, "Time Domain SAR Processing with GPUs for Airborne Platforms" (2017). Masters Theses.
471.
https://scholarworks.umass.edu/masters_theses_2/471

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/471?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

TIME DOMAIN SAR PROCESSING WITH GPUS FOR
AIRBORNE PLATFORMS

A Thesis Presented

by

DUSTIN LAGOY

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

February, 2017

Electrical and Computer Engineering

TIME DOMAIN SAR PROCESSING WITH GPUS FOR
AIRBORNE PLATFORMS

A Thesis Presented

by

DUSTIN LAGOY

Approved as to style and content by:

Paul R. Siqueira, Chair

Patrick A. Kelly, Member

Ramakrishna Janaswamy, Member

C.V. Hollot, Department Chair
Electrical and Computer Engineering

Now, here, you see, it takes all the
running you can do, to keep in the
same place. If you want to get
somewhere else, you must run at
least twice as fast as that!

— Lewis Carrol
Through the Looking-Glass

ACKNOWLEDGEMENTS

I am especially thankful for the endless support and guidance provided by my

advisor, Paul Siqueira. Professors Patrick Kelly and Ramakrishna Janaswamy deserve

thanks for being part of my thesis committee and providing useful feedback on my

work.

All of the past and current students and staff of MIRSL who have worked on the

S- and Ka-band radar systems have my gratitude. They have undoubtedly put in

more hours than I making these systems what they are. This work, and my time at

MIRSL in general, would have been a lot less interesting without them.

Thanks go out to everyone on the UAVSAR team at JPL for their work and guid-

ance during my time there. Brian Hawkins deserves special thanks for his mentoring,

support, for answering all my questions despite his busy schedule and for his work on

the Angler processor.

This section would not be complete without thanking professor Thomas Millette

of Mount Holyoke College. Without his abundant helpfullness and flexibility, none of

our radar systems would ever have made it off the ground.

Thank you to everyone else in my life for putting up with me and keeping me

sane.

Finally, thank you, the reader. This thesis is written for you as much as for me,

and it is my sincerest hope that you will be able to extract something useful from it.

iv

ABSTRACT

TIME DOMAIN SAR PROCESSING WITH GPUS FOR
AIRBORNE PLATFORMS

FEBRUARY, 2017

DUSTIN LAGOY, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Paul R. Siqueira

A time-domain backprojection processor for airborne synthetic aperture radar

(SAR) has been developed at the University of Massachusetts’ Microwave Remote

Sensing Lab (MIRSL). The aim of this work is to produce a SAR processor capable

of addressing the motion compensation issues faced by frequency-domain processing

algorithms, in order to create well focused SAR imagery suitable for interferome-

try. The time-domain backprojection algorithm inherently compensates for non-linear

platform motion, dependent on the availability of accurate measurements of the mo-

tion. The implementation must manage the relatively high computational burden of

the backprojection algorithm, which is done using modern graphics processing units

(GPUs), programmed with NVIDIA’s CUDA language. An implementation of the

Non-Equispaced Fast Fourier Transform (NERFFT) is used to enable efficient and

accurate range interpolation as a critical step of the processing. The phase of time-

domain processed imagery is different than that of frequency-domain imagery, leading

to a potentially different approach to interferometry. This general purpose SAR pro-

cessor is designed to work with a novel, dual-frequency S- and Ka-band radar system

v

developed at MIRSL as well as the UAVSAR instrument developed by NASA’s Jet

Propulsion Laboratory. These instruments represent a wide range of SAR system

parameters, ensuring the ability of the processor to work with most any airborne

SAR. Results are presented from these two systems, showing good performance of

the processor itself.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Review of past work . 4

2. SAR SIGNAL MODEL . 8

2.1 Platform Attitude . 10
2.2 Pulsed Radar Signal Model . 12
2.3 FMCW Radar Signal Model . 14
2.4 Pulse Compression . 15

2.4.1 Pulsed Radar . 15
2.4.2 FMCW Radar . 18

2.5 Summary . 20

3. PROCESSING ALGORITHMS . 22

3.1 Time-Domain Correlation . 22
3.2 Frequency-Domain Algorithms . 23
3.3 Time-Domain Backprojection . 25

3.3.1 Pulsed Radar . 25
3.3.2 FMCW Radar . 27

3.4 Corrected Backprojection . 29

vii

3.4.1 FMCW Radar . 29
3.4.2 Pulsed Radar . 32

3.5 Summary . 35

4. BACKPROJECTION INTERFEROMETRY . 37

4.1 Traditional Interferometry . 38
4.2 Backprojection Interferometry . 40
4.3 Summary . 44

5. IMPLEMENTATION DETAILS . 46

5.1 GPU Hardware . 47
5.2 Algorithm Details . 51

5.2.1 Non-Equispaced Fast Fourier Transform . 54

5.3 Motion Estimation and Autofocus . 56
5.4 Summary . 60

6. COORDINATE SYSTEMS . 61

6.1 Rotations and Conversions . 68
6.2 Summary . 79

7. PROCESSOR DESCRIPTION . 81

7.1 Preprocessor . 81
7.2 Processor . 83

7.2.1 Patch Processing . 85
7.2.2 Range Compression . 87
7.2.3 Azimuth Compression Module . 90
7.2.4 GPU Kernel . 90
7.2.5 Grid Finalization . 93

7.3 Summary . 94

8. RESULTS . 95

8.1 Simulated Data . 96
8.2 UAVSAR Data . 99
8.3 UMass Ka-band Data . 103
8.4 UMass S-band Data . 110
8.5 Combined S and Ka-band Data . 116

viii

9. CONCLUSION . 118

9.1 Contributions . 119
9.2 Future Work . 120

BIBLIOGRAPHY . 122

ix

LIST OF TABLES

Table Page

3.1 Backprojection start-stop correction factors. 35

5.1 Parameters of the relevant radar systems. 46

8.1 Simulated point target impulse response. 96

8.2 UAVSAR measured point target impulse response. 99

x

LIST OF FIGURES

Figure Page

1.1 The two relevant radar systems. 3

2.1 Generic SAR geometry. 9

2.2 SAR attitude. 11

3.1 Comparison of frequency and time-domain processing. 25

4.1 Interferometer geometry. 37

4.2 Traditional interferometry detail. 39

4.3 Backprojection interferometry detail. 41

5.1 GPU hardware layout. 48

5.2 Processor block diagram/pseudocode. 52

6.1 Model of the earth ellipsoid. 63

6.2 Platform coordinate systems. 65

6.3 A representation of the SCH approximating sphere. 67

8.1 Slant-range reflectivity output for simulated corner reflector scene. 97

8.2 Oversampled point target response in simulated image. 98

8.3 Slant-range reflectivity output for UAVSAR scene. 100

8.4 A closeup of the corner reflectors in the UAVSAR scene. 101

8.5 Oversampled response for corner reflector in UAVSAR scene. 102

8.6 Ka-band reflectivity image. 104

xi

8.7 Final DEM using Ka-band interferometric height estimates. 105

8.8 Ka-band reflectivity detail image. 106

8.9 Ka-band raw differential height estimate. 107

8.10 Reference DEM used for processing. 108

8.11 Final Ka-band DEM detail image. 109

8.12 S-band reflectivity image. 111

8.13 Final DEM using S-band interferometric height estimates. 112

8.14 S-band reflectivity detail image. 113

8.15 S-band raw differential height estimate. 114

8.16 Final S-band DEM detail image. 115

8.17 Height difference measured between Ka and S-band images. 117

xii

CHAPTER 1

INTRODUCTION

Synthetic aperture radar (SAR) interferometers have long been used to measure

various spatially distributed phenomena on the Earth’s surface and in space. Such

phenomena include large and small scale topography, properties of natural land cover

of many types and snow and ice, among others. These radar systems are capable

of making widespread measurements which can be repeated with relatively high fre-

quency, enabling scientific studies that rely on such a measurement scheme. Generally,

SARs will either be operated from an airborne or spaceborne platform, depending on

a campaign’s budget and science requirements. Besides the great difference in alti-

tude, airborne systems must also contend with the much less regular motion of the

platform due to the atmosphere.

To generate useful imagery of the phenomenon under investigation, a SAR system

must compensate for the finite size of its antenna beam, which is typically on the

order of degrees. Without such a compensation, the resolution of a SAR system

would be limited in the azimuth direction, to something on the order of kilometers.

To improve this resolution a SAR system will “synthesize” a large antenna array

by coherently adding the recorded returns of individual pulses measured during the

motion of the platform. Typically, this coherent addition is achieved through one

of several SAR processing algorithms which operate in the frequency-domain. While

such algorithms enable efficient generation of high resolution imagery, they are limited

by the difficulty of compensating for non-ideal motion of the platform. For airborne

platforms, where non-ideal motion can be significant, other options may be preferred.

1

There exist SAR processing algorithms that instead operate in the time-domain which

are generally simpler and which will inherently compensate for any known, non-ideal

motion. The main reason why these have seen little use historically is due to their

high computational complexity when compared to frequency-domain algorithms.

Due to the desire to achieve more accurate imagery with airborne platforms, and

the increase in general and parallel computing resources, time-domain algorithms are

starting to be used with modern airborne SAR systems. There are two SAR interfer-

ometers under development at the University of Massachusetts’ Microwave Remote

Sensing Lab; one at S-band (3.2GHz) and one at Ka-band (35GHz) [5, 10]. Both

of these systems operate on a small, low-altitude aircraft. NASA’s Jet Propulsion

Laboratory (JPL) has developed, and operates, an L-band SAR system, which cur-

rently uses motion-compensated frequency-domain algorithms to perform its SAR

processing [18]. Both systems can be seen in Figure 1.1.

The S-band and Ka-band radar systems are designed to operate simultaneously

on the same platform, allowing for novel, dual-frequency, interferometric data acqui-

sition. Due to the order of magnitude difference in wavelength, the scattering and

penetration depth of the two radars should differ significantly for many terrain types.

Since the radars operate simultaneously, the dual-frequency system is able to show

these different characteristics without temporal or spatial decorrelation.

This thesis describes the development and implementation of a time-domain pro-

cessor, designed to generate high resolution imagery with both UMass radars as well

as with NASA’s UAVSAR instrument. In addition, results are presented with each

of the mentioned radar systems and using simulated data, including interferometric

results with the dual-frequency system. Chapter 2 lays out the signal model for a

generic airborne synthetic aperture radar. In Chapter 3 a comparison of several SAR

processing algorithms is made, with an emphasis on backprojection; the algorithm

used in this implementation. Chapter 4 describes fundamental differences between

2

(a) KaSI.

(b) UAVSAR.

Figure 1.1: The two relevant radar systems. KaSI, the UMass system, is a combina-
tion of the S- and Ka-band radars.

3

time and frequency-domain algorithms with respect to interferometry. Details re-

garding the implementation of the processor are found in Chapter 5, including a

discussion of general purpose computing with graphics processing units (GPUs), and

why it is applicable to time-domain backprojection. Relevant coordinate systems are

presented in Chapter 6, including mathematical descriptions of conversions between

them. A step-by-step description of the written processor is given in Chapter 7.

Finally, Chapter 8 presents results obtained using this processor.

1.1 Review of past work

Synthetic aperture radar imaging is a mature technology, dating back to the op-

tical SAR processing of the 1960s [7]. Not long after, SAR processing began to be

processed digitally, as it is today, where modern processors for airborne and space-

borne systems typically use frequency-domain algorithms like the Range-Doppler,

Chirp-Scaling or ωK algorithms [7, 19, 4]. A detailed review of frequency-domain

SAR processing is beyond the scope of this document. In order to perform SAR

processing in the frequency-domain, it is required to assume that the radar platform

flies linearly1 during the entire data acquisition. This assumption does not often well

reflect the true flight path, especially for turbulent airborne systems. It is possible

to extend these processing algorithms to correct errors due to non-linear motion, by

adding additional motion compensation steps to the processor [19, 15]. This adds

additional computational burden and complexity to the processor.

As described by both Cumming et al. and Soumekh [7, 19], an alternative is to use

time-domain based algorithms, which do not inherently assume a linear flight path.

Soumekh [19] gives a brief discussion of the time-domain correlation and backpro-

jection algorithms though the focus of the book is on frequency-domain processing.

1Here linear indicates a flight track which can be represented by a straight line in some Cartesian
coordinate system.

4

The simplicity of the algorithms is clear in the two page discussion, where the main

drawbacks of the algorithms, namely the high computational burden, is presented.

Ribalta [16] derives in detail the time-domain correlation and backprojection algo-

rithms for FMCW radar systems (which often operate on small, low-altitude aircraft

and are especially prone to non-linear motion). The derivation includes detail regard-

ing the start-stop approximation and how it simplifies the correlation algorithm to the

backprojection algorithm. In addition, Ribalta describes a corrected backprojection

algorithm, which models motion of the platform during chirp transmission as lin-

ear, to reduce the impact of the start-stop approximation for FMCW systems (which

generally have longer pulse lengths). The treatment is mostly theoretical, but does

include simulation results comparing the three described algorithms. Ribalta’s work

is an important reference as a starting point for a basic backprojection processor, but

does not cover pulsed based systems.

Stringham et al. [20] have developed a time-domain backprojection processor, also

for FMCW systems. An additional term is added to Ribalta’s corrected backprojec-

tion algorithm, using a least-squares approximation of second order terms, to improve

the correction for systems with very wide bandwidths and long chirp lengths. Addi-

tionally, the processor is written to run on graphics processing units (GPUs) to reduce

computation time. An overview of the implementation is presented for stripmap SAR

systems, including a discussion of compensation for variable synthetic aperture size

due to platform motion. Additionally, Fourmont’s [9] NERFFT interpolation method

is used for the critical interpolation step of the backprojection algorithm. Processed

results are presented from a single FMCW system. Stringham describes some im-

portant implementation details relevant to SAR backprojection processing and is, in

fact, very similar to the work presented here. In some places of Stringham’s work,

the presented work emphasizes computational speed over accuracy, most notably in

the interpolation step, though this is minor. Stringham’s processor is not designed

5

to work with other types of radar systems and the description does not include the

additional output products presented here.

Capozzoli [3] gives a good description of many interpolation methods relevant to

backprojection processing, from nearest neighbor, to cubic, to Knab as well as the

NERFFT. Implementation details are discussed, using GPU hardware. A detailed

comparison of accuracy and computational time is presented in Capozzoli’s work,

using both numerical and experimental data. Capozzoli puts forth a good case for the

NERFFT interpolation method, originally presented by Fourmont [9] for tomography.

The NERFFT is shown to give by far the most accurate results with only minor

differences in processing time.

As far as this author is aware, Duersch et al. [8] presents the only discussion regard-

ing SAR interferometry using backprojected data. In comparison, there is a wealth

of information about SAR interferometry for more traditional, frequency-based, pro-

cessing, for example as presented by Rosen et al. [17]. In the work by Duersch et al.

a theoretical derivation of height estimates for scatterers for cross track interferome-

ters processed with the backprojection algorithm is presented. The result, including

some simplifying assumptions of the system geometry, is a relation between the in-

terferometric phase and scatterer height. What is most interesting is the comparison

with traditional interferometry which shows not only a different relation between the

phase and height but also different sensitivities to system parameters (geometric or

otherwise). It is shown that, in general, interferometry performed with backprojected

imagery is less sensitive to geometric errors, but more sensitive to phase errors. This

article is of particular interest as the radar systems in use in this document are de-

signed for interferometry.

There have been recent developments in backprojection SAR processing using

GPU hardware. The work presented here continues this development by implement-

ing a GPU-based SAR backprojection processor designed to work with a wide range

6

of radar systems, including both pulsed and FMCW systems. Additionally interfero-

metric results are presented using the backprojection processor and imagery collected

from the dual-frequency system.

7

CHAPTER 2

SAR SIGNAL MODEL

Linear-frequency modulated radar systems are commonly used on airborne and

spaceborne platforms. These systems transmit a pulse whose frequency changes lin-

early with time. In such a configuration, there are two main dimensions of importance.

There is the azimuth dimension corresponding to the flight track of the platform, and

the range dimension which is measured orthogonal to the azimuth dimension. In

Figure 2.1 these are represented by the y-axis, and either rslant or rground respectively.

Since the imaged region exists on, or at least near, the surface, analyzing the system

can generally be reduced to these two dimensions. When operating over a flat surface,

range and azimuth can be directly mapped to the surface assuming the flight track

is at an altitude, h. In this case, the azimuth dimension is directly translated to the

surface, and the range is mapped to the ground using

rground =
√
r2

slant − h2 = rslant sin (θi) (2.1)

where the slant range is the orthogonal range from the platform. A similar mapping

can be done for a more generic curved surface.

Due to the ability to pulse compress a linear FM signal, the inherent resolution

in the range direction will be ∆ρ = c
2BW

, where c is the speed of light and BW is

the bandwidth of the FM chirp [7]. Commonly, this resolution is on the order of

meters. In the azimuth direction, the resolution is limited by the size of the antenna

beam which can be anywhere from tens of meters to kilometers depending on the

8

x

y

z

Flig
ht tra

ck

Rd

R0

x̄

ρ0

ρ1ρc

rground

rslant

θi

Figure 2.1: Generic SAR geometry.

9

antenna and platform characteristics. While it is relatively easy to increase the range

resolution by increasing the system bandwidth, it is difficult to make an antenna

beam fine enough to achieve a similar resolution.

Synthetic aperture radar is a technique which overcomes this limiting azimuth

resolution by taking advantage of the motion of the platform and the continuous

data acquisition of the radar. Given a fast enough pulse repetition rate, there will

be many pulses that illuminate a given target as the platform flies past. From the

antenna’s point of view, the target will be traversing the width of the beam at a range

determined by the hyperbolic equation

ρ =
√
ρ2
c + v2

0t
2
az (2.2)

where ρc is the range at the closest approach, v0 is the nominal velocity of the platform

and taz is the “slow” time used to represent the distance traveled in the azimuth

direction relative to the point of closest approach [7]. By exploiting this known

geometry, and the properties of the signal, it is possible to add the contributions

of each pulse together in such a way as to synthesize a much larger antenna. Each

pulse which illuminates the target can be seen as a single sample of a large antenna

array whose size is determined by the width of the beam (meaning it is possible to

synthesize a larger array with a wider antenna beam). It can be shown that with the

phase of these separate pulses properly accounted for, such a system is able to produce

a theoretical azimuth resolution of approximately half the azimuth dimension of the

antenna [7]. Hence, a one meter long antenna can achieve a theoretical resolution of

fifty centimeters.

2.1 Platform Attitude

Relevant to the discussion of most synthetic aperture radar systems is a note about

the attitude, or spatial orientation, of the radar platform. Especially for airborne

10

x

y

z

T
C

N

Flight track

i

j

k

ρ

ρ0

θy

θp

θr

θsq
Rd

Rn

Figure 2.2: SAR attitude.

11

systems, the orientation of the platform will not always be aligned with its direction

of travel. Figure 2.2 shows a depiction of this. The x-, y- and z-axes and flight track

are defined the same as in Figure 2.1 but here the current platform location is on the

z-axis. The TCN , or Track, Cross-Track, Nadir, coordinate system is defined relative

to the platform motion such that T is aligned with the platform velocity vector. The

ijk coordinate system represents how the platform is oriented relative to its motion.

For an aircraft i, would be aligned with the craft’s nose and j with its left wing.

The attitude angles θy, θp and θr, or yaw, pitch and roll, are Euler angles used to

represent the platform’s orientation (i.e. ijk relative to TCN). For SAR systems, a

value of interest is the platform’s squint angle, θsq, representing the degree to which

the antenna beam is offset on the ground. Note that the squint angle will depend

not only on the yaw and pitch attitude angles, but also the platform height and the

range at which the squint is measured.

2.2 Pulsed Radar Signal Model

The following signal-model derivation is based on the work of Carrara and Rib-

alta [4, 16]. A generic linear-frequency modulated radar chirp transmitted by either

an FMCW or pulsed radar system will have the form

stx(n, t) = wr(t) cos
(
2πf0t+ πKrt

2
)

(2.3)

where f0 is the radar center frequency and Kr is the linear chirp rate. The chirp rate,

Kr = BW
T

, corresponds to a linear chirp of duration T , and bandwidth BW . The

window function

wr(t) = rect

(
t

T

)
=


1 |t| < T

2

0 else

(2.4)

12

defines the duration of the chirp. The index, n, is used to distinguish individual

pulses, each of which uses its own local reference time, where t = 0 is the center of

the chirp.

The received waveform, for either case, will be an amplitude-modulated delayed

replica of the transmitted waveform

srx (n, t) =

∫
Rn

σ(x̄)Arx(x̄, n, t)stx (t− t0 (x̄, n, t)) dV

=

∫
Rn

σ(x̄)Arx(x̄, n, t)wr (t− t0 (x̄, n, t))

× cos
(
2πf0 (t− t0 (x̄, n, t)) + πKr (t− t0 (x̄, n, t))2) dV. (2.5)

Here, Rn is the illuminated region, where x̄ is the three-dimensional coordinates of a

point within the region, σ is the reflectivity of the target at x̄ and Arx(x̄, n, t) is the

system amplitude factor due to the antenna pattern and system gain. The volume

integral,
∫
Rn
dV , represents the returns from all scatterers illuminated by the pulse

n. This would generally include individual point and volume scatterers. The integral

could be replaced by a surface integral in simplified cases. The delay is defined to be

t0 (x̄, n, t) =
2ρ(x̄, p̄n,t)

c
(2.6)

where ρ(x̄, p̄n,t) is the distance between the target at x̄ and the platform at p̄n,t. This

assumes that the transmit and receive antennas are co-located. Note that the antenna

pattern for a given point can be assumed to be constant during the duration of the

pulse such that

Arx(x̄, n, t) = Arx(x̄, n, 0) = Arx(x̄, n). (2.7)

For pulsed radars, the received waveform can be downconverted to a baseband

signal mathematically, as

sif (n, t) = sI (n, t) + jsQ (n, t) (2.8)

13

where

sI (n, t) = LPF {srx (n, t) cos (2πf0t)} (2.9)

and

sQ (n, t) = LPF
{
srx (n, t) cos

(
2πf0t+

π

2

)}
. (2.10)

This results in (via Euler’s formula)

sif (n, t) =

∫
Rn

σ(x̄)Arx(x̄, n, t)wr (t− t0 (x̄, n, t))

e−j2πf0t0(x̄,n,t)ejπKr(t−t0(x̄,n,t))2

dV (2.11)

where we have ignored a factor of 1
2

which is instead included in the system gain.

2.3 FMCW Radar Signal Model

Some radar systems (generally these are FMCW systems) compress the signal in

range by mixing the received signal with a copy of the transmitted signal, as in

sif (n, t) = LPF {srx (n, t) stx (t− td)} (2.12)

where we define stx (t) , stx (0, t) = stx (n, t) which is true of most radar systems.

The delay, td, will generally be zero for FMCW systems, but can be non-zero if this

method is used for pulsed systems. This will have the form

sif (n, t) = LPF

{∫
Rn

σ(x̄)Arx(x̄, n)wr (t− t0 (x̄, n, t))

× cos
(
2πf0 (t− t0 (x̄, n, t)) + πKr (t− t0 (x̄, n, t))2)

× wr(t− td) cos
(
2πf0 (t− td) + πKr (t− td)2) dV} (2.13)

which can be simplified to

sif (n, t) =
1

2

∫
Rn

σ(x̄)Arx(x̄, n)wr (t− t0 (x̄, n, t)) cos (φ (x̄, n, t)) dV. (2.14)

14

In (2.14) the phase term, φ(x̄, n, t) can be written as

φ (x̄, n, t) =− 2π (t0 (x̄, n, t)− td) (f0 +Krt)

+ πKr

(
(t0 (x̄, n, t))2 − t2d

)
. (2.15)

The second term in the phase of sif is the quadratic phase error.

2.4 Pulse Compression

Pulse compression of the signal in range will either start from (2.11) for most

pulsed systems, or from (2.14) for FMCW systems. In both cases, the platform is

assumed to be stationary during the transmission of the pulse (known as the start-stop

or stop-and-go approximation) so that

ρ(x̄, p̄n,t) = ρ(x̄, p̄n,0) = ρ(x̄, p̄n). (2.16)

or

t0 (x̄, n, t) = t0 (x̄, n) . (2.17)

This approximation can be significant, especially for FMCW systems with longer

pulse durations.

2.4.1 Pulsed Radar

For pulsed radars, the pulse compression can be implemented as a convolution with

a reference function applied in time- or frequency-domains. Starting from (2.11), and

using the time-reversed, complex conjugate of the baseband transmit signal as the

reference function

sref (t) = wr (t) e−jπKrt
2

(2.18)

15

the pulse compression is described as

spc (n, t) =

∫ ∞
−∞

sif (n, u) sref (t− u) du. (2.19)

This has the form

spc (n, t) =

∫ ∞
−∞

∫
Rn

σ(x̄)Arx(x̄, n, t)wr (u− t0 (x̄, n))

× e−j2πf0t0(x̄,n)ejπKr(u−t0(x̄,n))2

dV

×wr (t− u) e−jπKr(t−u)2

du. (2.20)

or

spc (n, t) =

∫
Rn

σ(x̄)Arx(x̄, n, t)e
−j2πf0t0(x̄,n)ejπKr(t0(x̄,n)2−t2)

×
∫ ∞
−∞

wr (u− t0 (x̄, n))wr (t− u)

× ej2πKru(t−t0(x̄,n))dudV. (2.21)

In this case, the size of the reference function and the signal are the same (as

determined by the window functions wr).
1 Here the inner integral can be split into

two parts, one where the reference function is to the left of the signal (t > t0) and

one where it is to the right (t < t0), giving

1In [7] it is shown that the case where the sizes of the reference function and the signal are
different leads to the same result.

16

wr

(
t− t0 (x̄, n) +

T

2

)∫ ∞
−∞

rect

(
u− t+t0(x̄,n)

2

t− t0 (x̄, n) + T

)

× ej2πuKr(t−t0(x̄,n))du

+wr

(
t− t0 (x̄, n)− T

2

)∫ ∞
−∞

rect

(
u− t+t0(x̄,n)

2

t0 (x̄, n)− t+ T

)

× ej2πuKr(t−t0(x̄,n))du. (2.22)

These integrals can be solved as Fourier transforms using f = −Krt as the fre-

quency variable. This results in

wr

(
t− t0 (x̄, n) +

T

2

)
(t− t0 (x̄, n) + T) e−j2π(−Krt+Krt0(x̄,n))

t+t0(x̄,n)
2

× sinc ((t− t0 (x̄, n) + T) (−Krt+Krt0 (x̄, n)))

+wr

(
t− t0 (x̄, n)− T

2

)
(t0 (x̄, n)− t+ T) e−j2π(−Krt+Krt0(x̄,n))

t+t0(x̄,n)
2

× sinc ((t0 (x̄, n)− t+ T) (−Krt+Krt0 (x̄, n))) . (2.23)

The exponential term in both sums are identical, and cancel with the term in the

outer integral of (2.21). For radars with a large time-bandwidth product (TBP =

T 2Kr), this can be well approximated as [7]

spc (n, t) ≈
∫
Rn

σ(x̄)Arx(x̄, n)e−j2πf0t0(x̄,n)

× T sinc (TKr (t− t0 (x̄, n))) dV (2.24)

which leads to a time-range mapping of t = 2ρ
c

.

In practice, the received signal is sampled to give

sif [n, tm] = sif (n,mTs) (2.25)

17

where Ts is the sampling period and tm represents the discrete time index. In solving

using the Fourier transform, the frequency variable fk = −Krtm would be used in the

discrete case. The discrete Fourier transform is defined to give the relation fk = k
T

or fk = k−M
T

depending on how the discrete system is set up. If set up to give a

positive range relation the sinc term transforms from T sinc(T (−Krt+Krt0 (x̄, n)))

to T sinc
(
T
(
k
T
−Krt0 (x̄, n)

))
. Thus, in the discrete case, the pulse-compressed signal

has the form

spc[n, tk] ≈
∫
Rn

σ(x̄)Arx(x̄, n)e−j2πf0t0(x̄,n)

× T sinc

(
T

(
tk
T
−Krt0 (x̄, n)

))
dV (2.26)

where the discrete variable tk is used, as the convolution truly results in a time-domain

signal. Here, there is a time-range mapping of k = 2KrTρ
c

= ρ
∆ρ

.

2.4.2 FMCW Radar

For FMCW radars, most of the pulse compression has already been performed

in hardware, but requires a Fourier transform to complete the process. Writing the

Fourier transform of the intermediate signal in (2.14) as

spc (n, f) = F {sif (n, t)} (2.27)

gives

spc (n, f) =

∫ ∞
−∞

1

2

∫
Rn

σ(x̄)Arx(x̄, n, t)wr (t− t0 (x̄, n))

× cos
(
− 2π (t0 (x̄, n)− td) (f0 +Krt)

+ πKr

(
(t0 (x̄, n))2 − t2d

))
dV

×e−j2πftdt. (2.28)

18

Solving the Fourier transform leads to the signal

1

2
Te−j2πft0(x̄,n)e∓j2πKrt0(x̄,n)(t0(x̄,n)−td)e∓j2πf0(t0(x̄,n)−td)

× e±jπKr(t0(x̄,n)2−t2d) sinc (T (f ±Kr (t0 (x̄, n)− td))) . (2.29)

These two sinc functions are images of each other. Here, the second term is chosen

(where the ± in the sinc function is a minus sign) as this represents the positive

frequency part. The pulse-compressed signal is then

spc (n, f) =
1

4

∫
Rn

σ(x̄)Arx(x̄, n, t)e
j2πf0(t0(x̄,n)−td)e−jπKr(t0(x̄,n)2−t2d)

× e−j2πt0(x̄,n)(f−Kr(t0(x̄,n)−td))

× T sinc (T (f −Kr (t0 (x̄, n)− td))) dV. (2.30)

It can be seen in the above equation that there is a frequency-range mapping of

f = Kr

(
2ρ
c

+ td
)
.

The result is slightly different in the case that the system transmits a down-chirp

instead of the up-chirp used throughout this derivation. This can be represented by

replacing Kr with −Kr. Due to this change, the first term of (2.29) is the positive

frequency part, and so the resulting pulse-compressed signal has the form

spc (n, f) =
1

4

∫
Rn

σ(x̄)Arx(x̄, n, t)e
−j2πf0(t0(x̄,n)−td)e−jπKr(t0(x̄,n)2−t2d)

× e−j2πt0(x̄,n)(f−Kr(t0(x̄,n)−td))

× T sinc (T (f −Kr (t0 (x̄, n)− td))) dV. (2.31)

Note the opposite sign of the f0 exponential term, a result of the opposite chirp

direction.

19

The recorded signal is, in practice, discrete, and with the Fourier transform there

is the relation fk = k
T

or fk = k−M
T

. Choosing the positive frequency-range relation

during processing yields the discrete pulse-compressed signal

spc[n, k] =
1

4

∫
Rn

σ(x̄)Arx(x̄, n, t)e
j2πf0(t0(x̄,n)−td)e−jπKr(t0(x̄,n)2−t2d)

× e−j2πt0(x̄,n)(f−Kr(t0(x̄,n)−td))

× T sinc

(
T

(
k

T
−Kr(t0 (x̄, n)− td)

))
dV (2.32)

or

spc[n, k] =
1

4

∫
Rn

σ(x̄)Arx(x̄, n, t)e
−j2πf0(t0(x̄,n)−td)e−jπKr(t0(x̄,n)2−t2d)

× e−j2πt0(x̄,n)(f−Kr(t0(x̄,n)−td))

× T sinc

(
T

(
k

T
−Kr(t0 (x̄, n)− td)

))
dV (2.33)

for a down-chirp system. This results in the frequency-range mapping k = 2KrTρ
c

+

KrTtd = ρ
∆ρ

+BWtd, which is the same as the discrete pulsed radar case if td = 0.

2.5 Summary

A model for a generic synthetic aperture radar system has been presented. This

includes a description of how a SAR system takes advantage of platform motion in

order to synthesize a large antenna array and achieve fine azimuth resolution. An

introduction to the attitude orientation of the platform was given, to provide insight

into its importance and to set up further discussion in later chapters. For both pulsed

and FMCW radar systems, a detailed signal model is given, starting with the form

of the transmitted pulse up through the recorded data. Additionally, the concept

and signal model of pulse compression for both radar types is presented. This signal

20

model provides the basis for the formulation of the SAR processor presented here.

The next chapter discusses various processing algorithms which attempt to properly

form the SAR image by synthesizing the antenna array using the recorded data.

21

CHAPTER 3

PROCESSING ALGORITHMS

The signals recorded by a radar’s data acquisition system will be discrete versions

of the received signals

sif [n, tm] = sif (n,mTs). (3.1)

Note that tm is now a discrete time index, m, and that the brackets denote the entire

signal as being discrete. From this point, it is the goal of the SAR processor to

take these recorded signals and generate high resolution output imagery. The task is

to generate a map (Rd) of backscatter values (σ) which amounts to inverting (2.5)

or (2.14) for σ (x̄). In this work, SAR processing algorithms are classified as either

time-domain or frequency-domain algorithms based upon where they perform most

of their essential processing steps.

3.1 Time-Domain Correlation

Among the methods for processing SAR data, perhaps the simplest and most

obvious algorithm is the time-domain correlation algorithm. It is a two-dimensional

matched-filter based on the recorded signal’s impulse response [19]

σ (x̄) =
N∑
n=1

M∑
m=1

sif [n, tm] sref [n, tm] ∀x̄ ∈ Rd. (3.2)

In this formulation, the reference function takes the form

sref [n, tm] = ejφref[n,tm] (3.3)

22

where

φref [n, tm] = 2πf0
2ρ(x̄, p̄n,tm)

c
− πKr

(
tm −

2ρ(x̄, p̄n,tm)

c

)2

(3.4)

for pulsed radars, and

sref [n, tm] = cos(φref [n, tm]) (3.5)

where

φref [n, tm] =2π

(
2ρ(x̄, p̄n,tm)

c
− td

)
(f0 +Krtm)

− πKr

((
2ρ(x̄, p̄n,tm)

c

)2

+ t2d

)
(3.6)

for FMCW radars.

In addition to the simplicity of this algorithm, it is also generally the most accurate

due to the lack of simplifying assumptions which other algorithms (most notably

the frequency-domain algorithms) make [19]. In this and all other algorithms, the

accuracy is dependent on the precise knowledge of the motion of the radar platform.

The main disadvantage of this algorithm, and the reason it is almost never used

in practice, is that it requires processing time of order, O(NM |Rd|) where N is

the number of pulses, M is the number of time samples and |Rd| is the size of the

output image grid. Depending on the implementation, this algorithm could take

approximately 104 times the real time data acquisition rate (so one minute of recorded

data would take approximately one week to process).

3.2 Frequency-Domain Algorithms

One approach to improve the speed of processing is to perform some of the process-

ing in the frequency-domain. Algorithms such as range-Doppler, ωK or chirp scaling,

fall into this category [7]. These algorithms all begin with range/pulse compression,

involving the start-stop approximation. From here, the range-Doppler algorithm per-

forms the azimuth compression in the range-time, azimuth-frequency domain. The

23

general steps involve correcting the hyperbolic range migration for an assumed linear

flight track

ρ =
√
ρ2

0 + v2
0t

2
az (3.7)

where v0 is the nominal velocity and taz is the slow time used to represent the distance

traveled in the azimuth direction. This hyperbolic range is approximated as

ρ (faz) ≈ ρ0 + ρ0
λ2f 2

az

8v2
0

(3.8)

where faz is the azimuth frequency. From this point, the azimuth portion of the

matched filter can be applied as

Haz (faz) = e
jπ

f2
azλcρ0

2v2
0 . (3.9)

There are two major assumptions involved here. First is the assumption of a linear

flight track used to define both the range migration and azimuth matched filter.

Second is the approximation of the range migration hyperbola.

The ωK algorithm performs the azimuth compression in the range-frequency,

azimuth-frequency domain, which avoids the approximation in the range migration

correction of the range-Doppler algorithm, but still involves the assumption of a linear

flight track.

Both of these frequency-domain algorithms have much faster computation times

and can be quite accurate for some flight geometries. The ωK algorithm is also inher-

ently good at processing scenes with high squint angles or large synthetic apertures.

However, significant complexity, and non-trivial computation time, must be added to

compensate for non-ideal platform motion.

A depiction of the effect of non-linear motion on the processing is shown in Fig-

ure 3.1. A generic frequency-domain processor will assume a linear flight track and

24

x

y

z

F
li
gh

t
tr

ac
k

(a) Frequency-domain

x

y

z

F
li
gh

t
tr

ac
k

(b) Time-domain

Figure 3.1: Comparison of frequency and time-domain processing.

combine the returns from the beam footprints accordingly. In general, a time-domain

processor will use the location of the beam footprints dependent on the non-linear

motion of the platform. As is seen in the image, the non-linear motion will not only

effect which beams illuminate the target, and where within the beam the illumination

takes place, but also the range from the target to the platform. With such non-linear

motion the range will no longer follow (3.7).

3.3 Time-Domain Backprojection

Another option is to apply the start-stop approximation, (2.16), to the time-

domain correlation algorithm [16].

3.3.1 Pulsed Radar

Using the start-stop approximation, (3.4) becomes

φref [n, tm] = 2πf0
2ρ(x̄, p̄n,0)

c
− πKr

(
tm −

2ρ(x̄, p̄n,0)

c

)2

. (3.10)

25

This can be split into

φref [n, tm] = φrn [n]φrm [n, tm] (3.11)

giving

σ (x̄) =
N∑
n=1

ejφrn[n]

M∑
m=1

sif [n, tm] ejφrm[n,tm] ∀x̄ ∈ Rd (3.12)

where

φrn = 2πf0
2ρ(x̄, p̄n,0)

c
(3.13)

and

φrm = −πKr

(
t− 2ρ(x̄, p̄n,0)

c

)2

. (3.14)

Noting that (a − b)2 = (b − a)2 and recalling that the definition of the pulsed com-

pressed signal can be written in the discrete case as

spc[n, k] =
M∑
m=1

sif [n, tm]wr

(
k

KrT
− tm

)
e−jπKr(

k
KrT
−tm)

2

(3.15)

the inner sum of this expression can be replaced by

spc

[
n,KrT

2ρ(x̄, p̄n,0)

c

]
(3.16)

yielding the backprojection algorithm

σ(x̄) ≈
N∑
n=1

ejφref(x̄,n)spc

[
n,
ρ(x̄, p̄n,0)

∆ρ
− ρref

]
∀x̄ ∈ Rd (3.17)

which is approximate due to the start-stop approximation [16]. This uses the relation

2KrT
c

= 2BW
c

= 1
∆ρ

. Note that an extra range-bias term, ρref , is included for system

specific calibration. In (3.17) the reference term has the form

φref(x̄,n) = 2πf0
2ρ(x̄, p̄n,0)

c
. (3.18)

26

3.3.2 FMCW Radar

For FMCW radars, the reference phase term becomes

φref [n, tm] =2π

(
2ρ(x̄, p̄n,0)

c
− td

)
(f0 +Krtm)

− πKr

((
2ρ(x̄, p̄n,0)

c

)2

− t2d

)
. (3.19)

Here, the reference function can be split using

cos(φref [n, tm]) =
1

2

(
ejφref[n,tm] + e−jφref[n,tm]

)
(3.20)

and again into

φref [n, tm] = φrn [n]φrm [n, tm] (3.21)

giving

σ (x̄) =
N∑
n=1

1

2

(
e−jφrn[n]

M∑
m=1

sif [n, tm]e−jφrm[n,tm]

+ ejφrn[n]

M∑
m=1

sif [n, tm] ejφrm[n,tm]

)
∀x̄ ∈ Rd (3.22)

where

φrn = −2πf0

(
2ρ(x̄, p̄n,0)

c
− td

)
+ πKr

((
2ρ(x̄, p̄n,0)

c

)2

− t2d

)
(3.23)

and

φrm = −2πKrtm

(
2ρ(x̄, p̄n,0)

c
− td

)
. (3.24)

Again, given the definition of the pulsed-compressed signal in the discrete case

spc[n, k] =
M∑
m=1

sif [n, tm]e−j2π
k
T
tm (3.25)

27

the inner sums can be replaced by the pulse-compressed signal as

spc

[
n,∓TKr

(
2ρ(x̄, p̄n,0)

c
− td

)]
(3.26)

where the second, positive-frequency term is kept, and the first term (the image), is

thrown out during pulse compression. This gives the FMCW time-domain backpro-

jection algorithm

σ (x̄) =
N∑
n=1

1

2
ejφref [n]spc

[
n,
ρ(x̄, p̄n,0)

∆ρ
−BWtd

]
∀x̄ ∈ Rd. (3.27)

In this case, the same time-domain backprojection algorithm is reached, as in (3.17),

with a reference phase term of

φref(x̄, n) = −j2πf0

(
2ρ(x̄, p̄n,0)

c
− td

)
+ jπKr

((
2ρ(x̄, p̄n,0)

c

)2

− t2d

)
(3.28)

and an extra factor of 1
2

due to the single term.

The sum over the pulse time samples in the time-domain correlation algorithm has

been replaced with a simple index into the range-compressed signal, and the overall

algorithm is now just a sum over each pulse for each output pixel. This algorithm

reduces the order of the computation time to O(N |Rd|) which would be about 103

times faster than the time-domain correlation algorithm. While this may not be as

fast as most frequency-domain algorithms, it is a large improvement over the time-

domain correlation algorithm and only requires the start-stop approximation. This is

usually seen as a favorable trade off between computation time and accuracy, as for

most radars, the start-stop approximation is minor. The backprojection algorithm

also will inherently correct for any non-linear aircraft motion unlike the frequency-

domain algorithms.

28

3.4 Corrected Backprojection

For radar systems with long pulses and/or very large bandwidth, the start-stop

assumption may introduce noticeable error. As described in the works of Ribalta and

Stringham [16, 20], the majority of this error can be removed by using a first order

approximation of the aircraft motion. More precisely, this is an approximation of the

distance, ρ,

ρ(x̄, p̄n,tm) ≈ ρ(x̄, p̄n,0) + vρ [n] tm (3.29)

where

vρ [n] = |v̄| cos(θx̄,n) (3.30)

and

θx̄,n = arccos

(
v̄ · (p̄n,0 − x̄)

|v̄| |p̄n,0 − x̄|

)
. (3.31)

The look angle, θx̄,n, is the angle between the platform velocity vector, v̄, and the

look vector, ρ̄(x̄, p̄n,0). Note that the velocity, vρ, is one-dimensional and represents

the rate of change of the distance to the target along the look vector, ρ, and not the

platform velocity. This look vector velocity can then be written as

vρ [n] =
v̄ · (p̄n,0 − x̄)

|p̄n,0 − x̄|
. (3.32)

3.4.1 FMCW Radar

The referenced derivations are for FMCW type radar systems. Therefore, this

case is treated first. Using the linear approximation, (3.6) becomes

φref [n, tm] =2π

(
2ρ(x̄, p̄n,0)

c
+

2vρ[n]tm
c

− td
)

(fo +Krtm)

− πKr

((
2ρ(x̄, p̄n,0)

c
+

2vρ[n]tm
c

)2

− t2d

)
. (3.33)

29

As in the uncorrected backprojection this may be expanded to

σ(x̄) =
N∑
n=1

1

2

(
e−jφrn[n]

M∑
m=1

sif [n, tm]e−jφrm[n,tm]

+ ejφrn[n]

M∑
m=1

sif [n, tm] ejφrm[n,tm]

)
∀x̄ ∈ Rd (3.34)

where

φrn[n] = −2πf0

(
2ρ(x̄, p̄n,0)

c
− td

)
+ πKr

((
2ρ(x̄, p̄n,0)

c

)2

− t2d

)
(3.35)

and

φrm[n, tm] =tm

(
−2πf0

(
2vρ [n]

c

)
− 2πKr

(
2ρ(x̄, p̄n,0)

c
− td

))
+ tm

(
πKr2

(
2vρ [n]

c

)(
2ρ(x̄, p̄n,0)

c

))
+ t2m

(
−2πKr

(
2vρ [n]

c

)
+ πKr

(
2vρ [n]

c

)2
)
. (3.36)

In this case, φrn has not changed. In order to reduce the second summation to a

Fourier transform, as done above with (3.27), there can be no second order terms of

the time component tm in φrm. Ribalta notes that much of the correction is achieved

with only the first term and uses the approximation [16]

φrm[n, tm] ≈tm
(
−2πf0

(
2vρ [n]

c

)
− 2πKr

(
2ρ(x̄, p̄n,0)

c
− td

))
. (3.37)

Stringham takes the further approach of using a least squares approximation of t2m,

given as [20]

t2m ≈ Ttm −
T 2

6
. (3.38)

30

With this approximation, φrn becomes

φrn[n] =− 2πf0

(
2ρ(x̄, p̄n,0)

c
− td

)
+ πKr

((
2ρ(x̄, p̄n,0)

c

)2

− t2d

)

+ 2πKr
T 2

6

(
2vρ [n]

c

)
− πKr

T 2

6

(
2vρ [n]

c

)2

(3.39)

and φrm becomes

φrm[n, tm] =tm

(
−2πf0

(
2vρ [n]

c

)
− 2πKr

(
2ρ(x̄, p̄n,0)

c
− td

))
+ tm

(
πKr2

(
2vρ [n]

c

)(
2ρ(x̄, p̄n,0)

c

))
+ Ttm

(
−2πKr

(
2vρ [n]

c

)
+ πKr

(
2vρ [n]

c

)2
)
. (3.40)

Stringham notes that several further simplifications can be made. The second order

velocity terms terms can be neglected as vρ � c. The vρ term in φrn is insignificant

for practical radar pulse lengths and bandwidths. Finally the vρρ(x̄, p̄n,0) term in φrm

is only significant when 2ρ(x̄,p̄n,0)

c
∼ T which is uncommon for FMCW radars.

With these approximations the phase terms reduce to

φrn[n] =− 2πf0

(
2ρ(x̄, p̄n,0)

c
− td

)
+ πKr

((
2ρ(x̄, p̄n,0)

c

)2

− t2d

)
(3.41)

and

φrm[n, tm] = tm

(
− 2πf0

(
2vρ [n]

c

)
− 2πKr

(
2ρ(x̄, p̄n,0)

c
− td

)
− 2πTKr

(
2vρ [n]

c

))
. (3.42)

The inner sums can now be replaced by the pulse-compressed signal (as done in the

uncorrected case)

31

spc

[
n, T

(
∓Kr

(
2ρ(x̄, p̄n,0)

c
− td

)
∓ f0

2vρ [n]

c
∓ TKr

2vρ [n]

c

)]
(3.43)

where the first, negative frequency, term is again ignored. Thus the corrected back-

projection algorithm has the form

σ(x̄) ≈
N∑
n=1

spc

[
n,
ρ(x̄, p̄n,0)

∆ρ
− ρref +

f0vρ[n]

Kr∆ρ
+
Tvρ[n]

∆ρ

]
ejφref(x̄,n)

∀x̄ ∈ Rd. (3.44)

In this form, the third term in the range-compressed data’s index is the correction

term noted by Ribalta, and the fourth term is the additional correction used by

Stringham. With this correction, the computational order is still O(N |Rd|), like the

standard backprojection algorithm, but does require the computation of the correction

terms.

3.4.2 Pulsed Radar

The linear look velocity approximation in (3.29) may also be applied to pulsed

radars, although with less usefulness due to the generally shorter pulse length. Here,

reference phase term in (3.4) becomes

φref[n, tm] =2πf0

(
2ρ(x̄, p̄n,0)

c
+

2vρ[n]tm
c

)
− πKr

(
tm −

(
2ρ(x̄, p̄n,0)

c
+

2vρ[n]tm
c

))2

. (3.45)

Again, noting the form of the pulse-compressed signal

spc[n, k] =
M∑
m=1

sif [n, tm]wr

(
k

KrT
− tm

)
e−jπKr(

k
KrT
−tm)

2

(3.46)

32

the inner sum can be replaced given that the only phase term including tm has the

form −πKr

(
k

KrT
− tm

)2

. The phase term is first expanded as

φref[n, tm] =2πf0t0 + 2πf0tmtv

− πKr

(
t2m − 2tmt0 − 2t2mtv

+ t20 + 2tmt0tv + t2mt
2
v

)
(3.47)

where t0 = 2ρ(x̄,p̄n,0)

c
and tv = 2vρ[n]

c
are rearranged using

1− 2tv + t2v = (1− tv)2 (3.48)

to give

φref[n, tm] =2πf0t0 − πKr(1− tv)2

{

t2m + tm(1− tv)−2

(
−2

f0

Kr

tv − 2t0(1− tv)2

)
+ t20(1− tv)−2

}
. (3.49)

Completing the square yields

φref[n, tm] =2πf0t0 − πKr

{

(1− tv)2

[
tm +

1

2
(1− tv)−2

(
−2

f0

Kr

tv − 2t0(1− tv)2

)]2

+ t0 −
1

4
(1− tv)−4

(
−2

f0

Kr

tv − 2t0(1− tv)2

)2
}
. (3.50)

To achieve the desired form, a small approximation is made

(1− tv) ≈ 1 (3.51)

33

which holds since vρ[n]� c. With this approximation, the phase term has the form

φref[n, tm] =2πf0t0 − πKr

{[
tm +

1

2

(
−2

f0

Kr

tv − 2t0

)]2

+ t20 −
1

4

(
−2

f0

Kr

tv − 2t0

)2
}

(3.52)

and can be rearranged to give

φref[n, tm] =2πf0t0 − πKr

(
t20 −

(
f0

Kr

tv + t0

)2
)

− πKr

(
tm −

(
f0

Kr

tv + t0

))2

. (3.53)

Finally, being in the proper form, the inner sum can be replaced with

spc

[
n,KrT

(
2ρ(x̄, p̄n,0)

c
+
f0

Kr

2vρ [n]

c

)]
(3.54)

resulting in the algorithm form

σ(x̄) ≈
N∑
n=1

spc

[
n,
ρ(x̄, p̄n,0)

∆ρ
− ρref +

f0vρ[n]

Kr∆ρ

]
ejφref(x̄,n) ∀x̄ ∈ Rd (3.55)

where

φref(x̄, n) =2πf0
2ρ(x̄, p̄n,0)

c

+ πf0
2vρ [n]

c

(
2ρ(x̄, p̄n,0)

c
+
f0

Kr

2vρ [n]

c

)
. (3.56)

Note that the additional correction term to the pulse-compressed index is the same

as the first term in the FMCW case. There is no second term derived here, but there

is an additional term in the phase correction not present in the FMCW case.

34

In either pulsed or FMCW systems, the significance of these correction factors can

be calculated. For the systems given in Table 5.1 the correction factors are calculated

for various squint angles with the results shown in Table 3.1. As can be seen the

Table 3.1: Backprojection start-stop correction factors. The given correction factors
can be compared to the approximate center swath range given. Note that the two
terms shown for the FMCW systems represent the two correction terms.

UAVSAR UMass S-Band UMass Ka-Band
Chirp Rate

[
GHz

s

]
2500 100 100

Nominal Range [m] 15000 1500 1500
Correction Factor (θsq = 0◦) [m] 0.0058 0.18+0.0057 0.16+0.00048
Correction Factor (θsq = 10◦) [m] 0.025 0.49+0.015 3.5+0.010
Correction Factor (θsq = 20◦) [m] 0.043 0.77+0.024 6.7+0.019

correction factor is much more significant for the FMCW systems, especially the Ka-

Band system with any noticeable squint. Also, since these systems have relatively

short pulse lengths, the secondary correction factor is not as significant. For the

pulsed system, the correction is small even for large squint angles. A pulsed system

with a lower fractional bandwidth, BW
f0

, longer pulse length, T , or faster platform

velocity would have a larger correction factor.

3.5 Summary

Starting from the recorded signal given in the signal model, several SAR process-

ing algorithms have been presented. These algorithms attempt to generate the high

resolution output imagery from the recorded data by taking advantage of the platform

motion, adding coherently the returns from many pulses. Time-domain backprojec-

tion is presented as an alternative to the more common frequency-domain algorithms,

due to its inherent ability to properly compensate non-linear platform motion. The

form of time-domain backprojection is presented in detail, including correction fac-

tors designed to mitigate errors caused from the start-stop approximation. The next

35

chapter discusses SAR interferometry and how it may be different depending on the

choice of SAR processing algorithm.

36

CHAPTER 4

BACKPROJECTION INTERFEROMETRY

x

z

y

Terrain

DEM

ρ0

ρ′0
ρ1

ρ′1

h0

B

α

ht

θ0

θ1

Figure 4.1: Interferometer geometry. The terrain here represents the position of the
true or average phase center of the scatterers. ρ′0 and ρ′1 are the distances from the
receive antennas to these points.

A standard SAR instrument is able to measure range and azimuth dimensions of

scattering targets with precision. In the case that the targets lie on a known surface,

their three-dimensional location can be given by the intersection of the range-azimuth

dimensions and the surface. If the surface is not known precisely, other methods must

be used. Most commonly this is achieved using interferometry [17]. A cross-track

interferometer has two separate receiving antennas situated perpendicular to the di-

rection of motion that receive simultaneously. Figure 4.1 shows this configuration,

where the radar is flying in the y-direction, and the two antennas are separated by

37

a baseline distance, B, at angle, α. As is shown in the image, for a given range,

the exact scatterer phase center will be different for each antenna, due to the differ-

ence in viewing geometry. Since the antennas are close together, the phase center

displacement of the resolution cell will be very small and is usually ignored. For

backprojection processing, the scatterer is assumed to lie on a DEM, as shown in

Figure 4.1. In some cases, the range to the scatterer assumed position, ρ, and its

actual position, ρ′, will be the same. However, non-linear platform motion and phase

center deviations from the pixel center will complicate the issue, and it may not be

possible to assume ρ = ρ′. A simplification of the general case to two dimensions, as

shown, is presented here.

Part of interferometric processing is estimating the complex coherence, γ̄ = |γ̄|ejφ,

whose phase represents the interferometric phase. The coherence can be estimated

from the imagery as [22]

γ̄ =

∑L
i=1 z0iz

∗
1i√∑L

i=1|z0i|2
√∑L

i=1|z1i|2
(4.1)

where z0 is the first channel, z1 is the second channel and L is the number of looks

used. In two dimensions, this has the form

γ̄ =

∑I
i=1

∑J
j=1 z0[i, j]z∗1 [i, j]√∑I

i=1

∑J
j=1|z0[i, j]|2

√∑I
i=1

∑J
j=1|z1[i, j]|2

(4.2)

where I is the number of looks in the azimuth direction and J is the number of looks

in the range direction, leading to L = IJ total looks.

4.1 Traditional Interferometry

Traditional interferometry aims to use the residual processed phase to precisely

measure the incidence angle of the scatterer, θ′0. The major assumption made in this

38

x

z

y

ρ0

ρ′0

ρ1

ρ′1B

α

θ0

θ′0

∆ρ

∆ρ′

Figure 4.2: Traditional interferometry detail.

case is that the look vectors ρ̄′0 and ρ̄′1 are parallel [17]. This assumption derives from

the fact that B � ρ (where ρ may be any of the involved ranges). By making this

assumption, the difference in length between the look vectors (ρ′0 − ρ′1) is simply one

side of the right triangle shown in Figure 4.2, labelled as ∆ρ′. Solving this triangle

for ∆ρ′ yields

∆ρ′ = B sin(θ′0 − α) (4.3)

thus

θ′0 = α + arcsin

(
∆ρ′

B

)
. (4.4)

Using the general interferometer geometry shown above, this may be converted to a

height as

ht = h0 − ρ′0 cos

(
α + arcsin

(
∆ρ′

B

))
. (4.5)

This approach is derived with frequency-domain processing in mind. With frequency-

domain processing, the output grid is truly processed in the slant range, meaning the

39

image ranges are ρ′ values. Additionally the image phase for each antenna depends

on the path propagation length, and will have the form

ψ = −a2π

λ
ρ′ (4.6)

where a = 1 for bistatic or “single antenna transmit” (SAT) operation, and a = 2 for

monostatic or “ping-pong” operation [17]. For SAT operation one of the antennas

transmits and both receive, while for ping-pong operation, each antenna transmits

and receives separately. In this case the interferometric phase, which is defined as the

phase difference between the two data sets, has the form

φ = ψ0 − ψ1 =
a2π

λ
(ρ′1 − ρ′0). (4.7)

Using the traditional interferometry derivation, namely the approximation ∆ρ′ ≈

ρ′0 − ρ′1 the phase may also be written as [17]

φ = −a2π

λ
B sin(θ′0 − α) (4.8)

Thus, the interferometric phase can be used to estimate the height of the scatterer

ht = hp − ρ0 cos

(
α + arcsin

(
− φλ

a2πB

))
. (4.9)

4.2 Backprojection Interferometry

Duersch develops another approach to interferometry based on backprojection

processing [8]. This development starts with the geometry and imagery of a back-

projection processed scene, but for the generic case shown in Figure 4.1, the same

result may also be derived from the two-dimensional geometry. This involves two

major assumptions (which are also made eventually in Duersch’s approach). First,

40

x

z

y

ρ0

ρ′0

ρ1

ρ′1

ht

θ0

θ1

∆ρ0

∆ρ1

Figure 4.3: Backprojection interferometry detail.

41

is that the displacement of the scatterer from the reference point is purely in the

vertical direction. This will hold for θ � 0. Second, is that the look vectors ρ0 and

ρ′0 are parallel, and the vectors ρ1 and ρ′1 are parallel. This is derived from the as-

sumption that ht � ρ. These assumptions lead to the scatterer configuration shown

in Figure 4.3. Similar to the traditional case, right triangles may be constructed to

determine path length differences, however these path lengths are instead

∆ρ0 ≈ ρ0 − ρ′0 (4.10)

and

∆ρ1 ≈ ρ1 − ρ′1. (4.11)

Here, the height may be directly determined by

ht =
∆ρ0

cos(θ0)
=

∆ρ1

cos(θ1)
(4.12)

In backprojection, the received phase still has the same form as (4.6), but the

range dependence is mostly removed during processing. Instead, the phase for each

antenna will have the form

ψ =
a2π

λ
(ρ− ρ′) (4.13)

where (ρ − ρ′) is the residual or uncorrected range due to a displacement of the

scatterer [8]. This is illustrated in Figure 4.1 where the target has been assumed

by the processor to lie upon the DEM, but the true phase center of the scatterer

measured by the antennas is in another location. In this case the interferometric

phase will be

φ = ψ0 − ψ1 =
a2π

λ
((ρ0 − ρ′0)− (ρ1 − ρ′1)). (4.14)

42

Using the approximations of the backprojection interferometry approach, the phase

can be written as

φ =
a2π

λ
(∆ρ0 −∆ρ1) =

a2π

λ
(ht cos(θ0)− ht cos(θ1)) (4.15)

and inverted to solve for height as

ht =
φ

4π
λ

(cos θ0 − cos θ1)
(4.16)

which is the same result as derived by Duersch [8]. Note that there are significant

differences from the height estimate used with traditional interferometry.

Duersch shows a detailed comparison of sensitivities for traditional versus back-

projection interferometry approaches [8]. To do so, (4.16) is rewritten in terms of the

traditional parameters by using the law of sines with the original (ρ0ρ1B) triangle

ht =
φ

4π
λ

(
cos θ0 − cos

(
θ0 − arcsin

(
B
ρ1

cos(α− θ0)
))) . (4.17)

Several important differences are found. Traditional interferometry is less sensitive

to the interferometric phase. Backprojection interferometry is shown to be less sen-

sitive to geometric errors, notably the baseline length and angle. Unlike traditional

interferometry, backprojection interferometry becomes less sensitive to errors as the

baseline length increases. Also, with backprojection interferometry, the interferomet-

ric phase should vary slowly as a function of height displacement or incidence angle.

From the differences found it is expected that backprojection interferometry would

perform better in some cases, most notably with large baselines or platform geometry

measurement errors.

It should be noted that while the “backprojection interferometry” approach may

be derived from the backprojection processed imagery and may be convenient to

43

use for such images, the traditional approach may also be used with backprojection

images1. To do so, the additional phase added to each channel during the processing,

namely a2π
λ
ρ, could also be removed during the processing, leading to the same phase

form as given in the traditional case. At this point, the traditional method could be

employed as usual, especially easily if, like is done in the processor presented here,

the output is in a slant range grid. Another option would be to remove the additional

phase after processing, giving the result

θ′0 = α + arcsin

(
ρ1 − ρ0

B
− φλ

a2πB

)
. (4.18)

Using an assumption similar to that used in the traditional approach, ρ1 − ρ0 ≈ ∆ρ,

as seen in Figure 4.2, this could also be written as

θ′0 = α + arcsin

(
sin(θ0 − α)− φλ

a2πB

)
. (4.19)

4.3 Summary

Two different approaches to cross-track interferometry are presented; the tradi-

tionally used approach derived from frequency-domain processing and a new approach

derived from time-domain backprojection. The new approach is well suited to back-

projection processing, due to the nature of the processor’s outputs, and is shown to

perform differently than the traditional approach. The performance difference should

give advantages to each approach for certain radar system configurations. It is noted

that, if care is taken, either interferometric approach could be used with backpro-

jection processed imagery. Having developed a suitable signal model and processing

algorithm, the next chapter will discuss general details which must be considered

1In fact the “backprojection interferometry” approach could also likely be used with slant-range,
frequency-domain processed imagery.

44

in implementing the time-domain backprojection algorithm, and provides a detailed

look into the implementation created as a part of this thesis.

45

CHAPTER 5

IMPLEMENTATION DETAILS

This thesis presents details of the SAR Processor under development at UMass.

It has the goal of creating highly accurate focused imagery from both the UAVSAR

platform developed and operated by NASA’s Jet Propulsion Laboratory as well as

two radar platforms under development at UMass Amherst. These two platforms are

both side-looking cross-track interferometers. One operates at Ka-band using slotted

waveguide antennas and the other at S-band using microstrip patch antennas. The

important specifications of these systems are listed in Table 5.1.

Table 5.1: Parameters of the relevant radar systems.

UAVSAR UMass S-Band UMass Ka-Band
Center Frequency [GHz] 1.2575 3.2 34.945
Pulse Length [µs] 40 1000 1000
PRF [Hz] 500 1000 1000
Beam Width [◦] 6 12 1
Synthetic Aperture Length [m] 2200 350 30
Altitude [km] 12.5 0.5-2 0.5-2
Velocity [m/s] 220 55 55
Baseline [m] Variable 0.756 0.1

The parameters in Table 5.1 show the systems for which the processor is to be used

have a great deal of variation. There is a wide range of center frequencies and beam

widths as well as platform speeds and altitudes. Additionally, the UMass radars are

both FMCW, while UAVSAR is a pulsed system. Due to these varying parameters,

the processor must be flexible enough to work well with many types of input data.

Because of the large non-linear motion of the low altitude radars, and the desire

to achieve greater accuracy with airborne platforms, the processor is designed around

46

the backprojection algorithm. In order to operate at a reasonable speed, and to be

relatively easy to write and maintain, the processor is being written using the CUDA

language to perform the core focusing tasks, and with Python to perform all of the

host functions. This hybrid approach allows the processor to take advantage of the

speed benefits of GPU hardware in regards to backprojection without becoming too

complex and difficult to maintain.

5.1 GPU Hardware

While the backprojection algorithm is a large improvement in speed over the time-

domain correlation algorithm, it still has trouble keeping up with frequency-domain

based approaches. A unique feature of the algorithm developed in this thesis is that

it performs almost exactly the same computation for each output pixel. In fact,

a trivial implementation would include a loop over every pixel which performs the

sum in (3.17). This type of implementation is an excellent candidate for running in

parallel. Given that the algorithm is nearly the same for every pixel, is fairly simple,

and the fact that there will be a very large number of pixels, it is a good candidate

to be run on a GPU.

Graphics processing units (GPUs) have become a useful computational tool for

parallel processing. Modern GPUs have thousands of processing cores, coupled with

gigabytes of onboard memory, and are designed with general purpose parallel com-

puting in mind. This makes them a very good candidate for SAR processing with

backprojection.

The basic unit of the NVIDIA GPU architecture is known as the streaming mul-

tiprocessor (SMP) [6]. It is a collection of processing cores and registers, instruction

and scheduling, cached and shared memory and separate processing units for dou-

ble precision and transcendental functions. The exact layout of these units within

the SMP changes between generations of NVIDIA GPUs. At a higher level, the

47

Core Core . . . DP Unit TFU

Core Core . . . DP Unit TFU

...

Core Core . . . DP Unit TFU

Shared/L1 Cache Memory

Read Only Cache

Texture Cache

SMP

SMP

SMP

...

L2 Cache

GPU Chip

Global Memory

Figure 5.1: GPU hardware layout.

48

GPU contains many streaming multiprocessors as well as additional cache memory,

overall thread scheduling and external memory controllers. GPU cards will contain

large amounts of memory (on the order of gigabytes), separate from the GPU chip

itself, which is accessed by the GPU as global memory. This memory can be directly

accessed by the host CPU.

The SMP will schedule blocks of 32 computational cores, called warps, to execute

the same instructions in what NVIDIA calls single instruction multiple thread (SIMT)

commands. This is distinct from single instruction multiple data (SIMD) commands

in that it allows each core to branch independently. It should be noted that while

cores are allowed to branch independently, such independent branches are executed

serially, and for this reason, branching will have a significant impact on performance.

Individual operating cores have access to their local register file and the shared mem-

ory on the SMP. The shared memory allows cores to communicate and access the same

memory space without going through the entire memory cache. Cores can also read

and write to global memory through the layers of on board memory caches. There

are several ways that the global memory can be laid out and accessed by the pro-

cessing cores which can improve the memory performance. There is a small amount

of constant memory which allows cores within a warp to collect memory instructions

into a single memory access. If the cores are all accessing the same memory address,

this allows significant improvement, but will be slower than generic global memory if

they are not. The other type of memory is known as texture memory. The texture

memory is cached in such a way as to allow improved memory access speed when

cores request memory at spatially (in one, two or three dimensional grids) nearby lo-

cations. The GPU is also capable of performing hardware based linear interpolation

of texture memory, allowing cores to use floating point indexing.

At the time of this writing, a modern NVIDIA GPU (the Tesla K40 for example)

has 192 single-precision cores, 64 double-precision units and 32 transcendental func-

49

tion units per streaming multiprocessor [14]. Each SMP also has 64KB split between

shared memory and the L1 cache as well as 64KB for read-only memory and the

texture cache. The register file on each SMP contains 65536 32-bit registers. The

Tesla K40 contains 15 SMP units for a total of 2880 processing cores and has 12GB

of onboard global memory.

For general purpose computing on their GPUs, NVIDIA provides the CUDA pro-

gramming language [6]. CUDA is an extension to the C programming language

designed to enable straightforward processing of their SIMT architecture as well as a

set of drivers and tools to run, debug and benchmark CUDA programs. Programming

with CUDA involves writing a kernel program, which will be executed on the GPU

as well as a host program. The host program will run on the host computer’s CPU

and will set up, run and retrieve the results of the CUDA kernel.

In the CUDA language, there is a layout which closely matches the hardware

layout. The CUDA kernel is the SIMT program which will be run on every GPU

core used. Here, every instance of the kernel is known as a thread, which is basi-

cally synonymous with a GPU core. The threads are arranged into one-, two- or

three-dimensional groups called blocks which are further grouped into one-, two- or

three-dimensional groups called grids. Blocks are then relatable to streaming multi-

processors, and grids to groups of SMPs, but this is a loose relation. There is a limit

to the number of threads per block, and blocks per grid, but the total number of

threads per block can exceed the size of the SMP, and the total number of threads in

the GPU program can also exceed the total number of processing cores on the GPU.

This is to allow the thread-, block- and grid-layout of a particular program to be

based on the dimensionality of the problem and not be constrained by the hardware

specifics. Though the kernel program is the same for each thread, when it is run,

the thread has access to its index within its block, and the index of its block within

the grid. This allows the separate threads to perform the correct operations based

50

on how the host has set up the block and grid layout. When executing, blocks are

broken into groups of 32 threads, known as warps, by the scheduler. It is guaranteed

that these warps contain 32 consecutive threads from the block, which is necessary to

allow the correct and efficient use of the shared memory and other memory caches.

Beyond this, the order in which separate warps are executed, and the order of exe-

cution of separate blocks, is not guaranteed. Thus blocks must be independent, and

additionally, all blocks must be able to run in parallel, as the blocks that are chosen

to run at any given time is up to the GPU scheduler. This general functionality of the

CUDA language will dictate how a kernel is written and run, for any given problem.

5.2 Algorithm Details

The general layout of the processor is as follows. First, all of the ephemeris in-

formation must be compiled and a single structure representing the antenna channel

of interest is created. This structure represents not only the platform position, p̄n,0,

but also the antenna attitude used to calculate the antenna squint angle. The impor-

tance of the antenna squint angle will be shown later on. Once this structure exists,

the processor can perform the range compression, and then proceed to execute the

backprojection algorithm given in (3.17) on the GPU. The layout of the processor is

depicted in Figure 5.2.

In order to perform the backprojection algorithm, the processor must have, or

be able to calculate, certain information. Various parameters of the radar must be

known in order to calculate the correct constants used throughout the algorithm. The

range-compressed data must be available which is easily calculated ahead of time. The

positions x̄ and p̄n,0 must be known (in full three dimensions of the same coordinate

system) in order to calculate the range to target, ρ. The positions, x̄, which represent

locations on the ground, are generated from a user defined grid, Rd, and possibly use

a digital elevation map (DEM) when translating this grid to 3D ground coordinates.

51

Preprocessor Configuration

Preprocessing:
Read radar timing data
Read GPS and attitude data
Generate interpolator for attitude data
Translate GPS positions to antenna
Generate interpolator for position data
Write state file
Calculate best fit line
Write configuration

Radar Data Position Data

Processor Configuration

Radar State

Image Formation:

Read radar state
Setup output map
Generate image patches
for Patch in Patches do

Generate patch grid
Calculate pulse coverage
Range compression
Compile GPU kernel
Copy patch data to GPU
for Pulse in Pulses do

Calculate pulse support Rn

if x̄ ∈ Rn 6= ∅ then
function GPU: Accumulate

Accumulate ∀x̄ ∈ Rn

Load pulse value and state
Load pixel value and state
Calculate distance and look vector
Compute antenna pattern gain
Add range loss to gain
Compute phase correction
Interpolate range-compressed pulse
Apply phase correction
Accumulate pixel state

end function
end if

end for
function GPU: Finalize patch grid

Normalize look vector
Normalize pixel gain

end function
Copy patch data from GPU
Write patch to file

end for

Figure 5.2: Processor block diagram/pseudocode. Dashed boxes represent files on
disk.

52

The positions, p̄n,0, which represent the locations of the platform, are determined from

the platform ephemeris structure. If using the corrected backprojection algorithm,

these vectors will also be used to calculate the look vector speed, vρ.

An important aspect which has not yet been discussed in detail is the first part

of the algorithm, which involves the sum over all radar pulses,
∑N

n=1. While the

processor would work if every available pulse, n, were summed for every output pixel,

x̄, there are several reasons why this would lead to errors in the processing. This

stems from the fact that the antenna has a finite azimuth beamwidth. Though the

antennas will radiate to, and receive power from, nearly all directions, the majority

will be concentrated in the main lobe of the antenna beam, which has a finite size.

Despite the fact that power from the side lobes will almost always be lower than the

power received from the main lobe, and often lower than the noise floor of the system,

the nature of the coherent phase-corrected sum that the algorithm performs will allow

some of this power to contribute constructively to output image pixels. Since these

radars nominally operate in stripmap mode (i.e. creating a range and azimuth swath

as the platform travels along an ideally linear flight track), for any given scene there

will be far more pulses whose side lobes illuminate any given pixel than pulses whose

main lobe illuminates that pixel. Given the fact that this side lobe power will almost

always be far below the peak recorded power (especially in the far lobes), a lot of

noise will be added into each output pixel. 1 Additionally, the effect of errors in the

platform ephemeris are enhanced at further ranges which would exist for pulses far

from the target pixel. Thus, the output image quality will be most likely be degraded,

rather than enhanced, by including all of the pulses. Another reason to avoid this

technique is that it requires much more computation compared to using a smaller set

of pulses.

1Here noise can also refer to the recorded return of a target which is not located at the desired
focusing location.

53

For these reasons, it is desirable to replace the sum over all pulses with the set

of pulses where x̄ ∈ Rn, which is denoted as
∑
{n:Rn3x̄}. In other words, the value

of the reflectivity at pixel x̄ should be the sum of the phase-corrected (and properly

indexed) range-compressed values for every pulse which illuminates the pixel within its

main beam. Using this definition of the sum requires calculating the beam footprint

Rn. Fortunately, for stripmap SARs, this is not difficult to do given some minor

assumptions. The calculation does require knowledge of the platform position and

attitude for each pulse, both of which can be derived from the state structure.

Additionally, the amplitude term, Arx(x̄;n), can be corrected. This term contains

the gain due to the antenna pattern, the radiometric gain of the radar hardware and

any other propagation losses. The propagation losses will depend mostly on the range,

and can be removed from the range-compressed data prior to image formation. The

radiometric gain will ideally be slowly varying with time and frequency independent,

and can also be removed ahead of time. The antenna pattern will depend on the

antenna position, attitude and pixel location, and so must be removed during image

formation. This gain correction will also correct for the varying sizes of the set

{n : Rn 3 x̄} and enables proper estimates of the reflectivity, σ0.

5.2.1 Non-Equispaced Fast Fourier Transform

Another important aspect of the algorithm is the indexing of the range-compressed

data, which is given as

spc

[
n,
ρ(x̄, p̄n,0)

∆ρ
− ρref

]
(5.1)

for the uncorrected backprojection. What is important to note is that the range-

compressed data, spc, is discrete, while the index term depends on the continuous

variable, ρ. Since the phase correction applied during image formation is a very sen-

sitive function of the range, the accuracy of the processor will depend on how the

range-compressed data are interpolated. For this step, nearest neighbor interpola-

54

tion will not suffice. Several methods of interpolation have been discussed and used

in practice including nearest neighbor, linear, cubic and Knab interpolation, all of

which can be accompanied by an oversampling of the range-compressed data [3]. An-

other method which has more recently been developed, and used for radar processing,

is known as the Non-Equispaced Fast Fourier Transform (NERFFT) [9] which is ap-

plicable due to the fact that the range-compressed data for both pulsed, and FMCW

radars, are computed using FFTs.

Ideally the processor works by sampling the forward or inverse Fourier transform

of the signal x(k) (sif in the FMCW case) at non-uniform locations, l, given by the

range-dependent index term. These can be calculated exactly, simply by employing

the definition of the Fourier transform for the given point of interest

X(l) =

N/2−1∑
k=−N/2

e−j2πlk/Nx(k). (5.2)

This would avoid the need for the FFT, but require a sum over all of the data

samples, resulting in an algorithm of the same computational order as the time-

domain correlation algorithm. The values can also be calculated exactly from the

uniformly Fourier transformed (range-compressed) signal using ideal, or Dirichlet,

interpolation but again this requires a sum over all samples.

In his derivation of the NERFFT, Fourmont [9] shows that evaluation of a Fourier

transform of a signal at non-uniform points can be evaluated as

X(l) =
1√
2π

∑
m∈Z

φ̂(cl −m)

γN/2−1∑
k=−γN/2

e−j2πmk/(γN) x(k)

φ(2πk/(γN))
(5.3)

with some minor assumptions. Here, φ is a window function and φ̂ is its Fourier

transform. The factor, γ, is an oversampling factor. The window, φ, is required to be

non-zero over the interval
[
−π
γ
, π
γ

]
, piecewise continuously differentiable over [−α, α]

55

and vanishing outside [−α, α]. The parameter, α, is defined such that 0 < π
γ
< α

and α < π
(

2− 1
γ

)
. What is important to note is that the inner sum does not

contain l, and is just an oversampled and windowed version of the DFT which can be

computed with a standard FFT. Also, given the above definitions, a window function

can be chosen whose value is small outside a small interval in m, such that the outer

summation can be reduced to a sum from −K to K. A window function which is

tractable and approximates this behavior, is the Kaiser-Bessel window where

φ(ζ) =


I0

(
K
√
α2 − ζ2

)
|ζ| ≤ α

0 |ζ| > α

(5.4)

and

φ̂(ψ) =

√
2

π

sinh
(
α
√
K2 − ψ2

)
√
K2 − ψ2

. (5.5)

Since the window function can be precomputed, the core of this interpolation method

involves computing a windowed, oversampled FFT as part of the range compression,

and performing a sum over a small interval [−K,K] to interpolate the desired value.

The accuracy of this method depends on the chosen window function and the

values of the parameters γ and K, and is shown to be far more accurate than other

interpolation methods for similar computational cost. It has been shown that the

error in the interpolation reaches the level of single precision accuracy at γ = 2 and

K = 3 and double precision accuracy at γ = 2 and K = 6 [9].

5.3 Motion Estimation and Autofocus

Since the backprojection processor requires precise knowledge of the antenna po-

sition and attitude, effort must be taken to ensure that they are measured accurately.

Generally, these are measured using a combination of a GPS unit for position informa-

tion, and an inertial navigation unit (INU) for attitude information. The information

56

from these sensors must also be used alongside knowledge of the spatial location of

the sensors relative to the radar antenna. When referring to the antenna, this is the

location of the antenna phase center and the orientation of the beam center, both of

which would usually be measured in an antenna chamber. With this knowledge, mea-

surements (perhaps better stated as estimates) of the antenna position and attitude,

can be made for each radar pulse. The accuracy of these estimates will depend on

the accuracy of the sensors themselves, the measurements of the spatial offsets and,

additionally, the proper alignment in time of the sensor information and the radar

data.

The quality of the imagery produced by the processor will depend on the accuracy

of these estimates, and can be severely degraded if they are of poor quality. One way

to improve the quality of these estimates is to use properties of the recorded radar

data to measure the antenna motion.

Doppler estimation is a common technique used to measure the Doppler frequency

of recorded radar data. The Doppler frequency, which is a measure of the frequency

content of the radar data in the azimuth direction, can be used as a proxy for the

radar squint angle. Further, the squint angle, as seen in Figure 2.2, is a function of

the antenna yaw and pitch attitude angles. The squint angle can be given as

θsq = arctan

(
cos(θy) sin(θp)

h
cos(θp)

(1− tan2(θy))− (dir) tan(θy)
√
ρ2

0 − h2

ρ0

)
(5.6)

where (dir) is either +1 for left looking radars or -1 for right looking radars, and ρ0

is the radar slant range. Additionally, the Doppler frequency can be shown to be [7]

faz =
2vaz sin(θsq)

λ
. (5.7)

One way of measuring the Doppler frequency from recorded radar data is to use

the phase of the range-compressed image. It holds that

57

faz[n, r] ≈
∠
{
spc[n, r]s

∗
pc[n− 1, r]

}
2π∆T

(5.8)

where ∠{x} is the complex phase of x and ∆T is the pulse repetition time defined as

∆T = 1
PRF

[7]. In practice, this estimate of faz will be averaged in both range and

azimuth directions to reduce noise in the measurement. Using this estimate, a fitting

procedure can be performed to provide an estimate of the parameters of the Doppler

model, most notably the yaw and pitch angles.

The magnitude of the range-compressed image can also be used as an estimate

for the Doppler frequency. Additionally, much work can be done to estimate the

quality of the Doppler estimation at any given point in order to improve the fitting

procedure [7]. A simple method is just to note that the expected SNR will decrease

with increasing range and weight the fits accordingly.

Autofocus is another method to correct for unknown, or uncorrected, platform

motion (as well as other phase errors) that has been commonly applied to frequency-

domain algorithms [7]. The basic idea is to apply a phase correction during image

formation, which is based upon maximizing the image quality directly and generally

bypassing any calculations of the source of the phase errors (as in direct motion

estimation). How the correction is calculated, and applied, varies between different

methods. Similar methods could potentially be applied to a backprojection processor

in addition to, or instead of, estimating the unknown platform motion.

The initial results from the different studied radar systems have had varying im-

age quality. As a reference, the processor was found to work very well with simulated

data. The results obtained with the UAVSAR data were also of high quality, with no

significant motion related errors. The UMass S-band system results were of medium

quality, with varying levels of motion related errors, such that some scenes focused

well and others poorly. In contrast, the Ka-band system had generally poor results,

with almost all scenes having significant motion related focusing errors. As a first-

58

order correction to the motion errors for the UMass systems, a simple offset to the

measured yaw and pitch angles was calculated. This was done using the above-defined

procedure, fitting to the squint model from the Doppler spectrum as well as using a

simple grid search of offsets and comparing the focusing quality subjectively. Due to

the high sensitivity of the Ka-band system to attitude errors, both methods worked

equally well. It should be noted that no correction to position was estimated. Using

this first-order correction, both the S-band and Ka-band imagery showed generally

good results, though both still contained motion-related errors. These errors mani-

fested as minor defocusing when the platform was moving fairly linearly, and more

significant defocusing, as the linearity of the flight path degraded.

These results are not unexpected due to the fact that the UAVSAR system gen-

erally flies quite straight and has a high quality motion measurement system. The

UMass radars fly on a small, human piloted, low-altitude aircraft and currently use

a much less sophisticated motion measurement system.

For the UAVSAR system, further investigation is needed to determine what the

dominant source of error is before corrections can be added. For the UMass systems

there are clear improvements that could be made in both the position and attitude

measurement systems (again it is noted that these are truly coupled). While it may

be possible to correct for the motion measurement errors using some combination of

the above estimation methods, the motion measurement system is in the process of

being updated, and further investigation will continue after the upgrade is complete.

This upgrade includes a more accurate INU and GPS receiver, capable of performing

coupled post-processing using the raw INU and GPS measurements as well as a

posteriori GPS ephemeris and atmospheric models. In addition, the upgrade will

include a more accurate survey measurement of the relative positions of the INU,

GPS and radar antennas on the platform. The upgrade should improve the results

59

significantly on its own, and should reduce the burden on any motion estimation

procedure.

5.4 Summary

This chapter provides an overview of the implementation of a backprojection pro-

cessor. The nature of time-domain backprojection makes it well suited for imple-

mentation with graphics processing units, which are designed to be efficient when

performing highly parallel computations. A description of GPU hardware is given,

with specifics relevant to this implementation. Some steps important to backprojec-

tion processing are first presented here, including the NERFFT interpolation step as

applied to the pulse-compressed data. Motion estimation is presented as an auxiliary

section, as it may be another important processing step for systems with limited mo-

tion measurement accuracy. The following chapter discusses the various coordinate

systems in use by the processor, and how conversions are carried out between them.

60

CHAPTER 6

COORDINATE SYSTEMS

There are several different coordinate systems in use by the processor. This chap-

ter serves as a reference to them and their relations.

The core of the processing uses the earth-centered, earth-fixed (ECEF) Cartesian1

coordinate system. Here, the ECEF coordinate system is also referred to as the XYZ

system. This system is a right-handed Cartesian coordinate system centered at the

center of the earth’s mass. The x-axis points toward the intersection of the prime

meridian and the equator. The y-axis points toward the intersection of the 90 degrees

longitude and the equator. Thus the z-axis points (approximately) toward the north

pole.

Commonly, an ellipsoid is used to approximate the shape of the earth and is also

centered at the earth’s center of mass [21]. Here, the WGS84 ellipsoid is used. This

ellipsoid is what is commonly used to define latitude and longitude angles. In reality,

the WGS84 ellipsoid is actually a spheroid (or ellipsoid of revolution), which has two

distinct radii known as the semi-major axis and semi-minor axis (a true ellipsoid has

three distinct radii). To follow convention this spheroid will be referred to as an

ellipsoid in further discussion. The ellipsoid can be described as [21]

x2 + y2

a
+
z2

b
= 1 (6.1)

1A three dimensional Cartesian system defines points using three fixed, orthogonal axes. This is
in contrast to non-Cartesian systems like spherical or polar coordinates.

61

where a corresponds to the semi-major axis and b to the semi-minor axis. The ellipsoid

may also be described by the semi-major axis and the eccentricity squared, e2, where

e2 = 1− b2

a2
(6.2)

When describing the Earth, the semi-major axis is the equatorial radius and the

semi-minor axis is the polar radius.

A point on the surface of the ellipsoid is normally defined by latitude and longitude

angles. As the ellipsoid is just an ellipse rotated about the z-axis, the longitude angle,

θ, for a given point is simply this rotation about the z-axis. In the vertical plane the

latitude angle is described in one of two ways. Geocentric latitude, φ, is the angle

between the radius from the earth’s center to the point and the equatorial plane.

Geodetic latitude, λ, is the angle between the surface normal at the point and the

equatorial plane. Since the shape is an ellipse in the vertical axis, the surface normal

does not correspond with the radius for any given point, so the geocentric latitude

will not be the same as the geodetic latitude. The geodetic latitude is what is usually

referred to and used. Additionally, the height above the surface, h, is defined along

the surface normal.

There are several distinct radii that may be used with a given surface point [21].

There is the radius extending from the earth’s center to the surface point, r. To

describe the amount of curvature of the surface at the given point, two other radii are

used. The east-west radius of curvature, re, describes the radius of a sphere whose

curvature matches the curvature of the surface at the given point, in the east-west

direction. It is defined as

re(λ) =
a√

1− e2 sin2(λ)
. (6.3)

In the north-south direction a similar radius of curvature exists, rn, defined as

62

Figure 6.1: Model of the earth ellipsoid. Note that for clarity the eccentricity of the
ellipsoid shown here is far exaggerated relative to the WGS84 ellipsoid.

63

rn(λ) =
a(1− e2)(

1− e2 sin2(λ)
) 3

2

. (6.4)

Two Cartesian systems are commonly used to approximate the surface of the

earth at a given point. Both the East, North, Up (ENU) and North, East, Down

(NED) coordinate systems provide useful right-handed Cartesian reference systems

for any point on the globe. In each, the first two axes are defined to match the

local north or east vectors on the surface. The third axis is either defined to match

(positively or negatively) the surface normal or the earth center radius. Here, the

surface normal is used. Note that either of these coordinate systems may commonly

be located at any altitude, and are usually defined to be co-located with the center of

a vehicle of interest. In this case, the approximation is to the surface directly below

(in either convention) the platform. Additionally, either coordinate system can be

rotated about the up/down axis to match the heading of a platform. The rotated

NED system is referred to as the Track, Cross-track, Nadir (TCN) system. Further,

this system may be related to the full orientation of the vehicle, represented in the

NED/TCN case by the “ijk” system, representing the forward, right, and down axes

in the vehicle frame. Following the ENU convention the respective coordinate systems

would be the Track, Cross-track, Up (TCU) system and the “IJK” forward, left, up

system.

To best account for the curvature of the earth’s surface over large radar swaths,

while maintaining relative simplicity, the SCH coordinate system was developed [13].

The SCH coordinate system is a spherical coordinate system designed to match the

curvature of the ellipsoid at a given reference point known as the peg point, and in a

given direction. This spherical approximation can be seen as a compromise between

using a flat Cartesian approximation at a given point on the surface, which is simple

to use but not very accurate, and the full ellipsoidal approximation, which is quite

accurate but difficult to use. The SCH system is based on the ability to describe the

64

D

Surface plane

E

N

D′

N

j

k θr

N ′

E ′

T

C

i

Flight track

θhθy

θp

Figure 6.2: Platform coordinate systems.

65

radius of curvature of the ellipsoid in an arbitrary direction at a given point by

ra =
re(λ)rn(λ)

re(λ) cos2(η) + rn(λ) sin2(η)
(6.5)

where the geodetic heading is given by η. The SCH coordinate system uses a sphere

of radius ra, and center defined such that the surface tangent plane at the peg point,

on the ellipsoid, corresponds with the surface tangent plane of a point on the sphere.

Defined in this way, the sphere will be the closest spherical approximation to the

curvature of the ellipsoid along some given track. This is ideal for use by stripmap

radars, as in this system the error increases most slowly along the given heading,

where the majority of the extent of the area of interest will be. The sphere-centered

Cartesian coordinates, (x′, y′, z′), are defined such that the x′-axis corresponds to the

surface normal at the peg point, and the heading vector at the peg point lies within

the equatorial plane. Thus, the heading vector will always be aligned with the sphere’s

equator, in the direction of decreasing longitude.2 A right-handed coordinate system

with axes ŝĉĥ can be defined at any point on the sphere and represents the local

tangent plane. At the peg point, ŝ is coincident with the heading vector, ĥ along the

surface normal and ĉ defined to complete the system. In the SCH coordinate systems

points are described using their distance along the equator, s, the distance along a

meridian perpendicular to this point, c, and finally a height, h, normal to the surface

at the point (s, c). It should be noted that the coordinates (s, c, h) are not Cartesian,

though over small distances are approximately the same as the ŝĉĥ Cartesian system.

A common coordinate system used with radar systems is a two-dimensional sys-

tem known as slant-range coordinates or radar coordinates. The two dimensions in

this system are azimuth and range, representing distance horizontally along a refer-

2Longitude referring to the longitude on the sphere, not the ellipsoid longitude.

66

Figure 6.3: A representation of the SCH approximating sphere. Note that for clarity
the eccentricity of the ellipsoid shown here is far exaggerated relative to the WGS84
ellipsoid.

67

ence flight track and distance radially away from the reference track. A point with

coordinates (a, r) is a units displaced from the reference track origin along the track

and r units radially displaced from the point (a, 0). Generally, in three-dimensions,

these coordinates would be ambiguous, as a point at (a, r) could be located anywhere

on a circle with origin (a, 0) and radius r. In practice, such a coordinate system is

often used above a smooth surface, and (a, r) points are assumed to lie on that sur-

face. Here the (a, r) specification could represent zero, one or two intersections with

the surface. Ignoring points above the surface (zero intersections), and assuming a

radar system to look in only one direction (left or right) from the reference track,

constrains the system to an unambiguous single intersection between an (a, r) point

and the surface.

A reference track for radar coordinates may be specified in a Cartesian system,

such as the TCN system, or alternatively, in a non-Cartesian system such as SCH.

The SCH system is used here. In the SCH system, a reference track is specified by

its peg point, including the latitude, longitude and heading, as well as an altitude.

Thus, the (a, r) coordinates represent distance along the spherical reference track and

radial distance away from the track and will be alternately specified by (s, r) to match

the SCH system. The spherical surface of the SCH system enables non-ambiguous

location specification for radar systems. Since the track and surface are not linear,

the (s, r) coordinates will not be Cartesian.

6.1 Rotations and Conversions

Several types of coordinate conversions are relevant to this processor and may

be separated into three categories. The first category involves conversions between

Cartesian systems that share the same origin but whose axes point in different di-

rections. An example of this rotation would be a conversion between platform body

ijk coordinates and the platform centered north-east-down, NED, coordinates. The

68

second category involves conversions between Cartesian systems that do not share the

same origin, and whose axes are most often not parallel. Conversion from the NED

coordinates and ECEF XYZ coordinates is an example. The third category is more

broad and encompasses all conversions involving at least one non-Cartesian system.

Conversion from latitude-longitude-height to ECEF XYZ coordinates falls into this

category.

The relative orientation of two Cartesian coordinate systems is usually defined us-

ing a rotation. In this sense, the coordinates of a point are said to be rotated between

the coordinate systems. Often, this convention is used to describe the orientation of

a moving platform, which may have literally rotated into its current position relative

to some reference system. These rotations may be described using Euler (or similar)

angles, rotation matrices, or quaternions, all three of which are used in this processor.

Euler angles describe the relative orientation of two systems using three angles,

referred to here as yaw (θ), pitch (φ), and roll (γ) [2]. These angles represent three

successive rotations that may be applied to the axes of a reference system, which

result in the orientation of the second system. Each successive rotation is applied

about one axis in a direction corresponding to clockwise when looking out along the

axis from the origin. The order of these rotations and the axes they are applied to

are a matter of convention. Two common conventions use the order z-y-x, or z-y-z.

Another convention defines whether the axes used for the rotations are the axes of

the reference coordinate system, or the axes of the intermediate coordinate system,

which has resulted from the previous rotations. Here, the second convention is used.

For example, using the order z-y-x and intermediate axes a rotation would be carried

out as follows. The reference coordinate system (x, y, z) is rotated about its z-axis

clockwise by the yaw angle to arrive with the intermediate system (x′, y′, z′). The

(x′, y′, z′) system is rotated clockwise about its y′-axis by the pitch angle to arrive

with the intermediate system (x′′, y′′, z′′). Finally the (x′′, y′′, z′′) system is rotated

69

clockwise about its x′′-axis by the roll angle to arrive at the final (X, Y, Z) system.

The coordinates of a single, fixed point, may be transformed between the two systems

by applying such a rotation scheme.

In practice, the transformation, or rotation, of a point’s coordinates between two

systems is carried out using rotation matrices. In three dimensions, a rotation can

applied using a 3× 3 matrix. For example, when rotating from reference coordinates

(x, y, z) to final coordinates (x′, y′, z′)

p̄x′y′z′ =


px′

py′

pz′

 =


1 0 0

0 1 0

0 0 1



px

py

pz

 = Ip̄xyz (6.6)

represents no rotation. Rotation by angle θ about the x-axis is given by

p̄x′y′z′ =


1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)



px

py

pz

 = X(θ)p̄xyz. (6.7)

Similarly y-and z-axis rotations are

p̄x′y′z′ =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)



px

py

pz

 = Y(θ)p̄xyz (6.8)

p̄x′y′z′ =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1



px

py

pz

 = Z(θ)p̄xyz (6.9)

70

respectively. From these definitions, it is possible to build a single rotation matrix

representing the Euler rotations. The intrinsic z-y-x rotation has the following form

p̄XY Z =


c(θ) c(φ) c(θ) s(φ) s(γ) + s(θ) c(γ) − c(θ) s(φ) c(γ) + s(θ) s(γ)

− s(θ) c(φ) − s(θ) s(φ) s(γ) + c(θ) c(γ) s(θ) s(φ) c(γ) + c(θ) s(γ)

s(φ) − c(φ) s(γ) c(φ) c(γ)



px

py

pz


=Z(θ)Y(φ)X(γ)p̄xyz = RXY Z

xyz (θ, φ, γ)p̄xyz (6.10)

where c(a) , cos(a) and s(a) , sin(a) are defined for convenience.

A convention is established here for representing rotations between coordinate

systems with rotation matrices. A rotation matrix which will rotate coordinates from

frame abc to frame a′b′c′ is represented by Ra′b′c′

abc . The coordinates of a point in the

frame a′b′c′ are given as p̄a′b′c′ and can be generated by right-multiplying the rotation

matrix by the coordinates in frame abc, written as

p̄a′b′c′ = Ra′b′c′

abc p̄abc. (6.11)

The inverse rotation, generating the coordinates of a point in frame abc from the a′b′c′

coordinates would be written

p̄abc = Rabc
a′b′c′ p̄a′b′c′ . (6.12)

The rotation matrix representing the inverse rotation is also the inverse of the forward

rotation matrix. Furthermore, since rotation matrices are orthogonal the two matrices

are also related by their transpose, thus

Rabc
a′b′c′ = Ra′b′c′

abc

−1
= Ra′b′c′

abc

T
. (6.13)

71

It should be noted that such rotation matrices may be multiplied together to perform

multiple conversions, as

p̄abc = Rabc
mno(R

mno
a′b′c′ p̄a′b′c′) = (Rabc

mnoR
mno
a′b′c′)p̄a′b′c′ = Rabc

a′b′c′ p̄a′b′c′ (6.14)

While Euler angles are intuitive and often convenient to use, they suffer from

ambiguities for some angles. In the case above when φ = ±π
2
, the two angles θ

and γ represent the same rotation. This ambiguity in the specification of θ and γ

is know as gimbal lock. To avoid this problem, the full nine element matrix may be

used, which is unambiguous. Alternatively, another unambiguous method of defining

rotations may be used, requiring four elements [11]. Euler’s rotation theorem states

that any coordinate system rotation of the type under discussion may be represented

by rotation about a unit vector ū by a single angle θ. Here the four elements are

the three coordinates of the vector and the angle θ. Typically, quaternions are used

to represent these rotations. A quaternion in general is an extension to the complex

number set in which “quaternions” are represented by a + bi + cj + dk where a, b,

c and d are real, scalar numbers and i, j and k are quaternion units (analogous to

the imaginary unit j for standard complex numbers) [12]. Further, the units i, j and

k satisfy i2 = j2 = k2 = ijk = −1. A rotation by angle θ about vector ūxyz can be

represented by the quaternion

q̄ = cos

(
θ

2

)
+ (uxi + uyj + uzk) sin

(
θ

2

)
. (6.15)

With this definition, the rotation can be applied as

p̄qx′y′z′ = q̄p̄qxyz q̄
−1 (6.16)

where p̄qxyz is a quaternion such that

72

p̄qxyz = 0 + (pxi + pyj + pzk). (6.17)

A quaternion of the form a+bi+cj+dk may be converted to a rotation matrix as [11]

Q =


a2 + b2 − c2 − d2 2(bc+ ad) 2(bd− ac)

2(bc− ad) a2 − b2 + c2 − d2 2(cd+ ab)

2(bd+ ac) 2(cd− ab) a2 − b2 − c2 + d2

 . (6.18)

The opposite conversion, from a rotation matrix to a quaternion, is not as straightfor-

ward, but a robust algorithm is described by Bar-Itzhack [1]. The method described

constructs the 4× 4 matrix

K =
1

3



R00 −R11 −R22 R10 + R01 R02 + R02 R12 −R01

R10 + R01 R11 −R00 −R22 R01 + R12 R02 −R02

R02 + R02 R01 + R12 R22 −R00 −R11 R01 −R10

R12 −R01 R02 −R02 R01 −R10 R00 + R11 + R22


(6.19)

from the rotation matrix R. Finding the eigenvector corresponding to the largest

eigenvalue of this matrix yields the quaternion. It is shown that even when the

rotation matrix contains accumulated numerical error (and is therefore not orthogonal

and not truly a rotation matrix), the quaternion found using this method is valid and

represents the rotation which is closest to the non-orthogonal matrix given.

It should be noted that there are exactly two quaternions which may be used

to represent one rotation: one derived from ū and θ, as well as one derived from

−ū and −θ. Due to this fact, and the errors which may exist in any given rotation

matrix, quaternions resulting from the Bar-Itzhak algorithm may be nearly opposite

from each other, despite representing similar rotations. When representing a time-

series of coordinate rotations, successive quaternions may be negated if they are

73

nearly opposite from previous ones. This ensures that the numerical values of the

quaternions will change slowly, as long as the actual rotation is also changing slowly.

To summarize, a rotational offset between coordinate systems may be represented

by either a set of three Euler angles, a nine-element rotation matrix or a four-element

quaternion. To apply the rotation (i.e. rotate the coordinates of a given point from

one coordinate system to another) the rotation matrix or quaternion may be used. It

is possible to translate between each representation with minor caveats.

In addition to pure rotations coordinate systems may also be displaced. Repre-

senting both translation and rotation of two Cartesian coordinate systems can be

achieved using one of the above rotation representations and a simple translation

vector. Thus a full rotation and translation conversion from frame abc to frame a′b′c′

can be carried out as

p̄a′b′c′ = Ra′b′c′

abc p̄abc + T̄ a
′b′c′

abc (6.20)

where the translation vector is defined in the coordinates of the final system (a′b′c′

in this case). The vector T̄ a
′b′c′

abc points from the a′b′c′ origin to the abc origin, in the

a′b′c′ system (it is the position of the abc origin in a′b′c′ coordinates). Given this

convention the same conversion can be represented as

p̄a′b′c′ = Ra′b′c′

abc

(
p̄abc − T̄ abca′b′c′

)
(6.21)

or the inverse conversion as

p̄abc = Rabc
a′b′c′ p̄a′b′c′ + T̄ abca′b′c′ (6.22)

or

p̄abc = Rabc
a′b′c′

(
p̄a′b′c′ − T̄ a

′b′c′

abc

)
. (6.23)

74

Given matrix and vector properties, the two translation vectors can be related by

T̄ abca′b′c′ = −Rabc
a′b′c′T̄

a′b′c′

abc (6.24)

or

T̄ a
′b′c′

abc = −Ra′b′c′

abc T̄ abca′b′c′ . (6.25)

For convenience, the following notation will be used to represent a general coordinate

conversion

p̄a′b′c′ = T a′b′c′abc {p̄abc} (6.26)

where the conversion operator T may involve many rotations, translations and/or

any of the non-standard conversions listed below.

For non-Cartesian coordinate systems, unique conversions must be used. Those

relevant are described below. Given the definitions of the earth ellipsoid a conver-

sion between latitude, longitude and height (l, l, h) coordinates and ECEF (x, y, z)

coordinates is [21]

p̄XY Z =


px

py

pz

 =


(re(λ) + h) cos(λ) cos(θ)

(re(λ) + h) cos(λ) sin(θ)

(re(λ)(1− e2) + h) sin(λ)

 (6.27)

An exact conversion from ECEF coordinates to LLH coordinates is given by Ver-

meille [23]. The algorithm computes in order the following:

75

p =
X2 + Y 2

a2

q =
1− e2

a2
Z2

r =
p+ q − e4

6

s = e4 pq

4r3

t =
3

√
1 + s+

√
s(2 + s)

u = r

(
1 + t+

1

t

)
v =

√
u2 + e4q

w = e2u+ v − q
2v

k =
√
u+ v + w2 − w

D =
k
√
X2 + Y 2

k + e2

θ = 2 arctan

(
Y

X +
√
X2 + Y 2

)
λ = 2 arctan

(
Z

D +
√
D2 + Z2

)
h =

k + e2 − 1

k

√
D2 + Z2. (6.28)

While a bit complex, this algorithm gives an exact solution which is stable at the

poles. Though just a standard rotation and translation, the conversion between the

surface tangent representation ENU and ECEF can be described using

Rxyz
enu =


− sin(θ) − sin(λ) cos(θ) cos(λ) cos(θ)

cos(θ) − sin(λ) sin(θ) cos(λ) sin(θ)

0 cos(λ) sin(λ)

 (6.29)

and the translation vector, generated using equation (6.27), giving the conversion

p̄xyz = Rxyz
enup̄enu + T̄ xyzenu . (6.30)

76

There are several simple rotations matrices which describe conversions between

similar coordinate systems. Rotating between ijk and IJK coordinates, or TCN and

TCU coordinates uses the rotation matrix

RIJK
ijk = Rijk

IJK = RTCU
TCN = RTCN

TCU =


1 0 0

0 −1 0

0 0 −1

 . (6.31)

Rotating between ENU and NED coordinates uses the rotation matrix

RNED
ENU = RENU

NED =


0 1 0

1 0 0

0 0 −1

 . (6.32)

Finally, rotating between a right-handed to left-handed coordinate system (i.e for-

ward, right, down to forward, left, down) uses

RLeft
Right =


1 0 0

0 1 0

0 0 −1

 . (6.33)

A number of conversions are in use relating to the SCH coordinate system, as

described in [13]. The center of the SCH refrence sphere is calculated using the

(x, y, z) coordinates of the peg point, and the surface normal vector, h̄, as

c̄xyz = p̄peg,xyz − rah̄ (6.34)

or

77


cx

cy

cz

 =


re cos(λ) cos(θ)

re cos(λ) sin(θ)

re(1− e2) sin(λ)

− ra


cos(λ) cos(θ)

cos(λ) sin(θ)

sin(λ)

 =


(re − ra) cos(λ) cos(θ)

(re − ra) cos(λ) sin(θ)

(re(1− e2)− ra) sin(λ)

 .
(6.35)

Conversion from SCH based (x′, y′, z′) coordinates to ECEF coordinates uses the

rotation matrix

RENU
x′y′z′ =


0 sin(η) − cos(η)

0 cos(η) sin(η)

1 0 0

 (6.36)

The conversion is then carried out by

p̄xyz = Rxyz
ENUR

ENU
x′y′z′ p̄x′y′z′ + T̄ xyzx′y′z′ = Rxyz

x′y′z′ p̄x′y′z′ + T̄ xyzx′y′z′ (6.37)

where T̄ xyzx′y′z′ is generated from (6.34). Converting between the quasi-spherical (s, c, h)

coordinates and (x′, y′, z′) coordinates uses the relation

p̄x′y′z′ = (ra + ph)


cos
(
pc
ra

)
cos
(
ps
ra

)
cos
(
pc
ra

)
sin
(
ps
ra

)
sin
(
pc
ra

)
 (6.38)

or

p̄sch =


ra arctan

(
py′

px′

)
ra arcsin

(
pz′√

p2
x′+p

2
y′+p

2
z′

)
√
p2
x′ + p2

y′ + p2
z′ − ra

 . (6.39)

Rotation from the local sphere-tangent (ŝ, ĉ, ĥ) coordinates, defined at some point

p̄sch, to the (x′, y′, z′) coordinates is described by

Rx′y′z′

ŝĉĥ
=


− sin

(
ps
ra

)
− sin

(
pc
ra

)
cos
(
ps
ra

)
cos
(
pc
ra

)
cos
(
ps
ra

)
cos
(
ps
ra

)
− sin

(
pc
ra

)
sin
(
ps
ra

)
cos
(
pc
ra

)
sin
(
ps
ra

)
0 cos

(
pc
ra

)
sin
(
pc
ra

)
 . (6.40)

78

The two-dimensional radar coordinates can be converted to other systems given

unambiguous specification. When specified in the SCH system the (s, r) radar coor-

dinates can be converted using the law of cosines as

p̄sch =


s

(LR)ra arccos
(
r2−(ra+α)2−(ra+h)2

−2(ra+α)(ra+h)

)
h

 (6.41)

where (LR) = 1 for left looking radars and −1 for right looking radars, α is the height

of the reference track, and h is the height of the point being converted. By specifying

some h 6= 0 the coordinates of a point not on the spherical surface can be converted,

allowing the use of a non-smooth surface such as a DEM. The inverse conversion can

be carried out similarly, as in

p̄sr =

 s√
(ra + α)2 + (ra + h)2 − 2(ra + α)(ra + h) cos

(
c
ra

)
 . (6.42)

Using the definitions above, coordinate conversions can be carried out between

any of the defined systems by appropriately combining different conversions together.

One example is converting the coordinates of a point specified in (x, y, z) coordinates

to the local (i, j, k) coordinates given of a vehicle whose location is specified in (x, y, z)

coordinates. The conversion would have the following form

p̄ijk = RNED
ijk

T
RNED
ENUR

ENU
xyz p̄xyz + T̄ xyzx′y′z′ = Rijk

x′y′z′ p̄x′y′z′ + T̄ xyzx′y′z′ (6.43)

6.2 Summary

This chapter provides a detailed look into the coordinate systems relevant to the

processor, of which there are several types of Cartesian and non-Cartesian coordinate

79

systems. A few representations were given for global scale coordinates, including a

local spherical surface approximation known as SCH, which is well suited for use

with stripmap radar systems. There were also many local scale coordinate systems

mentioned, notably Cartesian surface representations, platform coordinates and radar

coordinates. The last section was devoted to mathematical descriptions of how to

convert between the relevant coordinate systems, including three ways of representing

rotations, as well as conversions for non-Cartesian coordinates. Following from the

implementation details provided in this and the previous chapter, a step by step look

into the entire processing chain is given next.

80

CHAPTER 7

PROCESSOR DESCRIPTION

What is presented here is intended to provide the clearest understanding of how

this processor works. In this discussion, the processor chain is defined to start with

the data inputs, which have been recorded and made ready for the processor, and

end with the focused SAR data outputs. Some system specific processing is done

prior to running the processor, which includes any data format handling and po-

tential GPS/INU motion post-processing. In the case of UAVSAR, the raw data is

pulse-compressed externally from this processor, using existing tools. It should be

noted that a few of the processing steps mentioned below (specifically the target grid

height calculation and radar state file handling) use external tools developed by Brian

Hawkins of JPL. The block diagram shown in Figure 5.2 is a useful reference here.

7.1 Preprocessor

There are a few basic tasks performed with the raw radar system data, beyond

what is mentioned above, prior to the processing itself. The goal of this preprocessor

is to generate a “Radar State” file which contains all position, attitude and additional

metadata information for each transmitted radar pulse. Additionally, the preproces-

sor will generate some configuration information used by the processor, most notably

the best fit SCH reference track.

The first step of the preprocessing is to read the timestamps for each radar pulse

within the given file. For convenience, all times are converted to a local time scale

using the transmission time of the first pulse as zero. Next, the GPS positions and

81

INU attitude information is read, including enough entries to cover the entire scene.

The timestamps for each are converted to the local scale. The INU attitude angles are

converted to quaternion rotations describing the angular offset between the antenna

and the ECEF XYZ coordinate system. A cubic interpolator is generated to allow

sampling of the attitude data at all times within the scene. The parameters of this

interpolator can be adjusted to enable smoothing of the data. This interploator will

become part of the radar state file, and will be used to calculate the antenna attitude

for every pulse. It is represented in the file by its interpolation coefficients.

Before doing the same with the GPS positions, one further task must be completed.

The positions given by the GPS receiver are usually the positions of the antenna phase

center of the GPS antenna, or alternatively the INU reference position if these data

are blended. In either case, these positions must be translated to the positions of

the antenna phase center of the radar antenna, which are the desired positions for

the processor. This is done by assuming the platform body is rigid and using a fixed

lever arm (in the platform’s coordinate system) describing the offset between the

radar antenna and GPS reference point. Since the attitude of the platform varies the

absolute offset, in any global coordinate system, will vary (even though the offset is

fixed in the platform’s coordinate system).

In order to properly translate the GPS positions, which are represented as ECEF

XYZ positions, the lever arm is rotated into the ECEF system using the platform

attitude. The rotated lever arm is applied to the GPS positions to translate them to

radar antenna positions. From this point, a similar cubic interpolator is generated

for the radar antenna positions, in the ECEF XYZ system.

The radar state is written to disk. It contains both position and attitude inter-

polators as well as the timestamps for each pulse, and the per-pulse metadata. Some

parameters are calculated and written to an output configuration file to aid in the

generation of the configuration for the processor itself. Most notably, these include

82

a best fit track to the radar antenna positions, denoted as an SCH peg point, and

track altitude. The position of the first pulse, in the fit SCH coordinate system, is

also written.

The radar state generated by the preprocessor contains all of the information nec-

essary to run the processing for any desired scene which uses the radar pulses within

it. This enables the processor to be run multiple times, with different configurations,

without having to perform the tasks of the preprocessor each time.

7.2 Processor

The first step of the processor is to read the configuration file. This includes

relevant radar parameters, general processor options, output grid specification and

input/output file names.

The radar state file is read, giving position, attitude, timing and extra parameters

for each pulse. These parameters include a system gain, electronic steering angle,

delay until reception and a data type flag. The position, p̄n,t,xyz, is stored as three

separate cubic splines for each of the x, y, and z ECEF coordinates of the antenna

position. The antenna attitude is stored as four separate cubic splines for each of

the four quaternion units representing a rotation from the antenna-centered system

to ECEF coordinates. When evaluated, the position and attitude are sampled at the

transmission time given for each pulse, resulting in p̄n,0,xyz and the attitude similarly

sampled.

The antenna-centered system is a right handed system with axes pointing nom-

inally toward forward, down and left (FDL). When accessed the quaternion is con-

verted into a rotation matrix, represented by Rxyz
fdl . A single entry in the state file

stores the physical elevation angle between the antenna-centered system and the ac-

tual antenna boresight, θb. For a left-looking antenna, rotating the FDL system about

the forward axis, by the boresight angle, results in true antenna coordinates. In this

83

case the true antenna coordinates are deflection, range and elevation, with deflection

nominally positive-forward, range positive-outward and elevation positive-up. For a

right-looking antenna, the boresight angle will be negative. Applying the same ro-

tation would result in a similar deflection, range, negative-elevation system though

with negative-elevation oriented positive-down instead of positive-up. To follow con-

vention the negative-elevation is flipped to result in a left-handed deflection, range,

elevation system. Thus,

Rxyz
dre =


Rxyz
fdlX(θb) θb ≥ 0

Rxyz
fdlX(θb)R

Left
Right θb < 0

(7.1)

The configuration file also stores the desired output grid. This output grid is a

rectangular grid in “radar” coordinates, representing range and azimuth positions

relative to an SCH reference track. Here the reference track is specified by giving

a peg point (latitude, longitude and heading) as well as an altitude. The grid is

specified by giving the azimuth and range coordinates of the first pixel, s0 and r0, as

well as the number of samples in each dimension, Ns and Nr, and the resolution in

each dimension, ds and dr. Thus the coordinates of a pixel with indices [u, v] can be

calculated as

x̄sr[u, v] =

s0 + uds

r0 + vdr

 . (7.2)

Note that, by definition, the range coordinate xr[u, v] is equivalent to the range of

closest approach ρ0.

A DEM is also specified in the configuration file, which stores ground height above

the ellipsoid in a latitude, longitude grid.

At this point, the output files are allocated on disk. There is a file to store the

focused imagery, σ(x̄), one to store the DEM heights, H(x̄), one to store a look vector,

84

L̂(x̄), and one to store the accumulated processor gain, A(x̄). Each file is in the same

output slant-range grid.

7.2.1 Patch Processing

To support very large output grids the processing is split into small patches, where

each patch (except for possibly the last one) has some fixed azimuth size, Ns,p, chosen

to maximize computational efficiency. The number of patches is

Np =

⌈
Ns,p

Ns

⌉
. (7.3)

Each patch has an output grid with parameters sp0, Np, ds and r0, Nr, dr where

sp0[k] = s0 + kNs,pds (7.4)

and k is the patch index.

At this point a structure to store the processor output, the target grid, is allocated

in memory. The target grid contains for each output pixel, x̄[u, v], its complex value,

σ, ECEF position, x̄xyz, as well as the accumulated look vector, L̂, and accumulated

gain, A. As part of the allocation the ECEF position is computed for each output

pixel. Using the DEM to provide heights, the (s, c, h) cross track coordinate, c, (or

equivalently the (s, r, h) coordinate h) is solved for by minimizing the error between

hcalc and hdem where

x̄calc,llh[u, v] = T llhsrh{x̄guess,srh[u, v]}

= T llhxyz
{
Rxyz
x′y′z′T

x′y′z′

sch

{
T schsrh {x̄guess,srh[u, v]}

}
+ T̄ xyzx′y′z′

}
(7.5)

and hcalc = xcalc,h and hdem is the DEM height interpolated at (xcalc,l, xcalc,l) (the

latitude and longitude coordinates) and xguess,h is a solver parameter. This is done

for each pixel [u, v].

85

Given the layout of the GPU kernel as described below, the target grid is trans-

posed and stored in azimuth-major (as opposed to range-major) format. So the index

becomes [v, u].

An important step in the patch processing is the calculation of which pulses illu-

minate the output grid. The idea is to only work with as many pulses as necessary.

This calculation is only relevant for stripmap operation. The processor can also be

run in spotlight mode, which will always use all available pulses.

The core of this calculation is based upon calculating the slant-range dependent

azimuth bounds for a single pulse. For a given pulse and slant-range it is possible to

estimate the azimuth positions of the half-power beam edges. For an ideal, un-steered

SAR system with azimuth beamwidth θb the theoretical resolution can be given as

∆R =
0.886λ

4 sin
(
θb
2

)
cos(θsq)

. (7.6)

In this processor the desired processing resolution is specified in the configuration,

allowing a variable amount of the beam width to be processed. In this case the

beamwidth used by the processor is calculated as

θb = 2 arcsin

(
0.886λ

4∆R cos(θsq)

)
. (7.7)

Using this half-power beamwidth the azimuth offsets from the s position of the beam

edges for a given slant range are

∆sn,±[v] = ρ0[v] tan

(
θsq ±

θb
2

)
(7.8)

and the absolute positions can be calculated as

En,s,±[v] = pn,0,s + ∆s±[v] (7.9)

86

and converted to grid u indices to give En,u,±[v]. Thus for each pulse an array of

forward and backward beam edges can be computed, for every slant-range, v.

For a given pulse, this calculation can be used to determine whether or not the out-

put grid contains any of the pulse footprint. Given the potential for non-deterministic

squint values, the first and last pulses to illuminate the output grid are determined

iteratively. A simple linear search is performed, starting from some reasonable guess

and skipping most pulses, for each case until a pulse is found that passes the edge

of the patch. The index of the determined pulse is padded to account for any un-

known squint, avoiding the need to search every pulse. The result of this search yields

nstart[k] and nstop[k] for the current patch, k.

7.2.2 Range Compression

Using nstart and nstop, the pulse data is read from the disk. The stored data may

either be sif [n, tm], for the FMCW case, or spc[n, tm], for the pulsed case. In either

case the first steps of the NERFFT algorithm are performed here to generate sner[n, g]

where

sner,n(ρ) ≈ 1√
2π

µ+K∑
m=µ−K

φ̂(γρ− g)sner[n, g] (7.10)

where µ = bγρc, in the notation used to describe the NERFFT. The NERFFT

parameters γ (the oversampling factor) and K (the interpolator kernel length) are

specified in the configuration file.

Normally, for FMCW radars, we have spc (n, f) = F {sif (n, t)}. As a part of the

NERFFT interpolation we instead generate

sner[n, g] =

γM/2−1∑
tm=−γM/2

e−j2πgtm/(γM) sif [n, tm]

φ(2πtm/(γM))
. (7.11)

The Fourier transform used above in the NERFFT algorithm is symmetric about

tm = 0, which allows the window functions to be purely real-valued. To achieve this

87

process, we first pad with zeros the front and back of the raw data to achieve the

desired oversampling, such that

stmp[n, d] =


0 0 < d < a

sif [n,d−a]

φ(2π(d−a)/(γM))
a < d < b

0 b < d

(7.12)

using the index, d, to represent the γM oversampled data. Then, the front and back

halves of the array are swapped so that

sos[n, d] =


stmp[n, d+ γM

2
] 0 < d < γM

2

stmp[n, d− γM
2

] γM
2
< d < γM

(7.13)

or

sos[n, d] =



sif [n,d+M
2

]

φ(2π(d+M
2

)/(γM))
0 < d < M

2

0 M
2
< d < γM

2

sif [n,d+M
2

]

φ(2π(d+M
2

)/(γM))

γM
2
< d < γM+M

2

0 γM+M
2

< d < γM

. (7.14)

Using a standard, non-symmetric, FFT as provided by most software packages, of the

form

X[l] =
K∑
k=0

e−j2πlk/Kx[k] (7.15)

gives the desired result

sner[n, g] =

γM∑
k=0

e−j2π
gd
γM sos[n, d]. (7.16)

88

Due to the nature of the FMCW system, this result contains redundant positive and

negative frequency parts. The positive frequency part is chosen so that the index g

is proportional to range, as in

sner[n, g] = sner[n, g] ∀g ≤ γM

2
. (7.17)

The pulsed radar data is stored in the range-compressed form, but must be modi-

fied to work with the NERFFT. The final step in pulse-compressing the pulsed radar

data is an IFFT, which can be modified to work with the NERFFT.

First, the pulse-compressed data is put back into the frequency-domain, padding

the number of samples to an efficient number for computation with the IFFT, M .

Here,

stmp[n, f] =
F{spc[n,m]}

φ(2π(f + M
2

)/(γM))
(7.18)

and is again shifted such that

sos[n, f] =


stmp[n, d] 0 < d < M

2

0 M
2
< d < γM − M

2

stmp[n, d+ M
2

] γM − M
2
< d < γM

. (7.19)

Finally, an inverse FFT can be applied to give the NERFFT pulse-compressed data

sner[n, g] = F−1{sos[n, d]} (7.20)

where again the g index is proportional to range. The Fourier transforms for this step

are computed on the GPU, resulting in the output sner[n, l] located in GPU global

memory.

For convenience, all pulse related data structures are sampled to match the size

calculated for the current patch. For the following steps, the pulse index, n, is assumed

to start at nstart[k] and end at nstop[k].

89

7.2.3 Azimuth Compression Module

Here, all of the configuration and data structures for the patch are passed to the

azimuth compression module. The azimuth compression module starts by loading

and compiling the GPU kernels. Compiling these kernels at runtime allows modifica-

tions to the kernel before the compilation, which can improve performance. Space is

allocated in the GPU memory for the target grid structure, the radar state structure

and arrays to hold the pulse footprint boundaries.

If using the global pulse boundary setting, the azimuth offsets, ∆sn,±[v], are cal-

culated here using the provided slant-range dependent squint angle, θsq[v].

The loop over all pulses, n ∈ [nstart : nstop], begins by checking the radar state

flags to see if n is an invalid pulse. If the pulse is valid, the processing continues.

The azimuth offsets for the current pulse, ∆sn,±[v], are calculated here when using

the local pulse boundary setting. Using the offsets, ∆sn,±[v], the boundary positions

for the pulse n are again calculated as

En,s,±[v] = pn,0,s + ∆s±[v] (7.21)

and copied to the GPU.

The optional antenna pattern is (re)calculated (if the radar state indicates a

change in the electronic steering angle) and copied to the GPU. If the boundary

positions, En,s,±[v], indicate the pulse illuminates any of the scene, the GPU kernel is

executed to perform the actual accumulation. Any additional relevant configuration

and/or memory pointers are passed to the GPU kernel as arguments.

7.2.4 GPU Kernel

The kernel is arranged such that each block processes one azimuth line (a constant

range value), such that iblock = v, and each thread in the block processes one pixel

in that line. Since the block size is fixed, some threads may process more than one

90

pixel, or no pixels at all, depending on the azimuth bounds for that range. Initially,

u = ithread + En,u,−[v]. The radar state entry for pulse n is loaded into the shared

memory for the block.

To fully utilize the GPU memory bandwidth, memory accesses should be sequen-

tial. Since individual blocks process pixels from a single range line (constant v),

the target grid has been arranged in azimuth-major format, so sequential memory

locations are adjacent azimuth pixels (u).

Additionally, a subset of the pulse-compressed data, sner, is loaded into the shared

memory. For a given block, at range ρ0[v] = r0 + vdr, there will be a limited range

of pulse-compressed values needed. This is estimated by using the pulse boundaries

calculated from the reference track, which will correspond to a range of

ρb,± =
√
ρ2

0 + (pn,0,s − En,s,±[v])2. (7.22)

The range at closest approach, ρ0[v], will be the smallest possible range, except for

large squint angles where it is not within the beam footprint. The range, g±, bounds

for sner are chosen from the minimum and maximum of the above three ranges ap-

propriately and are padded to account for non-ideal motion of the platform (since

the true range will be calculated from the platform position, and not the reference

track). Thus, the subset sner[n, g− : g+] is loaded into shared memory.

Each pixel/thread calculation starts by loading the values from the target grid

structure for the current pixel [v, u]. This contains the target position, x̄[v, u], current

value σ(x̄[v, u]), current look vector, L̄(x̄[v, u]), and current gain, A(x̄[v, u]). The real

distance is calculated as

ρ(x̄, p̄n,0) = ‖x̄− p̄n,0‖ (7.23)

and the look vector as

91

L̂n(x̄) =


(xx − pn,0,x)/ρ(x̄, p̄n,0)

(xy − pn,0,y)/ρ(x̄, p̄n,0)

(xz − pn,0,z)/ρ(x̄, p̄n,0)

 . (7.24)

Without an antenna pattern, the gain value is set to 1. Otherwise the antenna

pattern gain is calculated. The antenna pattern is stored in a lookup table using

the GPU texture cache and is indexed using normalized deflection and elevation

coordinates. The normalized coordinates of the pixel position in the antenna dre

system is calculated as

x̂dre =
1

ρ(x̄, p̄n,0)
Rdre
xyz(x̄xyz − p̄n,0,xyz) = Rdre

xyzL̂n(x̄). (7.25)

The values xd and xe are used to lookup the antenna gain, Gn(x̄). The total gain

for the pixel also takes into account the range loss, which may have an additional

normalization parameter depending on the range-compression method

An(x̄) = Gn(x̄)
ρ2

norm

ρ2
. (7.26)

The phase correction is calculated as

φref (x̄, n) = −j2πf0
2ρ(x̄, p̄n,0)

c
(7.27)

for pulsed radars and

φref (x̄, n) = (UD)j2πf0
2ρ(x̄, p̄n,0)

c
− jπKr

(
2ρ(x̄, p̄n,0)

c

)2

(7.28)

for FMCW radars, where UD = −1 for an up-chirp and UD = 1 for a down-chirp.

92

The range-compressed interpolation starts by converting ρ(x̄, p̄n,0) into a range

index

ρg(x̄, p̄n,0) =
ρ(x̄, p̄n,0)− r0

∆r
. (7.29)

For the pulsed case, the interpolation is completed as

sner[n, ρg] = e−jπρg
µ+K∑
g=µ−K

γ

G

1

π

sinh
(
α
√
K2 − (γρg − g)2

)
√
K2 − (γρg − g)2

sner[n, g] (7.30)

where µ = bγρmc, and in the FMCW case as

sner[n, ρg] =

µ+K∑
g=µ−K

1

π

sinh
(
α
√
K2 − (γρg − g)2

)
√
K2 − (γρg − g)2

sner[n, g]. (7.31)

The calculated values are now accumulated into the target grid as

σ(x̄) = σ(x̄) + sner[n, ρg]e
jφref(x̄,n)(An(x̄))(MD)1

L̄(x̄) = L̄(x̄) + L̄n(x̄)(An(x̄))(MD)2

A(x̄) = A(x̄) + (An(x̄))(MD)2 (7.32)

where the gain may either be multiplied or divided, according to the configura-

tion option MD. The current pixel values used in the accumulation sum (the first

terms) are those read at the start of the pixel calculation. If there are more pixels in

[En,u,−[v], En,u,+[v]] than there are threads in the block then each thread loops until

all pixels are complete.

7.2.5 Grid Finalization

When the GPU kernel has completed all pixels for the current pulse, the loop over

pulses, n, iterates until all pulses have been processed. Before the patch is completed

the target grid is finalized as

93

σ(x̄) =
σ(x̄)

A(x̄)

L̂(x̄) =
L̄(x̄)∥∥L̄(x̄)

∥∥ (7.33)

Finally, the completed patch is returned from the azimuth compression module.

The completed patch is written to disk and the loop over patches is continued.

After the last patch is complete there are no other processing steps, the completed

image has been fully compressed and written.

7.3 Summary

A detailed look into each step of the processor was given in this chapter. This is the

culmination of the work described in previous chapters, showing how the theoretical

models and implementation details come together to form a working time-domain

backprojection SAR processor. Since the layout of this chapter is as the program is

written, it also provides a useful reference when reading the written program code.

Using the processor as described here, the next chapter presents results obtained for

the relevant radar systems.

94

CHAPTER 8

RESULTS

Using this processor, preliminary results have been obtained with the two UMass

systems and the UAVSAR instrument. Additionally, simulated data were processed

to help evaluate the quality and accuracy of the processor itself.

Corner reflectors, due to their well behaved impulse response, are commonly used

as point targets for radar system calibration. The system impulse response is often

quantified by several measures, as described by Cumming [7]. The first is resolution,

or impulse response width, IRW, defined as the half-power beamwidth of the main

lobe of the impulse response. This can be measured in any distance unit. Here meters

are used. The peak sidelobe ratio, PSLR, measures the power of the first peak outside

of the main lobe relative to the main lobe’s peak. It is measured in dB. The integrated

sidelobe ratio, ISLR, is a measure of the power in the main lobe relative to the entire

power in the side lobes, defined as

ISLR = 10 log10

(
Ptotal − Pmain

Pmain

)
. (8.1)

In this case the width of the main lobe is defined as the null-to-null beamwidth, or

IRW
0.886

. The ISLR may either be measured in a single dimension (here we use azimuth

and range), or in two dimensions where it is referred to as ISLR2D. All of these quan-

tities may be measured and used as performance metrics for the processor and/or

radar system. While the area surrounding a corner reflector will not be empty in

practice, well chosen sites will have little impact due to the extraordinarily large re-

flectivity of the reflector. It should be noted that the application of window functions

95

to the radar data, in the range and/or azimuth directions, are often used to trade off

performance between these metrics.

8.1 Simulated Data

Using a simulator developed at the Jet Propulsion Laboratory, SAR data was

generated with radar and flight parameters similar to a typical UAVSAR deployment.

The simulation contains a number of corner reflectors on the ellipsoid surface (i.e.

there is no DEM). Figure 8.1 shows the target reflectivity image as computed by the

processor, for the simulated data. Two corner reflectors can be seen in the top of the

image, as well as the azimuth sidelobes for one reflector outside of the image. Note

that in such a small scene as this, there are many pulses which cover all or most of

the scene. The point target response of the nearest reflector is shown in Figure 8.2

and the measured impulse response characteristics in Table 8.1.

Table 8.1: Simulated point target impulse response.

Metric Value
Range IRW (m) 2.30
Range PSLR (dB) 36.04
Range ISLR (dB) -25.9
Azimuth IRW (m) 1.09
Azimuth PSLR (dB) 18.47
Azimuth ISLR (dB) -16.06
ISLR2D (dB) -15.6

96

13.40 13.60 13.80 14.00 14.20 14.40 14.68

Range (km)

0.0

0.1

0.2

0.3

0.4

A
zi

m
u
th

(k
m

)

Figure 8.1: Slant-range reflectivity output for simulated corner reflector scene.

97

−15 −10 −5 0 5 10 15 20

Pixel

−40

−35

−30

−25

−20

−15

−10

−5

0

M
ag

n
it

u
d
e

(d
B

)

Range

−3

−2

−1

0

1

2

3

P
h
as

e
(r

ad
ia

n
s)

−15 −10 −5 0 5 10 15 20

Pixel

−40

−35

−30

−25

−20

−15

−10

−5

0

M
ag

n
it

u
d
e

(d
B

)

Azimuth

−3

−2

−1

0

1

2

3

P
h
as

e
(r

ad
ia

n
s)

Figure 8.2: Oversampled point target response in simulated image. Note the well
behaved magnitude and phase responses.

98

8.2 UAVSAR Data

The UAVSAR instrument developed and operated by NASA’s Jet Propulsion

Laboratory has a long operating history. While typically processed with frequency-

domain algorithms, the results here show that time-domain backprojection may be a

viable alternative, especially for scenes with high motion variance. The reflectivity

and point target response is shown for a single flight over a calibration site in Cal-

ifornia. While the results are generally quite good, there is clearly still some error

causing the smearing of the point target response, mainly in the azimuth direction.

Table 8.2: UAVSAR measured point target impulse response.

Metric Value
Range IRW (m) 2.45
Range PSLR (dB) 16.90
Range ISLR (dB) -18.0
Azimuth IRW (m) 3.17
Azimuth PSLR (dB) 2.64
Azimuth ISLR (dB) -8.2
ISLR2D (dB) -7.6

99

12.551 14.000 15.000 16.000 17.000 18.000 19.000 20.000

Range (km)

0

2

4

6

8

10

12

14

A
zi

m
u
th

(k
m

)

Figure 8.3: Slant-range reflectivity output for UAVSAR scene. Note the corner re-
flectors in the bottom left of the image.

100

12.551 13.000 13.500 14.000 14.500 15.000 15.500 16.000 16.500

Range (km)

0.0

0.5

1.0

1.5

2.0

2.5

A
zi

m
u
th

(k
m

)

Figure 8.4: A closeup of the corner reflectors in the UAVSAR scene.

101

−15 −10 −5 0 5 10 15 20

Pixel

−40

−35

−30

−25

−20

−15

−10

−5

0

M
ag

n
it

u
d
e

(d
B

)

Range

−3

−2

−1

0

1

2

3

P
h
as

e
(r

ad
ia

n
s)

−15 −10 −5 0 5 10 15 20

Pixel

−40

−35

−30

−25

−20

−15

−10

−5

0

M
ag

n
it

u
d
e

(d
B

)

Azimuth

−3

−2

−1

0

1

2

3

P
h
as

e
(r

ad
ia

n
s)

Figure 8.5: Oversampled response for corner reflector in UAVSAR scene.

102

8.3 UMass Ka-band Data

The UMass Ka-band radar has been deployed in many configurations, including

not only as a SAR instrument. Here results are presented for the dual S- and Ka-

band deployment, for which both systems were deployed simultaneously on the same

platform as cross-track interferometers. In addition to pure reflectivity, each single

interferometer is able to measure interferometric phase and estimate precise scatter

height. A coherence image estimated for the two channels provides the interferometric

phase, which can be converted to a scatter height as described in Chapter 4. The

scatterer height estimate is shown in Figure 8.9. Using the DEM, in the same output

grid, and the estimated scatterer heights, a “final” DEM can be derived as the sum of

the two. This final product is a measure of the absolute scatter height, as estimated

by the interferometer. Figure 8.7 and Figure 8.11 show these final heights. Before the

addition is performed, the scatterer heights, h[u, v], are weighted by the coherence

magnitude |γ[u, v]| such that

hfinal[u, v] = h[u, v]|γ[u, v]|. (8.2)

Since the coherence magnitude ranges from zero to one, this weighting is a convenient

way to reduce the effects of noisy pixels on the final heights (for example allowing

reasonable values in shadow regions).

It is clear to see the degradation caused by the residual motion errors (measured

incorrectly or unmeasured) in the results. It is most noticeable as the near horizontal

banding that appears in both the reflectivity and phase based results. The banding

is most likely caused by rapid changes in platform motion which are not precisely

measured. Due to its small wavelength and small beamwidth the Ka-band system is

particularly prone to these types of errors.

103

1.0 1.5 2.0 2.5 3.2

Range (km)

0

1

2

3

4

5

6

7

8

9

A
zi

m
u
th

(k
m

)

Figure 8.6: Ka-band reflectivity image. Note the magnitude patterns caused by
incorrect motion.

104

1.0 1.5 2.0 2.5 3.2

Range (km)

0

1

2

3

4

5

6

7

8

9

A
zi

m
u
th

(k
m

)

0

4

8

12

16

20

24

28

32

36

40

m

Figure 8.7: Final DEM using Ka-band interferometric height estimates. Note that
the height estimates are weighted by the coherence magnitude.

105

1.20 1.40 1.60 1.80 2.00 2.20 2.35

Range (km)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

A
zi

m
u
th

(k
m

)

Figure 8.8: Ka-band reflectivity detail image.

106

1.20 1.40 1.60 1.80 2.00 2.20 2.35

Range (km)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

A
zi

m
u
th

(k
m

)

−16

−8

0

8

16

24

32

40

m

Figure 8.9: Ka-band raw differential height estimate.

107

1.20 1.40 1.60 1.80 2.00 2.20 2.35

Range (km)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

A
zi

m
u
th

(k
m

)

0

4

8

12

16

20

24

28

32

36

40

m

Figure 8.10: Reference DEM used for processing.

108

1.20 1.40 1.60 1.80 2.00 2.20 2.35

Range (km)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

A
zi

m
u
th

(k
m

)

0

4

8

12

16

20

24

28

32

36

40

m

Figure 8.11: Final Ka-band DEM detail image.

109

8.4 UMass S-band Data

The UMass S-band system, as deployed in conjunction with the Ka-band system,

can also be processed in the same way. In fact, the nature of the processor makes

it easy to process the two images to the same output grid, allowing pixel by pixel

comparison. The results in the following pictures were processed in the same manner

as the Ka-band system, on the same grid, for the same data acquisition flight. As

would be expected the results look fairly similar.

Overall the S-band system has more consistent results than the Ka-band system,

as it is less prone to the same types of motion errors. Due to the much larger aperture,

however, the S-band system does suffer from degraded azimuth resolution due to lower

frequency motion errors. Though the two systems should theoretically have the same

resolution, this affect causes the S-band system to have lower azimuth resolution, as

seen. Some radar hardware issues can be seen in the imagery, most noticeably the

phase response in noisy areas (which is expected to look more noisy).

110

1.0 1.5 2.0 2.5 3.2

Range (km)

0

1

2

3

4

5

6

7

8

9

A
zi

m
u
th

(k
m

)

Figure 8.12: S-band reflectivity image.

111

1.0 1.5 2.0 2.5 3.2

Range (km)

0

1

2

3

4

5

6

7

8

9

A
zi

m
u
th

(k
m

)

0

4

8

12

16

20

24

28

32

36

40

m

Figure 8.13: Final DEM using S-band interferometric height estimates. Note that
the height estimates are weighted by the coherence magnitude.

112

1.20 1.40 1.60 1.80 2.00 2.20 2.35

Range (km)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

A
zi

m
u
th

(k
m

)

Figure 8.14: S-band reflectivity detail image.

113

1.20 1.40 1.60 1.80 2.00 2.20 2.35

Range (km)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

A
zi

m
u
th

(k
m

)

−16

−8

0

8

16

24

32

40

m

Figure 8.15: S-band raw differential height estimate.

114

1.20 1.40 1.60 1.80 2.00 2.20 2.35

Range (km)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

A
zi

m
u
th

(k
m

)

0

4

8

12

16

20

24

28

32

36

40

m

Figure 8.16: Final S-band DEM detail image.

115

8.5 Combined S and Ka-band Data

The unique nature of the dual-frequency UMass system allows direct comparison of

measured data for each frequency. Figure 8.17 shows the difference in height between

the Ka-band and S-band measured scatterer heights. Due to the order of magnitude

difference in system wavelengths it is expected for the two systems to have much

different scattering statistics. One interesting observation is the generally positive

difference, especially over individual trees and forests (for example in the upper right

of the image, or the tree at approximately 2.2km azimuth and 1.5km range). This

is consistent with the hypothesis that the Ka-band system will scatter more directly

off tree canopies, while the S-band system would not. There is clearly potential for

further study of the dual-frequency response.

116

1.20 1.40 1.60 1.80 2.00 2.20 2.35

Range (km)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

A
zi

m
u
th

(k
m

)

−16

−8

0

8

16

24

32

40

m

Figure 8.17: Height difference measured between Ka and S-band images. Note the
general positive bias over forested areas.

117

CHAPTER 9

CONCLUSION

The majority of this work entailed the development of a time-domain backprojec-

tion processor, designed to use GPU hardware to improve runtime performance, and

to work with a wide variety of airborne radar systems. The goal of the processor is to

enable accurate processing in the face of non-linear aircraft motion, which is difficult

to avoid, especially in low altitude aircraft. Time-domain backprojection makes only

minor assumptions about aircraft motion, much of which is correctable as described,

making it particularly suitable for the application. To achieve good results, the pro-

cessor must have good knowledge of the motion of the aircraft, which is not always

easy to obtain. The motion data may be estimated and/or refined, using the Doppler

information in the recorded radar data.

A critical step of the backprojection algorithm is the interpolation of the pulse-

compressed data. Here, the NERFFT method is used, for both FMCW and pulsed

systems. This method is able to provide high accuracy with limited computational

cost.

Another important aspect of the algorithm is the substantial computational com-

plexity. Though much less than that of pure time-domain correlation, the complexity

is still significant when compared to traditional frequency-domain approaches. While

this processor generally stresses accuracy, flexibility and usability the implementation

medium was chosen to provide high performance.

Interferometry is an important aspect of the relevant radar systems. There has

been limited work using backprojection processed imagery for interferometry and its

118

ultimate suitability may be uncertain. Theoretically, it is shown to provide different

performance over traditional methods, which generally use frequency-domain pro-

cessing algorithms. Preliminary interferometric results have been shown using the

backprojection processor and show promise.

9.1 Contributions

This main contributions of this work revolve around the development and prelim-

inary results of a time-domain backprojection processor.

• Development of a time-domain backprojection processor with the following

properties:

– Ability to process pulsed and FMCW data, from a wide range of system

parameters.

– Designed to generate highly accurate focused SAR imagery and accompa-

nying data products.

– Full compensation of antenna pattern and variable aperture length gain.

– Support for very large radar scenes.

– Core processing run on GPU hardware to improve performance.

– Flexibility to work on desktop PCs and computing clusters.

• Development of a preprocessor for the UMass radar systems.

– Combines GPS, INU and radar timing data into one structure to be used

by the processor.

– Properly addresses antenna position offsets on platform using INU data.

• Development of accompanying tools for interferometry and data manipulation.

• Evaluation of processor performance with simulated and collected data sets.

119

• Preliminary results performing interferometry with backprojection processed

SAR imagery.

• Preliminary interferometric results using the UMass dual-frequency S and Ka-

band radar system, comparing estimated scatterer height values.

9.2 Future Work

Further improvements may be made to the processor. One option to correct

for unknown platform motion is to perform some type of autofocusing during data

processing. This is commonly done with frequency-domain algorithms and has the

potential to be extended to time-domain backprojection. The unknown motion may

also be corrected before processing. This can be done using estimation procedures that

rely on Doppler information in the radar data. This is in part what is currently done

with the UMass radar systems, but is very basic. Another option is to improve the

motion measurement system itself, to improve the initial platform motion estimation.

The UMass systems are in the process of upgrading the GPS and INU on the aircraft

with this goal in mind. The UAVSAR system already has very sophisticated motion

measurement capabilities, which is at work enabling the high quality results. While

good, the results are not perfect and it may be worth investigating the cause of

any errors or reduced performance, in order to come up with the best method for

mitigating them. Likely, autofocus methods would improve the image quality for

many types of error sources.

While the processor is basically complete, and able to stand on its own, there are

still some additional improvements which may be made. Some features which could

be implemented are a full 2D antenna pattern (instead of two 1D patterns), ability

to process a squinted output geometry, to improve performance for highly squinted

data sets, improved computational performance and modularity and better support

for spotlight data.

120

With little previous work found on interferometry with backprojection, further

investigation is warranted. The preliminary results show here are promising, but

the ultimate performance and usability of backprojection interferometry is still un-

clear, especially in comparison to traditional methods. A comparison between results

processed with the backprojection interferometry method and the traditional inter-

ferometry method could be completed, using backprojection processed images.

The UMass dual-frequency radar system is quite novel, given the limited existence

of either S or Ka-band SAR systems, let alone a system with both frequencies. There

is great potential to leverage the difference in scattering and penetration properties.

Besides the current ongoing work developing and improving this system, which is not

a minor task, there is likely room for a thorough theoretical look in to the potential

scientific measurements which could be made.

121

BIBLIOGRAPHY

[1] Itzhack Y. Bar-Itzhack. “New Method for Extracting the Quaternion from a
Rotation Matrix”. In: Journal of Guidance, Control, and Dynamics 23 (2000),
pp. 1085–1087.

[2] Roger R. Bate, Donald D. Mueller, and Jerry E. White. Fundamentals of As-
trodynamics. New York, New York: Dover Publications, Inc., 1971.

[3] Amedeo Capozzoli, C. Curcio, and A. Liseno. “Fast GPU-Based Interpolation
for SAR Backprojection”. In: Progress In Electromagnetics Research 133 (2013),
pp. 259–283.

[4] Walter G. Carrara, Ron S. Goodman, and Ronald M. Majewski. Spotlight Syn-
thetic Aperture Radar: Signal Processing Algorithms. Norwood, Massachusetts:
Artech House, Inc., 1995.

[5] Gerard Rùız Carregal. “Design, fabrication and measurements of an s-band
radar in an airborne platform”. Masters thesis. Universitat Politècnica de Catalunya,
2014.

[6] CUDA C Programming Guide. http://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf. Accessed: 2016-06-14. Sept. 2015.

[7] Ian G. Cumming and Frank H. Wong. Digital Processing of Synthetic Aperture
Radar Data: Algorithms and Implementation. Norwood, Massachusetts: Artech
House, Inc., 2005.

[8] Michael I. Duersch and David G. Long. “Backprojection SAR interferometry”.
In: International Journal of Remote Sensing 36.4 (2015), pp. 979–999.

[9] Karsten Fourmont. “Non-Equispaced Fast Fourier Transforms with Applica-
tions to Tomography”. In: The Journal of Fourier Analysis and Applications
9.5 (2003), pp. 431–450.

[10] Kan Fu, Paul Siqueira, and Rockwell Schrock. “A university-developed 35 GHz
airborne cross-track SAR interferometer: Motion compensation and ambiguity
reduction”. In: 2014 IEEE International Geoscience and Remote Sensing Sym-
posium (IGARSS). 2014.

122

[11] Herbert Goldstein. Classical Mechanics. Reading, Massachusetts: Addison-Wesley
Publishing Company, Inc., 1980.

[12] Sir William Rowan Hamilton. “On quaternions; or on a New System of Imagi-
naries in Algebra”. In: The London, Edinburgh and Dublin Philosophical Mag-
azine and Journal of Science (3rd Series) 25 (1844).

[13] Scott Hensley et al. “Improved Processing of AIRSAR Data Based on the
GeoSAR Processor”. In: 2002 AIRSAR Earth Science and Application Work-
shop. 2002.

[14] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110/210.
http://images.nvidia.com/content/pdf/tesla/NVIDIA-Kepler-GK110-

GK210-Architecture-Whitepaper.pdf. Accessed: 2016-06-14. 2014.

[15] Pau Prats et al. “Comparison of Topography- and Aperture-Dependent Motion
Compensation Algorithms for Airborne SAR”. In: IEEE Geoscience and Remote
Sensing Letters 4.3 (July 2007), pp. 349–353.

[16] Angel Ribalta. “Time-Domain Reconstruction Algorithms for FMCW-SAR”.
In: IEEE Geoscience and Remote Sensing Letters 8.3 (May 2011), pp. 396–400.

[17] Paul A. Rosen et al. “Synthetic Aperture Radar Interferometry”. In: Proceedings
of the IEEE 88.3 (Mar. 2000), pp. 333–382.

[18] Paul A. Rosen et al. “UAVSAR: A New NASA Airborne SAR System for Science
and Technology Research”. In: 2006 IEEE Conference on Radar. 2006.

[19] Mehrdad Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB
Algorithms. New York, New York: John Wiley & Sons, Inc., 1999.

[20] Craig Stringham and David G. Long. “GPU Processing for UAS-Based LFM-
CW Stripmap SAR”. In: Photogrammetric Engineering & Remote Sensing 80.12
(Dec. 2014), pp. 1107–1115.

[21] Wolfgang Torge. Geodesy. Berlin: De Gruyter, 2001.

[22] Ridha Touzi et al. “Coherence Estimation for SAR Imagery”. In: IEEE Trans-
actions on Geoscience and Remote Sensing 37.1 (Jan. 1999), pp. 135–149.

[23] Hugues Vermeille. “Direct transformation from geocentric coordinates to geode-
tic coordinates”. In: Journal of Geodesy 76 (Nov. 2002), pp. 451–454.

123

	Time Domain SAR Processing with GPUs for Airborne Platforms
	Recommended Citation

	tmp.1480644817.pdf.m9AqZ

