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ABSTRACT

ASTROPHYSICAL ACCRETION AND FEEDBACK: THE
BAYESIAN LINCHPIN OF THEORY AND

OBSERVATION

FEBRUARY 2017

SHAWN R. ROBERTS

B.Sc., UNIVERSITY OF NEBRASKA - LINCOLN

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Q. Daniel Wang

Despite being a major pillar of galaxy evolution, galactic feedback from stars and

supermassive black holes (SMBHs) is subject to very little observational constraint.

This is particularly true of the hot component, as viewed in X-rays. Yet, the hot

component is directly linked to much of the energetic feedback released from these

compact objects. X-ray observations suffer from several challenges that make plac-

ing this constraint a difficult task. In the face of considerable model uncertainty,

these challenges underscore the need for novel X-ray data analysis techniques. In this

dissertation, I seek to lend a unique perspective to X-ray data analysis and initiate

the steps towards unravelling the hot component of galactic feedback. This is done

through spatio-spectral fitting with Markov Chain Monte Carlo (MCMC). First, I fit

2D simulations of SMBH accretion to three separate bands of Chandra imaging data
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of Sgr A*, the SMBH at our galactic center. In this study I place the first obser-

vational constraint on the angular momentum of accreting gas and self-consistently

deconvolve residual point-like emission from the spatially extended accretion flow. I

extend this analysis in Appendix B by re-examining the spectral energy distribution

of Sgr A* from radio to X-ray. I find that a 1D accretion flow model cannot be

reconciled with the more detailed X-ray modelling results. I further speculate on

the origin of very steep synchrotron emission, suggesting that the residual point-like

emission is accelerated by magnetic turbulence. Second, I describe the methodology

for extracting spatial information from the RGS grating spectrometer onboard the

XMM-Newton satellite. I demonstrate this method using 32 observations of M31 by

fitting the OVIII Lyα and OVII Kα transitions. I show that the observed spectral pe-

culiarities are much more likely the result of resonance scattering, rather than SMBH

feedback effects seen through plasma overionization. A semiparametric extention of

that work is also provided in an appendix. Finally, I conclude with a discussion of

the usefulness of spatio-spectral analysis and highlight the promising research toward

understanding galactic feedback that can be done as an extention to the work herein.
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CHAPTER 1

GALAXY EVOLUTION: A TALE OF ACCRETION AND
FEEDBACK

When observing galaxies in optical light, they typically appear quite tame. The

“island universes” stretch through time ad infinitum; isolated, self-sustaining entities

with no relationship to their apparent surrounding void. But visible light is only the

tiniest piece of the puzzle. As we broaden our perspective, we discover the dynamically

rich nature of the universe. At its heart lies an interconnected macrocosm, the cosmic

web, directing the flow of baryonic matter [149, 109, 11]. Within this macrocosm,

galaxies are delicate ecosystems, plagued by powerful and violent feedback events

that regulate and drive evolution. Their stability is an illusion created by their vast

scales and our inability to view the various galactic gas phases with optical light.

There are two ways that a galaxy can grow through the accretion of gas; smoothly

from its surroundings or violently from a galactic merger (e.g., [62]). Both of these

are primarily driven by one thing, the cosmic web. The cosmic web is a poeticism

referring to the structure growth of dark matter, collisionless matter that does not

interact with light. This dark matter comprises the vast majority of the universe’s

mass budget. Perturbations in the early universe led to density fluctuations that

grow unabated, creating the web-like structure. Through gravity, it shapes the visible

universe. Baryons are funnelled along the web’s filaments to pool in halos. Halos at

the intersection of many filaments house the richest clusters of galaxies, the most

massive bound objects in the universe. But, the processes of structure growth on a

macro scale are fairly well understood. Dark matter is simpler to theoretically deal
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with due to its collisionless nature. Baryons, on the other hand, are much more

nuanced.

Radiative cooling, which is unique to baryons, is the ultimate arbiter of all feed-

back processes through the creation of compact objects. Within collapsed regions of

dark matter, if the temperature and density are conducive to cooling, the baryons will

continue to collapse beyond and within the relaxed dark matter distribution. At some

point, the baryons become compact enough that their self gravity locally dominates.

After this tipping point, the gas undergoes a runaway collapse, typically fragmenting

to form stars. As these stars evolve, they deposit energy and momentum into their

local ISM through a variety of processes. If large enough, they will collapse in on

themselves after expending their nuclear fuel, forming black holes. As BHs formed in

the early universe they sowed the seeds of today’s supermassive BHs (SMBHs), BHs

with masses up to 1010 solar masses, found ubiquitously at the center of galaxies.

Despite their small scale relative to the galaxy, stars and SMBHs are microcosms of

feedback, collectively exerting their influence throughout the galaxy and beyond.

The feedback from SMBHs and stars has taken center stage in recent years. They

are some of the last misunderstood foundational pieces of a fully functional model

of galaxy evolution. Unfortunately, both of these feedback mechanisms operate in a

highly non-linear way. Further, both deposit energy into their surroundings through

multiple physically distinct modes. As such, they each suffer from many of the same

unanswered questions. What is the dominant driver of feedback in each mode, me-

chanical energy or radiation? How efficient are the feedback processes? Where does

the energy deposition occur? These are a few of the key questions that have very

little observational constraint for current models of galaxy evolution.
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1.1 SMBH Feedback

Black hole accretion is one of the most fundamental physical processes for energy

generation in the universe. Current wisdom suggests that SMBH accretion is crucial

for explaining a wide range of phenomena. In particular, it is widely believed that

feedback from accreting SMBHs is instrumental for the regulation of galactic growth,

most notably for galaxies that lie at the center of large halos (M≥1013M�) [38].

In these halos, star formation becomes extremely inefficient despite rapid cooling

of the surrounding gas [39]. Presumably, this results from a preventative feedback

mechanism. That is, the accreting SMBH keeps the gas surrounding these galaxies

in a perpetually hot state, despite the fickle nature of SMBH luminosity. In addition,

due to the fairly tight correlation between central black hole mass and and galactic

bulge size, it is believed that the growth of SMBHs is strongly linked with the growth

of galactic spheroids more generally [117].

SMBH accretion can be well demarcated into two regimes: those with high accre-

tion rates, whose emission is well characterized by the thin disk model and are seen as

the iconic high luminosity active galactic nuclei (HL-AGN or quasars), and those with

low accretion rates, which result in low luminosity AGN (LL-AGN), where SMBHs

spend the bulk of their time [38]. Both of these AGN modes offer a different flavor of

feedback. HL-AGN are primarily associated with radiative feedback, while LL-AGN

are characterized by kinetic feedback in form of jets. Both modes have an uncertain

amount of kinetic feedback from magnetically driven winds. While the feedback from

HL-AGN is much more violent, the relatively gentle feedback from LL-AGN is much

more long lived, and therefore may have a more prominent role in the regulation

of star formation. While current estimates suggest the HL-AGN phase lasts ∼ 105

years [111], the frequency/duration decomposition between the two modes and the

coupling of their generated radiative and kinetic energy to the galactic environment,

and therefore role in feedback, are still not well understood.
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As noted above, the emission from HL-AGN can be well modelled with the stan-

dard thin disk [98]. In the HL-AGN phase, the density of accreting gas becomes

great enough that cooling is very efficient. This allows the gas to cool, condense,

and flatten out into a disk that is supported by angular momentum. Viscous stress

causes this disk to heat (energy that is efficiently radiated away) and siphon ma-

terial inward. Because of the high density, the emission is optically thick and can

be treated as approximately a blackbody, “approximately” because the disk spans

a range of temperatures. The radiation from the disk typically dwarfs that of the

host galaxy by several orders of magnitude in the optical, making the galaxy appear

as if it is a point source. Other emission components exist that combine to explain

not only the emission in different bands, but also different viewing geometries. These

components can also typically be well separated due to their individual dominance

in different wavebands. For example, above and below the disk, a hot corona of

magnetically excited particles exists, which exposes itself in the X-ray as a powerlaw.

However, one should not be overconfident due to our ability to model the emission

of HL-AGN. Although this radiation may drive feedback, illuminating the impor-

tance of this feedback further requires an understanding of the dynamics involved.

In the case of SMBH feedback, processes important for shaping the dynamics span a

incomprehensible range in spatial scale.

The most obvious source of feedback from HL-AGN is radiation. Radiation will

do two things to the surrounding gas: ionize it and, if the optical depth is great

enough, drive an outflow. The ionization can persist in the form of an AGN relic,

which has recently been proposed to be responsible for the diffuse X-ray excesses

observed in galactic nuclear regions (e.g., [130, 110]), as well as the ionization of cool

gas far away from post-active galaxies (e.g., [103, 59]). Secondly, if the surrounding

gas and dust are optically thick to the accretion disk’s radiation field, most of the

radiation will be absorbed and re-radiated in the IR. A large dust presence will result
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in multiple scatterings in the IR, further boosting the momentum deposition. The

typical scaling employed in simulations is ṗrad ∝ (1 + τIR)Lincident, where τIR is the

optical depth in the IR and Lincident is the luminosity incident on the gas/dust [52].

The combined pressure from a strong radiation field and multiple scatterings can then

serve to overcome the gravitational potentail of the galaxy. Given the luminosity

of HL-AGN and the typical dust content of their surroundings, [38] estimates that

radiation pressure from SMBH feedback could effectively overcome the gravity from

a galaxy one thousand times more massive than the host galaxy. Therefore, radiation

pressure likely provides more than enough energy to eject gas from the galaxy.

Radiation is not the only possible driver of galactic winds. For both HL-AGN

and LL-AGN there is an uncertain contribution from magnetically driven winds to

feedback. This wind has not been observed directly for LL-AGN because it is so ten-

uous. Simulations, however, suggest that it exists, albeit with an unclear connection

to the surrounding gas. For some HL-AGN, winds are observed in the X-ray and UV

through absorption lines that show velocities of 1× 104 km/s [97, 125, 44]. However,

it has proven difficult to determine the total covering fraction as well as the radial

location of the wind, obscuring estimates of the total kinetic power of the wind. Yet,

current best estimates place it at ∼ 5− 10% of the accretion power [34].

The emission from LL-AGN is distinctly enigmatic, largely due to the inherent

difficulty of separating the various emission components. This puts researchers in

a difficult position. While HL-AGN emission is well modelled, allowing us to set

boundary conditions for that mode of AGN feedback, LL-AGN have no such luxury,

at least for the winds. Since the outflowing gas is unobservably tenuous it becomes

impossible to estimate the outflow’s effects on its surroundings without understanding

the nature of the accretion that drives it. The compelete lack of a sufficiently con-

strained model of the accretion flow prevents any realistic inquiry into the feedback,

which is highly dependent on the nuances of the accretion flow, such as angular mo-
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mentum. These circumstances have given rise to a plethora of radiatively inefficient

(RIAF) and advection dominated accretion flow models, which are characterized by

accretion-comparable outflows and the advection of energy into the SMBH. While

these models broadly explain the gross features of the quiescent emission from the

nearest LL-AGN, Sgr A*, including radiative efficiency and low resolution spectrum

[90], we will see later that this is largely due to a lack of self-consistent modelling of

the spatial and spectral information provided by the data.

Jets and bubbles are the most commonly observed manifestation of feedback from

LL-AGN in galaxy clusters and massive galaxies (e.g., [87, 75]). Relativistic jets, typ-

ically bipolar, supersonically drill through their immediate surroundings. In doing so,

they shock gas and inflate bubbles of relativistic, non-thermal plasma. Bubbles then

bouyantly rise in the hot cluster atomosphere, transporting energy with them. Based

on the strong anti-correlation between cooling time and observed bubble presence, we

expect bubbling to be a relatively continuous process [35]. Further, since turbulent

energy is only ∼ 10% of thermal energy within the bubble, we believe the bubbling

process is also fairly gentle [40, 41].

Through bubbles, jets appear to provide the means for efficient preventative

feedback in large-mass halos. Given the bubble volume, surrounding pressure, and

bouyancy time, one can estimate the total kinetic power in the jets. This, of course,

assumes one can reliably estimate the surrounding pressure by estimating the tem-

perature and density with X-ray observations, which, as we will see throughout much

of this work, is less straightforward than we might presume. Nevertheless, estimates

of this power are typically in good agreement with the energy loss estimated from ra-

diative cooling in the surrounding gas [102, 101, 85]. However, the location of energy

deposition from bouyant bubbles is extremely uncertain as X-rays cannot be used to

observe the hot gas to large radii.
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1.2 Stellar Feedback

Stellar feedback can also be split into two regimes, feedback related to star forma-

tion and late-time stellar feedback. Feedback from star formation directly regulates

star formation in galaxies that are actively forming stars by expelling gas from the

galactic reservoir. Such feedback prevents extended periods of heavy star formation.

Late-time stellar feedback, on the other hand, may be significant in galaxies with a

large aged population and very little star formation. In these galaxies, it may input

enough energy into the surrounding gas to prevent star formation from initiating.

Late-time stellar feedback is the least understood of the two stellar feedback

regimes. In galactic spheroids, Type Ia supernovae (SNe) deposit energy and mo-

mentum into the local interstellar medium (ISM). Simulations suggest these SNe may

create hot, bouyant bubbles that transport energy out of the deep galactic potential

[123]. There is some anecdotal observational support for this interpretation (e.g.,

[45, 21, 22, 55, 49, 80]). Unfortunately, due to non-thermal emission contamination,

this evidence is highly suspect (e.g., [77]). There is also the additional complication

of AGN feedback in these same galaxies. Deconvolving the relative contribution be-

tween AGN and late-time stellar feedback in galactic spheroids is non-trivial, as both

can potentially serve to fuel galatic outflows.

Star formation feedback is in a similar regime of understanding as SMBH feedback.

We have a fair understanding of the energetics and rate of Type II SNe [69]. We also

have a solid framework for the feedback from high mass stars in the form of stellar

winds and radiation [69]. However, we don’t understand how these different forms

of feedback combine and couple with the surrounding medium to collectively drive

galactic scale outflows. The change of scale from individual stars through galaxies

and beyond to the intergalactic medium (IGM) prevents us from simulating this

evolution directly from first principles (e.g., [26, 129, 51]). Further, the multiphase

nature of star formation driven galactic outflows leads to complex emission structure
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that quickly becomes too diffuse to reasonably observe as this outflow expands from

the galactic plane. This leaves us with little understanding as to the true energetics

and ultimate fate of these outflows.

There are three primary mechanisms by which stars expel matter and energy

into their surroundings: stellar winds, radiation pressure, and SNe. All three of

these directly inject momentum into the local ISM. Additionally, stellar winds and

SNe both add heat by shocking surrounding gas. The primary source of constraint

on the power of different stellar feedback mechanisms is through simulations. This

is typically done through ad-hoc sub-grid implementations, required by the extreme

dynamic range in spatial and mass resolution. In general, it is believed that all of these

feedback processes are important for generating galactic winds [52, 71]. However, the

relative contribution of each is highly dependent upon the physical circumstances.

At high redshift, where galactic density was much higher, energy input from SNe

and stellar winds is quickly radiated away. Therefore, the primary mechanism of

feedback is through radiation pressure from massive stars, in a similar manner as

discussed above for SMBH feedback. Radiation pressure in the high redshift universe

was not terribly efficient, due to a low metallicity and thus low dust content. However,

it still managed to drive gas out of galaxies with a mass loading (the ratio of the mass

outflow rate to the star formation rate) of approximately unity [52].

In the local universe, stellar feedback is much more efficient. Stellar winds, SNe,

and radiation pressure combine non-linearly to drive out ∼ 10 times as much gas as

forms stars for a Milky Way like galaxy[52]. For lower mass galaxies this efficiency

increases, as the density decreases. For a Small Magellenic Cloud size galaxy (n ≤ 0.1

cm−3), the density is so low that the cooling time is greater than the dynamical time.

This leads to a highly efficient coupling of energy inputs from stellar winds and SNe

that can drive gas out of the relatively shallow gravitational potential with ease.
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1.3 Of X-ray Observations

X-ray observations trace plasma at temperatures of ∼ 1× 106−8K. As such, they

give us a way to directly observe many of the feedback processes discussed above.

Further, understanding the hot phase of feedback is extremely important. For ex-

ample, it is believed that the majority of energy and metals in star formation driven

outflows are carried by the hot phase [71]. Diffuse soft X-ray emission has commonly

been used to trace various types of galactic feedback. Assuming an origin of this emis-

sion in optically-thin thermal (collisionally-excited) hot plasma, one may estimate its

mass, energy, and chemical contents and even its outflow rate from a galaxy.

Charge coupled devices (CCDs) are the standard technology for X-ray detectors.

CCDs utilize the photoelectric effect to detect photons. As photons strike a semi-

conductor, they eject electrons. X-ray photons are of sufficient energy that a single

photon liberates many electrons, tens to thousands. Further, the number of ejected

electrons is approximately linearly proportional to photon energy. For example, for

silicon the number of electrons ejected is equal to E/3.7, where E is the photon energy

in eV. This porperty of CCDs has a unique and useful side effect for X-ray astronomy.

Since the flux of X-ray photons is very low, we can read out and detect individual

photons. And since the number of photoelectrically ejected electrons is proportional

to photon energy, we are able to obtain spectral information in addition to imaging

information in every observervation.

There are three X-ray telescopes that bare mentioning: Suzaku, XMM-Newton,

and Chandra. Each provides it’s own niche in terms of capabilities. Suzaku has the

best effective area at low energies and lowest background of any imaging CCD due to

it’s low Earth orbit. Utilizing all of its CCDs in tandem makes it the telescope with

the greatest effective area. It also has comparable spectral resolution to the Chandra

ACIS systems. Unfortunately, its spatial resolution is limiting with a point spread

function (PSF) full width half maximum (FWHM) of 1.8 arcmin. Therefore, the
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Table 1.1. Basic properties of the Chandra ACIS-I and XMM-Newton RGS systems.

Chandra XMM-Newton
ACIS-I RGS

Bandpass (keV) 0.3-10 0.35-2.5
Effective Area (cm2 at peak) 580 120

Field of View 17 x 17 amin N/A x 4.4 amin
PSF FWHM (arcsec) 0.5 15

Spectral Resolution (eV) 140 1.2

two instruments chosen for the analyses herein are the Chandra ACIS-I and XMM-

Newton RGS. These were chosen because of the superior spatial resolution of Chandra

ACIS-I and the unprecedented spectral resolution of the XMM-Newton RGS. A basic

summary of their properties are shown in Table 1.1.

The XMM-Newton RGS system takes advantage of reflection to create a very

high resolution spectrum, FWHM ∼ 1.2 eV. This is done by creating a mirror etched

with very fine grooves. The grooves create a distance differential to an illuminating

surface between the peaks and troughs of the mirror. Due to the differential in time

required to reach an illuminated surface, an interference pattern will arise. Where

they constructively interfere, that is, strike the surface in phase, an intesity maximum

occurs. By using many grooves, the intensity maxima are spatially concentrated.

Further, the location of constructive inteference is wavelength dependent. Combining

these properties allows for the extraction of a spectrum with the grating. To mitigate

effective area losses, the entire FOV is dispersed by the X-ray grating. Therefore, if

a source is extended, the observed spectrum will consist of overlapping images of the

source at each wavelength, leading to a mixture of spatial and spectral information.

Chandra was launched by NASA in 1999 and is currently expected to last for at

least another decade. It is unique in that the thickness and high quality polishing of

its mirror assembly allows for extremely high spatial resolution, FWHM ∼ 0.5 arcsec.

This resolution is more than an order of magnitude better than other current X-ray

telescopes. As such, Chandra is primarily used for imaging analyses. Although, it
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should be noted that Chandra is also equipped with two grating spectrometers. They

have a comparable effective area (in general) and spectral resolution to the RGS, but

have different energy coverage. RGS does have a significantly higher effective area for

soft X-rays in the range of 0.5-1 keV. However, the primary issue with the Chandra

grating systems is that their dispersion is considerably smaller than the RGS, leading

to spatial/spectral confusion for even mildly extended sources.

Recall, the X-ray regime is photon starved. Thus, we are able to count individual

photons. In addition to providing a moderate resolution spectrum with every obser-

vation, this puts X-ray astrophysics in the realm of Poisson statistics. X-ray pixel

counts are drawn from a Poisson distribution, a discrete distribution that corresponds

to the number of events expected in a given time frame. The likelihood function has

the following form:

P (N) =
λNe−λ

N !
(1.1)

where N is the observed counts and λ is the expected number of counts. For a source

with some flux, F :

λ = F × A× t (1.2)

where A is the effective area of the instrument and t is the exposure time of an

observation. This functional form is assumed for the likelihood throughout this work.

1.4 He-Like Line Diagnostics

Above we noted the potential to estimate the chemical composition, outflow veloc-

ity, and outflow mass, assuming the emission is optically-thin and thermal. However,

X-ray emission can be seriously contaminated, if not dominated, by non-collisional

equilibrium (non-CIE) processes or optical depth effects1 [104, 77, 146]. This is par-

1For brevity sake, we will discuss both of these under the umbrella of non-CIE, as the standard
assumption is that the plasma is optically-thin and in CIE.
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ticularly true when feedback is involved, due to its violent nature. These non-CIE

contributions must be quantified before we can reliably use the diffuse soft X-ray

emission to trace galactic feedback and its impact on the galactic ecosystem. Within

the X-ray domain, the most powerful probes of the presence of galactic feedback and

its effects on hot gas through non-CIE emission are Helium-like Kα line diagnostics.

Not only are they useful diagnostics, but they are also some of the most prominent

features in an X-ray spectrum.

Unfortunately, the modelling of most non-CIE emission processes can be consid-

ered in infancy, making it very difficult to measure the physical conditions in the

plasma. As such, current attempts focus on using this line diagnostic to identify

when non-CIE emission is important and what type of emission it is, if possible. For

a grating spectrum, such as RGS, the identification of non-CIE emission is somewhat

trivial (e.g., [77]). For a moderate resolution CCD spectrum, where individual diag-

nostic lines are completely unresolved, identification is less straightforward. However,

it can be done with significant calibration [107]. The larger challenge is determin-

ing the physical cause of the non-CIE emission. However, as discussed below, each

form of non-CIE emission produces its own spatial pattern. Therefore, a combined

spatial and spectral analysis may be needed to illuminate physical mechanisms and

disentangle the true plasma conditions.

The He-like Kα transition corresponds to a transition from the first excited state

to the ground state (Figure 1.1). It consists of four lines, however two of them are so

close in energy that the transition is routinely called a triplet, consisting of the res-

onance, inter-combination, and forbidden lines. The resonance line (R) is an allowed

transition and is the strongest line for thermal emission, where electron populations

are controlled by collisions. The semi-forbidden transitions are collectively called the

inter-combination line (I). They are the weakest with a combined flux of about a

tenth of the resonance line for thermal emission at the relevant densities. Lastly, the
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Figure 1.1. Simplified Grotian Diagram for a He-like ion. Original image in [120].

forbidden line (F) is stronger than the intercombination line for the herein relevant

densities, it’s flux being approximately half that of the resonance line. This forbidden

line is extremely sensitive to feedback through non-CIE processes. It’s flux relative to

the resonance line can be enhanced by more than an order of magnitude due to a slew

of processes, most notably charge exchange (CX) and non-equilibrium ionization. We

encapsulate the Kα diagnostic power in the G-ratio = F+I
R

[95].

A recombination-dominated plasma, or an over-ionized plasma, occurs when elec-

tron levels are governed by the radiation field or for some finite time after the removal

of a strong radiation field, respectively. Such may be the case when an AGN goes

into quasar mode (an HL-AGN) [23, 84, 113]. In this case, the electron temperature

is much lower than the ionic temperature. As such, electron levels are populated

primarily through recombination, which favors the forbidden line. Similarly, for some

time after the AGN transitions to an LL-AGN, the electron populations will continue

to be populated by recombinations (a relic AGN). The duration of this effect is depen-

dent upon the local density. As such, it will produce a characteristic spatio-spectral
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imprint. For a spheroidal galaxy, where the density is a maximum at low radii and

continuously decreases as we move to larger radii, we can expect the G-ratio to be

its lowest in the center of the galaxy and asymptotically approach the fiducial value

of a recombination-dominated plasma at large radii.

CX is a special case of inelastic collision in which one or more electrons is ex-

changed between an ion and most likely neutral hydrogen. As the colliding particles

approach each other, their potentials overlap, allowing the photonless exchange and

subsequent cascade of the captured electron. This is an extremely efficient process

with a relatively large reaction cross section (about 5 orders of magnitude greater

than for electron collisional excitation). If the capturing ion is sufficiently ionized

(e.g. OVIII) then the cascading is expected to result in X-ray emission. Thus, in

principle, X-ray emitting CX can be an important process at any astrophysical site

where heavily ionized species interact with neutrals. It has been proposed and studied

in a wide range of X-ray sources, from planetary atmospheres [29, 30, 63] through

supernova remnants (SNR) [57, 107], individual star-forming complexes [126] and

star-forming galaxies [127, 76, 78] to the cores of clusters [42].

For the sake of understanding feedback, particularly that of star formation driven,

we need to have a full accounting of the effects of CX to the emission of galactic

winds. We know from infrared observations that a significant amount lowly ionized

species and molecules exists entrained within galactic outflows (e.g., [7]). Further, we

know that the G-ratio is elevated relative to thermal for observations of starbursting

galaxies, such as M82 (e..g, [77]). Both of these facts suggest CX is likely important

for the modelling of X-ray emission concerned with galactic outflows associated with

strong stellar feedback. Therefore, without including CX in our modelling, we are

likely to arrive at grotesquely incorrect estimates of outflow mass and metal content

(e.g., [57]). Due to the multiphase mixing required for CX, it can be diagnosed via the

G-ratio’s spatial correlation with emission at longer wavelengths, such as Hα [107].
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A final process that should be kept in mind is that of resonance scattering. When

the line-of-sight integrated density becomes large enough that the plasma is no longer

optically thin, the resonance line, which has a much higher oscillator strength than

the inter-combination and forbidden lines, may be scattered out of the line-of-sight

[96]. Fortunately, this process can also be spatio-spectrally identified, depending on

source geometry. For example, assuming spherical symmetry, as resonance photons

are scattered out of the line-of-sight where the optical depth is greatest, they must

emerge on the source edges, where the optical depth is minimal. Therefore, the object

integrated G-ratio will remain that of thermal. However, the G-ratio will be elevated

at source center and depressed on the edges.

Currently, the bulk of feedback understanding is built upon theoretical studies.

Observationally, these effects have been much harder to pin down. However, it is

very important that we are able to place observational constraints. Computational

studies lack the power to simulate feedback from first principles through the neces-

sary dynamic spatial range. Instead, they resort to ad-hoc prescriptions that can

vary drastically in their nuances while still broadly matching large-scale statistical

properties. Therefore, observationally tethering these simulations is one of the most

difficult challenges in astronomy at this time.

There are many reasons why observational progress has not been forthcoming

in this respect. The one clarity, between the three emission mechanisms discussed

above, is just how poor the thermal assumption is when trying to estimate the effects

of feedback. First, it is extremely difficult to ascertain the important emission mech-

anisms without high spectral resolution. Second, the current fleet of high spectral

resolution instruments are designed in such a way that one has to compromise on

effective area. Third, the instruments with high spectral resolution are designed in a

way that serves to confuse spatial and spectral information. While this may not be

an issue for very mildly diffuse sources, for at least moderately diffuse sources this
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leads to a blending of important diagnostic lines, making it difficult to disentangle the

spatial and spectral information. Lastly, modelling capabilities of non-CIE processes

have been slow in coming, with most currently in an alpha stage. These challenges

underscore the need for novel data analysis and modelling approaches.

1.5 Bayesian Inference

The unique quality of Bayesian inference is its treatment of model parameters. As

opposed to treating parameters as fixed but unknown quantities, they are themselves

treated as random variables. As we will see, this has two consequences that are of

practical use. For one, this provides a framework for the straightforward incorporation

of information from past experiments. Secondly, in a Bayesian framework we directly

compute the conditional distribution of model parameters given the observed data

and any prior information we choose to include. From a pragmatic point of view, this

provides a simple and flexible framework for all statistical needs as a scientist, where

parameter uncertainty is equally as important as best fit values.

Bayesian inference is formalized, somewhat simplistically, in Bayes’ Theorem [5]:

P (~θ| ~D) =
P ( ~D|~θ)P (~θ)

P ( ~D)
(1.3)

where P (~θ| ~D) is the probability of the parameters given the data (or posterior predic-

tive probability), P ( ~D|~θ) is the probability of the data given the model parameters

(the likelihood), P (~θ) encapsulates any prior knowledge about the model parameters

before the current experiment (the prior), and P ( ~D) is the probability of the data

(the evidence). This framework provides a natural way to derive a best fit model

and parameter credibility. The unfortunate feature of this equation, prior to modern

computing power and techniques, is the evidence. The evidence can be written more

explicitly as:
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P ( ~D) =

∫
P ( ~D|~θ)P (~θ)d~θ (1.4)

In this form, it becomes much more clear why direct analytical calculation of Bayes’

Theorem is problematic. Calculating the evidence requires integrating the likelihood

and prior over all parameters, something that is intractable for all but the most basic

models.

In order to get around the intractability of the evidence, Markov Chain Monte

Carlo (MCMC) techniques have been used to estimate the posterior distribution of

parameters. This class of methods produce as their output a correlated sample from

the joint posterior distribution. In this work, we will exclusively use the Metropolis-

Hastings (MH) algorithm due to its simplicity and generality. However, it should be

noted that recent developments have led to much more efficient sampling algorithms,

such as the No U-Turn Sampler (NUTS) [50].

Since the evidence is not a function of the model parameters, the MH algorithm

circumvents the evidence entirely as it only requires a function proportional to the

function being sampled. This necessitates that the MH algorithm is a rejection sam-

pler. For some number of samples, N , we randomly draw a new parameter set ~θ∗

from a user defined probability distribution P (~θ|~θt−1). 2 We further take a random

uniform draw from 0 to 1, u. If u is then less than the ratio of the posterior probabil-

ity of the new parameter set to the posterior odds of the old parameter set, then we

accept the step, that is, update the parameters. The Metropolis-Hastings algorithm is

formalized in Algorithm 1. By opening up Bayesian inference to a much broader class

of model and prior formulation, this simple algorithm encapsulates immense power.

2For the case of the MH algorithm, the proposal distribution must be tuned. As one can imagine,
in high dimensions this tuning is impractical. Therefore, in practice, we implement the algorithm
in a component-wise fashion, which simplifies proposal tuning.
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Algorithm 1 Component-wise Metroplis Hastings MCMC Sampling

1: procedure MH sample
2: for t in N do
3: for θi in ~θ do . Sample parameters individually
4: Draw θ∗i from P (θi|θt−1i )
5: u← uniform random[0, 1]

6: if u ≤ P ( ~D|~θ∗)P (~θ∗)

P ( ~D|~θt−1)P (~θt−1)
then . Accept the step

7: θti ← θ∗i
8: else
9: θti ← θt−1i

10: end if
11: end for
12: end for
13: end procedure

1.6 Thesis Overview

The goal of this work is to explore novel ways to extract information from X-ray

data and in doing so push the boundaries of current observational constraints on

galactic feedback. In Chapter 2, we take advantage of the high angular resolution of

Chandra to resolve and develop a self-consistent spatiospectral model of our Galaxy’s

central accretion flow, the primary target of opportunity for studying feedback from

LL-AGN. In Chapter 3, we present a new method for analysing the dispersed XMM-

Newton RGS data, with implications for both SMBH and star formation feedback.

We demonstrate this method on the galactic bulge of the nearest spiral galaxy, M31

(Andromeda). We further discuss the possiblities of adding observational constraints

to nearly each form of feedback using this method. In Chapter 4 we discuss the

limitations of current X-ray imaging and spectral analyses, the pragmatism of the

Bayesian framework, and a possible path forward for illuminating the hot component

of galactic feedback.
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CHAPTER 2

THE SGR A* ACCRETION FLOW

2.1 Introduction

Supermassive black holes (SMBHs) spend the majority of their lives in a low-

luminosity/accretion phase (∼90%; [140]). A common way to refer to these objects

is as low-luminosity active galactic nuclei, or LL-AGN. The emission from these LL-

AGN is very much enigmatic, largely due to the inherent difficulty of separating

the various entangled emission components [131, 72]. Predominantly, there are two

unique radiative X-ray phenomena that characterize the emission from LL-AGN; their

extremely low, spatially extended quiescent luminosity, and flares that can briefly

increase their luminosity by up to a factor of 100 approximately bidaily [1, 143].

Physically, even though these BHs are associated with much lower net accretion

rates, they may also be associated with strong mechanical feedback phenomena such

as giant radio bubbles [86] and collimated outflowing winds. However, connecting the

physical processes around BHs to the observed feedback effects in a self-consistent

manner remains a challenge.

As all accreting and outflowing material must flow through the quiescent, spatially

extended accretion flow, its emission will be the focus of this study. For the sake of

observational capabilities, this includes both the spatially extended accretion flow

as well as the unresolved point-like emission processes (minus the detected flares)

immediately surrounding the SMBH. Further, we have a perfect candidate to study

LL-AGN emission in our own galaxy, Sgr A*, which already has a wealth of data
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available through a wide range of wavelength bands [115, 43, 1, 2, 53, 147, 81, 36,

131, 17].

In X-rays, the Sgr A* quiescent accretion flow is spatially resolved to ∼ 1.4”

[2]. This radius, estimated from the analysis of projected X-ray emission in the

surrounding field, is roughly consistent with the classical Bondi radius, rb, enabling

the estimate of the rate at which gas is captured by the BH (Ṁb ∼ 10−5 M� year−1)1.

The Bondi radius is an atavism to the original way these objects were studied. Bondi

accretion, from which it derives its name, assumes the accretion flow to be spherically

symmetric, with approximately zero angular momentum [12]. In this scenario, any

ambient material that enters the Bondi radius, the radius at which the gas thermal

energy is equivalent to the gravitational potential energy, is doomed to fall into the

BH. Unless the angular momentum of the gas is very large, the centrifugal radius

(classically speaking, the radius at which the gas must transfer angular momentum

in order to continue its inward spiral) of the accreting gas will be well within the Bondi

radius, making this estimate of gas capture rate a reasonable characteristic value for

the inflow of gas. It would be prudent to note that for steady-state accretion, as

assumed in this paper, the canonical picture of the centrifugal radius may break

down. As detailed in [19], transfer of angular momentum leads to the depression and

steepening of the angular momentum profile. However, regardless of the dynamical

nuances within the accretion flow, this value can still be used to characterize the

angular momentum at flow onset, that is, the magnitude of angular momentum in

captured gas.

Yet, there are several reasons we should tread lightly when considering the angular

momentum of the accretion flow. From a qualitative point of view, the flow does have

some apparent flattening [131], which in and of itself is suggestive against using Bondi

1Throughout this paper, the b subscript denotes at the Bondi radius.
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accretion to explain the flow’s emission in its entirety. Indeed, it is quite natural

that the accreting gas would have coherent angular momentum, given its apparent

origin. Spectral evidence suggests that the matter accreting onto Sgr A* is shocked

stellar wind material emanating from a cluster of O and Wolf-Rayet stars [131], a

significant fraction of which orbit Sgr A* in a well constructed stellar disk around the

BH [8], oriented with an inclination of 127◦(±2) and a line-of-nodes position angle of

99◦(±2; East from North). There is also very recent evidence from the Event Horizon

Telescope supporting the same orientation for the black hole spin axis [17]. However,

simulations of the stellar wind dynamics suggest the centrifugal radius occurs well

within the Bondi radius [25], indicating we can still trust, at the very least, this gross

estimate of the gas capture rate.

Given the extremely low luminosity of the flow, this capture rate points to the in-

triguing fact that the radiative efficiency must be extremely low,� 0.01, loosely dub-

bing the mélange of remedying models radiatively inefficient accretion flows (RIAF).

While the detailed properties of these flows may differ significantly, in order to be

considered a RIAF flow, the model of BH accretion must merely satisfy the faint

requirement. The most common models under this umbrella are characterized by

accretion-comparable outflows and/or the advection of energy into the BH (for a re-

cent review, see [140]). By advecting energy into the BH, or driving it away via an

outflow, the luminosity of the accretion flow itself is naturally lessened immensely.

Further, these models have been shown to explain the basic features of the quiescent

emission from Sgr A*, including radiative efficiency, low resolution spectrum [140],

and multiwavelength spectral energy distribution [141].

The physical reality of the Galactic Center makes one model in particular quite

attractive, the rotating, radiating inflow-outflow solution, or RRIOS [89, 138, 70, 139,

93]. This is primarily for two reasons. First, the apparent origin of the gas is sugges-

tive that angular momentum is important. Second, as found with Faraday Rotation
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measurements, the amount of gas that accretes onto the black hole, ṀBH , is ≤ 0.01

Ṁb [81]. This is also the conclusion reached by [88], who calculated the total inverse-

Compton emission of the inner disk assuming a Bondi accretion profile and found

that it significantly overpredicted the observed X-ray emission. [70] demonstrated

that for RRIOS-like flows the bulk of the inflowing gas flows out again after reaching

roughly the centrifugal radius, resulting in a small rate of net accretion on to the

BH. These models can take a range of angular momenta, spanning from pure Bondi

accretion to anything that leaves the centrifugal radius reasonably within the Bondi

radius, with no direct observational constraint as of yet. The determining of this

angular momentum, however, has dire implications for the strength and distribution

of any outflowing mechanical feedback [93].

Perhaps the most in-depth X-ray observational study of the quiescent emission

from Sgr A* thus far has been done by [131]. This is thanks to a recent wealth of

data from the Chandra X-ray Visionaries program, which provides over 3 Megasec-

onds of Sgr A* observations. In that paper, the authors study the BH from a purely

spectral perspective and are able to place some constraint on the X-ray emission. Un-

fortunately, that work was unable to place any constraints on the angular momentum

of the gas. However, they show that the spectrum suggests a fitted radial density

profile that is consistent with a strong outflow, nearly balancing the inflow, using an

approximate 1-D analytical RIAF model. The authors were even able to place limits

on the deconvolution between quiescent point-like and extended emission, showing

that unresolved residual point-like emission (with detected flares removed) can only

account for ≤ 20 % of the quiescent emission. While we expect undetected flares

to contribute relatively little to this point-like quiescent emission from an extrapo-

lation of flare fluences, emission processes very near the event horizon are the most

uncertain, and therefore need not be the case.
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Thus, in order to understand some of these very local processes near the SMBH,

we should keep in mind the flares, since a truly unified model would be able to explain

both the flare emission and the quiescent point-like emission. Further, understanding

of one may help to illuminate the conditions of the other. In the study discussed

above, the authors also show that the cumulative spectrum of the flare emission is

observed to be a powerlaw with index ∼ 2.6 [131]. While the production mechanism of

flare emission is still poorly understood (e.g., [143]), the variability timescale makes it

clear that they originate in localized regions very near the SMBH. This creates many

challenges from a theoretical standpoint, as the physics near a SMBH are an extreme

in the universe, leaving their physical origin up for debate.

However, some compelling work has recently been done by [3] to understand the

flare emission. After previous studies have suggested the importance of thermody-

namically decoupling electrons from ions at low radii [141], these authors created the

first relatively large scale general relativistic magnetohydrodynamic (GRMHD) simu-

lations to include a sub-grid prescription for modelling the non-thermal electrons. Op-

erating under the assumption that the accretion flow is rotationally supported within

their simulation boundaries has allowed them to simulate, and generally match, the

detected multi-wavelength flaring properties of Sgr A*. They show that the flares can

be explained by particle acceleration in highly magnetized regions through magnetic

reconnection. Further, they provide the first roughly unified model of an LL-AGN

at low radii. Thus, by extension, they also provide a general framework for under-

standing the quiescent point-like emission. In general, as we move to lower radii, the

magnetic field becomes increasingly important. When considering models, we should

allow for the two different populations of electrons: a larger thermal population and

a much smaller non-thermal population in a highly turbulent environment. Thus,

possibly important emission mechanisms include the full spectrum: Bremsstrahlung

[131], inverse-Compton [79, 141], and synchrotron emission [79, 141].
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Clearly, despite all of the observations, the details of the dynamical dance of the

shocked stellar wind gas with the BH is still held under relatively few constraints,

leaving alternative models to continue marauding the theoretical landscape (e.g.,

[144]). This means we need to undertake serious effort to observationally fetter the

flow properties. However, genuine observational constraint cannot be obtained in this

case without legitimate modelling, both spatial and spectral. Since this means highly

nonlinear dynamical modelling, it requires stepping out of the analytical realm and

into simulation. This is needed not only to understand the multidimensional flow

structure required to self-consistently model the inflow and outflow simultaneously,

but also the magnetic field structure, which is likely to be an important factor for

understanding the emission that originates very near the BH. Simulations of these

kinds of accretion flows have been done in at least some capacity for several years

now [142, 89, 70], but taking these simulations and connecting them to observation

in a self consistent manner is a challenge and has yet to be done.

By doing just that, albeit with slightly simplified 2-D hydrodynamic simulations,

we herein attempt to remedy as many of the uncertainties as reasonably possible

and provide a path forward for deepening our understanding of the Galactic Center.

We compare images of the combined quiescent Chandra data (the same data set as

analyzed in [131]) directly to simulations of black hole accretion via the development

of a suite of Markov Chain Monte Carlo (MCMC) tools designed for this purpose. By

breaking the quiescent emission into several bands, we can use as much information

in the data as possible, utilizing both spectral and spatial power simultaneously.

This serves to break degeneracy between key interesting flow parameters such as

temperature, density, angular momentum, and inclination angle, providing some of

the first self-consistent constraints on not only the accretion flow structure, but also

the decomposition of spatially extended accretion structure from point-like emission.

Such an analysis will provide a more legitimate test of the RRIOS solution, as well

24



as the broader class of RIAF models, and lend significant guidance to the way that

we model the processes surrounding LL-AGN in the center of galaxies.

2.2 Methods

The Chandra X-ray Visionary Project (XVP) to observe the Milky Way’s SMBH,

Sgr A* from February 6 to October 29, 2012 resulted in approximately 3 Ms of

exquisite data, opening up a completely new regime of insight into BH accretion.

Chandra and the XVP program have offered us an excellent opportunity to observe

directly the dynamics of hot gas around a black hole, and, with proper modelling,

hopefully elucidate the inner workings of the enigmatic class of objects known as

LL-AGN. Combining this observational data with 2-D RRIOS simulations [93], we

attempt to constrain directly the accretion structure via the power of Bayesian MCMC

fitting.

2.2.1 Data Preparation

For a more detailed description of the data reduction and quiescent X-ray image

generation, we recommend the reader to [131]. However, in short, the data are reduced

via standard CIAO processing routines (version 4.5; Calibration Database version

4.5.6). Since the differences between individual obsevation pointings are all within

14”, the merged data is treated as a single observation. [131] found no apparent

calibration issues. Flares are removed from the quiescent data through detection

with the “Bayesian Blocks” routine [92], leading to a total quiescent exposure time

of 2.78 Ms. The observed quiescent image over the entire spectral band (1-9 keV)

can be seen in Figure 2.1. The southeast corner of the image is excluded in the fit

due to significant emission from an unmodelled feature in the region (highlighted by

red lines in Figure 1; see also [131]). The region used for fitting extends to a radius

of approximately 0.5 rb. Since the source is on-axis, the FWHM of the instrument
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is comparable to the pixel size. To utilize additional spatial information from the

dithering of observations, we construct the so-called ”super-resolution” image with

a pixel size of 0.123” on a side [131]. The full band image is then split into three

bands, to place some spectral constraints on the fit and reduce degeneracy. The bands

(1-4 keV,4-5.5 keV, and 5.5-9 keV), were chosen such that the counting statistics are

roughly similar in each image.

2.2.2 Hydrodynamic Simulations

We solve the same set of hydrodynamic equations in 2-D spherical polar coordinate

as in [70] using the new radiation MHD code Athena++ [133]. Athena++ is an

extension of the multi-dimensional MHD code Athena with the new capability of

curvilinear coordinates and logarithmic grid. This allows us to cover a large dynamic

range, as was possible with the older ZEUS code used in [70], but still solve the

hydrodynamic equations with the higher order Godunov method. Since we are only

simulating in 2-D, explicit kinetic viscosity (fixed to be 10−3cs,∞rb, where rb is the

Bondi radius and cs,∞ is the ambient sound speed as in [70]) is used to mimic the

angular momentum transfer caused by magneto-rotational instability. This viscosity

corresponds to a dimensionless angular momentum transport efficiency, α, ∼ 0.01

near the centrifugal radius. The simulation setup is also similar to [70] with radial

range covering 10−3 Bondi radii (rb), approx. 400 Schwarzschild radii, to 10 rb with

1024 logarithmicly spaced grid cells. In the polar coordinate, φ varies from 0.6◦ to

179.4◦ to avoid singularity along the pole and it is divided into 256 uniform grid cells.

A reflecting boundary condition is used along the poles. This polar grid is the primary

difference from the simulations done by [70], where symmetry was also imposed with

respect to the equatorial plane.

The temperature, density, and radial velocity of the simulation domain is ini-

tialized to the Bondi profile with an ambient temperature set to be 1.16 × 107 K.

26



0.4 0.2 0.0 0.2 0.4

δRA (rb)

0.4

-0.2

0.0

0.2

0.4

δ
D

e
c
 (

r
b
)

0

10

20

30

40

50

60

70

80

Figure 2.1. Counts image of Sgr A* in the 1.-9. keV band taken with a 2775578
second exposure using Chandra. Colorbar represents total counts in a pixel.
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The central black hole mass is assumed to be 4.1 × 106M�. These parameters im-

ply rb ≈ 3.7”, which we will assume to be fixed as in [131]. Bremsstrahlung cooling

is included as in [70]. There are two free parameters to consider when setting up

the simulation: the density at rb and the centrifugal radius, rc. The density at rb

determines the Bondi accretion rate and the cooling time scale compared with the

local dynamic time scale while rc sets the angular momentum of the inflowing gas,

as well as the initial angualr momentum of gas in the simulation domain (excluding

the poles). Our simulations confirm the basic conclusion of [70]. When the Bondi

accretion rate is below ∼ 0.01 Eddington accretion rate, we obtain the hot solution

with net accretion rate at the center of the simulation domain smaller than 1% of

the Bondi accretion rate. We also find significant outflow along the polar direction.

However, the main difference between our simulations and results shown in [70] is

that we do not find any outflow along the equatorial plane. We confirm that if we

impose symmetry along the equatorial plane, the equatorial outflow shows up, which

suggests that this is an artifact of the imposed symmetry. In the hot solution regime,

properties of the solution, such as total emission, density and temperature profiles,

scale with the density at rb for a fixed rc, which is proportional to the Bondi accretion

rate. When running the simulations, we choose a density scaling at rb such that Bondi

accretion rate is 10−3 of the Eddington accretion rate. This ensures that we are in

the hot solution domain, which makes the solutions scalable in density due to self-

similarity. We have run simulations spanning a range of centrifugal radii to explore

how the solution changes with rc, from 0.01 rb to 0.2 rb. It is from these simulations

that all models of the accretion flow are derived. A more complete description of the

2-D RRIOS hydrodynamic solutions will be presented in another paper [93].
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Figure 2.2. Time averaged density (left) and temperature (right) distributions for
the best fit solution.
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2.2.3 Fitting Procedure

We use the power of Bayesian inference through Markov Chain Monte Carlo sam-

pling to fit the simulated accretion flows detailed above to the Chandra observations.

One of the beauties of Bayesian inference is that by introducing the idea of subjective

probability, it provides a framework to incorporate prior information. In the case of

the physical sciences, this prior information often represents things such as boundary

conditions, or past fitting results. Further, by treating parameters themselves as ran-

dom variables, we directly sample a model’s reality given the data, or the posterior,

providing us with fully described confidence boundaries for each model parameter.

This is an important point, because rather than traditional approaches which can

only seek to exclude, we are testing the affirmation of a model and its parameters.

In its most simplistic terms, Bayesian inference can be formalised as:

P (~θ| ~D) =
P ( ~D|~θ)P (~θ)

P ( ~D)
∝ P ( ~D|~θ)P (~θ) (2.1)

where ~θ represents our model parameters, P (~θ) represents our prior belief in the model

components, P ( ~D|~θ) is the probability of the data given the model (or the likelihood

function), P ( ~D) is the probability of the data (also called the evidence), and P (~θ| ~D)

is the probability of the model given the data (the posterior). The evidence term,

which requires integrating out the model over all parameter space, places significant

constraint on what can be done analytically. Thankfully, it can be neglected when

discussing computational approximation, such as that calculated with Markov Chain

Monte Carlo techniques.

In this paper we assume all the data is generated from the underlying model with

Poisson probability:

P (Dk|~θ) =
λ(~θ)Dke−λ(

~θ)

Dk!
(2.2)
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where k is the kth pixel, Dk is the photon count in pixel k, and λ is the expected

number of counts for a given pixel, which is calculated as the exposure multiplied by

the flux as determined below. By sampling directly from the posterior we are able

to then obtain confidence intervals for our parameters. In this analysis, we use the

Metropolis-Hastings algorithm to sample the posterior probability distribution for the

parameter set. This is a Markov Chain Monte Carlo method that relies on rejection

sampling to obtain a sequence of random samples drawn from the posterior, and can

thus be used to approximate the posterior probability distribution.

2.2.4 Modelling

The full list of fitted parameters and their relationship to each other is pictorially

described in Figure 2.3 and a summary of all the models to be compared is shown

in Table 2.1. The full list of priors used in this paper can be found in Table 2.2.2

In order to fit the simulated accretion flows to the Chandra data, we generate syn-

thetic images from an interpolation of the hydrodynamic simulations and employ a

heirarchical Bayesian fit, with three levels of parameters. Assuming a metallicity as

that of the local Sgr A* complex, µ ∼ 0.76, we only require three parameters to fully

characterize the accretion flow’s emission since they are approximately self similar:

temperature scaling - Tb, density scaling - nb, and centrifugal radius - rc/rb
3. In this

context, rc represents the magnitude of the gas angular momentum at capture. The

spatial density and temperature distribution of the accretion flow is generated by in-

terpolating time averaged hydrodynamic simulation data (see Figure 2.2) at different

rc/rb, in this case, through 0.04, 0.08, and 0.2, allowing us to sample a continuous

2In the following notation, i and j represent the pixel coordinates and k represents the kth band
image.

3For these simulations, parameterizing values in terms of the Bondi radius is simply used for
convenience.
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distribution in rc.
4 It should be noted that while this is the case for almost all ac-

cretion flow models in this paper, we will have a separate model (model pBondi, for

pseudo-Bondi) where the angular momentum is fixed to the lowest of our simulations

in order to directly test the realism of the Bondi solution for Sgr A*. Then, to build

a 3-D model of the flow, we need only introduce its positioning and orientation in-

formation. This includes the Right Ascension (R.A.), Declination (Dec.), inclination

angle (θI), and position angle (θP , East from North).

Once we have a 3-D model, we need to calculate its emission in order to compare to

an observed image. Volume normalized emission measure as a function of temperature

is calculated within xspec using the model tbabs ∗ vapec ∗ dustscat, as used in the

spectral fit to the integrated quiescent emission [131]. Both absorption and dust

scattering effects are taken into account. In all of the modelling, we assume the

absorption column, as estimated from the powerlaw model fitting to the accumulated

flare spectrum, is 13.76×1022 cm−2 [131]. After mapping the xspec calculations to

the simulation temperature table, and scaling it with the density table, we have the

volume-normalized counts for each radius and φ. Finally, to generating a synthetic

image of the accretion flow we integrate along the line of sight at the center of each

pixel out to rb, unless the pixel contains the origin. If the pixel contains the origin,

we integrate from the inner boundary of the simulation out to rb.

While the accretion flow accounts for the bulk of the emission in the Chandra

images, we still need to account for other sources as best we can. This includes both a

spatially smooth background component(BKGk) and a point-like component centered

on the BH (P.S.k). This background accounts for all foreground and background

contributions (e.g., including faint stellar and extragalactic sources, as well as diffuse

hot gas), which are assumed to be smoothly distributed on scales of a few arcseconds.

4We have also fit the images interpolating through rc/rb = 0.02, 0.04, and 0.08 with no change
in results.

32



Since this smooth background contributes relatively little to the overall flux in the

images, a spectral decomposition and modelling of these two is beyond the scope

of this paper. Therefore, each kth band background component is allowed to roam

free with respect to the others. A characterization of the quiescent P.S.k, however,

is of great interest. Recall, this includes anything within the inner boundary of our

simulation, ∼ 400rs. Thus, a model test, comparing several parameterizations of

this enigmatic component is required. In general, with the exception of the pBondi

model, different model names refer to a different parameterization of this point-like

component.

Since the X-ray emission most proximal the BH remains very uncertain, there

are many ways in which we could consider parameterizing the point source contribu-

tion. To get a baseline of what might be the best possible fit, particularly for other

parameters, model free places no constraint on the relationship between individual

P.S.k components, allowing them to roam free, similar to BKGk. However, we would

like to physically model this point-like emission. To first order, we might expect this

contribution to just be dominated by one component, e.g. unresolved flare emission,

inverse Compton emission, or thermal Bremsstrahlung. Thus we could consider it to

be well fit by a single powerlaw component (models plaw and plaw-wp). In this case,

we have only two free parameters to characterize the P.S. emission: the photon index,

α and a normalization, K. No prior constraint is placed on this powerlaw index.

Alternatively, we may consider a scenario where we have multiple competing emis-

sion components. In this case, we assume the flare emission in X-ray has an approx-

imately fixed mean spectral shape, as obtained in [131]. Thus, the flare emission has

a strong prior on the power law index, α equal to 2.6 ± 0.4 (90% confidence - [131]).

We assume that any additional point source emission that cannot be attributed to

the simulation can be approximately parameterized as a powerlaw. This potentially

unknown powerlaw component is left with no prior constraint as to the index. In
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Table 2.1. Summary of the models to be compared. Here pBondi stands for “pseudo-
Bondi,” plaw for a powerlaw P.S.k parameterization, and wp for “with prior,” referring
to the prior on the flow orientation.

Model Name P.S. Additional Comments
free independent
plaw Single powerlaw

plaw-wp Single powerlaw Prior on flow orientation
set by stellar disk

dplaw Double powerlaw Prior on one powerlaw slope
set by the flare emission slope

pBondi-wp Single powerlaw rc is fixed at the lowest
of our sims (0.02 rb); Prior
on flow orientation set by

stellar disk

this scenario, these two powerlaw components then combine to form the point source

normalization in each band, P.S.k (model dplaw).

The normalized powerlaw emission for a given powerlaw index, α, is calculated

within xspec using the model tbabs ∗ pow ∗ dustscat. Again, both absorption and

dust scattering effects are taken into account. Assuming no interloping point sources,

P.S.k and BKGk combine with the projected, integrated accretion flow emission to

create the total pixel counts, Ci,j,k. The final step in creating a synthetic image that

can be compared to the observed image is to convolve Ci,j,k with the Chandra ACIS

PSF, which is assumed to be described by a Gaussian of FWHM=0.5”. 5

2.2.5 Numerical Caveats

The APEC implementation within xspec restricts the temperature of the plasma

to ≤ 68 keV. Since the temperatures in the simulation tables span a large range,

5Since the effective frequencies of the bands are quite similar due to the spectral shape, this
should be a sufficient approximation. Indeed, MARK simulations show only a few percent difference
between the energy enclosed in the inner arcsec between the low and high band. See Figure 4.6
http://cxc.harvard.edu/proposer/POG/html/chap4.html. This does, however, neglect the Lorentz
contribution to the PSF, which causes a significant spread for approximately 15% of collected photons
at this energy. Thus, we do not expect it differentially affect the different bands appreciably, however,
we may overestimate the background emission.
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Figure 2.3. The Heirarchical Bayesian Network. Bondi temperature and density
combine with the centrifugal radius to form a volume normalized count rate for each
grid cell, cr,φ. Flare power law index and normalization combined with an unknown
powerlaw index and normalization to form a point source emission in each band.
These hyperparameters combine with the background (BKGk) in each band, the posi-
tioning on the detector (R.A. and Dec.), the inclination angle (θI), and the projection
angle (θP ) to form total counts in each pixel, Ci,j.

Table 2.2. Summary of the priors. A uniform distribution is represented as
U(lower,upper) and a normal distribution is represented as N(mean,sigma).

Parameter Model Prior
Tb All U(0,inf)
nb All U(0,inf)

rc/rb pBondi-* 0.02 fixed
All others U[0.04,0.2]

θI *-wp N(127,2)
All others U[90,180]

θP *-wp N(99,2)
All others U[0,180]

BKGk All U[0,inf)
P.S.k free U[0,inf)
α *plaw*, dplaw U[1,10]
K *plaw*, dplaw U[0,inf)

αflare dplaw N(2.6,0.12)
Kflare dplaw U[0,inf)
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reaching temperatures significantly higher than this, we need to estimate beyond the

allowed xspec temperature. As the emission from such a plasma is dominated by

free-free emission, we can estimate its emissivity using the following equation:

εffν ∝ T−1/2exp

(
− hν
kT

)
(2.3)

Further, since the spectral shape is approximately constant with increasing temper-

ature in the energy range covered by Chandra, we can straightforwardly extrapolate

the emission at temperatures 68 keV from the absorbed, volume-normalized emission

at 68 keV. Lastly, it should be noted that any error introduced in this term will be

absorbed into the central point source contribution, as these temperatures only occur

very close to the black hole. However, the density does not increase quickly enough

with decreasing radius and the volume occupied by this high temperature gas is rela-

tively miniscule, making its overall contribution to the flux in the image quite small,

< 1%.

2.3 Results

First, we will determine the best model to scrutinize, as well as assess the goodness

of fit. Ideally, this would be done by a full Bayes factor calculation, which is the ratio

of the posterior odds of one model to another (or rather, which model better explains

the data, D):

BF =
P (M1| ~D)

P (M2| ~D)
(2.4)

This is the odds of one model versus the other given the data. If we don’t consider any

prior model favoritism, BF reduces to the ratio of model likelihood. Unfortunately,

this ratio is actually quite difficult to calculate, as it requires integrating over all of

parameter space for each model. Thus, since our model parameters are well behaved
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Table 2.3. Numerical interpretation of ∆BIC.

∆BIC Strength of Evidence Against
0 to 2 Barely mentionable
2 to 6 Positive
6 to 10 Strong
>10 Very Strong

(more or less normally distributed), we will take advantage of an approximation, the

Bayesian Information Criterion, between models:

∆BIC = −2log

[
maxM1P ( ~D|~θ1)
maxM2P ( ~D|~θ2)

]
− (p2 − p1)log(S) (2.5)

where ~θ is the maximum likelihood parameter vector for the respective model, p is

the number of parameters for the model, and S is the number of data points. This

statistic is shown to approach the Bayes Factor for large sample size [114], before

including model priors. A guide to numerical interpretation of this statistic is shown

in Table 2.3 [56].

A comparison of models through ∆BIC is shown in Table 2.4. We see that the

plaw model optimizes the amount of information gained. Unfortunately, for this

model the inclination angle is not strongly constrained, as long as the flow is at least

moderately edge-on. Although the goodness of fit is slightly worse when we add a

prior on the flow’s inclination and projection angle (plaw − wp), the ∆BIC is so

small (∼ 1.7) as to not even be mentionable. Therefore, since we cannot realistically

discriminate between these two models, and we heavily favor the plaw−wp model a

priori, due to our favorability of the stellar wind gas origin, we will consider this model

the best model. This allows us to somewhat more tightly constrain other parameters.

Other models, including the dplaw and pBondi are heavily disfavored. The dplaw

model is disfavored because adding extra degrees of freedom doesn’t result in an

appreciably better fit, suggesting the point source can be reasonably characterized

by a single powerlaw within the limits of the data, and the pBondi model because
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Table 2.4. ∆BIC between models, relative to the best fit model.

Base Model With Prior Without Prior
free 6.4 4.7

pBondi 46.4 N/A
plaw 1.7 0.0

dplaw N/A 12

fixing the angular momentum to our lowest allowed value leads to a much poorer

fit in general. We discuss the causes and implications of the poor fit of the pBondi

model in Section 2.4.2.

The results of the fitting process for our best fit model, plaw − wp, are listed

in Table 2.5 along with the 90% confidence bounds. The flow enters the Bondi

radius at a temperature (∼ 1.3e7 K) and density (∼ 100 cm−3), great enough to

be detectable in the X-ray band with such a long exposure provided by the XVP

program with Chandra. The gas also has considerable angular momentum, leaving

rs � rc ∼ 0.056rb ≈ 8 × 10−3 pc. This density and angular momentum implies

a mass inflow rate at rb, Ṁin,b of 2.4 × 10−3 ṀEd and a mass accretion rate, Ṁacc,

of ≤ 10−2Ṁin,b There is a non-negligible, steep residual point-like component to the

emission. This point-like component has a specific luminosity of log10(νLν) ∼ 31.96

ergs/s at 5 keV, and is responsible for 4.2 (2.3,7.0)% of the observed emission within

1.5” in the 1-9 keV band with Chandra.

Looking at the full distribution of each parameter and the parameter-parameter

confidence bounds (Appendix C), suggests very little degeneracy, except for those

which are quite natural; for example, the anti-correlation between temperature and

density. This anti-correlation is very much expected, due to their emissivity propor-

tionality, ∝ n2 T1/2 in the relevant temperature range. Further, the two parameters

are well constrained for the first time in a self-consistent fashion, with fairly narrow

uncertainty ranges. With the exception of the powerlaw index and normalization,

all of the parameter PDFs are more or less normally distributed. This suggests the
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Table 2.5. Best fit and 90% confidence intervals of free parameters marginalized
over all others for the model plaw-wp. Model implied quantities are distinguished by
the gray rows.

θI (deg.) 126.4 (122.6,130.4)
θP (deg.) 99.1 (96.3,101.8)

rc/rb 0.056 (0.048,0.066)
Tb (K) 1.28e7 (1.19e7,1.42e7)

nb (cm−3) 101.6 (91.4,111.1)
BKG1 (counts/pix) 0.21 (0.01,0.45)
BKG2 (counts/pix) 0.41 (0.17,0.65)
BKG3 (counts/pix) 0.48 (0.30,0.69)

α 4.8 (3.5,7.5)
log10(K) (ergs/s at 5 keV) 31.96 (31.32,32.18)

⇒ Ṁin,b/ṀEd ∼ 2.4× 10−3

⇒ Ṁacc/Ṁb ≤ 10−2

information provided by the observations herein is sufficient to fully characterize the

quiescent accretion flow.

The theoretical images generated from these best fit values are shown in Figure

2.5 and compared to observed images. As previously noted, but never quantified, the

emission is considerably flattened. We plot the eccentricity in each observation band

as a function of major axis radius in Figure 2.4. At low radii, where the emission is

dominated by the point-like emission, the eccentricity is very low. The eccentricity

increases steeply up to ∼ 0.56, 0.53, and 0.49 at 0.2 rb for the 1-4 keV, 4-5.5 keV, and

5.5-9 keV band, respectively, where the emission is predominantly from the extended

accretion flow. As we then move to larger radii, the eccentricity begins to decrease

as the background emission becomes increasing important.

We see that there are no apparent residual effects, particularly at lower radii.

However, there can be contributions from unmodelled structure at large radii (≥ 1”).

For example, the spur of emission to the northeast of Sgr A*. This is echoed in the

goodness of fit estimate (Appendix A). In the inner arcsecond, where the predominant

source of error results from time averaging the simulations and not modelling the

turbulent structure, the statistical consistency is at a level of 2.6%. When including
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Figure 2.4. Emission eccentricity as a function of major axis radius. These profiles
correspond to the top panel of images in Figure 2.5, the theoretical emission smoothed
by the Chandra PSF.
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radii out to ∼ 2.8”, where there are many more error terms to consider, such as

unmodelled extended structure and discrete X-ray sources, the statistical consistency

drops. However, we have found the fitted parameters insensitive to the radius of

the fitted region within the observational images shown in Figure 2.5. Thus, all

uncertainties considered, we consider this fit to be not only reasonable, but quite

good.

2.4 Comparison with Previous Works and Implications

Now, we need to discuss these numerical results in the context of previous mod-

elling and observational efforts. While prior observations have not lent us a great

deal of constraint, they have provided some important information for modelling of

the quiescent accretion flow. This includes constraints on the mass inflow at different

radii, the radiative efficiency of the accretion flow, and some 1-d considerations about

the structure of that accretion flow. From a theoretical perspective, simulations have

separately made significant strides in attempting to model the physics very near the

SMBH, as well from its apparent origin in stellar winds. With our results here, we

are able to significantly build upon these past observational constraints and help to

lend guidance to future modelling efforts.

2.4.1 Temperature/Density and the Gas Origin

At flow onset, i.e., rb, the best fit temperature and density are consistent with pre-

vious estimates based on spectral analysis of the projected X-ray emission as observed

by Chandra [2]. They are also consistent with the simulation results of [25]. These

authors attempt to model the flow onset by simulating the stellar wind dynamics of

the surrounding stellar cluster. By estimating stellar mass loss, they show that the

density at rb is ∼100 cm−3. Similarly, their predicted temperature is ∼ 1× 107 K at

rb. This can easily be understood in the context of shocked stellar winds. Our best

41



0.4

0.0

0.4

0.4

0.0

0.4

δ
D

e
c
. 
(r

b
)

0.4 0.0 0.4

0.4

0.0

0.4

0.4 0.0 0.4

δRA (rb)

0.4 0.0 0.4

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

Figure 2.5. From top to bottom: the theoretical image, observed image, and residual
image ((observed-theoretical)/theoretical). These are shown for all three bands, which
are from left to right: 1-4 keV, 4-5.5 keV, and 5.5-9 keV.

42



fit temperature implies a shock velocity of ∼1000 km/s, which is reasonably charac-

teristic of stellar winds. For example, the wind velocities range from approximately

600 km/s to 2500 km/s in the simulations of [25]. Thus, our result is consistent with

an origin of the mass flow in shocked stellar winds.

The temperature and density radial profiles of the accretion flow inferred from our

best-fit simulation are also consistent with previous X-ray spectroscopic estimates.

[131] approximated the profiles in a RIAF model as powerlaws (n ∝ r−3/2+s and

T∝ r−θ). Their spectral analysis gives the best-fit γ = 2s/θ = 1.9(1.4, 2.4). If θ = 1,

via the virial theorem, then s ∼ 1, indicating a very flat density profile of the flow,

or an outflow mass-loss rate that nearly balances the inflow [131]. They assumed this

parameterization characterizes the flow over a wide range of radii, between rin and rout

of ∼ 102 rs and ∼ 105 rs ≈ 0.25rb, respectively. Even though the simulated profiles we

used are not strictly powerlaws (e.g., Figure 2.6), they are roughly in agreement with

their conclusion. We find that the density profile is ever so slightly steeper (s ∼ 0.93),

and temperature profile is mildly flatter (θ ∼ 0.77). Together, these are consistent

with the relation above, within uncertainty.

2.4.2 The Need for Angular Momentum and rc

Since spherical Bondi accretion is still occasionally invoked when trying to under-

stand the accretion flow onto Sgr A* (e.g., [108]), or LL-AGN in general, we need to

test and understand exactly why this is a poor assumption. Compared to our best fit,

a lower angular momentum accretion flow leads to a steeper density profile. This can

easily be seen in Figure 2.6, which shows the azimuthally averaged density profile for

two different angular momentum solutions, and is in agreement with previous results

[20]. There are two primary forces that support gravity in an accretion flow, the gas

pressure gradient and the centrifugal force. As the centrifugal force decreases, this

necessitates a larger gas pressure gradient, and thus a steeper density profile.
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This density profile change manifests itself in the best fit solution to other pa-

rameters. In order to compensate, the pBondi model has a decreased Bondi capture

density of ∼40 cm−3, approximately a factor of two below the best fit model. The

density change largely comes from the central pixels in the medium and high energy

bands. For fixed Bondi density, the steep rise of density with radius leads to too

much emission very near the BH. In an attempt to offset the decrease in density,

the temperature is increased slightly to 1.6× 107 K to help model the flux at larger

radii. This in turn makes the emission of the accretion flow harder, which pushes

the PS powerlaw to a spectral index of ∼9(±0.5). However, these changes fail to

fully compensate for the low angular momentum; the rapid increase in density of

this simulation can not realistically model the emission at both small and large radii

simultaneously. This is most prominently seen in Figure 2.7, which shows the mean

residual as a function of radius, comparing the pBondi model and the plaw model.

We can see that there is strong residual structure at intermediate to large radii. Fur-

ther, these best fit temperature and density values are near, if not beyond in the

case of temperature, the limits of what is possible given the previous simulations of

[25]. As the angular momentum decreases further, it is likely that these values would

become irreconcilable with other results.

At a best fit rc=0.056 rb, the centrifugal radius sits at ≈ 20000 rs. This value has

hitherto only been estimated once theoretically, but never observationally. Simulating

the onset of the accretion flow by modelling the stellar wind dynamics around Sgr A*,

[24] predicted rc=5000rs. This seeming discrepancy is likely a numerical result, for

multiple reasons, all stemming from the fact that they made this estimate using the

very inner region of the flow. First, their simulations were evolved with the SPH code,

Gadget-2, which has known issues modelling angular momentum in the depths of a

potential well [61]. Further, by the author’s own admission, they suspect the number

of SPH particles could be too small to realistically estimate the angular momentum
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in the inner region of the flow that was used to do so. Lastly, as we know from [19],

for a steady accretion scenario the centrifugal radius does not exist in any material

sense, but merely represents a characteristic radius for the magnitude of the gas

angular momentum at the outer boundary. In reality, the angular momentum profile

depresses and steepens relative to the classical picture due to the transfer of angular

momentum. As such, any estimate of rc made with the inner flow will naturally

underestimate rc. This can be seen in [24], where they show that after initializing the

simulation, their average angular momentum of the inner region spikes to a level that

is loosely consistent with our determination of rc, but then dwindles to one fourth

of that value as simulation time progresses. We will also point out that the density

profile of a flow with such a low angular momentum is unable to model the spatial

distribution of emission. The centrifugal radius of the pBondi model is slightly larger

than the result predicted by [24], and as we show above, even a flow with this value

is well outside the bounds of reality.

Since the multi-dimensional structure of the flow is largely encapsulated by the

determination of the gas angular momentum, as parameterized by rc, the results de-

tailed here are of prime importance. Being the first observational constraint on rc,

our result is an important one for simulations that wish to study the outflow but

cannot realize the flow from its origins. Unfortunately, there is not yet a 3-D simula-

tion large enough to model the flow through such a dynamical range, simultaneously

self-consistently producing the flow and generating the outflow. Simulations that do

realize the flow from its origins will be important for verifying our results, especially

as they continue to become more realistic.

2.4.3 The Central Point Source

There have been many works that attempt to constrain the unresolved point-like

residuals. Studying the surface brightness profile, [116] estimate that the a point-like
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contribution of ∼ 10%. An extrapolation of flare fluences below the detection limit

([92]) and a statistical analysis of the X-ray flux distribution ([91]) also find a similar

residual point-like contribution. [131] do two separate analyses trying to place con-

straints on the unresolved point source emission. By comparing the radial intensity

profiles of a flare image with the quiescent image they place a limit on the PS emission

to <20% of the total X-ray flux within ≤1.5” [131]. In a separate analysis, they spec-

trally decompose the point-like emission from the extended emission. That spectral

decomposition suggests the unresolved point source emission, assumed to be due to

Bremsstrahlung, contributes 16(5,23)% to the total flux. Our best fit model, placing

the fraction of unresolved point-like emission in this region at 4.2(2.3,7.0)%, is well

below the upper limit constraint from spatial decomposition and loosely consistent

with the other results.

While the total flux is roughly in agreement, the spectral shape is quite the con-

trast. When assuming this unresolved emission is a powerlaw, we find that it is

characterized by a spectral index, α = 4.8(3.5, 7.5), grossly steeper than the assumed

Bremsstrahlung spectrum in the spectral decomposition of [131]. Thus, we are able

to rule out Bremsstrahlung as an important emission mechanism in the inner 100 rs.

Recall, we noted that <1% of the emission in the images originated between radii of

100-1000 rs since the density does not rise quickly enough to compensate for the low

volume and rising temperature, further suggesting that Bremsstrahlung should not

be important for the emission so near the SMBH.

The discrepancy between our findings and those of [131] can be understood quite

naturally when looking across all of the differences. Not only is their PS spectrum

significantly harder than the PS deconvolution in our analysis, but it is also a much

more significant contributor to their flux. This results in the PS emission pushing

their flow emission to a softer spectrum. It does so by flattening the density profile

and steepening the temperature profile, both of which put more emission in a cooler
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flow component than the analysis presented here. This discrepancy illustrates the

problem with modelling spectrally alone, which entangles emission components with

too many degrees of freedom, where we have to make too many assumptions to make

progress. To break the degeneracy, we need to have some constraint on at least one

component solely, point-like or extended flow, as is done here with the outskirts of

the flow.

Another possibility is that the point-like emission is unresolved flare emission.

Yet, here too, lies a discrepancy. The cumulative flare spectrum exhibits a spectral

index of α = 2.6 ± 0.2, as seen in [131]. They also show that there is no evidence

of a significantly changing spectral index with flare strength. Therefore, unless the

properties of unresolved flares are substantially different from resolved ones, this

spectral index is well beyond the bounds of certainty placed by our analysis here.

We deem this unlikely, due to the apparent universal nature of X-ray flare emission

around a black hole, not just for Sgr A*, but for the general population of LL-AGN

[72].

In reality, there are likely two primary contributors to the quiescent X-ray point-

like emission, synchrotron and inverse-Compton scattering, which can be understood

in the context of both [3] and [141]. These theoretical works set the stage for com-

pleting the picture of quiescent emission near Sgr A*. By decoupling electrons and

allowing them to become non-thermal, [3] show that the flares could naturally be due

to trapped particles in magnetic flux tubes, which are accelerated through reconnec-

tion. But we can also see from that work that these particles are only a small fraction

of the overall electron population. The rest of the electrons exist in a very hot, either

thermal or quasi-thermal, turbulent evironment.

This intepretation is qualitatively in agreement with the calculations of [141].

They show that the multi-wavelength quiescent spectral energy distribution can be

explained by electrons in a quasi-thermal distribution. The bulk of the electrons are
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thermal, emitting strong synchrotron emission in the radio bands. Some of this ther-

mal synchrotron emission is inverse-Compton upscattered into the UV, with a high

energy exponential tail extending into the X-rays. Also, in their model, approximately

≤ 1.5% of the electrons must be accelerated into a synchrotron powerlaw tail in or-

der to match the quiescent IR emission. These electrons, which exist outside of the

strong magnetic flux tubes associated with the flares, are in an approximate steady

state, with synchrotron cooling times typically greater than the advection timescale.

Further, [141] show that the powerlaw index of the synchrotron emission must be

greater than or equal to 3.5. This scenario is consistent with the multiwavelength

spectral energy distribution spanning from radio through IR and to X-ray, including

more recent estimates of the mean IR flux [112].

The powerlaw slope found in our work, at 4.8 (3.5,7.5), is in agreement with

this predicted upper limit of 3.5 from [141], if only slightly more steepened. Since

we would expect the very steep thermal inverse-Compton emission to be detected

predominantly in our 1-4 keV band, it is reasonable that our powerlaw would be

steepened slightly. However, since the residuals in Figure 2.5 do not show any drastic

residuals at the origin that would result from a significant deviation of the point-

like emission from a powerlaw, we believe it is reasonable to conclude the emission

is primarily due to synchrotron and the inverse-Compton upscattering of this non-

thermal emission, with slight contamination from thermal inverse-Compton emission

in the 1-4 keV band.

However, their predicted flux is in direct conflict with the results detailed herein.

Based on their calculations, we expect the thermal inverse-Compton emission to con-

tribute anywhere from a few tenths of a percent to a percent of the X-ray emission,

and, is naturally quite steep due to its thermal origin. A powerlaw index of 3.5 places

the synchrotron contribution to X-ray emission at roughly a few percent. Some of

this non-thermal synchrotron emission is also inverse-Compton scattered to X-ray
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energies, contributing ∼ 10% to the quiescent emission with approximately the same

slope as the synchrotron emission. Thus, we expect the total combined synchrotron

and inverse-Compton emission to contribute approximately 10-20 percent to the qui-

escent Sgr A* emission from the model of [141], approximately four times greater

than what we observe.

But, there are several model differences that we believe would serve to negate this

issue. Most notably is the density profile, ρ ∝ r−3/2+s, assumed in [141] for their 1-D

analytical RIAF solution is much steeper, s ∼ 0.27, than we find in X-ray studies,

s ∼ 1, from this work and that of [131]. The change in density slope requires the

population of ultra-relativistic particles to lessen significantly, decreasing both the

synchrotron emission and the inverse-Compton flux. However, making this change in

their model creates some other outstanding issues. Specifically, it would lead to an

underprediction of the observed sub-mm emission. Yet, these issues we believe to be

amenable, given a treatment of the multidimensional structure of the accretion flow.

For one, we know from [3] that the magnetic field strength is much greater in the

polar outflow region than assumed to be throughout the flow in [141]. Secondly, the

assumption of a Maxwellian distribution of electrons at each radius likely leads to

further mistreatment of the outflow region. We will explore the full implications of

these model differences via an update to the SED model of [141] in Appendix B, as

well as explore the physical nature of the steep synchrotron.

2.5 Model Predictions and Future Work

Understanding the low radiative efficiency of Sgr A* is of central importance to

learning about the processes surrounding LL-AGN and how their feedback affects the

circumnuclear environment. In recent years, the general picture of how the accretion

flow evolves has begun to emerge. As gas spews forth from Sgr A*’s large, circum-

navigating O and Wolf-Rayet stars in the form of stellar winds, it collides with other
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stellar winds, shocking to temperatures that greatly ionize the gas, causing it to emit

in X-rays. Without the angular momentum to resist the graviational lure of Sgr A*, it

is captured by the BH, and begins falling deeper into the potential well. Whether that

gas circularized or not was unclear. However, we show that it indeed does have (and

requires) coherent angular momentum, circularizing well within the capture radius,

but still quite distant from the BH. As angular momentum is transported, the gas

turbulently dances closer to the BH. Some of this gas will accrete onto the BH. Yet,

most of it will be driven away in a large collimated polar outflow, to what distance

is unclear. With a general framework now in place, we can begin to look in more

depth at the implications of this observationally constrained accretion flow and how

we may further test the model.

2.5.1 Flow Dynamics

The azimuthally averaged gross mass inflow rate is shown in blue in Figure 2.8.

The curve is nicely consistent with other estimates of the mass accretion at different

radii, both theoretical and observational. The simulated estimate by [24] lies very

near our curve, shown by the red circle. This curve is also roughly consistent with the

results of [2], which is shown by the red dotted line. In that work, the authors assume

accretion is Bondi-like, and estimate the rate based on the cumulative spectrum within

1.5”. Compared to the RRIOS model, which has a relatively flat density profile and

corresponding steep mass inflow profile, their Bondi assumption places much more

gas at low radii and naturally must underestimate the accretion rate at rb in order to

compensate.

Another important constraint on the accretion flow is that placed on low radii

by [81] based on radio data. They place an upper limit of ∼ 2 × 10−7 M�/yr at

100 rs based on estimates from radio polarization. Unfortunately, this is inside the

inner boundary of our simulations. We directly estimate the inflow rate to be ∼ 10−6
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M�/yr at ∼ 103 rs from the simulations. Extrapolating our curve to 100 rs places the

inflow rate at ∼ 1− 2× 10−7 M�/yr (with the inferred net accretion rate less than or

equal to this value), just inside the limit placed by [81]. Note, the flattening of the

inflow rate at low radii in the simulation is an artificial feature, due to its proximity

to the inner boundary. Thus, we have neglected it in the extrapolation.

We predict a mass inflow rate of ∼ 10−4 M�/yr ≈ 2.4×10−3ṀEdd at rb ≈ 4×105rs.

This rate is well within the limits placed by estimates of stellar mass loss in the vicinity

of Sgr A*. There are ∼ 30 stars that have important mass loss rates [94, 25], with

individual mass-loss rates in the range 5 × 10−6 − 10−4 M�/yr [83, 24]. This inflow

rate at rb is also approximately an order of magnitude below that required for the hot

accretion flow solution [70].

The mass outflow rate roughly follows the mass inflow rate as a function of radius,

leaving the two in approximate balance, and creating an approximately constant net

mass accretion rate. This means that at all radii, the net mass accretion is extremely

low. Approximately 1% of the material that is accreted at rb makes it to radii of 103 rs,

with the rest being driven out in the polar outflow. This outflow has a large opening

angle, defined to be the angle in φ that has a positive time-averaged radial velocity,

of ∼ 130 − 140◦. The density weighted velocity of the outflow is ∼ 350 km/s. This

velocity is undoubtedly an underestimate. With the inclusion of magnetic fields and

the self consistent generation of feedback, we expect this velocity to increase. Thus,

until this type of fit is done with a 3-D MHD simulation, it is unclear how much kinetic

energy is stored in the polar outflow. Further, we are still unable to determine where

this energy will be deposited and therefore exactly how much feedback it represents.

2.5.2 Observational Predictions

Hopefully, with the launch of Athena, made even more necessary after the breakup

of Astro-H, we will have an immensely powerful new tool to probe the hot universe.
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Figure 2.8. The solid line gives the inflow mass flux, temporally and azimuthally
averaged, as a function of radius. The dashed line provides an extrapolation to lower
radii. The red dotted line is the estimate made by [2], based on the cumulative
emission within 2×105 rs, assuming Bondi accretion. The circle is the estimate made
with the simulations of [24]. The upper limit placed by [81] is the upside down
triangle.
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Unfortunately, the spatial resolution of the Athena instrument is only ∼ 5”, compa-

rable to rb for Sgr A*. However, the effective area and spectral resolution (2.5 eV;

goal of 1.5 eV) are much improved. Thus, by analyzing line profiles, an observation

of the Sgr A* complex with Athena will be able provide some very good dynamical

information about the flow. Further, at this spectral resolution, different lines can

be used to probe different regions of the flow. This is particularly true if the goal of

1.5 eV is met, which would give enough resolution to have diagnostic power for lines

spanning from 2-7 keV.

For example, we consider the strong He-like Fe XXV Kα resonance line at 6.7

keV [131]. A spectral resolution of 2.5 eV is equivalent to ∼ 100 km/s at 6.7 keV.

This is incredibly good resolution, considering for our model, the gas that emits in

the Fe XXV line has velocities up to ∼ 500 − 2000 km/s. We have simulated this

line’s emission for a 500 ks observation of Sgr A* (Figure 2.9) for both the plaw and

plaw − wp models (ignoring bulk turbulent motions). Note, we have only displayed

the high energy side of the line, as the low energy side will be contaminated by other

Fe XXV transitions. However, since the plasma is optically thin, it will be symmetric

about 6.7 keV. We see that the two models can easily be distinguished from each other

using the line profile for this depth of observation. Thus, line profiles as observed with

Athena can be used to independently constrain the inclination angle of the accretion

flow. Not only does this illustrate a way to incorporate more information and greatly

constrain the Sgr A* accretion flow, but also highlights the immense diagnostic power

of Athena.

Even though Athena promises to be a great leap forward, it will still leave a

fair amount to be desired for those who want to do spatially resolved spectroscopy.

However, such an instrument is not outside the realm of reality. The proposed X-ray

Surveyor would be the proverbial holy grail of X-ray astrophysics. With spectroscopic

resolution comparable to that of Athena, spatial resolution similar to that of Chandra,
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and∼ 50x better effective area as that of Chandra, we would be able to map individual

lines within rb. Spatially modelling many of these lines simultaneously would provide

incredible constraint on the structure of the accretion flow, potentially allowing us to

reconstruct the 3-D inflow and outflow structure.

2.5.3 Faraday Rotation Measurements

If the type of fitting in this paper is done with a 3-D MHD simulation then we

can utilize other observations to constrain the accretion flow, most notably, Faraday

rotation measures. This measure is the integral of the product of the density and

parallel magnetic field along the line of sight, ∝
∫
ne ~B · d~l. This measure has already

been successfully used to place limits on the accretion rate very near the BH. Assum-

ing some basic structure and energy equipartition, [81] place a lower and upper limit

of 2e-9 M�/yr and 2e-7 M�/yr near the BH, respectively. Others, such as Li et al

(2015), have attempted to make calculations based on some toy models, in an attempt

to understand the accretion and outflow processes, but have met with contradiction

between their estimate of the flow’s inclination angle and that of the stellar disk.

With the new RRIOS simulations, we now have an understanding of the general

distribution of material around the BH. In principle, we could use the rotation mea-

sure as a constraint with the current 2-D simulation that we have used, assuming

some limiting cases of the magnetic field geometry. While we are not willing to make

such assumptions at this time, these magnetic fields will be generated self-consistently

in a 3-D MHD simulation, giving us more information to leverage in our quest to un-

derstand the low accretion phase and its mechanical feedback. However, at this time

we leave such work for a future paper.

2.5.4 Further Numerical Considerations

We have discussed many reasons why it is important to do the type of fit presented

here with a 3-D MHD simulation, including Faraday Rotation estimates and the self-
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Figure 2.9. Simulated line emission (continuum subtracted) for the Fe XXV Kα
resonance line at 6.7 keV observed with Athena for 500 ks. Bin size is ∼ 2.25 eV.
Diamonds correspond to simulated bins for the plaw − wp model, and dots to the
plaw model.
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consistent generation of feedback and outflow velocity. We should, however, point

out an additional numerical concern. Our current simulations, in using an artificial

viscosity, may not be modelling the transfer of angular momentum as accurately

as we would like. While previous work suggests the inclusion of magnetic field has

little effect on global properties such as the density profile [6, 142], any change in

the transfer of angular momentum would have strong consequences for the radial

density profile, which is the primary constraint on the angular momentum through

the centrifugal radius. Therefore, we believe that the global parameters, particularly

the angular momentum of the flow, which is tightly constrained here, could change.

However, care has been taken to make the simulated flows as realistic as possible. But,

in any case, detailed 3-D MHD simulations should be carried out, starting with the

best fit parameters, to check various consistencies and to address the role of magnetic

fields.

2.6 Summary and Conclusions

While self-consistently connecting the outflowing gas to the surrounding circum-

nuclear area remains an outstanding challenge, significant strides have been made

in recent years modelling the physics surrounding low luminosity BHs, in particular

Sgr A*. Since it is numerically infeasible to simulate from very near the black hole

through the accretion flow to the origin of the feeding material and its subsequent

outflow deposition area, many orders of magnitude in resolution, the community has

resorted to modelling in specific spatial domains. [139, 3] have made great strides

recently in simulating the physics very close to the BH, and from the other end, [25]

have done a great deal to simulate the accretion flow from its orgins. In between the

two regimes, we are able to place significant constraint on the the structure of the

accretion flow within the Bondi capture radius by linking observations to simulated

2-D RRIOS accretion flows with MCMC fitting, self-consistently modelling the inflow
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and outflow regions simultaneously for the first time. This lends necessary boundary

conditions for those that seek to understand the flow at its inner and outer limits.

Specifically:

� The best fit temperature at the Bondi radius is 1.3e7(1.24e7,1.38e7) K and is

consistent with an origin of shocked stellar wind material of velocity ∼ 1000

km/s.

� The best fit electron density at the Bondi radius is 101.6 (91.4,111.1) cm−3 and

is consistent with estimates of stellar mass loss from stellar winds in the central

cluster.

� The angular momentum of captured gas, as parameterized by the centrifugal

radius, is best fit as rc = 0.058(±0.006) rb. This is the first observational

constraint on the centrifugal radius, and provides an important condition for

modelling as we move forward.

� Low angular momentum accretion (Bondi-like) leads to too steep a density

profile to spatially model the observed emission simultaneously at small and

large radii.

� We find the unresolved point-like quiescent emission is too steep (α= 4.8(3.5,7.5))

to be characterized by Bremmstrahlung emission or undetected flaring emission

of the same spectral shape as those of detected flares. This emission is likely due

to a combination of inverse-Compton scattering of low frequency synchrotron

emission by thermal electrons and synchrotron emission from a small percentage

of electrons that are accelerated into a powerlaw tail.

� The mass inflow rate at rb is ∼ 10−4 M�/yr. This rate is well below the expected

gas supply due to stellar wind mass loss in the vicinity of Sgr A*.
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� The radial profile of mass inflow is incredibly steep due to the strong balancing

outflow, resulting in a mass inflow rate ∼ 10−6 M�/yr at ∼ 103rs, consistent

with simulations of stellar wind dynamics. This directly implies a net mass

accretion rate of ≤ 10−6 M�/yr onto Sgr A*. Extrapolating the mass inflow

profile to lower radii results in an accretion rate at low radii that is consistent

with estimates from Faraday rotation measures.

� The polar outflow has an opening angle of 130-140◦ and a velocity of ≈ 350

km/s. We expect this predicted velocity to increase with inclusion of magnetic

fields. The effects of this polar outflow should be observable, either through

its impact with the surrounding ISM or spatially-resolved X-ray spectroscopic

studies of the accretion flow.

The work herein is comprehensive, giving the first globally consistent picture of

the Sgr A* accretion flow. However, there is much that can be done to verify and

push this study further as computational power grows and the next generation of X-

ray telescopes are launched. From the computational side, we can begin by running

these simulations in 3-D. This will allow us to include magnetic fields, thereby self-

consistently modeling the viscosity and feedback in the accretion flow. The next step

would be to realistically simulate the gas from its origin to within the centrifugal

radius. Observationally, a better determination of the truly quiescent IR flux is of

paramount importance, which provides the strongest constraint on the non-thermal

electron population. In X-rays, with the release of Athena, and ideally the X-ray

Surveyor, we may be able to more directly check our results by doing high-resolution

spectroscopy with its non-dispersive spectrometer and far superior effective area (∼

100x Chandra). Leveraging such an instrument to extract the dynamics of individual

lines will allow us to greatly constrain the flow structure, to the point of potentially

mapping the inflow and outflow regions.
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CHAPTER 3

EMISSION LINE MAPPING OF GRATING
SPECTROMETER DATA

3.1 Introduction

Supermassive black hole (SMBH) and stellar feedback are important ingredients in

the present theory of galaxy formation and evolution. Models without these feedback

mechanisms produce far more stellar mass in the universe than is observed, overpre-

dicting the number of galaxies at all mass scales (e.g., [134, 58, 60]). Thus, feedback

is an important regulator of star formation in all galaxies, large and small, spiral

and elliptical. Unfortunately, these feedback ingredients have hardly been tested and

quantified observationally. Under what circumstances are individual, physically dis-

tinct modes of feedback important? To what extent does each mode regulate star

formation via ejective and/or preventative feedback? These fundamental uncertain-

ties betray the holes in our knowledge of galaxy evolution and highlight the dire need

for observational illumination.

Spectroscopy is the lifeblood of observational astrophysics. Without spectroscopy,

it becomes nearly impossible to ground astronomical observations in any sort of phys-

ical mechanistic sense. In order to understand the dynamic, and often violent, macro-

physical processes that regulate the growth of galaxies, it is necessary to visualize the

nuances of the microphysical processes through spectroscopy. However, for an object

whose emission is even mildly complex, spectroscopy in and of itself is not immensely

more useful than imaging when it is done in an object integrated fashion. For diffuse

emission, the true holy grail lies in spatially-resolved spectroscopy.
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Spatially resolved spectroscopy is extremely important for one simple reason.

When viewing an object’s integrated spectrum in a single waveband, many different

physical conditions can mimic each other in a spectrum. Beyond our own physical

intuition, it may be unclear which model is appropriate for the given situation. Fur-

ther, the relevant non-CIE model may not exist. A statistical model comparison may

not provide any illumination either, as there are many degenerate model parameters,

particularly when fitting individual elemental abundances. This degeneracy paraly-

ses the ability to numerically describe many effects of galactic feedback on the hot

galactic and intergalactic plasma, a major component of the baryonic universe and

one that is directly linked to the feedback processes themselves. However, each of

the different emission mechanisms generates a distinct spatial pattern for different

emission components, making spatially resolved spectroscopy a natural approach for

elucidating this spectral obfuscation.

Spatially resolved spectroscopy of X-ray CCD data has been increasingly at-

tempted (e.g., [31, 105, 18, 72]). The algorithm employed hitherto has been to

perform separate spectral analyses on data from different tessellated regions of equiv-

alent signal-to-noise. This procedure has been done for both the Chandra ACIS-I

and XMM-Newton MOS instruments, both of which only provide moderate spectral

resolution. While this form of spatially resolved spectroscopy may illuminate the

presence of issues through odd temperature and abundance patterns (e.g., [57, 107]),

it suffers from many of the same issues as object integrated spectroscopy. Specifically,

the assumption that the gas is optically-thin and in collisional equilibrium (CIE) is

often detrimental to the advancement of knowledge.

In X-rays, astrophysicists rely heavily on the assumption that the plasma is

optically-thin and in CIE. Further, most spectral analyses are done on moderate

resolution spectra, which are unable to truly test the appropriateness of this assump-

tion. While it might be clear from fitting results that something peculiar is occurring
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(e.g., [57, 107]), such need not be the case, leaving us with little to no understanding

of the bias in our results.

Grating spectrometers, which do have the spectral resolution to extract the rele-

vant diagnostics, have shown exactly how poor the assumptions of optically-thin and

CIE typically are (e.g., [104, 77, 146]). However, these instruments have hitherto

been of limited use for spatially resolved emission due to spatial and spectral confu-

sion. Yet, X-rays are the prime window for directly observing much of the galactic

feedback. Thus, the concerns raised above outline a serious observational hindrance

to understanding much of galactic feedback.

To diagnose the appropriateness of the optically-thin and CIE assumptions, the

so-called G-ratio of He-like Kα transitions is useful. He-like Kα transitions correspond

to a triplet of lines from the first excited state to the ground state of Helium-like ions

(those with two electrons): the resonance (R), inter-combination (I), and forbidden

lines (F). The G-ratio is given as F+I
R

. Non-CIE emission processes, such as charge

exchange (CX) and overionization (recombining plasmas), preferentially populate the

forbidden line relative to the resonance line, enhancing the G-ratio by up to a factor of

more than ten. Another complication of the X-ray emission of spheroids that needs

to be explored is the scattering of resonant emission lines by the X-ray-emitting

plasma itself (e.g., [96]). Such scattering re-distributes optically-thick emission line

photons to the outer regions of the source. Due to its large oscillator strength, the

resonance line emission can be redistributed through this process while leaving the

spatial distribution of the forbidden and intercombination lines intact.

It is the G-ratio diagnostic that is uniquely resolved with a grating spectrom-

eter, making the grating a very powerful tool for understanding non-CIE emission

processes, and by extension galactic feedback. However, grating spectrometers come

with their own unique issues. By dispersing light into the spatial dimension, they

are able to obtain very high resolution spectra. Unfortunately, this also means they
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confuse spatial and spectral information for an extended source. This is the reason

why the majority of analysis using X-ray grating spectrometers has been focused on

point-like emission.

As we look to a future with Athena, where spatially resolved spectroscopy is

by design, we need not sit on our hands. There is work that can be done now to

take advantage of the current fleet of telescopes to spatially resolve the nuances of

the X-ray universe. Specifically, with thoughtful analysis, the current set of grating

spectrometers can be repurposed to illuminate a much deeper spatial understanding

of the hot, diffuse universe. For isolated lines, this is relatively straightforward.

Assuming the line energy of every photon (i.e., neglecting velocity dispersion; however,

in principle, this can be modelled as well), a photon’s detected dispersion coordinate

can be translated into the spatial coordinate with a simple application of the grating

equations. For He-like Kα triplets, however, the emission lines may significantly

overlap due to the spatial extent of the source. In this case, the mapping becomes

slightly more complicated. Yet, we can take advantage of multiple observations at

different roll angles to overcome this challenge in a very general sense. This results

from the fact that the wavelength dependence always follows the roll angle of the

telescope while any spatial structure is fixed. A very crude form on this type of

emission line mapping was previously performed by [128, 4], however, only for isolated

lines.

XMM-Newton’s RGS instrument, with a spectral resolution of ∼ 3 eV, will be

the tool of choice for a demonstration of the power of grating line mapping. The

reasons for using RGS are four-fold. First, XMM-Newton has a bandpass of 0.35-2

keV, making it optimal for studying both the OVIII Lyα transition and the OVII Kα

transitions. Second, the RGS instrument was active for nearly every XMM-Newton

observation. Therefore, it has a great deal of archival data to analyze. Third, XMM-

Newton has the largest effective area of the grating instruments in the soft X-rays
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(∼ 100 cm2), making the possibility of spatially-resolved spectroscopy a much more

tantalizing prospect. Most important, however, is the large dispersion angle that

makes the line confusion relatively small, even for moderately extended sources of a

few arminutes across. Therefore, while everything discussed herein is generalizable to

the HETG and LETG instruments on Chandra, it is only useful for substantially more

compact and intrinsically brighter sources. For analysis of more extended objects with

HETG and LETG, all emission lines must be modelled simultaneously.

3.1.1 M31 as a Test Case

The central bulge of M31 provides a unique test environment for feedback in

galactic spheroids. Beyond their physical morphology, spheroids are unique in that

they are typically void of current star-formation, beyond a minute residual amount,

and the gas that resides within them is typically hot, which is observed in the X-

rays. They contain two classes of objects that may contribute siginificant to feedback

and continuously heat the gas: a stellar population that is predominantly old, which

contributes late-time stellar feedback, and a supermassive black hole (SMBH) at their

heart. Disentangling the relative importance of the two for keeping the gas hot inside

galactic spheroids through a range of masses will require analysis of a statistically

representative sample of galaxies. However, this case study can certainly provide

some new and unique insights.

Late-time stellar feedback, primarily in the form of mass loss from evolved stars

and type Ia supernovae, may serve to keep the interstellar gas hot, as well as drive

outflows in galaxies with a predominantly aged population [123]. The bulk of the

mass, energy, and metal inputs is believed to be ejected with spheroid-wide winds or

subsonic outflows (e.g., [15, 123, 124, 122]). Evidence for this is primarily based upon

simulations [124, 123]. Observational evidence, built upon peculiarities of the iron

abundance’s radial profile (e.g., [123] and references therein) and X-ray morphology
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(e.g., M31, [74]; M104 or Sombrero, [73]; [13, 64]), is circumstantial and not well

reconciled with theoretical predictions. Further, there are prominent suggestions

of non-standard emission processes (i.e., the emission is either not in CIE and/or

optically-thick; hitherto referred to as non-CIE for brevity) seen in the He-like Kα

triplets which cannot be explained with the current modelling [73]. Therefore, it is

highly unlikely that current estimates of chemical composition are reliable.

SMBH feedback arises from energy released through the inflow of gas toward a

SMBH at the center of a galaxy. If the accretion flow becomes dense enough, it will be

able to cool and condense into a thin disk. This is referred to as the high-luminosity

active galactic nuclei (HL-AGN) scenario. After the density is large enough for the

flow to flatten out, viscous energy is readily transformed into radiative energy. The

radiation field from the disk becomes so great that it controls the ionization state

of the surrounding hot gas. Indeed, even after the accretion flow lessens and the

radiation field subsides, the over-ionization state can persist in the form of an AGN

relic. This scenario has recently been proposed to be responsible for the diffuse X-

ray excesses observed in galactic nuclear regions (e.g., [130, 110]), as well as the

ionization of cool gas far away from post-active galaxies (e.g., [103, 59]). This effect

can be directly observed with X-ray observations of galactic spheriods and may be

used to provide constraints on the the recent history of the AGN and SMBH feedback

in general.

To study the effects of these two enigmatic feedback mechanisms, it would be

useful to map the thermodynamic and chemical structure of the hot gas within the

bulge. However, there is a wrinkle in the emission that prevents study with conven-

tional methods and assumptions. The emission exhibits an elevated G-ratio of the

OVII Kα triplet in the inner bulge (∼ 1.5), indicating the present of some non-CIE

emission or scattering process. This is what makes the prospect of studying the M31

bulge with innovative methodology particularly tantalizing. CX has previously been
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suggested as a possible cause of the elevated G-ratio [77]. However, there is very little

dust and neutral gas in the bulge [33, 32, 14], making CX unlikely. Alternatively,

[145] have found that a relic AGN could also produce the elevated G-ratio, as well as

generally match the RGS spectrum. Under this scenario, we expect the G-ratio to be

largest at large radii and lowest at low radii, where the density is highest, allowing

for a faster return to equilibrium.

Additionally, preliminary estimates of resonance scattering suggest that it may be

important for key resonance lines. This effect on the spatial distribution of the Fe

XVII 3d− 2p transition has clearly been shown with RGS observations of a few giant

elliptical galaxies [137, 132]. Resonance scattering works by redistributing optically

thick resonance line photons to the outskirts of a galaxy. Thus, under this scenario, we

expect the G-ratio to be largest near the center of the galaxy and to decrease at larger

radii. While the effectiveness of the scattering is not clear in low LX/LK spheroids

(such as the bulge of M31), which contain relatively low temperature and low column

density hot plasma, preliminary estimates indicate that the scattering of the OVII

Kα and OVIII Lyα resonance lines could be significant in the inner bulge region of

M31. The firmness of these estimates largely depend upon how small the bulk and

turbulent velocities of the plasma are. Conversely, the quantification of resonance

scattering can be used to place thus far unique constraints on the kinematics of the

plasma.

Therefore, there are two primary mechanisms that we will explore as responsible

for the elevated G-ratio: resonance scattering and a relic AGN. We expect each of

these to have a distinct G-ratio spatial pattern, making this analysis diagnostically

useful. By helping to elucidate the physical mechanism behind the elevated G-ratio

for OVII in M31, we demonstrate the diagnostic power of this methodology.
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3.1.2 Study Outline

We herein describe a method for taking the spectroscopic capabilities of XMM-

Newton’s reflective grating spectrometer (RGS) system, and by extension all other

dispersive systems, to the proverbial next level. First we demonstrate how to extract

spatial information from the dispersive RGS system, using the grating equations to

project emission into the spatial coordinates. We then demonstrate the method’s

utility for distinguishing between emission mechanisms with the M31 data. We go

on to discuss the implications of this fit in the larger context of galactic feedback in

spheroids, as well as the broader limitations and potential of the method.

3.2 Methods

Prior to any fitting, the data must be properly processed. To provide some clarity

on this process, we here first outline the fitting procedure. The fitting requires cal-

culation of the probability of the data given the model, also known as the likelihood.

When doing this, we assume that the data is generated through a Poisson process.

Thus, for every pixel of each observation we must calculate the expected number of

counts in order to calculate the Poisson likelihood of the observed number of counts.

The likelihood is relatively straightforward to calculate for an isolated line. We begin

by constructing a source flux map, ~Isrc, from our sampling parameters. We perform

a double convolution on ~Isrc to account for the PSF and LSF, respectively. This

is converted to an expected counts map, ~Csrc, by multiplying by the source fluxing

map, ~Fsrc. We then add it to the background count map, ~Cbkg, which is generated

by multiplying the background flux map, ~Ibkg, by the background fluxing map, ~Fbkg.

The background needs to modelled in the flux domain, as its effective area is not

necessarily smooth and may be non-linear. This procedure generates the expected

number of counts in each pixel, from which we may calculate the likelihood.
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For blended lines, there is an additional set of steps. A source flux map is generated

for each line. After these lines are convolved, they are dispered, multiplied by their

relevant fluxing maps, and added together to create a total expected source count

map, ~Csrc. In this case, each source line has its own fluxing map as each line energy

has a different effective area. After this, the source flux can be added to the expected

background count map as was done for the isolated line, creating an image from which

we may calculate the likelihood.

3.2.1 Data Reduction

We analyze a total of 32 observations of the M31 bulge (Table 3.1), amounting to

582 ks of observing time. The standard event files and response matrices are produced

using the rgsproc pipeline of the Science Analysis System (version 15.0.0). Good time

files are produced by visual examination of the light curve to remove flares. Within

the rgsproc pipeline we specify the source location as the center of the galaxy (R.A.

= 00h 42m 44.3503s, Dec. = 41d 16m 08.634s; [37]). This handles corrections for

boresight in the calculation of the line wavelengths. While this pipeline does much of

the heavy lifting in terms of data reduction, it is designed for point sources and does

not directly provide information on the spatial distribution of an extended source. To

extract spatial information from the data, we need to consider the optics of the RGS

system.

3.2.2 Count Map

For a given line of interest, we can place two selections on the data to limit

contamination a priori. The most obvious is a limit on the event wavelength, as

determined by rgsproc. The choice of limiting wavelengths has some leeway in regards

to their exact values depending upon the physical extent of the source. However,

it is important to choose limiting wavelengths that provide enough counts in the
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Table 3.1. M31 observations.

Obs. ID Date tobs (ks) teff (ks)
0109270101 6-29-2001 57.9 24.5
0112570101 1-6-2002 64.3 50.9
0112570401 6-25-2000 46.0 31.8
0112570601 12-28-2000 13.1 7.4
0405320501 7-2-2006 21.9 12.3
0405320601 8-9-2006 21.9 6.1
0405320701 12-31-2006 15.9 14.6
0405320801 1-16-2007 13.9 11.9
0405320901 2-5-2007 16.9 14.4
0505720201 12-29-2007 27.5 23.2
0505720301 1-8-2008 27.2 21.9
0505720401 1-18-2008 22.8 17.8
0505720501 1-27-2008 21.8 13.1
0505720601 2-7-2008 21.9 18.3
0551690201 12-30-2008 21.9 18.5
0551690301 1-9-2009 21.9 18.1
0551690401 1-15-2009 27.1 6.9
0551690501 1-27-2009 21.9 17.2
0600660201 12-28-2009 18.8 16.3
0600660301 1-7-2010 17.3 15.3
0600660401 1-15-2010 17.2 14.4
0600660501 1-25-2010 19.7 13.1
0600660601 2-2-2010 17.3 15.7
0650560301 1-4-2011 33.4 29.5
0650560401 1-14-2011 24.3 15.6
0650560501 1-25-2011 23.9 18.3
0650560601 2-3-2011 23.9 22.8
0674210201 12-28-2011 20.9 20.4
0674210301 1-7-2012 17.3 15.5
0674210401 1-15-2012 19.9 19.7
0674210501 1-21-2012 17.3 17.2
0674210601 1-31-2012 26.0 18.9
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Table 3.2. Line selections and parameters.

Line λ0 (Å) PImin (eV) PImax (eV) λmin (Å) λmax (Å) Bkg. Width (Å)
OVII 21.85 425 710 20.35 23.35 0.5
OVIII 18.967 518 790 17.717 20.217 0.5

continuum dominated regions to estimate the background, as discussed below, while

minimizing potential contamination from adjacent lines.

In addition to the wavelength estimated from the grating equations, the low-

resolution CCD pulse-height (PI) estimate of a photon’s energy can be used to limit

contamination. For the RGS detector, the uncertainty of this estimate is approxi-

mately Gaussian with σ ≈ 68 eV. We select events from ±2σ of the line(s) of interest.

Data selections for different lines of M31 data are summarized in Table 3.2, along

with other parameters needed for extracting spatial information as discussed below.

The procedure for mapping events in the cross-dispersion direction is the most

readily understood. After choosing a pixel scale, R ≥ Rrgs ≈ 1 arcsec/pixel, we can

directly calculate the cross dispersion location of the ith event in the spatial image

pixel coordinate:

Xi = (δXDSP + XDSPi ∗ 206264.8)/R (3.1)

where XDSPi is the event’s corrected cross dispersion angle in radians, which is

calculated by rgsproc and corresponds to the XDSP CORR column in the standard

events file. The factor 206264.8 converts XDSPi from radians to arcsec, which is

converted to pixels by R. The width in the cross dispersion direction is represented

by δXDSP, where 2δXDSP corresponds to the total width. We use an extraction

region, δXDSP, of 1.8’. This region size was chosen because the effective area does

not suffer much loss within this distance. With an adequate model of the cross-

dispersion effective area, this may be expanded in later work.

Due to the mixing of spatial and spectral information, determining the pixel co-

ordinate in the dispersion direction is conceptually less straightforward. However, all
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dispersion positions derive from the grating equation, which describes how photons

are dispersed as a function of wavelength and incident angle:

cosβ = cosα +mλ/d (3.2)

where β is the dispersed angle, α is the incident angle, m is the spectral order, λ is

the wavelength of the radiation, and d is the grating spacing. The grating spacing

for the RGS system is ∼ 1.549µm. For our purposes, we only use the first order

dispersed data, m = −1. This constraint could conceivably be loosened for higher

energy photons, however, since we are primarily interested in OVIII and OVII, higher

orders do not provide any additional information.

To cast this equation into spatial coordinates, we combine it with the equation

that relates a photons sky coordinate to its angle of incidence:

α = α0 + φ
F

L
(3.3)

where φ is the off-axis angular position of the source, L is the distance between

the reflective grating array and the prime focus (6700mm), F is the focal length

(7500mm), and α0 is the on axis angle of incidence.

Equations 3.2 and 3.3 clarify why blended lines suffer from a degeneracy. From

Equation 3.2, it is apparent that the larger the wavelength, the greater the disper-

sion angle for the same location. However, from Equation 3.3, a greater dispersion

angle can also arise through α from a positive off-axis location angle. With multiple

observations dispersed in different direction, ideally opposite, this degeneracy can be

broken with full generality. This results from the fact that the wavelength depen-

dence always follows the dispersion direction while any offset due to spatial structure

is fixed.
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Assuming all photons have the same energy (single line energy or multiplet cen-

troid energy; λp), that is, any displacement in the dispersion direction is due to

spatial changes, the location of the ith photon in the dispersion coordinate of the

spatial image is given by:

Di,obs = Dλp +
(αi − α0)L

RF
(3.4)

where Di,obs is the event position is the dispersion direction, and Dλp is the on-axis

position of the assumed line energy. α is calculated as:

αi = cos−1(cos(βi)−mλp/d) (3.5)

where βi is calculated within rgsproc and corresponds to the BETA CORR column

in the standard events file.

Using Equations 3.1 and 3.4, the events are cast into a count image in the nominal

coordinates of the source. An example of this for the OVIII Lyα line of M31 for a

single observation (effective exposure of ∼ 24 ks) is shown in Figure 3.1. Even after

rebinning the data to pixels of 10” on a side, the counting statistics of the diffuse line

emission are still extremely limiting. Most of the counts in the image represent the

dispersed continuum of bright point-like sources1.

3.2.3 Fluxing Map

In order to compare a model to the data, a fluxing map is needed to convert the

model surface brightness of the source line emission, in units of counts/s/cm2/arcsec2,

to an expected count image. The fluxing map is a combination of the effective area,

1These point sources are accreting compact objects whose continuum emission is primarily black-
body from accretion disks, inverse-Compton, and synchrotron emission. Therefore, it does not
contribute to the line emission and is considerably easier to remove than if it did.
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Figure 3.1. OVIII counts map for Observation 0109270101. Pixels are 10” on a side.

exposure, bad pixel corrections, pixel size and vignetting (only for the source line

emission). It is unique to both the source and background emission individually. The

diffuse gas that comprises the source emission is approximately at a single wavelength,

while the background is a combination of instrumental and continuum emission, which

spans a range of wavelengths.

Since it is merely a property of the detector, the bad pixel correction of each spatial

bin is equivalent for both the background and source emission. It is directly derived

from the exposure map generated by rgsproc, which gives the effective exposure time

at each β + cross-dispersion bin. We simultaneously account for exposure and bad

pixels in each spatial bin by summing over all β + cross-dispersion pixels, weighting

by the fraction of area that each contributes to the spatial bin. The area contributed

by each β + cross-dispersion pixel is determined by calculating the location of the
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bin edges using Equations 3.1 and 3.4. This procedure gives the effective exposure

time of each spatial bin.

Calculating the effective area is less straightforward. In the dispersion direction,

the effective area at some observed line energy, νo, is calculated as:

Aνo =
∑
νi

Aνo,νi (3.6)

using the response matrix for a point-source, which gives Aνo,νi , the effective area at

each detected energy (νo) given an intrinsic energy (νi). Unfortunately, the effective

area calculated from the rgsproc generated response contains corrections for bad pix-

els without their location in the cross-dispersion coordinate. In order to remove these

effects and obtain the underlying smooth response, it is sufficient to remove and inter-

polate through the bins that are affected by bad pixels. If any dispersion coordinate

bin is contaminated by bad pixels through the extent of ±2σ of the PSF from on-axis

in the cross-dispersion direction, then the effective area at that bin is excised and

interpolated through. An example reconstruction of the smooth underlying effective

area as a function of dispersion coordinate is shown in Figure 3.2. Lastly, recall this

effective area is assumed to be constant through the cross-dispersion direction due to

the small cross dispersion extraction width.

For the background effective area (discussed below), we use the standard effective

area generated by rgsproc for a point source after bad pixel effects have been removed.

The spatial location of each detected energy is then calculated using Equation 3.2,

providing a functional form of the effective area through the dispersion coordinate.

Over the narrow extracted wavelength range, the gradient of the continuum emission

can be assumed to be approximately constant. Therefore, using the point source

response to model the background instead of convolving the point-like response with

a spatial model will not result in any gross errors in the estimates of the background
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Figure 3.2. OVIII effective area for Observation 0109270101 as a function of disper-
sion coordinate. Bins are 1” in size.
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flux. Further, the background flux value is of little interest to the analysis presented

here, as long as the background can be reliably accounted for in the counts image.

For the source line emission, we assume that every photon is of the same en-

ergy. Therefore, we expect the effective area to be constant over the image, modulo

a vignetting effect. This value can be calculated directly from the interpolated back-

ground effective area shown in Figure 3.2 by mapping the line of interest to the spatial

domain with Equation 3.4. This value is then multiplied by the exposure map created

above which corrects for bad pixels and CCD gaps. The next step is to account for

effective area losses of the source emission at large off-axis angles (Figure 3.3) by

multiplying by a vignetting factor. Lastly, the fluxing map is divided by the square

of the pixel size.

3.2.4 Background Map

The background can arise from three primary sources: instrumental background,

diffuse gas continuum, and continuum from point sources. The complexity of mod-

elling these three different contributions individually with all geometric considerations

taken into account is incredibly burdensome for very little gain in knowledge. Fur-

ther, since we are not directly interested in a characterization of the background, as

long as it can be reasonably subtracted from the observed emission without being a

major source of error or uncertainty, such modelling is beyond the scope of this work.

We expect this background modelling to result in a slight underestimate of parameter

uncertainty, but the overconfidence will be minimal as our certainty of the diffuse line

emission is more limiting.

In order to generate a background map we estimate it directly in the continuum

regions surrounding the line(s) of interest, linearly interpolate in between, and con-

sider it fixed. We first collapse some width of the counts and background fluxing

maps in the dispersion direction, δλbkg, to estimate the flux on either side of the
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Figure 3.3. The vingetting factor as a function of off-axis angle at several wave-
lengths. The curve for a 1.5keV photon is used to adjust the flux of all lines sampled
in this document. Since this curve does not change significantly at low energies, this
will provide a reasonable characterization of any line of interest that is sampled with
the RGS system, where the maximum energy of detected dispersed photons is ∼ 2
keV. Image is taken from the XMM Users’ Handbook.
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Figure 3.4. Dispersion collapsed continuum region fluxes used to estimate the OVIII
background for Observation 010927010. Blue corresponds to the flux at λmin and
green corresponds to the flux at λmax. ’X’s denote the cross-dispersion row flux in
the data and lines are the inferred, smoothed background fluxes at these wavelengths.

observed line image as a function of cross-dispersion coordinate. In the case of M31,

for OVII and OVIII we choose this background width to be 0.5 Å from λmin and

λmax on either side of the line. This width, along with the total width of wavelength

extraction, is chosen to obtain enough counts to accurately estimate the background

while minimizing contamination from any line emission in that estimate. For an ob-

ject that is less extended, one could expand this width to obtain a better estimate

of the background. These fluxes are then smoothed with a Gaussian kernel that is

approximately equivalent to the cross-dispersion PSF to obtain the final estimated

background flux (Figure 3.4). In order to generate the background flux map, we as-

sume these fluxes characterize the background at Dλmax and Dλmin
, respectively, and

linearly interpolate between them (Figure 3.5).
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Figure 3.5. OVIII interpolated background flux map for Observation 010927010.

3.2.5 Modelling

Models can be generalized to any functional format desired (including semipara-

metric surface brightness - see Appendix E for a demonstration). However, because

of the very limited counting statistics of M31 we will approximate the diffuse line

emission as being produced by an isothermal sphere, which has already been shown

to reasonably characterize the broad-band emission ([77]; Figure 3.6). Thus, we pa-

rameterize it with the β-model:

I(r) =
I0[

1 +
(
r
rc

)2]3β−1/2 (3.7)

where I0 is the surface brightness at the origin, rc is the core radius where the surface

brightness begins its exponential decline, and β determines how steeply the surface

brightness declines. This is perhaps the simplest, physically motivated parameteriza-
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Figure 3.6. Chandra radial surface brightness profiles for M31 in the 0.5-1 keV band
(dashed line) and the 1-2 keV band (dotted line). The best fit profile from [77] is
given by the solid line.

tion one could imagine for the gas distribution. Not only does Figure 3.6 show that

the radial profile follows the characteristic curve of the β-model, but also that there

is a very little change in the flux differences between each band with radius. This

implies that the X-ray emission from M31 has only a weak temperature gradient, be-

coming slightly cooler at larger radii, reinforcing the isothermal model as a reasonable

approximation. Also, if resonance scattering is important for the emission, it could

serve to broaden the soft band due to relatively strong scattering of the OVII and

OVIII resonance lines.

We sample parameters using the Metropolis-Hastings Markov Chain Monte Carlo

algorithm. This algorithm relies on rejection sampling in order to draw samples
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approximately from the posterior probability distribution, or the probability of the

model given the newly observed data, which provides the full credibility of parameter

values. This can be formalized as:

P (~θ| ~O) ∝ P ( ~O|~θ)P (~θ) (3.8)

where P (~θ| ~O) is the posterior probability, P ( ~O|~θ) is the likelihood of the data given

the model, and P (~θ) represents our prior belief about model parameters. As this is

a novel analysis without much precendent, all parameters have a prior probability

that is uniform in the domain [0,∞) unless otherwise stated. When calculating the

likelihood, we assume all data is Poisson in nature. We simulate and fit data from

an isothermal β distribution in Appendix D, showing that the methodology outlined

above is able to recover the simulated parameters.

3.3 Results

For reference, the 0.2-12 keV image of the M31 bulge taken with the non-dispersive

XMM-Newton EPIC instrument is shown in Figure 3.7 (image taken from [77]). In

this image, the white box represents the dispersion axis. The width of this box is 4’,

suggesting the diffuse X-ray emission is extended to radii of greater than 4’. There are

a considerable number of point sources that contribute to the emission. The coherence

of these point sources produces the distinct bands in the background estimate (Figure

3.5) through their collectively dispersed continua.

The mean background subtracted flux of OVIII Lyα and OVII Kα can be visu-

alized in Figures 3.8 and 3.9, respectively. These images were created by dividing

the raw count image by the fluxing map and subtracting the background map. Vi-

sualizing the galactic distribution of hot gas is easier done with OVIII Lyα emission.

We see that the emission is quite extended (∼ 8′), and is approximately azimuthally
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Figure 3.7. Image taken from [77]. M31 bulge image in the 0.2-12 keV band using
XMM-Newton’s EPIC pn instrument. The long axis of the white box represents the
typical dispersion direction of the M31 observations. The short axis, representing the
cross-dispersion direction, is 4’ wide in this image.
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Figure 3.8. Mean background subtracted observed OVIII flux for M31. The red
star indicates the location of the galaxy center.

symmetric. There is some elongation in dispersion direction, either due to the LSF

or elongation of the emission along the major axis of the galaxy. The surface bright-

ness peaks at galaxy center with ∼ 1× 10−8 counts/s/cm2/arcsec2. It then smoothly

fades into the background at radii of > 5′. This physical extent leads to OVII Kα

lines that are well blended. Indeed, it is difficult to visually discern multiple peaks

corresponding to the line centers. However, it should be noted that in the left and

right side of the image, the emission is dominated by the resonance and forbidden

lines, respectively, alone.2

2Highlighted in red in the OVII Kα emission is a coherent spur of emission where the flux more
than doubles. This feature seems unlikely to be physical, and has thus been masked out of the fitting
procedure. The origin of this feature needs to be explored in more detail. However, it should be
noted that when including this feature in a fit leads to qualitatively similar results.
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3.3.1 Understanding the Elevated G-ratio of OVII

The first goal of this work is to discern the physical mechanism (between a relic-

AGN and resonance scattering) for elevating the G-ratio. Recall the expectation for

the spatial distribution of the G-ratio under each scenario. For resonance scattering,

we expect the G-ratio to decrease with increasing radius. Conversely, if a relic-AGN is

driving the elevated G-ratio, we expect the G-ratio in increase with increasing radius

[145].

To explore the distribution of the G-ratio, we will focus our analysis on OVII.

When sampling, we assume that both the resonance line and forbidden line follow.

However, since we are primarily interested in the spatial distribution of the G-ratio,

we directly sample the spatial distribution of the G-ratio and the surface brightness

of the resonance line. The surface brightness of the resonance line is given by the

β-model described above, while the G-ratio distribution is characterized by:

G(r) =
G0[

1 +
(
r
rc

)2]η (3.9)

where G0 is the core G-ratio, rc the core radius (assumed to be equal to that of the

resonance line distribution), and η defines whether the G-ratio increases or decreases,

primarily beyond rc. Note, a positive η corresponds to a decrease in the G-ratio with

radius, and vice versa. The priors placed on these parameters are detailed in Table

3.3. Note, because of the poor counting statistics, we have placed an upper limit of

1 on β. This is because, as we will see, β and rc are highly degenerate, and a β > 1

loses physical meaning.

The fitting results are listed in Table 3.4 and shown in Figures 3.10-3.12. The

highly degenerate parameters of β and rc are not well constrained, however, this does

not mitigate the strength of other conclusions. We see that the core G-ratio, G0, is

approximately 1.5, in agreement with the spectral fitting performed by [77]. Most

86



Table 3.3. Summary of the priors. U(lower,upper) represents a uniform distribution.

Parameter Prior
I0,OV II,R U[0,inf)

rc U[0,inf)
βOV II,R U[0,1]

G0 U[0,10]
η U(-inf,inf)

Table 3.4. Joint fitting OVIII and OVII for M31, marginalized parameter best fit
and 95% confidence intervals.

Parameter Best Lower 95% Limit Upper 95% Limit
I0,OV II,R (10−9 counts/s/cm2/asec2) 1.60 1.37 1.95

rc (asec) 210 107 287
βOV II,R 0.48 N/A N/A

G0 1.50 1.24 1.86
η 1.16 0.37 5.86

interestingly, we find that η is very strongly constrained to be positive, suggesting

that there is effectively zero probability of the forbidden line to be more extended

than the resonance line. Such a result is qualitatively inconsistent with the relic-

AGN scenario, where we expect the forbidden line to be much more extended than

the resonance line. Since the compact forbidden line emission provides very strong

evidence that resonance scattering is important for modelling the emission in M31, we

will perform additional fitting under under this physical framework. This will allow

us to make model simplifications and greatly constrain the emission characteristics.

3.3.2 Oxygen Emission in the Resonance Scattering Paradigm

The β-model lends itself well to the resonance scattering scenario. For an isother-

mal sphere, resonance scattering maintains the β-model functionality [118]. It el-

evates the G-ratio at the object’s core by scattering resonance line photons at the

center where the column density is highest, decreasing I0,R. However, since these

photons are merely scattered, and likely not destroyed, the object integrated G-ratio

must remain the thermal value. Resonance scattering accomplishes this by decreas-
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Figure 3.10. Marginalized histograms and parameter-parameter confidence plots
for simulated OVIII emission. In the histograms, the best fit is shown by the solid
red line, 95% confidence intervals by the black lines, and the true value by the dashed
red line. In the contour plots, the red line shows the 67.5% confidence contour, the
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The simulated values are shown by a red star.
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Figure 3.11. Same as Figure 3.10 but for different parameters.

Figure 3.12. Same as Figure 3.10 but for different parameters.
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ing the value of β. This leads to a radial G-ratio profile that may begin large at low

radii, starts to decrease at rc, and continues to decrease at larger radii such that it

approaches zero at infinity.

To take full advantage of the data, we will jointly fit OVIII Lyα and the OVII Kα

lines, linking rc for all three fitting lines. Again, the contribution from the OVII inter-

combination line is modelled as 0.22 of the forbidden line. I0 is left free for all three

lines. If the OVII Kα resonance line suffers from scattering, the OVIII Lyα transition

is likely to as well. Even though the oscillator strength of the OVII resonance line

is ∼ 4 times greater than the OVIII Lyα transition, the scattering probability also

depends on the ionic fraction of the ions. For example, the ionic fraction of OVIII is

greater than OVII for temperatures ∼ 0.3 keV, compensating for its lower oscillator

strength. Therefore, without losing generality, we leave β free for all three lines.

The fitting results are shown in Figures 3.13 - 3.15 and listed in Table 3.5. We can

immediately see that simultaneous fitting has served to greatly constrain our param-

eters, all to within ∼ 20%. As expected under this paradigm, the OVII resonance line

is much more extended than the OVII forbidden line, with the ratio βOV II,R/βOV II,F

= 0.55 (0.37, 0.79). The derived G-ratio at galaxy center is 1.41 (1.14, 1.79), in agree-

ment with [77]. Within the image extraction region, the galaxy integrated G-ratio

is 0.58 (0.39, 0.89), in agreement with the CIE expected value. As we would expect

photons to be conserved over the entire source, this picture is in agreement with the

resonance scattering scenario.

3.4 Discussion

Understanding the spatial distribution of X-ray emission lines provides a great

deal of diagnostic power for elucidating the nuances of galactic feedback. Without the

full spatio-spectral information, line degeneracies can become crippling to scientific

progress. We have demonstrated a new approach for extracting spatial information of
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Figure 3.13. Same as Figure 3.10 but for different parameters.
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Figure 3.14. Same as Figure 3.10 but for different parameters.
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Figure 3.15. Same as Figure 3.10 but for different parameters.
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Table 3.5. Joint fitting OVIII and OVII for M31, marginalized parameter best fit
and 95% confidence intervals.

Parameter Best Lower 95% Limit Upper 95% Limit
I0,OV III,R (10−9 counts/s/cm2/asec2) 5.39 4.93 6.03
I0,OV II,R (10−9 counts/s/cm2/asec2) 1.85 1.55 2.18
I0,OV II,F (10−9 counts/s/cm2/asec2) 2.63 2.08 3.26

rc,M31 (asec) 115 93 153
βOV III,R 0.62 0.53 0.79
βOV II,R 0.46 0.37 0.62
βOV II,F 0.82 0.62 1.25

Derived Parameters
G0 1.41 1.14 1.79

Gintegrated 0.58 0.39 0.89

individual lines from a dispersive spectrometer using M31 observations with XMM-

Newton’s RGS instrument as an example. We have simulated the behaviour of the

method under different physical conditions and find that physically meaningful results

can be obtained for M31-like data when simultaneously fitting multiple lines. We also

find that our results strongly support the need for including resonance scattering in

the modelling of M31’s bulge.

3.4.1 Plasma Conditions in M31 and Implications for Feedback

The inclusion of resonance scattering in the modelling of M31 will have important

implications for estimates of the plasma conditions, most notably, for the results of

[77]. These authors have performed the most robust analysis of M31’s plasma condi-

tions to date. In that work, the authors made estimates of the plasma temperature,

iron abundance, O/Fe ratio, and discussed implications for Type Ia SNe feedback

assuming the plasma is optically thin and in CIE. However, resonance scattering will

have important effects on all of these estimates and implications.

We can directly estimate the temperature using the ratio of the OVIII and OVII

resonance lines, after correcting for resonance scattering (but still assuming the

plasma is isothermal and in CIE). This correction can be done by considering the
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redistribution of photons through β, assuming the OVII Kα forbidden line defines

the bulge’s intrinsic spatial distribution and that total radiative flux is conserved.

The core surface brightness of a line can be corrected for resonance scattering with

the following:

I0,corr
I0,fit

=

∫
r

[
1 +

(
r
rc

)2]0.5−3βOV II,F

drdθ

∫
r

[
1 +

(
r
rc

)2]0.5−3βfit
drdθ

(3.10)

where I0,corr is the corrected core surface brightness, I0,fit is the core surface brightness

obtained in the fit, βfit is the β value of the fitted line, and βOV II,F is the β value of

the OVII forbidden line for that particular sample.

Figure 3.16 shows the evolution of the OVIII/OVII resonance line ratio with tem-

perature. Using the ratio of the central bulge, I0,OV II,R/I0,OV III,R, the plasma temper-

ature is 0.26 (0.234, 0.275) keV, consistent with [77]. These two resonance transitions

are prominent in the M31 data, therefore it is not surprising that the temperature of

the spectral fit in [77] is consistent, as it is likely primarily constrained through these

transitions. However, after correcting for the scattering effect, we find the temper-

ature to be 0.175 (0.164, 0.228) keV. This temperature is much closer to the stellar

kinematic temperature of the bulge, 0.14 keV [67, 77], suggesting little additional

heating from Type Ia SNe is required to explain the temperature of the plasma. This

is further supported by the spatial distribution of the OVII forbidden line, where

βOV II,F ∼ 1, suggesting very little heating of the ISM beyond that of dynamical.

While we can not directly estimate the Fe abundance with the results presented

here, we can discuss the possible implications. Further, these implications resolve

some of the discrepancies detailed in [77] and motivate additional study of M31 using

the method outlined in this paper. The reduced temperature estimate based on the

spatially-integrated OVIII/OVII resonance line ratio has immediate consequences for

O/Fe, which was previously estimated as ∼ 0.3, and the iron abundance, which was

estimated as subsolar. In order to match the full RGS spectrum shown in [77], assum-

95



0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Temperature (keV)

10-2

10-1

100

101

O
V

II
I/
O

V
II

Figure 3.16. Ratio of OVIII Lyα to OVII Kα resonance line emissivity as a function
of temperature.

96



ing a lower temperature as found here, we would expect the overall iron abundance

to increase and O/Fe to decrease. This results from iron being primarily constrained

through three transitions of Fe XVII at ∼ 17Å3 (of which the potential resonance scat-

tering effect is yet to be investigated), while oxygen is primarily constrained through

the OVIII Lyα and OVII Kα transitions modelled herein. This iron transition has a

much higher peak temperature than the oxygen lines. Therefore, for a lower tempera-

ture plasma, we expect this transition’s emissivity to be considerably reduced relative

to the oxygen lines, requiring an increase in iron abundance to match the spectrum.

These changes in iron abundance and O/Fe serve to build a nearly unified model

of the X-ray emission in M31’s bulge. While fast outflows served to create a model

that qualitatively matches the iron abundance found in [77], they also led to the

expulsion of too much gas, under-predicting the X-ray luminosity by two orders of

magnitude [124, 123]. Resonance scattering immediately requires any turbulent and

outflow velocities to be very small, sustaining the hot gas reservoir required to match

the observed luminosity. In doing so, it also necessitates that iron from Type Ia SNe

fully mix with the surrounding hot gas. This leads to an expected iron abundance of

up to 6 times the solar value [10]. This estimate is a far cry from that determined

by spectral fitting in [77], where the authors found iron to be sub-solar. As discussed

above, this discrepancy is naturally relieved when considering resonant scattering,

at least qualitatively. However, a more detailed analysis of the iron distribution is

required to test this theory more robustly, as well as quantify the velocity dispersion

of the plasma.

By extension of this work, resonance scattering may further serve to explain the

apparent decrease of the iron abundance at very small radii found for a number of

spheroids when analyzing the O/Fe ratio as a function of radius (e.g., [45, 21, 22]),

3There is an additional strong Fe XVII transition at ∼ 15Å, however, this line is deeply conflated
by higher order transitions of OVIII and doesn’t provide a great deal of diagnostic power.
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an abundance decrease that does not exist when analyzing Mg/Fe (e.g., [55, 49, 80]).

This peculiar behaviour has been found in galactic spheroids of nearly all sizes, many

typically invoking buoyant, supersonic outflows driven by Type Ia SNe, which prevent

Fe from mixing with the local ISM at low radii. Resonance scattering may address

these abundance peculiarities through modulation of the temperature profile. These

results suggest that much of the controversy over feedback from Type Ia SNe may

have a much more mundane origin.

There is one outstanding issue with the interpretation detailed above. First, where

does the SNe energy go? Estimates suggest that the energy released from Type Ia

SNe in the bulge of M31 is ∼ 3− 4 times larger than that required to drive a galactic

outflow [10]. Yet, for the resonance scattering scenario to be relevant, turbulent and

outflow velocities must be low. Further, we show here that ISM heating from SNe,

while existing, is not extensive. This may be reconciled if much of energy input from

the SNe is radiatively lost from the system due to Fe’s extremely high emissivity, as

suggested by [16]. Another possibility is that collisions with dust grains serves to

draw much of the energy out of the hot gas. If the X-ray observable Fe content of the

inner bulge is still considerably lower than would be expected under full mixing after

accounting for resonance scattering, it is more likely that the energy is lost through

a subsonic outflow. This further necessitates a detailed study of the Fe lines, as well

as a detailed accounting energy and mass budget.

There are two scenarios that we can’t fully exclude as the source of the elevated

G-ratio: CX and a young relic of a weak AGN burst. While the lack of significant

cold gas in the bulge is highly suggestive, CX is incredibly efficient under the proper

conditions. Its details are dependent on the surface area between any hot/cold gas

interface and their relative velocities. Given the low turbulent velocity [67], necessity

of any outflow velocity to be subsonic [77, 123], and low amount of cold gas/dust

[33], we expect both the surface area and relative velocity between gas phases to
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be low. However, without the counts to perform a meaningful spatial comparison

between the G-ratio and cool gas distributions, it is difficult to absolutely rule out

this scenario. Therefore, as CX modelling capabilities increase, it will be important

to test its efficacy in the M31 bulge environment.

A young relic of a weak AGN event could also hypothetically lead to a less extended

forbidden line. If the AGN luminosity is very weak, the radiative energy density will

be too low to over-ionize the gas beyond the core radius. This leads to a forbidden

line that is only elevated in the very inner regions. Yet, for a SMBH of the size that

resides in M31, we expect the AGN to have a bolometric luminosity of ∼ 1043 − 1046

ergs/s during its high luminosity phase [135]. Assuming a luminosity of ∼ 1044 ergs/s,

all of the gas in the bulge would be over-ionized immediately after the AGN ”shuts

off”, leading a forbidden line that is much more extended than the resonance line

[145]. Thus, the weak AGN burst scenario is also unlikely.

3.4.2 Methodological Limitations

The primary limiting factor to the study of diffuse gas with this method is the

relative strength of the source emission. Even when viewing broadband emission, the

X-ray regime is photon starved. When attempting to map an individual emission line

in space, rather than fitting an entire spectrum, we are incredibly limited by the num-

ber of detected counts. Further, the only instruments currently capable of mapping

individual emission lines, gratings, have a much lower effective area. This is because a

great deal of the telescope’s viewing power is lost during dispersion. Additionally, due

to the dispersion through energy into the spatial detector coordinates, the bandpass

is very limited for the RGS detector, which limits the power of multi-line modelling.

Both of these issues conspire to make spatio-spectral X-ray analysis more difficult.

However, to a large degree, proper modelling can serve to greatly overcome these

issues.

99



The most useful approach to overcoming weak counting statistics is to parameter-

ize the fit. This reduces the number of parameters from some factor of the number

of spatial bins to several. Additionally, if parameterizing a fit, it is likely that flux

limitations can also be greatly mitigated through the use of outside information (e.g.,

other lines or data) as demonstrated in Section 3.3. By linking spatial parameters

between lines in a physically motivated way, one can greatly enhance their diagnostic

power. This is particularly the case when linking blended lines with isolated lines.

Even in the semiparametric case, certain lines are likely to correlate. Therefore, as-

suming the gas is approximately isothermal, one possible solution is to fit a single

non-parametric 2D distribution and add an additional offset parameter, which is not

spatially dependent, for each additional line that is expected to correlate with the

first.

Another possibility is to link multiple lines through temperature and density as

hyperparamters, causing the strength of the fit to increase with the addition of more

lines. This strategy of course necessitates fitting under different emission paradigms as

was done above. However, it is unclear to what extent certain emission mechanisms,

particularly CX, alter resonance line ratios such as the OVIII/OVII used in this

work. The effects depend not only on uncertain microphysical processes, but also on

the macrophysical properties of the plasma (e.g., the relative velocity between cold

and hot gas phases). Therefore, in practice, this approach is currently only feasible

for truly CIE emission.

A final solution for alleviating weak counting statistics, the most naive, is to

spend more time observing extended sources with the current fleet of dispersive spec-

trometers. Since the standard data reduction pipeline is designed for point sources,

extended sources have not been given a large amount of grating observation time,

with the exception of a few notable sources. However, with the methodology out-
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lined above, we can tailor the use of dispersive X-ray spectrometers to tackle many

challenging problems currently facing the hot regime of galactic feedback.

3.4.3 Methodological Potential

If given the observational time and computational resources, the methodology

outlined above has a great deal to offer for understanding galactic feedback. This

is true of both stellar (early and late time) and AGN feedback. Detailed spatio-

spectral studies can lead to the best constraints to date on the plasma conditions,

including temperature and metallicity, as well as information on the outflow mass

and energetics. Further, all studies discussed below can be greatly enhanced with the

incorporation of non-CIE emission models, all of which are on the brink of release if

not recently released (e.g., the atomdb release of a CX model). While some of these

models are still a bit primitive, they are a necessary step for understanding the hot

component of galactic feedback.

3.4.3.1 Galactic Spheroids

Through careful analysis of the Fe XVII lines at ∼ 17 Å, we may be able to place

more direct constraints on Type Ia SNe in M31. It may also be possible to place con-

straints on the outflow velocity through quantification of Fe’s ISM mixing. Further,

simultaneous modelling of multiple Fe and O lines will allow us to discern whether

the temperature is consistent between the two after correcting for resonance scatter-

ing. It they are not, the relic-AGN scenario may still be important for modelling the

global spectrum, despite its unimportance for defining the spatial distribution of O.

We can further extend the pilot study presented herein to spheroids spanning a

range of masses (Table 3.6). As we probe into larger spheroids, the effects of hidden

or relic-AGN may become more prominent. Thus, by examining a range of masses,

we may be able to disentangle the importance of AGN and late-time stellar feedback

for the regulation of hot gas in bulges and elliptical galaxies. Additionally, we believe
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it is possible to place constraints on recent AGN activity by examining the plasma

over-ionization structure through a statistical sample of galaxies.

Table 3.6. Example Galactic Spheroid Sample and RGS observations

Galaxy Type D (Mpc) VHelio t(ks)/Nob

NGC 0224 (M31) SA(s)b bulge 0.72 -300 977/43
M86 E3 15.1 -244 86/1
NGC 3031 (M81) SA(s)ab/LINER 3.6 -34 140/2
NGC 4382 (M85) SAO(s) 18.5 729 205/5
NGC 4459 SA0(r) 15 1192 111/2
NGC 4638 S0 15.5 1152 105/4

Note: D and VHelio are the galaxy distance and helio. radial velocity (obtained from NED), while

Nob and t represent the number of the observations within 2′ of each galaxy’s center and the total

XMM-Newton exposure.

3.4.3.2 Active Star Forming Regions/Galaxies

Active star forming regions and galaxies provide insight into early-time stellar

feedback (feedback related to young and massive stars). With this type of feedback,

radiation pressure, stellar winds, and supernovae (SNe) combine to drive gas out of the

galaxy. However, we have very little observational scope as to the galactic outflow’s

full multiphase energetics, chemical composition, and fate. For example, it remains

unclear whether the diffuse soft X-ray emission observed around starburst galaxies is

the superwind itself or just its interface with comingled cool gas clouds/filaments (e.g.

[121, 4]). Unsurprisingly, temperature and abundance anomalies have been reported

for starburst galaxies when the emission is modelled purely as a CIE plasma (e.g.,

[65]), suggesting the assumptions of optically-thin and CIE are not representative of

reality.

The most useful candidate for the study of galactic winds generated by stellar

feedback is the nuclear starburst galaxy M82. As previously demonstrated for the

galaxy, the charge exchange (CX) contribution to line emission can be substantial

(e.g., & 50% of key He-like Kα triplets), which significantly affects the estimation of
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the thermal and chemical properties of the hot plasma [76, 146]. That work, however,

was based on only one RGS observation. With the available high-quality RGS data

(12 observations amounting to ∼ 500 ks exist in the archive), it may be possible to

spatially decompose the CXE and CIE contributions. Such an analysis has great

potential for generating the best estimates to date of mass and chemical composition

of the hot gas outflow and how it evolves.

It would also be useful to examine the spatial correlation of the CXE component,

as traced by the OVII Kα forbidden line, with cool gas, as traced by Hα or dust emis-

sion. Such correlation may be leveraged in spatio-spectral studies of other starburst

galaxies that lack the quality of data that M82 has. This may allow us to expand the

case study of M82 and look at a statistically representative number of star forming

galaxies (Table 3.7). With such a sample, one could investigate the dependence of the

X-ray line emission on other galaxy properties (e.g., stellar mass density and specific

star formation rate).

Table 3.7. Example Star-forming Galaxy Sample and RGS observations

Galaxy Type D (Mpc) VHelio t(ks)/Nob

NGC 0253 SAB(s)c/Sbrst 3.2 243 340/9
NGC 2903 SAB(rs)bc 9.4 556 96/1
NGC 3034 (M82) edge-on Sbrst 3.9 203 427/12
NGC 4631 edge-on SB(s)d 6.7 606 55/1
NGC 5236 (M83) SAB(s)c/Sbrst 4.6 513 175/5
M51 SAbc/LINER 8.0 600 207/9
IC 342 SAB(rs)cd 3.3 31 202/6
Antennae HII 22 1705 260/10

Note: D and VHelio are the galaxy distance and helio. radial velocity (obtained from NED), while

Nob and t represent the number of the observations within 2′ of each galaxy’s center and the total

XMM-Newton exposure.

It may even be possible to explore the exciting possibility of direct bulk and/or

turbulent velocity measurements for the hot plasma in superwinds. So far, such

velocity information is only available about the entrained cool gas, which is expected

to be accelerated to lower velocities than the hot, metal-enriched, plasma (e.g., [121]).
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The cool gas shows outflow velocities in the range of 200 - 1000 km s−1, as measured in

UV/optical emission and/or absorption lines (e.g.,[82]). But to truly understand the

dynamics and ultimate fate of such outflows, we must directly measure the velocities

of the hot plasma flows, which can alter both the centroids and widths of the X-ray

emission lines. For example, a radial velocity of 103 km s−1 at a wavelength of 15.0

Å would correspond to a dispersion shift of 22′′, which can be measured with a RGS

spectrum of good counting statistics.

We are particularly interested in systematic velocity structures (e.g., bipolar out-

flows from at least moderately inclined galaxies like M82). Depending on the count-

ing statistics, such a velocity structure can be characterized in either 1-D or 2-D.

For compact starburst regions with high-S/N RGS spectra (e.g., the M83 and M51

nuclear starburst regions), one can infer the total velocity dispersion from fitting

individual emission lines (e.g., OVIII Lyα). Preliminary analysis shows that for a

strong line with S/N & 10, we can measure the velocity dispersion to a limit smaller

than ∼ 500 km s−1 and the line centroid to a significantly higher accuracy, although

potential systematic uncertainties are yet to be carefully considered.

3.5 Summary

Teasing out X-ray emission mechanisms is the first step to unravelling the myster-

ies of the hot component of galactic feedback. Currently the only instruments truly

capable of doing this are slit-less dispersive spectrometers. Unfortunately, by dis-

persing spectral details into the spatial coordinate, the data from these instruments

suffer from information confusion. In this work, we demonstrate the methodology

for spatially mapping individual emission lines, including blended lines. Assuming

a parametric spatial model, the spatio-spectral degeneracy is easily broken due to

the fact that different lines dominate the source emission on different sides in the

dispersion direction. Further, with multiple observations at different roll angles, this
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degeneracy can be broken in full generality, allowing for a semi-parametric sampling

of the surface brightness (Appendix E).

Using M31 as an example, we show that it is possible to distinguish the physical

reason for the elevated G-ratio at the center of the OVII Kα line. We find that the

M31 bulge emission shows clear evidence for resonance scattering. By simultaneous

fitting of OVIII Lyα and OVII Kα under this physical paradigm, we are able to

place significant constraints on the emission distribution. Correcting for resonance

scattering, we find that the temperature of the hot plasma in M31’s bulge is 0.175

(0.164, 0.228) keV, considerably lower than previous estimates. These results sug-

gest Type Ia SNe are much less important for heating of the ISM than previously

presumed. Further, they qualitatively relieve tension between the estimated Fe abun-

dance and predictions of ejecta mixing from Type Ia SNe. A significant expansion of

the work detailed herein, particularly a focus on the spatial distribution of Fe, may

provide considerable observational constraint for both stellar and SMBH feedback

mechanisms.
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CHAPTER 4

CONCLUDING REMARKS

We began this work with the intent of extracting new insights out of the exist-

ing data by looking at it from a unique perspective. We have largely accomplished

this goal. In Chapter 2 we made the first observational estimate of the accretion

flow circularization radius in our Galactic Center by performing a spatio-spectral fit

with 2D hydrodynamic simulations. We were also able to self-consistently decon-

volve the residual point-like emission and speculate as to its nature. In Chapter

3 we demonstrate the methodology for using the data from a grating spectrometer

to extract spatial information for individual emission lines, including blended lines.

Both pieces of work demonstrate the usefulness of spatio-spectral analysis with X-ray

data. Further, both methods provide a framework of advanced statistical analysis for

illuminating the hot component of galactic accretion and feedback.

4.1 Obfuscated Spectra: The Need for Modelling in More

Than One Dimension

When performing a spectral analysis, the standard approach to X-ray astronomy

is to simultaneously model the entire spectrum (which spans over an order of mag-

nitude in wavelength space!). This is done because of the entangled nature of the

model parameters through poor to moderate spectral resolution, typically. Unless

model simplifications are made, a basic CIE model requires simultaneously fitting the

absorption, electron temperature, emission measure, and individual metal abundances

for approximately 10 elements. For emission that can be reasonably characterized as
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optically-thin and CIE, we expect the results to be fairly reliable. Unfortunately, this

is rarely the case (e.g., [107, 77, 146]). Further, for moderate resolution spectra it

is nearly impossible to discern diagnostics that can be used to assess these assump-

tions. Therefore, with the standard approach, the model degeneracies often become

irreducible, stymieing further scientific inquiry.

This spectral obfuscation was discussed in great detail in Chapter 3. In the absence

of well developed spectral models for non-equilibrium emission mechanisms, such as

CX and relic-AGN, and high spectral resolution, it becomes impossible to discern even

a very basic statement of emission production. However, we point out that each of the

physical paradigms can be disentangled by utilizing spatial information in conjunction

with the spectral information. The risk of not doing so is highlighted in that Chapter.

For the case of M31, where it appears resonance scattering is the primary cause of

the elevated G-ratio, spectral obfuscation has led authors to attribute many of the

spectral peculiarities to more trendy topics, such as CX due to stellar feedback (e.g.,

[77]) and relic-AGN (e.g., [145]).

Even when CIE is a reasonable characterization of the plasma, if we err in any as-

sumptions of thermodynamic spatial structure, then we can expect to have misleading

results. This was shown in Chapter 2 for the Galactic Center. In that Chapter it was

shown that assumptions about the flow structure in [131] led to a mischaracteriza-

tion of residual point-like emission. Further, it is seen that [141] mischaracterize the

density profile of the Sgr A* accretion flow, likely due to 1-D simplifications of their

spatial model. While we can, in painstaking detail, work to justify our assumptions,

any deviation from reality will bias fitting results. Unfortunately, this bias may not

necessarily be clearly understood for some time.

The best way forward is to remove as many assumptions as reasonable. For X-ray

observed extended sources, we already have the necessary information by design. It

exists in every piece of archival data and will exist in every future observation. The
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fact that we simultaneously get both imaging and spectroscopic data from observa-

tions can be an incredible boon to the X-ray community. Spatio-spectral analysis

provides a very natural way to reduce assumptions and build a much more self-

consistent picture of the X-ray universe. This modelling can also be done in a much

more rigorous manner than was done in Chapters 2 and 3. In principle, this mod-

elling could be extended by creating a spectrum for each spatial bin, truly utilizing

all spatial and spectral information obtained.

Admittedly, the usefulness of spatio-spectral analysis may be somewhat mitigated

by the strategy hitherto for X-ray telescope production. On our journey to create

an omniscience granting telescope, X-ray astronomers have successively built instru-

ments that do one thing in particular extremely well. This is a natural evolution

when trying to balance budgetary needs with scientific desires. For Chandra ACIS,

it is unparalleled angular resolution. For XMM-Newton’s RGS, it is unprecedented

spectral resolution. These telescopes have served our needs as a scientific community

very well in the past. However, there are very clear examples of when this strategy

breaks down (enumerated throughout this work). As we push forward, the great-

est modelling alleviation will be provided by a Renaissance telescope, such as the

X-ray Surveyor, which will provide both exquisite spatial and spectral resolution si-

multaneously. As such, this instrument has the power to usher in a golden era of

spatio-spectral analysis.

4.2 On the Pragmatism of Bayesian Inference

A conceptualization of Bayesian inference is that it provides a framework for

updating our belief in some model in light of newly found data. Through the prior,

it effectively provides a means for introducing subjectivity. Naturally, as scientists,

we would like to believe our version of subjectivity is objective reality. However, each

piece of prior research provides additional foundation to build upon. Different shades
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arise as each of us may choose to interpret these past results differently. Further, we

may have different degrees to which we place our confidence in a particular study.

While this may sound strange, as if our results are shrouded in an obscurity only

known to the inner depths of a modeller’s mind, all of these assumptions, confidences

(or lack there of), and interpretations are stated up front when you specify the priors.

The prior also provides a straightforward way to incorporate and propagate un-

certainty through sampling parameters. For example, in Chapter 2, we included the

inclination angle of the accretion flow in our fit. The data was far from the necessary

quality to adequately constrain this parameter beyond our current belief, which was

well defined by stellar dynamics. However, the inclusion of this parameter as a sam-

pling parameter easily allowed us to propagate its uncertainty (through the prior) to

other parameters. If parameters are at all correlated, this propagation is necessary to

understand the true credibility of other parameters. There is no equivalent procedure

when fitting data under the Frequentist paradigm. Either we would let the parameter

roam free, which limits the modelling power of our data given our knowledge from

other experiments, or we would likely fix it at the assumed canonical value, which

would lead to overconfidence in other parameters and may indeed bias our results.

4.3 A Roadmap for Understanding the Hot Component of

Galactic Feedback

True understanding of physics in astronomy is layered within the electromagnetic

spectrum. Studying X-ray spectra is one of the best ways to explore galactic feedback

events. Being the instruments with the highest spectral resolution, grating spectrome-

ters provide the best opportunity to understand the details of the high-energy physics

that drives much of galactic evolution. However, we have largely been limited to the

study of point sources due to the inherent difficulty of studying resolved gas with a

dispersive instrument. Unfortunately, spatially resolving the spectral nuances of this
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diffuse gas is the only way to break emission mechanism degeneracy and illuminate

the driving galactic evolutionary forces, currently.

The tools demonstrated herein to allow spatially resolved spectroscopic study with

a grating system, and more generally, can deeply augment our understanding of hot

gas in and around galaxies and the physical processes that govern it. First, they pro-

vide the ability to illuminate X-ray emission mechanisms. This allows one to derive

the inherent plasma conditions. Only at this point can one begin discussing X-ray ob-

servations in the larger context of galactic feedback. One could potentially constrain

the hitherto ambiguous, large-scale manifestations of the underlying physics, such as

the radial evolution of galactic outflows or the decomposition between frequency and

duration in the AGN duty cycle. These estimates will provide some of the first obser-

vational constraints to certain modes of both stellar and SMBH feedback, elucidating

a path for subgrid modelling within cosmological simulations.
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APPENDIX A

SGR A* GOODNESS OF FIT

Looking again at Figure 2.5, we see that there are no apparent residuals within the

inner ∼1.”, however, beyond this, there may be significant residual effects. It should

be noted there are multiple contributions to the per pixel error that are not being

modelled, including discrete X-ray sources, possible unmodelled extended structure,

and time avaeraging of a chaotic simulation. To exactly what extent these lead to an

underestimate of the error, it is difficult to quantify. However, we will point out why,

all things considered, we believe we have obtained a reasonable fit.

Let us first consider the time averaging of the simulation, despite the actual sim-

ulation being quite chaotic and turbulent as the outflowing gas collides with the

inflowing gas. Indeed, the temporal dispersion of a single grid cell can lead to a flux

difference of a factor of two in either direction, probably leading to a slight underes-

timate of the size of our confidence intervals. How much effect this would have after

smoothing is unclear, since individual grid cells are not independent, but have clear

turbulent structure between themselves during the simulation. It is clear, though that

at any particular point in time, the emission from a single point in space can deviate

significantly. However, these deviations are the strongest at low radii, which con-

tribute relatively little to the overall flux in the image, and would likely be smoothed

out by not only the PSF, but also the emission from the outer parts of the flow.

Now, let us consider the effects that operate at larger radii. One such source of

uncertainty in the residuals is the number statistical fluctuations of discrete X-ray

sources. However, it is likely this term contributes negligibly to the emission and is

111



Figure A.1. Best fit C-statistic comparison to poisson fluctuations for the free
model. The red line indicates the best fit model compared to the data while the
distributions are random realizations of the model.

merely absorbed into the background component. More importantly, is unmodelled

extended sub-structure that skirts the fitted region, such as dispersed emission and

material from the G2 object, or the discreteness of the stellar winds and their colliding

shocks. The apparent southeast excess, excluded from our fit, may represent an

extreme case of such substructures. The presence of similar, probably fainter sub-

substructure in the fitting region is echoed in the goodness of fit estimate. As we can

see in Figure A.1, when excluding the pixels beyond 1”, the fit becomes remarkably

better; the formal statistical consistency increases from ∼0.1% to ∼2.6%. Further,

and importantly, by performing several fits masking beyond different radii, we find

the parameter results are not sensitive to the fitted region within the image, leading

us to conclude that the component does not contaminate our parameter estimates.
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APPENDIX B

REVISITING SGR A*’S SPECTRAL ENERGY
DISTRIBUTION

Understanding the physical processes surrounding low luminosity active galactic

nuclei (LL-AGN), weakly accreting and emitting supermassive black holes (SMBHs),

is integral to understanding how their feedback affects the circumnuclear environment.

The general picture of how the accretion flow evolves has begun to emerge in recent

years for the LL-AGN in our galaxy, Sgr A*. As stellar winds spew forth from Sgr

A*’s massive, circumnavigating stars, they collide with each other, shocking to X-ray

emitting temperatures (e.g., [24]). This gas is captured by the SMBH at the center of

Sgr A* and begins falling deeper into the potential well. With a substantial amount

of coherent angular momentum, the gas is at least partially rotationally supported

throughout, as shown in Chapter 2. As angular momentum is transported, the gas

turbulently funnels inward. Some of this gas will accrete onto the BH, however, most

of it will be driven away in a strong collimated polar outflow [142, 89, 70, 131, 139].

Yet, even with this general framework in place, some contradictions between studies of

different wavebands need to be resolved before a truly unified model of the accretion

flow structure of Sgr A* can be claimed.

One very important study for understanding the quiescent emission of the Sgr A*

accretion flow, including the emission from very near the event horizon, was that of

[141]. By studying the multi-wavelength spectral energy distribution (SED), these

authors estimate the accretion rate onto the BH to be ṀBH ≈ 4× 10−8M�/yr. The

general picture of the [141] model is as follows. They show that the SED can be

explained by electrons in a quasi-thermal distribution. The bulk of the electrons
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are thermal, emitting strong synchrotron emission in the radio bands. Some of this

thermal synchrotron emission is inverse-Compton scattered into the UV, with a high

energy exponential tail extending into the X-rays. Based on their calculations, we

expect this inverse-Compton emission to contribute anywhere from a few tenths of a

percent to a percent of the X-ray emission, and, is naturally quite steep due to its

thermal origin.

[141] also show that approximately ≤ 1.5% of the electrons must be non-thermally

accelerated to emit synchrotron in order to match the radio emission. Further, they

show that the powerlaw index of the high energy synchrotron tail must be greater

than or equal to 3.5. This scenario is consistent with the multi-wavelength spec-

tral energy distribution spanning from radio through IR and to X-ray, including

more recent estimates of the mean IR flux [112]. A powerlaw index of 3.5 places

the synchrotron contribution to X-ray emission at roughly a few percent. Some of

this non-thermal synchrotron emission is also inverse-Compton scattered to X-ray

energies, contributing ∼ 10% to the quiescent emission with approximately the same

slope as the synchrotron emission. Taken in conjunction, the synchrotron and inverse-

Compton emission contribute non-negligibly (∼ 15−20%) to the observed X-ray flux,

while the bulk of X-ray emission is due to the extended accretion flow. Unfortunately,

at the time of this study no significant X-ray data existed for the authors to include

more spatial and spectral information, which can provide direct constraints on the

flow geometry.

Such a large non-thermal contribution to the X-ray emission is in direct conflict

with the recent results of Chapter 2. These authors took advantage of the self-

similar nature of radiative inefficient accretion flows (RIAFs)[70] to deconvolve the

residual point-like emission (primarily synchrotron and inverse-Compton) from the

spatially extended accretion flow. The authors do this by comparing three different

band images of the combined quiescent Chandra data (the same data set as analyzed
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Figure B.1. The probability distribution of the point-like flux (egs/s) at 5 keV.

in [131]) directly to simulations of black hole accretion via the power of Markov

Chain Monte Carlo (MCMC) sampling. They find that the point-like component

has a specific luminosity of log10νLν ∼ 31.96 (31.32, 32.18) ergs/s at 5 keV, and

is responsible for 4.2% (2.3, 7.0) of the observed emission within 1.5” in the 1-9

keV band with Chandra (see Figure B.1). The authors also find that the point-like

emission can be well characterized by a single powerlaw, with α ∼ 4.8 (3.5, 7.5; 90%

confidence interval). This steepness suggests the emission is primarily due to some

combination of inverse-Compton and a steep synchrotron powerlaw, qualitatively in

agreement with [141]. However, the lower flux contribution needs to be reconciled.

A second major, and more prominent, difference between the work of [141] and

Chapter 2 is their radial density profiles. Consistent with other recent estimates from

X-ray spectral fitting [131], we find that the density profile must be very flat due to the

presence of a strong outflow (s ∼ 1, where n(r) ∝ r−3/2+s; Figure B.2). In contrast,

[141] find that s ∼ 0.3. They found that this slope was able to simultaneously

characterize both the X-ray and sub-mm emission. With all other parameters fixed,
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an increase in s would lead to a significant reduction in sub-mm emission for the model

of [141]. Therefore, it is unclear to what extent this difference can be reconciled within

the uncertainty of other parameters.

In light of these recent results from X-ray fitting, the RIAF model of [141] needs

to be updated to consider these new, direct constraints to the density profile and

non-thermal contribution (synchrotron and inverse-Compton) of the quiescent X-ray

emission. We will herein do this by performing a model comparison in the same way

as in [141], while including the constraint on the flux within 400 rs. While the present

state of the code does not provide a straightfoward approach to including constraints

on the density profile or X-ray spectral slope of the inner accretion flow, this update

will be an important test for creating a fully unified model of the emission from Sgr

A*.

B.1 Methods

We examine the emergent spectral energy distribution (SED) of Sgr A* in light

of new constraints on the accretion flow. Data spanning much of the SED is used,

including: radio [43, 147], IR [115, 53], and X-ray [2]. As in [141], we assume that a

fraction η of the energy in thermal electrons is injected into the nonthermal particles

(i.e., power-law electrons) with the power-law index p. Other tunable parameters

include the mass accretion rate at the outer boundary, Ṁout, and mass accretion profile

slope, s, where Ṁr = Ṁout(r/rout)
s. Fixed parameters include β = 0.1 (defined as

the ratio of the magnetic pressure pmag and the gas pressure pgas, β ≡ pmag/pgas; e.g.,

[27, 28, 3]), the fraction of the turbulent dissipation that directly heats the electrons

δ = 0.3 (e.g. [9, 99, 100, 68, 54]), and the viscosity parameter α = 0.1 (e.g., [48]).

For an exhaustive treatment of the fitting procedure, we refer the reader to [141].

However, in short, the fitting procedure is as follows. First, we calculate the one-

dimensional dynamics of the RIAF (or ADAF) by solving for conservation of mass,

116



10
0

10
1

10
2

10
3

10
4

10
5

r/r
s

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

n
e
 (

c
m
−
3
)

Roberts 2016

Yuan 2003

s=1

Figure B.2. The electron density as a function of radius. Green is the profile
assumed by [141]. The blue profile shows the best fit azimuthally averaged profile
found in Chapter 2. Some things to note: The Roberts profile is much shallower than
that of Yuan. Another thing is the outer boundary of the flow is assumed to be much
different.
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radial momentum, angular momentum, electron, and ion energy equations (Equations

1-5 in [141])1. The outer boundary conditions of these equation, i.e., the electron/ion

temperature and mass accretion rate, are constrained by observational results [2, 131].

We adjust the specific angular momentum of the flow at the horizon j0 to obtain the

global solutions of the hot accretion flow. The radiation from the RIAF can then

be calculated by taking into account the synchrotron, bremsstrahlung of the thermal

electrons, synchrotron of the nonthermal electrons in the accretion flow and their

Comptonization ([141], and references therein). As we need to fit the point-like

component inside ≤ 400 rs of the accretion flow inferred from X-ray observations, we

further decompose the radiation from the RIAF spatially to obtain their contribution

in different regions. The spatially decomposed emission (≤ 400 rs) can then be used

to compare with the residual point-like component in X-ray band [106].

B.2 Results

A well fit model to the SED of Sgr A* is shown in Figure B.3, with the parameters

listed in Table B.1. Note that bremsstrahlung radiation has been omitted from the

Figure, as it contributes negligibly to the emission in the inner accretion flow, r

≤ 400 rs. We can see that the residual point-like component in X-ray band is well

accounted for by non-thermal synchrotron emission in the region of r < 400 rs. The

spectrum slope determined by the synchrotron emission after taking into account the

synchrotron cooling is α ≈ (p+1−3)/2 = 0.8 (νLν ∝ ν−α), corresponding to a photon

index of 2.8. This photon index is at the limits of what is reasonable in the context of

Chapter 2. The accretion rate at 103 rs is 4.0×10−7 M� yr−1, roughly consistent with

1It should be that the equations solved here are not fully consistent since they do not account
for any energy or angular momentum that is lost in an outflow. However, an outflow primarily
manifests itself through a flattening of the density profile, which we allow for (e.g., [136]). Any
additional uncertainties from modification of the temperature structure, for example, we expect to
be absorbed into the deeply uncertain heating parameter, δ.
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Table B.1. Model parameters and fitted results from the SED fitting. Ṁout is the
mass accretion rate at ∼ 105 rs, Ṁ1000 is the accretion rate interpolated to 103 rs.
L5keV(400 rs) is the fitted 5 keV luminosity from the region < 400 rs of the accretion
flow.

Model This Work Yuan03

Ṁout (M� yr−1) 1.8× 10−6 10−6

s 0.33 0.27
η (%) 0.9 1.5
p 3.5 3.5

Ṁ1000 (M� yr−1) 4.0× 10−7 N/A
log[L5keV(400rs)] 31.95 N/A

the value of ∼ 1.0 × 10−6 M� yr−1 determined in Chapter 2. However, the outflow

parameter, s = 0.33, which is much smaller than the value (s ∼ 1.0) inferred from

the He-like Fe Kα line fitting [131] and X-ray image fitting (Chapter 2).

B.3 Discussion

The accretion flow model has been adjusted in several ways to better accomodate

the new data point and inferences from Chapter 2. In order to capture the new

constraint on residual point-like emission, it is sufficient to decrease the non-thermal

particle fraction. Further, given the results of [131] and Chapter 2, we have also

attempted to increase the steepness of the mass accretion profile. In order to maintain

the sub-mm bump, this requires an increase in the mass accretion rate at the outer

boundary. However, too drastic an increase leads to an overprediction of the total X-

ray luminosity, which is primarily generated in the outer accretion flow. Thus, there

is considerable tension between this model and the work in Chapter 2 for balancing

the emission of the sub-mm bump and that of the X-ray. Yet, there are some model

differences that help explain the results, which, when reconciled, may create a fully

unified model.
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Figure B.3. The SED model of Sgr A*. The quiescent SED of Sgr A* are mainly
adopted from [140] and references therein. The 5 keV X-ray data point (black square
with error bar) is from Chapter 2. The dot-dashed pink line denotes the synchrotron
and Comptonization from the thermal electrons in the hot accretion flow within 103

rs, the thin solid pink line denotes the nonthermal synchrotron component from the
same region of the accretion flow. The sum of the two components is denoted by the
thick solid green line.
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B.3.1 Reconciling Model Differences

We believe this difference could be reconciled by a more appropriate treatment

of the multidimensional flow structure. In fact, it may be sufficient to simply allow

certain parameters to vary with radius. For example, in [141], the authors note that

if the turbulent electron heating, δ, were to be stronger in the inner accretion flow

(r ≤ 10 rs), the data would be consistent with with a larger value of s. Another key

parameter that may need to be revised is the ratio of magnetic to thermal pressure,

β. This parameter is held constant at 0.1 for all radii and azimuthal angles. However,

from the GRMHD simulations of [3], this value appears to increase at low radii (r ≤

10 rs).

It is also possible that there is a physical change in the density profile at low

radii. The results of [131] and [106] are only sensitive to the outer accretion flow

(r > 103rs). A model in which the density profile is shallow at large radii and becomes

steeper somewhere near the inner 100rs may naturally be able to accomodate the large

synchrotron flux at sub-mm wavelengths without significantly affecting the X-ray flux.

Detailed 3D magnetohydrodynamical (MHD) simulations show a transition at very

low radii [142]. These simulations show that for r ≤ 10 rs, s ∼ 0. However, the

density profile does not rise with the flattening of the Ṁr. Instead, the flattening

is due to the assymptotic approach of the radial velocity toward the speed of light.

Therefore, it is unclear why/how such a transition in the density profile would/could

occur at radii of ∼ few ×102 rs.

Another prominent issue that needs to be addressed is the estimation of the quies-

cent emission itself. Separating the X-ray flares from the quiescent emission is perhaps

the easiest, as these flares are the strongest, increasing the flux by up to 100x the

quiescent rate. These flares are alos extremely narrow temporally. However, at longer

wavelengths, these flares broaden out to the point that the mm emission fluctuates by

only a factor of a few and it becomes difficult to define the quiescent state due to their
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temporal broadness [46]. Since these data points in the SED were estimated through

the mean flux, it is possible that the true Quiescent flux is a factor of a few lower in

the mm and sub-mm. A lower sub-mm and mm flux would naturally be compensated

by a decrease in density at low radii through a stronger outflow solution. However,

with all other parameters fixed, an increase in s from 0.3 to ≈ 1 would result in a

decrease of the sub-mm flux by multiple orders of magnitude. Therefore, it is unclear

to what extent a more accurate estimate of the quiescent sub-mm emission would add

to model reconciliation. Nevertheless, it is an issue that needs to be addressed.

One final issue that should be mentioned is the fitting procedure itself. With the

current code setup, it is difficult to robustly explore parameter space. Therefore, it

is unclear if we are in a local minima of parameter space. In priciple, this procedure

could be updated to sample under the Bayesian framework. Such would be a natural

next step to robustly contrain the model parameters detailed above. Further, it

provides a straightforward way to include constraint on the point-like residual slope

and the mass accretion profile from Chapter 2 through the use of priors.

B.3.2 On the Origin of a Steep Synchrotron Slope

The steep powerlaw slope found above and by [141] is considerably different than

the flare emission analyzed by [131]. Further, [131] found that the slope of the flare

emission is insensitive to the strength of the flare. Unless there is a state change

below the flare detection limit, this difference in synchrotron powerlaw slope between

the quiescent and flare emission implies a different origin of the particle acceleration.

We speculate that this difference can be physically understood within the context of

recent theoretical works.

[66] explore how different mechanisms of particle acceleration affect the energy of

particles. Specifically, they show how the energy of a particle increases as a func-

tion of time with respect to the acceleration process. For the fiducial flare particle
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acceleration mechanism, magnetic reconnection, particles are efficiently accelerated

(E ∝ t1.43). Contrastingly, when reconnection isn’t important and turbulence drives

particle acceleration through a second order Fermi process where E ∝ t0.66. To first

order, this decreased efficiency appears to naturally result in a spectrum of powerlaw

index ∼ 3.5 when considering the powerlaw index of flare emission (∼ 2.6), which

would be in broad agreement with the results of [141] and detailed in Chapter 2.

In the near future, it may be possible to directly test the quiescent slope against

theoretical predictions of turbulence driven particle acceleration. Recent work by

[148] studying relativistic plasma shows that turbulence can accelerate electrons into

a powerlaw spectrum. Further, this work provides a fitting formula for how the

powerlaw index evolves with magnetization and system size. They show that a non-

thermal powerlaw particle energy distribution, N(E) ∼ E−δ, with δ ∼ 1+C(L/B)0.5,

where C is a constant, B is the magnetic field strength, and L represents the system

size. However, they note that it is unclear how efficient particle acceleration from

turbulence would be in the context of a SMBH accretion flow due to the system size.

Yet, as in the case of magnetic reconnection (e.g. [119, 47]), it is possible that particle

acceleration due to turbulence becomes scale free for asymptotically large systems.

B.4 Summary and Conclusions

We have revisited the SED of Sgr A* in the context of recent results from [131]

and Chapter 2. These works suggest that the mass accretion profile is much steeper

than previously assumed based on analysis of the SED [141]. Further, In Chapter 2

we place constraints on the X-ray emission from the inner accretion, both its’ flux

and slope. We have attempted to reconcile model differences between the 1D RIAF

used to fit SED and the 2D simulations used to fit the spatio-spectral properties of

the X-ray emission with limited success. While both models agree on the steepness of

non-thermal synchrotron emission, it remains difficult to reconcile their differences in
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the density profile. We further discuss the origin of this steep non-thermal emission,

as well as a possible path forward for model reconciliation. Specifically, we find:

� The added constraint on residual point-like emission from Chapter 2 can be

reconciled through minor modification of the original work of [141].

� A more robust fitting procedure is necessary to include new constraints on the

density profile and X-ray spectral index, and to explore the parameter space in

a more statistically rich way.

� For a simple 1D RIAF model, it is difficult to simultaneously model the X-ray

emission and sub-mm bump when considering a strong outflow solution.

� Multidimensional modelling of the accretion flow is likely necessary to reconcile

the prior point. Other possbile important issues exist, including: estimation

accuracy of the quiescent sub-mm and mm fluxes and a possible steepening of

the density profile at low radii.

� The steep spectral index of the synchrotron emission is suggestive that it is

accelerated through magnetic turbulence, a second order Fermi process, rather

than magnetic reconnection, a first order Fermi process.
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APPENDIX C

MARGINALIZED HISTOGRAMS AND PAR.-PAR.
CONFIDENCE PLOTS FOR THE SGR A* FIT

125



Figure C.1. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.

126



Figure C.2. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.
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Figure C.3. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.
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Figure C.4. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.
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Figure C.5. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.
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Figure C.6. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.
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Figure C.7. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.
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Figure C.8. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.
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Figure C.9. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.
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Figure C.10. Marginalized parameter histograms and parameter-parameter confi-
dence intervals.
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APPENDIX D

TESTING THE SAMPLING OF RGS LINE MAPS

Since this type of analysis of the RGS data has yet to be performed, testing is

required to ensure physically meaningful results. However, it is infeasible to test all

possible scenarios. Therefore, while we can set some basic guideline, we encourage

users of this method to simulate observations of their target object considering all

potentially important emission mechanisms. Past results and current data should be

used to design the simulations as much as possible.

We assess simulations built specifically to mimic the emission from M31, which

has useful past results that can be leveraged, under different physical scenarios. It

has previously been found that the surface brightness in the broadband Chandra

images can be described by the β-model with rc ∼ 1′ and β ∼ 0.5 [77]. We can

further estimate an appropriate I0 for simulation by considering the observed image

flux and the approximate fraction of observed counts contributed by the diffuse line

emission. I0 is estimated by requiring the integrated source emission to match the

proper fraction of total emission. With this estimate, we have a fully characterized

model to simulate from.

D.0.1 OVIII Lyα Emission

Building synthetic observation of the OVIII Lyα emission is relatively simple

task. We begin by estimating parameters that provide a similar number of source

counts as the observed M31 data. The background, as estimated above, represents

77% of the observed counts of the M31 OVIII line map on average. If we assume
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Table D.1. Simulated OVIII parameters, best fit, and 95% confidence intervals.

I0,R (counts/s/cm2/asec2) rc,R (asec) βR
Simulated Value 0.64 60 0.5
Fitting Results 0.57 (0.5, 0.67) 68 (50, 90) 0.52 (0.45, 0.61)

that the fluxing maps are unity and pixels are 10” on a side, this implies I0 ≈ 0.64

counts/s/cm2/arcsec2. These parameters result in simulated observations with the

same mean number of counts as the archival M31 observations, as well as the proper

fraction of source to background emission. In order to simulate the data, we build an

expected count image from the β-model and estimated background in the same way

as when calculating the likelihood during model fitting, convolve it with the PSF and

LSF, then add Poisson random noise.

Simulating and fitting 64 observations (OVIII allows us to use both RGS1 and

RGS2) with these parameters, leads to the best fit parameters and confidence inter-

vals shown in Figure D.1 and listed in Table D.1. We see that the parameters are

reasonably well characterized. Perhaps the least constrained parameter is β, which

is natural considering how weak the source emission of M31 is, only comprising 23%

of the extracted image data. At radii larger than rc, the emission is dominated by

the background. Indeed, simulations with a larger source fraction of 50% are able

to place a much stronger constraint on β. Yet, we see that we return our simulated

parameters within the uncertainties. This suggests that the method proposed herein

for characterizing the emission from isolated lines is reasonable to first order for M31.

D.0.2 OVII Kα Emission

While it is interesting to characterize the spatial distribution of isolated lines, the

scientific meat of an X-ray spectrum resides in the diagnostic power of He-like triplets,

making their characterization an important test for this method. For the case of M31,

we know that the OVII Kα G-ratio is elevated to some extent [77]. Therefore, we need
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Figure D.1. Same as Figure 3.10 but for different parameters.
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to specifically simulate any relevant physical scenarios beyond thermal. In this case

we show simulate fits assuming resonance scattering is important for the emission.

In order to set expectations of a fit to the M31 data under the resonance scat-

tering scenario, we can directly calculate what these profiles would be given past

results. Previous fitting suggests the G-ratio (F/R) ∼ 1.5 in the inner bulge [77],

implying I0,F = 1.5I0,R. We also know that the object integrated G-ratio should be

approximately thermal for resonance scattering. Assuming βM31 = 0.5 (that found

with broadband fitting), this implies that βR ∼ 0.32 by requiring that the galaxy

integrated G-ratio remains thermal. We will assume that rc = 1′ is unchanged by res-

onance scattering. Lastly, to build the full model we simply need to estimate the total

source flux in the M31 data, I0,F + I0,R. This is done in the same way as for OVIII.

Unfortunately, OVII Kα is even fainter, with a source contribution to the flux of only

20%. This source flux implies I0,F and I0,R to be 0.17 and 0.11 counts/s/cm2/arcsec2,

respectively. Note, we have also included in the simulated data a contribution from

the inter-recombination line. In the case of resonance scattering, the profile of this

line is equivalent to C × IF (r), where C is a multiplicative constant equal to 0.22 (as

calculated by atomdb for thermal emission).

The parameters and fitting results for 32 OVII observations1 are shown in Figures

D.2-D.4 and listed in Table D.2. As in the case of OVIII, we see that the simulated

parameters are reproduced within the uncertainties. Unfortunately, the uncertainties

are very large, particularly for both β and rc for both lines. This perhaps shouldn’t be

surprising. Not only is the OVII emission relatively weaker than the OVIII emission,

but it is also split among multiple lines. This results in a background dominated

image throughout. Further, rc and β can loosely be used to characterize the physical

extent of the object, making them highly degenerate.

1Due to a CCD failure, only RGS1 data can be used for OVII.
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Table D.2. Simulated OVII parameters, best fit, and 95% confidence intervals.

Resonance Line: I0,R (counts/s/cm2/asec2) rc,R (asec) βR
Simulated Value 0.11 60 0.32
Fitting Results 0.08 (0.05, 0.13) 105 (20, 390) 0.35 (0.32, 0.83)
Forbidden Line: I0,F (counts/s/cm2/asec2) rc,F (asec) βF
Simulated Value 0.17 60 0.50
Fitting Results 0.12 (0.08, 0.19) 83 (30, 185) 0.45 (0.36, 0.83)

Figure D.2. Same as Figure 3.10 but for different parameters.
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Figure D.3. Same as Figure 3.10 but for different parameters.
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Figure D.4. Same as Figure 3.10 but for different parameters.
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D.0.3 Joint Fitting

The strong correlation between many β and rc suggests that using outside infor-

mation to constrain either parameter will serve to greatly improve the fitting results.

This can be done in one of two ways: using the broadband Chandra data or RGS

imaging of other lines (either as a prior or simultaneous fitting). We will focus on

simultaneous fitting of the latter case in this work. Fitting isolated lines in conjunc-

tion with blended lines provides particular power to constrain rc and β. This power

arises from the fact that for each physical scenario, we may link at least one of these

parameters between the isolated line and one or more of the blended lines.

When fitting under the resonance scattering paradigm, we link rc for all lines [118].

We may additionally link β for any lines that are not affected by resonance scattering.

Thus, simultaneously fitting multiple lines and linking these parameters in a physically

motived manner provides a natural way to overcome statistical limitations and provide

tighter constraint to the β-model parameters. In this simulation, we assume that the

OVII Lyα line is not effected by resonance scattering, and thus assume it has the

same distribution as the forbidden line.

An example of this type of fit is shown in Figures D.5-D.7 and tabulated in Table

D.3. We see that parameters are very well constrained, all to within ∼ 20%. This

suggests that if the redistribution of photons through β for the OVII Kα resonance line

leads to a change of 0.1, we will be able to detect the presence of resonance scattering

in the M31 bulge. Therefore, this type of joint fitting allows us to overcome the weak

flux of M31’s diffuse hot gas.
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Table D.3. Joint fitting OVIII and OVII for simulated data in the resonance scat-
tering scenario, best fit and 95% confidence intervals.

Parameter Sim. Val. Best Lower 95% Upper 95%
I0,OV III,R (counts/s/cm2/asec2) 0.64 0.64 0.57 0.71
I0,OV II,R (counts/s/cm2/asec2) 0.31 0.33 0.29 0.38
I0,OV II,F (counts/s/cm2/asec2) 0.16 0.17 0.14 0.20

rc,M31 (asec) 60 53 45 64
βM31 0.5 0.48 0.45 0.53
βOV II,R 0.5 0.49 0.45 0.56
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Figure D.5. Same as Figure 3.10 but for different parameters.
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Figure D.6. Same as Figure 3.10 but for different parameters.
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Figure D.7. Same as Figure 3.10 but for different parameters.
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APPENDIX E

SEMIPARAMETRIC LINE MAPPING

The modelling discussed in Chapter 3, where we parameterized the emission as

a β-model, was a natural first step. However, there are a couple reasons why we

would want to avoid resorting to a parametric model. The primary reason is for

understanding the spatial correlation between emission that traces a similar process

or other gas phases. For example, the spatial complexity that gives rise to CX in the

context of galactic winds is untenable with parametric modelling. When considering

He-like Kα complexes, spatial correlation can be very useful for understanding the

mechanism behind an elevated G-ratio [107]. This underscores the need for non-

parametrically sampling of the underlying surface brightness.

Unfortunately, it is not possible to completely forward-fit the intrinsic surface

brightness non-parametrically, treating each spatial point truly independently, due

to the double convolution from the PSF and LSF. This can be naturally understood

when considering what a convolution does. If you have two adjacent pixels, one with

a very large value and the other with a very small value, their convolution will look

much the same as two adjacent pixels with equal value, as long as the convolution

kernel is at least similar in size to the pixel sizes. This means that the intrinisic surface

brightness at some location that we are trying to sample is decoupled from the actual

observed surface brightness at that location. Therefore, we need to include some kind

of spatial model within the fit to get statistically meaningful results, particularly for

blended lines.
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One possibility would be utilizing Chandra data to guide how the the intrinsic

surface brightness is spatially modelled by setting a prior on the scale of the Chandra

PSF. Unfortunately, this approach has it’s own challenges. The spectral resolution

of the Chandra instrument is not sufficient to separate out individual line emission.

Therefore, we would be trying to leverage spatial correlation in broadband emission.

Individual emission lines can deviate significantly from their encompassing broadband

emission, depending on which line(s) are being observed and which physical processes

are important for the emission. For example, if the emission is significantly contami-

nated by CX, the OVII Kα forbidden line may not correlate well with the broadband

emission (depending on the width of the broadband emission). If the emission is

a reasonable blend of CX and thermal emission, none of the Kα lines may be well

characterized by the broadband emission (as in Chapter 3). Therefore, this approach

effectively holds us hostage to the thermal assumption once again.

E.1 Azimuthally Symmetric Models

A natural spatial model for a spheroid is to assume azimuthal symmetry. In

this case, we sample bins through the projected radius. Since we assume azimuthal

symmetry, any transformation due to roll angle can be neglected. For the case of an

isolated line, the only correction that needs to be considered is for boresight between

observations, which is naturally handled in the reduction pipeline. For a multiplet, the

only additional consideration is the dispersion of individual line images in the proper

direction. Therefore, this model is relatively simple and straightforward to implement.

It also allows us to simultaneously retain a considerable amount of information from

the observations and fit at very high signal-to-noise. However, there are some nuances.

The sampling procedure used in the semiparametric case is similar to that of the

parametric example in Chapter 3. Both use a blocked Metropolis-Hastings MCMC

sampler to estimate parameters and their confidence bounds, in this case, individual
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pixels. However, there is one significant difference shown here. For the semipara-

metric fits to simulated emission we also fit the surface brightness in the background

component. Without including the uncertainty in the background, we become far

too overconfident in the source surface brightness estimate in regions where the back-

ground dominates. In the parametric case, the uncertainty in the background was

much less important since the parameters were primarily constrained by the source

surface brightness where the source emission dominates. Therefore, we weren’t ne-

glecting a major source of uncertainty.

We account for uncertainty in the background surface brightness by sampling a

normalization parameter at each side of the image extraction region in the dispersion

direction, ~Fbkg. The shape of the background in the cross dispersion direction is

determined by the shape of the source flux. This is a reasonable characterization

of the background for simulated data, where we generate images without including

point sources. However, for real data, any point source emission must be taken into

account for accurate results. Also, there will be a smooth instrumental background

that needs to be considered. The renormalized background surface brightness at

each image end are linearly interpolated along the dispersion direction to define the

background at every pixel. This sampling has a separate probability calculation using

only the continuum regions of the image where it is estimated.

Determining how to include the contribution from point-sources is a major chal-

lenge for semiparametric sampling of real data. One possible solution is to generate

the shape of the background in the cross-dispersion direction in the same way as

Chapter 3, then sample a normalization at each edge. This will include at least a

portion of the uncertainty of the background flux in the fit.

If the line of interest is a blended line, each pixel will have an additional parameter,

G , equivalent to the ratio of the two lines. The additional line, however, also creates

some problems for the background generation. For example, in the case where an ele-
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vated G-ratio is primarily due to CX, any CX that results in the increase in forbidden

line emission (and therefore total flux) would not affect the continuum (background)

emission. Therefore, in this case we expect the background emission to closely follow

the resonance line only. However, in the limiting case where the elevated G-ratio

due to resonance scattering, the continuum will not follow the flux of the resonance

line, but rather the forbidden line. Therefore, to move forward beyond this simplistic

approach, it is again necessary to fit for both instances and then perform a model

comparison as in Chapter 3.

E.1.1 Testing

As in Chapter 3, we simulate data to test the efficacy of the method. Again, we

use the archival M31 data to guide our simulations. Recall, this data is convenient for

two reasons: it has an abundance of archival data and being quiescent bulge emission,

we expect it be reasonably well behaved. Therefore, testing against the M31 data

should provide a good intuition for what is possible with the method.

To generate synthetic data from the M31 data, we start by calculating the mean

number of counts in each observation. In this case, as opposed to Chapter 3, we

assume that approximately 50% of the counts are background and the rest from the

source. Note, this source percentage is larger than the actual data of M31, allowing us

to probe a greater dynamic range in source to background flux through the image. We

further assume the background is constant across the dispersion direction and that

the source emission is a Gaussian with σ ∼ 100 arcsec, similar to the angular extent

of M31. These assumptions are taken to be true for all the simulations presented

here. Lastly, to generate simulated observations, Poisson random noise is added to

the theoretical emission profile. We create 30 simulated observations to analyze in

tandem. For simplicity sake, when simulating data we will assume for each simulated
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Figure E.1. Projected radial OVII flux profile for simulated data. Bin size is 10x
the original RGS data. Radial bins are sampled independently.

observation that the exposure and effective area are unity. Also, all data has been

rebinned to 10x the size of the raw RGS data for computational convenience.

We test this fitting procedure to a known simulated OVII complex under the res-

onance scattering paradigm. From Figures E.1 and E.2, we see that this model does

reasonably well constraining the G-ratio and total flux through a range of radii. This

fitting procedure sacrifices constraint at the lowest radial bins in order to extend the

radial range of high quality fit. For physical circumstances similar to those simulated,

we should be able to constrain the G-ratio fairly well out to ∼ 3’. Even though the

signal-to-noise drops as we go to larger radii, the area of each radial bin is increasing

out to moderate radii, until the small width of the cross dispersion extraction miti-

gates the gains. This is what allows the azimuthally symmetric model to constrain

so well out to considerable radii.
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Figure E.2. Projected radial OVII G-ratio profile for simulated data. Bin size is
10x the original RGS data. Radial bins are sampled independently.
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E.2 Kernel Model

Since the observed flux must be correlated on at least the scale of the PSF, another

natural choice for including a spatial model is to model the emission after it has

entered the telescope and been dispersed by the PSF. Because the data is Poisson,

spatial correlation of the observed flux is difficult to visualize, and indeed, is not

necessarily required by the data for a finite number of observations, each with finite

exposure time. However, we know that the underlying distribution is smooth on at

least the scale of the PSF, but the stochasticity of a Poisson process can mask this

point. Therefore, there is additional untapped information in adjacent spatial bins if

sampling each pixel independently.

The way in which we approach this can be conceptualized as fitting the distribution

of a smoothing kernel. The smoothing kernel is defined by a radial basis function

where the smoothing scale (or bandwidth) is set by the PSF of the instrument. That

is, when sampling the surface brightness of some pixel, Fi, we randomly draw a new

new surface brightness, Fi,new, and simultaneously adjust the surrounding pixels by

this difference modulo a radial basis function:

Fj,new = (Fi,new −Fi,cur) exp

(
− (Di,j)

2

2(ε/R)2

)
+ Fj,cur (E.1)

where Di,j is the distance between pixels i and j, ε is the spatial correlation scale

between pixels (defaults to the RGS PSF, ∼ 9.17 arcsec), and R is the pixel binning.

Spatial correlation is thus fixed by the smoothing kernel during sampling.

For most observations, the signal-to-noise will not be great enough to allow a fully

semiparametric 2-D fit to the data without symmetry assumptions. This is certainly

not the case for M31. Therefore, we will demonstrate how this type of fit can be

done by using 1D (cross-dispersion collapsed) data as an example. In this case, all

maps are summed through the cross-dispersion direction. Sampling proceeds in the
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Figure E.3. Intrinsic OVIII profile and sampling best fit and confidence intervals.
Observations are sampled at 0.1x RGS pixel resolution.

same fashion as in Chapter 3. However, in this case, since we are sampling the PSF

convolved flux, we only convolve with the LSF when calculating the likelihood.

E.2.1 Testing

Naturally, an isolated line, such as OVIII Lyα, is the simplest. Figure E.3 shows

the best fit and confidence intervals for pixels of 10x the original RGS data. The intrin-

sic flux is well represented within the confidence bounds, even within the background

dominated regions. Therefore, in addition to being able to model more prominent

emission very well, we also expect to be able to model an isolated line very well for

M31.

Blended lines are a bit more complicated, as there are multiple components that

need to be properly dispersed. For the case of He-like Kα emission, we sample the G-

ratio and total flux at each pixel location. To cast into the coordinates of the observed
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emission, this G-ratio and flux has to be separated into individual lines, dispersed,

and recombined. For a theoretical G-ratio profile, we can look at some limiting cases.

In this demonstration, we will consider the limiting case of the a relic-AGN.

In the relic-AGN scenario, the AGN burst leads to the plasma being over-ionized,

which also leads to enhanced forbidden line emission relative to resonance line. In

the core of the galaxy, where the density is large, the plasma is able to return to

equilibrium on a shorter timescale. This leads to a G-ratio that is lowest in the

center of the galaxy and enhanced in the outskirts. For this scenario, we use an

inverse Guassian that rises from 1 in the center to 3 in the outskirts to define the

G-ratio profile. It has the same width as the resonance scattering example. In this

case, the flux and G ratio are both well fit and the results are shown in Figures E.4

and E.5. However, the G-ratio is not well constrained, suggesting we need to find a

different solution for weak sources.

E.3 Discussion

We have demonstrated throughout this appendix and Chapter 3 the current po-

tential of spatially mapping individual emission lines with a dispersive spectrometer.

For isolated lines, we have shown this approach to be robust, even under conditions of

very weak S/N. Therefore, we expect it to be possible to get semiparametric spatial

information from these lines in 2D without relying on strong assumptions. Blended

lines, however, may prove problematic. Nevertheless, in addition to the symmetry as-

sumptions discussed above, there are a couple strategies we could leverage to further

alleviate the problems with sampling blended lines.

We saw in Chapter 3 the tremendous power of simultaneously fitting lines. In

that work, linking parameters between lines that are expected to be the same un-

der a particular physical scenario allowed us to go from being enitrely incapable of

distinguishing between physical scenarios to making considerably robust conclusions.
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Figure E.4. Intrinsic OVII profile and sampling best fit and confidence intervals for
the AGN burst scenario. Observations are sampled at 0.1x RGS pixel resolution.
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Figure E.5. Intrinsic OVII G-ratio profile and sampling best fit and confidence
intervals for the AGN burst scenario. Observations are sampled at 0.1x RGS pixel
resolution.
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Such linking was straightforward in the parametric case. It is also straightforward in

the non-parametric case, if we assume the plasma is isothermal. Such an assumption

allows the linkage of any lines not affected by non-thermal processes with a global

offset parameter. Therefore, if two lines are being fit, the number of parameters have

been effectively halved. This strategy breaks geometry assumptions. Unfortunately,

it is still hostage to the isothermal assumption.

In the absence of adequate CX and relic-AGN modelling, this final assumption of

isothermality may only be removed for truly thermal emission, and possibly emission

contaminated by resonance scattering. In those cases, a more elegant solution would

be to simultaneously sample temperature and density distributions semiparametri-

cally. In the case of resonance scattering, it may be adequate to fit these param-

eters using the azimuthally symmetric model, since this is likely only an issue for

spheroids. Any lines not expected to be heavily contaminated by scattering may be

directly linked. Lines that are contaminated may tangentially linked, as their object

integrated fluxes should not deviate from thermal. For the case of purely thermal

emission, all lines are linked through the hyperparameters of temperature and den-

sity. Therefore, in this case, it would be ideal to simultaneously fit as many lines as

possible with the kernel model.

One final modelling technique for spheroids bears mentioning. Rather than fitting

under azimuthal symmetry, one may assume spherical symmetry. Although, this may

requires considerable computational overhead, as it necessitates integrating along

the line of sight in each pixel. At full resolution, this may include 200,000 pixels.

However, as the emission is much simpler than that in Chapter 2, the integral may be

well estimated with the trapezoidal rule using relatively few bins. This method also

places us in units that are more physically meaningful, that is, the emission properties

as a function of the true radius, rather than the projected radius.
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In conclusion, given the demonstrated capabilities and potentials discussed above,

we believe this methodology has a considerable amount to offer X-ray astronomers,

and astrophysics more generally. Novel techniques are required to move much of X-ray

astrophysics forward, particularly with the unfortunate failure of Astro-H. Repurpos-

ing and leveraging the current fleet of grating spectrometers allows us to extract

information that has no other clear methodology for illuminating at present. There-

fore, we believe we are well poised to tackle the observation tasks enumerated in

Chapter 4 to help elucidate the hot component of galatic feedback.
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