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ABSTRACT 

METHODS FOR INCORPORATING ECOLOGICAL IMPACTS WITH  
CLIMATE UNCERTAINTY TO SUPPORT ROBUST FLOOD MANAGEMENT  

DECISION-MAKING 

FEBRUARY 2017 

CAITLIN MARIE SPENCE, B.S. SMITH COLLEGE 

M.S. UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D. UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Casey Brown 

Modern and historic flood risk management involves accommodating multiple 

sources of sources of uncertainty and potential impacts across a broad range of 

interrelated sectors. Sources of uncertainty that affect planning include internal 

climate variability, anthropogenic changes such as land use and system performance 

expectations, and more recently changes in climatology that affect the resources 

supporting the system. Flood management systems potentially impact human 

settlements within and beyond the systems’ scope of planning, local weather patterns, 

and associated ecological systems. Federal guidelines across nations have called for 

greater consideration of uncertainty and impacts of water resources planning projects, 

but methods for meeting these needs remain poorly established. At the same time, 

there is increased attention to the ecological impacts of water resources systems and 

growing expectations that negative impacts be mitigated.  The confluence of climate 

change and increasing demand for environmental quality presents a challenging flood 

management decision context.  This work presents several alternative methods for 

incorporating ecological impacts into flood risk management and evaluation 

procedures alongside climate uncertainty, which are illustrated through application to 

a flood management system on the Iowa River. First, to integrate climate change and 



 

 vii 

uncertainty information into these decision models, the dissertation presents a 

decision-centric trend detection test in which the threshold for accepting or rejecting a 

trend in observed data is determined by the expected cost of drawing a false 

conclusion. Next, the dissertation presents a decision model to choose a portfolio of 

adaptation options based on portfolios’ expected economic and monetized ecological 

performance under uncertain future flood hazard. The dissertation also develops a 

robust optimization model with an alternate treatment of ecological performance to 

maximize the range of future conditions over which performance is acceptable in both 

economic and ecological impact sectors. Lastly, the dissertation presents a method for 

deriving a posterior distribution of changes in climate parameters based on a 

combination of a prior constructed based on climate model projections and likelihood 

based on the historic record. The goals of this work are to develop enhanced decision 

support tools that accommodate the unique context of flood risk management 

decisions and to improve the set of methods available to characterize future flood 

hazard and its associated uncertainty. 
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CHAPTER 1 

THE NEED FOR DECISION FRAMEWORKS WHICH ACCOMMODATE 

UNCERTAINTY AND ECOLOGICAL IMPACTS IN FLOOD RISK 

MANAGEMENT 

Floods are a type of natural disaster that cause severe costly damage around the world 

and within the United States. In addition to economic damage, floods disrupt the 

social infrastructure that makes up our society, affecting different segments of the 

population disproportionately. The physical causes of flooding stem from factors as 

diverse as extreme precipitation, infrastructure failure, break-up of natural dams, tidal 

forces, and placement of vulnerable development in areas prone to inundation. 

Flooding is therefore a complex and interdisciplinary phenomenon that damages 

physical and social infrastructure while impacting ecosystems in both positive and 

negative ways through multiple functional levers. This dissertation focuses on storm-

driven riverine flooding, which is common in the United States and throughout the 

world. Riverine flooding is common because rivers deliver a unique confluence of 

multiple benefits to society, which include transportation, drinking water, irrigation, 

power supply, food supply, cultural and recreational benefits, and others. These 

benefits incentivize development of areas near rivers even though these areas are 

occasionally inundated during bank overflow events.  

A number of structural and non-structural mitigation strategies may mitigate the risk 

of damage to floodplain development. These strategies largely fall into two categories: 

First, strategies that reduce the probability of vulnerable areas becoming inundated; 

and second, strategies that reduce the vulnerability of frequently inundated areas. 

Each strategic approach reduces one part of the components of flood risk, which is the 
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product of the risk of inundation and the consequences of inundation. Strategies that 

reduce the probability of inundation typically take a structural approach, using either 

built or natural infrastructure to mitigate peak flows. Examples of built infrastructure 

that reduce the likelihood of inundation include flood control reservoirs, which hold 

back a portion of high flows to reduce flood peaks, and levees, which physically block 

high river flows from inundating vulnerable land. Natural infrastructure such as 

detention ponds or land cover may be used to slow the transmission of precipitation 

into the river by increasing surface roughness, infiltration capacity, transpiration, or 

other hydrologic characteristics of the basin that attenuate flood peaks. Strategies 

which reduce the vulnerability of development in flood-prone areas are built into the 

development itself and include construction techniques which are resistant to water 

damage, drainage infrastructure to allow the swift retreat of floodwaters, zoning 

flood-prone areas for low-value land or flood-tolerant uses, or physical elevation of 

structures above flood levels. A combination of these risk management strategies is 

typically employed to maximize the benefits derived from using the floodplain with a 

minimum risk of damage. 

Optimal combination of inundation reduction and vulnerability reduction techniques 

would be easily achieved if each developed floodplain were planned as a whole at one 

point in time, constructed, and thereafter remained forever static. However, it is more 

realistic for development in floodplains to grow incrementally over time, increasing in 

vulnerability the while, until the floodplain becomes economically and socially 

important enough to necessitate a formal flood risk management system. This 

development pattern makes it difficult to efficiently coordinate flood-resistant land 

use patterns and construction techniques in the entirety of the floodplain’s 

development and incentivizes inundation-reduction infrastructure such as dams and 
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levees. These large-scale infrastructure products are commonly funded jointly by 

local and state or national governments with the main purpose of maximizing 

economic development. Depending on the magnitude of the system, flood 

infrastructure may either be designed to convey/mitigate flow with a certain known 

exceedance probability (e.g. the hundred-year flood) with the least cost or to avoid the 

greatest amount of damage with the least amount of cost, measured by the cost:benefit 

ratio. The expected damage associated with a river’s flow regime may be calculated 

by combining the relationship between flow and damage caused by those flows with 

the probability of peak flows’ occurrence. Flood management projects’ economic 

efficiency may be assessed by imposing changes on the probability of peak flow 

resulting from implementing the project, imposing changes in vulnerability resulting 

from the project on the flow/damage relationship, re-calculating expected damage, 

and adding project implementation costs. Comparing expected net cost with the 

project in place to expected net cost without the project reveals whether the proposed 

flood management project is economically justified. These criteria may be evaluated 

for a single piece of flood control infrastructure, such as a culvert or a reservoir, or for 

a larger flood control system made up of a combination of infrastructure, land use 

management/zoning policies, insurance contracts, etc.  

A common thread in the suite of techniques used to assess or compare the 

performance of potential flood risk management projects is the reliance on a known 

probability distribution of the frequency and/or magnitude of peak flows, which is 

estimated from flow records. The assumption that underpins this practice is that 

floods in the future will be distributed identically to floods observed in the past. 

However, there are a number of reasons this may not be true, and flood management 

projects based on this assumption may be subject to either over-design or under-
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design. These include changes to the basins’ hydrologic properties caused by erosion, 

structural, or land use/land cover changes, low-frequency variability in precipitation 

and temperature, or long-term climate change caused by greenhouse gas emissions 

into the atmosphere.  

Climate nonstationarity has been broadly accepted by the water sector as a new 

paradigm for design and planning (Milly et al., 2008), but methods for incorporating 

nonstationarity into flood risk management are not well established. Traditional 

metrics used to measure the performance of water resources systems such as 

reliability or expected costs have been estimated based on an assumption of stationary 

hydrology, so updates to these metrics which accommodate nonstationarity are 

needed (Brown, 2010). This is been a subject of significant attention in the water 

sector, which has proposed several updated methods for calculating metrics such as 

reliability or benefit-cost ratio assuming nonstationary hydrology. A number of 

methods have been developed which represent the parameters of the probability 

distribution of extreme events as nonstationary, with relationships to time or to 

synoptic covariates (Griffis and Stedinger, 2007). The nonstationary probability 

distribution is a key component in a number of decision models based on water 

systems’ expected performance under nonstationary conditions (e.g. Zhu et al, 2007; 

Rosner et al., 2014; Woodward et al., 2013), but requires an estimate of the 

parameters’ relationship to time. The aforementioned nonstationary design metrics 

and decision models share a common basis in a single projected climate or land use 

trajectory, when in reality the trajectory is uncertain and influenced by multiple 

interacting factors (Lempert, 2003; Stainforth et al., 2007b). Climate uncertainty is 

compounded by additional sources of uncertainty such as land use change and 
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vegetation change in frequency analysis of extreme hydrologic events such as floods 

and droughts.  

Estimates of the future peak flow probability distribution are typically derived from 

either extrapolation of trends observed in the historic record or from physical 

modelling of the climate and/or land use system. The benefit of extrapolating trend 

estimated from peak flow observations is that the trend may be identified even if the 

factor(s) causing the trend are not well understood. Modelling studies, on the other 

hand, may connect changes in climate or land cover which have occurred recently or 

which are expected to occur with their likely hydrologic consequences that are not yet 

evident in observations. However, the particular contextual circumstances of flooding 

challenge both trend extrapolation from historic records and modelling studies of 

future flood characteristics. Floods’ rarity makes data on their past occurrence sparse, 

and therefore trend detection in records of extreme flows is inherently difficult 

(Hirsch, 2011; Easterling et al., 1999). Bowling et al. (2000)’s study of minimum 

detectable trends in flow in western Washington, United States indicate that most 

river flow records may not be long enough to identify trends at standard significance 

thresholds if they do exist. Ziegler et al. (2005)’s study of trends in river flow as 

predicted by climate model output in the largest river basin in the United States, the 

Mississippi River Basin, finds that flow trends at the magnitude predicted by climate 

models would require records of between 87 and 143 years to identify the GCM-

predicted trends at 5% significance. Chapter 3 presents a trend detection framework 

that specifies statistical significance threshold of flood peak trend as that which 

equalizes expected over- and under-preparation costs, increasing the economic 

efficiency of flood adaptation decisions. 
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Due to the challenges associated with predicting future hydrologic behaviour based on 

flow records, climate model simulations of common inputs to hydrologic models such 

as precipitation, temperature, or solar radiation may be used to estimate future flood 

hazard. While long-term average precipitation and temperature are not without 

influence on such influential factors as the presence or magnitude of snowpack, 

seasonal melt timing, or soil moisture patterns, it is intense precipitation on the 

timescale of hours to days which has the most direct influence on riverine flood 

occurrence. Intense precipitation is not represented in global climate models, which 

simulate the physics of the ocean, land surface, and atmosphere at too coarse a spatial 

resolution to capture the fine-scale moisture transport that creates hurricanes, tropical 

cyclones, tropical moisture exports, atmospheric rivers, or convective or orographic 

precipitation events which are associated with intense precipitation and flooding 

throughout the world (Barsugli et al., 2009; Merz et al., 2012, Hirsch, 2011; Flato et 

al., 2012). Climate model output may be bias-corrected, downscaled, or translated 

through a weather generating function to more realistically resemble the characteristic 

weather at an area of interest, but these techniques are based on no signal in the most 

direct meteorological causes of flooding so therefore provide only limited information 

on future flood hazard that is subject to a high degree of uncertainty. In summary, 

uncertainty in future peak flow probability that is estimated based on flow records, 

climate projections, and traditional hypothesis testing frameworks limits the practical 

use of existing nonstationary flood management design tools on a known trend in the 

probability distribution of floods (e.g. Stedinger and Griffis, 2007; Rootzen and Katz, 

2013; Salas and Obeysekara, 2014).  

The lack of credible information sources on which to base future flood frequency 

estimates issues two parallel scientific challenges to the water sector. First is the 
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challenge of adapting existing flood management design criteria and decision 

frameworks to uncertainty or deep uncertainty in the peak flow probability 

distribution. The second challenge is to develop superior estimates of future peak flow 

which realistically quantify uncertainty. The following sections review the state of the 

science in each area. 

Numerous decision making frameworks have been developed to incorporate uncertain 

estimates of future climate into decision making. These delimit the scope of uncertain 

conditions under which a system must perform through a number of techniques, and 

assess performance across the range of uncertain conditions differently as well. Risk-

based decision making assesses a system’s expected performance across a range of 

scenarios, each with a known probability (e.g. USACE, 1996; Lund, 2002). This 

framework may therefore be applied to stationary or nonstationary flood risk 

management, but relies on a known probabilistic description of either peak flows or 

trend in peak flows. The previous section has established the lack of credible 

techniques for quantifying the uncertainty in such an estimate. A number of decision 

support techniques address the issue of decision making under the circumstance of a 

lack of probabilistic description of uncertainty, which is described in this dissertation 

as “deep uncertainty” and also sometimes described as “severe uncertainty.” Robust 

decision making (RDM) (e.g. Lempert & Groves, 2008) has been applied to a wide 

variety of decision contexts within and beyond water resources management (e.g. 

Regan et al., 2005; Lempert et al., 2012). RDM couches a system simulation model 

within algorithms which search for scenarios that lead to poor system performance 

over a wide set of possible future conditions, altering the system to seek adaptive 

alternatives that increase robustness. Robustness is measured through satisficing, or 

through another metric deemed suitable for the specific application. The framework 
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avoids relying on probabilistic descriptions of uncertainty, instead simulating 

performance under many alternative scenarios. An alternative robust decision 

framework based on RDM is Multi-Objective Robust Decision Making (MORDM), 

which is designed to seek decisions that are robust in terms of multiple objectives. 

Like RDM, MORDM is based around a high-dimensional search, but seeks Pareto 

non-dominated solutions to present stakeholders with a range of robust decision 

choices (Kasprzyk et al., 2013). Similarly, Info-Gap Decision Theory selects robust 

management strategies based on their performance across varying levels of 

uncertainty in a radius of acceptable performance (Korteling et al., 2013). 

Applications of both RDM and Info-Gap to decision support for managing climate-

sensitive systems have relied on climate models to delimit the range of future climate 

conditions (e.g. Matrosov et al., 2013), though climate scenarios outside the bounds of 

those projected by current models are difficult to dismiss (Stainforth et al., 2007a,b). 

The Decision Scaling framework for climate risk assessment and adaptation seeks to 

avoid the possibility of failing to recognize high-impact scenarios outside the bounds 

of climate projections by focusing the climate adaptation process on a bottom-up 

vulnerability assessment which is not based on climate model projections (Brown et 

al., 2012). Projections and/or probabilistic representations of future climate are 

addressed after system vulnerabilities have been identified under incrementally varied 

scenarios which extend to the borders of the plausible. Based on the map of the 

system’s response to all plausible scenarios combined with estimates of future 

conditions, decision makers may decide whether adaptation is necessary based on 

their own credence in the estimates of future conditions. Chapter 4 of this dissertation 

demonstrates how the decision scaling framework may be applied to flood risk 
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management adaptation decisions without relying exclusively on average precipitation 

and temperature change as decision drivers. 

These decision support tools provide a number of examples of how to characterize 

uncertainty, frame the scenarios across which robustness is measured, assess 

performance robustness across scenarios, incorporate climate information, and 

accommodate multiple decision objectives. While these robust decision support tools 

each seek to guide stakeholders toward robust actions, the decision maker’s risk 

attitude is another important decision driver that is not reflected in previous 

applications of the decision frameworks. Risk attitude influences the definition of 

robustness that best matches decision-makers’ own preference. The definition of 

robustness, then, is an important factor affecting FRM decisions that must be explored 

fully to lead to an actionable decision process (Castelletti et al., 2016). This 

dissertation demonstrates an approach to robust optimization based on Eco-

Engineering Decision Scaling (Poff et al., 2015), which leads to more consistently 

low-regret optimal and near-optimal solutions than both single-scenario optimization 

frameworks and past robust optimization framings in water resources management, in 

a multi-objective flood risk management adaptation decision in Chapter 4.  

The second scientific challenge of flood management decision making under 

uncertainty is improving projections of future flood hazard and finding a credible 

characterization of flood hazard uncertainty. Common methods for assessing flood 

nonstationarity range from the purely statistical, in which observed trends are 

extrapolated into the future, to the physically-based, in which suites of models 

representing physical exchanges between the atmosphere, land surface, and 

subsurface are modelled to predict the theoretical impact of land use and climate 

changes on peak flow events. Purely statistical approaches to modelling future flood 
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hazard may be as simple as fitting a linear model to the logarithm of annual maximum 

streamflow, or conditioning probability distribution parameters on climate covariates. 

Physically-based flood hazard projections typically impose changes in temperature 

and precipitation indicated by downscaled and bias-corrected climate model 

projections on a weather time series which forces a hydrologic model, generating 

modelled river discharge time series from which future flood characteristics may be 

inferred. The failings of climate model projections of precipitation and temperature to 

represent the factors that strongly influence flood hazard are documented in the 

previous section. Purely statistical approaches are subject to high uncertainty in trend 

estimates and risk missing trends that exist at standard significance thresholds. 

Statistical flood hazard projection also may fail to herald changes that will occur in 

the future, whether this is an abrupt change in the probability distribution or a change 

in the probability distribution parameters’ covariates. If land use is a covariate of the 

parameters, projections of land use change may be used to predict changes in flood 

hazard based on physical models of land surface processes. Climate covariates such as 

the phase of a synoptic atmospheric index (e.g. El Nino Southern Oscillation) may 

also serve as covariates of a flood hazard probability distribution and flood risk 

management plans may be developed for each phase of the index, but methods for 

projecting climate indices’ frequency and severity into the future are unclear. The 

inclusion of parameter covariates in peak flow probability distributions provides the 

strongest platform for connection between statistical models of peak flow and 

physically-based justification of expected changes. However, to be useful for future 

planning there must be a credible method of forecasting the covariates’ future 

variability. Chapter 6 of this dissertation presents a statistical framework for 

combining observed peak flow information and relationship to climate covariates with 
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model projections of the climate covariates into a probabilistic representation of 

future flood hazard that is useful for adaptation planning. 

In addition to the disruption of traditional planning tools stemming from uncertain 

climate change, the water sector has also broadly acknowledged the potential negative 

impacts of water resources development on ecological systems. The ecological 

impacts of flood risk management vary highly according to the strategies employed to 

manage flood risk. Flood risk management measures employ two categories of actions: 

actions that reduce vulnerability to floods and actions that reduce the probability of 

high flow and inundation events. Economic pressures to develop floodplains often 

lead the latter category to dominate, typically in the form of flood control reservoirs, 

levees, dikes, polders, and drainage systems or detention storage. Flood control 

reservoirs operate by temporarily storing a portion of potential damaging flows, 

reducing the probability of high-magnitude floods and increasing the probability of 

low flows. The alteration to the flow regime caused by flood control reservoirs’ 

operations may eliminate ecologically relevant fluctuations in river discharge (Webb 

et al., 2013). Levees physically block high-value land from floodwaters and do not 

alter river discharge, but may alter channel hydraulics and thus the discharge/stage 

relationship downstream, reducing the availability of floodplain habitat (Mays, 2011).  

The former category of flood risk reduction strategy, reducing vulnerability to floods, 

includes such measures as improving flood forecasting, preparation, and evacuation; 

permanently moving development out of the floodplain through zoning restrictions, or 

increasing the resilience of structures in the floodplain to flood damage.  

Nonstructural flood risk reduction measures have been promoted as generally less 

ecologically disruptive than structural measures (U.S. Water Resources Council, 
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2013). Because the first category of actions does not act on the river but on the 

contents of the floodplain, it is potentially less likely to divert lateral connectivity (e.g. 

bank overflow events, which could provide riparian species with life-cycle habitat) or 

upstream/downstream connectivity (which allows migratory species to access varying 

habitat types suited to various life cycle stages). Ecological impacts of federally 

funded flood risk management projects are assessed under the “Environmental 

Quality” account in the 1983 Principles and Guidelines for federal investment in 

water resources, but outside of meeting environmental regulations, ecological impacts 

do not play a part in determining project feasibility and are dominated by economic 

performance when comparing alternate designs. The monetization of ecosystem 

services is one method proposed to bring projects’ ecological and economic impacts 

onto equal footing, but the monetary value of non-market ecosystem services is highly 

contentious and thus subject to low credibility among decision makers in practice 

(Guswa et al., 2014). Chapter 4 of this dissertation presents one framework for 

incorporating the monetary value of environmental flows’ ecosystem services 

alongside climate uncertainty as an uncertain decision driver in FRM adaptation, 

facilitating compromise among stakeholders who hold disparate opinions regarding 

the importance of natural flows. 

Recent updates to federal guidelines in the United States and other countries seek to 

address the weakness in past planning documents by requiring more rigorous 

consideration of water resources designs’ potential ecological impacts, more holistic 

analysis of floodplain impacts of water resources projects, and more amelioration of 

those impacts than past requirements (U.S. Water Resources Council, 1983; U.S. 

Water Resources Council, 2013). The updated Principles and Requirements seek to 

further the union of economic development and ecological resilience as goals of equal 
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importance within water resources planning, but do not recommend specific 

procedures for doing so (U.S. Water Resources Council, 2013).  

At the same time as the need for better representation of ecological impacts in water 

resources engineering grows, the ecological community is faced with the challenge of 

how to conserve and enhance ecological resilience under uncertain future climate. 

Past ecological management paradigms, which called to minimize deviation from 

ecological reference states (Poff et al., 1997), have been subsumed by the arguably 

irreversible changes in global climatology that are expected to take place in the future. 

Instead of artificially preserving historic ecosystem characteristics despite shifting 

regional climatology, ecological conservation moves toward a paradigm of managing 

ecosystems to maximize their adaptive capacity to shifting conditions. Management 

actions that support ecological adaptive capacity include enhancing connectivity, 

which allows species threatened by climate change or other sources of nonstationarity 

to move to habitats that better support them; and heterogeneity, which provides 

replacement habitat for displaced species within short distances (Folke et al., 2004). 

Achieving and sustaining these environmental characteristics is often hampered by the 

infrastructure we use to manage our water resources and support economic 

development (Postel and Richter, 2003; Richter et al., 2003). The function of 

freshwater and riparian ecological systems is intimately entangled with the strategies 

we choose to manage water resources for economic development.  

Many methods for incorporating ecological impacts in water resources planning have 

been suggested (see Farber et al., 2002; Poff et al., 2015; Ramos et al., 2016), but the 

updated federal Principles and Requirements for Water Resources Investments in the 

U.S. has recommended none, only specified that monetizing ecosystem services alone 

is not sufficient and that official methods are yet to be established (U.S. Water 
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Resources Council, 2013). In order to effectively support ecological adaptation to 

changing conditions, the new methods for incorporating ecological impacts in water 

resources planning must account for the shifting climatological baseline and 

uncertainty in future climatology in addition to projects’ ecological impacts under 

stationary conditions. Chapter 5 presents a decision framework that incorporates 

ecological impacts of FRM alongside FRM’s economic impacts to meet both 

performance goals under climate uncertainty. 

There is a need to manage for preservation of society’s economic function and the 

function of ecological systems in the face of large-scale, uncertain change in regional 

climatology that challenges both systems. New decision-making frameworks and 

evaluation criteria are needed to successfully integrate management of water 

resources and ecological systems. The paired challenges of designing water resources 

systems for an uncertain climatic future and for better support of ecological systems 

presents the water sector with an opportunity to develop new planning frameworks 

that successfully integrate both goals. This dissertation presents several ways to adapt 

the decision scaling framework for application to optimization-based decision models 

that select ecologically resilient flood risk management strategies, which are 

introduced below and described in more detail in the following sections. Proposed 

decision frameworks and statistical frameworks are illustrated through application to 

the Iowa River flood management problem. The Iowa River and Iowa City flood 

adaptation context is described in more detail in Chapter 2 of this dissertation. 

The first chapter of the dissertation expands on the question of how to integrate trend 

estimation and detection with water resources decision analysis. Adaptation decisions 

in water resources planning may be triggered by the detection of trends in hydrologic 

variables that affect system performance. A trend or shift in water-related statistics 
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may require a response to maintain adequate performance. However, trends in 

hydrologic variables are often difficult to identify at common significance thresholds 

(e.g. 5%) due to internal variability, low-frequency variability, long-term persistence, 

and the focus on events that are inherently rare such as floods or droughts. Statistical 

significance of a trend detection test represents the probability of rejecting the null 

hypothesis of no trend when a trend really exists. Statistical power of a trend test, 

which is often given much less consideration than statistical significance, represents 

the probability of rejecting the null hypothesis of no trend when a trend does exist. In 

the context of flood frequency analysis and decision-making, statistical significance is 

the probability of over preparing; statistical power is the probability of preparing 

appropriately, and the statistical power subtracted from one is the probability of 

under-preparing. In the context of decision-making, all outcomes are important. 

Rather than relying on standard, one-size-fits-all significance thresholds, we derive 

and present expressions for significance and power thresholds that reflect the 

expected value of acting based on the identification of a trend (rejecting the null 

hypothesis) and of failing to reject the null hypothesis. We then present, for a 

reference set of unaltered stream gages across the contiguous United States, the ratio 

of expected flood damage to prevention cost at which the expected costs of accepting 

and rejecting a trend in streamflow are equal. The significance and power thresholds 

adapt trend detection hypothesis testing so that it is useful in making decisions about 

flood risk management. 

The second chapter of the dissertation expands on the first chapter by considering a 

wide range of possible trend magnitude in flood peaks through a risk-based flood risk 

management decision model designed to select infrastructure and options-based flood 

risk reduction measures with monetized ecological impacts alongside flood damages 
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and flood management costs within a regret-based decision framework. The adapted 

model allows managers to select flood management portfolios that perform best over 

a wide range of possible trends in peak flows and to identify the threshold value of 

ecosystem services provided by the fluvial flow regime that changes the flood risk 

measures included in the best portfolio. The framework facilitates compromise among 

stakeholders and decision makers who hold disparate opinions regarding the 

importance of ecological objectives. 

The third dissertation chapter will explore robust optimization methods that select 

portfolios of flood risk management alternatives that perform well both economically 

and ecologically across a wide variety of potential climate changes. The robust 

optimization analysis is based on a decision scaling-based framing of robust 

optimization, but is performed under a representative selection of assumptions 

regarding the range of uncertain decision drivers and robustness definition to 

represent stakeholders’ full range of values, beliefs, and risk preferences. The decision 

scaling-based robust robust optimization method illustrated in the chapter will avoid 

monetizing ecological impacts of the management alternatives, instead evaluating 

ecological performance according to a metric representing an ecologically relevant 

aspect of the flow regime. Mutual economic and ecologic performance of 

management plans may be measured using satisficing criteria, expected performance 

based on probabilistic representations of climate change as derived in the third chapter, 

or through other methods. Optimal and near-optimal FRM strategies found under each 

approach are compared ex post through regret in a climate stress test.  This framework 

is intended to fill the need for robust flood risk management decision support tools 

that search directly for robust strategies rather than evaluate the performance of high-

performing strategies ex post, incorporate stakeholders’ diversity of values and risk 
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preferences in the tools that support the decision-making process, and demonstrate a 

more rigorous approach to the use of climate information in robust optimization. 

When change in flood peaks is expected or suspected but evidence of change is 

lacking in the historic record, projections of hydroclimatological variables derived 

from climate models or expert judgment are often used to inform adaptation decisions. 

However, the methods for doing so in other water systems adaptation applications are 

not appropriate for developing projections of extreme streamflow and do not 

adequately quantify uncertainty in the resulting hydrologic projection. The fourth 

chapter of the dissertation presents a framework to develop probabilistic projections 

of flood trend based on atmospheric processes associated with extreme precipitation. 

The framework formally incorporates historic records of flood-correlated atmospheric 

indices with modelled projections of the indices using Bayes’ Theorem in a way that 

reflects the level of uncertainty in the estimates of atmospheric index in each 

information source. The goal is to combine these complementary sources of climate 

information to generate a probabilistic representation of regional climate change that 

takes into account the degree of uncertainty in each information source. The resulting 

probabilistic projection of flood trend is derived from flood-producing meteorological 

processes and suitable for incorporation in decision frameworks which accommodate 

not only nonstationarity in peak flows, but also uncertainty in the trend in flood peaks.  

The work presented in these four chapters seeks to provide examples of how to 

incorporate ecological impacts in flood risk management and planning, how to make 

flood adaptation decisions for multiple objectives under uncertainty in future flows, 

and how best to exploit currently available information sources to inform flood 

management decision frameworks.  
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CHAPTER 2 

FLOOD RISK MANAGEMENT IN IOWA CITY 

The flood frequency analysis techniques and decision frameworks presented in three 

out of four technical chapters are illustrated through applications to the Iowa City 

flood management system. Iowa City is located on the Iowa River, which is a 

tributary of the Mississippi River in the upper Midwestern United States. The Iowa 

River basin is located entirely in Iowa, which is characterized by a humid continental 

climate with annual average precipitation of 33.6 inches and snowfall common on an 

annual basis. Annual average temperature is between 45 and 50 degrees Fahrenheit 

throughout the basin.  

Credibility of average temperature and precipitation in climate model 

projections and as drivers of flood hazard 

Kunkel et al. [1994] and Coleman and Budikova [2010] found that the severe high 

flow events in 1993 and 2008 were caused by multi-day periods of high precipitation.  

Furthermore, operators have found Coralville Lake’s flood control performance to be 

sensitive to 15-day flow and precipitation extremes. Short-term precipitation extremes 

such as the 15-day precipitation extreme are a likely important driver of flood hazard. 

We compare bias-corrected climate model hindcast simulations [Maurer et al., 2010] 

of 1- and 15-day precipitation extremes and annual average temperature with the same 

properties of observed precipitation and temperature [Slack et al., 1994] in the Iowa 

River basin (Figure 2.1) to assess credibility of simulation. 
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Figure 2.1: Climate model hindcast simulations’ (histogram) and recorded (vertical 

red line) slope of linear trend (column 1) and 1950 intercept of linear trend (column 2) 

in one-day annual peak precipitation (row 1); annual peak 15-day precipitation sums 

(row 2); and annual average temperature (row 3). 

-0.2 -0.1 0 0.1 0.2
0

10

20

30
Estimated Slope

1-
da

y 
pr

ec
ip

ita
tio

n 
an

nu
al

 m
ax

im
a

mm/year
30 40 50 60 70

0

10

20

30

40
Estimated Intercept

mm

 

 

-1 -0.5 0 0.5
0

10

20

30

15
-d

ay
 P

re
ci

pi
ta

tio
n 

an
nu

al
 m

ax
im

a

mm/year
100 120 140 160
0

5

10

15

20

25

mm

-0.04 -0.02 0 0.02
0

5

10

15

20

25

A
nn

ua
l a

ve
ra

ge
 te

m
pe

ra
tu

re

Degrees C/year
7.5 8 8.5 9
0

5

10

15

20

25

Degrees C

GCMs
Observed



 

 20 

We find that climate projections almost uniformly underestimate both trend and value 

of one-day and fifteen-day precipitation sums. This is consistent with climate models’ 

well-documented “drizzle effect,” in which simulated precipitation is erroneously 

frequent and low-intensity [Boberg et al., 2007]. Recorded annual average 

temperature is higher than modeled annual average temperature (Figure 2.1).  

Basin hydrologic characteristics and flood history 

The drainage area of the Iowa River below Coralville Dam, the location most relevant 

to Iowa City, is 3,115 square miles. The region outside Iowa City is dominated by 

agricultural production, primarily of corn used for livestock feed and ethanol 

production. The most severely damaging floods in Iowa City and Iowa River in 

general typically arise after multiple consecutive days of sustained, high-intensity 

rainfall in late spring or early summer (Kunkel et al. 1994, Coleman and Budikova, 

2010, Robertson et al. 2011), with less severe flood occurring as a result of rain-on-

snow events in early spring (Hydrosystems, 2013).  
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Figure 2.2: Iowa River basin, location within upper Midwestern United States, and 

major features of flood control system. 

Flood management system 

Parts of Iowa City are protected from floods by roughly 3000 linear feet of levees at 

647 feet elevation, or three feet above the estimated 100-yr flood elevation.  In some 

areas the levees are poorly maintained (McCollough, 2013). Levees were constructed 

primarily in the 1960s through 1970s, and many are privately owned and maintained. 

Coralville Reservoir, upstream of Iowa City on the Iowa River, was authorized by the 

Flood Control Act of 1938 and began regulating flow on the Iowa River in 1958. The 

reservoir is managed by the U.S. Army Corps of Engineers for flood control and 

recreation. Coralville Lake is kept at a low storage capacity so that it is able to 
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attenuate flood peaks on the Iowa River. Currently, the maximum permitted daily 

release from Coralville Lake is 10,000 cubic feet per second (cfs) during the winter, 

and 6,000 cfs during the growing season, to protect crops (largely corn) growing on 

fields downstream of Iowa City (USACE). The reservoir has come near spilling in 

June 2013, June 2014, and filled to the point of using the emergency spillway in June 

2008 and 1993, causing substantial flood damage downstream. Peak flow during the 

1993 Iowa River flood, which was part of widespread flooding in the upper 

Midwestern United States, was estimated at 35,600 cfs. The 2008 flood, also part of 

widespread Midwestern flooding distributed across multiple river basins, was 

estimated at 48,200 cfs peak discharge at the inflow to Coralville Reservoir (USGS 

gage 05453100- Iowa River at Marengo). The recent frequency of high flows raises 

questions about the presence of a trend, whether due to shifting climatology or other 

alterations to the basin’s hydrological characteristics.  

Aquatic and riparian ecosystem and biota 

Iowa River’s riparian zone is host to tree species such as cottonwoods (Populus), 

silver maple (Acer saccharinum), and oaks (Quercus), which are characteristic of 

frequently inundated floodplains (Littin and McVay, 2009). The presence of 

Coralville Lake inhibits longitudinal connectivity in the river network, while the 

presence of levees and flood-attenuating influence of Coralville lake’s operations 

reduce the horizontal connectivity between the river and the floodplain by reducing 

the occurrence of peak flows, physically blocking flow from the floodplain during 

high flow events in areas protected by levees, and reducing floodplain inundation 

downstream of levees through hydraulic effects (Parrett et al., 1993; Mays, 2011). 

Despite the negative influence of disrupting longitudinal connectivity, Coralville Dam 

is regarded as a barrier structure in preventing the spread of prominent invasive Asian 
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Carp species (genus Hypophthalmichthys). Lake habitat created by the dam also 

promotes the spread of invasive zebra mussels, Dreissena polymorpha, by creating 

favorable habitat conditions for zebra mussels to outcompete native mussel species 

(Stoeckel et al., 2004).  

Systems modeling framework 

The flood frequency analysis and decision frameworks presented in this dissertation 

are based on a set of modelling tools which emulate the weather in the Iowa River 

basin, hydrologic response of the Iowa River basin, operations of Coralville Reservoir, 

hydraulics of the floodplain, and damage caused by flooding to Iowa City and the 

downstream agricultural fields. This set of modeling tools combines to form a system 

model which can be used to simulate the performance of the Iowa City flood 

management system under different adaptation actions and different climate scenarios. 

A stochastic weather generator (Steinschneider and Brown, 2014) creates ten 60-year 

stochastic time series of daily temperature and precipitation. Each of these series was 

adjusted statistically to reflect climate-changed average precipitation (ranging 

between a 30% decrease and a 30% increase at 10% intervals) and temperature 

(ranging between a 1 degree decrease and 5 degree increase at one degree intervals), 

resulting in a total of 49 combinations of temperature and precipitation changes for 

each of the ten stochastic series for a total of 490 time series. The ten stochastic runs 

are included to represent the effects of climate internal variability. Each of these 

stochastic, climate-altered time series is used to force a daily VIC model of the Iowa 

River to generate synthetic inflows to Coralville Reservoir (Xiang et al., 1994; 

Hydrosystems, 2013). A model constructed in MATLAB ® based on the Coralville 

Lake ResSim® U.S. Army Corps of Engineers operations model (Kipsch and Hurst, 

2007) translates inflows to the reservoir into releases from the reservoir. A validation 
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plot for historical inflows to the reservoir between 1992 and 2010 is shown below in 

Figure 2.3 (Nash-Sutcliffe 0.71). 

 

Figure 2.3: Validation for Coralville Reservoir operations model. Simulated releases 

based on recorded inflows between October 1, 1992 and September 30, 2010 are 

compared to recorded releases from the same period. 

A hydraulic model of the floodplain developed in HEC-RAS by the US. Army Corps 

of Engineers translates releases from Coralville Lake into downstream floodplain area 

between Coralville Lake and river mile 46 (46 miles upstream of Iowa River’s 

confluence with the Mississippi River). The HEC-RAS River Analysis System 

(Brunner, 2001) model was used to derive an empirical relationship between 

discharge and floodplain area downstream of Iowa City (Appendix A), which is an 

important proxy of the flood management system’s ecological impact. The USACE 

Rock Island District also provided a table relating discharge, river stage, and damage 

to Iowa City and the downstream agricultural fields (Hydrosystems, 2013; U.S. Army 
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Corps of Engineers). Figure 2.4 shows the conceptual linkage between sub-models 

that form the larger system model. 

 

Figure 2.4: Iowa River flood management simulation model, with linkages shown 

between sub-models. 

Economic impact of flood damages, particularly under nonstationary climate, and 

freshwater and riparian ecological resilience are among the greatest concerns 

regarding the performance of the Iowa River flood management system (USACE 

Report ER-1105-2-101). Priorities for the future include protecting against potentially 

increasing floods and reducing the impacts of hydraulic infrastructure on the river 

ecosystem to facilitate adaptation to potential changes in climate. 
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CHAPTER 3 

A RISK-BASED STATISTICAL SIGNIFICANCE THRESHOLD FOR FLOOD 

HAZARD TREND DETECTION 

Abstract 

Statistically significant trends in hydrological variables motivate adaptation in water 

resources planning because future conditions are not expected to match the system’s 

design conditions. However, trends in hydrologic variables are often difficult to 

identify with confidence at common significance thresholds (e.g. 5%) due to low-

frequency variability, persistence and the rare nature of extreme events. Trend 

analysis of flood records increasingly evaluates the likelihood of both type I and type 

II errors. However, arbitrary significance thresholds ignore the consequences 

associated with either missing a real trend or accepting as real a nonexistent trend.  

Here we derive risk-based expressions for significance and power thresholds that 

reflect the expected value of adapting to a trend (based on rejecting the null 

hypothesis) and of taking no adaptive action (based on failing to reject the null 

hypothesis). Using a risk-based significance threshold in trend tests ensures the lower-

risk course of action, enabling risk-based flood management decision making. We 

determine decision-specific significance thresholds for stylized flood adaptation 

decisions across the contiguous United States, and compare decisions based on the 

decision-specific significance threshold to decisions based on a standard significance 

threshold. Results show that typical uniformly applied statistical significance 

thresholds are likely to increase the risk of being under-prepared for possible trend in 

flood hazard while risk-based significance thresholds lead to a higher rate of rejecting 

the “no trend” null hypothesis. In addition, normalized damage:cost ratios are derived 



 

 27 

that serve as thresholds on expected over-and under-preparation across the contiguous 

US. 

Introduction 

In flood risk assessment, trend detection hypothesis testing is often used to decide 

whether there is sufficient evidence of increasing flood risk to take adaptive action. 

The hypothesis test assumes a null hypothesis 𝐻0 of “no trend”, and then compares 

statistical evidence of that hypothesis to statistical evidence in favour of the 

alternative hypothesis 𝐻𝐴 that there is a positive trend. The probability that no trend in 

fact exists based on the data must be sufficiently low to reject the null hypothesis. A 

one-sided hypothesis test, which assesses only the possibility that trend is greater than 

zero, is appropriate in the context of flood management decisions because decreasing 

flood peaks do not generally cause the same type of negative economic impacts as 

increasing flood peaks. The choice between whether to reject the null hypothesis is 

determined based on whether the trend’s statistical significance, or likelihood of being 

observed by chance when there is in fact no trend, is below a certain threshold. 

Common values of the significance threshold which dictates whether the null 

hypothesis is rejected are 0.10 (10% chance of falsely rejecting the null hypothesis), 

0.05, or 0.01 (e.g. Slater et al., 2015; Wobus et al., 2013).  

Hypothesis testing is framed exclusively around trends’ statistical significance to 

prevent mistaken claims that an effect exists when it does not exist, which is called 

“type I error.” For example, Lettenmaier et al. (1994) assess streamflow trends across 

the continental US and display only areas which have statistically significant trends at 

the p < 0.02 level. Villarini et al. (2009) find inconclusive evidence of trends, change 

points, and long-term persistence in annual maxima based on a p < 0.05 in long 

stream gage records in the United States, but acknowledge that even these records 
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may not be long enough to identify nonstationarity conclusively under standard 

significance criteria. Similarly, Robson (2002) concludes there is “no statistical 

evidence” of flood trend in UK flow records based on a 5% significance threshold 

applied to a number of trend models, but acknowledges the possibility that a trend 

exists but is not identified by the tests.  This type of error is called a “type II error”, 

while the error of rejecting the null hypothesis when no trend exists is called “type I 

error.” While the focus on avoiding type I errors is a sensible philosophy in some 

contexts, it does not incorporate the consequences of failing to reject the null 

hypothesis of no trend when a trend actually exists, which may be severe in the 

context of flood frequency analysis and adaptation (Vogel et al., 2013).  

Here we define risk as the expected loss due to an event.  Flood frequency analysis 

tools and design standards can be updated to accommodate nonstationarity in flood 

hazard and hence minimize risk over time (e.g. Stedinger and Griffis, 2007; Rootzen 

and Katz, 2013; Salas and Obeysekara, 2014), but these innovations are not used if 

statistical analysis of the hydrologic time series fails to identify trend. Flood risk 

management planning presents a special challenge within water resources planning 

with respect to accounting for nonstationarity. Floods’ rarity and variability makes 

detecting trends in extreme flows records through standard methods inherently 

difficult (Hirsch, 2011; Easterling et al., 1999). For example, Bowling et al. (2000)’s 

study of minimum detectable flow trends in western Washington, United States 

indicates that most river flow records may not be long enough to identify realistically-

valued trends with typical statistical significance thresholds.  Adaptation decisions 

based on the outcome of standard hypothesis tests may therefore leave society 

exposed to unanticipated risk. 
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To address the vulnerability of standard hypothesis tests to missing a trend, Rosner et 

al. (2014) apply a decision analytic framework to connect hypothesis testing with the 

contextual circumstances of water resources decisions by reframing the trend 

detection hypothesis test in terms of the expected consequences of both over- and 

under-preparing for a trend in flood peaks. The resulting expected regret decision rule 

uses statistical power and significance pragmatically in the context of an adaptation 

decision to maximize economic efficiency and minimize risk (Rosner et al., 2014).  

We build on the Rosner et al. (2014) framework to develop an analytical expression 

of a significance threshold for trend detection equalizes the risk associated with over- 

and under-preparing. The threshold represents a point of indifference to taking action 

or not, where the expected value of the decision to take action is equal to the expected 

value of not acting to reduce flood risk. An adaptation choice that is based on the risk-

based trend test will therefore be the least-risk choice out of the choices to adapt or 

not to adapt.   

We compare the implications of both the standard and the proposed risk-based flood 

trend hypothesis testing framework for adaptation decisions across 1,702 continuous 

stream gage records located throughout the coterminous United States (Slack et al., 

1992; Lins, 2012; Falcone et al., 2010). Specifically, we compare a hypothesis test 

that is based on a standard p < 0.05 significance threshold versus a hypothesis test 

based on a risk-based significance threshold, using a stylized relationship between 

trend, damage, and adaptation cost to calculate the risk-based significance threshold. 

Comparison is made in terms of the rate of rejecting the null hypothesis of no trend 

and the probability of type II errors. Because location-specific flood damage and 

adaptation cost data are not available for each gage across the US, we also show the 

theoretical ratio between flood trend damages and adaptation costs that must be 
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exceeded at each gage to provoke economically efficient adaptation based on a risk-

based significance threshold. The findings show that the use of the risk-based 

significance threshold to support adaptation decisions leads to a lower likelihood of 

type II error at many gages and a higher rate of rejecting the “no trend” null 

hypothesis than the p < 0.05 significance threshold. Similarly, the value of the risk-

based significance threshold varies widely among the gaged locations, as does the 

theoretical ratio between flood trend damage and adaptation cost necessary to provoke 

adaptive action. 

Hypothesis testing and flood management decisions 

Hypothesis tests for flood trend analysis are framed around the statistical significance 

of the trend in the peak flow record, 𝛼, which represents the probability that the trend 

is actually zero. However, hypothesis tests do not include the probability of making a 

type II error or missing a trend that actually does exist, which is is deemed 𝛽. The 

probability that the trend will be correctly identified, (1 −β) is called the “power” 

of the test.  Table 3.1 shows the different possible outcomes and the associated 

probability of each based on the results of a hypothesis test in flood frequency 

analysis and adaptation decision making. 
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Table 3.1: Hypothesis testing outcomes in the context of flood frequency analysis and 

flood risk management with associated probabilities (Rosner et al., 2014). 

 Ho: No trend in 

floods 

HA: Positive trend in 

floods 

Don’t adapt 1 - α β 

Adapt α 1-β 

 

The possible errors resulting from decisions that are based on the outcome of 

hypothesis tests include (1) over-expenditure on adaptive measures if there is actually 

no trend (type 1 error) or (2) insufficient preparation for the increase in peak flows 

(type 2 error). Possible desirable outcomes include (1) correctly identifying and 

preparing for a trend that exists and (2) correctly avoiding unnecessary adaptation 

expenditure if there is no trend (Figure 3.1). Assuming preparatory costs prevent any 

damages, both branches of the decision tree where the correct preparatory action is 

taken have net zero consequences. Only branches with incorrect actions have negative 

consequences. If the decision context is known, the tester or decision maker may 

calculate the expected consequences of making each type of error using 𝛼, 𝛽, the cost 

of preparing for a flood trend C, and the damage D that would be caused by the flood 

trend without preparatory action (Rosner et al., 2014). 
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Figure 3.1: Decision tree for adaptation to trend in flood hazard (Rosner et al., 2014) 

The choice between adapting and not adapting that maximizes economic efficiency 

depends on whether the expected cost of under-preparation, 𝛽𝛽, is greater or lower 

than the expected cost of over-preparation, 𝛼𝛼 (Figure 1). We show how to determine 

the significance threshold that represents a point of indifference between over- and 

under-preparation and hence promotes the lower-risk choice. 

Deriving a risk-based trend detection significance threshold 

For a linear trend estimated in annual peak flows using ordinary least squares (OLS), 

we find the decision-specific significance threshold 𝛼𝑜 that makes the expected cost 

of adaptation to the OLS trend equal to the expected damage without adaptation, and 

thus the decision maker indifferent. Vogel et al. (2011) found the log-normal 

distribution suitable to approximate annual peak flow at river gages across the 

contiguous US,  Q, as log-normally distributed (Equation 3.1), and fit a linear trend in 

log-peak flows y through Ordinary Least Squares (OLS) (Equation 3.2). The variable 
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x represents the year in which a peak flow occurs. The OLS trend is estimated using n 

years of recorded peak flow. 

 

log(𝑄(𝑥)) = 𝑦(𝑥) ~ 𝑁(𝛽𝑜 +  𝛽1𝑥,𝜎) 

Equation 3.1 

𝑦𝑥 =  𝛽𝑜 +  𝛽1𝑥 +  𝜀𝑥, 𝜀 ~ 𝑁(0,𝜎) 

Equation 3.2 

In null-hypothesis significance testing, the null hypothesis is that trend (𝛽1) is zero. 

The alternative hypothesis of a one-sided test is that trend is greater than zero. We 

choose a one-sided test because we are most concerned with increasing trend in the 

context of flood risk management. The significance of the estimated trend 𝛽1�, 𝛼𝛽�1, 

represents the probability that 𝛽1  is zero. In the context of traditional hypothesis 

testing, we reject the null hypothesis if 𝛼𝛽�1is sufficiently low, typically below some 

pre-designated threshold such as 𝛼 < 0.05.  

Statistical power, 𝛽, depends on the significance threshold 𝛼, the variance of the OLS 

estimate 𝛽1�, 𝜎𝛽�1� , and the number of degrees of freedom in the OLS estimate of the 

linear model, which in this case is 𝑛 − 2. We distinguish between the significance of 

the estimated trend in the data, 𝛼𝛽�1 , and the significance threshold set to decide 

whether to reject the null hypothesis of no trend, 𝛼. The significance 𝛼𝛽1�  of the trend 

in the data depends on the Student’s t parameter (Equation 3.3). 

 



 

 34 

𝛼𝛽1� = 1 − 𝐹(𝑡) 

Equation 3.3 

The student’s t parameter can be estimated as the ratio between the estimated trend 

parameter and its’ standard error (Equation 3.4). 

𝑡 =  𝛽1� 𝜎𝛽�1��  

Equation 3.4 

The failure to correctly reject the null hypothesis probability, 𝛽𝛽1� , depends on the 

trend’s significance, 𝛼𝛽1� , the data’s variance, and the degrees of freedom in the model 

fit (Equation 3.5). 

𝛽𝛽1� = 𝐹�𝑡(1−𝛼),(𝑛−2)− 𝛽1� 𝜎𝛽�1�� � 

Equation 3.5 

We designate the t statistic used to calculate 𝛽𝛽1�  as 𝑡′ =  𝑡(1−𝛼),(𝑛−2)− 𝛽1� 𝜎𝛽�1�� . We 

seek a risk-based significance threshold 𝛼 =  𝛼𝑜, so that the expected cost of falsely 

accepting the presence of a trend 𝐶 ∗ 𝛼𝛽1�  is equal to the expected cost of falsely 

failing to identify a trend ∗ 𝛽𝛽1� |𝑛,𝛼𝑜 .  By using the risk-based significance threshold 

𝛼𝑜 as the decision criterion, the risk of over- and risk of under-preparing are equal 

(Equation 3.6). 

𝐶 ∗ 𝛼𝛽1� = 𝐷 ∗ 𝛽𝛽1� |𝑛,𝛼𝑜 

Equation 3.6 
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By expressing the probability of a false positive 𝛼𝛽1�  and probability of false negative 

𝛽𝛽1� |𝑛,𝛼𝑜 in terms of the trend estimate 𝛽1� , its standard error 𝜎𝛽�1� , the desired 

significance threshold 𝛼, and the degrees of freedom 𝑛 − 2, Equation 3.6 becomes 

Equation 3.7. 

𝐶 ∗ (1 − 𝐹�𝛽1� 𝜎𝛽�1�� �) = 𝐷 ∗ 𝐹�𝑡(1−𝛼),(𝑛−2)− 𝛽1� 𝜎𝛽�1�� � 

Equation 3.7 

Solving Equation 3.7 for the risk-based significance threshold 𝛼𝑜 yields the following 

expression (Equation 3.8): 

𝛼𝑜 = 1 − 𝐹 �𝐹′ �
𝐶 ∗ [1 − 𝐹�𝛽1� 𝜎𝛽�1�� �]

𝐷
� +  

𝛽1�
𝜎𝛽�1�

� 

Equation 3.8 

Equation 3.8 may be used to calculate a risk-based significance threshold for trend 

testing in any flood management decision, provided a record of peak flows exists, the 

cost of preparing for a trend is known, and the damages associated to fail to prepare 

for a trend can be estimated. If the significance 𝛼𝛽1�  of the trend in the data is greater 

than 𝛼𝑜, no action should be taken to prepare for a trend. If significance is less than 

𝛼𝑜, adaptation is the optimal decision. 

Peak flow trends across the contiguous United States 

Using the HCDN Gages II dataset of peak flow records across the United States 

(Slack et al., 1992; Lins, 2012), we estimate trend in expected annual peak flow using 

the linear models described by Equations 3.1 and 3.2. If the mean expected peak flow 

in year x is 10𝜇𝑥  , the fractional change in flow is ∆𝜇 =  ( 10𝜇2015  −  10𝜇1950 )/ 
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10𝜇1950. Figure 3.2 shows the estimated change in expected peak flow, measured in 

cubic feet per second (cfs), between 1950 and 2015.  

 

 

Figure 3.2: Expected change in expected annual peak flow between 1950 and 2015 

(fraction). A change of “1” represents no change, a change of “2” represents a 

doubling in expected annual peak flow, and a change of “0.5” indicates average 

annual peak flow will become half of its current value by 2050 if the trend were to 

continue. 

OLS estimates of trend, assuming flood peaks are log-normally distributed, indicates 

increases in annual peak flow across much of the northeast, eastern Midwest, and 

inland southeast of the United States.  Decreases in annual peak flow are also 

expected across the north and south central United States, southeast, southwest, and 

some locations on the west coast. These spatial patterns are in agreement with the 
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analysis of flow magnification factors conducted by Vogel et al. (2011) for regulated, 

unregulated, and HCDN stream gages (Slack et al., 1993) across the continental US, 

and with Villarini et al. (2009)’s analysis of trends and change points in HCDN 

stream gages. 

The probability of type I error at each gage and rate of rejecting the “no trend” null 

hypothesis in a hypothesis test based on a uniform p < 0.05 significance threshold are 

shown in Figure 3.3. 

 

 

Figure 3.3: Probability of type I error at gages located across the contiguous US (color 

scale). Statistically significant trend in annual peaks (p ≤ 0.05) indicated by filled 

blue markers. 
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While there is a high probability of type I error at many locations throughout the US, 

only 16% of gages’ trends are statistically significant using the uniform p < 0.05 

threshold, particularly at locations in the Pacific Northwest, Mississippi River basin, 

Northeast, and Appalachian Mountains. Few statistically significant trends exist in the 

Southwest, south central United States, or Southeast (Figure 3). This mimics the 

spatial pattern in annual peak flow change indicated by OLS trend fitting as shown in 

Figure 2. Areas with a high rate of statistically significant trend in Figure 3 

correspond to areas with strongly positive trend in Figure 2 and with the analysis of 

flow magnification factors in the same stream gage data set by Vogel et al. (2011).   

Statistical power (Equation 3.5) of trendsacross the United States is low when using a 

5% significance threshold, leading to a high likelihood of under-preparation for trends 

that exist, except in parts of the Northwest and Great Lakes region (Figure 3.4).  
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Figure 3.4: Probability of missing a trend in peak flows using a 5% statistical 

significance threshold (color scale). 

In summary, few trends are found to be statistically significant using the typical 5% 

significance threshold and the likelihood of missing positive trends in peak flows is 

high at gages across the contiguous United States.  

Risk-based trend detection across the contiguous United States 

Finding the risk-based significance threshold 𝛼𝑜 depends on the cost of adapting to a 

trend in peak flows and the damage that the increasing peak flows would cost without 

adaptation action. We approximate a representative ratio between adaptation cost and 

flood damage without adaptation based on the fractional expected increase in flood 

peaks between 1950 and 2015 based on the change in annual expected peak flows, 

∆𝜇 =  ( 10𝜇2015 −  10𝜇1950)/ 10𝜇1950 based on the OLS estimate of trend (Equation 



 

 40 

3.9), in which the damage to cost ratio 𝐷:𝐶 is proportional to the change in average 

annual peak flow across the planning period, ∆𝜇, multiplied by the proportionality 

constant 𝛾. The formulation shown in Equation 3.9 assumes damage:cost ratio to be 1 

when ∆𝜇 = 0 (and there is no trend), but increase proportional to ∆𝜇 as the change in 

expected annual peak flow increases over time. 

𝐷
𝐶

=
1 + 𝛾 ∗ ∆𝜇

1
 

Equation 3.9 

The stylized trend-dependent damage/cost relationship framed in Equation 3.9 

assumes the damage caused by floods will be less than the cost of adaptation if flood 

peaks are actually decreasing, and damage caused by floods without adaptation will 

be greater than the cost of adapting under increasing flood peaks. This ratio assumes a 

fixed cost of adaptation, reflecting a single pre-specified adaptation plan regardless of 

trend magnitude, but that damages associated with trend are directly proportional to 

trend magnitude. This simplification is necessary to illustrate the generalized impacts 

of a risk-based statistical significance threshold, but does not reflect the highly 

individual relationship between flooding and damage in each adaptation decision. 

Implicit in this formula is the assumption that adaptation will prevent flood damages 

regardless of the strength of the trend. We do not consider the case in which flood 

trend is so strong that adaptation efforts are ineffective. Adaptation expenditures in 

the case of a correctly identified trend are assumed to completely prevent increased 

damage costs due to flood trend (see Figure 3.1). The change in expected annual peak 

flow ∆𝜇 is unitless as it is expressed in terms of relative change, so the proportionality 

constant 𝛾 is unitless. This approximation of damage to cost ratio is shown for the 

contiguous US in Figure 3.5 using a proportionality constant of 𝛾 = 3, so that the 
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expected damages caused by the flood change by 3% relative to the costs of 

adaptation for every 1% change in mean annual peak flow between 1950 and 2015 

(Equation 3.9). 

 

Figure 3.5: Stylized ratio between damages expected if no adaptation measures are 

taken and cost of preparing for the OLS trend if no trend materializes.  

Damage to cost ratio as shown here, in essence, is a benefit:cost ratio because, in the 

case of a trend in flood peaks, costs spent on adaptation are assumed to completely 

eliminate damage cost. In the case of correctly identifying and adapting to a trend, the 

damages that would have occurred without adaptation expenditure become avoided 

costs, which can also be described as benefits. The ratio is stylized and does not 

represent actual potential damages of flood trends across the US; estimating damages 

caused by a trend at each gage and designing adaptation projects for each trend would 
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be impractical. Furthermore, many gages may measure points on a river where 

changes in peak flow are unlikely to affect any population.  

Figure 3.3 shows the significance of OLS trend in peak flow across the US. Stylized 

damage:cost ratios (Equation 3.9) complete the information necessary to determine 

decision-specific significance thresholds across the contiguous US. Figure 3.6 shows 

the risk-based significance threshold (Equation 3.8) based on the stylized damage:cost 

ratios (Equation 3.9) calculated from OLS trend at each gage. 

 

Figure 3.6: Decision-specific significance threshold to equalize expected under- and 

over-preparation regret for potential trend in flood peaks. Stations that do not exhibit 

statistically significant trend according to the risk-based threshold highlighted with 

black circle. 

The decision-specific significance threshold is higher than typical standard values (e.g. 

0.10, 0.05) at a majority of gages across the United States. Allowing a higher 
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probability of less strict significance threshold is recommended at gages where the 

estimated trend slope is strong, such as the Great Lakes region (see Figure 3.1). This 

reduces the probability of failing to recognize and prepare for a potentially damaging 

trend (Figure 3.7). 

 

Figure 3.7: Probability of missing a true trend using risk-based significance threshold 

and stylized damage:cost ratio. 

The probability of missing a trend in flood peaks using the risk-based significance 

threshold in the hypothesis test is low at many gages with increasing trend, but high in 

regions where floods’ estimated trend is negative, such as the Great Plains and Texas 

region and a corridor down the Appalachian Mountains. The probability of missing a 

trend using the equal-risk significance threshold is generally much lower than the 

probability of missing the trend using the 5% significance threshold (Figure 3.5). 
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Lastly, 85% of gages’ peak flows are accepted to be trending using the equal-risk 

significance threshold (Figure 3.8) as opposed to 16% of gages using the 5% 

significance threshold (Figure 3.3). 

 

 

Figure 3.8: Probability of type I error at gages located across the contiguous US based 

on the risk-based significance threshold (color scale). Statistically significant trend in 

annual peaks (risk-based significance threshold) indicated by filled markers. 

While comparing Figure 3.8 with Figure 3.3 demonstrates conceptually the difference 

in recommended action taken using a risk-based significance threshold rather than a 

uniform standard statistical significance threshold, the damage to cost ratios used to 

determine the significance thresholds are not based on real damage and cost data 

because adaptation projects and flood vulnerability are not known for each gage used 
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in this analysis. These data would be available in the context of actually planning an 

adaptation project. However, to the degree the ratios are realistic, Figure 3.8 suggests 

that relying on standard statistical significance for trend detection may leave society 

exposed to more trend related risk than is warranted.  

An alternative way to communicate the implications of a decision-specific 

significance threshold across the contiguous US is to show the hypothetical 

damage:cost ratio that would equalize the expected costs of over- and under-

preparation, given the actual significance of the OLS trend in each gage’s record and 

the probability of type II error using the actual trend significance as the decision 

threshold (Figure 3.9). 

 

Figure 3.9: Damage:Cost ratio that equalizes expected over- and under-preparing 

costs calculated using the actual statistical significance of the OLS trend in the gage 

record as the decision threshold. 
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Figure 3.9 demonstrates that, for adaptation to be economically justified, expected 

damage associated with a trend in flood peaks must be only slightly higher than 

adaptation cost in the central region of the US, more than double adaptation cost in 

parts of the upper Midwest, less than double at a number of gages throughout the 

Appalachian Mountains, and mixed along the west coast. This corresponds to 

damages that are far greater than adaptation costs when the trend significance is low, 

and damage only slightly greater than adaptation costs when trend significance is high. 

Most importantly, the difference between damage caused by a trend and cost of 

adapting to that trend at which adaptation becomes economically justified varies 

widely by gage, from only a slight difference in cost between damage and adaptation 

cost to damage multiple times higher than adaptation cost. Decisions based on a 

uniform significance threshold can therefore be inferred to result in many instances of 

over- or under-preparation. 

Conclusions 

As demonstrated by Rosner et al. (2014), flood risk management decisions based on 

comparing the likelihood and impacts of under- and over-prepared scenarios support 

higher economic efficiency than decisions based on arbitrary standardized 

significance thresholds. Using records of unimpacted streamflow throughout the 

contiguous United States, we use stylized flood trend adaptation decisions to support 

a comparison between the results of trend detection hypothesis tests based on uniform 

versus risk-based significance thresholds. The risk-based significance thresholds lead 

to a higher rate of rejecting the null hypothesis of no trend, and increase the likelihood 

the hypothesis test will reject the null hypothesis in the case that a trend exists at 

many stations. Based on the statistical significance of trends in un-impacted stream 

gages distributed across the continental US, the ratio between damage caused by the 
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trend and cost of adaptation varies widely across stream gages. This demonstrates the 

inefficiency of a uniform significance threshold and the benefits of adopting a risk-

based significance threshold to support flood nonstationarity adaptation decisions. 

The risk-based significance threshold presented in this paper is designed for a 

simplified decision context that includes only two adaptation scenarios: take no action 

(assuming no trend) and implementing a single adaptation portfolio (designed to 

mitigate the OLS trend). Trend scenarios other than the best-fit OLS trend are 

possible and their consequences should be evaluated in a more complete decision 

context. The risk-based significance threshold is also designed under the simplifying 

assumption of log-normally distributed annual peak flows with a temporal trend, and 

illustrated through a network of stream gages that were selected for minimum 

anthropogenic influence. In practice, it is rare to develop an flood management project 

in an area without anthropogenic influence; furthermore, peak flows may also follow 

a distribution other than log-normal such as Log-Pearson type III; increases in the 

frequency of high flow events such as would be represented in a partial duration series 

modelling technique should also be considered. Trends other than a linear temporal 

trend in expected annual peak flow should be evaluated in practice; for example, 

change points related to land cover change, regulation, or other causes; low-frequency 

variability related to continental-scale atmospheric indices; or other non-linear trends. 

Alternative derivations of the equal expected-cost significance threshold would be 

useful in the case of these other probability distributions of peak flow. Future changes 

in local climatology may also cause flood peaks to change in ways not predicted by 

the data. A method to include other forecasts of future flood behaviour in the analysis 

would expand the applicability of the analysis. 
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The simplified risk-based hypothesis-testing framework presented in this paper 

provides an example of how uncertainty in flood frequency analysis may be integrated 

with decision support tools. The result is improved economic efficiency of adaptation 

decisions. A standard significance threshold of p < 0.05 is economically sub-optimal 

and should be higher in many cases. 

 

 

  



 

 49 

CHAPTER 4 

A DECISION ANALYTIC MODEL FOR FLOOD RISK MANAGEMENT 

WITH UNCERTAIN FLOOD HAZARD TREND 

Abstract 

Decision frameworks and design standards for flood risk management systems may 

be updated to accommodate nonstationarity through a time-dependent peak flow 

probability distribution, but operationalizing such a nonstationary FRM framework is 

hampered by high uncertainty in the relationship between peak flows and time. 

Likewise, the ecological impacts of flood management are frequently rendered 

externalities in economic FRM impact assessments because quantifying the monetary 

value of ecosystem services is challenging and controversial. To address these 

challenges for ecologically sustainable FRM under climate uncertainty, we modify the 

decision scaling framework for climate risk assessment to accommodate uncertainty 

in the nonstationary probability distribution of peak flows and a range of potential 

values of ecosystem services which would be impacted by both FRM actions and 

climate change. The proposed nonstationary decision model (NDM) is illustrated 

through an example application on the Iowa River, which demonstrates that the 

decision scaling based NDM elicits more economically and ecologically risk-averse 

FRM strategies than standard established decision frameworks.  

Introduction 

Lack of stationarity in long-term climate statistics is a growing concern in floodplain 

management and planning, challenging past design paradigms that assume stationary 

hydrology. Even under the stationarity assumption, low-frequency design flows are 

difficult to estimate with confidence because of their rarity in the record (Stedinger, 
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1983). The potential lack of stationarity therefore further confounds flood 

management designs and decisions (Kiem et al., 2003; Armstrong et al., 2012; Brown, 

2010; Obeysekara and Salas, 2014). Flood risk management frameworks that 

accommodate nonstationary hydrology must also accommodate uncertainty in future 

flood behavior. 

In practice, flood management systems are designed to withstand a flow a specific 

recurrence interval (e.g. the 100-year flood) that has a known probability of 

exceedance (Benson, 1968; U.S. Army Corps of Engineers, 1995; Dawdy et al., 2012). 

After designs’ compliance with regulations is established, designs which provide the 

prescribed degree of protection are assessed according to their economic efficiency 

(Water Resources Council, 1983). This approach neglects the impacts of floods more 

severe than the design flow and risks diminishing reliability under hydroclimatic 

change (Brown 2011; Gersonius, 2013). Proposed methods to support nonstationary 

design floods such as reliability “expiration dates” or flow “magnification factors” 

(Vogel et al., 2011) rely on a known future evolution of flood probability which is 

difficult to determine for rare or extreme events due to the limited number of events 

from which the probability distribution can be estimated and the high variability in the 

events’ magnitude.  

To address nonstationarity, FRM design frameworks may adopt nonstationary flood 

probabilities derived analytically or through stochastic simulation (e.g. Zhu et al., 

2007; Woodward et al., 2014; Hasnoot et al., 2013; Borgomeo et al., 2015). Stedinger 

& Griffis (2011) propose a general framework for addressing trends in flood hazard 

by treating the flood frequency probability distribution‘s parameters as functions of 

time, which fits neatly into a risk-based assessment framework.  Implementing the 
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method, however, relies on determining what trend or function of time is appropriate 

in each flood management context. The question of how to estimate trends in flood 

hazard is crucial to maintaining protection standards under either the design flow or 

risk-based flood management paradigm. 

Flood hazard trend may be characterized in one of several ways. First, flood hazard 

may be assumed to be stationary. This approach best resembles the current default 

practice in floodplain planning. Second, a trend model estimates the relationship 

between recorded flood peaks and time (e.g. Robson et al., 1998; Lins and Slack, 

1999; O’Brien and Burn, 2014; Rosner et al., 2014). Lastly, climate projections from 

global or regional models may be used to forecast flood hazard changes over the 

planning horizon (e.g. Zhu et al., 2007; Madsen et al., 2014; Smith et al., 2013).  

The first method of assuming stationary flood hazard is no longer considered 

sufficient without exploring other possibilities (Milly et al., 2008). In current practice, 

the possibility of a non-zero trend in flood hazard is explored before reverting to the 

stationarity assumption if no statistically significant trend is found (US Water 

Resources Council, 1983). Trend detection typically relies on the second method: 

estimating trend from observed flow records. Trend detection in flood records is 

hampered by low-frequency variability (Lettenmaier and Burges, 1978; Cohn and 

Lins, 2005; Armstrong et al., 2013), the inherently rare and variable nature of extreme 

events, and the possibility that a change in flood behavior has occurred too recently to 

detect or may change without warning (Reeves et al., 2007; Obeysekera & Salas, 

2013). The work of Wilby (2006) and Morin (2011) indicates that trends in extreme 

events such as high river discharge or heavy precipitation must either be very strong 

or be maintained longer than many existing flow records to be detected at common 
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statistical significance thresholds (e.g. p < 0.05). In summary, most trends in flood 

peaks are likely to be missed by common trend detection methods. Whether a 

statistically significant trend is detected or not, the trend estimate is uncertain and the 

decision maker should understand the consequences of a range of possible trends 

under alternative flood management plans before selecting a plan for implementation. 

The last method of estimating flood trend from climate projections may provide 

insight into future flood behavior that is not foreshadowed by the historic record. 

Flood trend estimates using this method rely on either a single climate model 

projection (e.g. Zhu et al., 2007) or an ensemble of projections (e.g. Cloke et al., 2013; 

Borgomeo et al., 2014), which may be combined into a probabilistic projection using 

one of the many methods for combining ensembles of projected climate changes, such 

as Knutti et al. (2002), Tebaldi & Knutti (2007), Sexton et al. (2011), and others. 

Climate models provide projections of meteorological variables, but do not provide 

discharge projections at the scale of flood management and planning. To estimate 

flow trend from climate projections, the analyst must translate climate variables of 

interest projected by the model(s) (e.g. monthly precipitation, mean temperature) into 

river discharge using a hydrologic model. Climate models are not skillful in 

simulating the mechanisms which cause short-term, high-intensity precipitation, the 

primary driver of floods: Global Climate Models (GCMs) are too spatially coarse to 

represent the relative processes, while Regional Climate Models (RCMs) have been 

shown to exhibit significant biases in short-term precipitation (Lenderink & van 

Meijgaard, 2008; Allan & Soden, 2008; Smith et al., 2014). Neither GCMs nor RCMs 

are skillful in reproducing precipitation trend (Krakauer & Frekete, 2014), and GCMs 

in particular are modeled on too coarse a spatial scale to represent the very processes 

which create intense precipitation (Stainforth et al. 2007a,b).  Flood trend estimated 
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from climate model projections does not present decision makers with the full range 

of possible future conditions due to model interdependence (Sunyer et al., 2014), 

uncertainty in model inputs (e.g. emissions pathways), and uncertainty derived from 

model structure (Lopez et al., 2006; Ylhaisi et al., 2013). Furthermore, it is difficult to 

prescribe a trend to flood peaks in a given area based on climate projections alone 

because, though climate change due to increased atmospheric greenhouse gas 

concentration is often cited as a cause of increasingly severe floods, it is not always 

clear whether climate change or other shifts such as land use change lead to a trend or 

shift in floods at a particular location (Hirsch & Ryberg, 2012; Vogel et al., 2011). 

Regional land use development paths and a variety of social, economic, and 

environmental drivers may affect flood characteristics (Lambin et al., 2000, Lonigro 

& Polemio, 2015; Owrangi et al., 2014). In summary, each method of estimating trend 

in flood hazard yields significant uncertainty and high possibility of bias or missing 

an extant trend. With no reliable method of estimating flood trend, flood management 

decision frameworks must be altered to accommodate uncertainty in future hydrologic 

behavior. 

In light of uncertain future hydrologic conditions, investment in infrastructure-based 

flood risk interventions is increasingly viewed with skepticism in favor of more 

flexible interventions (Woodward et al., 2014; US Water Resources Council, 2013). 

When it is not clear whether floods will become more frequent or severe in the future, 

a costly infrastructure-based intervention such as a large flood control dam or system 

of levees may be proposed to maximize the degree of protection. If floods then 

become less rather than more frequent or severe, the cost of infrastructure cannot be 

recovered, and the flood control structure remains as a permanent feature of the 

landscape that continually inhibits the lateral and/or longitudinal connectivity of the 
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riparian network, affects sediment dynamics and reshapes or eliminates riparian 

habitat (Poff et al., 1997; Bunn et al., 2002). Current stationary or nonstationary flood 

management frameworks that do not explicitly incorporate flood trend uncertainty 

risk regret when evaluating infrastructure-based flood control designs. Options-based 

interventions provide an alternative to irreversible infrastructure investments by 

enhancing the flexibility of flood management systems, allowing them to quickly 

react to potential hydrological change. Options-based flood management interventions 

require an initial investment of time and funds to secure the option of taking and 

paying for an action later if that action becomes necessary. Examples of options-based 

flood management interventions might include purchasing land on which one may 

later decide to build levees, establishing an agreement with landowners to pay to store 

flood water on low-value land in emergencies, or investing in sand bags and sand bag 

storage facilities for use in flood emergencies. This type of flexible strategy may 

postpone infrastructure projects until it is clear that new infrastructure is truly 

necessary, avoid infrastructure-based flood management interventions entirely, or 

increase the efficiency of emergency response. Using an options-based strategy to 

reduce flood risk avoids the irreversible lump-sum payment that is characteristic of 

infrastructure interventions. Instead, payments are made in smaller installments, once 

at the beginning of the planning period and afterwards in response to major flow 

events. This avoids financial regret and may also avoid regret in terms of degraded 

riparian habitat. The most appropriate balance of permanent and options-based flood 

management interventions in any given case depends on the vulnerability of the 

region to changes in flood hazard, the long-term forecast of changes in flood hazard in 

that area, and the degree of confidence in the aforementioned forecast. 
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The issue of flood management interventions’ potential regret under different flood 

hazard scenarios elicits another question, namely how to combine interventions’ 

economic consequences with the environmental consequences that make up another 

important type of regret. Current decision analysis frameworks are primarily driven 

by economic impacts of floods and flood management, leaving social or ecological 

impacts as secondary when evaluating alternative plans (e.g. Water Resources 

Council, 1983). As a result, flood management decisions often affect ecosystems’ 

resilience, or ability to return to a stable state after disruption (Gunderson, 2000). 

Estimating ecological impacts’ monetary value is one way among many alternatives 

to address environmental impacts in the planning stages by moving impacts to the 

same units as the primary decision metric of cost (e.g. Gergel et al., 2002; Webb et al., 

2013; de Groot et al., 2002), but it is difficult to execute, subject to controversy 

(Gómez-Baggethun & Ruiz-Pérez, 2011), and not well established in water resources 

engineering (Chan et al., 2012). Despite these challenges, flood management decision 

models must reflect and include riparian ecosystems’ value to generate acceptable 

decisions and avoid regret. We have already established that effective flood 

management decision frameworks must accommodate hydroclimatic uncertainty; they 

must also first consider impacts on the riparian ecosystem and second accommodate 

uncertainty in the value of the riparian ecosystem. 

In this paper we propose a robust decision model based on the conceptual foundation 

of decision scaling (Brown et al., 2012) for evaluating flood risk reduction strategies 

under uncertainty according to their net cost in terms of flood damage, management 

costs, and impacts on the riparian ecosystem. Decision scaling is a bottom up decision 

support tool developed for water resources planning that explores the vulnerability of 

water resources systems to a broad variety of potential climate changes, bringing in ex 
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post long-range forecasts of change to inform the decision. Decision scaling has been 

applied to decisions concerning lake level management (Moody & Brown, 2012) and 

other water resources applications (e.g. Brown et al., 2012; Whateley et al., 2014; 

Steinschneider et al., 2015), and a similar approach (Prudhomme et al., 2010) has 

been applied to flood risk management decisions. The robust flood management 

decision model uses optimization to select the minimum-cost strategy under each of a 

range of flood trend values and values of the riparian ecosystem. Based on the optimal 

strategies, the decision model selects a robust management strategy that is found 

optimal under the broadest range of trends or under the trends considered most likely 

to occur based on external trend estimates, adapting to the decision maker’s degree of 

credibility in these estimates. If more than one strategy is optimal over an equivalent 

range of trend or considered comparably likely to occur, each competing strategy’s 

regret across the full range of trend may be used to select a flood management 

strategy. The paper develops the decision model in mathematical terms and then 

illustrates its application to a stylized example flood risk management decision on the 

Iowa River.  

Decision Model Structure 

To develop a robust decision model that reflects uncertainty in the evolution of flood 

hazard, we expand Lund’s (2002) risk-based decision model for selecting plans 

composed of permanent and/or options-based flood management interventions by (1) 

adding time-dependence to the probability distribution of annual peak flow, (2) 

defining a decision rule to select a flood management strategy from among candidate 

strategies that are each least-cost under some assumed trend in flood hazard, and (3) 

including a term representing ecological benefits in the cost calculation. Table 1 

describes the symbology and parameters used throughout the analysis. 
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Linear programming optimization model 

We define net cost as the combination of flood damage, fixed cost of managing flood 

risk, and flood-responsive cost of managing flood risk (Equation 4.1). Linear 

programming optimization minimizes expected net cost by combining permanent and 

options-based flood management interventions (𝑥𝐼 , 𝑥𝑂 ), which are the problem’s 

decision variables (Table 4.1).  

Table 4.1: List and description of mathematical terms and symbols in nonstationary 

flood risk management decision model 

Symbol Type Description 

𝑥𝐼 Decision variable Infrastructure-based flood intervention 

𝑥𝑂 Decision variable Options-based flood intervention 

𝑠 Parameter Annual flood peak (log-cfs) 

𝑡 Parameter Year after beginning of planning period 

𝛽𝜇 Parameter Trend in mean of annual flood distribution 

𝐷(𝑠|𝑥𝐼 , 𝑥𝑂) Function Damages associated with flood s 

𝑃�𝑠|𝑡,𝛽𝜇� Probability distribution 

function 

Probability distribution of annual peak 1-

day flow 

𝑃�𝛽𝜇� Probability distribution 

function 

Probability distribution of trend in the mean 

of P(s) 
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𝐶𝑓(𝑥𝐼) Function Cost of implementing decision variable 𝑥𝐼 

𝐶𝑜(𝑥𝑂|𝑠) Function Cost of implementing decision variable 𝑥𝑂 

𝐵𝑒𝑒𝑒( 𝑥𝐼 , 𝑥𝑂) Function Ecological benefit function of the decision 

variables 

 

Both flood damage and management costs are based on the relationship between peak 

flow magnitude and either damage caused by flooding or cost incurred at the time of 

flooding to manage peak flow. Management actions 𝑥𝐼 , 𝑥𝑂  affect the flow/damage 

relationship by changing the damage that corresponds to certain levels of peak flow. 

We refer to flood damages, infrastructure cost, and emergency flood management cost 

together as “net cost” (Equation 1). The expected annual cost is calculated using a 

probability-weighted average of flow-damage and flow-responsive management costs 

based on the probability distribution of annual flood peaks, P(s). The cost of 

infrastructure-based actions does not depend on the probability distribution of peak 

flows, but the expected damages and the expected cost of implementing options-based 

flood management are functions of peak flow magnitudes and their corresponding 

probabilities. The decision model outlined in Lund (2002) minimizes net cost across a 

stationary probability distribution of annual peak flow, 𝑃(𝑠) (Equation 4.1).  

 𝑍 = �𝐷(𝑠|𝑥𝐼 , 𝑥𝑂) ∗ 𝑃(𝑠) +  𝐶𝑓(𝑥𝐼) +  𝐶𝑜(𝑥𝑂|𝑠) ∗ 𝑃(𝑠)�  ∀𝑠 

Equation 4.1 

It is simple to adapt Lund (2002)’s decision model, which minimizes net cost for a 

stationary flood hazard, to account for nonstationary flood hazard by treating the 
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parameters of P(s) as functions of time as suggested by Stedinger and Griffis (2011). 

Equation 4.2 shows an example of the Stedinger and Griffis (2011) framework for the 

log-normal distribution of annual peak flow with a nonstationary mean parameter. 

P(s) ~LN(µ(𝑡),𝜎) 

Equation 4.2 

The relationship between the mean of the distribution of time may take many possible 

forms, but we assume a linear trend for simplicity (Equation 4.3). 

 µ(𝑡) =  𝜇𝑜 + 𝛽𝜇𝑡 

Equation 4.3 

With a linearly trending mean parameter of the probability distribution of peak log-

flows, the net cost calculation outlined in Equation 1 becomes as follows (Equation 

4.4). The probability of peak log-flow s depends on time and the magnitude of trend, 

𝛽𝜇, and the optimal combination of management interventions 𝑥𝐼∗ , 𝑥𝑂∗ depends on 

the value of 𝛽𝜇. 

𝑍𝛽𝜇 = ��𝐷(𝑠|𝑥𝐼 , 𝑥𝑂) ∗ 𝑃�𝑠|𝑡,𝛽𝜇� + 𝐶𝑓(𝑥𝐼) +  𝐶𝑜(𝑥𝑂|𝑠) ∗ 𝑃�𝑠|𝑡,𝛽𝜇���  ∀𝑠,∀𝑡   

Equation 4.4 

Incorporating ecological impacts in the cost calculation 

To incorporate ecological impacts into the risk-based problem formulation, we 

monetize deviation from the natural flow regime so that it can be included in the 

economic valuation of the decision’s net cost (Vogel et al., 2007). This requires an 

assessment of the current flood management system’s effect on the natural flow 



 

 60 

regime,  ∁𝑒𝑒𝑒(𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞𝑞), as well as predicting new management strategies’ effect 

on the natural flow regime ∁𝑒𝑒𝑒(𝑥𝐼 , 𝑥𝑂). Ecological benefits of a new management 

strategy 𝐵𝑒𝑒𝑒(𝑥𝐼 , 𝑥𝑂) are calculated as the deviation between the ecological impact of 

a proposed new flood management plan and the status quo management plan 

(Equation 4.5).  

 𝐵𝑒𝑒𝑒(𝑥𝑂) =  ∁𝑒𝑒𝑒(𝑥𝐼 , 𝑥𝑂) −  ∁𝑒𝑒𝑒(𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞𝑞).  

Equation 4.5 

The value of management strategies’ ecological impacts is interpreted into the 

decision model as a second term. The parameter 𝛾2, which represents the value of the 

natural flow regime, is varied to test the sensitivity of the decision to this parameter. 

The coefficients 𝛾1 and 𝛾2represent the weights on monetized values (management 

costs and flood damage) and ecological goods and services respectively. When flood 

damage and management cost are monetized, 𝛾1 should assume a value of $1 while 

𝛾2represents the base value of the natural flow regime. Management plans’ ecological 

benefits for the hydrologic and hydraulic characteristics of the floodplain is calculated 

as an index ∁𝑒𝑒𝑒 between 0 and 1, representing the extent of alterations. ∁𝑒𝑒𝑒 is the 

sum of 𝑃𝑠,𝑖𝑖𝑖𝑖𝑖𝑖 −  𝑃𝑠,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∀𝑠 under the management plan, determined by the 

decision variables 𝑥𝐼  and 𝑥𝑂.  

The nonstationary decision model based on Equation 4 therefore becomes Equation 

4.6. 
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𝑍 = �𝛾1 �𝐷(𝑠|𝑥𝐼 , 𝑥𝑂) ∗ 𝑃�𝑠|𝑡,𝛽𝜇� +  𝐶𝑓(𝑥𝐼) +  𝐶𝑜(𝑥𝑂|𝑠) ∗ 𝑃�𝑠|𝑡,𝛽𝜇�� −

 𝛾2�𝐵𝑒𝑒𝑒( 𝑥𝐼 , 𝑥𝑂)��  ∀𝑠,∀𝑡,.   

Equation 4.6 

Decision scaling framework and decision rules 

Because existing trend estimation methods yield uncertain estimates of 𝛽𝜇  and the 

value of the flow regime 𝛾2 may be unclear, we repeat the optimization analysis using 

Equation 6 as the objective function over a wide range of possible values for 𝛽𝜇 and 

𝛾2 . This yields a set of candidate strategies [𝑥𝐼,𝛽𝜇,𝛾2
∗ ,𝑥𝑂,𝛽𝜇,𝛾2

∗], each of which is 

optimal under some combination of 𝛽𝜇  and 𝛾2. The decision rule recommends the 

most robust management strategy according to its range of optimality and/or potential 

regret. Regret is the difference in outcome between the best possible decision for the 

state of the world (here, the value of 𝛽𝜇) and the decision that was actually made. In 

the context of this decision model, the regret associated with a candidate solution 

𝑥𝐼∗ , 𝑥𝑂∗  selected under any 𝛽𝜇  under a specific flood trend 𝛽𝜇  is calculated in 

Equation 4.7. If 𝑥𝐼∗ , 𝑥𝑂∗ was selected under the value of 𝛽𝜇 that occurs, regret is zero. 

𝑅�𝑥𝐼 , 𝑥𝑂|𝛽𝜇, 𝛾2� =  𝑍𝛽𝜇,(𝑥𝐼∗ , 𝑥𝑂∗) −  𝑍𝛽𝜇,
∗   

Equation 4.7 

The decision-maker chooses the set of interventions [𝑥𝐼∗∗ 𝑥𝑂∗∗]  with the lowest 

maximum regret 𝑅𝑚𝑚𝑚when compared over all possible states of the world (Equation 

4.8). 
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𝑅𝑚𝑚𝑚(𝑥𝐼 ∗∗ , 𝑥𝑂 ∗∗)  = 𝒎𝒎𝒎�𝒎𝒎𝒎�𝑅�𝑥𝐼 , 𝑥𝑂|𝛽𝜇, 𝛾2 �� ∀𝛽𝜇 ,∀𝛾2� 

Equation 4.8 

The rule used to select a decision depends on the decision maker’s degree of 

confidence in the value of 𝛾2 and the value of 𝛽𝜇.  

To a decision maker fairly confident in the value of the natural flow regime, or at least 

confident that the value of the natural flow regime lies in some range of values narrow 

enough to ignore most values of 𝛾2 used in the analysis, we recommend one of these 

candidate strategies based on the range of 𝛽𝜇 over which each candidate strategy is 

optimal. The strategy that is optimal over the broadest range of 𝛽𝜇  in the 

neighborhood of the decision maker's estimate of 𝛾2 should be implemented. In cases 

where long-range climate forecasts are available to provide some estimate of 𝛽𝜇, the 

decision maker may choose to prioritize the management strategy that is optimal in 

the region where 𝛽𝜇 is projected to be according to their confidence in the estimate(s) 

of 𝛽𝜇. If no single strategy is optimal over a broad range of 𝛽𝜇 or the projected range 

of 𝛽𝜇 , the competing management strategies’ potential regret should be compared 

across the full range of 𝛽𝜇 values considered in the analysis. The strategy with the 

least maximum regret across 𝛽𝜇 should be implemented. 

Lastly, the decision maker may be certain of neither 𝛾2 or 𝛽𝜇. In this case, the strategy 

with least maximum regret across all values of 𝛾2  and 𝛽𝜇  should be implemented 

(Equation 4.8). 
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Iowa City Flood Protection Example 

The decision model is applied to a stylized example based on flood risk management 

on the Iowa River at Iowa City, IA (Figure 4.1). Existing flood control structures in 

the area include levees protecting the city and Coralville Lake, a flood control 

reservoir operated by the United States Army Corps of Engineers (USACE). Recent 

severe flood events on the Iowa River have challenged the existing flood management 

system’s ability to reduce damage. The floods have raised concerns about whether the 

hydrologic regime has changed and new management interventions are needed to 

maintain the previous standard of protection or the floods are merely a product of 

climate internal variability and do not imply a long-term trend in flood peaks. The 

decision model is used to select a flood management strategy that minimizes expected 

net cost under an uncertain change in flood peak behaviour. The strategy includes 

combinations of levee expansion, an infrastructure-based management intervention, 

with reservoir re-operation, an options-based flood risk management intervention.  
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Figure 4.1: Iowa River watershed schematic with Coralville Reservoir and Iowa City. 

Sungwook Wi, 2013 

Alternative flood management actions 

The decision includes two decision variables: 1) increasing the allowable reservoir 

releases during the growing season, which would increase flood detention storage in 

the reservoir but also inundate some downstream farmers and 2) raising existing 

levees by some height between 0 and 6 feet. The first management intervention 

represents a flexible approach with little principle cost that would mitigate flood 

damage to a limited degree would be inadequate if there were a long-term increase in 

flood peaks. Reservoir re-operation represents an option because an initial agreement 

is needed between the affected farmers, the reservoir operators, and the Iowa City 
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administration to secure the option of making higher releases; but the high releases 

are only made if high inflows are anticipated and the reservoir must empty quickly to 

clear space in the reservoir for an incoming flood. This operations change would 

allow Coralville Lake to release more water during normal operations and preserve a 

larger empty storage volume to attenuate flood peaks. Farmers affected by the high 

releases would also be compensated for crop loss resulting from the new operations. 

Changing reservoir operations would not require building any new infrastructure, but 

would require negotiation and planning. 

The second management intervention represents a permanent structural measure that 

would result in regret if there were no upward trend in flood peaks and the recent 

flooding were due to natural variability. Raising existing levees or installing new 

levees would be expensive, difficult to reverse, and potentially unnecessary should 

flood peaks not increase in the future.  However, expanding the levee system 

protecting Iowa City and the other towns downstream of Coralville Lake would 

reduce damage to the downtown area associated with higher releases from the 

reservoir during emergency flood operations. If properly maintained, expanded levees 

would reduce flood risk in currently vulnerable areas. While levees do not alter 

downstream discharge, they do alter the stage/discharge relationship, so that river 

flows in contact with the levee flow faster and higher through the levee, and lower 

and slower over the downstream floodplain (Mays, 2011). In this stylized example, 

levee presence was assumed for simplicity to lower affected downstream stages by 

10% without investigating the relationship through a hydraulic model. For each levee 

height increase, change in probability of being in each stage category (identical to 

discharge categories for flood events) was used to determine that levee change’s 

ecological impact. Unlike the addition of agricultural risk sharing, raising levees 
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removes the downstream stage probability distribution further from a natural flow 

regime.  

Iowa River decision model formulation 

A simulation model of the Coralville Lake operating policy and information about the 

current downstream stage/damage relationship (U. S. Army Corps of Engineers; Table 

1) were used to determine the effects of each management action on expected 

downstream damages and flow regime (Table 2). Ecological benefits associated with 

increasing levee height are calculated using the downstream stage probability 

distribution rather than the discharge probability distribution.  

The model was parameterized as a linear programming problem which was solved in 

MATLAB ® using the interior point algorithm. A simulation model of Coralville 

Reservoir operations was used in conjunction with a 56-year time series of daily 

inflows to the reservoir from the USGS gage 05453100 at Marengo and discharge-

stage stage-damage relationships developed by the U.S. Army Corps of Engineers to 

estimate the expected reduction in damages due to altering reservoir operations for 

each 10% relaxation in the growing season limit on maximum release. Changes in 

flow probability resulting from re-operation were translated to reductions in damages 

by linearly regressing expected annual damage on relaxation in growing season 

maximum release. Due to the nonlinear effects of raising levees on damage and the 

flow regime, levee height was piecewise-linearized into six separate decision 

variables. 

Translating climate projections into flood trend estimates 

We estimate projected flood trend 𝛽𝜇 using downscaled CMIP3 and CMIP5 climate 

model projections of mean precipitation and temperature (Maurer et al., 2007) over 
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the Iowa River watershed for the twenty years centered on 2050, the end of the 

planning period. Projected changes in temperature and precipitation translated through 

a weather generator (Steinschneider and Brown, 2014) and a Variable Infiltration 

Capacity (VIC) hydrologic model (Xiang et al., 1994) of the Iowa River basin 

(Hydrosystems, 2013) provide realizations of climate-altered river flows. Trend 

parameter 𝛽𝜇,𝑝𝑝𝑝𝑝 for each realization is estimated by assuming the historic stationary 

peak flow probability distribution transitions linearly from the historic mean 𝜇 ℎ𝚤𝚤𝚤�  to 

the projected mean 𝜇𝑝𝑝𝑝𝑝�  between the midpoint of the historic record, 𝑡𝑜−𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2

, and 

the end of the planning period, 𝑡𝑒𝑒𝑒 (Equation 4.9).  

𝛽𝜇,𝑝𝑝𝑝𝑝 =  
𝜇𝑝𝑝𝑝𝑝� −  𝜇 ℎ𝚤𝚤𝚤�

𝑡𝑒𝑒𝑒 − (𝑡𝑜 − 𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2 )

 

Equation 4.9 

The set of 𝛽𝜇,𝑝𝑝𝑝𝑝 estimated from projected changes in mean temperature and 

precipitation are used alongside a regression-based estimate of trend from peak flow 

observations to inform the choice of flood management strategy. 

Given the uncertainty in future flooding, the decision model described above is used 

to understand which combinations of the management interventions are optimal for 

alternate future states defined by the flood trend parameter. As the value of the flood 

trend parameter is not known, we find what strategy is optimal under each of a range 

of possible values of the flood trend parameter. Optimization is repeated using $0, 

$1,000,000, $2,500,000, $5,000,000, $7,500,000, and $10,000,000 as 𝛾2  and using 

values ranging between -0.04 log-cfs/year and 0.04 log-cfs/year as 𝛽𝜇. 
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Scenario-Optimal Iowa River Flood Management Strategies 

The least-cost decision chosen across a variety of values of the natural flow regime 

and trends 𝛽𝜇  are displayed in Figure 4.2a. Under increasing trend scenarios, the 

optimal set of actions includes raising levees. Because of the mutual economic and 

ecological benefits of raising the growing season maximum release limit from 

Coralville Reservoir, this is part of the optimal FRM strategy under all scenarios 

except the lowest values of the natural flow regime and strongest decreasing trend 

scenarios (Figure 4.2a) 
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Figure 4.2: (above) Optimal flood management actions under different trends (𝜷𝝁) 

and values of the natural flow regime (𝜸𝟐). (below) CMIP3 and CMIP5 projections of 

𝜷𝝁 with historic estimate of 𝜷𝝁 (red line). 

Estimates of 𝛽𝜇  from CMIP3 and CMIP5 climate projections of changes in mean 

temperature and precipitation in the region cluster around a median of -0.01 log-

cfs/year and range between -0.02 and 0.00 log-cfs/year. The value of 𝛽𝜇  estimated 

from the historic record is 0.00. None of the trend values estimated from projections 

or observations are positive (Figure 4.2b).  
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Recommended Iowa River Flood Management Strategies 

Figure 4.4. shows the regret associated with each of the three candidate scenario-

optimal FRM strategies under two representative values of the natural flow regime, 

$50,000/year and $5 million/year. If Iowa River’s natural flow regime is assumed to 

be $50,000/year, trend-optimal FRM strategies include doing nothing, changing 

reservoir operations, and combining reservoir re-operation with raising levees. If Iowa 

River’s natural flow regime is assumed to be $50,000/year, trend-optimal FRM 

strategies include only reservoir re-operation alone under neutral and decreasing trend 

scenarios and combining re-operation with raising levees under increasing trend 

scenarios. Figure 4.4 compares each scenario-optimal strategy under both 

representative values of the natural flow regime, in addition to raising levees alone as, 

like the three scenario-optimal FRM strategies, raising levees represents the fourth 

extremal combination of decision variables.  
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Figure 4.3: Regret ($) associated with three candidate flood management strategies 

under representative values of the natural flow regime as a function of flood trend, 

represented as percent change in the hundred-year flood thirty years from present 

(horizontal axis) and natural flow regime value (vertical axis). Grey histogram 

represents relative density of climate projections associated with each trend value 

while red stem represents trend estimate based on flow record. Top: Regret associated 

with raising levees (red), raising levees alongside reservoir re-operation (blue), 

changing reservoir operations alone (black), and making no change (green) under a 
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$50,000/year value of the natural flow regime. Bottom: Regret associated with raising 

levees (red), raising levees alongside reservoir re-operation (blue), changing reservoir 

operations alone (black), and making no change (green) under a $5 million/year value 

of the natural flow regime. 

Figure 4.3 provides the decision maker with a means of comparing competitive flood 

management strategies, assuming the decision maker has a good idea of at least the 

order of magnitude of the natural flow regime’s value. Under both flow regime values, 

though raising levees combined with reservoir operation is higher-regret than other 

FRM strategies under decreasing flood trend values values, it is least-regret under 

increasing flood trend scenarios under which other strategies are associated with 

severe regret.  

If the decision maker(s) have no belief regarding the flow regime value’s order of 

magnitude, the decision maker may prefer to compare all four candidate choices 

across not only values of  𝛽𝜇 but also the full spectrum of values of the natural flow 

regime. Figure 4.4 shows regret associated with each value of 𝛽𝜇, value of the natural 

flow regime, and each candidate management strategy.  
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Figure 4.4: Regret associated with each candidate management strategy ($, colorscale) 

under each combination of 𝜷𝝁 (horizontal axis) and 𝜸𝟐 (vertical axis). Grey histogram 

represents relative density of climate projections associated with each trend value 

while red stem represents trend estimate based on flow record. (a) Do nothing; (b) 

Raise levees; (c) Reservoir re-operation; and (d) Raise levees and change reservoir 

operations. 

The decision maker willing to consider the full range of values of the natural flow 

regime and all four choices at once could use a mini-max regret decision rule to 

compare flood management strategies. Combining raising levees with reservoir re-

operation is least-regret flood management strategy out of the four candidate 

strategies selected by the optimization model. Regret associated with raising levees 

and changing reservoir operations is highest when expected peak flow is decreasing 
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by an average of 0.04 log-cfs/year and the natural flow regime is valued at $5 

million/year.  

The inclusion of raising levees as part of the recommended low-regret FRM 

adaptation strategy for Iowa City in this decision model is interesting as raising levees 

is irreversible and results in negative ecological impacts and sunk cost regardless of 

how flood peaks evolve in the future. It is clear that, though reservoir re-operation is a 

priori regarded as the “low regret” strategy, employing this adaptation alternative 

alone results in high regret under increasing trend scenarios because it does not 

provide a sufficient degree of flood protection. However, in combination with raising 

levees, which does provide sufficient flood protection, reservoir re-operation 

mitigates negative ecological consequences and leads to a low-regret plan in the case 

of moderate and highly valued ecosystem services. The scenarios of increasingly high 

annual peak flows is not indicated by climate model simulations of average 

precipitation and temperature, but difficult to dismiss as plausible given assessments 

of intense precipitation in the watershed (See Chapter 2). It is therefore likely that a 

decision analytical approach sans climate stress test would miss these potential severe 

consequences and advocate a strategy for adaptation sans levee augmentation, risking 

severe damage. 

Conclusions and Broader Implications of the Decision Model 

This analysis presents a decision model based on decision scaling that selects flood 

risk management strategies assuming flood trend hazard is unknown. The model 

compares strategies’ expected damage costs, management costs, and monetized 

ecological impacts under a broad range of potential flood trend and values of the 

natural flow regime. In stylized Iowa River flood management example, floodplain 
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management decisions based on expected net cost alone are sensitive to the estimate 

of trend in flood peaks and that the value stakeholders place on flood management’s 

ecological impacts. The decision model may be used to select a flood management 

strategy assuming the decision maker is confident in the flow regime value but not the 

trend in flood peaks, or that the decision maker is confident of neither. In the Iowa 

River example, the decision model recommends combining infrastructural adaptation 

with nonstructural adaptation measures regardless of what factors the decision maker 

is informed of unless the natural flow regime is accorded very little value and flood 

peaks are expected to decrease substantially.  

This decision model confers advantages over decision models that utilize a single 

trend estimate because the inherent uncertainty in flood hazard trend estimates makes 

decisions based on a single estimate of flood trend particularly vulnerable to poor 

performance. This decision model first determines what strategy is optimal over each 

of many systematically varied trend scenarios, then selects a strategy that is least-cost 

over the broadest or most likely set of trend scenarios. When no one strategy 

dominates the space, the decision model compares the regret associated with each 

competitive strategy to recommend the decision with least maximum regret. Using 

this rule, it is possible that the decision model might recommend a strategy that would 

have been selected using a single-trend decision model. However, the decision model 

may also select a different strategy than the strategy that would have been selected by 

a single-trend decision model with little sacrifice in performance at the point trend 

estimate in exchange for increased robustness over a range of trend values.  

Eliciting trend in extreme flow from climate projections is an active area of research 

with no well-established method at present. Though mean precipitation and 
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temperature changes projected by climate models indicate only negative shifts in 

flood hazard in the Iowa River example, we consider projections of mean temperature 

and precipitation to be unreliable flood trend predictors because they are not the 

primary mechanisms that cause flooding. The climate-informed risk assessment of 

flood drivers in the Iowa River basin in Chapter 2 shows that climate model 

projections may not reflect important drivers of flood hazard, and thus should not 

dictate the bounds of the decision space. The consequences of increasingly severe 

floods in the Iowa City example lead to a preference for infrastructure-based 

adaptation. Failure to explore the potential consequences of positive trend in flood 

peaks in the Iowa River example despite the lack of climate projections indicating 

positive trend would lead to implementing a non-structural adaptation strategy alone 

that would expose the Iowa City region to unwarranted risk. 

We present this decision model and example application to demonstrate the necessity 

of incorporating uncertain future flood hazard in decision-making frameworks while 

illustrating the mutual strengths of options-based flood management methods in 

satisfying the challenges posed by both future uncertainty and maximizing water 

systems’ ecological benefits. The example application’s results highlight the need for 

improved methods of estimating and projecting trends in flood peaks and 

characterizing ecological impacts of flood management. 
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CHAPTER 5 

DECISION SCALING-BASED ROBUST OPTIMIZATION FOR MANAGING 

ECONOMIC AND ECOLOGICAL FLOOD RISK 

Abstract 

Climate nonstationarity and uncertainty raise important issues related to design and 

planning within the water sector. In addition, the water sector has acknowledged the 

need for improved methods of incorporating impacts of water resources development 

on ecosystems into project evaluation. This chapter presents a decision analytic 

approach to search for and evaluate flood management portfolios that maximize 

robustness to climate change with respect to both economic and ecological objectives. 

The model is applied to choose combinations of infrastructural and non-structural, 

options-based flood management interventions on the Iowa River, which are 

implemented in stages at decision points that are distributed across the planning 

period. High-performing FRM adaptation sequences selected through a satisficing-

robustness metric based on the decision scaling approach are compared to FRM 

strategies selected for performance under stationary climate, the central tendency of 

an ensemble of climate projections, and an alternative robust optimization framing 

based on expected performance across climate model projections. Results demonstrate 

that the adaptation sequences selected through the decision scaling-based robustness 

metric, which evaluates performance across the broadest plausible range of climatic 

change, tend to exhibit lower potential regret than FRM adaptation sequences selected 

based on their performance under the stationarity assumption or scenarios based on 

climate model projections.  
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Introduction 

Hydroclimatic nonstationarity challenges conventional frameworks for flood risk 

management (FRM) design and decision making, which rely on an assumed 

probability distribution of peak flows’ frequency and magnitude to estimate damage 

reduction and economic efficiency (e.g. U.S. Water Resources Council, 1983; U.S. 

Army Corps of Engineers, 2009). The challenge of nonstationarity is that standard 

frameworks for the design of flood management systems rely on probability 

distributions of peak flow which are estimated from past flow records and are 

assumed constant through time. Under nonstationary flood hazard, flood management 

systems designed through these frameworks leave the contents and economic systems 

associated with the floodplain exposed to unanticipated risk if the probability 

distribution of peak flows changes. 

Treating the parameters of the peak flow probability distribution as functions of time 

or functions of time-varying covariates (e.g. Stedinger & Griffis, 2011) is one way to 

update common FRM design standards and decision criteria to accommodate 

nonstationary hydrology (e.g. Salas and Obeysekara, 2014). This type of 

nonstationary peak flow probability distribution has been used to estimate the optimal 

combination of flood risk management adaptation alternatives that best mitigate risk 

across a planning period (e.g. Zhu et al., 2007; Woodward et al., 2014, Yazdi & 

Salehi Neyshabouri, 2012, Olsen et al., 2000), extending previous risk-based 

optimization analyses which find the FRM strategy that minimizes expected cost 

across a stationary probability distribution (e.g. Lund et al., 2002). However, the 

success of FRM designs based on a nonstationary probability distribution of peak 

flow relies on an assumed relationship between time and the parameters of the 

probability distribution to estimate future flood hazard. This relationship between the 
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probability distribution parameters and time is typically derived by extrapolating trend 

observed in the historic record (e.g. Cunderlik and Burn, 2003; Begueria et al., 2010; 

Mudersbach and Jensen, 2010; Rosner et al., 2014) or by simulating the effect of 

projected future temperature and precipitation changes on local hydrology (e.g. 

Prudhomme et al., 2003; Hanel et al., 2009; Gilroy and McCuen, 2012; Seidou et al., 

2012). However, high levels of uncertainty in trend estimates resulting from either 

estimation technique lead to poor confidence in the resulting designs’ optimality. 

Deficiencies of these trend projection methods include high uncertainty in trend 

estimates based on historic data (Fowler & Wilby, 2010; Stedinger, 1983; Vogel et al., 

2011), lack of guarantee that observed trends (or lack thereof) will continue into the 

future (Hirsch, 2011; Vogel et al., 2011), and lack of representation of many 

meteorological processes that drive floods in climate models (Stakhiv et al., 2007a,b).  

As a result, estimates of the nonstationary probability distributions of peak flow based 

on either extrapolation of observed trends or climate model simulations are subject to 

high levels of uncertainty and thus results in unanticipated flood risk. Substantial 

volumes of research are devoted to improving techniques for statistically or 

mechanistically estimating and forecasting trend in flood hazard (e.g. Khaliq et al., 

2006; Madsen et al., 2014). The uncertainty in the underlying probability distribution 

of peak flows limits the benefits of risk-based optimization for FRM that is based on a 

single assumed peak flow probability distribution, and is one example of a number of 

challenges that limit the benefits of optimization in the broader field of water 

resources engineering (see Rogers and Fiering, 1986).  

An alternative approach to FRM under nonstationary hydrology adapts existing 

optimization frameworks to seek robust FRM strategies, that is, FRM strategies 

whose performance remains favourable across a wide range of possibilities, often 
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sacrificing the maximum optimal result in doing so (Hall & Solomatine, 2008; Mens 

et al., 2011; Lempert et al., 2013). While conventional risk-based flood management 

plans can be said to seek robustness to a range of flood magnitudes, the flood 

magnitudes are assumed drawn from a single stationary probability distribution or a 

single climate change scenario rather than a changing and/or unknown probability 

distribution of future climate state as would be the case under hydroclimatic 

nonstationarity. Incorporating measures of robustness into optimization-based FRM 

decision support tools is one way to reconcile optimization with the contextual 

circumstances of flood risk management decisions.  

Two main groups of decision support frameworks incorporate optimization into 

robust planning approaches for water resources management: First, those that search 

directly for robust solutions, specifying the robustness definition ex ante, which are 

generally known as “robust optimization”; Second, those which use optimization to 

search for a variety of high-performing solutions and evaluate the robustness of those 

solutions ex posteriori. The Multi-Objective Robust Decision Making (MORDM), 

which is based on the Robust Decision Making (RDM) decision support framework 

(Lempert & Popper, 2003), searches for Pareto-approximate solutions through multi-

objective optimization (Kasprzyk et al., 2013). Both RDM and MORDM measure 

robustness ex posteriori according to the uncertainty domain across which they meet 

(or satisfice) performance objectives (Herman et al., 2015). The Decision Scaling 

(Brown et al., 2012) based Nonstationary Decision Model (NDM) for FRM (Spence 

& Brown, in revision), like RDM and MORDM, searches for candidate strategies 

using optimization under individual isolated scenarios. However, the decision-scaling 

based NDM analysis searches for the candidate solutions in a “scenario neutral” way 

via application of a climate stress test, whereby solutions are found across a 
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systematically generated set of future scenarios that exhaustively explores plausible 

climate (and other) changes. Unlike RDM or MORDM, the candidate strategies’ 

robustness is evaluated ex post across the full systematically sampled range of 

plausible scenarios rather than the expected value scenario. However, the set of 

candidate strategies discovered through single-scenario optimization may not include 

the FRM strategy that is most robust as measured across the full range of uncertain 

factors. 

Robust optimization techniques, which search directly for robust solutions rather than 

evaluating candidate solutions’ robustness ex post, provide another method of 

addressing the issue of brittle optimal solutions. Robust optimization can be 

distinguished from purely stochastic optimization (such as risk-based optimization) by 

its accommodation of poorly characterized uncertainty (Mulvey et al., 1995). Rather 

than optimize for a single scenario, parameter probability distribution, or trajectory of 

flood hazard, robust and stochastic optimization techniques seek to find the design 

that ensures the most favourable performance across a number of scenarios according 

to a pre-specified robustness metric or combination of robustness measures which are 

summarized in a single objective function. In previous applications, robustness has 

been summarized in a single objective function by balancing expected performance 

(essentially a stochastic optimization objective function) against a term representing 

risk-aversion by measuring the stability of performance across states of the world 

through deviations from expected performance in each scenario (e.g. Mulvey et al., 

1995; Watkins and McKinney, 1997) or a summary of performance threshold 

violations (e.g. Ray et al, 2014). Past applications of robust optimization in water 

resources have been restricted to applications outside of flood risk management, and 

have relied on a single robustness definition (Watkins & McKinney, 1995; Watkins 
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and McKinney, 1997), advocated a multi-objective approach to represent the various 

preferences of multiple stakeholders (Hamarat et al., 2014), and defined future 

scenario assumptions based on climate model output (e.g. Ray et al., 2014).  

To avoid missing the consequences of future states of the world not represented by 

climate model projections, scenario-neutral approaches such as Decision Scaling 

(Brown et al., 2012) and others (e.g. Prudhomme et al., 2010) assess performance of 

water systems across the full plausible range of future states of the world, which are 

systematically and incrementally sampled. Estimates of future states of the world 

based on climate model projections or other sources, when appropriate, are 

incorporated ex posteriori and do not dictate the range of future climate states which 

are evaluated. By testing FRM systems’ performance across a broad range of future 

states of the world, erring on the side of implausibility, vulnerability-based 

approaches such as Decision Scaling (Brown et al., 2012) couch decisions within a 

complete understanding of the full range of their decisions’ potential consequences, 

working to avoid surprise. The Decision Scaling framework has previously been 

applied to climate risk assessments of water resources systems through simulation- 

(Brown et al., 2012, Steinschneider et al., 2015) and optimization- (Spence & Brown, 

under revision, WRR) based systems analysis tools.  

Here, the decision scaling-based NDM decision framework is extended to include 

robust optimization within the search algorithm. The robust optimization framing is 

based on Eco-Engineering Decision Scaling, which elicits performance thresholds 

from stakeholders in the water systems community and the relevant ecological 

management community that must be met in order for the system’s performance to be 

deemed acceptable by either community (Poff et al., 2015). The resulting decision 
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framework presented here combines decision scaling with robust optimization for 

multiple FRM objectives, including ecological and economic objectives. 

This chapter presents the decision scaling-based robust optimization approach in 

comparison to several single-scenario, risk-based, and robust optimization-based 

planning approaches which span representative climate assumptions, ways of 

aggregating multiple objectives, and risk preferences. The chapter proceeds as follows. 

First, the chapter presents an example flood management decision based on the Iowa 

River system, where changes in flood characteristics are a concern to both flood and 

ecosystem managers and existing flood control infrastructure has already impacted the 

riparian ecosystem. The proposed decision scaling-based robust optimization 

approach and other representative planning approaches will be illustrated through the 

Iowa River example application. Second, each optimization-based planning approach 

is outlined and described mathematically. Last, optimization analysis is used in 

conjunction with each planning approach to find a selection of top-performing FRM 

strategies for the Iowa City/Iowa River flood management system found under each 

multi-objective and/or robust objective function. The candidate scenario- and 

robustness-optimal FRM strategies are compared in terms of regret across a broad 

range of future states of the world in a climate stress test.  

Results highlight present actions that lead to strong performance in isolated scenarios 

as well as robustness across multiple scopes of climate uncertainty. Though multiple 

planning approaches lead to the same or similar FRM strategy(ies), this indicates the 

potential to find resolution among stakeholders with disparate values and beliefs for 

FRM climate adaptation. 
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Case Study 

Iowa City Flood Risk Management 

Coralville Reservoir and several sections of levees protect Iowa City from flooding 

(Figure 5.1). Recent high flow episodes have exceeded the capacity of existing 

infrastructure in several damaging flood events and raised concerns that the existing 

FRM system does not supply an adequate degree of protection. The potential 

hydrologic regime shift caused by climate and/or land use change provokes an 

adaptation decision, while hydrologic alteration introduced by reservoir operations 

may have increased the vulnerability of Iowa River’s aquatic and riparian ecosystems 

to further disruption (Nilsson & Berggren, 2000). 

 

Figure 5.1: Iowa River watershed upstream of Coralville Reservoir. 

Flood management goals 

The goals for FRM in the Iowa City system are to maximize the economic efficiency 

of the flood management system, including the costs of managing floods as well as 
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damage caused by flooding, and to increase the resilience and adaptive capacity of 

Iowa River’s riparian and aquatic ecosystems. The flood management system should 

maintain acceptable performance with respect to these goals throughout a forty-year 

planning period that begins in 2010 and ends in 2050 regardless of potential climate 

changes. 

Flood management effectiveness of the proposed set of adaptive actions 𝑥⃑  is 

quantified through Expected Annual Cost (EAC) under climate change scenario ∆��⃑ , 

which in the Iowa River example is a combination of change in annual average 

precipitation and annual average temperature. EAC is a composite of flood damage D 

and management costs C from only the year t’s peak flow 𝑄max𝑡  (Equation 5.1). 

Damage associated with 𝑄max𝑡 may be affected by the adaptation actions 𝑥⃑. Damage 

and cost in year t is adjusted to present value using discount rate r. 

𝐸𝐸𝐸|𝑥⃑,  ∆��⃑ =  
1
𝑇
�

𝐷�𝑄max𝑡�𝑥⃑,  ∆��⃑ � + 𝐶�𝑄max𝑡�𝑥⃑,  ∆��⃑ �
(1 + 𝑟)𝑡

𝑇

𝑡=1

 

 

Equation 5.1 

Cost of flood damage is estimated from Tables provided by the USACE and adjusted 

for inflation support estimates of damage caused by annual peak flow to Iowa City 

and the downstream agricultural fields. The value of crop losses caused by peak flows 

that occur during the growing season is assumed to be $849/inundated acre based on 

prices for corn production (Duffy, 2014). The cost of building levees is modeled as a 

point cost during the time period in which levees are raised.  
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The system’s ecological resilience under a given climate scenario and adaptation plan 

is quantified through the proxy of Expected Annual Floodplain (EAF) (Poff et al. 

2015), which represents the typical floodplain area A inundated by flooding in a given 

year t, 𝐴𝑡 (Equation 5.2).  

𝐸𝐸𝐸 =  
1
𝑇
�𝐴𝑡|[𝑄max𝑡, 𝑥⃑,
𝑇

𝑡=1

∆��⃑ ] 

Equation 5.2 

To qualify as an ecologically meaningful inundation event, bank overflow must be 

sustained for a period of at least seven days. If flow falls below the discharge 

threshold for two days or fewer during the inundation period, the inundation on both 

sides of the low-water period is considered one event. If flow falls below the 

discharge threshold for more than two days in a row, the inundation events are 

considered separate.  

Performance thresholds in EAC and EAF separate acceptable performance from 

unacceptable performance.  EAC may increase by up to 75% before performance is 

deemed unacceptable because EAC includes the cost of new adaptation in addition to 

flood damage, while the reference EAC of the current system under the no-change 

scenario does not include adaptation cost. Any EAF less than the reference EAF under 

the historic climate and management regime is unacceptable and require EAF. 

Adaptation alternatives 

Two possible adaptation alternatives are available to mitigate flood risk and enhance 

the Iowa River’s ecologically meaningful inundation. These include raising the 

currently extant levees to protect against higher discharge rates and adjusting the non-
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emergency release limit from Coralville Lake during the growing season. The 

adaptation alternatives are implemented at varying times throughout the planning 

period of 2010-2050.. 

Raising levees would reliably protect Iowa City against higher flows to a higher 

degree than changing reservoir operations, but will alter the hydraulic relationship 

between river discharge and flow stage (Mays, 2011), reducing downstream 

floodplain inundation at peak flows. Furthermore, building higher levees will result in 

sunk cost if flooding does not increase in the future and the higher degree of 

protection is not needed. 

Damage to crops occurs at a lower release discharge from Coralville reservoir (6000 

cfs) than damage to Iowa City (10,000 cfs). For this reason, releases from Coralville 

Reservoir are limited to 6,000 cfs and below during the growing season outside of 

emergency situations (USACE Report ER-1105-2-101). Outside of the growing 

season, non-emergency releases from Coralville Reservoir are not permitted to exceed 

10,000 cfs. While the lower growing season release limit protects crops from flood 

damage, it prevents the reservoir from emptying quickly in preparation of expected 

high flows. This is particularly noteworthy during the growing season because most 

severe high flow events on the Iowa River occur in the growing season in June and 

late May after multiple consecutive days of high precipitation (Kunkel et al. 1994, 

Coleman and Budikova, 2010, Robertson et al. 2011). Furthermore, reducing the 

release limit during the growing season reduces the frequency of ecologically 

functional bank overflow events during this time period. Raising the release limit 

some amount between its current value of 6,000 cfs to the maximum permitted 

discharge of 10,000 cfs may restore ecologically functional inundation events and 
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allow the reservoir to more effectively mitigate severely high flows, but would require 

operating authorities and local government to reimburse farmers for any crop losses 

resulting from the change.  

System model 

The flood management and ecohydrological performance of the altered system is 

evaluated using a system model that simulates the performance of the Iowa City flood 

management system under different adaptation actions and different climate scenarios. 

Figure 5.2 illustrates the conceptual linkage between sub-models which form the 

larger system model. 

 

Figure 5.2: Linkages between components of the flood risk and riparian ecosystem 

system model. 
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A stochastic weather generator (Steinschneider and Brown, 2014) generates realistic 

time series of synthetic daily weather which may be statistically altered to reflect 

climate change scenarios. The stochastically generated, climate-altered time series 

force a daily VIC model of the Iowa River to generate synthetic inflows to Coralville 

Reservoir (Xiang et al., 1994; Hydrosystems, 2013). A model constructed in 

MATLAB ® based on the Coralville Lake ResSim® U.S. Army Corps of Engineers 

operations model (Kipsch and Hurst, 2007) translates inflows to the reservoir into 

releases from the reservoir. A validation plot for historical inflows to the reservoir 

between 1992 and 2010 is shown below in Figure 5.3 (Nash-Sutcliffe 0.71). 

 

Figure 5.3: Validation for Coralville Reservoir operations model. Simulated releases 

based on recorded inflows between October 1, 1992 and September 30, 2010 are 

compared to recorded releases from the same period. 

A hydraulic model of the floodplain developed in HEC-RAS by the US. Army Corps 

of Engineers translates releases from Coralville Lake into downstream floodplain area 

between Coralville Lake and river mile 46 (46 miles upstream of Iowa River’s 
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confluence with the Mississippi River). The HEC-RAS River Analysis System 

(Brunner, 2001) model was used to derive an empirical relationship between 

discharge and floodplain area downstream of Iowa City (Appendix A), which informs 

the calculation of the ecological objective. The USACE Rock Island District also 

provided a table relating discharge, river stage, and damage to Iowa City and the 

downstream agricultural fields (Hydrosystems, 2013. 

Methodology 

This section presents the framing and mathematical detail of a decision analytic 

framework for economic and ecological FRM based on a decision scaling approach to 

robust optimization. A flood management case study on the Iowa River illustrates the 

decision-scaling based satisficing RO framework. For comparison, several other 

optimization-based planning approaches are used to search for FRM adaptation 

sequences for the Iowa River. The planning approaches are based on a number of 

climate assumptions and methods of summarizing performance across objectives and 

across possible future states of the world (Table 5.1). 

Climate assumptions comprise the range and value of climate parameters across 

which performance is evaluated. In the case of the Iowa River example application, 

the sampled climate parameters include annual average precipitation and annual 

average temperature. In other applications, climate parameters beyond average 

temperature and precipitation or even non-climatic parameters that are relevant to the 

decision could be included. The climate assumptions regarding the range and value of 

the climate parameters include (1) a set of future states of the world based on the 

decision scaling approach to climate risk assessment, which employs broad range of 

incrementally sampled combinations of climate parameter values; (2) A set of future 

states of the world based on low, medium, and high projections of the climate 
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parameters, which is an approach taken in previously published studies on robust 

optimization for water resources management and planning; (3) A single combination 

of precipitation of precipitation and temperature change which represents the central 

tendency of an ensemble of precipitation and temperature projections; and (4) a single 

combination of climate parameter values which represent zero change to both 

precipitation and temperature, representing the stationarity assumption which is 

commonly used in FRM design and planning. The multiple performance objectives, 

which in the Iowa River case include an economic and an ecological objective, are 

aggregated as a single metric that expresses their performance under each climate 

scenario in two alternative ways: (1) A binary satisficing metric, which takes a value 

of 1 if performance thresholds are met in both objectives and 0 otherwise; and (2) A 

weighted sum of normalized performance in each objective. Table 5.1 summarizes the 

combinations of climate assumptions, methods of combining performance in each 

objective, and assessing performance across climate scenario taken in each planning 

approach. 

Table 5.1: Names of each representative FRM planning approach and outline of 

underlying climate assumptions, method of aggregating multiple objectives, and 

method of summarizing performance across climate scenarios. 

Planning 

approach 

Climate assumptions Aggregating 

multiple 

objectives 

Summarizing 

performance 

across climate 

scenarios 

Satisficing RO Average precipitation 

70%, 80%, 90%, 100%, 

Mutual satisficing 

(performance 

Fraction of 

scenarios with 
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110%, 120%, or 130% 

of historic annual 

average precipitation; 

Annual average 

temperature 1 degree 

Celsius less, same, 1, 2, 

3, 4, or 5 degrees 

Celsius more than 

observed. 

thresholds must be 

met in both 

objectives to 

achieve acceptable 

performance in 

each climate 

scenario) 

acceptable 

performance 

Risk-based 

satisficing RO 

Average precipitation 

70%, 80%, 90%, 100%, 

110%, 120%, or 130% 

of historic annual 

average precipitation; 

Annual average 

temperature 1 degree 

Celsius less, same, 1, 2, 

3, 4, or 5 degrees 

Celsius more than 

observed. 

Mutual satisficing 

(performance 

thresholds must be 

met in both 

objectives to 

achieve acceptable 

performance in 

each climate 

scenario) 

Weighted fraction 

of acceptable 

performance with 

weights assigned 

according to 

estimate of climate 

scenario probability 

GCM-based 

RO 

Combinations of low, 

medium, and high 

precipitation and 

temperature scenarios 

based on CMIP3 and 

Weighted sum of 

performance with 

respect to each 

objective. 

Increase of 0.7, 2.7, 

and 5 degrees 

Celsius; 84%, 

105%, and 122% of 

historic 
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CMIP5 climate model 

projections 

precipitation 

Multi-

Objective 

Optimization 

under GCM 

climate 

Temperature 3 degrees 

Celsius warmer; 10% 

more annual 

precipitation. 

Weighted sum of 

performance with 

respect to each 

objective. 

None; only one 

climate scenario 

included 

Multi-objective 

optimization 

under 

stationary 

climate 

Future climate identical 

to historical climate 

(37.64” annual 

precipitation, 11.17 

degrees Celsius average 

temperature). 

Weighted sum of 

performance with 

respect to each 

objective. 

None; only one 

climate scenario 

included 

 

Each planning approach summarized in Table 5.1 combines a set of climate 

assumptions, technique of combining multiple performance objectives, and method of 

summarizing performance across a range of assumed possible climate scenarios into 

an objective function that is used in optimization analysis to find the combination and 

sequencing of FRM adaptive actions that maximize that objective function in the Iowa 

River flood risk management example application.  
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Each choice that contributes to the planning approaches outlined in Table 5.1 

represents a type of climate belief, relative prioritization of economic and ecological 

goals, and risk preference that could realistically be held by the stakeholders in this 

decision. Some believe that the observed climate is the best guide to future flood 

hazard, while others believe maximizing performance under the average climate 

projection is the best way to manage flood risk, and others advocate for robust 

approaches despite their potential performance sacrifice under baseline climate 

estimates. Similarly, the satisficing method of combining performance in multiple 

objectives avoids crossing tipping points in either, while the method used in the multi-

objective optimization and GCM-based robust planning approaches trades off 

economic and ecological performance, allowing good performance in one objective to 

compensate for poor performance in the other. Lastly, comparing the robust planning 

approaches’ methods of summarizing performance across scenarios represents three 

different risk attitudes: Risk-based satisficing, assuming the probability distribution of 

climate changes is an accurate estimate, is a robustness metric best used for decisions 

that are expected to be repeated at many different locations. It discounts severe 

consequences under low-probability climate scenarios, which makes sense if 

decisions using the same metric will be repeated many times by a single entity: the 

impacts should average out over many repeated decisions. The GCM-based robust 

optimization planning approach incentivizes performance stability across climate 

states, seeking to avoid poor performance under even isolated states of the world, 

indicating more risk aversion. Similarly, the decision scaling-based RO planning 

approach does not discount the impacts of states of the world not indicated by climate 

projections, indicating a more risk-averse stakeholder. Each of the latter two planning 
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approaches might represent the risk attitude (if not the climate beliefs) of a 

stakeholder who is directly affected by the outcome of the decision. 

The singular climate change projection used in the multi-objective optimization of 

GCM climate is based on the central tendency of an ensemble of CMIP5 model runs’ 

projections of precipitation and temperature change across all RCP scenarios (Taylor 

et al., 2012), which is reflective of the impetus to plan for the “most likely” future 

climate predicted by the model deemed most trustworthy or the average of multiple 

models’ runs. Likewise, the weights assigned to the incrementa climate scenarios in 

the risk-based satisficing planning approach are based on a multivariate normal 

probability density function of precipitation and temperature change at the end of the 

planning period. The multivariate normal probability distribution’s parameters are 

estimated using an ensemble of downscaled CMIP3 and CMIP5 climate projections 

for 2040-2050 over the Iowa River basin (Maurer et al., 2002; Maurer et al., 2007; 

Taylor et al., 2012). This is the same ensemble of climate model projections used to 

parameterize the GCM-based robust optimization planning approach and the planning 

approach based on multi-objective optimization under the GCM climate (Table 5.1). 

The analysis is based on projections from each model run under each representative 

SRES scenario (CMIP3) and RCP scenario (CMIP5) used in International Panel on 

Climate Change (IPCC) reports (IPCC, 2007; IPCC, 2012). Each model is assigned 

equal weight. The parameters of the multivariate normal probability distribution are 

calculated according to the mean of average precipitation change between 2040 and 

2060 across all models, the mean of average temperature change between 2040 and 

2060 across all models, and the covariance between average precipitation change and 

average temperature change as represented in the model projections. 
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The following sub-sections outline the mathematical and computational structure of 

the Iowa City optimization analysis and the robust decision analysis framework which 

synthesizes the results of optimization based on each planning approach into decision-

relevant information. 

Objective functions 

The Iowa City flood management system’s performance metrics are evaluated under 

multiple stochastic realizations of each systematically sampled and incrementally 

varied scenario of change in average precipitation and temperature, though any 

climate- or non-climate drivers of flood risk could be sampled. Five objective 

functions are used to assess adaptation strategies’ performance, reflecting different 

attitudes regarding the range of climate across which FRM should perform, how the 

competing objectives should be balanced, and how robustness should be measured. 

The following sections list the objective functions in the order of most basic to most 

sophisticated. 

Multi-objective optimization: Stationary climate 

The first objective function maximizes EAF while minimizing EAC under stationary 

climate, assuming past precipitation and temperature characteristics 𝑃0 , 𝑇0  will 

continue throughout the planning period. The economic and ecological objective are 

weighted by 𝛾𝐸𝐸𝐸, 𝛾𝐸𝐸𝐸 respectively. The weight on the economic objective, 𝛾𝐸𝐸𝐸, is 

negative so that the composite optimization problem is a maximization problem. The 

economic and ecological objectives are combined in a weighted average (Equation 

5.3). 

𝑀𝑀𝑀 𝑍𝑚|𝑃∗,𝑇∗ =  𝛾𝐸𝐸𝐸𝑍𝐸𝐸𝐸|𝑃0,𝑇0 +  𝛾𝐸𝐸𝐸𝑍𝐸𝐸𝐸|𝑃0,𝑇0 

Equation 5.3 
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Multi-objective optimization: Projected climate 

The second objective function used to find FRM strategies for Iowa River prescribes 

the trajectory of flood hazard according to GCM projections of average precipitation 

and temperature change over the planning period. The objective function based on 

maximizing composite economic-ecological performance is given in Equation 5.4. 

𝑀𝑀𝑀 𝑍𝑚|𝑃∗,𝑇∗ =  𝛾𝐸𝐸𝐸𝑍𝐸𝐸𝐸|𝑃∗,𝑇∗ +  𝛾𝐸𝐸𝐸𝑍𝐸𝐸𝐸|𝑃∗,𝑇∗ 

Equation 5.4 

In the Iowa River region, this scenario comprises a 10% precipitation increase and a 3 

degree Celsius temperature increase by the 2040-2060 period. These represent the 

approximate central tendency of the ensemble of GCM projections, specifically the 

nearest 10% increment of precipitation change to the median precipitation change and 

the nearest 1 degree Celsius increment of temperature change to the ensemble median 

(see Table 5.1). 

GCM-based robust optimization 

We frame the multi-objective function 𝑍𝑚|𝑃,𝑇 in a robust optimization formulation 

based on Ray et al. (2014) to find an adaptation strategy with superior and stable 

performance across all climate scenarios. The mean composite performance across 

climate scenarios and the average positive deviation from mean performance across 

scenarios comprise the robust objective function 𝑍𝑅 (Equation 5.5). 

𝑀𝑀𝑀 𝑍𝑅 = 𝛼1 �
1
𝑛𝑛

∑ ∑ 𝑍𝑚 𝑗,𝑘
𝑚
𝑘=1

𝑛
𝑗=1 � + 

𝛼2 �
𝑚𝑚𝑚𝑚 �𝑍𝑚 𝑗,𝑘 > � 1

𝑛𝑛
∑ ∑ 𝑍𝑚 𝑗,𝑘

𝑚
𝑘=1

𝑛
𝑗=1 ��  −

� 1
𝑛𝑛

∑ ∑ 𝑍𝑚 𝑗,𝑘
𝑚
𝑘=1

𝑛
𝑗=1 �

� 

Equation 5.5: Multi-objective function for GCM-based robust optimization. 
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Precipitation scenarios 𝑗 ∋ 𝐽 and temperature change scenarios 𝑘 ∈ 𝐾  are modeled 

on past robust optimization formulations for climate adaptation, which are defined by 

an ensemble of climate model projections.  

Decision scaling-based satisficing robust optimization 

The satisficing-robust objective function and planning approach is based on concepts 

introduced by Eco-Engineering Decision Scaling (EEDS), which is a framework for 

climate risk assessment and decision support that is based on the satisficing of 

ecological and engineering performance thresholds (Poff et al., 2015). We set 

minimum performance thresholds for the Iowa River flood management system’s 

economic and ecological performance to translate performance into a binary 

satisficing criterion of either acceptable or unacceptable performance. The 

performance threshold is based on comparing performance under a new adaptation 

plan or climate scenario to performance of the current flood management system 

without adaptation under the “no change” climate scenario. We denote the economic 

objective 𝑍𝐸𝐸𝐸  and its threshold 𝑍𝐸𝐸𝐸 𝑜. Likewise, we denote the ecological objective 

𝑍𝐸𝐸𝐸  and its threshold 𝑍𝐸𝐸𝐸 𝑜. The satisficing-robust objective function is therefore 

denoted by 𝑍𝑆 (Equation 5.6). 

𝑀𝑀𝑀 𝑍𝑆 = ∑ �∑ ��𝑍𝐸𝐸𝐸(𝑥)𝑗,𝑘 < 𝑍𝐸𝐸𝐸𝑜� &�𝑍𝐸𝐸𝐸(𝑥)𝑗 >  𝑍𝐸𝐸𝐸𝑜��
𝑚
𝑘=1 �𝑛

𝑗=1  

Equation 5.6: Satisficing-robust objective function for multi-objective optimization. 

This objective function requires that performance goals in economic and ecological 

performance be met simultaneously under a given climate scenario. In Equation 5.6, 

states j correspond to changes in annual precipitation and states k correspond to 

changes in mean temperature. The representative changes in precipitation and 

temperature are systematically and incrementally varied across a wide range of values 
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beyond what is indicated by model projections (Table 5.1). This scoping technique is 

based on the decision scaling framework, and its goal is to encompass all plausible 

future precipitation and temperature characteristics. 

Risk-based satisficing-robust optimization 

Risk-based satisficing robust optimization builds on satisficing robust optimization by 

assigning probabilities 𝑃(𝑗,𝑘)  to each climate change scenario j, k based on a 

probability density function estimated from climate model projections over the river 

basin. The risk-based satisficing-robust objective function 𝑍𝑃  is shown in Equation 

5.7.  

𝑀𝑀𝑀 𝑍𝑃 = ∑ �∑ 𝑃(𝑗,𝑘)��𝑍𝐸𝐸𝐸(𝑥)𝑗,𝑘 < 𝑍𝐸𝐸𝐸𝑜� &�𝑍𝐸𝐴𝐴(𝑥)𝑗 >  𝑍𝐸𝐸𝐸𝑜��
𝑚
𝑘=1 �𝑛

𝑗=1  

Equation 5.7: Risk-based satisficing-robust objective function for multi-objective 

optimization. 

The probabilistic component is included to motivate the optimization algorithm to 

find a solution that meets economic and ecological performance goals specifically 

under the types of climate changes that are considered likely to occur, assigning less 

priority to satisficing climate changes that may be unlikely. The probabilistic framing 

introduces and explicit stochastic component to the optimization analysis.  

Decision variables 

The decision variables in the optimization problem represent adaptive actions which 

may be implemented at different stages throughout a planning period to mitigate flood 

risk and support ecological resilience on the Iowa River. The specific adaptive actions 

considered in this analysis include raising existing levees which protect Iowa City 

some amount between zero and ten feet, and changing a reservoir operation rule that 
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limits releases from Coralville Reservoir during the growing season to protect 

downstream crop production. The height by which to raise levees and the new 

growing season release cap are two design factors. Decisions are implemented in six 

stages that are distributed at equal intervals across the forty-year planning period, so 

that changes to the system can be made every seven years. The problem therefore 

contains a total of twelve decision variables, which are the levees’ height at each of 

the six decision stages and the reservoir release limit at each decision stage. 

Constraints 

Levees are raised between 0 and 10 feet, and are permitted to increase from time 

period to time period but cannot be lowered. The maximum non-emergency release 

limit from Coralville Reservoir may take any value between 6,000 cfs and 10,000 cfs. 

The release limit may increase, decrease, or stay the same between any two time 

periods. 

Optimization algorithm 

A simple continuous genetic algorithm with tournament selection is used to find the 

solution under each type of robust optimization (Miller & Goldberg, 1995). The 

genetic algorithm breeds 250 generations of a 150-member population is initiated 

with random combinations of decision variables with a 20% mutation rate and 90% 

chance of the fitter chromosome chosen for reproduction during tournament selection, 

with five elite individuals passed on unchanged from generation to generation. The 

population is initialized with representative combinations of the two decision 

variables to ensure evaluation of the extreme values of the decision variables and 

allow the population to evolve for a maximum of 200 generations, passing on the five 

best-performing individuals unchanged at the end of each generation. The five best-
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performing individuals (or decision sequences) are returned at the end of the evolution 

process. 

Due to the high computational expense of evaluating one iteration of the objective 

function using this simulation model, which requires 490 separate 60-year daily 

simulations of reservoir operations and additional post-processing, as well as the 

smooth response of economic and ecological performance as a function of decision 

variables, we use response surface methodology under each climate scenario to 

empirically estimate the performance of any combination of decision variables under 

each climate scenario without evaluating the full simulation model. The surrogate 

model response surfaces were developed using full factorial design (Box and Wilson, 

1951). Performance of optimal and high-performing FRM strategies found through 

optimization using the response surface methodology is validated through the 

simulation model ex post.  

Synthesizing results to support FRM adaptation decisions 

Each of the five aforementioned planning approaches (including the decision scaling-

based RO objective function) are optimized to discover a small number of high-

performing strategies. These high-performing FRM strategies become candidate FRM 

strategies for among which stakeholders may choose based on preferences that could 

not be represented by the objective functions and ex post performance evaluation of 

each high performing strategy. 

The performance of each candidate FRM strategy is evaluated across the full range of 

plausible future states of the world in a climate stress test. Each candidate FRM 

strategy is also evaluated under all other objective functions to highlight potential 

solutions which perform well under all objective functions vs. solutions that only 
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excel with regard to one definition of performance, set of climate scenarios, or risk 

attitude and perform poorly under others. Because optimal FRM strategies are 

presented in the form of a sequence of adaptive actions, results highlight both the 

consequences and advantages of postponing actions which may become necessary 

under a subset of eventualities, or the costs associated with making irreversible 

actions too early, risking potential negative outcomes.  

Results & Discussion 

Optimization of the Iowa River flood management system under different climate 

assumptions, robustness measures, and methods of aggregating multiple objectives 

yield a set of high-performance candidate strategies shown in Figure 5.4, which 

displays the five highest-performing FRM sequences found under each objective 

function.  The high-performing strategies presented by Figure 5.4 show that it is 

optimal or near-optimal to raise levees by the end of the planning period even under 

assumed stationary climate, but under robust planning approaches, the expanding 

range of plausible climate states at each planning stage makes raising levees earlier in 

the planning period more advantageous. Figure 5.4 also shows that FRM sequences 

selected under a single assumed climate scenario (stationary climate and the 3 degree 

Celsius increase with 10% increased precipitation scenario) lead to a less diverse set 

of candidate adaptation sequences than either decision scaling-based RO formulation 

or the RO formulation based exclusively on climate model projections. The best 

candidate FRM strategies selected for their performance under single assumed climate 

scenarios rely on increasing the reservoir release limit, leaving levees unchanged 

either entirely or toward the end of the planning period, with each successive high-

performing solution raising levees earlier in the planning period. In contrast, FRM 

adaptation sequences selected through robust formulations took a range of approaches 
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to achieving robust ecological and economic outcomes, including raising levees at the 

beginning of the planning period or not at all, and maximizing the reservoir release 

limit throughout the planning period or allowing it to fluctuate, reducing agricultural 

costs while enhancing ecological flows.  
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Figure 5.4: Best-performing adaptation strategies as measured by five representative 

objective functions (rows). Color scale represents performance under each row’s 

objective function with darker colour indicating superior performance and lighter 

colour indicating less desirable performance. 
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The comparison among the economic performance of three representative high-

performing FRM adaptation sequences in Figure 5.5 illustrates the benefits of raising 

levees, which lead to more consistency of achieving acceptable economic 

performance across potential future climates. These selected adaptation sequences 

correspond to the second highest-performing adaptation sequence selected through 

risk-based satisficing RO, and both the third and fifth highest-performing adaptation 

sequence discovered through the GCM-based RO formulation based on Ray et al. 

(2014). They include (1) Raising the non-emergency release from Coralville 

Reservoir to a fluctuating, medium level during the growing season throughout the 

planning period, while gradually raising levees higher at each decision period; (2) 

Raising levees from their present level to the maximum permitted level at the third 

decision period, where the horizon of uncertainty has expanded from its current range, 

while raising the reservoir release limit to the maximum throughout; and (3) leaving 

levees unchanged until the last period, when it is raised to the maximum, while setting 

the reservoir release limit to the maximum throughout the planning period (Figure 

5.5). 
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Figure 5.5: (left) Response surfaces of three representative adaptation sequences’ 

(rows) economic performance (color scale) in response to changes in average 

precipitation (vertical axis) and average temperature (horizontal axis) during the first, 

third, and sixth (final) planning period (columns). (right) Illustration of selected 

adaptation sequences (rows) in terms of levee height (left column) and maximum 

permitted release from Coralville Lake (right column) as a function of time 

(horizontal axis). 

The period in which levees are raised is subject to a uniform increase in net cost 

across all climate states because the cost stems from construction rather than flood 

damage. However, in subsequent periods the robustness to economic damages is 

increased substantially, as shown in the example adaptation sequence in the second 

row. The investment in raising levees, however, is not necessary to meet economic 

performance goals under either the assumed stationary climate or the increased 

precipitation and temperature scenario.  
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Raising the growing season release limit from Coralville Reservoir is common to all 

candidate strategies, though not all raise the release limit to the maximum permitted 

value or maintain it at the maximum permitted value through the entire planning 

period (Figure 5.4). This adaptive action is necessary to meet the ecological 

performance goal of increasing expected inundation downstream of Iowa City under 

most climates which do not include large increases in precipitation, including the 

“stationary” climate and the deterministic GCM projection, as the ecological metric 

response surfaces demonstrate. This is particularly evident in the comparison between 

the adaptation strategy evaluated in the first row, which does not raise the release 

limit to the maximum, with the remaining two adaption sequences which do raise the 

release limit to the maximum throughout the planning period (Figure 5.6). The first 

adaptation sequence fails to meet the floodplain inundation objective over a wider 

range of climate space at the end of the planning period than either of the other two 

example adaptation sequences. 

 

 



 

 108 

 

Figure 5.6: (left) Response surfaces of three representative adaptation sequences’ 

(rows) ecological performance (color scale) in response to changes in average 

precipitation (vertical axis) and average temperature (horizontal axis) during the first, 

third, and sixth (final) planning period (columns). (right) Illustration of selected 

adaptation sequences (rows) in terms of levee height (left column) and maximum 

permitted release from Coralville Lake (right column) as a function of time 

(horizontal axis). 

Figure 5.7 synthesizes the information displayed in Figures 5.5 and 5.6 to highlight 

the three example high-performing FRM sequences’ satisficing behavior throughout 

the planning period and across future climate states. The second and third example 

adaptation sequences show how the cost of raising levees from their present elevation 

by ten feet in a single planning period increases expected cost in that planning period, 

leading to unacceptably high costs in that planning period. It also demonstrates the 

benefits of an increased reservoir release limit in improving the frequency of 

ecologically beneficial floodplain inundation. The gradual increase in levee height 

exemplified by the first adaptation sequence avoids the impact of sudden levee 
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increase, but ultimately provides increased economic protection in the last decision 

period, during which the breadth of climate states considered plausible is currently 

widest. However, the combination of levees raised by ten feet and reservoir release 

limit increased to the maximum amount in the last period best mitigates the economic 

impacts of floods resulting from increased precipitation, as shown in the second 

adaptation sequence. The first adaptation sequence, which was selected through the 

decision scaling-based satisficing approach to RO, exemplifies consistently strong 

satisficing performance throughout the planning period while the other example FRM 

adaptation sequences exhibit poor satisficing behavior in some parts of the planning 

period (Figure 5.7).  
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Figure 5.7: (left) Response surfaces of three representative adaptation sequences’ 

(rows) satisficing behavior (black = unacceptable performance, white = acceptable 

performance) in response to changes in average precipitation (vertical axis) and 

average temperature (horizontal axis) during the first, third, and sixth (final) planning 

period (columns). (right) Illustration of selected adaptation sequences (rows) in terms 

of levee height (left column) and maximum release limit (right column) as a function 

of time (horizontal axis). 

The maximum regret for each representative adaptation sequence is shown in Figure 

5.8 as a function of time. Regret is defined as the difference in performance between 

the FRM strategy implemented and the optimum FRM strategy specific to a single 

climate scenario and driving objectives of economic performance and ecological 

performance. Because regret is calculated by comparing “robustness-optimal” FRM 

strategies to objective- and scenario-optimal FRM strategies, regret provides an 

exogeneous measure of candidate FRM strategies’ robustness for ex post inter-

comparison. 
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Figure 5.8: Maximum regret across climate space (vertical axis) associated with three 

representative high-performing solutions (color scale) at each planning stage 

(horizontal axis). 

Economic regret is high in the second to final planning stage under the third plan, just 

prior to raising levees. This is because a more severe precipitation increase introduces 

high flow episodes that are not yet mitigated by augmented levees. Similarly, 

ecological regret is high under example Plan 1, which does not raise the reservoir re-

operation alternative to the maximum allowable amount, while maximum ecological 

regret is low during the intermediate stages under Plan 3 because, while the growing 

season release limit has been raised to the maximum allowable level, levees have not 

yet been altered. This is the best strategy to improve the ecological objective and 

ensure adequate inundation, even under decreased precipitation which reduces the 

number of bank overflow events. 

Comparing high-performing FRM adaptation sequences selected under the five 

objective functions leads to key insights on the characteristics of solutions found 

through each objective function. Figure 5.8 compares the robustness of high-

performing solutions through the maximum regret across climate space associated 
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with each high-performing solution, which are separated according to the objective 

function under which they were selected, as a function of time. In addition to the 

regret characteristics of the three illustrative adaptation sequences, Figure 5.9 

compares the differences in maximum ecological and economic regret under the high-

performing FRM strategies among the five planning approaches.  

 

 

Figure 5.9: Maximum regret across climate space (vertical axis) associated with top 

five best-performing solutions selected under each objective function (color scale) at 

each planning stage (horizontal axis). 

While multiple FRM sequences selected under each objective function exhibit 

comparable regret characteristics across time and climate space, FRM strategies 

selected for high performance in the GCM climate or risk-based satisficing exhibit 

particularly high economic regret at the end of the planning period and ecological 

regret at the beginning of the planning period. This is because these strategies 

discount the most extreme climate assumptions, for example particularly wet climates 

where levees are necessary to mitigate damage or dry climates where, without re-

operation, reservoir operations could threaten aquatic ecosystems, even though these 

hypothetical climate states cannot be dismissed as implausible. While strategies 
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selected through the satisficing-based objective function exhibit comparable levels of 

regret to strategies selected through other objective functions at the middle of the 

planning period, solutions selected through satisficing RO lead to consistently low 

economic and ecological regret at latter planning stages under which the widest 

variety of climate states is assumed possible (Figure 5.8). 

Table 5.2 compares high-performing FRM strategies selected under each planning 

approach in terms of their robustness, as measured by the satisficing metric (Equation 

5.6) and performance under the stationary climate. The satisficing-based robustness 

metric measures the fraction of a incrementally varied and combined climate 

scenarios in which acceptable performance is achieved in both economic and 

ecological performance metrics. The satisficed fraction robustness metric is a 

complement to the maximum regret robustness metric presented in Figure 5.9. 

Comparing strategies’ performance in terms of robustness and performance under the 

stationary climate elucidates the tradeoff between increasing the consistency with 

which acceptable performance is achieved and maximizing performance under a 

single state of the world. Table 5.2 reveals that FRM sequences selected through 

decision scaling-based satisficing and even risk-based satisficing RO are consistently 

more robust that strategies selected through GCM-based RO or single-scenario 

optimization (Table 5.2). 
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Table 5.2: Comparison of high-performing FRM adaptation sequences’ performance 

under decision scaling-based satisficing objective function (Equation 5.6) and 

stationary climate objective function (Equation 5.3). 

Objective 

function 

Perform

ance 

rank 

Satisficing Performance 

(fraction of climate 

scenarios) 

Stationary Climate 

Performance 

(dimensionless) 

Stationary climate 1 0.49 1.92 

Stationary climate 2 0.1 1.86 

Stationary climate 3 0.04 1.85 

Stationary climate 4 0.12 1.83 

Stationary climate 5 0.41 1.83 

10% more 

precipitation, 3 ℃ 

warmer 1 0.49 1.92 

10% more 

precipitation, 3 ℃ 

warmer 2 0.1 1.86 

10% more 

precipitation, 3 ℃ 

warmer 3 0.04 1.85 
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10% more 

precipitation, 3 ℃ 

warmer 4 0.41 1.83 

10% more 

precipitation, 3 ℃ 

warmer 5 0.41 1.83 

GCM-based RO 1 0.49 1.92 

GCM-based RO 2 0.1 1.86 

GCM-based RO 3 0.04 1.85 

GCM-based RO 4 0.08 1.83 

GCM-based RO 5 0.04 1.81 

Risk-based 

satisficing 1 0.61 1.74 

Risk-based 

satisficing 2 0.49 1.93 

Risk-based 

satisficing 3 0.51 1.66 

Risk-based 

satisficing 4 0.45 1.62 

Risk-based 
5 0.41 1.7 
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satisficing 

Satisficing 1 0.67 1.82 

Satisficing 2 0.61 1.82 

Satisficing 3 0.59 1.71 

Satisficing 4 0.57 1.71 

Satisficing 5th 5 0.57 1.74 

 

The top-ranking FRM adaptation sequence selected under each objective function that 

is not based on a satisficing metric satisfices 49% of scenarios. While 49% is only 

18% less climate space than the top-ranking FRM sequence selected through 

satisficing-based RO, which achieves acceptable performance for both objectives 

under 67% of climate scenarios, satisficing performance of FRM strategies selected 

through single-scenario optimization or GCM-based RO quickly degrades in the 

subsequent lower-ranked high-performing adaptation sequences. The high performing 

strategies selected under the stationary climate, GCM climate, and GCM-based RO 

planning approaches each include a strategy that satisfices only 4% of the climate 

space. This is equivalent to 6% of the satisficed space achieved under the best 

satisficing-based candidate strategy, which satisfices 67% of the precipitation and 

temperature change scenarios. In comparison, the fifth-best performing FRM 

sequence selected through satisficing performs only 15% worse than the top-

performing FRM sequence selected through satisficing RO. This indicates it is 

possible to improve the robustness of the FRM system with little sacrifice in 

performance under the default planning assumption that future climate will resemble 
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historically observed climate. In contrast, some strategies with highly ranked 

performance under an assumed stationary climate are highly sensitive to climate 

variation and change. 

The outcome of this example analysis yields several key results accompanied by 

caveats for application. First, a common archetype of adaptation strategy in which the 

release limit from Coralville Reservoir is maximized throughout the planning period 

and levees are raised in stages part way through the planning period performs well 

with respect to all objective functions in the Iowa River case, which span a 

representative selection of climate scoping methods and risk attitudes. This presents 

stakeholders who hold different climate beliefs and risk preferences with a 

demonstration of how well the decision performs with respect to their own priorities, 

facilitating compromise and supporting consensus. The optimization analyses also 

demonstrate that most objective functions, as is common in water resources 

engineering applications, are flat in the region of the optimum. A number of 

sometimes diverse alternative FRM strategies lead to the same level or a very similar 

level of performance under each objective function (Figure 5.4, Table 5.2). While this 

quality of water resources applications has limited the past application of optimization 

to dictate real-world management decisions, the multiplicity of high-performing FRM 

strategies enhances the utility of optimization as a tool in seeking compromise rather 

than decision dictator. 

While a FRM climate adaptation analysis would be incomplete without exploring the 

consequences of the full range of plausible future climate states, a comparison among 

FRM strategies developed through robustness frameworks such as decision scaling-

based RO and scenario-specific planning frameworks or impact assessment based 

solely on climate model output can be useful in facilitating compromise among 
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stakeholders who hold different climate assumptions and/or risk preferences. Figures 

such as Figure 5.5-5.5.7 that present visual evidence of the candidate FRM strategies’ 

performance across scenarios and objectives as well as the formal cross-examination 

of candidate strategies’ performance with respect to all objective functions facilitate 

this discussion by quantifying each stakeholder’s individual regret associated with 

selecting a FRM strategy that does not maximize their preferred objective function. In 

the case that a consensus cannot be reached, additional adaptation options may need 

to be considered so that all stakeholders can be satisfied. This reflects the iterative 

nature of both engineering design and climate adaptation. 

Conclusions 

This dissertation chapter demonstrates the benefits of a decision scaling-based 

approach to robust optimization, which leads to more consistently robust adaptation 

alternatives across optimal and near-optimal FRM strategies. The comparison 

between decision-scaling based robust optimization, a risk-based variant on the 

decision-scaling based optimization, conventionally framed GCM-based robust 

optimization, and single-scenario optimization demonstrates the benefits of decision 

support tools which accommodate not only uncertainty in the conditions under which 

a FRM system must perform, but also compare the results of multiple planning 

approaches. The sequencing of decisions in time enhances adaptive flexibility and 

furthers compromise, as the framework illustrates where it is possible to postpone 

actions that are presently controversial until they are more clearly needed. The set of 

Iowa River optimization analyses presented above compare the strategies that 

maximize performance under differing climate assumptions, ultimately showing that 

increased performance can be secured in climate states not indicated by climate model 

projections through small changes to FRM strategies that maximize performance 
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under more conventional climate assumptions based on stationary frameworks or 

climate model output. The decision scaling-based approach to robust optimization 

innovates on previous RO frameworks through application to FRM, accommodation 

of multiple objectives, and enhancing the set of climate assumptions used to evaluate 

potential FRM strategies, leading to the consideration of more robust FRM adaptation 

strategies than previous RO formulations for managing water resources under climate 

uncertainty. 
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CHAPTER 6 

COMBINING HISTORIC AND PROJECTED TREND IN A BAYESIAN 

FRAMEWORK FOR FLOOD RISK MANAGEMENT DECISION MAKING 

UNDER UNCERTAINTY 

Abstract 

The prevalence of robust approaches to FRM decision making under nonstationary 

climate is driven by weaknesses in established methods of estimating future flood 

hazard and controversy in the appropriate method of uncertainty quantification. 

Trends extrapolated from the historic record may have little bearing on future flood 

hazard, while climate model simulations occur at too coarse a spatial scale to 

represent flood-producing meteorological features and replicate the temporal 

characteristics of precipitation poorly. This chapter proposes a Bayesian framework 

for estimating and quantifying uncertainty in future flood hazard by exploiting the 

observed connections between continental-scale atmospheric patterns, which are often 

simulated more skillfully by climate models than localized precipitation, with local-

scale flooding. The uncertainty quantification framework estimates the relationship 

between climate index and a peak flow probability distribution. The posterior 

distribution of future -correlated climate index is estimated as a Bayesian combination 

of likelihood sourced from observations or re-analysis of the climate index with a 

prior synthesized from climate model projections of the climate index in a future 

period. The prior is synthesized from bias-corrected values of the simulated climate 

index, whose relative contribution to the prior parameters is proportional to each 

model’s bias in hindcast simulations. The prior is also synthesized in such a way that 

the prior is more vague in the case that climate models’ hindcast simulations exhibit 
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significant bias, and less vague in the case that climate models’ hindcast simulations 

exhibit low bias. In this way, the posterior distribution of the flood-correlated index 

draws more heavily from past observations and is more highly uncertain if climate 

models are uninformative, and is influenced more strongly by climate model 

simulations if climate models are skilled. The resulting nonstationary peak flow 

probability distribution may be used to inform risk-based FRM adaptation decisions. 

Introduction 

Decision making frameworks which accommodate multiple sources of uncertainty are 

essential to effective flood risk management given the high degree of uncertainty 

associated with characterizing extreme streamflow. Chapter 2 established that trend 

detection based on the historic record is likely to miss extant trends given the 

emphasis on avoiding type I error at the cost of high rate of type 2 error, limited 

record length, high peak flow variability, and the possible presence of low-frequency 

variability. The nature of a flood trend, if it exists, is another confounding influence 

on forecasting flood hazard into the future. If a trend is detected in the record, is it 

caused by climate or land use change, and will the probability distribution of extreme 

flow continue to change into the future, halt at a new distribution, or revert to a 

previous state? If no trend is observed in peak flows, does that necessarily imply no 

change in flood characteristics will occur over a product’s design life? The possibility 

of regime shifts from one state to another limits the value of statistical analysis of past 

flows to inform future design standards because observed flood frequency 

characteristics are not guaranteed to persist and may change abruptly, leading to over- 

or under- design. This lack of certainty favors robust design. It also, however, 

emphasizes the need for process-based projections of flood hazard. The future context 

of flooding is likely to include novel land use and climate characteristics and the past 
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has only limited ability to predict the future. Statistical analysis of a streamflow 

record alone provides little justification for forecasting future change as the drivers of 

observed or suspected trends are not explored. Analyzing changes in land use within 

the basin or frequency and severity of flood producing storm types in addition, 

however, may provide insight into whether a trend will continue. Process-based 

insights are critical to operationalizing the results of statistical analysis in an 

engineering design context. 

The hydrologic and meteorological drivers of flood hazard 

The established approach to incorporating climate projections in water resources 

adaptation planning projects changes in average precipitation and temperature, 

sometimes alongside shifts in seasonality, onto a hydrosystems model and evaluates 

the effects of this change. In the case of flood risk management, changes in average 

precipitation and temperature have a limited relationship to the mechanisms which 

cause floods (Horton, 1933). The strongest relationship between average precipitation 

and temperature changes and flooding occurs through the influence of average 

temperature and precipitation on antecedent conditions, which affect basins’ 

hydrologic response: under higher average precipitation, soil moisture may be higher, 

leading to faster saturation and more runoff (Horton, 1933; Nied et al., 2014). Higher 

temperature, however, could lead to increased evapotranspiration and offset the 

effects of increased precipitation on soil moisture. In combination, changes in average 

precipitation and temperature could also herald changes to snowpack, which can be a 

major determinant of flood magnitude through the presence or absence of rain-on-

snow events. Nonetheless, changes in average precipitation and temperature do not 

necessarily correspond to changes in temporally and spatially localized intense 

precipitation events that are the most crucial ingredient in many, though not all, 
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instances of flood occurrence (see Hoyt and Langbein, 1939; Goodrich, 1938; Rabot, 

1905; Alpert et al., 2002). For example, convective storms such as thunderstorms 

cause downpours and flooding (Doswell et al., 1996), tropical cyclonic storms, 

hurricanes, or typhoons are associated with extreme flooding in a number of locations 

worldwide (Easterling et al., 2000). Flood-producing meteorological processes (for 

example hurricanes, tropical cyclones, convective and orographic storms, and tropical 

moisture exports) occur on too fine a spatial scale to be represented by general 

circulation models (Stainforth et al., 2007a, b; Flato et al., 2013) and exhibit 

significant biases in regional climate models, output of which is also of limited 

availability. Projections of precipitation produced by these models are therefore of 

limited utility to flood risk managers. The association between flooding or extreme 

precipitation and systematically categorized storm types, however, is well established 

(e.g. Prudhomme et al., 2002; Cheng et al., 2010), and exploring potential changes in 

the frequency of flood-correlated meteorological events is a promising avenue toward 

estimates of future flood hazard. For example, Faiers et al. (1994) develop a synoptic 

classification of extreme precipitation events of varying duration in Louisiana with 

the intent of informing storm probability information for the region. However, the 

literature connecting the occurrence of specific storm types directly to the probability 

distribution of peak flow is sparse. 

Flood-producing storm types are often associated with large synoptic-scale 

atmospheric or sea surface temperature patterns that shift on a variety of temporal 

scales, including daily or weekly (e.g. vorticity, wind fields, fluctuations in 

atmospheric temperature, or geopotential height), seasonal to annual (e.g. the El Nino 

Southern Oscillation (ENSO)), and inter-annual or decadal (e.g. the Pacific Decadal 

Oscillation (PDO)). These circulation patterns may be classified through spatial 
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dimension reduction algorithms such as Empirical Orthogonal Functions and other 

clustering algorithms and in terms of seasonal timing (e.g. Davis & Rogers, 1992; 

Kahana et al., 2002). The literature linking sea surface temperature (SST) and 

atmospheric patterns to extreme precipitation is substantial and established (e.g. Dao, 

1958; Goree and Younkin, 1966; Muller, 1977; Barry et al., 1981; Harrison, 1984; 

Dorling and Davies, 1995; Bellone et al., 2000; Alpert et al., 2004; Alexander, 2016). 

Precipitation and streamflow anomalies have been correlated with the phase of the El 

Nino Southern Oscillation (ENSO) (e.g. Chiew and McMahon, 2002; Chandimala and 

Zubair, 2007), Pacific Decadal Oscillation (PDO) (e.g. Goodrich, 2007), North 

Atlantic Oscillation (NAO) (e.g. Labudova et al., 2013), and other global-scale 

patterns (e.g. Xu et al. 2006; Xiao et al., 2014) which fluctuate across time scales that 

range between daily, monthly, annual, and multi-year or decadal. It also includes the 

potential for using synoptic-scale atmospheric pressure and circulation-based 

predictors such as geopotential height for downscaling global gridded model output to 

local-scale precipitation (Cavazos and Hewitson, 2005). A parallel literature linking 

circulation-based predictors to streamflow is also established (e.g. Salathé, 2003; 

Ward et al., 2014; Córdoba-Machado et al., 2016), but includes the development of 

peak flow probability distributions whose parameters are conditioned on circulation-

based climate indices that vary on a monthly to interannual time scale (e.g. Villarini et 

al., 2013; Stedinger & Griffis, 2011). Unlike localized precipitation or streamflow, 

circulation-based indices take place across a very broad spatial scale that incorporates 

a sufficient number of climate model grid cells (presently 1-2 degrees) to constitute 

the skillful spatial scale of general circulation models (Wilby, 1998; Xu, 1999; Flato 

et al., 2013). Indeed, one reason general circulation models were originally developed 

is to aid in understanding large-scale climate dynamics throughout the whole of the 
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earth’s history (Smagorinsky et al., 1965; Holland and Lin, 1975), and the study of 

synoptic climatology through general circulation models is a robust area of research 

(Sheridan and Lee, 2010). Climate model projections of synoptic-scale climate indices, 

therefore, may be more useful to flood risk managers than localized precipitation 

projections.  

The use of general circulation model simulations of synoptic-scale spatial pattern in 

atmospheric variables to infer changes in local climate variables (especially 

precipitation), alone or as a downscaling technique, is called “weather typing” 

(Fowler et al., 2007), and is distinct from other statistical downscaling techniques in 

that weather typing does not translate gridded model output of a climate variable of 

interest to the same variable of interest at a local scale. A common criticism of 

statistical downscaling and bias correction techniques that are based on a transfer 

function between model output and local climate variable(s) is that they rely on an 

assumed stationary transfer function, though the stationarity of the transfer function is 

not guaranteed (Wilby, 1998; Fowler et al., 2007). Downscaling techniques based on 

weather typing share this weakness in that the relationship between circulation-based 

predictors and local climate variables is not guaranteed stationary because of a 

number of reasons, including the failure of pattern scaling schemes to identify and 

represent interactions among all relevant climate variables and the potential for novel 

future weather types (see Prudhomme et al., 2002; and Fowler et al., 2007). However, 

the basis of weather typing on a physical mechanism that connects general circulation 

to local weather indicates the potential for greater predictive skill than downscaling 

techniques which do not address the atmospheric mechanism connecting a climate 

variable at a coarse spatial scale to that same climate variable at a local scale. 
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This chapter addresses the need for process-based insights into flood hazard evolution 

by exploiting the climatic mechanisms associated with flood-inducing precipitation to 

develop probabilistic projections of flood hazard. This chapter applies a process for 

developing probabilistic, nonstationary flood hazard projections for the Iowa River 

based on categorizing flood-producing weather events in an area of interest, 

documenting the synoptic-scale climate indices associated with those event types (e.g. 

Kahana et al., 2002; Nakamura et al., 2012), quantifying trends in the synoptic-scale 

climate index, and projecting future variability in the synoptic index inferred from 

climate model projections and historic observations of the index. The projected 

variability in climate index informs an index-conditioned peak flow probability 

distribution, which is used in design. We demonstrate the approach through an 

application to an adaptation decision in the Iowa City flood management system, 

which has experienced recent unprecedented damaging flood events, calling into 

question the existing system’s adequacy.  

Methodology 

The process of developing process-driven probabilistic flood hazard projections for an 

area of interest consists of several key steps which include systematically exploring 

and connecting the causes of flooding to outcomes in terms of how flooding will be 

expected to change in the future. This chapter demonstrates this process in an analysis 

of flooding on the Iowa River. 

Chapter 2 provides a full description of the Iowa City flood management context, so 

this section gives only a brief overview. To better capture information content in peak 

flows, the inflows to Coralville Lake as measured at Marengo, USGS gage 05453100, 

as peaks-over-threshold using a generalized Pareto distribution to represent the 

magnitude of flow exceedances and a Poisson distribution to model the number of 
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exceedances per year. The partial duration series technique may include more than 

one peak flow per year which is not possible using the annual maximum approach. 

The exceedance threshold is 12,000 cfs, which is the level of discharge at which 

damages to Iowa City occur.  

 

Figure 6.1: Iowa River watershed with Coralville Lake, Iowa City, and detail showing 

location within the upper Midwest of the United States. 

The process begins by exploring and categorizing storm types associated with flood 

occurrence in the region meteorologically, through spatial classification algorithms . 

Steinschneider & Lall (2015) quantify the relationship between tropical moisture 

exports (TMEs) and extreme precipitation. Precipitation extremes in upper Midwest 

location such as the Iowa River Basin have been linked to tropical moisture exports 
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(TMEs) from the Gulf of Mexico (Dirmeyer et al., 2010; Knippertz, 2013; Robertson 

et al., 2015).  

It is common for the occurrence of flood-related storms and meteorological events to 

be correlated with global-scale atmospheric or sea surface temperature patterns. The 

TME’s associated with upper Midwest precipitation extremes have been linked to an 

atmospheric pressure dipole across the east coast of the US between a maximum in 

700-hPa geopotential height surface to the east of the Upper Midwest and minimum 

to the west of the Upper Midwest region (Nakamura et al., 2013). We calculate the 

value of this dipole index from the maximum 700-hPa in the box defined by the 

indices 70W-57.5W, 35N – 45 N and minimum defined in the box defined by the 

indices 90W to 77.5 W, 35N to 45N in geopotential height gridded re-analysis of 

station observations provided by the NCEP/NCAR re-analysis project (Kalnay et al., 

1996) through time (Figure 6.2). 

  

Figure 6.2: Daily values of dipole index from 1970 to 2010. 

The dipole index is correlated with extreme discharge events on the Iowa River, 

including the 2008 flooding that occurred across the upper Midwest (Figure 6.3). An 

elevated dipole index precedes multiple peaks of the 2008 flood episodes. 
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Figure 6.3: 10-day maximum dipole index (m) and inflow to Coralville Reservoir (cfs) 

during 2008 Upper Midwest floods. 

The correlation between frequency and magnitude of extreme streamflow and the 

value of the dipole index in the preceding ten days prior to a peak flow event is 

explored by treating the parameters of a Pareto-Poisson peaks-over-threshold 

probability distribution (Equation 6.1) as functions of the dipole index value 𝑥 at time 

t. The rate parameter of the Poisson distribution, 𝑣, represents the number of flow 

threshold exceedences in the given time period. The Generalized Pareto Distribution 

represents the magnitude of threshold exceedences, and is parameterized through 𝜎, 

the scale parameter, and 𝜉, the shape parameter. 

𝑃(𝑦,𝑘|𝑡)~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑣|𝑥𝑡)𝐺𝐺𝐺(𝜎|𝑥𝑡 , 𝜉) 
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Equation 6.1 

The parameters of the POT model are linear functions of the value of the dipole index 

so that the number of floods per time period k and the typical magnitude of the flow 

exceedances y are conditional on the maximum value of the dipole index observed 

over a sliding 10 day window (Equation 6.2; Equation 6.3). 

𝑘 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑣0 +  𝑣1𝑥𝑡) 

Equation 6.2 

𝑦 ~ 𝐺𝐺𝐺(𝜎0 +  𝜎1𝑥𝑡, 𝜉) 

Equation 6.3 

The addition of the dipole index to the POT model improves the model’s skill when 

compared to the dipole-independent model significantly, particularly when the model 

is restricted to the months in which most flooding occurs, which are April, May, and 

June (Table 6.1). The parameters of the conditional extreme flow probability 

distribution are estimated through maximum likelihood estimation (Mendez et al., 

2006). The likelihood ratio test quantifies confidence in the improvement in skill 

introduced by the dipole-conditioned parameters by comparing the goodness-of-fit, as 

measured by the models’ likelihood function, of the dipole-conditioned POT model 

and the likelihood function of the dipole-independent POT model as a ratio to 

determine whether the extra parameters add a statistically significant improvement in 

the goodness-of-fit (Wilks, 1938).  
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Table 6.1: Peaks over threshold parameters and confidence in skill improvement 

evoked by incorporating linear relationship to dipole index. 

Model Stationary Dipole Stationary- 
AMJ 

Dipole- 
AMJ 

𝜉 0.0000 0.0056 0.0000 0.0159 

𝜈0 1.4737 0.1946 0.7895 3.2648 

𝜈1 -- 0.5050 - -0.1041 

𝜎0 8.1684 7.2519 8.3329 7.9586 

𝜎1 -- 0.3729 - 0.1288 

Likelihood ratio 
significance 

-- p < 0.05 - p < 0.001 

An estimate of the future probability distribution of dipole index fully defines the 

dipole-conditioned peak flow probability distribution so that it may be used in flood 

management decisions and design choices. 

Bayesian analysis of future dipole index 

With a strongly statistically significant relationship established between damaging 

peak flows and the value of the dipole index (Table 6.1), we seek to estimate the value 

of the dipole index at the end of the planning period, which is 2045, and estimated 

from climate model projections of dipole index between 2030 and 2059. A posterior 

distribution of dipole index is estimated by combining a likelihood parameterized 

through the dipole index estimated from gridded re-analysis of n days of station 

pressure observations (Equation 6.4) and prior distribution of dipole index formed 

based on 𝑛𝑟days of simulated geopotential height fields of hindcast and future climate 

model simulations through Bayes’ Theorem.  
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−𝜏
2

(𝑥𝑖 −  𝜇)2�
𝑛

𝑖=1

 

Equation 6.4 

We model the dipole index in the flood season (April-May-June or AMJ) as normally 

distributed.  A Kolmogorov-Smirnov test determines that the daily observations of the 

dipole index between 1970 and 2010 are normally distributed at 95% confidence 

levels. 

Both the mean and variance of the future dipole index are assumed unknown. 

Modelling the future dipole index through a normal distribution with unknown mean 

𝜇  and unknown precision 𝜏  (variance raised to the -1 power), a Normal-Gamma 

distribution is conjugate to the unknown mean and precision of the posterior 

distribution of dipole index (DeGroot, 1970) (Equation 6.4). 

𝑁𝑁(𝜇, 𝜏|𝜇𝑜 ,𝑣0,𝛼0,𝛽0) ≡ 𝑁(𝜇|𝜇𝑜 , (𝑣0𝜏)−1)𝐺𝐺(𝜏|𝛼0,𝛽0) 

Equation 6.4 

The prior parameters are denoted 𝜇0, 𝑣0,𝛼0, and 𝛽0, while the posterior parameters are 

denoted 𝜇𝑛, 𝑣𝑛,𝛼𝑛, and 𝛽𝑛 . The expectation of the Normal-Gamma distribution is 

given as 𝐸[𝑋] =  𝜇  while 𝐸[𝜏] =  𝛼
𝛽

. The variance of the Normal-Gamma distribution 

is given by 𝑣𝑣𝑣[𝑋] =  𝛽
𝑣(𝛼−1)

 and 𝑣𝑣𝑣[𝜏] =  𝛼
𝛽2

.  

Synthesis of prior parameters from climate model simulations 

The prior is constructed out of simulated daily dipole index sourced from several 

climate models (Table 6.2) simulations of the 2030 to 2060 period, weighted by the 

models’ hindcast simulation skill between 1970 and 2005. The runs of three climate 
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models, all of which participated in the NARCCAP experiments (Mearns et al., 2012), 

are included in the analysis. Three runs are included from the Hadley Center Climate 

Model 3 (HadCM3) and three from the Geophysical Fluid Dynamics Laboratory 

climate model (GFDL), and one run from the Community Climate System Model 4, 

which was the only published model run containing daily geopotential height fields 

from this climate model. 

Table 6.2: Characteristics of dipole index simulated by three climate models and 

multiple stochastic runs of different climate models. 

Model Run 
Hindcast 

mean 
Future 
mean 

Hindcast 
Variance 

Future 
Standard 
Deviation 

Bias 
(𝜹𝒓) 

CCSM4 r6 262 223.9 101.7 72.3 0.91 
HadCM3 r1 243.4 225.5 77.5 73.4 0.53 
HadCM3 r5 241.5 228.1 77.9 72.7 0.53 
HadCM3 r9 242.2 223.7 76.9 67.78 0.53 

GFDL r1 260 231 84.4 74.6 0.95 
GFDL r3 259.9 226.3 84.5 69.3 0.88 
GFDL r5 263.4 221.1 85.4 67 0.94 

 

The selected climate models replicate the magnitude, variability, and seasonal cycle 

of the dipole index with various degrees of skill in the hindcast simulations (Figure 

6.4; Figure 6.5). 
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Figure 6.4: Average value of dipole index on each day of the year in hindcast (dashed 

lines) and future (solid lines) climate model simulations (colored lines) compared 

with dipole index estimated from re-analysis (black line).  

The HadCM3 model simulates a substantially different seasonal pattern in the 

hindcast simulations from the future simulations (Figure 6.4). A comparison of the 

distribution of dipole index in future and hindcast climate model runs indicates a trend 

toward a slight downward shift in dipole index with possible changes in variability 

(Figure 6.4). 
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Figure 6.5. Histograms of dipole index as reproduced by hindcast simulation (dashed 

lines; 1970-2005) and simulation of the future period (solid lines; 2036-2056).  

This chapter proposes a method for parameterizing the prior so that the prior’s 

location characteristics are influenced most heavily by models which reproduce the 

dipole index with least bias, and its shape is more flat if the models exhibit high bias 

in the hindcast period. The most important feature of the proposed parameterization 

method is to blend the features of an informative prior, which is typically based on 

data, and a vague prior, which represents a total lack of knowledge and is 

conventionally flat with virtually equal probabilities assigned to each parameter value. 

The degree of vagueness of the prior is ascribed according to the confidence in the 

change signal suggested by climate model simulations according to model bias in the 

hindcast period. Using a vague or uninformative prior, the likelihood dominates the 

posterior distribution. Stronger, informative priors have more influence on the 

posterior distribution. 

The standard Bayesian interpretation of the prior parameters as being estimated from 

imaginary “pseudo-observations”, which is a common term used in Bayesian analysis 

to conceptualize the formation of a prior probability distribution, provides a basis for 
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synthesizing multiple model projections into a single prior that reflects both each 

models’ relative skill and the level of credence in the model-based estimate as a whole. 

In this chapter, the term “pseudo-observation(s)” will be replaced with the term 

“simulated output” to reflect the prior’s basis on climate model simulations of the 

2030-2060 future period. The parameters of a Normal-Gamma model are interpreted 

such that 𝜇0 is the sample mean of 𝑣0 days of simulated output, while the precision 𝜏 

is estimated from 2𝛼𝑜 days of simulated output with sum of squared deviations 2𝛽0.  

 The prior mean 𝜇0 is a weighted average of each model r’s mean dipole index 𝜇𝑟 

according to each model r’s relative skill,  𝑤(𝛿𝑟), during the hindcast simulation as 

measured by the models’ bias, 𝛿𝑟. Relative skill is adjusted to the fraction of the total 

skill of all models, so that 𝑤(𝛿𝑟) =  𝛿𝑟
∑ 𝛿𝑟𝑟 𝜖 𝑅

. This means that models which exhibit 

lower bias in the hindcast simulation contribute more weight to the prior mean 𝜇0 

(Equation 6.5).  

𝜇0 =  
1
𝑅
�𝑤(𝛿𝑟)𝜇𝑟

𝑅

𝑟=1

 

Equation 6.5 

 “Bias” is the quantitative measure of model skill in reproducing the dipole. In this 

chapter, bias  associated with climate model r out of R total climate models is 

quantified as the integrated difference between the probability density functions of 

observed dipole index [P(x)] and hindcast simulations [𝑃(𝑥𝑟)]. Because the total 

probability density under two non-overlapping probability density functions and 

hence the maximum possible value of this metric is two, the metric is normalized 
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through multiplication by ½ and subtracted from 1 so that it lies between 0 and 1 with 

0 representing least skill and 1 representing perfect skill (Equation 6.6). 

𝛿𝑟 =  1 −  
1
2
� (𝑃(𝑥𝑟) −  𝑃(𝑥))𝑑𝑑
∞

−∞
 

Equation 6.6 

Bias provides a measure of the confidence in the dipole index change signal elicited 

from comparing the hindcast simulation of dipole index between 1970 and 2005 to the 

future model output between 2030 and 2060. Thereafter, the prior is constructed based 

on pre-processed model output of simulated dipole index between 2030 and 2060 that 

is bias-corrected through quantile mapping (see Wood et al., 2004 for a more 

complete description of this technique) based on the relationship between observed 

dipole index between 1970 and 2010 and hindcast simulated dipole index in each 

model between 1970 and 2005. The transfer function is based on empirically 

estimated quantiles, with a normal distribution used to extrapolate to quantiles beyond 

those that occur in the hindcast simulation. 

The interpretation of the prior parameters 𝑣𝑜 and 𝛼𝑜 relates to the number of ”pseudo-

observations”, namely, days of simulated output used to estimate the quantity of 

interest’s mean and precision, respectively. This is apt as it relates to this chapter’s 

application because the prior is synthesized out of modelled values. However, the 

prior is synthesized from multiple stochastic realizations of multiple models’ climate 

simulations. As the models and model runs each replicate the same dates, the number 

of days of simulated output on which 𝑣𝑜 and 𝛼𝑜 are based should not be larger than 

the number of modelling time steps between the beginning and end of the future 

simulation. This chapter proposes that 𝑣𝑜 may be constructed as a weighted average 
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of the length of each future simulation 𝑣𝑟 , with each simulation length weighted 

according to that model’s bias in the hindcast simulation (Equations 6.7 & 6.8). 

𝑣0 =  
1
𝑅
�𝑤(𝛿𝑟)𝑣𝑟

𝑅

𝑟=1

 

Equation 6.7 

𝛼0 =  
1
𝑅
�𝑤(𝛿𝑟)𝛼𝑟

𝑅

𝑟=1

 

Equation 6.8 

The prior parameter 𝛽0 represents the simulated output’s sum of squared deviations 

from the mean. This parameter directly affects the variance of the Normal-Gamma 

prior distribution (Equation 6.9).  

𝑣𝑣𝑣[𝑋]𝑅 =  
𝛽0

𝑣0(𝛼0 − 1) 

Equation 6.9 

While 𝛽𝑜 could be constructed, like the other parameters, as a bias-weighted average 

of the sum of squared deviations from the mean estimated from each climate model, 

this would allow the variance of simulated climate to directly inform the prior’s level 

of influence on the posterior distribution. For example, a prior distribution based on 

the simulations of one climate model or a set of climate models that have simulated a 

given climate index with substantially lower variability than the observed climate 

index would strongly influence the posterior distribution, even though the low 

variability in fact should be interpreted as lack of skill and therefore hold little 

influence over the form of the posterior distribution. For this reason, we specify 𝛽𝑜 in 
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such a way that the variance of the Normal-Gamma distribution is exaggerated 

proportional to the climate models’ bias. It is desirable that the prior variance should 

be identical to the weighted average of the climate index’s variance in future 

simulations only if the simulations exhibit very low bias. It is possible to choose a 𝛽𝑟 

for each climate model to achieve the desired variance by adding multiplying the 

variance in Equation 6.17 and solving for 𝛽𝑟 (Equation 6.10). 

𝛽𝑟 =
𝑣𝑟(𝛼𝑟 − 1)

𝛿𝑟𝑛
𝑣𝑣𝑣[𝑋𝑟] 

Equation 6.10 

Because 𝛿𝑟  is close to zero when climate model r exhibits very low skill in the 

hindcast simulation and close to one when climate model r reproduces the climate 

index skilfully in hindcast simulations, variance is inflated for climate models with 

low skill and near the simulated variance for climate models which exhibit high skill 

levels. This chapter proposes that the resulting 𝛽𝑟 may then be blended in a weighted 

average according to each models’ bias, as the other prior parameters are synthesized 

(Equation 6.11). 

𝛽0 =  
1
𝑅
�𝑤(𝛿𝑟)𝛽𝑟

𝑅

𝑟=1

 

Equation 6.11 

The prior parameters, synthesized from R climate model paired hindcast and future 

simulations of the climate index, blend with the likelihood sourced from observations 

of the climate index to result in a posterior distribution of the climate index’s future 

value. 
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Posterior parameters of dipole index probability distribution 

Because the Normal-Gamma distribution is conjugate to the unknown mean and 

precision, the parameters have closed-form analytically derived solutions (Equations 

6.12-6.15) and do not require algorithmic techniques such as Monte Carlo Markov 

Chain (MCMC) for estimation (Bernardo and Smith, 1993). In other applications in 

which a conjugate prior is not available or appropriate, other estimation techniques of 

estimating the posterior parameters would be necessary. 

𝜇𝑛 =  
𝜇0𝑣0 + 𝑛𝑋�
𝑣0 + 𝑛

 

Equation 6.12 

𝑣𝑛 = 𝑣0 + 𝑛 

Equation 6.13 

𝛼𝑛 =  𝛼0 +  
𝑛
2

 

Equation 6.14 

𝛽𝑛 =  𝛽0 +  
1
2
�(𝑋𝑖 −  𝑋�)2
𝑛

𝑖=1

+ 
𝑣0𝑛(𝑋� −  𝜇0)2

2(𝑣0 + 𝑛)
 

Equation 6.15 

The posterior parameters blend the prior and likelihood (Equation 6.4), assigning 

more weight to the prior if the prior has high precision. The probability distribution 

representing the likelihood function in Figure 6.5 is a normal distribution whose 

parameters maximize the likelihood function given in Equation 6.4. The posterior 
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parameters, estimated using the above described methods, indicate a slight decrease in 

dipole index and increase in dipole variability (Figure 6.6, Table 6.3) 

 

Figure 6.6: Prior, likelihood, and posterior distribution of dipole index. 

Table 6.3: Mean and standard deviation of observed dipole index, prior, and posterior 

distributions of dipole index. 

Property Observed Prior Posterior 

Mean (m) 243.4 240.1 240.9 

Standard deviation (m) 72.7 99.2 74.6 

 

Figure 6.6 shows the probability distribution of the dipole index during the future 

period of 2030-2060, but a nonstationary probability distribution which transitions 

between the current distribution of dipole index and the posterior distribution of 

dipole index. To achieve a nonstationary probability distribution, the parameters of 

dipole index distribution are modelled as linear functions of time which transition 

between the maximum likelihood estimate of climate index based on observations, 

𝑋 ~ 𝑁(𝜇0,𝜎0) and the posterior probability distribution of the climate index based on 
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both past observations of the dipole index and simulations of its future state (Equation 

6.16). 

𝛾𝑡 ~ 𝑁(𝜇0 +  (𝜇1|𝜇𝑛,𝑣𝑛,𝛼𝑛,𝛽𝑛) 𝑡,𝜎𝑜 +  (𝜎1|𝛼𝑛,𝛽𝑛)𝑡) 

Equation 6.16 

The trend parameters 𝜇1 and 𝜎1 are calculated by dividing the difference between 𝜇𝑛 

(𝜎𝑛) and 𝜇0 (𝜎0) by the time between the historic record of the climate index and the 

future simulation of the climate index and are shown in Table 6.4. 

Table 6.4: Trend parameters in moments of dipole index’ probability distribution. 

Parameter Value Standard error 
 𝜇1 -0.043 m/year 0.019 m/year 
 𝜎1 0.033 m/year 0.019 m/year 

 

Based on the posterior distribution of dipole index, the frequency and magnitude of 

peak flows on the Iowa River at Marengo, the inlet to Coralville Reservoir, is 

expected to change with a higher incidence of severe flows and a slight change in the 

magnitude of severe flows (Figure 6.7).  
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Figure 6.7: Comparison between expected frequency and magnitude of peak flows on 

the Iowa River during the 1970-2010 period and the 2030-2050 period, based on the 

posterior distribution of dipole index for the future period and the dipole-conditioned 

POT model of peak flows. Color scale represents the relative likelihood of different 

probability distributions of peak flow event frequency and event magnitude, based on 

the probability of the associated dipole index value (Table 6.1). 

As indicated by the parameters of the dipole-conditioned POT model described in 

Table 6.1, the decreased expected dipole index in the posterior distribution (Table 6.4) 

leads to an increased number of expected floods but a very slightly decreased 

expected magnitude of those floods. The analysis indicates the change in probability 

of floods of different magnitudes will vary little relative to the change in number of 

floods expected in the AMJ season (Figure 6.7). The projected change in flood hazard 

to a higher number severe flow events with a similar distribution of magnitudes to 

those observed in the past favors an initial set of FRM adaptation alternatives that 

does not necessarily expand storage capacity, but rather allows flood waters to pass 

more efficiently, clearing Coralville Reservoir’s flood storage quickly in preparation 

for future high flows. 
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Conclusions 

This dissertation chapter presents a novel way to conduct flood frequency analysis by 

exploiting the connection between continental-scale climate indices and local-scale 

extreme streamflow. Historic measurements or re-analysis of flood-correlated climate 

indices are combined with a probability distribution calibrated to reflect bias-adjusted 

properties of the climate index/indices simulated by general circulation models 

through Bayes’ theorem, resulting in a posterior probability distribution of the climate 

index of interest in a future period. This chapter demonstrates this framework in 

application to a case study in Iowa, finding that high flow events may be more 

frequent in the future but change little in magnitude. The climate models employed in 

the example application replicate the climate index with varying levels of skill, but 

generally superior skill to climate models’ hindcast simulations of short-term 

precipitation fields.  

This chapter utilizes the statistically modeled relationship between flooding in Iowa 

and a pressure dipole index that has been correlated with Tropical Moisture Exports, a 

meteorological mechanism that is associated with heavy and sustained precipitation 

events in the upper midwest (Nakamura et al., 2012) to develop a probabilistic 

estimate of future flood hazard. While climate models are generally recognized to 

simulate circulation patterns such as the pressure dipole with superior skill to 

localized extreme precipitation, which occurs through sub-grid scale meteorological 

processes (Flato et al., 2012), the pressure dipole is only one circulation feature  

associated with a single type of heavy precipitation and high streamflow in the Iowa 

River basin. A more thorough probabilistic estimate of flood hazard would include a 

more systematic exploration of meteorological flood drivers and interactions among 

them, a larger number of climate models’ simulations of circulation patterns, and 
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consideration of the hydrologic impacts of land use change on flood probability. The 

analysis presented in this chapter focuses on a common type of flood that occurs 

between April and June, the season associated with the area’s most sever and 

damaging historic floods. Further analysis could profitably explore the potential for 

novel meteorological flood drivers in this area introduced by unprecedented future 

climate states, and the effect of seasonal shifts in the occurrence of flood-producing 

storms on Iowa City flood hazard. 
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CHAPTER 7 

CONCLUSIONS 

This dissertation presents several statistical and decision support tools for managing 

the economic and ecological implications of extreme flows under uncertain future 

change. Examining the state of the science in flood frequency analysis, nonstationary 

flood hazard projection, and decision support tools for flood risk management yields 

several key insights and open research questions. These include the discrepancy 

between standard statistical techniques used for flood trend detection and the context 

of adaptation decisions which are based on the flood frequency analysis, the lack of 

decision support tools for flood risk management decisions under uncertain trend in 

peak flows, the need for robust FRM decision support tools which include ecological 

impacts of flood change on an equal basis with economic impacts, and lack of 

credible, mechanistically-grounded ways to quantify flood trend uncertainty. The 

flood frequency analysis techniques and decision support tools presented in this 

dissertation begin to answer these open research questions and point toward further 

work that would strengthen the practice of flood risk management. 

Key findings stemming from the dissertation yield important critiques for the state 

and practice of FRM adaptation planning. Chapter 3 demonstrates that standard 

statistical significance for flood trend detection are frequently an inappropriate basis 

for FRM adaptation decisions, but the use of an alternative approach could result in 

wide-spread savings. Chapter 4 demonstrates a decision scaling framework for FRM 

decision-making under uncertainty encourages low-regret investment and facilitates 

compromise among decision makers who hold disparate values. Chapter 5 extends the 

approach presented in Chapter 4 to search directly for robust solutions rather than 
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evaluate the robustness of scenario-optimal solutions ex post, and demonstrates how 

searching for FRM strategies which satisfy multiple climate assumptions transform a 

typical criticism of optimization in water resources decisions into an advantage that 

enables consensus. Chapter 6 demonstrates that climate model output can be 

incorporated in FRM adaptation decisions in a way that exploits previously 

established statistical techniques for nonstationary flood frequency analysis and draws 

on climate models’ skillful scale. Chapters 4 and 5 also demonstrate several ways 

ecological objectives can be incorporated into FRM adaptation planning ex ante rather 

than ex post. 

These insights demonstrate the utility of robust and multi-objective optimization 

techniques as tools within wider decision support frameworks for FRM. The insights 

also imply that flood frequency analysis techniques on which adaptation decisions are 

based can be improved by revising the statistical frameworks to reflect the context of 

the resulting decision. Furthermore, frameworks for decision making under 

uncertainty that are widely applied require special considerations when tailored to 

flood management decisions. For example, the climate drivers typically used by 

decision scaling and other decision frameworks that have previously been more 

widely applied to water supply systems must be altered to account for the 

meteorological drivers that are most influential to floods but less important for other 

water resources applications. This dissertation demonstrates several ways to 

incorporate climate drivers in flood management decisions, showing how varying 

changes in the probability distribution of extreme flows results in a range of flood 

probability scenarios far beyond what changes in average precipitation and 

temperature would indicate, suggesting that standard methods would underestimate 

the range of possible flood frequency shifts that could occur under climatic 
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nonstationarity. Changes in flood frequency and severity stem not only from changes 

in average precipitation and temperature, which are easily derived from pre-processed 

climate model simulations, but more directly from changes in storm occurrence that 

connect to large-scale atmospheric patterns. The use of synoptic-scale atmospheric 

patterns has previously been limited to understanding past flood variability and 

developing phase-dependent reservoir operations which perform well under low-

frequency variability. This dissertation shows that projections of synoptic-scale 

atmospheric pattern variability under future climate states, an emerging area of 

research in climate science, can be used in practice to inform nonstationary flood risk 

adaptation planning.  

The importance of these findings hinges on their implications for improving FRM 

adaptation decisions in terms of the information such decisions are based on, how the 

supporting information is synthesized, how interrelated objectives are weighed against 

each other, and how the decision process engages with stakeholders’ individual 

beliefs. Findings indicate a promising avenue for improving federal adaptation 

projects’ economic efficiency and integrating ecological objectives as core goals of  

FRM adaptation decisions, which is currently known to be needed but no method is 

officially established.  The research also provides an avenue toward quantifying the 

uncertainty in future flood hazard based on the available evidence, enabling 

physically-justified risk-based adaptation decisions which consider multiple trend 

scenarios. Accommodating diverse risk preferences of multiple FRM stakeholders as 

Chapter 5 demonstrates is not explicitly addressed by existing decision frameworks, 

but clarifies the tradeoffs stakeholders make during the decision process and enables 

better-informed adaptation decisions. 
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While the work presented in the dissertation provides examples of how several open 

research questions in FRM may be addressed, further work is needed to bring these 

methods to a form suitable for practice. The dissertation demonstrates the utility of 

exploiting large-scale climate patterns as a basis for flood hazard projections, but 

climate model output from which these patterns may be derived are not readily 

accessible to the non-climate scientist. This points toward the benefits of both deeper 

integration between the climate science academy and the water sector and toward the 

utility of web-based tools that support the streamlined analysis of large-scale climate 

patterns across multiple climate models, similar to those that exist for climate 

variables that are more commonly used in water resources impact assessment such as 

precipitation and temperature. This dissertation also includes several tools which are 

framed around nonstationary probability distributions of peak flow and methods of 

modelling nonstationary probability distribution parameters. Work that explores 

methods for estimating various forms of nonstationarity in probability distribution 

parameters, as well as nonstationarity in different forms of peak flow probability 

distribution, would improve the general applicability of the frameworks presented by 

this dissertation. Particularly relevant to the work presented in this dissertation are 

methods for developing projections and statistical models of how climate processes 

which exhibit low-frequency variability are likely to change in the future, based on 

historic and/or paleo records of phase shifts in atmospheric patterns and simulations 

of synoptic-scale atmospheric patterns’ evolution into the future.  

In summary, this dissertation confronts two main challenges that inhibit effective 

adaptation of FRM systems to nonstationary climate, which are the challenge of 

quantifying uncertainty in future flood hazard and the challenge of developing 

decision support frameworks which accommodate stakeholders’ diverse values, 
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climate beliefs, and risk preferences while guiding them to a scientifically-justified 

FRM adaptation plan that supports the welfare of all. The work presented by this 

dissertation builds on past work in water resources engineering, operations research, 

climate science, and ecology to lay foundations for addressing both of these 

challenges. As in the decision scaling framework, this dissertation unites 

vulnerability-based decision support tools with estimates of future conditions based 

on the best available information, and the best use of that information, to enable 

informed adaptation decisions in which the stakeholders’ beliefs and objectives play a 

key role. The key innovations in this dissertation include tailoring the decision scaling 

framework toward the particular parameters of FRM decisions, enhancing the rigor of 

statistical tools for FFA in the context of adaptation decisions, introducing the 

separate objective of ecological adaptation alongside FRM adaptation, and providing 

a template of how optimization may be included in a vulnerability-based decision 

framework to better communicate with (and support better communication among) a 

diverse group of stakeholders. The intention of this dissertation is to present 

foundational examples of how to advance the practice of integrated, cross-sector flood 

risk management under uncertain, nonstationary hydrology. 

 

 

 

 

 

 



 

 151 

APPENDIX: IOWA CITY FLOW-DAMAGE RELATIONSHIP 

Table I. Simplified estimates of flow/damage relationship without new 

mitigation actions. 

Flow category (cfs) Expected City Damage ($) 

< 10,000 0 

10000 - 15000 0 

15000 - 20000 3,348,033 

20000-25000 14,233,400 

25000-30000 23,897,867 

30000-35000 35,796,000 

35000-40000 49,152,000 

> 40000 62,508,000 

 

Table II. Damage reduction per unit implementation of flood mitigation strategy. 

Flow category (cfs) 
Reoperation & reimbursement damage 

reduction ($/100%) 

< 10,000 0 

10000 - 15000 -20,354.83 

15000 - 20000 -84,766.47 

20000-25000 -28,770.36 

25000-30000 15,883.54 

30000-35000 16,658.22 

35000-40000 14,010.82 
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> 40000 14,698.47 

 
II. Iowa River discharge-inundation relationship 

 

 

 

 

 

 

 

 

 

  

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000

Fl
oo

dp
la

in
 a

re
a 

(m
i^

2)
 

Flow (cfs) 

Relationship between flow and floodplain 
area between Coralville Dam and river 

mile 46 (between Iowa City and Lone Tree 
gages) 



 

 153 

REFERENCES 

 

Alpert, P., T. Ben-Gai, A. Baharad, Y. Benjamini, D. Yekutieli, M. Colacino, L. 

Diodato, C. Ramis, V. Homar, R. Romero, S. Michaelides, and A. Manes 

(2002). “The paradoxical increase of Mediterranean extreme daily rainfall in 

spite of decrease in total values.” Geophysical Research Letters Vol. 29(11), 

pp. 31-1-31-4. 

Alpert, P., I. Osetinsky, B. Ziv, and H. Shafir (2004). “Semi-objective classification 

for daily synoptic systems: application to the eastern Mediterranean climate 

change.” International Journal of Climatology Vol. 24(8), pp. 1001-1011. 

Armstrong, W. H., M. J. Collins, N. P. Snyder (2012). “Increased frequency of low-

magnitude floods in New England.” Journal of the American Water Resources 

Association, Vol. 48, Iss. 2., pp. 306-320. No. JAWRA-11-0049-P. 

Barsugli, J., C. Anderson, J. B. Smith, and J. M. Vogel (2009). “Options for 

improving climate modelling to assist water utility planning for climate 

change. Final Report. Prepared for Water Utility Climate Alliance. 

Barry, R. G., G. Kiladis, and R. S. Bradley (1981). “Synoptic climatology of the 

western United States in relation to climatic fluctuations during the twentieth 

century.” International Journal of Climatology Vol. 1(2) pp. 97-113. 

Becker, L. and W. W-G. Yeh (1974) “Optimization of real time operation of a 

multiple-reservoir system.” Water Resources Research Vol. 10(6), pp. 1107-

1112.  



 

 154 

Begueria, S., M. Angulo-Martinez, S. M. Vicente-Serrano, J. I. Lopez-Moreno, and A. 

El-Kenawy (2010). “Assessing trends in extreme precipitation events intensity 

and magnitude using non-stationary peaks-over-threshold analysis: A case 

study in northeast Spain from 1930-2006.” International Journal of 

Climatology Vol. 31(14), pp. 2102-2114. 

Bellone, E., J. P. Hughes, and P. Guttorp (2000). “A hidden Markov model for 

downscaling synoptic atmospheric patterns to precipitation amounts.” Climate 

Research Vol. 15, pp. 1-12. 

Benson, M.A. (1968), “Uniform flood-frequency estimated methods for federal 

agencies.” Water Resources Research Vol. 4(5), pp.891-908. 

Bernardo, J. M. and Smith, A. F. M. (1993). Bayesian Theory. 2nd Edition, John 

Wiley & Sons Canada, Limited. ISBN 0-471-49464-X. 

Bowling, L. C., P. Storck, and D. P. Lettenmaier (2000). “Hydrologic effects of 

logging in western Washington, United Sates.” Water Resources Research Vol. 

36(11), pp. 3223-3240. 

Box, J. and W. Wilson (1951). “Central composite design.” Journal of Research 

Statistical Society Vol. 1, pp. 1-35. 

Brown, C. (2010). “The End of Reliability.” ASCE Journal of Water Resources 

Planning and Management, 136, No. 3, 2010 (May/June 2010). 

Ben-Haim, Y. (2001). “Information-Gap Decision Theory.” Academic Press, San 

Diego, CA.  



 

 155 

Benjankar, R., E. Yager, D. Tonina, and N. Merz (2015), “REI: Riparian ecosystem 

index to assess the impact of hydrologic regime changes on riparian 

ecosystem.” Ecohydrology DOI: 10.1002/eco.1621 

Brown, C., Y. Ghile, M. A. *Laverty, and K. *Li (2012), Decision scaling: Linking 

bottom-up vulnerability analysis with climate projections in the water sector, 

Water Resour. Res. WR011540. 

Brown, C., Y. Ghile, M. A. *Laverty, and K. *Li (2012), Decision scaling: Linking 

bottom-up vulnerability analysis with climate projections in the water sector, 

Water Resour. Res. WR011540. 

Brunner, G. W. 2001. HEC-RAS River Analysis System: User's Manual: US Army 

Corps of Engineers, Institute for Water Resources, Hydrologic Engineering 

Center. 

Bunn, S.E., and A.H. Arthington (2002). “Basic principles and ecological 

consequences of altered flow regimes for aquatic biodiversity.” Environmental 

Management Vol. 30(4), pp. 492-507. 

Cavazos, T. and B. C. Hewitson (2005). “Performance of NCEP-NCAR reanalyais 

variables in statistical downscaling of daily precipitation.” Climate Research 

Vol. 28, pp. 95-107. 

Chan, K. M. A., T. Satterfield, J. Goldstein (2012). “Rethinking ecosystem services to 

better address and navigate cultural values.” Ecological Economics Vol. 74, 

pp. 8-18. 

http://www.agu.org/pubs/crossref/pip/2011WR011212.shtml
http://www.agu.org/pubs/crossref/pip/2011WR011212.shtml
http://www.agu.org/pubs/crossref/pip/2011WR011212.shtml
http://www.agu.org/pubs/crossref/pip/2011WR011212.shtml


 

 156 

Chandimala, J. and L. Zubair (2007). “Predictability of stream flow and rainfall based 

on ENSO for water resources management in Sri Lanka.” Journal of 

Hydrology Vol. 335, pp. 303-312. 

Cheng, C. S., G. Li, Q. Li, and H. Auld (2010). “A synoptic weather typing approach 

to simulate daily rainfall and extremes in Ontario, Canada: Potential for 

climate change projections.” Journal of Applied Meteorology and Climatology 

Vol. 49, pp. 845-866. 

Chiew, F. H. S. and T. A. McMahon (2002). “Global ENSO-streamflow 

teleconnection, streamflow forecasting and interannual variability.” 

Hydrological Sciences Journal Vol. 47(3), pp. 505-522. 

Cohn, T. A., and H. F. Lins (2005). “Nature’s style: Naturally trendy.” Geophysical 

Research Letters Vol. 32, L23402. 

Cordoba-Machado, S., R. Palomino-Lemus, S. R. Gamiz-Fortis, Y. Castro-Diez, M. J. 

Esteban-Parra et al. (2016). “Seasonal streamflow prediction in Colombia 

using atmospheric and oceanic patterns.” Journal of Hydrology Vol. 538, pp. 

1-12. 

Costanza, R. (2012), “Ecosystem health and ecological engineering.” Ecological 

Engineering Vol. 45, pp. 24-29. 

Cui, L., M. Mortazavi, and G. Kuckera (2013). “Application of multi-objective 

optimization for urban water resources systems in presence of climate change.” 

World Environmental and Water Resources Conference 2013: pp. 2849-2858. 

Cunderlik, J. M. and D. H. Burn (2003). “Non-stationary pooled flood frequency 

analysis.” Journal of Hydrology  Vol. 276(1-4), pp. 210-223. 



 

 157 

Cushman, R. M. (1985), “Review of ecological effects of rapidly varying flows 

downstream from hydroelectric facilities.” North American Journal of 

Fisheries Management Vol. 5(3a), pp. 330-339. 

Dao, Shih-Yen (1958). “The relationship between May-Yu in far east and the 

behaviour of circulation over Asia.” Acta Meteorologica Sinica Vol. 29(2), pp. 

119-134. 

Davies, R. E. and R. F. Rogers (1992). “A synoptic climatology of severe storms in 

Virginia.” The Professional Geographer Vol. 44(3), pp. 319-332. 

Dawdy, D., Griffis, V., and V. Gupta (2012) “Regional flood-frequency analysis: 

How we got here and where we are going.” Journal of Hydrologic 

Engineering Vol. 17(9), pp. 953-959. 

Deb, K. and H. Gupta (2006), “Introducing robustness in multi-objective 

optimization.” Evolutionary Computation Vol. 14(4) pp. 463-494. 

DeGroot, M. (1970). Optimal Statistical Decisions. ISBN 0-471-68029-X. McGraw-

Hill, John Wiley & Sons, Inc. Hoboken, NJ, 1970. 

Dirmeyer, P. A. (2010). “Floods over the U.S. Midwest: A regional water cycle 

perspective.” Journal of Hydrometeorology Vol. 11.5, pp. 1172-1181. 

Dorling, S. R. and T. D. Davies (1995). “Extending cluster analysis- synoptic 

meteorology links to characterise chemical climates at six northwest European 

monitoring stations.” Atmospheric Environment Vol. 29(2), pp. 145-167. 



 

 158 

Doswell, C. A., H. E. Brooks, and R. A. Maddox (1996). “Flash flood forecasting: An 

ingredients-based methodology.” Weather and Forecasting Vol. 11, pp. 560-

581. 

Duffy, M. 2014. Estimated costs of crop production in Iowa- 2014. Agricultural 

Decision Maker File A1-20. U.S. Department of Agriculture. 

Dupont, W. D., and W. D. Plummer Jr. (1990). “Power and sample size calculations: 

A review and computer program.” Controlled Clinical Trials Vol. 11, pp. 116-

128. 

Easterling, D. R., J. L. Evans, P. Y. Groisman, T. R. Karl, K. E. Kunkel, and P. 

Ambenje (2000). “Observed variability and trends in extreme climate events: 

A brief review.” Bulleting of the American Meteorological Society Vol. 81(3), 

pp. 417-425. 

Easterling D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. 

Mearns (2000). “Climate extremes: Observations, modelling, and impacts.” 

Scence Vol. 289(5487), pp. 2068-2074. 

Faiers, G. E., B. D. Keim, and K. K. Hirschboeck (1994). “A synoptic evaluation of 

frequencies and intensities of extreme three- and 24-hour rainfall in Louisiana.” 

Forun and Journal of the Association of American Geographers. Vol. 46(2), 

pp. 156-163. 

Falcone, J. A., D. M. Carlisle, D. M. Wolock, and M. R. Meador (2010). “GAGES: A 

stream gage database for evaluating natural and altered flow conditions in the 

conterminous United States.” Ecology Vol. 91(2), p. 621. 



 

 159 

Farber, S. C., R. Costanza, and M. A. Wilson (2002). “Economic and ecological 

concepts for valuing ecosystem services.” Ecological Economcis Vol. 41(3), 

pp. 375-392. 

Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. Collins, P. Cox, F. 

Driouech, S. Emori, V. Eyring, C. Forest, P. Gleckler, E. Gullyardi, C. Jakob, 

V. Kattsov, C. Reason, and M. Rummukainen (2013). “Evaluation of Climate 

Models.” In: Climate Change 2013: The Physical Science Basis. Contribution 

of Working Group I to the Fifth Assessment Report on the Intergovernmental 

Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. 

K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.)]. 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, 

USA. 

Fowler, H. J., S. Blenkinsop, and C. Tebaldi (2007). “Review: Linking climate change 

modelling to impacts studies: recent advances in downscaling techniques for 

hydrological modelling.” International Journal of Climatology Vol. 27, pp. 

1547-1578. 

Fowler, H. J. and R. L. Wilby (2010), “Detecting changes in seasonal precipitation 

extremes using regional climate model projections: Implications for managing 

fluvial flood risk.” Water Resources Research Vol. 46(3), W03525. 

Frei, C. and C. Shar (2001). “Detection probability of trends in rare events: Theory 

and application to heavy precipitation in the Alpine region.” Journal of 

Climate Vol. 14, pp. 1568-1584. 



 

 160 

Gergel, Dixon, & Turner (2002). “Consequences of Human-altered floods: Levees, 

Floods, and Floodplain forests along the Wisconsin River.” Ecological 

applications, Vol 12(6), pp. 1755-1770.  

Gersonius, B., R. Ashley, A. Pathirana, and C. Zevenbergen, (2013). “Climate change 

uncertainty: building flexibility into water and flood risk infrastructure.” 

Climatic Change Vol. 116, pp. 411-423. 

Gilroy, K. L. and R. H. McCuen (2012). “A nonstationary flood frequency analysis 

method to adjust for future climate change and urbanization.” Journal of 

Hydrology Vol. 414-415, pp. 40-80. 

Gómez-Baggethun, E. and M. Ruiz-Pérez (2011). “Economic valuation and the 

commodification of ecosystem services.” Progress in Physical Geography Vol. 

35(5), pp. 613-628. 

Goodrich, R. D. (1938). “Causes and control of major floods.” Eos Archives Vol. 

19(2), pp. 647-653. 

Goodrich, G. B. (2007). “Influence of the Pacific Decadal Oscillation on winter 

precipitation and drought during years of neutral ENSO in the western United 

States.” Weather and Forecasting Vol. 22, pp. 116-124. 

Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel, and R. J. Nathan. 2004. 

Stream hydrology: an introduction for ecologists. John Wiley & Sons. 

Goree, P. A. and R. J. Younkin (1966), “Synoptic climatology of heavy snowfall over 

the central and eastern United States.” Monthly Weather Review Vol. 94(11), 

pp. 663-668. 



 

 161 

Grimm, N. B., F. S. Chapin III, B. Bierwagen, P. Gonzalez, P. M. Groffman, Y. Luo, 

F. Melton, K. Nadelhoffer, A. Pairis, P. A. Raymond, J. Schimel, and C. E. 

Williamson (2013). “The impacts of climate change on ecosystem structure 

and function.” Frontiers in Ecology and the Environment. Vol. 11(9), pp. 474-

482.   

Gunderson, L. H. (2000), “Ecological Resilience- in theory and application.” Annual 

Review on Ecological Systems Vol. 31, pp. 425-439. 

Hanel, M., T. A. Buishand, C. A. T. Ferro (2009). “A nonstationary index flood 

model for precipitation extremes in transient regional climate model 

simulations.” Journal of Geophysical Research Vol. 114(D15), pp. D15107. 

Hall, J. W. and D. Solomatine (2008). “A framework for uncertainty analysis in flood 

risk management decisions.” International Journal of River Basin 

Management Vol. 6(2), pp. 85-98. 

Hall, C. J., A. Jordaan, and M. G. Frisk (2011), “The historic influence of dams on 

diadromous fish habitat with a focus on river herring and hydrologic 

longitudinal connectivity.” Landscape Ecology Vol. 26, pp. 95-107. 

Hall, J., B. Arheimer, M. Borga, R. Brazdil, P. Claps, A. kiss, T. R. Kjeldsen, J. 

Kriauciuneine, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. 

McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. 

Neuhold, J. Parajka, R. A. P. Perdigao, L. Placvoca, M. Rogger, J. L. Salinas, 

E. Sauquet, C. Schar, J. Szolgay, A. Viglione, and G. Closchl (2014). 

“Understanding flood regime changes in Europe: A state of the art assessment.” 

Hydrology and Earth System Sciences Vol. 18, pp. 2735-2772. 



 

 162 

Hamarat, C., J. H. Kwakkel, E. Pruyt, and E. T. Loonen (2014). “An exploratory 

approach for adaptive policymaking by using multi-objective robust 

optimization.” Simulation Modelling Practice and Theory Vol. 46, pp. 25-39. 

Harrison, M. S. J. “A generalized classification of South African summer rain-bearing 

synoptic systems.” International Journal of Climatology Vol. 4(5), pp. 547-

560. 

Hashimoto, T., Loucks, D. P., and Stedinger, J. R. (1982). “Robustness of water 

resources systems.” Water Resources Research Vol. 18(1), pp. 14-20. 

Heller, N. E. and E. S. Zavaleta (2009), “Biodiversity management in the face of 

climate change: A review of 22 years of recommendations.” Biological 

Conservation Vol. 142(1), pp. 14-32. 

Hirsch, R. M. and K. R. Ryberg (2012). “Has the magnitude of floods across the USA 

changed with global CO2 levels?” Hydrological Sciences Journal, Vol. 57(1), 

DOI: 10.1080/02626667.2011.621895 

Hirsch, R. M. (2011). “A perspective on nonstationarity and water management.” 

Journal of the American Water Resources Association Vol. 47, pp. 436-446. 

Holland, W. R. and L. B. Lin (1975). “On the origin of mesoscale eddies and their 

contribution to the general circulation of the ocean. 1. A preliminary 

numerical experiment.” Journal of Physical Oceanography Vol. 5, pp. 642-

657. 

Horton, R. E. (1933). “The role of infiltration in the hydrologic cycle.” Eos Archives 

Vol. 14(1), pp. 446-460. 



 

 163 

Hoyt, W. G. and W. B. Langbein (1939). “Some general observations of 

physiographic and climatic influences on floods.” Eos Archives Vol. 20(2), pp. 

166-174. 

Huggett, A. (2005). “The concept and utility of “ecological thresholds” in biodiversity 

conservation.” Biological Conservation Vol. 124(3), pp. 301-310. 

Jacoby, H. D., and D. P. Loucks (1972). “Combined use of optimization and 

simulation models in river basin planning.” Water Resources Research Vol. 

8(6), pp. 1401-1414. 

Jordan, E. “Iowa City expects to have flood damage estimate next week.” The Gazette  

 [Iowa City] 20 June 2013: web, <http://thegazette.com/2013/06/20/iowa-city-

expects-to-have-flood-damage-estimate-next-week/>. Accessed February 15, 

2014. 

Kahana, R., B. Ziv, Y. Enzel, and U. Dayan (2002), “Synoptic climatology of major 

floods in the Negev Desert, Israel.” International Journal of Climatology Vol. 

22(7), pp. 867-882. 

Kasprzyk, J. R., S. Nataraj, P. M. Reed, and R. J. Lempert (2013), “Many objective 

robust decision making for complex environmental systems undergoing 

change.” Environmental Modelling and Software Vol. 42, pp. 55-71.  

Khaliq, M. N., T. B. M. J. Ouarda, J. –C. Ondo, P. Gachon, and B. Bobee (2006). 

“Frequency analysis of a sequence of dependent and/or non-stationary hydro-

meteorological observations: A review.” Journal of Hydrology Vol. 329(3-4),  

pp. 534-552. 



 

 164 

Kiem, A. S., S. W. Franks, and G. Kuczera (2003). “Multi-decadal variability of flood 

risk.” Geophysical Research Letters, Vol. 30(2), 1035. 

Klipsch, J. and M. Hurst. 2007. HEC-ResSim Reservoir System Simulation User’s 

Manual Version 3.0. USACE, Davis, CA: 512. 

Knippertz, P. et al. (2013). “A global climatology of tropical moisture exports.” 

Journal of Climate Vol. 26(10), pp. 3031-3045. 

Knutti, R., T. F. Stocker, F. Joos, and G. K. Plattner (2003). “Probabilistic climate 

change projections using neural networks.” Climate Dynamics Vol. 21, pp. 

257-272. 

Konak, A., D. W. Coit, and A. E. Smith (2006). “Multi-objective optimization using 

genetic algorithms: A tutorial.” Reliability Engineering & System Safety, Vol. 

91(9), pp. 992-1007. 

Krakauer, N. Y. and B. M. Fekete (2014), “Are climate model simulations useful for 

forecasting precipitation trends? Hindcast and synthetic-data experiments.” 

Environmental Research Letters Vol. 9(2), L024009. 

Kwon, H.-H., C. Brown, K. Xu, and U. Lall (2009). “Seasonal and annual maximum 

streamflow forecasting using climate information: Application to the Three 

Gorges Dam in the Yangtze River basin, China.” Hydrological Sciences Vol. 

54(3), pp. 582-595. 

Labudova, L., P. Stastny, and M. Trizna (2013). “The North Atlantic Oscillation and 

winter precipitation totals in Slovakia.” Moravian Geographical Reports Vol. 

21, pp. 38-49. 



 

 165 

Lambin, E. F., M. D. A. Rounsevell, and H. J. Geist (2000), “Are agricultural land-

use models able to predict changes in land-use intensity?” Agriculture, 

Ecosystems, and Environment Vol. 82, pp. 321-331. 

Lavers, D. A. et al. (2013). “Atmospheric rivers and flooding over the central United 

States.” Journal of Climate Vol. 26(20), pp. 7829-7836. 

Lempert, R. J. and M. Collins (2007). “Managing the risk of uncertain threshold 

response: comparison of robust, optimum, and precautionary approaches.” 

Risk Analysis  Vol 24, pp. 1009-1026. 

Lempert, R. J., Sriver, R. L., and K. Keller (2012). “Characterizing uncertain sea level 

rise projections to support investment decisions.” Public Interest Energy 

Research Program White Paper no. CEC-500-2012-056. 

Lawrence, J., A. Reisinger, B. Mullan, and B. Jackson (2013). “Exploring climate 

change uncertainties to support adaptive management of changing flood-risk.” 

Environmental Science and Policy Vol. 33, pp. 133-142. 

Lempert, R. J., and S. W. C. B. S. Popper (2003). “Shaping the next one hundred 

years: New methods for quantitative, long-term policy analysis.” RAND 

Corporation, Santa Monica, CA.  

Lempert, R., N. Kalra, S. Peyraud, Z. Mao, S. B. Tan, D. Cira, and A. Lotsch (2013). 

“Ensuring robust flood risk management in Ho Chi Minh City.” World Bank 

Policy Research Working Paper No. 6465. Available at 

SSRN: http://ssrn.com/abstract=2271955 

http://ssrn.com/abstract=2271955


 

 166 

Lenderink, G. and E. van Meijgaard (2008), “Increase in hourly precipitation 

extremes beyond expectations from temperature changes.” Nature Geoscience 

Vol. 1, pp. 511-514. 

Lettenmaier, D. P., and S. J. Burgess (1978). “Climate change: Detection and its 

impact on hydrologic design.” Water Resources Research Vol. 14, pp. 670-

687. 

Lima, C. H. R. and U. Lall (2010). “Spatial scaling in a changing climate: A 

hierarchical Bayesian model fr non-stationary multi-site annual maximum and 

monthly streamflow.” Journal of Hydrology Vol. 383(3-4), pp. 307-318. 

Lins, H. F. (2012). “USGS Hydro-Climatic Data Network 2009 (HCDN-2009): U.S. 

Geological Survey Fact Sheet 2012-3047,” p. 4 

<http://pubs.usgs.gov/fs/2012/3047/>. 

Lins, H. F. and J. R. Slack (1999). “Streamflow trends in the United States.” 

Geophysical Research Letters Vol. 26, pp. 227-230. 

Littin, G. R. and J. C. McVay (2009). “Water-Quality and Biological Assessment of 

the Iowa River and tributaries within and contiguous to the Meskwaki 

Settlement of the Sac and Fox Tribe of the Mississippi in Iowa, 2006-2007.” 

U.S. Department of the Interior, U.S. Geological Survey, and Meskwaki 

Settlement of the Sac and Fox tribe of the Mississippi in Iowa Scientific 

Investigations Report 2009-5105, 54 pp. 

Lonigro, T. and M. Polemio (2015). “Role of climate and land use variations on the 

occurrence of damaging hydrogeological events in Apulia (southern Italy).” 

Engineering Geology for Society and Territory: Climate Change and 

http://pubs.usgs.gov/fs/2012/3047/


 

 167 

Engineering Geology. Vol. 1, pp. 123-127. ISBN 978-3-319-09299-7. 

Springer International Publishing. 

Lopez, A., C. Tebaldi, M. New, D. Stainforth, M. Allen, and J. Kettleborough (2006). 

“Two approaches to quantifying uncertainty in global temperature changes.” 

Journal of Climate Vol. 19, pp. 4785-4795. 

Lund, J. (2002), “Floodplain planning with risk-based optimization.”  Journal of 

Water Resources Planning and Management, Vol. 127(3). 

Madsen, H., D. Lawrence, M. Lang, M. Martinkova, and T. R. Kjeldsen (2014). 

“Review of trend analysis and climate change projections of extreme 

precipitation and floods in Europe.” Journal of Hydrology Vol. 519D, pp. 

3634-3650. 

Mageau, M., R. Costanza, and R. E. Ulanowicz (1995). “The development, testing, 

and application of a qualitative assessment of ecosystem health.” Ecosystem 

Health Vol 1, pp. 201-203. 

Matrosov, E. S., A. M. Woods, J. J. Harou (2013). “Robust Decision Making and 

Info-Gap Decision Theory for water resource system planning.” Journal of 

Hydrology Vol. 494, pp. 43-58. 

Maurer, E., A. Wood, J. Adam, D. Lettenmaier, and B. Nijssen. 2002. A Long-Term 

Hydrologically Based Dataset of Land Surface Fluxes and States for the 

Conterminous United States. Journal of Climate 15:3237-3251. 



 

 168 

Maurer, E., L. Brekke, T. Pruitt, and P. B. Duffy. 2007. Fine‐resolution climate 

projections enhance regional climate change impact studies. Eos, Transactions 

American Geophysical Union 88:504-504. 

Mays, L. W. (2011). Water Resources Engineering. Chapter 14: Flood Control. 2nd 

Edition, John Wiley and Sons, Inc. ISBN 978-0-470-46064. 

McCollough, K. “Inspections reveal problems with Iowa’s flood-control levees but 

maintenance lags.” IowaWatch: The Iowa Center for Public Affairs 

Journalism August 10, 2013: web, accessed February 15, 2014. 

<http://iowawatch.org/2013/08/10/inspections-reveal-problems-with-iowas-

flood-control-levees-but-maintenance-lags/> 

McCluney, K. E., N. L. Poff, M. A. Palmer, J. H. Thorp, G. C. Poole, B. S. Willians. 

M. R. Williams, and J. S. Baron (2014), “Riverine macrosystems ecology: 

sensitivity, resistance, and resilience of whole river basins with human 

alterations.” Frontiers in Ecology and the Environment. Vol 12, pp. 48-58. 

McPhee, J. and W. W.-G. Yeh (2004), “Multiobjective optimization for sustainable 

groundwater management in semiarid regions.” Journal of Water Resources 

Planning and Management Vol. 130(6), 490-497. 

Mens, M. J. P., F. Klijn, K. M. de Bruijn, and E. van Beek (2011). “The meaning of 

system robustness for flood risk management.” Environmental Science and 

Policy Vol. 14(8), pp. 1121-1131. 

Merz, B., J. Hall, M. Disse, and A. Schumann (2010). “Fluvial flood risk management 

in a changing world.” Natural Hazards and Earth System Sciences Vol. 10, pp. 

509-527. 



 

 169 

Merz, B., S. Vorogushyn, S. uhlemann, J. Delgado, and Y. Hundecha (2012). “HESS 

Opinions: More efforts and scientific rigour are needed to attribute trends in 

flood time series.” Hydrological and Earth System Sciences Vol. 16, pp. 1379-

1387. 

Miller, B., D. Goldberg (1995). “Genetic algorithms, tournament selection, and the 

effects of noise.” Complex Systems Vol. 9, pp. 193-212. 

Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, S. W. Kundzewicz, D. P. 

Lettenmaier, and R. J. Stouffer (2008). “Stationarity is Dead: Whither Water 

Management?” Science: Policy Forum, Vol. 319. 

Moody, P. and C. Brown (2012), “Modeling stakeholder-defined climate risk on the 

Upper Great Lakes.” Water Resources Research, Vol. 48(10), W10524. 

Morin, E. (2011). “To know what we cannot know: Global mapping of minimal 

detectable absolute trends in annual precipitation.” Water Resources Research 

Vol. 47(7), pp.  

Morgan, R. K. (2012). “Environmental impact assessment: the state of the art.” 

Impact assessment and project appraisal Vol. 30(1), pp. 5-14. 

Mudersbach, C. and J. Jensen (2010). “Nonstationary extreme value analysis of 

annual maximum water levels for designing coastal structures on the German 

North Sea coastline.” Journal of Flood Risk Management Vol. 3(1), pp. 52-62. 

Muller, R. A. (1977). “A synoptic climatology for environmental baseline analysis: 

New Orleans.” Journal of Applied Meteorology Vol. 16, pp. 20-33. 



 

 170 

Mulvey, J. M., Vanderbei, R. J., and Zenios, S. A. (1995). “Robust optimization of 

large-scale systems.” Operations Research Vol. 43(2), pp. 264-281. 

National Research Council (2000). “Risk analysis and uncertainty in flood damage 

reduction studies.” National Academic Press, Washington, D.C. 

Nied, M., T. Pardowitz, K. Nissen, U. Ulbrich, Y. Hundecha, and B. Merz (2014). 

“On the relationship between hydro-meteorological patterns and flood types.” 

Journal of Hydrology Vol. 519D, pp. 3249-3262. 

Nilsson, C. and K. Berggren (2000), “Alterations of riparian ecosystems caused by 

river regulation.” Bioscience Vol. 50(9), pp. 783-792. 

O’Brien, N. L. and D. H. Burn (2014), “A nonstationary index-flood technique for 

estimating extreme quantiles for annual maximum streamflow.” Journal of 

Hydrology Vol. 519B, pp. 2040-2048. 

Obeysekera, J., and J. D. Salas (2014). “Quantifying the uncertainty of design floods 

under nonstationary conditions.” Journal of Hydrologic Engineering, Vol. 

19(7), pp. 1438-1446. 

Olsen, J. R., P. A. Beling, and J. H. Lambert (2000). “Dynamic models for floodplain 

management.” Journal of Water Resources Planning and Management Vol. 

126:3(7), pp. 167-175. 

Oreskes, N., D. A. Stainforth, L. A. Smith (2010), “Adaptation to Global Warming: 

Do Climate Models Tell Us What We Need to Know?” Philosophy of Science 

Vol. 77(5), pp. 1012-1028. 



 

 171 

Owrangi, A. M., R. Lannigan, and S. P. Simonovic (2014). “Interaction between land-

use change, flooding, and human health in Metro Vancouver, Canada.” 

Natural Hazards Vol. 72, pp. 1219-1230. 

Poff, N. L. (2002): “Ecological response to and management of increased flooding 

caused by climate change.” The Royal Society, Philosophical Transactions R. 

Soc. Lond., Vol. 360, pp. 1497-1510.  

Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. 

Sparks, and J. C. Stromberg (1997). “The natural flow regime.” Bioscience 

Vol. 47(11), pp. 769-784. 

Prudhomme, C., N. Reynard, and S. Crooks (2002). “Downscaling of global climate 

models for flood frequency analysis: Where are we now?” Hydrological 

Processes Vol. 16, pp. 1137-1150. 

Prudhomme, C., R. L. Wilby, S. Crooks, A.L. Kay, N. S. Reynard (2010), “Scenario-

neutral approach to climate change impact studies: Application to flood risk.” 

Journal of Hydrology Vol. 390(3-4), pp. 198-209. 

Prudhomme, C., D. Jakob, and C. Svensson (2003). “Uncertainty and climate change 

impact o the flood regime of small UK catchments.” Journal of Hydrology 

Vol. 277(1-2), pp. 1-23. 

Rabot, C. (1905). “Glacial reservoirs and their outbursts.” The Geographical Journal 

Vol. 25(5), pp. 534-548. 

Ramos, V., R. Maia, N. Formigo, and B. Oliveira (2016). “Assessment of ecological 

risk based on projected hydrological alteration.” Environmental Processes Vol. 

3(3), pp. 569-587. 



 

 172 

Ray, P. A., D. W. Watkins Jr., R. M. Vogel, and P. H. Kirshen (2014), “Performance-

based evaluation of an improved robust optimization formulation.” Journal of 

Water Resources Planning and Management Vol. 140(6), 04014006. 

Reeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Q. Lu (2007), “A review and 

comparison of changepoint detection techniques for climatic data.” Journal of 

Applied Meteorological Climatology, Vol. 46, pp. 900-915. 

Richter, B. D., R. Mathews, D. L. Harrison, and R. Wigington (2003). “Ecologically 

sustainable water management: Managing river flows for ecological integrity.” 

Ecological Applications Vol. 13, pp. 206-224. 

Robertson, A. W. et al. (2015). “Weather and climatic drivers of extreme flooding 

events over the Midwest of the United States.” Extreme Events John Wiley & 

Sons, Inc., pp. 113-124. 

Robson, A. J., T. K. Jones, D. W. Reed, and A. C. Bayliss (1998), “A study of 

national trend and variation in U.K. floods.” International Journal of 

Climatology Vol. 18(2), pp. 165-182. 

Rogers, P. P., M. B. Fiering (1986). “Use of systems analysis in water management.” 

Water Resources Research Vol. 22(95), pp. 1465-1585. 

Rootzen, H. and R. W. Katz (2013). “Design life level: Quantifying risk in a changing 

climate.” Water Resources Research Vol. 49(9), pp. 5964-5972. 

Rosner, A., R. M. Vogel, and P. H. Kirshen (2014). “A risk-based approach to flood 

management decisions in a nonstationary world.” Water Resources Research 

Vol. 50(3), pp. 1928-1942. 



 

 173 

Saha, S., S. Moorthi, H.-L. Pan, X. Wu, J. Wang (2010). “The NCEP climate forecast 

system reanalysis.” Bulletin of the American Meteorological Society Vol. 91.8, 

pp. 1015-1057. 

Salas, J., and J. Obeysekara (2014). “Revisiting the concepts of return period and risk 

for nonstationary hydrologic extreme events.” Journal of Hydrologic 

Engineering Vol. 19(3), pp. 554-568. 

Salathe, E. P. Jr. (2003). “Comparison of various precipitation downscaling methods 

for the simulation of streamflow in a rainshadow river basin.” International 

Journal of Climatology Vol. 23(8), pp. 887-901. 

Schoof, J. T. and S. C. Pryor (2005). “An evaluation of two GCMs: simulation of 

North American teleconnection indices and synoptic phenomena.” 

International Journal of Climatology Vol. 26(2), pp. 267-282. 

Seidou, O., A. Ramsay, and I. Nistor (2012). “Climate change impacts on extreme 

floods I: combining imperfect deterministic simulations and non-stationary 

frequency analysis.” Natural Hazards Vol. 61(2), pp. 647-659. 

Sexton, D. M. H., J. M. Murphy, M. Collins, and M. J. Webb (2011). “Multivariate 

probabilistic projections using imperfect climate models part 1: outline of 

methodology.” Climate Dynamics Vol. 38(11-12), pp. 2513-2542. 

Sheldon, F., E. E. Peterson, E. L. Boone, S. E. Bunn, and B. D. Harch (2012). 

“Identifying the spatial scale of land use that most strongly influences overall 

river ecosystem health score.” Ecological Applications Vol. 22(8), pp. 2188-

2203. 



 

 174 

Sheridan, S. C. and C. C. Lee (2010). “Synoptic climatology and the general 

circulation model.” Progress in Physical Geography Vol. 36, pp. 548-557. 

Slack, J. R., A. M. Lumb, and J. M. Landwehr (1992). “Hydro-Climatic Data 

Network (HCDN) – A USGS streamflow data set for the U.S. for the study of 

climate fluctuations.” USGS Water Resources Investigations Report 93-4076. 

U.S. Geological Survey, Reston, Virginia, USA. 

Slater, L. J., M. B. Singer, and J. W. Kirchner (2015). “Hydrologic versus geomorphic 

drivers of trends in flood hazard.” Geophysical Research Letters Vol. 42(2), 

pp. 370-376. 

Smagorinsky, J., S. Manabe, and J. L. Holloway, Jr. (1965). “Numerical results from 

a nine-level general circulation model of the atmosphere.” Monthly Weather 

Review Vol. 93(12), pp. 727-768. 

Smith, A., P. Bates, J. Freer, and R. Wetterhall (2013). “Investigation the application 

of climate models in flood projections across the UK.” Hydrological 

Processes Vol. 28(5), pp. 2810-2823. 

Stainforth, D. A., M. R. Allen, E. R. Tredger, and L. A. Smith (2007a), “Confidence, 

uncertainty, and decision-support relevance in climate predictions.” 

Philosophical Transactions of the Royal Society A. Vol. 365, pp. 2145-2161. 

Stainforth, D. A., T. E. Downing, R. Washington, A. Lopez, M. New (2007b). “Issues 

in the interpretation of climate model ensembles to inform decisions.” 

Philosophical Transactions of the Royal Society Vol. 365, pp. 2163-2177. 



 

 175 

Stedinger, J. R., and V. W. Griffis (2011). “Getting from here to where? Flood 

frequency analysis and climate.” Journal of the American Water Resources 

Association Vol. 47(3), pp. 506-513. 

Stedinger, J. R. (1983), “Confidence intervals for design events.” Journal of 

Hydraulic Engineering, Vol. 109(1), pp. 13-27. 

Stoeckel, J. A., C. R. Rehmann, D. W. Schneider, and D. K. Padilla (2004). 

“Retention and supply of zebra mussel larvae in a large river system: 

importance of an upstream lake.” Freshwater Biology Vol. 49(7), pp. 919-930. 

Su, H.-T., Y.-K. Tung (2014). “Comparisons of risk-based decision rules for the 

application of water resources planning and management.” Water Resources 

Management, Vol. 20, pp. 3921-3935. 

Sunyer, M. A., H. Madsen, D. Rosbjerk, and K. Arnberg-Nielsen (2014). “A Bayesian 

approach for uncertainty quantification of extreme precipitation projections 

including climate model interdependency and non-stationary bias.” Journal of 

Climate Vol. 27, pp. 7113-7132. 

Taguchi, G. (1984), “Quality engineering through design optimization.” Kraus 

International Publications, White Plains, NY.  

Taylor, K. E. R. J. Stouffer, G. A. Meehl (2012). “An overview of CMIP5 and the 

experimental design.” Bulletin of the American Meteorological Society Vol. 

93, pp. 485-498. 



 

 176 

Tebaldi, C., and R. Knutti (2007). “The use of multi-model ensemble in probabilistic 

climate projections.” Philosophical Transactions of the Royal Society Vol. 373, 

pp. 2035-2075. 

Tebaldi, C. and J. M. Arblaster (2014). “Pattern scaling: Its strengths and limitations, 

and an update on the latest model simulations.” Climatic Change Vol. 122(3), 

pp. 459-471. 

Tung, Y.-K. (2005), “Flood defense systems design by risk-based approaches.” Water 

International Vol. 30(1), pp. 50-57. 

U.S. Army Corps of Engineers (1995). “Design of Coastal Revetments, Seawalls, and 

Bulkheads.” Engineering and Design Manuals EM 1110-2-1614. 

US Water Resources Council (2013). Principles and Requirements for Federal 

Investments in Water Resources. March 2013.  

U.S. Army Corps of Engineers Institute for Water Resources (2003). “National 

Economic Development Economics Primer.” IWR Report 09-R-3, Institute of 

Water Resources, 26 pp.  U.S. Army Institute for Water Resources, 7701 

Telegraph Road, 2nd Floor Casey Building, Alexandria, VA 22315-3868. 

USACE, Rock Island District. “Coralville Lake Reservoir Records.” 

<http://www.mvr.usace.army.mil/Missions/Recreation/CoralvilleLake.aspx>, 

accessed October 16, 2013. 

Villarini, G., J. A. Smith, R. Vitolo, and D. B. Stephenson (2013). “On the temporal 

clustering of US floods and its relationship to climate teleconnection patterns.” 

International Journal of Climatology Vol. 33(3), pp. 629-640. 



 

 177 

Vogel, R. M., A. Rosner, and P. H. Kirshen (2013). “Likelihood of societal 

preparedness for global change—Trend detection.” Natural Hazards Earth 

System Science Vol. 13, pp. 1-6. 

Vogel, R. M., C. Yaindl, and M. Walter (2011). “Nonstationarity: Flood 

magnification and recurrence reduction factors in the United States.” Journal 

of the American Water Resources Association Vol. 47(3), pp. 464-474. 

Vogel, R. M., J. Siever, S. A. Archfield, M. P. Smith, C. D. Apse, A. Huber-Lee, 

(2007) “Relations among storage, yield, and instream flow.” Water Resources 

Research Vol. 43. 

Watkins, D. W. and D. C. McKinney (1995). “Robust optimization for incorporating 

risk and uncertainty in sustainable water resources planning.” Modelling and 

Management of Sustainable Basin-scale Water Resources Systems, IAHS Publ. 

no. 231. 

Watkins, D. W., and D. C. McKinney (1997). “Finding robust solutions to water 

resources problems.” Journal of Water Resources Planning and Management 

Vol. 123(1), pp. 49-58. 

Ward, P. J., S. Eisner, M. Florke, M. D. Dettinger, and M. Kummu (2014). “Annual 

flood sensitivities to El Nino-Southern Oscillation at the global scale.” 

Hydrologic and Earth System Science, Vol. 18, pp. 47-66. 

Webb, J. A., K. A. Miller, E. L. King, S. C. de Little, M. J. Stewardson, J. K. H. 

Zimmerman, and N. L. Poff (2013). “Squeezing the most out of existing 

literature: a systematic re-analysis of published evidence on ecological 

responses to altered flows.” Freshwater Biology. 



 

 178 

Wilby, R. L. (1998). “Statistical downscaling of daily precipitation using daily airflow 

and seasonal teleconnection indices.” Climate Research Vol. 10, pp. 163-178. 

Wilks, S. S. (1938). “The large-sample distribution of the likelihood ratio for testing 

composite hypotheses.” The Annals of Mathematical Statistics Vol. 9, pp. 60-

62. 

Wobus, C., M. Lawson, R. Jones, J. Smith, and J. Martinich (2013). “Estimating 

monetary damages from flooding in the United States under a changing 

climate.” Journal of Flood Risk Management Vol. 7(3), pp 217-229. 

Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier (2004). “Hydrologic 

implications of dynamical and statistical approaches to downscaling climate 

model outputs.” Climatic Change Vol. 62(1-3), pp. 189-216. 

Woodward, M., Z. Kapelan, and B. Gouldby (2014). “Adaptive flood risk 

management under climate change uncertainty using real options and 

optimization.” Risk Analysis, Vol. 34(1), pp. 75-92. 

Xiao, M., Q. Zhang, and V. P. Singh (2014). “Influences of ENSO, NAO, IOD and 

PDO on seasonal precipitation regimes in the Yangtze River basin, China.” 

International Journal of Climatology Vol. 35(12), pp. 3556-3567. 

Xu, K., C. Brown, H.-H. Kwon, U. Lall, J. Zhang, S. Hayashi, and Z. Chen (2006). 

“Climate teleconnections to Yangtze river seasonal streamflow at the Three 

Gorges Dam, China.” International Journal of Climatology Vol. 27(6), pp. 

771-780. 



 

 179 

Xu, C. (1999). “Climate change and hydrologic models: A review of existing gaps 

and recent research developments.” Water Resources Management Vol. 13(5), 

pp. 369-382. 

Yazdi, J. and S. A. A. Salehi Neyshabouri (2012). “A simulation-based optimization 

model for flood management on a watershed scale.” Water Resources 

Management Vol. 26, pp. 4569-4586. 

Ylhaisi, J. S., L. Garre, J. Daron, and J. Rӓisӓnen (2013). “Quantifying sources of 

climate uncertainty to inform risk-analysis for climate change decision-

making.” Local Environment: The International Journal of Justice and 

Sustainability Vol.  

Zhu, T., J. R. Lund, M. W. Jenkins, G. F. Marques, and R. S. Ritzema (2007). 

“Climate change, urbanization, and optimal long-term floodplain protection.” 

Water Resources Research Vol. 43, W06421. 

Ziegler, A. D., E. P. Maurer, J. Sheffield, B. Nijssen, E. F. Wood, and D. P. 

Lettenmaier (2005). “Detection time for plausible changes in annual 

precipitation, evapotranspiration, and streamflow in three Mississippi river  


	Methods for incorporating ecological impacts with climate uncertainty to support robust flood management decision-making
	Recommended Citation

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	Abbreviations
	Symbols

	THE NEED FOR DECISION FRAMEWORKS WHICH ACCOMMODATE UNCERTAINTY AND ECOLOGICAL IMPACTS IN FLOOD RISK MANAGEMENT
	FLOOD RISK MANAGEMENT IN IOWA CITY
	Credibility of average temperature and precipitation in climate model projections and as drivers of flood hazard
	Basin hydrologic characteristics and flood history
	Flood management system

	Aquatic and riparian ecosystem and biota
	Systems modeling framework

	A RISK-BASED STATISTICAL SIGNIFICANCE THRESHOLD FOR FLOOD HAZARD TREND DETECTION
	Abstract
	Introduction
	Hypothesis testing and flood management decisions

	Deriving a risk-based trend detection significance threshold
	Peak flow trends across the contiguous United States
	Risk-based trend detection across the contiguous United States

	Conclusions

	A DECISION ANALYTIC MODEL FOR FLOOD RISK MANAGEMENT WITH UNCERTAIN FLOOD HAZARD TREND
	Abstract
	Introduction
	Decision Model Structure
	Linear programming optimization model
	Incorporating ecological impacts in the cost calculation
	Decision scaling framework and decision rules

	Iowa City Flood Protection Example
	Alternative flood management actions
	Iowa River decision model formulation
	Translating climate projections into flood trend estimates

	Scenario-Optimal Iowa River Flood Management Strategies
	Recommended Iowa River Flood Management Strategies

	Conclusions and Broader Implications of the Decision Model

	DECISION SCALING-BASED ROBUST OPTIMIZATION FOR MANAGING ECONOMIC AND ECOLOGICAL FLOOD RISK
	Abstract
	Introduction
	Case Study
	Iowa City Flood Risk Management
	Flood management goals
	Adaptation alternatives
	System model

	Methodology
	Objective functions
	Multi-objective optimization: Stationary climate
	Multi-objective optimization: Projected climate
	GCM-based robust optimization
	Decision scaling-based satisficing robust optimization
	Risk-based satisficing-robust optimization

	Decision variables
	Constraints
	Optimization algorithm
	Synthesizing results to support FRM adaptation decisions

	Results & Discussion
	Conclusions

	COMBINING HISTORIC AND PROJECTED TREND IN A BAYESIAN FRAMEWORK FOR FLOOD RISK MANAGEMENT DECISION MAKING UNDER UNCERTAINTY
	Abstract
	Introduction
	The hydrologic and meteorological drivers of flood hazard

	Methodology
	Bayesian analysis of future dipole index
	Synthesis of prior parameters from climate model simulations


	Posterior parameters of dipole index probability distribution
	Conclusions

	CONCLUSIONS
	APPENDIX: IOWA CITY FLOW-DAMAGE RELATIONSHIP
	REFERENCES

