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ABSTRACT

ON LEVERAGING MULTI-PATH TRANSPORT IN
MOBILE NETWORKS

FEBRUARY 2017

YEON-SUP LIM

B.S., SEOUL NATIONAL UNIVERSITY

M.S., SEOUL NATIONAL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Donald F. Towsley

Multi-Path TCP (MPTCP) is a new transport protocol that enables mobile de-

vices to simultaneously use several physical paths through multiple network interfaces.

MPTCP is particularly useful for mobile devices, which usually have multiple wireless

interfaces such as IEEE 802.11 (WiFi), cellular (3G/LTE), and Bluetooth. However,

applying MPTCP to mobile devices introduces new concerns since they operate in

harsh environments with resource constraints due to intermittent path availability

and limited power supply. The goal of this thesis is to resolve these problems so as

to be able to practically deploy MPTCP in mobile devices.

The first part of the thesis develops a cross-layer path management approach that

exploits information from the physical and medium access control layers to deal with

intermittent path availability in mobile environment while increasing path utilization

of MPTCP over lossy links. Experimental results show that this approach efficiently

v



utilizes intermittently available WiFi paths, with throughput improvements of up to

72%.

In addition to the need to manage intermittent path availability, MPTCP must

deal with the increased energy consumption due to simultaneous operation of multiple

network interfaces. Hence, it is important to understand the energy consumption

behavior to deploy MPTCP in mobile devices. We develop an energy model for

MPTCP power consumption derived from experimental measurements. Experimental

results show that the model accurately estimates the MPTCP energy consumption.

Based on the MPTCP energy model, we further explore conditions under which

MPTCP is more energy-efficient than either standard TCP or MPTCP. Informed by

this finding, we design and implement an energy-aware MPTCP variant for mobile

devices. Experimental results show that our approach reduces power consumption

compared to standard MPTCP by up to 80% for small file downloads and up to 15%

for large file downloads, while preserving the availability and robustness benefits of

MPTCP.

Finally, we study the impact of path asymmetry on MPTCP performance. Since

path asymmetries frequently appear in mobile networks, it is crucial to design a

MPTCP path scheduler that properly distributes traffic across available paths, which

has different network characteristics such as round-trip time and bandwidth. We

propose and implement a new MPTCP path scheduler, ECF (Earliest Completion

First), that utilizes all relevant information about a path. Experimental results show

that in the presence of path asymmetries ECF consistently utilizes all available paths

more efficiently while mitigating out-of-order delay compared to the default scheduler.
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INTRODUCTION

The deployment of mobile devices such as smartphones and tablets has signifi-

cantly increased over the last few years. This rapid increase is based on the progress

and ubiquity of wireless communication technologies, such as IEEE 802.11 (WiFi) and

cellular (3G/LTE) networks. The advent of mobile devices with multiple wireless in-

terfaces is leading to efforts to take advantage of these interfaces and simultaneously

utilize them. Multi-Path TCP (MPTCP) is a new transport protocol being standard-

ized by IETF to enables systems to exploit available paths through multiple network

interfaces.

MPTCP is particularly useful for mobile devices, which usually have multiple wire-

less interfaces. The benefits of leveraging MPTCP in mobile devices are three-fold:

First, by utilizing the available bandwidth of each subflow, an MPTCP connection

can achieve higher throughput than a standard TCP connection [61]. Second, while

connectivity in one network can degrade or disappear, MPTCP offers a seamless

TCP connection by using paths (subflows) through another network [62]. Finally, the

MPTCP layer is hidden from user applications by providing a standard TCP socket

interface. Existing TCP applications need not to be modified to support MPTCP [20].

However, since mobile devices operate in harsh environments with limited resources,

such as power, and where paths are intermittently available, deploying MPTCP on

mobile devices introduces new concerns:

• Dynamic path availability in mobile networks

Path quality frequently changes in mobile networks, for example, WiFi con-

nectivity is often unusable in mobile scenarios due to the short signal ranges of
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access points (APs). However, MPTCP is unable to efficiently utilize frequently

broken/recovered paths, as it relies on the use of a coarse-grained timeout mech-

anism.

• Additional energy overhead from operating multiple network interfaces

MPTCP consumes additional energy to simultaneously operate multiple net-

work interfaces. Since mobile devices are frequently constrained by the amount

of power available in their batteries, judicious use of these interfaces is required.

• Path asymmetries in mobile networks

Path asymmetries often appear in mobile networks, e.g., as a mobile device

moves WiFi path can become unstable, consequently providing low bandwidth

while a cellular path remains stable providing high available bandwidth. Such

path asymmetries can result in inefficient use of the higher bandwidth path

together with significant packet reorderings at the receiver.

1 Thesis Contribution

The main contributions of this thesis are:

• We develop a path management scheme for MPTCP to mitigate path under-

utilization problem that occurs when paths are intermittently connected. Our

approach utilizes cross-layer information, such as physical bit rate and number

of medium access layer frame retransmissions, to detect active/inactive path

status so that MPTCP avoids unnecessary loss-related operations such as ex-

cessive exponential increases of retransmission timeout values, which results in

inefficient use of recovered paths.

• We examine MPTCP energy consumption behavior via a combination of mea-

surement, modeling, and experimentation. We measure power consumption of
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off-the-shelf mobile devices across a range of scenarios, varying download/upload

size and available path bandwidth. We develop an MPTCP energy model de-

rived from these experimental measurements.

• We design and implement a multi-path TCP variant for power-constrained mo-

bile devices to improve the energy efficiency of MPTCP while having minimal

impact on download latency. Our scheme is the first MPTCP implementation

that monitors path characteristics at run time and dynamically chooses paths

based on per-byte energy efficiency.

• We provide a thorough analysis of performance problems in MPTCP caused by

path asymmetries when using the default scheduler. Using a streaming adaptive

bit rate video workload, we demonstrate that MPTCP default scheduler does

not achieve the ideal use of multiple paths in the presence of path asymmetries.

Based on this insight, we design and implement a new path scheduler which

takes path asymmetries into account.

2 Thesis Outline

Chapter 1 provides the background context for this thesis. Chapter 2 presents

a cross-layer path management scheme, called MPTCP-MA that allows MPTCP to

deal with dynamic path connectivity along with its implementation and evaluation in

a mobile environment. Chapter 3 develops an MPTCP energy model based on exper-

imental measurements taken on several mobile devices. Based on this energy model,

in Chapter 4 we design and implement an improved energy efficient MPTCP, called

eMPTCP, in actual mobile devices, and evaluate it in several scenarios. Chapter 5

reports on a performance degradation problem of the default MPTCP path scheduler

when path asymmetries exist and presents a new MPTCP path scheduler to maxi-

mize path utilization, called ECF (Earliest Completion First). It concludes with an
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experimental evaluation of ECF. In Chapter 6, we summarize this thesis and discuss

future research directions.
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CHAPTER 1

MULTI-PATH TRANSPORT CONTROL PROTOCOL

MPTCP is a recently standardized TCP-compatible protocol, transparent to user

applications, that takes advantage of multiple paths through several communication

interfaces [20, 63, 76]. MPTCP allows a single data stream to be split across multiple

paths referred to as subflows: subflows are defined logically by all end-to-end interface

pairs. For example, if each host has two interfaces, an MPTCP connection consists

of four subflows. These subflows are exposed to the application layer as one stan-

dard TCP connection, so that a user application needs not to be modified to utilize

MPTCP. In MPTCP, each subflow processes packets in the same manner as standard

TCP, except for congestion control. MPTCP uses a coupled congestion control algo-

rithm across all subflows to guarantee TCP fairness at shared bottlenecks between

standard TCP and MPTCP connections [76]. Since ordering is preserved within a

subflow, but not across them, MPTCP must take care to combine subflows into the

original ordered stream. To this end, MPTCP appends additional information called

the data sequence number as a TCP header option to each packet. Based on the

data sequence numbers, MPTCP merges packets from multiple subflows properly

and delivers in-order streams at the connection level.

1.1 Connection Establishment

To initiate an MPTCP connection, each end host knows at least one of its peer’s

IP addresses. To establish an MPTCP connection, a client sends a connection request

(SYN packet) with MP-CAPABLE option to the server’s known IP address, which is
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similar to the connection establishment procedure of standard TCP. During this first

SYN and SYNACK exchange, the client and server share a hash key to identify the

MPTCP connection.

Once the connection request is sent, the client sends a packet with Add Address

option if it has additional interfaces such as a 3G/LTE interface. After this address

announcement, the client sends another SYN packet with a JOIN option using its

announced address, together with the exchanged hash key for this MPTCP connec-

tion. If the address in JOIN differs from the address previously reported by Add

Address option, the server updates the information about corresponding client ad-

dress, e.g., the client announces a private address if the client is behind Network

Address Translations (NATs), but the packet with JOIN option is sent with a public

address beyond NATs. With this JOIN option, the subflow becomes associated with

the current established MPTCP connection. If the server also has additional inter-

faces, the server sends an Add Address option to inform the client about the available

address for the current MPTCP connection. As soon as the client receives it, the

client sends out another connection request with JOIN option to the server’s newly

notified IP address and initiates a new subflow.

1.2 Congestion Controller

Similar to a standard TCP connection, each subflow in an MPTCP connection

maintains its own congestion window. However, MPTCP can be unfair to normal

TCP connections if it uses standard TCP congestion control algorithms such as Reno

for each subflow. For example, assume that one normal TCP connection and one

MPTCP connection share a single link and the MPTCP connection opens two sub-

flows over the link. Then, the MPTCP connection takes twice more throughput over

the link than the TCP connection, which is unfair.
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In order to guarantee fair share of bandwidth with normal TCP connections,

MPTCP uses a coupled congestion control referred to as Linked Increase Algorithm

(LIA). Denote the congestion window and round trip time of subflow i by wi and

RTTi. Let R be the set of all subflows in an MPTCP connection. LIA works as

follows:

• For each ACK on subflow i: wi = wi + min

(
maxk∈R

wk
RTT2

k(∑
k∈R

wk
RTTk

)2 , 1
wi

)
• For each loss on subflow i: wi = wi

2

LIA limits congestion window increase by up to 1/wi in order to be at most as

aggressive as regular TCP. By linking the increase, LIA allocates more window to

subflows with lower packet loss rates, i.e. less congested subflows, while it lets a

set of subflows to take the aggregate bandwidth similar to the bandwidth that each

competing TCP connection obtains.

Khalili et al. [37] shows that LIA fails to satisfy the design goals of MPTCP

even though it provide better congestion balancing than Reno. As a revised linked

control algorithm, they propose Opportunistic Linked Increase Algorithm (OLIA),

which works as follow:

• For each ACK on subflow i: wi = wi +

wi
RTT2

i(∑
k∈R

wk
RTTk

)2 + αi
wi

• For each loss on subflow i: wi = wi
2

, where αi is defined as:

αi =


1/|R|
|B−M | if i ∈ B −M 6= ∅

−1/|R|
|M | if i ∈M and B −M 6= ∅

0 otherwise

, where M is the set of paths with the largest window sizes, B is the set of best paths

in terms of packet loss rates.
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If the paths have the largest window sizes, α becomes zero or negative, thus OLIA

increases their windows slowly. If the best paths with lowest loss rates have small

window sizes, OLIA quickly increases their windows by using a positive α. Hence,

OLIA satisfies the design goals of MPTCP [21] and provides optimal load balancing

[36].

1.3 Subflow Operation Modes

MPTCP has three modes of operation to control subflow usage. One of them is

backup mode, where MPTCP opens TCP subflows over all interfaces, but uses only

a subset of them for packet transmission [52]. If a user sets a particular interface

to backup mode, MPTCP avoids sending traffic through the corresponding subflows.

Then, in order to force a remote-side to avoid using the subflows, MPTCP sends a

MP PRIO on these subflows to the remote-side. However, MPTCP does not have

any mechanism to control the mode of a subflow based on its connectivity status.

In addition, the current backup mode mechanism is not able to properly handle the

situation where an end host places an active interface into backup mode: e.g., MPTCP

needs to carefully deal with in-flight packets (i.e., packets that are not acknowledged

yet) on the subflows associated with such an interface.

1.4 Broken Paths in MPTCP

Standard TCP is unaware of whether a path is up or down: regardless of path

status, a TCP sender retransmits lost packets and exponentially increases the re-

transmission timeout (RTO) for next retransmission when an acknowledgment does

not arrive at the TCP sender within a RTO [59].

Similarly, MPTCP does not have a particular mechanism to manage path status

changes. However, the current implementation [63] has an additional event handler

to process address change events at a network interface:
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• NETDEV UP : This event occurs when an IP address is added to the interface.

MPTCP then establishes the corresponding subflow associations.

• NETDEV DOWN : This event is notified when the interface loses an IP address.

With this event, MPTCP terminates all corresponding subflow connections.

Unfortunately, mobile devices can lose or regain paths without either of these

events occurring in a mobile scenario. For example, a WiFi connection in a mobile

device often becomes unusable due to the device moving outside the range of an access

point, even when its WiFi interface still maintains an IP address.

1.5 Path Scheduler

When an MPTCP sender has data to send, it must choose a path over which

to send that data. This is the task of the path scheduler. The default MPTCP

path scheduler selects the subflow with the smallest RTT for which there is available

congestion window (CWND) space for packet transmission.

However, this simple scheduling policy has a performance degradation problem

due to bandwidth limitations caused by small receive windows when path asymmetry

exists, e.g., one path has a lower bandwidth than others. To solve this problem,

MPTCP has opportunistic retransmission and penalization mechanisms [53], which

reinject unacknowledged packets from a slow path over a fast subflow and decrease

CWND of the slow path.
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CHAPTER 2

CROSS-LAYER APPROACH TO DEAL WITH DYNAMIC
CONNECTIVITY IN MPTCP FOR MOBILE DEVICES

Wireless path characteristics change frequently in mobile environments, causing

challenges for MPTCP: For example, WiFi associated paths often become unavailable

as devices move, since WiFi provides intermittent connectivity due to the short signal

range and susceptibility to interference. To maximize the benefit of multiple paths, it

is necessary for MPTCP to not only utilize all available paths, but to determine path

availability and quality as quickly as possible. However, MPTCP currently is unable

to manage frequently broken/recovered paths, as it relies on the use of coarse-grained

timeouts. This results in unnecessary delays after a path recovers, since the sender

must wait until a successful retransmission occurs. This problem becomes more severe

the longer a path is broken, as TCP’s course-grained retransmission timeouts increase

exponentially.

The goal of this chapter is to develop mechanisms that efficiently manage paths

based on their connectivity status, in order to mitigate the delay of detecting and

using restored paths in MPTCP. To this end, we propose MPTCP-MA, which controls

path usage based on MAC-Layer information. MPTCP-MA exploits MAC-Layer

information to estimate path status, and suspends/releases a path based on this

estimation. By quickly detecting path failure and recovery, MPTCP-MA can avoid

unnecessary losses and utilize recovered paths more quickly. We then experimentally

evaluate an implementation of MPTCP-MA in a mobile environment.
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Figure 2.1. Simple Topology for MPTCP

2.1 Problem Motivation

In this Section we show how the problem of under-utilized paths is fundamental

based on the way TCP responds to loss. We describe the utilization problem using

both modeling and execution-driven simulation.

2.1.1 Under-utilization of Recovered Paths

In this subsection, we experimentally demonstrate the under-utilization problem

that exists when a subflow recovers in MPTCP. Our experimental platform consists

of the Common Open Research Emulator (CORE) [1] that allows us to control a

link connectivity status in emulated networks, where each node runs MPTCP Linux

kernel [63].

Consider the simple topology shown in Figure 2.1, where nodes 1 and 4 have

two interfaces each, and node 1 is transmitting data to node 4 through an MPTCP

connection. Assume that link (1, 3) is a link that frequently breaks. Denote node 1’s

interfaces as C1 and C2 and node 4’s interfaces as S1 and S2. In this case, MPTCP

establishes four subflows denoted C1 − S1, C1 − S2, C2 − S1, and C2 − S2. Two

subflows (C2−S1 and C2−S2) are affected by the status of link (1, 3). In the rest of

this capter, we use the following terminology for a subflow status: active - available

for transferring packets, and inactive - unusable for packet transmissions. Note that
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we consider a scenario where inactive subflows are still valid (i.e., the interfaces have

valid IP addresses) but become unusable, e.g., a weak WiFi association prevents

communication but does not trigger an IP address change via a NETDEV UP/DOWN

event.

Figure 2.2 shows the TCP data sequence numbers over time when link (1, 3)

breaks at time 30 and recovers at time 60. The contributions of subflows C1−S1 and

C1−S2 are obscured by those of other subflows even though packets are continuously

transmitted through them. As can be seen by the change in slope from time 30 to

time 75 in Figure 2.2, throughput is lower when subflows C2 − S1 and C2 − S2

are not used. We observe retransmissions based on exponential timeouts on the two

subflows associated with link (1, 3) (subflows C2−S1 and C2−S2) while it is broken.

Even though link (1, 3) recovers at time 60, the two subflows C2− S1 and C2− S2

are not used until their RTOs expire. Thus, MPTCP cannot utilize them for much

time even though the subflows are active.

This behavior is illustrated in Figure 2.3 and modeled by a simple two state

discrete time Markov chain where the state indicates the subflow status as active and

inactive. Assume that a packet transmission (data and ACK exchange) completes in

one unit time and a node can perfectly measure RTTs. Denote the probability that
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Figure 2.3. Timing Diagram of Retransmission

a subflow becomes inactive by λi and the probability that a subflow becomes active

by λa. The expected inactive and active durations after they start, E[Di] and E[Da],

can be calculated as:

E[Di] =

∞∑
k=1

k(1− λa)k−1λa =
1

λa

E[Da] =
1

λi

In this model we assume an RTT of one when a packet transmission is successful,

and the RTO value for the nth timeout to be 2n. Suppose that one RTO occurs at

the start of an inactive period. Then, the expected number of subsequent RTOs until

a subflow becomes active, E[N ], can be approximated as

E[N ] ≈ log2

1

2
(E[Di] + 1) = log2

1

2

(
1

λa
+ 1

)
.

The subflow can become active in the middle of an RTO. We approximate the

average remaining duration of this RTO, E[R], as

E[R] ≈
2E[N ]+1∑
k=0

(
2E[N ]+1 − k

)
(1− λa)2E[N ]+1−kλa,

=
1− λa − (2 + λa)(1− λa)

1
λa

+2

λa
.
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Thus, the fraction of unutilized active subflow period F , is approximated as

F ≈ min

(
E[R]

E[Da]
, 1.0

)
,

= min

(
λi(1− λa − (2 + λa)(1− λa)

1
λa

+2)

λa
, 1.0

)
.

Figure 2.4 presents F as a function of λi for different values of λa. As shown in

Figure 2.4, the active period is utilized less as it becomes shorter, i.e., larger λi. With

a particular expected length of active period, longer inactive period, i.e., smaller λa,

results in lower utilization of active period.
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We perform further experiments using CORE to estimate the fraction of the unuti-

lized active period as a function of the inactive duration. Assume that link (1, 3) in

Figure 2.1 is connected for 30 seconds and then breaks for a time of duration X,

after which it is again connected for another 30 seconds. While repeating this proce-

dure ten times, we investigate the fraction of time during which subflows (C2 − S1

and C2 − S2) are unutilized even though they are active, i.e., link (1, 3) becomes

connected.
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Figure 2.5 presents the fraction of unutilized active period averaged over the two

subflows C2 − S1 and C2 − S2 as a function of the inactive duration X. As shown

in the figure, the subflows associated with link (1, 3) are not utilized as fraction of

the inactive duration X increases: the case of a 30 sec disconnection is an exception

because link recovery time is close to a timeout expiration, compared to the case of

40 sec disconnection. We also observe that the experimental results accord closely to

predictions made by the model in spite of the many assumptions. Based on both the

experiments and the model, we see that a subflow is not efficiently utilized, as the

inactive duration becomes longer than the active duration, since it has to wait for the

next successful retransmission following a timeout.
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2.2 Path Management Approach

In this section, we describe our approach to solving the subflow under-utilization

problem when subflows are restored from an inactive status, by incorporating with

MAC-Layer awareness; the resulting protocol is MPTCP-MA. Using WiFi as an ex-

ample, MPTCP-MA includes a simple yet effective approach to estimate a subflow

status using MAC-Layer information and corresponding subflow management to sup-

port efficient use of active subflows.
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2.2.1 Motivation

The IEEE 802.11 standard defines receiver sensitivity, which is the minimum

signal strength for a receiver to be able to acceptably decode frames [66]. Receiver

sensitivity is governed by the underlying receiver noise floor, which is a measure of

interference from all noise sources and unwanted signals: as the noise floor increases,

receiver sensitivity increases. Since it is difficult to measure the actual noise floor at

a mobile device, we cannot determine the exact required receiver sensitivity.

To develop a method to determine the threshold of receiver sensitivity for estimat-

ing subflow status, we first investigate MAC-Layer behavior with MPTCP according

to WiFi signal strength. To this end, we perform a set of experiments in a static sce-

nario. After setting up an 802.11g access point at a fixed location, we locate a mobile

device at varying distances from the AP as a way to control signal strength. Since

signal strength fluctuates over time, we choose the location for each signal strength

range after measuring signal strength for one minute. Then, the mobile device uploads

a 30 MB file to the server five times at each location.

Figure 2.6 presents the average MPTCP throughput as a function of the measured

signal strength. As shown in Figure 2.6, MPTCP throughput over WiFi decreases

as WiFi signal strength becomes weaker: in particular, WiFi throughput is almost

zero when the signal strength falls below -71 dBm. We see that -71 dBm is the

receiver sensitivity which can be used as a signal strength threshold to determine

when a WiFi subflow becomes inactive. However, this threshold can vary due to

environmental factors such as underlying noise, thus, we need an adaptive method to

determine a proper estimate.

We investigated MAC-Layer frame transmission in the experiments and observe

that MPTCP still directs packets to WiFi even when the signal strength falls below -

71 dBm, but the MAC-Layer frequently fails to deliver them to the AP after multiple

frame transmission retries. Figure 2.7(a) shows the ratio of the number of MAC-
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Figure 2.7. MAC-Layer Behavior according to Signal Strength

Layer frame retransmissions to the number of transmissions versus signal strength.

Throughput decreases, and the MAC layer performs more retransmissions than trans-

missions, as the signal strength becomes weaker. In particular, WiFi throughput ap-

proaches zero when retransmission ratio is larger than one. This indicates that the

ratio of frame retransmissions can be used to to determine the WiFi signal strength

threshold for the subflow status estimation.

Rate adaptation is one of the basic functionalities in IEEE 802.11, which is de-

signed to cope with the variation of wireless channels by exploiting the multi-rate
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Definition

R(t) Measured PHY Data Rate at Unit Time t
Rmin Lowest PHY Data Rate
Ntx(t) Number of Frame Transmissions at Unit Time t
Nretx(t) Number of Frame Retransmissions at Unit Time t
S(t) Measured Signal Strength at Unit Time t
TI Signal Strength below which WiFi subflow is labeled inactive
TA Signal Strength above which WiFi subflow is labeled active
α Sensitivity Parameter
β Parameter to determine TA from TI
γ Polling Interval to estimate path quality

Table 2.1. Notations

capability provided by the 802.11 physical layer (PHY) [8]. Figure 2.7(b) presents

the average measured PHY data rate vs. WiFi signal strength. Note that the max-

imum data rate is 54 Mbps since we use an 802.11g AP for the experiments. As

shown in Figure 2.7(b), the WiFi PHY reduces the data rate as the signal strength

becomes weaker. Recall that the ratio of frame retransmissions in Figure 2.7(a) be-

comes greater than one when the WiFi signal strength is less than -71 dBm. This

means that the MAC layer experiences more retransmissions than transmissions, even

with a low PHY data rate, if the WiFi link has poor quality. In the following sub-

section, we present a method for estimating WiFi subflow status inspired by these

findings.

2.2.2 WiFi Subflow Status Inference

Here, we present our method for inferring the status of a subflow associated with

WiFi using available MAC-Layer information. The idea behind our method is that,

when a WiFi link becomes unavailable (i.e., the subflow using that WiFi is inactive),

the number of MAC-Layer frame retransmissions becomes larger than the number

of successful frame transmissions even at the lowest PHY data rate. We use this

information to explicitly notify MPTCP that a subflow is inactive. In contrast to
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Algorithm 1 WiFi Subflow Status Inference

For each WiFi subflow

for every γ ms do
if R(t) = R(t− 1) = Rmin then

if Nretx(t)−Nretx(t− 1) ≥ α(Ntx(t)−Ntx(t− 1)) then
TI = S(t)
TA = (1− β)TI /* TI is negative */

end if
end if
if S(t) ≤ TI then

Label WiFi subflow as Inactive
else if S(t) ≥ TA then

Label WiFi subflow as Active
end if

end for

previous approaches [29] which implement an explicit link failure notification (ELFN)

using a detection of routing failure, e.g., “host unreachable” response from an ICMP

message. Our approach locally infers subflow status without help from other nodes

such as routers. Notably, ELFN’s approach of relying on an ICMP “host unreachable”

message cannot work in our setting since the association of our device to the AP

remains valid and the AP, therefore, cannot reply with “host unreachable”.

Table 2.1 and Algorithm 1 present the notations and inference method, respec-

tively. The algorithm determines the status of a particular WiFi subflow using a

signal strength threshold TI determined from MAC-Layer information. TI is set to

the signal strength at which a mobile device experiences a frame retransmission ratio

larger than α, 0 < α < 1, with the lowest PHY data rate during a particular interval.

Our algorithm uses a second signal strength threshold, TA = (1− β)TI , 0 < β < 1,

for switching the inactive status of WiFi subflow to active. Once the subflow is

labeled inactive, it remains labeled as such until the signal strength rises above TA

even if it rises above TI . This adds some hysteresis to the system and prevents it

from switching states too frequently.
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We use this approach for both uplink and downlink. Both ACK and data packets

are counted at the MAC-Layer, thus, our algorithm can determine TI reflecting the

WiFi subflow status when sending ACKs. However, note that wireless link status is

often asymmetric due to several factors such as heterogenous hardware, interference

variation, and antenna diversity [46, 35]: for example, the uplink for ACKs can be

still be usable even when the downlink for data is not available. In addition, ACK

packets are more robust to wireless bit errors than data packets due to their smaller

size: packet error rate decreases as packet size decreases [79]. This can degrade the

accuracy of our algorithm. In Section 2.4, we will compare the performance of our

algorithm for the uplink and downlink cases.

2.2.3 Discussion about Status Estimation of 3G/LTE subflows

Our estimation approach in MPTCP-MA can be extended to support subflows

associated with other wireless interfaces, such as 3G/LTE. MPTCP-MA introduces

a subflow quality measure similar to routing metrics, such as ETX [13], in order

for MPTCP to manage subflow usage. Whereas routing-based approaches depend on

packet information exchanges designed for routing protocols, MPTCP-MA estimates a

subflow quality measure solely based on locally available information (namely, MAC-

Layer information). Therefore, the idea underlying our subflow status inference is

applicable to any kind of wireless network interface provided the required information

is available.

3G/LTE MAC-Layer also performs link-layer retransmissions based on an ARQ-

like scheme and changes PHY data rate using several modulation schemes [2, 9].

Current operating systems for mobile devices, such as iOS and Android, provide in-

formation about 3G/LTE signal strength. Thus, our estimation approach for 3G/LTE

interfaces can be implemented in MPTCP-MA by utilizing that information. How-

ever, in this chapter, we focus on the implementation and evaluation for WiFi, since
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3/4G network connectivity is widely available, while WiFi exhibits more intermittent

connectivity.

2.2.4 Handling WiFi Subflow according to Estimated Status

Since MPTCP in mobile devices can utilize multiple paths using WiFi and 3/4G

interfaces, an MPTCP connection can maintain an established state even when it

disables WiFi subflows. This enables MPTCP-MA to suspend an inactive WiFi

subflow similar to [23, 29] without losing a valid TCP connection. MPTCP-MA

deals with a WiFi subflow labeled inactive by placing it into backup mode, cancelling

its current retransmission timer, and moving in-flight packets to other subflows.

Note that existing approaches [23, 29] need to periodically probe a suspended TCP

flow in order to check the availability of the flow. For example, in [29], a sender sends

an unacknowledged packet with the lowest sequence number every two seconds to

probe the suspended flow and waits for a response. In contrast, MPTCP-MA enables

the subflow to transmit packets as soon as the local inference method decides that a

suspended subflow is active.

When MPTCP-MA decides that the status of subflow has changed (either inactive

or active), this decision needs to be communicated to the remote-side, particularly

when it is a sender. To inform the remote side of the state change, MPTCP-MA

introduces a new MPTCP option MP SST, which is similar to MP PRIO but triggers

the suspending/releasing procedure, such as moving in-flight packets. This is added

to a packet on a subflow through a 3G/LTE subflow. If one of the end hosts receives

an MP SST option from the other end host, it updates the state of the corresponding

subflow (associated with the WiFi interface on the receiver), suspending or releasing

the subflow, and moving in-flight packets to another path if necessary.
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2.3 Implementation of MPTCP-MA

2.3.1 MPTCP Porting onto Android Devices

We ported the Linux MPTCP Kernel onto Android running on a Samsung Galaxy

S3 for AT&T (SGH-I747) using a customized Jellybean 4.1.2 platform (CM10) with

a Kernel 3.0.2 [12]. In addition to porting to a specific kernel, the platform has been

modified to support the following features of MPTCP:

• First, we modified the Android connectivity manager to support simultaneous

use of multiple interfaces. In Android, the current interface is taken down if a

more preferred interface (e.g., WiFi) becomes available. We disabled this default

behavior, instead adding the connectivity to a set of available interfaces.

• Second, we have inserted a policy routing feature based on a source address to

the Android network daemon. The MPTCP kernel cannot appropriately use

available paths until the routing information based on source addresses is cor-

rectly configured. With the modified network daemon, the device automatically

sets up such required routing entries for MPTCP even in mobile scenarios where

routing information changes frequently.

2.3.2 MAC-Layer Awareness for MPTCP

First, we explain our implementation for adding WiFi MAC-Layer awareness to

MPTCP. To this end, we employ a Subflow Status Tracker (SST) that helps each

MPTCP subflow access MAC-Layer information such as measured signal strength

and number of MAC-Layer frame transmissions/retransmissions. Once MPTCP adds

a socket for a new subflow, SST is set up for the socket and registered into the

workqueue (mptcp_sst_wq) that is created when MPTCP-MA starts. The following

code describes the SST initialization step at the Kernel: SST for the added TCP

socket is initialized with the function mptcp_sst_worker in which SST functionalities

are implemented, and it is enqueued into the workqueue mptcp_sst_wq. Then, SST
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continues to monitor the MAC-Layer information of the WiFi interface every γ ms if

the socket is destined for a WiFi interface.

int mptcp_add_subflow(struct mptcp_cb *mpcb,

struct tcp_sock *tp, gfp_t flags) {

....

INIT_WORK(&tp->sst_work, mptcp_sst_worker);

if(mptcp_sst_wq)

queue_work(mptcp_sst_wq, &tp->sst_work);

....

}

To check if the destination of socket is a WiFi interface, SST first obtains the

destination entry of the socket by using sk_dst_get(). The structure variable for

destination entry (struct dst_entry) includes a pointer to the related network de-

vice (struct net_device *dev), which has a pointer to wireless device information

(struct wireless_dev *ieee80211_ptr). Thus, SST can identify whether a socket

is connected to a WiFi interface or not by checking if dev has a valid ieee80211_ptr.

SST retrieves the MAC-Layer information of the WiFi interface by a function in

struct cfg80211_ops of struct cfg80211_registered_device: After SST con-

verts the ieee80211_ptr to a struct cfg80211_registered_device variable (rdev),

it calls rdev->ops->get_station(), which is linked to a driver-specific function that

provides MAC-Layer information required for our inference method such as signal

strength and number of MAC-Layer transmission retries.

The following pseudo code encodes the procedure for obtaining MAC-Layer in-

formation from a socket sk. Note that the available MAC-Layer information varies

from driver to driver implementation. Since the WiFi interface driver of our de-

vice does not report the number of MAC-Layer transmissions and retransmissions

through get_station(), we modify the linked function in the driver implementation

to provide them.

23



struct dst_entry *dst = sk_dst_get(sk);

if(dst->dev->ieee80211_ptr) { /* destined to WiFi */

....

/* rdev is converted from dst->dev->ieee8011_ptr */

rdev->ops->get_station(info);

....

}

In case of other interfaces such as 3G/LTE, we can access their network statis-

tics by dev->netdev_ops->ndo_get_stats(), which provides the general (not WiFi-

specific) information such as the number of transmitted packets and the number of

transmission errors.

2.4 Evaluation

2.4.1 Experimental Setup

Our experimental setup consists of a wired server equipped with an Intel Quad

Core I7-3770 CPU and 32 GB of memory, a 802.11g WiFi access point, and a mobile

device (Samsung Galaxy S3 SGH-I747).

The Linux MPTCP kernel [63] including MPTCP-MA is ported to our mobile

device running a customized Jellybean 4.1.2 platform using a 3.0.2 kernel. The WiFi

driver implementation in the kernel is also modified to provide all the required MAC-

Layer information through function calls accessible to the TCP-Layer.

The server is connected through a single Gigabit Ethernet interface to our campus

network and runs Ubuntu Linux 12.04 with our MPTCP-MA implementation. The

mobile device is connected to the Internet using both 3G/LTE from AT&T and WiFi.

The default value of TI is set to -80 dBm since it is the reference receiver sensitivity

of IEEE 802.11 standard at an 1 Mbps data rate [32]. We set the frame retransmission

ratio threshold α to one, because our experiments in Section 2.2 show that there is

no WiFi throughput gain when the frame retransmission ratio is larger than one. We

set β = 1/16 to provide a sufficient margin for TA. The polling interval γ is set to
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300 ms, so that the MAC-Layer observes a sufficient number of packet transmission

trials (around 200 trials even at a 1 Mbps data rate). While these values work well in

practice, it is possible that better results could be achieved using optimized values.

Refining these values to improve performance remains as future work.

2.4.2 Mobile Scenario

To investigate the performance of MPTCP-MA in an actual mobile scenario, we

measure bandwidth and other metrics while moving along the route shown in Fig-

ure 2.8, with the mobile device either downloading from or uploading to our server.

The device is sometimes within WiFi communication range, and sometimes outside it,

depending on its location. To make our comparison between MPTCP and MPTCP-

MA as fair as possible, we use as similar routes as we can for the experiments. Using

this mobile scenario, comparison metrics are calculated by averaging over the results

from five experiments, where one experiment consists of three round trips along the

route.

Figure 2.8. Mobile Scenario inside our department building (Start from the blue
point. AP is located at the red point. The red dashed circle is the estimated usable
access range of AP)
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Interface Uplink Downlink
WiFi 48.07 (±15.63) 112.60 (±56.12)
LTE 182.83 (±8.53) 69.02 (±4.60)
3G 713.15 (±59.30) 175.24(±18.02)

Table 2.2. Round Trip Time (ms)

Table 2.2 lists the measured average RTTs of subflows in our traces through

each interface. Note that exceptionally large WiFi RTTs due to inactive periods are

excluded when calculating the average. Therefore, the table entities are averages when

subflows are available for transferring packets. We observe that the LTE connection

status is quite stable during our experiments, i.e., RTT variance is small. In contrast,

the WiFi connection exhibits RTTs with a larger standard deviation than LTE due to

mobility, even though we only consider RTTs during the active periods. In the case

of 3G, the average uplink RTT is much higher than WiFi and LTE, but the average

downlink RTT is comparable to WiFi’s.

2.4.3 Uplink Experiments

We first present results for the uplink scenario. In this case, since the mobile

device is the sender, MPTCP-MA determines the WiFi subflow status directly from

the WiFi interface. This allows us to determine how effectively MPTCP-MA works

with intermittent WiFi connectivity.

Figure 2.9 shows the average uplink throughput of each interface for both MPTCP

and MPTCP-MA. We observe that MPTCP-MA achieves higher aggregate through-

put than MPTCP. Upon closer examination, we see that the 3G/LTE component

of throughput is similar in both cases, as expected. In contrast, the average WiFi

throughput of MPTCP-MA increases over that of MPTCP by about 72% (with LTE)

and 78% (with 3G). This demonstrates that MPTCP-MA exploits the available WiFi

uplink bandwidth more effectively than MPTCP (Note that the gain obtained using

MPTCP-MA differs according to the mobile scenario: If the inactive period is short
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Figure 2.9. Average Uplink Throughput

enough not to trigger many timeouts, MPTCP might be able to obtain performance

similar to MPTCP-MA).

Figure 2.10 shows an experiment expressed as a time series where the two MPTCPs

use LTE with WiFi. The figure presents the WiFi throughput as a function of time

when each MPTCP uses the LTE interface together with WiFi, in blue, on the left

Y -axis. The figure also shows the WiFi signal strength, in red, on the right Y -axis.

Here, we select a sample trace for each MPTCP to illustrate the advantage of MPTCP-

MA. Experimental conditions such as WiFi channel status and route paths cannot

be exactly the same across experiments, however, the WiFi signal strength trace

shows that the experiments for both configurations exhibit similar signal strength. In

this experiment, the WiFi subflow is active during the interval (50, 100), (150, 200),

and (250, 300). We observe that MPTCP-MA quickly starts using the active WiFi

subflow.

Figure 2.11 shows CWND values for the WiFi subflow over time. As shown in

Figure 2.11, MPTCP-MA does not prevent all timeouts since it manages subflow usage

every γ ms (300 ms): when packets starts to be transmitted through the WiFi subflow,

CWND of MPTCP-MA increases from one as in MPTCP. However, MPTCP-MA

starts increasing CWND earlier than MPTCP by preventing unnecessary successive
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Figure 2.10. Uplink WiFi Throughput over Time when using WiFi and LTE

timeouts. In our experiments, the mobile device moves towards the AP once WiFi

becomes usable. We see that the MPTCP-MA CWND fluctuates until the signal

strength becomes sufficiently strong, while the MPTCP CWND increases without

oscillation since MPTCP tries to use the WiFi subflow only after the mobile device is

close enough to the AP, missing part of the period where the WiFi subflow is active.

We also see the benefit of MPTCP-MA from the RTTs of packets transferred

through WiFi subflow. Figure 2.12 presents measured RTTs when a packet is ac-

knowledged through the WiFi subflow in the trace shown in Figure 2.10. As shown in

Figure 2.12, packets transmitted right before the WiFi breaks experience RTTs almost

equal to the length of inactive period, e.g., at around time 50, a packet is acknowl-

edged with a measured RTT of around 40 seconds, which is similar to the length of the

inactive period (10, 50). Note that the MPTCP subflow scheduler chooses a subflow
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Figure 2.11. Uplink WiFi Subflow CWND over Time using WiFi and LTE
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Figure 2.12. Uplink RTTs through WiFi subflow when using WiFi and LTE

for packet transmission that is not in backup mode, has a sufficiently large CWND,

and has the smallest RTT [63]. By suspending an unusable subflow, MPTCP-MA

avoids over-estimating RTTs of the subflow, quickly converging to an estimated RTT

close to the real value of the subflow after it recovers. In our case, an intermittently

active subflow is a WiFi subflow that has a smaller average uplink RTT (48.07 ms)

than LTE (182.83 ms). Therefore, the default subflow scheduler is more likely to

select an active WiFi subflow to transfer packets, that is, MPTCP-MA can more

aggressively utilize an active WiFi subflow than MPTCP.

Next, we examine the timeout behavior of each type of MPTCP, which can affect

the performance when a WiFi subflow becomes active. Table 2.3 presents the average

number of timeouts and average peak RTO values. We observe that MPTCP-MA
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Avg. # of Timeouts Avg. Peak RTO (ms)
with LTE with 3G with LTE with 3G

MPTCP
49.2

(±10.5)
34.6

(±6.0)
1982.0

(±912.9)
2772.9

(±803.0)

MPTCP-MA
40.0

(±4.4)
33.2

(±4.7)
180.3

(±30.3)
210.1

(±44.0)

Table 2.3. WiFi Uplink TCP-Layer Timeout Behavior

exhibits slightly fewer timeouts than MPTCP regardless of which cellular technology

is used. However, the average peak RTO value of MPTCP-MA is much smaller than

that of MPTCP. We see that MPTCP-MA successfully avoids continuous timeouts

during periods when the WiFi subflow is inactive. This result explains why MPTCP-

MA obtains better WiFi throughput than MPTCP in Figure 2.9: MPTCP is likely

to wait for a long time to achieve a successful retransmission and start utilizing an

active WiFi subflow, whereas MPTCP-MA utilizes it much more quickly.

Figure 2.13 presents the cumulative distribution function (CDF) of RTO values for

the WiFi subflow with the two types of MPTCP. As expected from Table 2.3, MPTCP

exhibits large RTO values sometimes exceeding five seconds while MPTCP-MA ex-

hibits RTO values always less than two seconds. Again, this is because MPTCP-MA

halts retransmissions once it decides that a WiFi subflow becomes inactive. Therefore,

we expect MPTCP-MA to obtain a successful retransmission earlier than MPTCP,

even when MPTCP-MA suffers a timeout while it starts packet transmissions in the

middle of path recovery.

2.4.4 Downlink Experiments

Next, we compare MPTCP and MPTCP-MA when the mobile device moves while

downloading a file from the server. Since the interface of the sender (the server)

is a wired Ethernet interface, MPTCP-MA cannot estimate the status of a WiFi

subflow at the sender-side; only the receiver can locally estimate its WiFi subflow
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Figure 2.13. CDF of RTO values for WiFi subflow (Uplink)
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Figure 2.14. Average Downlink Throughput

status. Based on the status of the WiFi subflow indicated by the MP SST option,

the MPTCP-MA sender can control its behavior, while the MPTCP sender cannot.

Figure 2.14 presents the average downlink throughput of each interface for both

MPTCP protocols using WiFi/LTE and WiFi/3G. We observe that MPTCP-MA

yields better performance than MPTCP, achieving higher throughputs through both

interfaces. As illustrated in Figure 2.14, the average MPTCP-MA WiFi throughput

increases about 62% (with LTE) and 57% (with 3G) relative to MPTCP. This indi-

cates that MPTCP-MA can utilize active WiFi subflows more quickly than MPTCP,

even in the case of a downlink. The WiFi throughput improvement in the downlink

scenario is smaller than that shown in the uplink experiments, but note two distinct
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Figure 2.15. Downlink WiFi Throughput over Time when using WiFi and LTE

differences. First, LTE download bandwidth is greater than 10 Mbps rather than

around 4 Mbps in the uplink scenario. Second, a delay to notify the other end of the

MPTCP connection is in this case roughly 69 ms over the LTE connection and 175

ms over the 3G connection. Despite these disadvantages, we still see improvement

with MPTCP-MA.

Figure 2.15 shows the WiFi downlink throughput of each MPTCP using WiFi and

LTE from selected traces as a function of time. Similar to the uplink experiments,

MPTCP-MA more effectively uses the active period of the WiFi subflow. In partic-

ular, MPTCP-MA efficiently utilizes the second and fourth available periods while

MPTCP loses part of these periods. We also observe that the behavior of CWND

and RTT supports the gain of MPTCP-MA consistent with Figures 2.11 and 2.12;

however, we omit those figures due to space limitations.
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Avg. # of Timeouts Avg. Peak RTO (ms)
with LTE with 3G with LTE with 3G

MPTCP
13.6

(±7.8)
11.8

(±5.2)
10295.6

(±5580.0)
6889.5

(±1723.9)

MPTCP-MA
3.8

(±1.3)
4.8

(±1.7)
2482.2

(±1549.6)
5441.0

(±3353.7)

Table 2.4. WiFi Downlink TCP-Layer Timeout Behavior

Table 2.4 shows the average number of timeouts and average peak RTO values

in the downlink experiments. Both versions of MPTCP suffer smaller numbers of

timeouts, compared to the uplink experiments, because of the greater robustness of

ACK packets to channel errors compared with data packets. In other words, since

such robustness often allows a sender to successfully receive three duplicate ACKs

while data packets are lost due to WiFi channel errors, the sender can invoke the

fast recovery algorithm instead of waiting for the expiration of an RTO. However,

when comparing MPTCP-MA with MPTCP, we observe that MPTCP-MA reduces

the average number of timeouts by around 72%.

Even with the smaller numbers of timeouts, both types of MPTCP have a larger

average peak RTO value in the downlink experiments than in the uplink experiments.

This is because under both types of MPTCP, the sender often continues to transmit

packets through an inactive subflow due to ACK robustness. Such transmitted packets

result in significantly larger estimated RTTs, which affect the RTO values. In par-

ticular, MPTCP-MA using WiFi and 3G exhibits a much higher average peak RTO

than MPTCP-MA using WiFi and LTE. That is, the larger RTT of a 3G connection

can cause a more delayed suspension of a WiFi subflow than with LTE, resulting in

a larger RTO value. However, MPTCP-MA still yields a smaller average peak RTO

value than MPTCP.

Figure 2.16 presents the cumulative distribution function of RTO values for the

WiFi subflow. When coupled with LTE, the RTO values of MPTCP-MA range up
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Figure 2.16. CDF of RTO values for WiFi subflow (Downlink)

to five seconds, whereas those of MPTCP go up to a considerably larger 30 seconds.

This is consistent with the uplink results. However, MPTCP-MA using WiFi coupled

with 3G also yields large RTO values (≥10 seconds) due to its notification delay:

the receiver sends MP SST to notify path status. We can expect that MPTCP will

lose a fraction of the active period of the WiFi subflow while waiting for a successful

transmission after such a large RTO expires. Recall that MPTCP-MA releases the

backup mode of a subflow immediately after the subflow is labeled active and then

starts transmitting packets without waiting for an RTO expiration. Therefore, these

large RTO values cannot affect the performance of MPTCP-MA unless packets trans-

mitted after releasing the backup mode are lost. However, in Figure 2.14, we already

see that MPTCP-MA successfully obtains the gain from using the WiFi subflow in

spite of this large RTO values by releasing the backup mode of the subflow when the

subflow really is active, and thus avoids timeouts.
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2.5 Related Work

Although MPTCP is being standardized by the IETF, there is no previous work

considering an efficient MPTCP subflow management based on MAC-Layer informa-

tion.

Goff et al. [23] propose Freeze-TCP to enhance TCP throughput in the presence

of frequent disconnections and reconnections. Freeze-TCP assumes that a receiver

can predict a temporary disconnection: the authors’ example continuously monitors

the received signal strength at the receiver-side. Once a disconnection is predicted,

the receiver sends an ACK with an advertised window size of zero in order for the

sender to freeze the TCP connection and start probing. However, the authors do not

clarify how to predict such a temporal disconnection. Also, with a poor wireless link,

a single-path TCP connection may have difficulty delivering control packets back to

the sender.

Klemm et al. [38] propose mechanisms based on signal strength measurements to

improve TCP performance in mobile ad-hoc networks. To alleviate packet losses due

to mobility, their approach temporarily applies higher transmission power if the signal

strength measurement indicates that a node is likely to move out of communication

range.

Li et al. [40] suggest Link Signal Strength Agent Protocol (LSSA) to report mea-

sured signal strength to the TCP layer in mobile ad-hoc networks. However, it re-

quires additional control packet exchanges which can fail when a single-path TCP

connection is unreliable.

Shin et al. [70] propose a loss recovery scheme to differentiate between congestion

loss and wireless loss using the MAC Management Information Base (MIB). In their

scheme, a particular TCP packet is regarded as lost by wireless error if the number of

frame transmission failures increases right after the packet is transmitted. However,

it is difficult to identify which TCP connection is associated with a specific packet
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loss, since the MIB counters are across all packets and do not distinguish losses by

connection.

Passach et al. [52] study the impact of mobile/WiFi handover performance with

MPTCP. The authors investigated using different modes such as Full-MPTCP mode

(where all potential subflows are used) and Backup mode (where only a subset of sub-

flows are used to transmit packets). However, they do not explore how to quickly uti-

lize all available paths and manage them when path connectivity frequently changes.

Raiciu et al. [62] also study mobility with MPTCP. They examined a mobile

MPTCP architecture consisting of a mobile host, an optional MPTCP proxy, and a

remote host. While they show that MPTCP outperforms standard TCP in a mobile

scenario, they do not examine the under-utilization problem of recovered subflows.

2.6 Conclusions

In this chapter, we presented a method to improve MPTCP performance in the

presence of intermittent path connectivity. We proposed an MPTCP variant, called

MPTCP-MA, which manages subflows based on the status estimation using MAC-

Layer information. After implementing MPTCP-MA in Linux on a desktop PC and

on a mobile device, we performed experiments in an actual mobile scenario. Our

experimental results show that MPTCP-MA is able to more quickly use active WiFi

subflows than MPTCP, and thus can achieve significantly better performance.
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CHAPTER 3

MODELLING MPTCP ENERGY CONSUMPTION
BEHAVIOR FOR MOBILE DEVICES

Applying MPTCP to mobile devices introduces a new concern, namely, the addi-

tional energy consumption for operating multiple network interfaces. Mobile devices

are frequently constrained by the amount of power available in their batteries. Pro-

cessing power continues to grow exponentially, but battery storage increases slowly by

comparison. Thus, power consumption management is an important area of research,

particularly in mobile devices such as smartphones. In order to utilize MPTCP on

mobile devices with limited energy resources, it is important to understand the power

consumption behavior of MPTCP.

In this chapter, we examine MPTCP energy consumption behavior via a combina-

tion of measurement, modeling, and experimentation. We measure power consump-

tion across a range of scenarios, varying download/upload size and available path

bandwidth. We develop an energy model for MPTCP power consumption based on

experimental measurements taken using MPTCP on a mobile device based on these

measurements.

3.1 Background

3.1.1 Energy in Mobile and Wireless

Due to limited battery life of mobile devices, understanding and reducing en-

ergy consumption in mobiles has been an active area of research. Researchers have

observed high power overheads in cellular networking [3, 30], which contributes to
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cellular interfaces being less energy-efficient than WiFi interfaces [30]. Other stud-

ies have discovered that more energy is consumed when the signal is weak [17, 69],

and that multiple access points can cause extra power loss [47]. Researchers have

examined WiFi in particular, reducing power consumption via rate adaptation [41],

sleeping short periods [34], using fewer antennas [25], and lowering the clock rate

[44]. A recent body of work [45, 56, 55, 60, 74] contributes tools and methodologies

to measure power consumption on smartphones so as to identify sources of energy

drain.

3.1.2 Cellular Promotion and Tail

Multiple works have identified and addressed the power overheads in cellular in-

terfaces, often referred to as the promotion and the tail [3, 30]. The 3rd Generation

Partnership Project (3GPP) standard defines a state machine for cellular interfaces,

and describes the possible power states of each device connected to the network. Idle

interfaces typically remain in a low-power state to save energy. Before a packet can

be sent or received, an idle interface must switch from a low power state to a high

power one, which takes additional time; this is referred to as the promotion. After

a transmission is complete, however, a cellular interface does not immediately return

to the lower power state. Instead, ostensibly to save energy, the interface remains in

a high power state for a period of time. If there is no further packet transmission

during that period, the interface then returns to the low power state. This period is

referred to as the tail, and can last 6–12 seconds depending on the provider. Given its

length, the tail contributes a significant portion of the energy cost for transmission,

especially for short transfers. We refer to these as fixed energy overheads. Our mobile

devices incur these overheads, as shown in Figure 3.1. Device specifications are given

in Table 3.1.
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Figure 3.1. Fixed Energy Cost: WiFi and Cellular

Name Samsung Galaxy S3 LG Nexus 5
Release Date May 2012 Nov 2013
App. Processor Qualcomm MSM8960 Qualcomm 8974-AA
Semiconductor 28nm LP 28nm HPM
Android Version 4.1.2 (Jelly Bean) 4.4.4 (KitKat)
Kernel Version 3.0.48 3.4.0
WiFi chipset Broadcom BCM4334 Broadcom BCM4339

Table 3.1. Mobile Devices

3.2 Measurement Setup

We explore energy models for two mobile devices, the Samsung Galaxy S3 and

the LG Nexus 5, listed in Table 3.1. All our measurements are based on an MPTCP

implementation that was ported from Linux to Android [15, 42].

To measure the energy consumption of the mobile devices, we collect the voltage

(VS) and current (IS) supplied to each device. Our measurements depend on the level

of support available on the phone. The Nexus 5, a more recent phone, provides on-

board chip voltage and current measurements which we can use directly. The Galaxy

S3, which is 18 months older, does not provide such support. For the Galaxy S3,

we built an electric circuit with an externally mounted battery and a high precision

resistor (R = 0.05Ω) between the battery and the mobile device. We use a National

Instruments Data Acquisition system (DAQ), with a sampling rate of 100K samples/s,
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in order to measure VS and the voltage drop across the resistor, VR; IS then is given

by IS = VR/R.

We collect energy consumption of uploads and downloads of files with sizes varying

from 16 KB to 16 MB, with ten iterations per transfer. In these experiments, we

force the mobile device CPU to remain in performance mode so as to avoid energy

consumption changes due to the CPU switching power modes. We also set the display

brightness of the mobile device to a fixed level. We compute energy consumption

solely for packet transfer by subtracting baseline energy consumption (without packet

transfer) from the measurements.

3.3 Single-Path Energy Model

We use a standard regression-based energy model [3, 30] to model single-interface

energy consumption during data transfer. Energy consumption per transferred byte is

represented as a function of the observed TCP throughput, with different parameters

for uploads and downloads. We denote this regression model as the base regression

model. Given a download throughput over an interface of B (Mbps), the fitted value

of the energy consumption for downloading each byte, P (µJ/B), is

P (B) = α×Bβ,

where α and β are device dependent. We include the consumed energy for sending or

receiving an ACK as part of the overall energy consumption for receiving or sending

data packets.

Table 3.2 shows the α and β values for our two devices, for both uploads and

downloads, using WiFi, HSPDA (3G), and LTE (4G), on the AT&T cellular network.

Note that we place the devices so that they observe good signal strength, ≥ -95 dBm

for 3G and ≥ -105 dBm for LTE, and ≥ -45 dBm for WiFi with no contention. We
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HSDPA LTE WiFi

Galaxy S3 αd 9.344 10.043 4.675
Download βd -0.929 -0.891 -0.818

Galaxy S3 αu 12.529 13.344 3.614
Upload βu -0.852 -0.836 -0.662

Nexus 5 αd 5.398 4.679 1.789
Download βd -0.554 -0.851 -0.542

Nexus 5 αu 11.454 7.683 2.642
Upload βu -0.375 -0.712 -0.646

Table 3.2. Single-Path Regression Coefficients
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Figure 3.2. Single-Path TCP Per-Byte Energy Consumption: LTE on AT&T

observe that the regression model P = α×Bβ yields estimates of P close to the actual

measured values as a function of B, the available throughput. An example showing

the fit is given in Figure 3.2, for downloads over LTE.

We observe that the Nexus 5 exhibits notably lower per byte energy consumption

for both 3G and LTE than does the Galaxy S3, presumably because of the newer

technology as described earlier. In contrast, the per-byte energy consumption of WiFi

does not significantly differ between the devices. This is because, as shown in Table

3.1, the 3G/LTE radio is integrated in the devices’ system-on-chips manufactured

using different semiconductor technologies. The devices’ WiFi uses similar chipsets,

which may explain why they exhibit similar energy consumption behavior.
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Since recent phones supply detailed power information, we do not believe gener-

ating this model is a significant problem. Researchers have even proposed automated

methods for deriving this information [77, 80], which unfortunately were not avail-

able to us when we conducted this study. Recent versions of Android also contain

a power profile.xml file provided by the manufacturer that specifies this information

explicitly.

3.3.1 Effect of WiFi Channel Condition

Network interfaces consume larger amounts of energy to transfer packets as signal

strength decreases, due to MAC or TCP layer retransmissions [17, 69, 73]. A network

interface also dynamically changes its physical layer bit rate or transmit power ac-

cording to the channel status, which can yield different energy consumption behavior.

In the following subsections, we examine energy consumption under different channel

conditions, such as different signal strength and contention levels.

First, we investigate energy consumption per transferred byte as a function of

throughput controlled by different WiFi signal strength and contention level. We

vary WiFi signal strength by locating the mobile device (the Galaxy S3) at differ-

ent distances from the AP and we introduce different level of contention by using

N = 0, ..., 3 nodes generating UDP traffic, which contend for the same WiFi chan-

nel as the mobile device. Figure 3.3 presents the measured energy consumption per

transferred byte as a function of obtained TCP throughput according to different

signal strengths and numbers of contending nodes: smaller signal strength and more

contending nodes results in lower throughput. Note that Figure 3.3 shows the results

of selected throughput range ([4, 8] Mbps for downloads and [2, 4] Mbps for uploads).

The solid red line is the regression result that we obtained for the Galaxy S3 in the

previous section. The dashed lines are the corresponding results with throughputs

controlled by signal strength or contention level.
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In the case of downloads, we observe that the device consumes slightly more

energy per transferred byte with weaker signal strength (see the red solid and green

dashed line in Figure 3.3(a)) whereas the level of contention does not affect per-byte

energy consumption (compare the red solid and blue dashed line in Figure 3.3(a)).

We conjecture that this is because the device reactively consumes energy for receiving

packets. In other words, when signal strength is low, the 802.11 MAC layer at the

AP tries to retransmit frames until successfully delivered, i.e., the device continues

to spend energy for receiving frames even though it cannot decodes them due to

weak signal strength. In addition, since weak signal strength can result in ACK

delivery failures from the device to the AP, the device can consume energy to receive

unnecessary frames that it has already acknowledged. In contrast, in the presence of

large contention in the WiFi channel, the AP defers frame transmissions until it finds

an empty time slot using the 802.11 backoff algorithm [66]. In other words, the device

does not consume energy for receiving while the AP is doing the backoff procedure.
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In the case of uploads, both weak signal strength and large channel contention

increases energy consumption per transferred byte. This may be because the device

proactively operates its interface as a sender; as opposed to the download case, the

device continues to consume energy in order to retransmit frames or scan the WiFi

channel.

3.3.2 Effect of Cellular Channel Conditions

We also investigate the effect of cellular (LTE) channel conditions on energy con-

sumption per transferred byte. Since we cannot control signal strength and contention

levels in the LTE channel, we conduct experiments at two locations with different LTE

signal strengths. We also examine the effect of the choice of cellular carriers on per-

byte energy consumption. To this end, we locate the mobile device, a Nexus 5, which

supports both AT&T and T-Mobile LTE, at two locations: LTE signal strength is

stronger at one place than at the other (≥-105 dBm vs. ≥-112 dBm), denoted as

strong and weak signal strength.
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Figure 3.4 presents the measured energy consumption per transferred byte as a

function of TCP throughputs (in the selected range of [2, 8] Mbps) under the different

LTE signal strengths and carriers. Different TCP throughputs are obtained by using

different file sizes. As shown in Figure 3.4, signal strength is a more important factor

than the carrier, and its effect is more significant for uploads than for downloads

(compare the green and blue dashed line in Figure 3.4 (a) and (b)). When signal

strength is high, both carriers yield almost the same energy consumption behavior for

downloads (see the red solid and blue dashed line in Figure 3.4(a)), while for uploads

T-Mobile exhibit lower energy consumption than AT&T. Note that the strong signal

strength is not defined exactly the same for each carrier, since we do not have fine-

grained control on the LTE signal strength: the strong signal strength for T-Mobile

(around -98 dBm) is higher than that for AT&T (around -105 dBm). Comparing

different signal strengths of T-Mobile, we observe that the weak LTE signal strength

yields slightly higher energy consumption per transferred byte for downloads whereas

it notably increases per-byte energy consumption for uploads. This is because LTE

networks have uplink transmit power control according to channel status such as

path loss and signal fading: the transmit power at the device is set based on the

signal strength or feedback from cell towers. Thus, the device is likely to increase

its uplink transmit power as the LTE signal strength from the cell towers becomes

weaker [71]. Since the device only sends TCP ACK packets when downloading a file,

energy consumption per transferred byte does not increase significantly. However,

in the case of uploads, such a larger transmit power results in significant increase

of per-byte energy consumption since the device transmits data packets, which are

larger than ACK packets.
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3.4 Multi-Path Energy Model

A simple estimate of MPTCP energy consumption would be to sum the energy

consumed by each interface over the transferred data. However, we observe that the

actual measured MPTCP energy consumption is less than this estimate in devices

such as the Galaxy S3, possibly due to the energy consumption for shared components

while operating multiple network interfaces such as CPU. To account for such shared

energy consumption, we assume that a device consumes a fraction γ of the sum during

the overlapped period for packet transfer. In the case of the fixed energy overhead

for promotion and tail, we assume that the overhead is separately consumed for each

interface.

Let BC and BW denote the throughputs of 3G/LTE and WiFi, respectively. Sup-

pose that S is the size of the transfer and SW and SC are the number of bytes

transferred through WiFi and 3G/LTE, respectively; S = SW +SC . Let θ denote the

proportion of the duration of the transfer when both interfaces are simultaneously

active. Given SW and SC , we approximate θ as

θ =
min (SW/BW , SC/BC)

max (SW/BW , SC/BC)
.

Based on this approximation, we estimate the MPTCP energy consumption during

packet transfer, ET , as

ET = (PW (BW )× SW + PC(BC)× SC) (1− θ + γθ) ,

where BW and BC are the available throughputs over WiFi and 3G/LTE and SW and

SC are the transferred bytes over WiFi and 3G/LTE, respectively. The total MPTCP

energy consumption, including the energy overheads associated with the promotion

and tail states of each interface, is then represented as

EM = ET + CW + CC ,
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where CW and CC are the fixed energy overheads for the promotion and tail states

of the WiFi and 3G/LTE interfaces, respectively.

3.4.1 Determining γ

To determine γ, the fraction of shared energy consumption, we perform a set of

experiments to measure MPTCP energy consumption while a device downloads or

uploads files of various sizes using MPTCP with WiFi and LTE. We choose γ to

minimize the mean square error between measured and estimated1 values. Figure

3.5 shows the mean square error of energy consumption as a function of γ when the

Galaxy S3 and the Nexus 4 use MPTCP with WiFi and 3G(Nexus 4)/LTE(Galaxy

S3). In the case of the Galaxy S3, the mean square error is minimized when γ is equal

to 0.8586. In other words, approximately 15% of energy appears to be consumed by

shared components when MPTCP is simultaneously operating over both interfaces.

One example of shared energy consumption might be CPU cycles used to process

MPTCP instructions. The S3 uses a Qualcomm Snapdragon processor [67, 75] with

3G/LTE integrated on the chip, thus, it seems likely that they share some energy

while operating.

The Nexus 5, on the other hand, has a γ of one, namely there is no shared portion

of energy consumption. The two devices use different chipsets and generations of

technology, thus γ is specific to a device.

3.5 Model Validation

To validate our MPTCP energy model, we compare measured MPTCP energy

consumptions with model estimates. We use the Galaxy S3 and Nexus 5 in this

validation, focusing on the case where MPTCP simultaneously uses the WiFi and

LTE interfaces.

1We use the base regression results obtained in §3.3
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Figure 3.6. Total Energy Consumption according to File Size (Galaxy S3)

Figure 3.6 shows the total download energy consumption vs. file size (averaged

over ten iterations) for three configurations: TCP over WiFi alone, TCP over LTE

alone, and MPTCP utilizing both interfaces (We only include download results with

selected file sizes using Galaxy S3 for AT&T; other experiments show similar behav-

ior). Figure 3.6 also shows the energy consumption predicted by our model. We

observe that our model accurately estimates the energy consumption of MPTCP: the

root mean square errors normalized by the average measured energy consumption are

less than 17% as shown in Figure 3.7.
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We also observe that MPTCP is less energy efficient than single-path TCP over

WiFi as the file size decreases. This is because of the fixed costs associated with

the promotion and tail state of LTE: when the file size is small, the device spends

energy to establish an LTE subflow, even though it rarely transmits packets over LTE.

MPTCP does not even utilize an LTE subflow until the transfer size becomes larger

than 512 KB. This is due to the relatively large RTT (about 65 ms for downloads and

95 ms for uploads) over the LTE path; setting up a subflow over LTE takes longer

than over WiFi, which has much lower RTT (about 15 ms). The larger RTT also

means it takes longer for the congestion window of the LTE subflow to increase in

size [7]. Thus, a small file (< 512 KB) transmission completes in a short time and

consumes a relatively small amount of energy for packet transfer compared to the

fixed overhead. Consequently, MPTCP yields similar energy consumption to TCP

over LTE when a file is smaller than 512 KB, which is significantly larger than that of

TCP over WiFi, even though it allocates almost of all the traffic to the WiFi interface.

We see that in the case of small file transmissions, MPTCP wastes power, whereas

TCP over WiFi is much more efficient.
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3.6 Related Work

Balasubramanian et al. [3] measure energy consumption on a Nokia N95 platform

and identify high energy overhead as the result of the tail state in 3GPP interfaces

(GSM, 3G). They develop a protocol called tailender to schedule transfers so as to

minimize energy consumed by the tail.

Halperin et al. [25] examine the relationships between power consumption and

channel width, number of attennas, and spatial streams in 802.11n.

Caroll and Heiser [5] provide an analysis of power consumption in smartphones,

measuring component power costs across a variety of workloads. They perform a

more recent study [6] for the same smartphone that we use, the Samsung Galaxy S3.

Schulman et al. [69] show that the power consumed by wireless radios is higher

when the signal is week. They present Bartendr, a system for scheduling transmissions

when the signal is strong so as to minimize power consumption. Ding et al. [17] provide

a more in-depth analysis of the impact of signal strength.

McCullough et al. [48] examine the accuracy of several linear-regression based

power models for a Nehalem-based server. They present some improvements in mod-

eling and show how multiple cores complicate energy modelling.

Garcia-Saavedra et al. [22] show that a substantial fraction of energy consumed

on 802.11 devices is proportional to the transitions across the I/O bus, rather than

per-packet or per-byte. This suggests optimizations (e.g., TCP segmentation offload)

that amortize these costs may have power savings in addition to CPU savings.

Huang et al. [30] provide an in-depth look at power and performance characteris-

tics of 4G LTE networks based on a large-scale measurement of a commercial cellular

provider. They show that while LTE is more energy-efficient than 3G, it is still not

as efficient as WiFi, partially due to the tail state cost in LTE.

Raiciu et al. [62] look at a number of issues in using MPTCP for mobility, including

power consumption. They propose and evaluate a simple strategy that periodically
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samples both paths for 10 seconds and then uses the more energy-efficient path for 100

seconds. Evaluating their strategy via simulation, the approach is more power efficient

than an energy-unaware MPTCP implementation, but achieves lower bandwidth.

Paasch et al. [52] study mobile/WiFi handover performance with MPTCP. They

also measure energy consumption on a Nokia N950 smartphone for two download

scenarios and find that using WiFi alone is more energy-efficient than base MPTCP.

3.7 Conclusion

In this chapter, we presented a through analysis on energy consumption behav-

ior of MPTCP. We conducted energy consumption measurements varying available

bandwidth, wireless channel condition such as signal strength and contention. Based

on these measurements, we built a regression model for MPTCP energy consumption

behavior. Our experimental results show that the model accurately estimates the

energy consumption of MPTCP with normalized root mean square errors less than

17%
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CHAPTER 4

IMPROVING ENERGY EFFICIENCY OF MPTCP FOR
MOBILE DEVICES

In many environments, MPTCP does not reduce power consumption compared

to single-path TCP. This is because MPTCP does not consider the per-byte energy

efficiency of a network path, which depends on several factors, including available

bandwidth and the interface type. It also ignores the high fixed energy costs of

activating cellular interfaces, known as the promotion and tail costs [3].

In this chapter, we shed light on the energy behavior of MPTCP on smartphones.

We seek to address the following questions: 1) Are there environments or scenarios

where MPTCP is more energy efficient than single-path TCP? 2) If so, how can

we recognize them and take advantage of them? Can we improve MPTCP’s energy

efficiency?

Based on the MPTCP model in Chapter 3, we determine conditions under which

MPTCP is more energy-efficient than either standard TCP or MPTCP. Informed

by this finding, we design and implement an energy-aware eMPTCP which we have

implemented on an Android platform, the Samsung Galaxy S3. Previous approaches

in this area have either been based on simulation [58] or have looked at much more

restricted operating environments [4, 52, 62]. eMPTCP operates on implemented on

the phone and requires no offloaded computation at run time in contrast to [58]. In

addition, none of the above attempt to reduce cellular fixed overheads. Ours is the

first broad evaluation of an implemented, deployable energy-aware MPTCP.
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4.1 Energy Aware MPTCP

4.1.1 Overview

eMPTCP’s goal is to reduce energy consumption compared to MPTCP, while

minimizing additional delay. It does so by dynamically choosing paths based on

estimated energy efficiency. It also tries to avoid unnecessary cellular fixed costs by

delaying subflow establishment over cellular interfaces, unless it believes it is more

energy efficient to do so.

To this end, eMPTCP requires an energy model that captures power consump-

tion according to network interface usage. There is a large body of literature that

considers mobile devices’ energy consumption based on bandwidth, signal strength,

simultaneous use of interfaces, and so on [3, 17, 30, 42, 49]. We utilize our parame-

terized energy model described in Chapter 3 to generate the required information for

eMPTCP.

Figure 4.1 presents the architecture of the eMPTCP implementation. Four core

components are added to the regular MPTCP at the transport layer: The bandwidth

predictor (§4.1.2) monitors bandwidths over all active subflows and predicts future

bandwidths. The energy information base (§4.1.3) holds the transition thresholds, in-

dexed by bandwidth, for selecting which interfaces to use. The path usage controller

(§4.1.4) makes decisions about which subflows to utilize, based on information re-

trieved from the bandwidth predictor and the energy information base. The delayed

subflow (§4.1.5) module manages subflow establishment requests and delays them

when necessary, based on information from the other two components. We describe

each component in turn.

4.1.2 Bandwidth Predictor

The bandwidth predictor samples all active subflow throughputs and predicts

their future values. By querying the routing information at the Internet layer, the
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Figure 4.1. eMPTCP Architecture

bandwidth predictor identifies the interfaces associated with active subflows and cat-

egorizes predictions per interface. Each subflow is sampled periodically with a sam-

pling interval δ, which is based on the subflow’s measured round-trip time (RTT)

during subflow establishment, i.e., the elapsed time for the TCP three way hand-

shake. Throughput predictions are made using a Holt-Winters time-series forecasting

algorithm [65], which is known to be more accurate than formula-based predictors

[28].

If an interface is inactive, the bandwidth predictor will not have any current

throughput information about that interface. This can occur for two reasons: because

the interface was activated but is now deactivated, or because it has never been

activated. If the interface was deactivated, the bandwidth predictor uses old observed

samples together with new sampled throughputs. If the interface has never been
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Figure 4.2. Energy Efficiency per Downloaded Byte (Samsung Galaxy S3)

activated, the predictor assumes non-zero throughput (e.g., 5 Mbps) as an initial

bandwidth for the interface to allow eMPTCP to probe the path through the interface.

4.1.3 Energy Information Base

The Energy Information Base (EIB) contains the data required for eMPTCP to

decide which interface(s) to use to maximize energy efficiency. Since we cannot predict

the amount of data remaining to be transferred, eMPTCP assumes a large transfer

and defines efficiency in terms of per-byte energy consumption. This information is

computed offline using our parameterized energy consumption model that accounts

for multiple interfaces [42] and generates the EIBs for two mobile devices listed in

Table 3.1. Note that any energy model generated by state-of-art techniques such as

[77, 80] can be used to populate the EIB.

Given the energy model, we are able to characterize the operating region where

MPTCP is more energy efficient than standard single-path TCP over Cellular or WiFi.

For example, Figure 4.2 shows the relative energy consumption per downloaded byte
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LTE Thpt. WiFi throughput (Mbps)

(Mbps)
LTE Only
Threshold

WiFi Only
Threshold

0.5 < 0.043 ≥ 0.234
1.0 < 0.134 ≥ 0.502
1.5 < 0.209 ≥ 0.803
2.0 < 0.304 ≥ 1.070
... ......

Table 4.1. Example of Energy Information Base

over both WiFi and LTE on the Samsung Galaxy S3, normalized by the amount

of energy consumed using the best single interface (WiFi or LTE). The figure is a

grey-scale heat map where the darker the area, the more energy-efficient MPTCP is.

At the left side of the region, TCP over LTE is the most energy efficient, whereas

on the right side TCP over WiFi is the most efficient. In the region defined by the

“V” shape, inside the solid white curves, using both interfaces consumes the smallest

amount of energy to download a byte. This heat map is instantiated in the EIB.

The EIB represents this data as an array, indexed by the observed LTE through-

put, where each entry includes two WiFi throughputs. This pair of throughputs

specifies the transition points where eMPTCP should switch from a single interface

to multiple interfaces and vice versa. For example, in the second row in Table 4.1,

given an observed LTE throughput of 1 Mbps, if the observed WiFi throughput <

0.134 Mbps, LTE-only should be used; if the observed WiFi throughput ≥ 0.502

Mbps, WiFi-only should be used; otherwise, both should be used.

4.1.4 Path Usage Controller

The path usage controller dynamically decides which paths to use based on energy

efficiency. Once a multi-path connection is established, eMPTCP dynamically decides

which interfaces to use by retrieving the current estimates from the bandwidth pre-

dictor and using them to query the EIB. If data needs to be queued on a subflow, the
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subflow with the highest per-byte energy efficiency is chosen. Thus, eMPTCP seeks

a local optimum in terms of total energy consumption.

To prevent oscillations, our algorithm uses a 10% ‘safety factor’ when switching

from one state to another. Continuing the earlier example (second row of Table 2), if

eMPTCP is using both interfaces, it requires a predicted WiFi throughput of 0.552

Mbps, not 0.502, to transition to WiFi-only. Similarly, if eMPTCP is using WiFi-only,

it requires a predicted WiFi throughput of 0.452 Mbps to switch to both interfaces.

This adds some hysteresis to the system and prevents it from switching states too

frequently. Note that, eMPTCP does not typically switch to using a cellular interface

only, since the expected gain is not much more than using both.

4.1.5 Delayed Subflow Establishment

When data transfers are small, we wish to avoid any unnecessary expenditure of

energy establishing a cellular subflow, with the attendant energy costs of the promo-

tion and tail states. To this end, if a cellular interface is not already active, eMPTCP

introduces a delay between WiFi and 3G/LTE subflow establishment. The cellu-

lar subflow is not started until after eMPTCP receives κ bytes through the WiFi

interface, thus avoiding these fixed overheads when transferring data fewer than κ

bytes.

Even after κ bytes of data have been transferred, eMPTCP still postpones estab-

lishing cellular subflows if the measured WiFi throughput is large enough such that

using WiFi-only is more energy-efficient than using both interfaces, as indicated by

the energy information base.

If the available WiFi throughput is low, solely using the WiFi subflow until κ

bytes are transferred can be less energy efficient than using both interfaces. Indeed,

κ may never be reached on a slow WiFi subflow. To preclude this scenario, eMPTCP

also uses a timer to trigger cellular subflow establishment. If the timer with value
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τ expires, eMPTCP establishes a cellular subflow, even if fewer than κ bytes have

been transferred. The time threshold τ needs to be tuned to correctly estimate WiFi

throughput: τ must be larger than or equal to the time required to collect enough

samples after the WiFi subflow throughput stabilizes. Suppose BW is the available

throughput over WiFi, Winit the initial congestion window size, RW the WiFi RTT,

and φ the number of required samples. Then the condition for τ is:

τ ≥ RW ×
(

log2

BW ×RW +Winit

Winit

+ φ

)
(4.1)

eMPTCP also postpones cellular subflow establishment if the current MPTCP con-

nection is in an idle state with no transmission activity, even if the timer expires.

This avoids unnecessary cellular subflow establishment for idle connections, as some

applications (e.g., HTTP [19]) hold connections open in idle states even after com-

pleting data transfer. eMPTCP regards a connection as idle if it does not send or

receive any packets during an estimated RTT.

4.1.6 Implementation

We have implemented eMPTCP in the Android versions specified in Table 3.1. We

focus on downloads over WiFi and LTE interfaces since they are the most common.

Each component of eMPTCP utilizes routing information at the Internet layer to

identify the interface associated with a subflow (subsocket). eMPTCP checks the

destination entry of the socket. The destination entry (struct dst entry) includes a

pointer to the related network device (struct net device *dev) which has a name of

the interface and a pointer to the wireless device information (struct wireless dev

*ieee80211 ptr). Thus, eMPTCP can identify whether a socket is associated with

a WiFi interface or not by checking if dev has a valid ieee80211 ptr.

MPTCP requires a default primary interface with which to initiate and receive

transfers. Since WiFi is more energy efficient than cellular on our equipment and
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has negligible promotion and tail costs, as shown in Figure 3.1, we use WiFi as the

default interface.

Once eMPTCP decides path usage, it accordingly adds an MP PRIO option [21],

which changes the priority of subflows, to the next packet to be transmitted; for

example, MP PRIO indicating that LTE subflow is in low priority is added in the

next packet if using LTE is energy inefficient.

When the device re-uses a subflow over an interface suspended by the path usage

controller, the sender needs to be able to start using this subflow quickly. To this end,

eMPTCP disables the CWND reset after an idle period longer than the retransmission

timeout in RFC2861 [27] to ensure that a subflow avoids unnecessary slow-start when

eMPTCP starts re-using the subflow. In addition, eMPTCP sets the measured round

trip time (RTT) of the new subflow to zero. This modification enables a renewed

subflow to be quickly probed by the MPTCP scheduler, since it selects a subflow

with the lowest RTT for packet transmission [63]. Note that this is only for re-used

subflows; new subflows behave the same as standard MPTCP in terms of CWND and

RTT.

4.2 Evaluation in a Controlled Lab

The goal of our first set of experiments is to investigate the behavior of eMPTCP

in an environment where we can control wireless conditions. We first examine a

static configuration (§4.2.2), then vary the WiFi bandwidth (§4.2.3). We examine the

impact of background traffic (§4.2.4), and then the impact of mobility(§4.2.5). We

explore how well eMPTCP adaptively controls path usage to obtain greater energy

efficiency than standard MPTCP, as well as the impact on download time.
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Figure 4.3. Operating Region where MPTCP is the Most Energy Efficient to Com-
plete an Entire Transfer (Samsung Galaxy S3)

4.2.1 Experimental Setup

The mobile devices access a wired server, running Ubuntu Linux 12.04 with the

MPTCP implementation [63]. The server is connected to our campus network through

a single Gigabit Ethernet interface. Mobile devices can communicate with the server

over the Internet using a WiFi access point (IEEE 802.11g), 3G or LTE cellular

interfaces from AT&T. Energy traces are collected using the techniques described in

Chapter 3.

For the controlled experiments with bandwidth changes, the mobile device down-

loads a large file while experiencing changing network conditions. We compare

eMPTCP to standard MPTCP and TCP over WiFi in several scenarios, using the

Samsung Galaxy S3.

We set eMPTCP parameters as follows. The download amount threshold κ to

postpone an LTE subflow is set to one MB. This is because MPTCP is rarely more

energy efficient than single path TCP when downloading a smaller sized file. Figure

4.3 presents the calculated throughput region where MPTCP is more energy efficient

than TCP over WiFi-only and LTE-only, for 1 MB, 4 MB, and 16 MB downloads.

Based on our energy model in Chapter 3, the regions inside the curves of each size
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correspond to the throughput values where MPTCP is more energy efficient than

single-path TCP to download a file of that size. The timer threshold τ is set to three

seconds: given our experimental setting, the estimated condition based on equation

4.1 to guarantee ten bandwidth samples is τ ≥ 2.67s. While these values have worked

well for our experiments, refining them to improve performance remains a subject for

future work.

4.2.2 Experiments with Static Configuration

The purpose of these experiments is to show that, in relatively simple static envi-

ronments, eMPTCP makes the proper path decisions to reduce power consumption.

We measure energy consumption and download time of eMPTCP, MPTCP, and TCP

over WiFi for two extreme cases: persistent high (>10Mbps) and low (<1Mbps) WiFi

bandwidth while the device downloads a 256 MB file at a fixed location. Figures 4.4

and 4.5 compare energy consumption and download times averaged over five runs

for the two cases. In the first case, WiFi bandwidth is high, and thus using it is

more power efficient than using either LTE or both interfaces. Figure 4.4 shows

that eMPTCP chooses WiFi only, effectively behaving similar to single-path TCP

over WiFi. In contrast, when WiFi bandwidth is small (<1Mbps), and thus less

energy-efficient than LTE, Figure 4.5 shows that eMPTCP yields almost the same

performance as MPTCP by using both interfaces (after the LTE startup delay deter-

mined by parameters κ and τ). This illustrates that eMPTCP automatically seeks

the most energy efficient path usage without user involvement.

4.2.3 Experiments with Bandwidth Changes

Next we examine how robust eMPTCP is to changes in network bandwidth. Here,

WiFi link bandwidth is modulated by a two state on-off process with exponentially

distributed times spent in the on or off state with a mean of 40 seconds. The band-

width provided by the AP is less than 1 Mbps or greater than 10 Mbps, depending
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Figure 4.5. Static Bad WiFi Comparison

on its state. Measurements are taken while the device downloads a 256 MB file at a

fixed location.

Figure 4.6 presents a time series trace of the accumulated energy consumption of

eMPTCP, MPTCP, and TCP over WiFi for a single run with random WiFi bandwidth

changes. At the beginning of the trace, after the LTE startup delay, eMPTCP uses

both interfaces since WiFi throughput is too small to be energy efficient. However,

eMPTCP suspends the LTE subflow after the WiFi bandwidth increases at around

time 60, while MPTCP continues to use both interfaces. By suspending the LTE

subflow, eMPTCP spends approximately 20% less energy than standard MPTCP at

the cost of a 40% larger download time. Compared to single-path TCP over WiFi,
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Figure 4.7. Random WiFi Bandwidth Changes

eMPTCP both completes the download sooner (by about 50%) and consumes less

energy (by about 15%).

Figure 4.7 compares energy consumption and download time averaged over ten

runs. This figure, as well as similar ones to follow, uses a symbol to show the sam-

ple mean together with horizontal bars of length twice the standard error of the

mean (SEM). The quantity SEM for n samples (x1, x2, . . . , xn) is given by the expres-

sion s/
√
n where

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (4.2)
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is the sample standard deviation and x = 1
n

∑n
i=1 xi is the sample mean. In this set

of experiments, eMPTCP consumes approximately 8% and 6% less energy on average

than MPTCP and TCP over WiFi, respectively. However, eMPTCP is approximately

22% slower on average than MPTCP since eMPTCP utilizes the LTE subflow only

when it can improve energy efficiency. In contrast to single-path TCP over WiFi,

by utilizing an LTE subflow when WiFi throughput is less than 1 Mbps, eMPTCP

completes downloads twice as fast and consumes less energy. Note that the perfor-

mance gain achieved by eMPTCP differs according to how WiFi bandwidth changes.

If WiFi bandwidth changes frequently, the switching overhead in eMPTCP may be-

come noticeable as an LTE interface triggers a promotion and tail state each time

that it starts to be used again.

4.2.4 Experiments with Background Traffic

In this section we investigate how well eMPTCP copes with random background

traffic. It is well known that multiple WiFi nodes can contend for the air channel,

causing interference and loss (e.g., [47]). Background traffic causes contention and

interference in the communication channel, resulting in throughput changes similar

to link bandwidth changes. In these experiments, we utilize two or three interfering

sources, which use the same WiFi channel as the mobile device. While the device

downloads a 256 MB file at a fixed location, each node generates UDP traffic according

to a two state Markov on-off process, with rates (per second) λon and λoff. We fix

λon = 0.05, and then perform experiments with λoff = 0.025 and λoff = 0.05. As in

Section 4.2.3, we control background traffic for the WiFi channel only.

Figure 4.8 shows sample throughput traces of MPTCP and eMPTCP when two

interfering nodes turn traffic on and off with λon = 0.05 and λoff = 0.025. We observe

that standard MPTCP avoids aggressive use of the LTE subflow when the WiFi

subflow provides high bandwidth, e.g., during the interval 10–60 seconds in Figure 4.8.
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Figure 4.8. Example Throughput Trace with two WiFi Background Traffic Sources
(λon = 0.05, and λoff = 0.025)

This is because the MPTCP subflow scheduler chooses the WiFi subflow for packet

transmission because it has a large CWND and the smallest RTT [63]. However,

MPTCP consumes energy utilizing the LTE subflow even though the throughput gain

is small. In contrast, eMPTCP suspends the LTE subflow when WiFi bandwidth

is sufficiently large in order to avoid energy inefficient path usage. Note that at

around time 60, the LTE throughput of MPTCP increases more slowly than that of

eMPTCP. This is because the LTE subflow of MPTCP is in congestion avoidance

after it experiences a loss at time 10 while that of eMPTCP is in slow-start since it

is used for the first time. In Figure 4.8, eMPTCP incorrectly uses an LTE subflow

in the intervals [140, 150] and [190, 200]. This is due to sudden decreasing WiFi

throughputs, which result in incorrect throughput predictions. However, eMPTCP

stops using the LTE subflow after the WiFi estimates improve.

Figure 4.9 presents the average energy consumption and download times for dif-

ferent values of n and λoff, in percentage terms relative to MPTCP, i.e., smaller num-

bers are better, and percentages less than 100% are better than standard MPTCP.

MPTCP’s place on the Figure is denoted by the red dashed line. Values are averages

over five experiments.
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ground Traffic

Figure 4.9 shows that eMPTCP consumes less energy than MPTCP as the num-

ber of background sources and λoff decreases. When λoff = 0.025, we observe that the

eMPTCP and WiFi-only are more efficient that MPTCP when there are two back-

ground sources. Recall that the energy efficiency of eMPTCP improves when it can

suspend an LTE subflow in situations where using WiFi only is more energy efficient.

Larger numbers of interfering WiFi nodes result in more losses caused by collisions

when background traffic is present, resulting in more CWND decreases. Thus, the

device is likely to obtain a larger TCP throughput with a larger CWND when there

is no background traffic, resulting in a greater energy efficiency of TCP over WiFi

and eMPTCP. Note that TCP over WiFi is most energy efficient when there are two

background sources and λoff = 0.025. However, as shown in Figure 4.9, in that setting,

TCP over WiFi requires twice as much time to complete a download as eMPTCP,

while it consumes just 11% less energy.

As shown in Figure 4.9, MPTCP provides the smallest download times, regard-

less of the number of background sources and λoff, since it always utilizes the LTE

subflow. In addition, as expected, the download time of TCP over WiFi becomes

significantly larger as the number of background sources and λoff increase. Com-

pared to MPTCP, download times under eMPTCP are 20-40% larger while energy

consumption is 9-11% lower. This may be because eMPTCP sometimes poorly pre-

dicts available bandwidth due to fluctuating throughputs, as illustrated in Figure 4.8,
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Figure 4.10. Mobile Scenario inside UMass CS building. Route starts at the blue
point. The red square is the AP. The red dashed circle is the estimated usable access
range of the AP.

and it also incurs additional energy overhead when suspending and resuming an LTE

subflow due to promotion and tail costs. Compared to single-path TCP over WiFi,

eMPTCP reduces download time by up to 70%, while at the same time using less

energy.

4.2.5 Experiments with Mobility

The focus of this section is to determine how well eMPTCP performs and adapts

in a mobile scenario. We take measurements while moving for 250 seconds along the

route shown in Figure 4.10. To make our comparison between MPTCP and eMPTCP

as fair as possible, we use the same route for the experiments.

Figure 4.11 presents sample traces of accumulated energy consumption from our

mobile scenario. In this experiment, the device is sometimes within WiFi commu-

nication range, and sometimes outside it, depending on its location. As the device

moves outside WiFi range, WiFi throughput decreases, e.g., the duration around

25-40 seconds in Figure 4.11. At the beginning of the route, MPTCP sestablishes

both subflows, whereas eMPTCP postpones establishing an LTE subflow, since WiFi

throughput is high enough to be more energy efficient than using both interfaces.
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Figure 4.11. Example of Accumulated Energy Consumption with Mobile Scenario

However, eMPTCP establishes an LTE subflow after the WiFi bandwidth decreases

when the device is leaving the AP communication range (at around 25 seconds in Fig-

ure 4.11). Then, whenever the device cannot obtain enough WiFi bandwidth to be

more energy efficient than using both interfaces, eMPTCP utilizes the LTE subflow

rather than only using the poorly performing WiFi subflow. In this experiment, we

observe that since the device is inside WiFi communication range most of the time,

eMPTCP utilizes the LTE subflow only for a few short time intervals. Therefore, as

shown in Figure 4.11, the slope of eMPTCP’s accumulated energy consumption (the

energy consumption per second) is larger than that of TCP over WiFi, but smaller

than that of MPTCP.

We now examine the per-byte energy efficiencies of MPTCP, eMPTCP, and single-

path TCP over WiFi. Figure 4.12 compares the energy consumption per byte and

download amount for 250 seconds averaged over five runs. eMPTCP’s energy con-

sumption per byte is 22% smaller than that of MPTCP and 15% larger than that of

TCP over WiFi, since eMPTCP utilizes the LTE subflow for only several short peri-

ods. Because WiFi throughput degradation is due only to the distance between the

AP and device (as there is no WiFi background traffic in these experiments), TCP

68



MPTCP

eMPTCP

TCP over WiFi

0.8 0.9 1.0 1.1

Energy (J/b)
250 300 350 400 450 500

Download amount (MB)

Figure 4.12. Mobile Scenario Comparison

over WiFi is slightly better in terms of energy efficiency than eMPTCP, corresponding

to the case when there are two background sources and λoff = 0.025 in Figure 4.9.

Focusing on the amount of data downloaded during the experiments, we observe

that eMPTCP downloads 25% less data than MPTCP, while exhibiting 22% lower

per-byte energy costs. Here, eMPTCP roughly loses about the same in performance

that it saves in energy, due to the overhead of switching between WiFi-only and using

both interfaces. eMPTCP downloads 28% more data than single-path TCP over WiFi

even though it yields almost as good per-byte energy efficiency (just 8% more energy

consumption per byte).

4.2.6 Comparison with existing approaches

Raiciu et. al [62] propose a simple strategy called MPTCP with WiFi First, where

MPTCP only uses WiFi when available, and the cellular network otherwise. This is

accomplished by placing the cellular subflow in backup mode and activating it only

when WiFi is not available. This simple strategy may seem similar to eMPTCP,

however, it cannot take advantage of dynamic situations where TCP over LTE or

MPTCP is more energy-efficient than TCP over WiFi. MPTCP with WiFi First can

only utilize an LTE subflow when the WiFi subflow explicitly breaks, such as due to a

WiFi AP disassociation. For example, in our mobile scenario in Section 4.2.5, MPTCP

with WiFi First would not use the LTE subflow even when the WiFi subflow becomes

unusable, e.g., the duration around 25∼40 seconds in Figure 4.11, since the device
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does not lose the WiFi association. Therefore, if WiFi provides too low bandwidth to

be more energy efficient than LTE while it is still associated, MPTCP with WiFi First

degenerates into single-path TCP over WiFi, which yields inefficient energy usage as

shown in subsections 4.2.2–4.2.5. It also needlessly activates the cellular interface at

connection establishment.

Pluntke et al. [58] introduce a Markov Decision Process (MDP) based MPTCP

path scheduler to minimize energy consumption. The MDP based scheduler cannot

be computed in the OS Kernel at run time since it incurs a large computational over-

head and a finite state machine of throughput changes with transition probabilities,

which makes it hard to be practical in real deployments. Therefore, rather than di-

rectly implementing their approach in mobile devices, we generate the MDP based

schedulers and simulate their behaviors given our experimental scenarios and energy

model. Unit time for state transitions is set to one second as in [58]. Note that the

authors consider only 3G and WiFi energy models in which 3G energy consumption

becomes lower than WiFi for high data rates. In contrast, LTE energy consumption

per second never becomes lower than WiFi in our energy model. We observe that

the generated MDP schedulers choose WiFi-only for all scenarios, resulting in same

energy performance (and limitations) as TCP over WiFi.

4.3 Evaluation in the Wild

We next examine whether eMPTCP provides greater energy efficiency than stan-

dard MPTCP in more realistic environments. We deploy MPTCP enabled servers in

Asia (Singapore - SNG), Europe (Amsterdam - AMS), and North America (Wash-

ington D.C. - WDC). Each server has one network interface on the public Internet.

We investigate the performance of eMPTCP when downloading files of different sizes

(256 KB for small file transfer and 16 MB for large file transfer) at three locations: a

university building where the WiFi AP is connected to the campus network, student
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Figure 4.13. Trace Categories according to WiFi and LTE throughput - 16MB
Downloads

housing where the AP is connected to the campus network through Cisco Long-Reach

Ethernet, and a personal residence where the AP connects to a cable network.

We collect ten traces for each combination of file size, device and server locations.

Since network conditions can vary over time, for each configuration we conduct ten

iterations of a set of experiments. Each set consists of one run each of eMPTCP,

original MPTCP, and single-path TCP over WiFi for the same configuration. The

ordering within the set is randomized.

4.3.1 Trace Categorization

We group the collected traces into four categories based on the qualities of WiFi

and LTE, either Good or Bad. We set 8 Mbps as a threshold to decide whether a

network is good or bad. Figure 4.13 presents a scatterplot of measured WiFi and

LTE throughputs for all experiments downloading 16 MB files. The scatterplot is

divided into the four categories, and the red line indicates the boundary above which

MPTCP is more energy efficient than TCP over WiFi for downloading.

71



 0  2  4  6  8  10  12

Energy Consumption (J)

 0  1  2  3  4  5  6  7  8

Download Time (sec)

(a) Bad WiFi & Bad LTE

 0  2  4  6  8  10  12

Energy Consumption (J)

MPTCP
 

 0  1  2  3  4  5  6  7  8

Download Time (sec)

(b) Bad WiFi & Good LTE

 0  1  2  3  4  5  6  7

Energy Consumption (J)

eMPTCP

 
 0  0.2  0.4  0.6  0.8  1  1.2

Download Time (sec)

(c) Good WiFi & Bad LTE

 0  1  2  3  4  5  6  7

Energy Consumption (J)

TCP over WiFi

 

 0  0.2  0.4  0.6  0.8  1  1.2

Download Time (sec)

(d) Good WiFi & Good LTE

Figure 4.14. Small File Transfers (256 KB Downloads)

4.3.2 Small File Transfers

Figure 4.14 presents Whisker plots showing first quartile (Q1), median, third quar-

tile (Q3), and outliers of measured total energy consumptions and download times in

the 256 KB traces for each of the four categories. Dots are outliers, which sit outside

the range [Q1−1.5IQR,Q3 + 1.5IQR], where IQR is the inter-quartile range defined

as (Q3 −Q1).

In this environment, eMPTCP almost always behaves the same as TCP over WiFi

across all categories, yielding significantly less total energy consumption (from 75%
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to 90%) with statistically similar download times as MPTCP. This is because the

transfer is short, can be completed over WiFi, and eMPTCP avoids the tail state

power costs of the LTE interface by delaying LTE subflow establishment.

eMPTCP does use the LTE subflow in a few instances, namely the outliers in Fig-

ure 4.14(a) and (b), which exhibit similar energy consumption to MPTCP. In these

cases, LTE subflow establishment is triggered via timer expiration since the WiFi

throughput obtained by eMPTCP is exceptionally small. Recall that after the timer

expires, eMPTCP greedily chooses paths based on expected per-byte efficiency with-
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out knowing the length of the transfer remaining. Thus, even though the remaining

data is too small for eMPTCP to take advantage of LTE’s relative energy efficiency

in this scenario, eMPTCP uses both because of the extremely slow WiFi.

4.3.3 Large File Transfers

Figure 4.15 presents Whisker plots of measured total energy consumption and

download time of the 16 MB download experiments for each category. We observe

the following:

Bad WiFi & Bad LTE: eMPTCP consumes 33% less energy than MPTCP and

TCP over WiFi, while completing downloads in 20% less time. eMPTCP is the most

energy efficient since it adaptively controls path usage according to expected per-byte

efficiency. TCP over WiFi exhibits similar energy consumption to standard MPTCP

but with roughly 6x longer download times.

Bad WiFi & Good LTE: eMPTCP yields similar energy consumption to MPTCP

with slightly larger download times. eMPTCP behaves similarly to MPTCP, since

the throughput obtained over WiFi is small. The slightly larger download times than

MPTCP are due to the delayed LTE subflow establishment. TCP over WiFi performs

the worst, both in terms of download time and efficiency, since the WiFi is poor.

Good WiFi & Bad LTE: eMPTCP uses roughly 50% of the energy that MPTCP

does, since it never utilizes the LTE subflow. TCP over WiFi behaves similarly.

eMPTCP takes about 20% longer than MPTCP to complete downloads. eMPTCP

essentially behaves the same as TCP over WiFi, and obtains similar results.

Good WiFi & Good LTE: This is similar to the above case, since the WiFi is fast

and using WiFi-only is more power efficient than using both.

4.3.4 Case Study: Web Browsing

We now examine whether eMPTCP improves energy efficiency with a common

application: Web browsing. To this end, we deploy a copy of CNN’s home page
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Figure 4.16. Web browsing Comparison

(as of 9/11/2014), which consists of 107 Web objects, into our MPTCP server in

Washington DC. At our department building, we measure the energy consumption

and latency to download all objects in the page. We consider the environment in this

setting to have good WiFi and good LTE.

Figure 4.16 shows the average measured energy consumption and latency of MPTCP,

eMPTCP, and single-path TCP over WiFi. In this experiment, the Android web

browser establishes six parallel (MP)TCP connections to the server (12 subflows for

MPTCP), with HTTP persistent connections. Note that the values are averaged over

10 runs and the power consumed for the Web browser application is included in the

total energy consumption. As shown in Figure 4.16(a), MPTCP consumes 60% more

energy (around 10J) than eMPTCP and TCP over WiFi. Since almost of all objects

in the Web page are small (<256 KB), eMPTCP does not utilize the LTE network

and achieves better energy efficiency. Figure 4.16(b) shows that eMPTCP yields al-

most the same latency as MPTCP with less energy consumption. This is because,

for small downloads, it is hard for MPTCP to obtain gains by utilizing an LTE sub-

flow in the case of small object downloads [7]. In contrast, eMPTCP automatically

postpones an LTE subflow establishment unless a user initiates a large data transfer,

such as video streaming. If a large transfer occurs, eMPTCP adaptively switches

path usage between using both interfaces and WiFi-only, resulting in better energy
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efficiency than MPTCP. This example is meant to illustrate the potential benefits of

eMPTCP for more complex workloads.

4.4 Related Work

Pluntke et al. [58] are the first to introduce the concept of scheduling paths in

MPTCP to minimize energy consumption. They use a scheduler based on a Markov

decision process. Schedules are expensive to compute, hence they are computed in

the cloud and downloaded periodically to the device, which is impractical for real

deployment. They evaluate their scheduler via simulation, using models of device

energy consumption. They find they can reduce energy consumption by almost 10%

in one out of four scenarios. Our algorithm, in contrast, is evaluated experimentally

using a real MPTCP implementation on a physical device, and across many scenarios.

It also achieves much higher energy reductions, up to 90%. Pluntke et al. [58] is

discussed in more detail in Section 4.2.6.

Raiciu et al. [62] consider several issues that arise when using MPTCP in mobile

environment, including energy consumption. They propose and evaluate a simple

strategy that periodically samples both paths for 10 seconds and then uses the more

energy-efficient path for 100 seconds. Evaluating their approach via simulation, their

method is more energy efficient than an energy-unaware MPTCP implementation,

but achieves lower bandwidths. They also propose a strategy called “MPTCP with

WiFi First”, which exclusively uses WiFi when it is present, and only uses the cellular

network when WiFi is unavailable. However, this approach cannot avoid inefficient

use of energy due to automatic activation of the cellular interface and the attendant

promotion and tail state costs. Raiciu et al. [62] are discussed in more detail in Section

4.2.6.

Paasch et al. [52] study mobile/WiFi handover performance with MPTCP. They

suggest Single-Path Mode, which establishes a new subflow only after the current
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interface goes down. By setting WiFi as the primary interface, Single-Path Mode

MPTCP can avoid the fixed energy overhead for 3G/LTE when WiFi is available.

Compared to our approach, however, both strategies are unable to take advantage

of more dynamic situations where TCP over LTE or MPTCP may become more

energy efficient than TCP over WiFi. In addition, they can only utilize an LTE

subflow when the WiFi subflow explicitly breaks, such as disassociating with an AP.

Peng et al. [57] study energy consumption in MPTCP via analysis as a global

optimization problem. They present two algorithms, customized for real-time and

file transfer, and evaluate them via simulation. While they do utilize an energy

model, they do not consider cellular promotion and tail costs, and do not evaluate

their approach experimentally.

Bui et al. [4] present GreenBag, a middleware system to aggregate bandwidth

of asymmetric wireless links for video streaming. GreenBag estimates the available

bandwidth of WiFi and LTE and determines the amount of traffic to allocate to

each interface. The authors show that GreenBag reduces energy consumption by

14∼25% compared with a bandwidth aggregation for throughput maximization. Since

GreenBag operates above the TCP layer as a system background process, it only

works for modified HTTP requests sent not to original destinations but to GreenBag.

Thus, each application needs to be modified to cooperate with GreenBag, making

deployment difficult. MPTCP, in contrast, requires no application modifications and

works with all TCP traffic.

Ding et al. [16] proposes a mobile traffic offloading architecture that utilizes WiFi

to migrate mobile traffic from cellular while reducing energy consumption. The au-

thors demonstrate that the proposed architecture obtains more than 80% energy sav-

ings, using a prototype on a Nokia N900 smartphone and their own music streaming

application. However, they do not consider potential energy gain from simultaneous
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use of both interfaces. As with Bui et al. [4], applications must be modified for the

approach to work.

Croitoru et al. [11] show that MPTCP can improve user experience over WiFi by

associating with multiple APs simultaneously. By utilizing an MPTCP connection

with subflows connected to all available APs, a mobile client can maintain seamless

connectivity without having to consider a handover. The authors also investigate

situations when connecting to multiple APs can degrade network performance. They

propose estimating client-side AP efficiency and using ECN notification to direct

traffic to subflows associated with the most efficient APs while avoiding use of subflows

that experience poor throughput. Their study does not consider cellular usage or

energy consumption.

4.5 Conclusion

This chapter proposed, implemented, and evaluated an enhanced MPTCP de-

signed to improve energy efficiency, called eMPTCP. eMPTCP manages subflow usage

based on expected per-byte energy efficiency given available bandwidth. Our exper-

imental results using our implementation in real mobile devices show that eMPTCP

is able to consume less energy than MPTCP while still providing MPTCP’s benefits

of multi-path such as improved performance, availability, and transparency.
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CHAPTER 5

MPTCP PATH SCHEDULING TO MANAGE PATH
ASYMMETRIES

One significant component that affects MPTCP performance is the path scheduler,

which distributes traffic across available paths according to a particular scheduling

policy. The default path scheduler of MPTCP is based on round trip time (RTT)

estimates, that is, given two paths with available congestion window space, it sends

traffic over the path with the smaller RTT. While simple and intuitive, this scheduling

policy does not carefully consider path heterogeneity, which can cause significant

reorderings at the receiver-side. To prevent this, MPTCP includes opportunistic

retransmission and penalization mechanisms along with the default scheduler [63].

When flows are long-lived, e.g., a single very large file transfer, MPTCP is able to

enhance performance using these mechanisms. However, a large number of Internet

applications such as Web browsing and video streaming usually generate traffic that

consist of multiple uploads/downloads for relatively short durations. We find that

in the presence of path asymmetries, the default MPTCP scheduler is unable to

efficiently utilize some paths with such a traffic pattern. In particular it does not

fully utilize fast paths, which have short RTT with high bandwidth and should be

prioritized to achieve the highest throughput and lowest response time.

In this work, we propose a novel MPTCP path scheduler to maximize path utiliza-

tion, called ECF (Earliest Completion First). ECF monitors not only RTT estimates,

but also the current subflow congestion windows and the amount of data available

to send (i.e., the send buffer). By determining whether using a slower path for the

injected traffic will cause the faster path to become idle, ECF more efficiently utilizes
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the faster paths, maximizing throughput, minimizing download times, and reducing

out-of-order packet delivery. Our experimental results demonstrate that ECF suc-

cessfully avoids undesirable idle periods, achieving greater throughput with higher

path utilization than the default scheduler.

This chapter makes the following contributions:

• We provide a thorough analysis of the performance problems in MPTCP caused

by path asymmetries when using the default scheduler. Using a streaming

adaptive bit rate video workload, we illustrate how it does not achieve the ideal

use of multiple paths.

• Based on this insight, we design and implement a new path scheduler, Earliest

Completion First (ECF) that takes path asymmetries into account.

• We evaluate ECF against the default scheduler and two other approaches,

BLEST and DAPS, on a experimental testbed. We use workloads of streaming,

simple downloads, and a full Web page download, across paths with a range of

bandwidths and round-trip times. We show how ECF improves performance by

up to 26% above the other schedulers in asymmetric path environments, while

doing no worse in symmetric ones.

5.1 Motivation

5.1.1 Dynamic Adaptive Streaming over HTTP

Dynamic Adaptive Streaming over HTTP (DASH) [72] is the mechanism by which

most video is delivered over the Internet. To stream videos with a bit rate appropriate

for the available bandwidth, a DASH server provides multiple representations of a

video content encoded at different bit rates. Each representation is fragmented into

small video chunks that contain several seconds of video. Based on measured available
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Figure 5.1. Example Download Behavior in Netflix Player

bandwidth, a DASH client selects a chunk representation, i.e., bit rate, and requests

it from a DASH server; this is called adaptive bit rate (ABR) selection.

A DASH client player starts a streaming session with an initial buffering phase

during which the player fills its playback buffer to some prescribed maximum level.

During this phase, once the buffer reaches a second sufficient threshold, the player

starts playing the video, and continues to retrieve video chunks until the initial buffer-

ing completes. After completing the initial buffering phase, the player pauses video

download until the buffer level falls below the prescribed maximum level. If the play-

back buffer level falls below a prescribed minimum required to play out the video,

the player stops playback and fills its buffer until it has a sufficient amount of video

to begin playback again, which is called the rebuffering phase.

This can lead to an ON-OFF traffic pattern where the player downloads chunks

for a period of time and then waits until a specific number of chunks are consumed

[64]. Figure 5.1 shows an example of client player download behavior when a mobile

device fetches Netflix streaming video. This trace was collected using an Android

mobile handset (Samsung Galaxy S3) while watching Netflix through WiFi on May

2014. During the OFF periods, the connection can go idle, causing CWND resets, as

we will discuss in Section 5.1.3.
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Resolution 144p 240p 360p 480p 760p 1080p
Bit Rate (Mbps) 0.26 0.64 1.00 1.60 4.14 8.47

Table 5.1. Video Bit Rates vs. Resolution
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Figure 5.2. Measured Average Bit Rate Relative to Ideal Average Bit Rate Using
Default Path Scheduler in MPTCP (darker is better)

5.1.2 The Effect of Path Asymmetry

We first examine the effect of path asymmetry on MPTCP application perfor-

mance using adaptive video streaming, since it is currently one of the dominant

applications in use over the Internet. We measure the average video bit rate obtained

by an Android DASH streaming client while limiting the bandwidth of the WiFi and

LTE subflows on the server-side using the Linux traffic control utility tc [43] (full

details of our experimental setup are given in Section 5.4.1). The streaming client

uses state-of-art adaptive bit rate selection (ABR) [31]. The choice of ABR does not

significantly affect the results as we fix bandwidth on each interface for the duration

of each experiment.

Table 5.1 presents the bit rates corresponding to each resolution. We choose band-

width amounts slightly larger than those listed in Table 5.1, i.e., {0.3, 0.7, 1.1, 1.7, 4.2, 8.6}

Mbps, to ensure there is sufficient bandwidth for that video encoding.

Figure 5.2 presents the ratio of the average bit rate achieved versus the ideal

average bit rate available, based on the bandwidth combinations, when using the
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default MPTCP path scheduler. The figure is a grey-scale heat map where the darker

the area is, the closer to the ideal bit rate the streaming client experiences. The closer

the ratio is to one, the better the scheduler does in achieving the potential available

bandwidth. The values are averaged over five runs. In a streaming workload, we define

the ideal average bit rate as the minimum of the aggregate total bandwidth and the

bandwidth required for the highest resolution at that bandwidth. For example, in the

8.6 Mbps WiFi and 8.6 Mbps LTE pair (the upper right corner in Figure 5.2), the ideal

average bit rate is 8.47 Mbps, since the ideal aggregate bandwidth (8.6 + 8.6 = 17.2

Mbps) is larger than the required bandwidth for the highest resolution of 1080p (8.47

Mbps). Since the full bit rate is achieved, the value is one and the square is black.

Figure 5.2 shows that, when significant path asymmetries exist, the streaming

client fails to obtain the ideal bit rate. For example, when WiFi and LTE provide 0.3

Mbps and 8.6 Mbps, respectively (the upper left box in Figure 5.2), the streaming

client retrieves 480p video chunks, which requires only 2 Mbps, even though the ideal

aggregate bandwidth is larger than 8.47 Mbps. Thus, the value is only 25% of the

ideal bandwidth and the square is light grey. This problem becomes even more severe

when the primary path (WiFi) becomes slower (compare the 0.3 Mbps & [0.3 – 8.6]

Mbps and 8.6 Mbps & [0.3 – 8.6Mbps] pairs), as shown by the grey areas in the upper

left and lower right corners.

Note that we observe similar performance degradation regardless of the congestion

controller used (e.g., Olia [37]). In addition, the opportunistic retransmission and

penalization mechanisms are enabled by default. This result shows that even with

these mechanisms, the MPTCP default path scheduler does not sufficiently utilize

the faster subflow when path asymmetries are present.
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5.1.3 Why Does Performance Degrade?

In this section, we identify the cause of the performance degradation when path

asymmetries exist. We investigate the TCP send buffer behavior of the faster sub-

flow in the traces of the streaming experiments. Figure 5.3 shows the send buffer

occupancy (measured in the kernel) of the WiFi and LTE subflows when bandwidths

are 0.3 and 8.6 Mbps, respectively. As can be seen, the streaming sender applica-

tion periodically pauses to queue data into the LTE subflow, which has significantly

higher bandwidth and lower RTT than the 0.3 Mbps WiFi subflow, and the LTE send

buffer quickly empties due to acknowledgements. The streaming sender also pauses

to use the WiFi subflow, i.e., the sender has no packet to send, but the sender is still

transferring data over the slow WiFi subflow while the fast LTE subflow is idle. This

shows that the application does not have any packet to send at that moment; the 8.6

Mbps LTE subflow completes its assigned packet transmissions much earlier than the

0.3 Mbps WiFi subflow and stays idle until the next download request is received.

Figure 5.4 presents a timing diagram to show how a fast subflow becomes idle,

waiting until a slow subflow completes assigned packet transmissions (here, subflow

1 is faster than subflow 2). To validate whether such an idle period really occurs, we

investigate the CDF of the time difference between the last packets over WiFi and
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Figure 5.4. Case When Fast Subflow Becomes Idle

LTE for four regulated bandwidth pairs. As shown in Figure 5.5, as paths become

more heterogeneous, the time differences increases. In particular, the pause period

(around one second) in Figure 5.3 appears as the time difference of last packets. Note

that this problem is due to the lack of packets to send, and not because of head of line

blocking or receive window limitation problems discussed in [63]. The performance

degradation of these idle periods becomes more severe as an MPTCP connection

is used for more multiple object downloads, e.g. a streaming client continues to

downloads video chunks over the connection. This is because the congestion controller

restarts from the slow-start phase with CWND reset if a connection is idle for longer

than the retransmission timeout [27]. Since MPTCP congestion controllers such as

coupled and Olia are designed to adapt a subflow CWND as a function of CWNDs

across all subflows, resetting CWND in a fast subflow due to an idle period can result

in it not being properly increased, resulting in under-utilization of the fast subflow

for consecutive downloads.

Simple scheduling policies based solely on RTTs, e.g., allocating traffic to each

subflow inversely proportional to RTT [39], cannot prevent this problem. For example,

consider two subflows where the RTTs are 10 ms and 100 ms, respectively, and the

CWNDs of both subflows are 10 packets. Suppose that the sender has 11 packets

remaining to transmit. If a scheduler splits these 11 packets based on RTT, the

fast subflow will complete 10 packet transmissions in one RTT (10 ms) and the slow
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Figure 5.6. Fraction of Traffic Allocated to Fast Subflow using Default Scheduler in
Streaming

subflow one packet in 100 ms. This results in a completion time of 100 ms, where the

faster subflow is idle for 90 ms. In contrast, waiting for the 10 ms subflow to become

available results in a completion time of just 20 ms.

An ideal MPTCP path scheduler is one that splits traffic in proportion to the

available bandwidth of each path. Figure 5.6 presents the average fraction of traffic

allocated to the fast subflow during the streaming experiments. As can be observed,

the default scheduler places a smaller fraction of the traffic onto the fast subflow than

the ideal scheduler. Together with the idle period of the fast subflow, this causes the
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aggregate throughput degradation, resulting in a lower streaming quality selection

than is possible given the available bandwidth.

5.2 Earliest Completion First Scheduler

To solve the performance degradation problem with path asymmetry, we propose

a new MPTCP path scheduler, called ECF (Earliest Completion First). ECF utilizes

RTT estimates, path bandwidths (in the form of congestion window sizes), and the

size of the send buffer at the connection-level.

An MPTCP sender stores packets both in its connection-level send buffer and in

the subflow level send buffer (if the packet is assigned to that subflow). This means

that if the number of packets in the connection level send buffer is larger than the

aggregate number of packets in the subflow level send buffers, there are packets in

the send buffer that need to be scheduled to the subflows.

Assume that there are k packets in the connection level send buffer, which have

not been assigned (scheduled) to any subflow. If the fastest subflow in terms of RTT

has available CWND, the packet can simply be scheduled to that subflow. If the

fastest subflow does not have available space, the packet needs to be scheduled to the

second fastest subflow.

We denote the fastest and the second fastest subflows as xf and xs, respectively.

Let RTTf , RTTs and CWNDf , CWNDs be the RTTs and CWNDs of xf and xs,

respectively. If the sender waits until xf becomes available and then transfers k

packets through xf , it will take approximatelyRTTf+ k
CWNDf

×RTTf , i.e., the waiting

and transmission time of k packets. Otherwise, if the sender sends some packets

over xs, the transmission will finish after RTTs with or without completing k packet

transfers. Thus, as shown in Figure 5.7, in the case of RTTf+ k
CWNDf

×RTTf < RTTs,

using xf after it becomes available can complete the transmission earlier than using

xs at that moment. If RTTf + k
CWNDf

× RTTf ≥ RTTs, there are sufficient number
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Figure 5.7. The case for waiting for the fast subflow

Algorithm 2 ECF Scheduler
// This function returns a subflow for packet transmission
Find fastest subflow xf with smallest RTT
if xf is available for packet transfer then

return xf
else

Select xs using MPTCP default scheduler
n = 1 + k

CWNDf

δ = max(σf , σs)
if n×RTTf < (1 + waiting × β)(RTTs + δ) then

if k
CWNDs

×RTTs ≥ 2RTTf + δ then
// Wait for xf
waiting = 1
return no available subflow

else
return xs

end if
else

waiting = 0
return xs

end if
end if

of packets to send, so that using xs at that moment can decrease the transmission

time by utilizing more bandwidth than just by using xf .

Based on this idea, we devise the ECF (Earliest Completion First) scheduler.

Algorithm 2 presents the pseudo code for ECF.
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Note that the inequality uses RTT estimates and CWND values, which can vary

over time. To compensate for this variability, we add a margin δ = max(σf , σs),

where σf and σs are the deviations of RTTf and RTTs, respectively, in the inequality

for the scheduling decision,

(
1 +

k

CWNDf

)
×RTTf < RTTs + δ

This inequality takes into account the case in Figure 5.7, in which waiting for the

fastest subflow completes transfer earlier than using the second fastest subflow. To

more strictly assure this case, ECF checks an additional inequality, which validates

if using the second fastest subflow with its CWND (it takes k
CWNDs

×RTTs to finish

transfer) does not complete earlier than waiting for the fastest subflow (at least 2RTTf

for transfer),

k

CWNDs

×RTTs ≥ 2RTTf + δ

Here, we also use δ to compensate for RTT and CWND variabilities.

If these inequalities are satisfied, ECF does not use the second fastest subflow xs

and instead waits for the fastest subflow xf to become available. ECF uses a different

inequality for switching back to using xs after deciding to wait for xf :

(
1 +

k

CWNDf

)
×RTTf < (1 + β)(RTTs + δ).

This adds some hysteresis to the system and prevents it from switching states (waiting

for xf or using xs now) too frequently.

ECF can be adapted to more than two subflows, although it compares only two

subflows, xf and xs at every scheduling decision, the outcome determined by the

following proposition.
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Proposition 1. If ECF decides to wait for the fastest subflow xf rather than using

xs, using other available subflows cannot contribute to earlier transfer completion.

Proof. xf is expected to be available in RTTf , which is the smallest, and completes

transfer in k
CWNDf

×RTTf . The other subflows xi not selected as xs have a larger RTT

(RTTi) than RTTs. Note that ECF waits for xf if it results in an earlier transfer

completion than RTTs. Any packet transfer over xi takes at least RTTi, which is

larger than RTTs and RTTf . Therefore, any other subflow xi not considered as xs

must satisfy the inequality RTTf + k
CWNDf

× RTTf < RTTs < RTTi that xs does.

This means that using xi at that moment cannot shorten the transfer completion

time compared to waiting for xf , which shows that ECF yields optimal decisions.

5.3 Implementation

We implement the ECF scheduler in the Linux Kernel using MPTCP code revision

0.89 from [51]. To obtain the required information for ECF, we utilize the smoothed

mean and deviation of the RTT estimates and the send buffer information in the

standard TCP kernel implementation.

MPTCP uses two types of sockets to manage a connection at connection and

subflow levels. Therefore, by comparing the send buffer information between the

connection and subflow sockets, we can estimate the number of packets k in the

connection-level send buffer not assigned to subflows. We exploit the sk wmem queued

field in the struct sock, which is the number of bytes queued in the socket send

buffer that either have not been sent, or not been acknowledged. By subtracting the

sum of sk wmem queued of the subflow sockets from that of the connection socket,

we can estimate the number of bytes not yet allocated to the subflows. However,

MPTCP preserves packets in the connection-level send buffer unless those packets

are acknowledged at the connection level. That is, the number of in-flight packets in

the connection socket can be larger than the sum of in-flight packets in the subflow
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sockets. Therefore, to prevent cases where packets acknowledged at only subflow-level

are counted as packets not assigned to the subflows, we subtract the number of bytes

in the connection socket that are already acknowledged in the subflow sockets. To this

end, we utilize the packets out field in struct tcp sock, which is the number of in-

flight packets of the TCP socket. Since packets out is denominated in packets, not

bytes, we assume that each packet has the same size, that of the maximum segment

size (MSS) of the socket.

Let meta sk and ski denote the connection and subflow i sockets, respectively.

Denote the TCP sockets corresponding to meta sk and ski by meta tp and tpi, i.e.,

meta tp = tcp sk(meta sk) and tpi = tcp sk(ski). Then we estimate k (in bytes)

as follows:

k = meta_sk->sk_wmem_queued−∑
i

ski->sk_wmem_queued−(
meta_tp->packets_out−

∑
i

tpi->packets_out

)
× MSS

To collect RTT estimates, we use srtt and rttvar in struct tcp sock1, which

are the smoothed round trip time and maximal deviation for the last RTT periods,

respectively, i.e., RTTi = tpi->srtt and σi = tpi->rttvar.

To estimate CWND, we utilize snd_cwnd in struct tcp sock, which is the CWND

measured in packets. We assume that a scheduling decision usually happens after a

congestion controller enters congestion avoidance phase and, thus, use the value of

snd_cwnd at that moment for evaluating the inequality in the algorithm. However,

streaming ON-OFF traffic pattern or incorrect scheduling decision can cause a sub-

1Note that our implementation is based on MPTCP 0.89 forked from Kernel 3.14.33, in which
RTT estimates are in jiffies. More recent Kernel like 3.18.34 maintains RTT estimates in terms of
microseconds, e.g., srtt ms.
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flow or connection to idle, which can trigger a CWND reset when the idle period is

longer than the retransmission timeout in RFC2861 [27]. When the CWND is reset

on the subflow, ECF will use an unnecessarily small CWND, and will go through

slow-start. To avoid this behavior, ECF records the largest value of snd_cwnd right

before a CWND idle reset (rec_snd_cwnd) event. ECF resets rec_snd_cwnd to zero

if the current snd_cwnd becomes larger than rec_snd_cwnd. ECF uses the maximum

of current snd_cwnd and rec_snd_cwnd for CWND as:

CWND = max (tp->snd_cwnd, tp->rec_snd_cwnd).

Note that this CWND value is used only for ECF decisions; ECF does not change

the current CWNDs that the congestion controller uses (tp->snd_cwnd). Thus, our

actions are consistent with RFC 2861.

The source code of the ECF scheduler is available at http://cs.umass.edu/

~ylim/mptcp_ecf.

5.4 Evaluation in a Controlled Lab

5.4.1 Experimental Setup

In our lab setting, we examine performance using three workloads: adaptive

streaming video over HTTP, simple download activity using wget, and Web-browsing.

We use an Android mobile device (Google Nexus 5) as the client. Videos are

played on the device using ExoPlayer [24]. The mobile device communicates with

the server over the Internet using a WiFi access point (IEEE 802.11g) and an LTE

cellular interface from AT&T. Note that MPTCP requires a default primary interface

with which to initiate and receive transfers. While the choice of interface to use as

the primary is a complex one [14], we use WiFi as the primary interface since that is

the default in Android.
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For the server, we use a desktop running Ubuntu Linux 12.04 with the MPTCP

0.89 implementation deployed [51]. The server has an Intel Core I7-3770 CPU, 32

GB of memory, and is connected to our campus network through a single Gigabit

Ethernet interface. The opportunistic retransmission and penalization mechanisms

are enabled throughout all experiments.

On the server, we set up an MPTCP streaming server that provides DASH content

as well as Web pages. We use Apache 2.2.22 as the HTTP server while enabling HTTP

persistent connections with the default Keep Alive Timeout (5 sec).

For DASH content, we select a video clip from [33] that is 1332 seconds long and

encoded at 50 Mbps by an H.264/MPEG-4 AVC codec. The original resolution of the

video is 2160p (3840 by 2160 pixels). We configure the streaming server to provide

six representations of the video with resolutions varying from 144p to 1080p (just

as Youtube does). We re-encode the video file at each resolution and create DASH

representations with 5 second chunks. Recall Table 5.1 in Section 5.1 presents the bit

rates corresponding to each resolution.

The ECF hysteresis value β is set to 0.25 throughout our experiments (other

values for β were examined but found to yield similar results, not shown due to space

limitations). We compare ECF to the following schedulers:2

• Default: The default scheduler allocates traffic to a subflow with the smallest

RTT and available CWND space. If the subflow with the smallest RTT does

not have available CWND space, it chooses an available subflow with the second

smallest RTT.

• Delay-Aware Packet Scheduler (DAPS) [39]: DAPS seeks in-order packet ar-

rivals at the receiver by deciding the path over which to send each packet based

2For DAPS and BLEST, we use the implementation from https://bitbucket.org/blest_

mptcp/nicta_mptcp [18]

93



on the forward delay and CWND of each subflow: DAPS assigns traffic to each

subflow inversely proportional to RTT.

• Blocking Estimation-based Scheduler (BLEST) [18]: BLEST aims to avoid out-

of-order delivery caused by sender-side blocking when there is insufficient space

in the MPTCP connection-level send window. When this send window is mostly

filled with packets over a slow subflow, the window does not have enough space,

and the sender cannot queue packets to an MPTCP connection. To avoid this

situation, BLEST waits for a fast subflow to become available, so that the fast

subflow can transmit more packets during the slow subflow’s RTT, so as to free

up space of the connection-level send window.

BLEST and ECF are similar in that both can decline opportunities to send on

the slow subflow when it has available CWND space, but this decision is based on

different design goals. BLEST’s decision is based on the space in MPTCP send

window and minimizing out-of-order delivery, whereas ECF’s is based on the amount

of data queued in the send buffer and with the goal to minimize completion time. We

will show in Section 5.4.2.3 that ECF better preserves the faster flow’s CWND and

thus performs better.

5.4.2 Video Streaming with Fixed Bandwidth

We begin by investigating whether ECF improves the performance of streaming

applications compared to the other schedulers, keeping bandwidth fixed for the du-

ration of the experiment.

5.4.2.1 Measured Bit Rate

We first compare how the schedulers perform using our streaming workload. Fig-

ure 5.8 presents the relative average bit rate of the default, ECF, DAPS and BLEST

schedulers, normalized by the ideal average bit rate. The numbers are averaged over
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Figure 5.8. Measured Average Bit Rate Relative to Ideal Average Bit Rate (darker
is better)

Bandwidth (Mbps) 0.3 0.7 1.1 1.7 4.2 8.6
WiFi RTT(ms) 969 413 273 196 87 40
LTE RTT(ms) 858 416 268 210 131 105

Table 5.2. Avg. RTT with Bandwidth Regulation

three runs. Table 5.2 presents the average RTT of each interface measured at sender-

side according to the bandwidth configurations. Note that with the same bandwidth

regulation, WiFi yields smaller RTTs than LTE, since the WiFi network is located

in our campus network and is closer (measured in number of hops) to our client than

over the AT&T LTE network.
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Figure 5.9. Fraction of Traffic Allocated to Fast Subflow in Streaming Workload -
Fixed Bandwidth

Figure 5.8(b) shows that ECF successfully enables the streaming client to obtain

average bit rates closest to the ideal average bit rate, and does substantially better

than the default when paths are not symmetric.

Comparing Figure 5.8(c) to Figure 5.8(a), DAPS does not improve streaming

performance; it yields even worse streaming bit rate than the default scheduler with

some bandwidth configurations, e.g., 4.2Mbps for both of WiFi and LTE. Comparing

Figure 5.8(d) with Figure 5.8(a), BLEST slightly improves streaming performance

with 1 Mbps WiFi and [1..10] Mbps LTE pairs, but does not improve the average bit

rate for other configurations.

5.4.2.2 Traffic Split

To understand why ECF performs better, we examine how each scheduler splits

traffic to the fast subflow (i.e., the subflow providing higher bandwidth). Figures 5.9

and 5.10 show the average fraction of traffic scheduled over the fast subflow and the

average throughput measured at the streaming client for the default, DAPS, BLEST,

and ECF schedulers As shown in Figure 5.9, ECF allocates traffic to the fast subflow

close to the ideal allocation, compared to the other schedulers. By doing this, ECF

obtains larger throughputs than other schedulers whenever path asymmetry exists,
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Figure 5.10. Comparison of Throughputs Measured at Streaming Client - Fixed
Bandwidth

as shown in Figure 5.10. This results in average bit rates close to the ideal average bit

rate, as shown in Figure 5.8(b). Note that the fraction of traffic allocated to the fast

subflow in the 8.6 Mbps WiFi and 8.6 Mbps LTE pair is larger than the ideal. This

is because the 8.6 Mbps WiFi has a smaller RTT (40 ms) than the 8.6 Mbps LTE

(105 ms) and transfer sizes (chunk downloads) are not large enough to fully utilize

both subflows when bandwidths are large.

5.4.2.3 Congestion Window Behavior

Continuing our investigation, we wish to see the behavior of the congestion window

under the different schedulers. Figures 5.11 and 5.12 compare WiFi and LTE CWND

behavior of the default and ECF schedulers when WiFi is 0.3 Mbps and LTE is

8.6 Mbps, a streaming case where notable improvement can be seen in Figure 5.8.

As shown in Figure 5.11 and 5.12, the default, DAPS, and BLEST schedulers more

aggressively utilize the slower, lower-bandwidth WiFi subflow, rather than the faster,

higher-bandwidth LTE subflow. In other words, they use the WiFi subflow whenever

it is available, but not the faster LTE subflow; we observe that ECF yields the highest

utilization of the LTE subflow, followed by BLEST, DAPS, and Default. While the

default, DAPS, and BLEST schedulers obtain some more bandwidth from the WiFi
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Figure 5.11. WiFi CWND Trace Comparison with ECF - 0.3 Mbps WiFi and 8.6
Mbps LTE

subflow, it makes much less use of LTE and thus causes the LTE subflow to idle, which

can cause CWND resets after idle periods longer than the retransmission timeout (see
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Figure 5.12. LTE CWND Trace Comparison with ECF - 0.3 Mbps WiFi and 8.6
Mbps LTE

RFC2861 [27]). Note that the RTT of the LTE subflow (105 ms) is smaller than that

of the WiFi subflow (969 ms) and that the idle period is likely to happen at the LTE
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Scheduler Default DAPS BLEST ECF
Average # of Events 2271 362 1742 45

Table 5.3. Number of Events where LTE CWND is set to the IW value - 0.3 Mbps
WiFi and 8.6 Mbps LTE

subflow with this bandwidth configuration. Thus, while the WiFi subflow frequently

is using a maintained CWND, the LTE subflow unnecessarily starts with an initial

CWND of 10 after the idle period in Figure 5.12. This results in under-utilization of

the fast (LTE) subflow due to the coupled operation of MPTCP congestion controller;

even with the smaller RTT of the LTE subflow, it cannot quickly increase the CWND

in Figure 5.12.

In contrast, ECF (solid blue curves) more aggressively uses the LTE subflow and

thus suffers fewer restarts from the initial window. Similarly, it makes less use of the

WiFi subflow, as indicated by the lower CWND values as compared to the default

scheduler. These both results in greater use of the faster subflow and reduce the

number of CWND resets after idle periods, thus preserving the feasible values of LTE

CWND.

To further study the behavior of the different schedulers in terms of the congestion

window, we measure how often the CWND of the LTE subflows is set to the initial

window (IW) value, i.e., set back into slow start. Table 5.3 compares the average

number of events over the entire video playback, where an event is defined as the

LTE CWND being set to the initial window value. Note that these events are caused

not only by idle timeouts, but by packet losses as well. As shown in Table 5.3, the

default, DAPS, and BLEST schedulers experience high numbers of CWND IW events,

while ECF incurs such events only 45 times on average.
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Figure 5.13. Out-of-Order Delay

5.4.2.4 Out-of-Order Delay

In the presence of path asymmetry, MPTCP often causes out-of-order delay at the

receiver-side, delaying delivery of arrived packets to the application layer. We wish

to see how the different schedulers affect this metric. Figure 5.13 shows an example

timing diagram of out-of-order delays when a receiver downloads 10 packets: boxes

represent download durations of the packet. Since the 6th packet cannot be delivered

to the application layer until after the 5th packet arrives over subflow 2, it has to

wait in the receive buffer for a while as shown in Figure 5.13.

By the late arrival of the 7th packet over subflow 2, packets 7, 8, 9, and 10 also

need to wait in the receive buffer. This wait time that each packet experiences in the

receive buffer for in-order delivery to application layer corresponds to out-of-order

delay. Since many Internet applications are sensitive to the network quality metric

affected by out-of-order delays, most notably real-time streaming, it is important for

MPTCP path schedulers to minimize out-of-order delays.

Figure 5.14 presents the CDF and CCDF of the out-of-order delay that individual

packets experience with the default scheduler. As shown in Figure 5.14, the default
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Figure 5.14. Out-of-Order Delay (Default Scheduler)

scheduler yields longer out-of-order delays as the path asymmetry becomes larger. In

addition, we observe that out-of-order delays are strongly related to the time difference

between the last packets (compare Figure 5.15 with Figure 5.3(b)). In other words,

the larger time difference of last packets is likely to be triggered by larger out-of-delay

at the end of download completion.

Figure 5.15 compares the CDF and CCDF of out-of-order delay of each scheduler

under two bandwidth configurations. As shown in Figure 5.15(a), DAPS, BLEST,

and ECF yield smaller out-of-order delays than the default scheduler in 0.3 Mbps

WiFi and 8.6 Mbps LTE pair. Of these all the schedulers, ECF performs the best,

i.e., under ECF, almost 98% of packets experience out-of-order delays smaller than

one second (the out-of-delays of only 2% of packets are longer than one second), while

with the default scheduler more than 40% of packets suffer from out-of-order delays

larger than one second and around 12% of packets do with DAPS and BLEST. In

Figure 5.15(b), we observe that out-of-order delay behavior becomes similar across

the schedulers (except for DAPS) as path asymmetry becomes smaller; the schedulers

mostly yield out-of-order delays of 0.05 seconds (again, except for DAPS). On the

other hand, under DAPS, more than 30% of packets are delivered to the application
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Figure 5.15. Comparison of Out-of-Order Delay (Streaming - CDF & CCDF)

layer with a delay larger than 0.06 sec, which is even larger than that of the default

scheduler.

5.4.3 Video Streaming with Bandwidth Changes

Next, we examine how ECF responds to changes in network bandwidth for video

streaming workloads. Here, WiFi and LTE bandwidths change randomly at exponen-

tially distributed intervals of time with an average of 40 seconds. The bandwidths

are selected from the set {0.3, 1.1, 1.7, 4.2, 8.6} Mbps, chosen uniformly at random.

Throughputs are measured at the streaming client using ten scenarios with different

random seeds. For each scenario, we collect traces from three runs.

103



 0

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6  7  8  9  10

A
v
er

ag
e 

T
h
ro

u
g
h
p
u
t 

(M
b
p
s)

Scenario (mean change interval = 40 sec)

Default
DAPS

BLEST
ECF

Figure 5.16. Throughputs Measured at Streaming Client - Random Bandwidth
Changes
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Figure 5.17. Example Throughput Trace - Streaming with Random Bandwidth
Changes

Figure 5.16 compares the average throughputs using the default, ECF, and BLEST

schedulers for each random scenario. As can be seen, ECF outperforms the other

schedulers in terms of average throughput, producing the highest average streaming

bit rate. Average bit rate exhibits similar behavior. Figure 5.17 presents the measured

throughput for each chunk download for an individual random scenario (number 6

in Figure 5.16). We observe that ECF yields similar or larger download throughput

than the default scheduler for any streaming chunk download. In particular, ECF

makes more efficient use of the faster subflow in the presence of path asymmetry and

otherwise yields at least similar performance as the default scheduler.
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5.4.4 Simple Web Downloads

Next, we examine the performance of the four schedulers using wget. The purpose

of these experiments is to show that, for simple downloads, ECF improves perfor-

mance in the presence of path asymmetries, while not degrading performance when

paths are similar. We measure wget download completion times for several file sizes

(64 KB to 2 MB) for the WiFi and LTE bandwidths of 1, 2, ..., 10 Mbps as in Section

5.1.2. Since in these experiments, MPTCP transfers a single object in a shorter time

than the streaming experiments, we expect that the performance difference across the

schedulers to be less significant; an idle period of the fast subflow only appears once

and a CWND reset after an idle period never occurs.

Figure 5.18 presents the completion times when downloading a range of selected

file sizes, for all schedulers, averaged over thirty runs. First, ECF does no worse

statistically than the default scheduler, and occasionally does better when paths are

asymmetric and transfers large. Second, as expected, Figure 5.18 shows in most cases

no notable differences between the schedulers except for DAPS. Recall that WiFi

is the primary subflow. MPTCP rarely utilizes a secondary subflow (LTE in this

case) for small transfers [7]. Therefore, unless the primary path (WiFi) is extremely

slow, path schedulers do not affect performance for small downloads such as 128 KB

downloads. However, DAPS sometimes yields larger average completion times, e.g.,

for the 128 KB download case where WiFi is 1 Mbps and LTE ranges from [1, 10]

Mbps. We attribute this to the strong dependency of DAPS on the RTT ratio; an

incorrect estimate of the LTE RTT results in unnecessary trials to inject traffic into

the slow LTE subflow.

To compare performance between the default and ECF scheduler, Figure 5.19

shows download completion times of the ECF scheduler normalized relative to that

of the default scheduler. To plot this figure, we set the normalized value to one

if the download time difference between the ECF and default scheduler is in the
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Figure 5.18. Average Download Completion Time - Various File Sizes (lower is
better)
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Figure 5.19. ECF Average Download Completion Time Ratio Normalized by De-
fault

range of their standard deviation. Otherwise, the ratio is defined as the ratio of the

averages. Thus, the value of one in Figure 5.19 means that both of the default and

ECF schedulers yield similar performance, and smaller than one (more blue) means

that the ECF scheduler takes shorter time than the default scheduler.

As shown in Figure 5.19(a), for small transfers (128 KB), both the default and ECF

schedulers yield similar completion times. We observe notable performance difference

for downloads of 256 KB and greater. Figures 5.19(b)-(c) shows that ECF yields up

to 20% smaller download times than the default scheduler in the presence of path

asymmetries when downloading files larger than or equal to 256 KB. Note that the

improvement by ECF scheduler becomes smaller as the transfer size increases. This

is because the wget experiments examine the performance of single object download
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Figure 5.20. Average Download Completion Time - 1.0 Mbps WiFi and 10.0 Mbps
LTE (lower is better)

over an MPTCP connection, in which an idle period of the fast subflow only appears

once and total transfer time becomes comparatively longer than such a idle period

with a larger transfer.

Figure 5.20 shows average download completion time (from thirty runs) as a func-

tion of the download size when WiFi is 1 Mbps and LTE is 10 Mbps, an extreme

case where incorrect scheduling decisions affect MPTCP performance. ECF appears

to outperform all other schedulers except for small transfer cases such as 64 KB

and 128 KB. In the case of 64 KB downloads, the average completion time of ECF

appears larger than that of the default scheduler, however the difference is not statis-

tically significant considering the extremely short transfer time for 64KB download

and its standard deviation As we see in Figure 5.20, BLEST does not achieve any

performance improvement compared to the default scheduler while DAPS enhances

performance only for downloads of 512 KB and 1 MB (note that DAPS yields worse

performance for such transfer sizes under other bandwidth pairs than the default

scheduler in Figure 5.18). In particular, BLEST yields almost the same average

download completion time as the default scheduler and DAPS does not exhibit con-

sistent performance (better or worse with large standard deviations e.g., the case of

2 MB). In contrast, ECF exhibits a smaller average download time (up to 20%) than

the default after the download size becomes larger than 256 KB.
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5.4.5 Web Browsing

We now examine whether ECF improves the performance of a common applica-

tion: Web browsing. We deploy a copy of CNN’s home page (as of 9/11/2014), which

consists of 107 Web objects, into our MPTCP server. Web-browsing activity is simi-

lar with a series of wget downloads over one connection, therefore, such consecutive

downloads over one MPTCP connection can be affected more by idle periods of the

fast subflow and CWND resets compared to a single object download using wget.

To see how each scheduler affects Web object download performance, we investigate

the distribution of object download completion times while regulating the WiFi and

LTE bandwidths between [1,10] Mbps as is in Section 5.4.4. In this experiment, the

Android web browser establishes six parallel (MP)TCP connections to the server (12

subflows for MPTCP), with HTTP persistent connections. Note we collect traces

from 10 runs.

Figure 5.21 compares the CDFs and CCDFs of individual object download comple-

tion times of each scheduler with three bandwidth configurations. In Figure 5.21(a),

with the symmetric regulated bandwidth (5.0 Mbps), we observe that all the sched-

ulers yields almost same download completion time: 98% of object downloads are

completed in similar time for all schedulers. As shown in Figure 5.21(b), with 1.0

Mbps WiFi and 5.0 Mbps LTE pair, ECF completes 99% of object downloads earlier

(at least in similar time) than the other schedulers. In this bandwidth pair, BLEST

yields almost the same performance as the default scheduler and DAPS does not

achieve any performance gain, as with the streaming and simple Web download ex-

periments. In Figure 5.21(c), we observe that as path asymmetry becomes larger,

ECF more explicitly exhibits smaller object download completion times than the

other schedulers, while DAPS and BLEST do not outperform the default scheduler.

Figure 5.22 presents the CDFs of the out-of-order delay that individual packets

experiences while the browser downloads web objects under the three bandwidth
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Figure 5.21. Web Object Download Completion Time (CDF & CCDF)

configurations. As with Figure 5.15 for the streaming cases, we observe that ECF

successfully mitigates out-of-order delay in Web browsing activities as path becomes

asymmetric.

110



 0.001

 0.01

 0.1

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

C
C

D
F

Out-of-Order Delay (seconds)

Default
DAPS

BLEST
ECF

(a) 5.0 Mbps WiFi and 5.0 Mbps LTE

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1  1.2

C
C

D
F

Out-of-Order Delay (seconds)

Default
DAPS

BLEST
ECF

(b) 1.0 Mbps WiFi and 5.0 Mbps LTE

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1  1.2

C
C

D
F

Out-of-Order Delay (seconds)

Default
DAPS

BLEST
ECF

(c) 1.0 Mbps WiFi and 10.0 Mbps LTE

Figure 5.22. Comparison of Out-of-Order Delay (Web Browsing)

5.5 Evaluation in the Wild

5.5.1 Experimental Setup

We next examine whether the ECF scheduler provides better performance than

the default scheduler in more realistic environments. We limit our comparison of

ECF with the default scheduler since the other schedulers do not exhibit consistent

improvement over the default scheduler in the previous experiments. To this end, we

deploy an MPTCP enabled server in Washington D.C. using IBM SoftLayer Cloud,

which uses the same configurations to the server for controlled in-lab experiments.

The mobile device communicates with the server over the Internet using a WiFi

access point (town public WiFi in Amherst, MA) and an LTE cellular interface from
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Figure 5.23. Streaming Experiments in Wild

AT&T. Note that in these experiments, the device uses each network as it is without

any additional bandwidth regulation.

5.5.2 Video Streaming in the Wild

We first explore the streaming performance over MPTCP using the default and

ECF schedulers in the wild configuration. We perform nine runs over two days us-

ing our streaming workload on the WDC server. Figure 5.23(a) shows the average

measured RTT for each run. Note that results are sorted by WiFi average RTT.

We observe that LTE has a consistent average RTT (around 70 ms). As shown in

Figure 5.23(a), runs 1 and 2 have similar WiFi and LTE RTTs, that is, both paths

are symmetric in terms of RTT, resulting in similar performance between the default

and ECF schedulers. Since there are significant differences between WiFi and LTE

RTTs in runs 4-9, the default scheduler is likely to experience throughput degradation

whereas ECF is not.

Figure 5.23(b) presents the average throughputs obtained by the streaming client

using the default and ECF schedulers. As expected, both schedulers yield similar

throughputs in runs 1 and 2. In later runs, the differences in RTT between WiFi

and LTE become larger, resulting in larger average throughputs for ECF than for the
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Figure 5.24. Web Object Download Completion Time - Experiments in Wild

default scheduler. However, both schedulers again obtain similar average throughputs

in run 9. Note that the WiFi subflow is the primary subflow and in run 9, the WiFi

average RTT is close to one second, which is more than ten times larger than the LTE

RTT. In this case, both schedulers only use the WiFi subflow for the first few packets

at the beginning of the HTTP GET response, resulting in similar performance. On

average, the ECF throughput is 7.79 Mbps while the default scheduler 6.72 Mbps, an

improvement of 16%.

5.5.3 Web browsing in the Wild

Next, we investigate the distribution of the object download completion times

when the device retrieves a copy of CNN’s home page at the WDC server, measured

over thirty runs. Figure 5.24 compares the CDFs and CCDFs of the individual object

download completion times of the default and ECF schedulers. The average statistics

are listed in Table 5.4. As shown in Figure 5.24, ECF yields smaller object download

completion times than the default scheduler. On average, ECF completes the object

downloads in 0.65 seconds, while the default scheduler requires 0.88 seconds, an im-

provement of 26%. In addition, while ECF completes 99.9% of object downloads in

around 17 seconds, the default scheduler does in 30 seconds.
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Download
Completion Time (sec)

Out of Order
Delay (sec)

Default 0.882 0.297
ECF 0.650 0.087

ECF Improvement 26% shorter 71% shorter

Table 5.4. Average Statistics of Web Browsing in the Wild
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Figure 5.25. Comparison of Out-of-Order Delay - Experiments in Wild

Figure 5.25 presents the CDFs and CCDFs of the out-of-order delay that individ-

ual packets experience. As shown in Figure 5.25, 99% of packets downloaded using

ECF experience smaller out-of-order delays than with the default scheduler. ECF

yields an average out-of-order delay of 0.087 seconds, while the default scheduler

yields an average of 0.297 seconds, an improvement of 71%. Only 0.2% of packets

downloaded using ECF exhibit slightly larger out-of-order delays than the largest

one using the default scheduler. We found that 0.2% is from twelve instances out of

approximately 27000 data points; these twelve packets suffer out-of-order delays of

approximately 2.5 seconds.

5.6 Related Work

Although the design of the MPTCP path scheduler significantly impacts per-

formance and quality of experience, there have not been many practical studies of
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improved MPTCP path schedulers that have been implemented and evaluated exper-

imentally.

Raiciu et al. [63] point out that path heterogeneity can result in performance

degradation due to head of line blocking or limited receive window size due to re-

orderings. To resolve these problems, they propose opportunistic retransmission and

penalization mechanisms, which are included in the Linux MPTCP Kernel implemen-

tation. These mechanisms have been evaluated in more detail in [53, 54].

Kuhn et al. [39] propose delay-aware packet scheduling for MPTCP. This approach

considers large path asymmetries in delay and stable CWND, but does not take

advantage of the send buffer. In addition, it is evaluated only by ns2 simulations.

Ferlin et al. [18] propose a scheduler to prevent fast subflow blocking due to path

asymmetry. Their scheduler waits for a fast subflow if during the RTT of the slow

path, the fast subflow can transfer more packets than the available space in the

connection-level send window. However, it does not consider idle fast subflow due to

nothing to send.

Yang et al. [78] suggest a scheduler that distributes traffic proportional to the esti-

mated path capacity. However, they only consider scenarios with very large transfers

in a network with a small amount of buffering.

Corbillion [10] propose a scheduler to improve streaming video performance over

MPTCP. They do not implement their approach and evaluate it only via simulation.

In addition, their solution requires modifying the video sending application to inte-

grate it with the MPTCP scheduler, whereas our approach is application-independent.

Nikravesh et al. [50] present a measurement study of MPTCP in the wild, and

propose MPFLEX, an architecture for supporting multipath over mobile networks.

However, MPFLEX is not compatible with MPTCP and requires modifications to

both the client and server.
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Han et al. [26] present MP-DASH, a framework for scheduling streaming video traf-

fic over MPTCP. They show that by exploiting knowledge of video streaming, traffic

can be scheduled so as to significantly reduce cellular usage and power consumption

with negligible degradation of QoE. Their approach, however, requires modifications

to both the client and server, and is focused solely on video traffic. ECF, in contrast,

is a server-side only modification, improving deployability, and works transparently

for multiple workloads, not just streaming video.

5.7 Conclusion

In this chapter, we demonstrated that the MPTCP default path scheduler de-

grades performance in the presence of path asymmetry, even with the reinjection

and penalization mechanisms. We identified the root cause of the problem: paths

are under-utilized due to idle periods and CWND resets caused by idle periods. To

resolve this problem, we proposed a novel MPTCP path scheduler (ECF) that pre-

dicts and avoids potential idle periods of fast paths given congestion window, round

trip time, and the amount of remaining transfer size. Our experimental results show

that ECF outperforms the existing schedulers in several scenarios with simple Web

downloads and with video streaming.
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CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

6.1 Thesis Summary

This thesis studied the MPTCP deployment issues in mobile devices. We first ex-

plored the performance degradation problem of MPTCP under mobile environment

with dynamic connectivity. We then investigate the MPTCP energy consumption

behavior using off the shelf mobile devices. Based on the MPTCP energy model,

we illustrate the tradeoffs in MPTCP between link bandwidth, transfer size, network

performance and energy consumption. Finally, we study the impact of path asymme-

try on MPTCP performance using several types of Internet traffic load such as video

streaming and Web browsing.

Chapter 2 presented a cross-layer path management scheme, called MPTCP-MA,

to mitigate the performance degradation caused by under-utilization of recovered

paths in mobile environment. MPTCP-MA exploits information from not only trans-

port layer but also medium-access-control and physical layer to estimate path status

and correspondingly control path usage. MPTCP-MA has been implemented in an

actual mobile device and evaluated with a mobile scenario. The experimental results

proved that MPTCP-MA successfully controls path usage to avoid excessive loss re-

lated procedures at the transport layer so that it can more quickly utilize recovered

paths, achieving higher throughput than standard MPTCP.

In Chapter 3, we conducted the measurement study on MPTCP energy consump-

tion behavior. The measurement has been done using off the shelf mobile devices

under various network conditions. Based on the collected measurement results, we
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developed the regression model to estimate MPTCP energy consumption given path

status and transfer size. The model was validated against the actual measured en-

ergy consumption of the mobile devices and the results demonstrated that the model

correctly estimates MPTCP energy consumption with small root mean square errors.

In Chapter 4, we further studied how to enhance MPTCP to reduce energy

consumption while preserving the gains from using multiple paths such as greater

throughput and robustness. Based on the energy model in Chapter 3, we explored

conditions under which MPTCP becomes more energy-efficient than either standard

TCP or MPTCP. This finding was the basis of the design of energy aware MPTCP,

called eMPTCP; eMPTCP seeks to choose path usage that provides better energy

efficiency given network conditions and transfer sizes. We evaluated eMPTCP ac-

cross a range of scenarios such as controlled in-lab and in-wild experiments. The

experimental results exhibited that eMPTCP appropriately controls path usage for

better energy efficiency; it achieves energy gain by suspending use of inefficient paths

in terms of energy.

In Chapter 5, we investigated the MPTCP performance issues in the presence of

path asymmetries. We figured out that the default path scheduler causes idle periods

with higher bandwidth paths, resulting in lower throughput than actual available

aggregate bandwidth. We developed and implemented the new MPTCP path sched-

uler, called ECF (Earliest Completion First), which predicts and avoids potential idle

periods of fast paths caused by use of slow paths given congestion window, round

trip time, and the amount of remaining transfer size. ECF was evaluated with sev-

eral traffic load such as video streaming, simple Web object downloads, and Web

browsing. The experimental results showed that ECF mitigates the under-utilization

of fast subflow due to their undesired idle periods while reducing out-of-order delay

from transport to application layer.
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6.2 Future Work

Video streaming such as YouTube and Netflix is one of the most popular applica-

tions in mobile devices, of which traffic accounts for around 40% of the peak mobile

downstream bytes in North America [68]. Such video streaming services operate over

HTTP and TCP using dynamic bit rate adaptation, Dynamic Adaptive Streaming

over HTTP (DASH), to provide high quality user experience in terms of streaming

quality and latency. Despite several state-of-art strategies to ensure good quality of

user experience in video streaming over standard TCP, relatively little work has been

done to study how video streaming behaves over MPTCP.

I will seek to improve on the state-of-art streaming applications working together

with MPTCP, incorporating the lessons from my thesis work. To this end, I will first

model the behavior of DASH applications according to streaming setup and network

conditions, such as traffic on-off cycle, that affects MPTCP performance in terms of

path utilization and energy efficiency. As a final goal of this study, based on the

analytical study on DASH behavior, I will develop and implement a framework for

mobile video streaming using MPTCP (mDASH), aimed at reducing energy consump-

tion as well as cellular data usage while preserving video streaming quality: mDASH

is an enhanced streaming scheme based on DASH, which collaborates with MPTCP

in order to provide improved user experience such as better streaming quality and

less energy consumption.
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