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ABSTRACT

INFERENCE FROM NETWORK DATA IN
HARD-TO-REACH POPULATIONS

FEBRUARY 2017

ISABELLE BEAUDRY

B.Sc., UNIVERSITÉ LAVAL

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Krista Gile

The objective of this thesis is to develop methods to make inference about the

prevalence of an outcome of interest in hard-to-reach populations. The proposed

methods address issues specific to the survey strategies employed to access those

populations.

One of the common sampling methodology used in this context is respondent-

driven sampling (RDS). Under RDS, the network connecting members of the target

population is used to uncover the hidden members. Specialized techniques are then

used to make inference from the data collected in this fashion. Our first objective

is to correct traditional RDS prevalence estimators and their associated uncertainty

estimators for misclassification of the outcome variable.

RDS also has the unusual characteristic that the participants are driving the

sampling process by recruiting members into the survey. Since the researchers forfeit

their control over the sampling process, the estimators are therefore susceptible to

vi



a great extent to participants’ behavioral induced biases. Our second objective is

therefore to provide a mathematical parametrization for a behavior referred to as

differential recruitment and subsequently adjust the inference for potential induced

bias.

Finally, a common issue encountered in the application motivating this thesis,

that is, HIV prevalence estimation, is the derivation of a national prevalence esti-

mate. Data are often collected at different study sites within a given country. Public

health officials however commonly report national prevalence. Therefore, our last ob-

jective consists of using Bayesian hierarchical models to derive a national prevalence

estimator from regional data.
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2.4.1 Hájek Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1.1 Sample Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1.2 Volz-Heckathorn Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1.3 Successive Sampling Estimator . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Salganik-Heckathorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2.1 Salganik-Heckathorn Estimator . . . . . . . . . . . . . . . . . . . . . 12
2.4.2.2 Relation Between µ̂SH and µ̂V H . . . . . . . . . . . . . . . . . . . . . 13
2.4.2.3 SH Estimator With Ego-Network Data . . . . . . . . . . . . . . . 14

2.4.3 Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



2.4.3.1 Salganik Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3.2 SH-ego’s Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3.3 Successive Sampling Bootstrap . . . . . . . . . . . . . . . . . . . . . . 16

3. MISCLASSIFICATION ON NODAL ATTRIBUTE . . . . . . . . . . . . . . . 18

3.1 Methods to Correct For Misclassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Corrected Prevalence Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1.1 Analytical Adjustment Estimator . . . . . . . . . . . . . . . . . . . 22
3.1.1.2 SIMEX MC Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Uncertainty of the Corrected Estimators . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2.1 Salganik Bootstrap Extensions . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2.2 Successive Sampling Bootstrap Extension . . . . . . . . . . . . 27

3.2 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Simulation Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1.1 Network, Sampling and Misclassification Rates
Simulation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1.2 SIMEX Misclassification Parameters . . . . . . . . . . . . . . . . . 32

3.2.2 Simulation Study: Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Simulation Study: Variance Estimates . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Application to High Risk Populations in India . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4. DIFFERENTIAL RECRUITMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Design-Based Inference - Random Walk Approximation . . . . . . . . . . . . . . . 50

4.2.1 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Sampling Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Extended Design-Based Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Bayesian Inference - Successive Sampling Approximation . . . . . . . . . . . . . . 62

4.3.1 Likelihood For the Network and Sampling Parameters . . . . . . . . . . 63

4.3.1.1 Successive Sampling With Differential
Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



4.3.1.2 Super-population Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Full Conditional Distributions For Gibbs Sampler . . . . . . . . . . . . . . 71

4.3.2.1 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2.2 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2.3 Prior Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Uncertainty of The Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Design-Based Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Bayesian Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1 Simulation Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1.1 Network Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.1.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.1.3 MCMC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.2 Results: Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.3 Results: Variance Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5. NATIONAL PREVALENCE ESTIMATION . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Survey Prevalence Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Population Size Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.3 Additional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Prevalence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.2 Population Size Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.3 National Prevalence Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Prevalence Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Population Size Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.3 National Prevalence Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

x



5.5 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

APPENDICES

A. PERFORMANCE OF THE ANALYTICAL ADJUSTMENT
WITH THE SALGANIK-HECKATHORN ESTIMATOR . . . . . 113

B. ADDITIONAL RESULTS FROM MISCLASSIFICATION
SIMULATION STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C. NATIONAL PREVALENCE ESTIMATION
SUPPLEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xi



LIST OF TABLES

Table Page

3.1 Network and sampling features included in the simulation study
scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Number of sites for which the estimate without misclassification lies
inside the 95% confidence interval, out of a total of 15 PWID and
11 MSM sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Parametrization of the three forms of differential recruitment (DR)
under the RW scheme. Si,t indicates if node i is sampled at step t
of the RW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Summary of RDS design-based estimators under various recruitment
regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Transition probabilities used in the bootstrap procedure for the
extended design-based estimators under various recruitment
regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 RMSE for the extended estimators under S1-S6. The RMSE’s in bold
indicates that the method is in the best set of estimators for a
particular scenario based on Bonferroni pairwise comparison at a
family-wise error rate of 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 In-sample predictive accuracy and DIC for prevalence models . . . . . . . . . 107

5.2 In-sample predictive accuracy and DIC for population size
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Posterior estimates and 95% CI for β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Comparison of national prevalence estimates . . . . . . . . . . . . . . . . . . . . . . . 111

xii



B.1 Absolute average bias, standard deviation and RMSE for the naive
and corrected estimators under S1-S3 with fixed and uncertain
misclassification rates. The RMSE’s in bold indicates that the
method is in the best set of correction methods for a particular
scenario and estimator based on Bonferroni pairwise comparison
at a family-wise error rate of 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xiii



LIST OF FIGURES

Figure Page

2.1 Transition probability matrix (b) for a random walk on the nodes of
the network depicted in (a) under a random recruitment regime. . . . . . 8

3.1 Estimates under the three scenarios summarized in Table 3.1 and
under known and uncertain misclassification rates. The estimates
were calculated based on the observed data (µ̂naive) and on the
observed data but adjusted for misclassification with the
correction methods (µ̂adj, µ̂lin and µ̂quad). A “*” on the horizontal
axis indicates that the method is in the set of methods producing
the least biased estimates based on a Bonferroni pairwise
comparison at a family-wise error rate of 5%. The horizontal lines
are set at the average estimates based on the true infection
statuses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Standard deviation estimation and 95% confidence interval coverage
results for µ̂V H , µ̂SH and µ̂SS and for the various versions of the
Bootstrap procedures under S1 to S3 with known or uncertain
misclassification rates. The notation ‘adj”, “lin” or “quad”
indicates whether the variance is being estimated for µ̂adj, µ̂lin or
µ̂quad whereas “c.” and “w.” refers to the first and second
bootstrap extensions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Point estimate relative bias as a function of the false negative rates
for PWID and MSM for a) 15 PWID sites and b) 11 MSM sites of
the studies conducted in India. The estimates using the naive and
the corrected estimators are shown for the Volz-Heckathorn, the
Salganik-Heckathorn and the Successive Sampling estimators. . . . . . . . 43

4.1 Transition probability matrix (right) for a random walk on the nodes
of the networks depicted on the left with three forms of
differential recruitment of magnitude two (φ = 2). . . . . . . . . . . . . . . . . . 55

4.2 Example of edge-ends in a configuration network model. . . . . . . . . . . . . . . 65

4.3 Socio-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xiv



4.4 Estimates produced with varying level of network homophily, that is,
τ ∈ {1, 5}, (horizontal panels) and between group differential
recruitment, that is, φ ∈ {1, 2, 4} (vertical panels). Estimators are
presented in the following order: µ̂V H , µ̂bV H.dr, µ̂SH , µ̂egoSH , µ̂bSH.dr,
µ̂SS and µ̂bSS.dr. The blue horizontal line represents the true
population prevalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Design-based estimates produced under three forms of differential
recruitment (vertical panels). Networks are simulated with τ = 1
and samples with φ = 2. µ̂V H is compared with the corresponding
µ̂V H.dr in the upper horizontal panel and µ̂SH with µ̂egoSH , and
µ̂SH.dr in the lower panel. The blue horizontal line represents the
true population prevalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Standard deviation estimation and 95% confidence interval coverage
results for using the bootstrap procedures for the various versions
of µ̂V H , µ̂SH and µ̂SS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Survey prevalence estimates yi (data) along with their 95%
confidence intervals. The prevalence are grouped by regions and
shown separately for the two key populations. . . . . . . . . . . . . . . . . . . . . 97

5.2 KP1 prior and posterior distributions (θ and µθ) . . . . . . . . . . . . . . . . . . . . 104

5.3 95% predictive intervals (PI) for the prevalence of the two key
populations along with the observed prevalence estimates yi
depicted by red dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 95% predictive intervals (PI) for the population size estimates
expressed as a proportion of the reference population. Model 1
PI’s are depicted with the lighter lines and model 2 PI’s with
thicker lines. Dashed lines represents the observed data. . . . . . . . . . . 109

A.1 Relation between c∗ and c under the three scenarios of the simulation
study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.1 Relative decrease in the average RMSE for the Volz-Heckathorn
estimator under S1 as a function of the average misclassification
bias in the estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Misclassification error remaining in the VH estimates (µ̂V H) after
applying the analytical adjustment for S1 to S3 as a function of
the inaccuracy in the error rates (either f+ or f−). The dash line
represents the average misclassification bias in the naive point
estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xv



C.1 Observed prevalence estimates and their standard deviation along
with posterior prevalence estimates under six models for two key
populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.2 95% predictive intervals (PI) for the prevalence of key population 1
along with the observed prevalence estimates yi depicted by red
dots under six models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.3 95% predictive intervals (PI) for the prevalence of key population 2
along with the observed prevalence estimates yi depicted by red
dots under six models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xvi



CHAPTER 1

INTRODUCTION

Public health organizations, such as the Center for Disease Control and Preven-

tion (CDC) and UNAIDS closely monitor the progression of HIV worldwide. HIV

surveillance allows, among other things, to efficiently allocate resources to limit the

number of new infections and provide care and treatment for people living with HIV.

In concentrated epidemics, HIV disproportionately affects sub-groups of the gen-

eral population such as people who inject drugs, men who have sex with men and

sex workers. Belonging to those key populations is frequently associated with a so-

cial stigma. Being a member of those key populations is even considered illegal in

some geographies. Therefore, a sampling frame rarely exists for those populations,

making the sampling particularly challenging and many traditional sampling methods

prohibitively expensive.

The methods discussed in this thesis are developed to address some issues related

to the inference about the prevalence of an outcome variable, such as HIV, in the

specific context of hard-to-reach populations. In particular, the suggested methods

take into account some of the sampling strategies to collect information about those

populations.

One of the sampling strategy that may be employed for populations well connected

by a social network is link-tracing network sampling. In idealized cases [Goodman,

1961, Handcock and Gile, 2011], the resulting sample is a probability sample, how-

ever practical constraints typically interfere, resulting in convenience sampling. For

example, an initial probabilistic sample is impractical in most settings [Trow, 1957,
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Biernacki and Waldorf, 1981] and therefore, a link-tracing or snowball sample col-

lected from that initial convenience sample results in a non-probability sample of the

target population [Trow, 1957, Handcock and Gile, 2011].

Respondent-Driven-Sampling (RDS) however, is a specialized form of link-tracing

sampling design introduced by Heckathorn [1997] as a practical sampling method

to be approximated as a probability sample. Since this sampling process protects

participants’ confidentiality, it has been widely adopted by public health organizations

[Johnston et al., 2008].

Inference from RDS data typically assumes that the outcome variable is measured

accurately. The first methodological chapter in this thesis discusses the effect of

misclassification on the binary outcome variable of interest. Also, two methods to

correct the prevalence estimation are discussed, that is, the matrix method [Barron,

1977] and SIMEX-MC Kuchenhoff et al. [2006], as well as the circumstances under

which they may be used with the traditional RDS estimators. Uncertainty estimators

are also derived to account for misclassification.

As described in Chapter 4, participants in RDS studies are responsible for selecting

most of the survey participants. Researchers conducting RDS surveys have little to

no control over the sampling process. Most RDS prevalence estimators however rely

on the strong assumption that participants recruit completely at random among their

contacts who are members of the target population. In the second methodological

chapter of this thesis, we propose extensions to RDS prevalence estimators to correct

for bias induced by various recruitment behaviors. A design-based and a model-based

approach are proposed to reduce this type of bias.

The third methodological question investigated in this thesis relates to the deriva-

tion of a national prevalence estimate and is not specific to RDS data. In many cases,

public health practitioners survey key populations at different study cites within a

country. The obtained multiple prevalence estimates must subsequently be combined
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into a national estimate for reporting purposes. The contribution of our work to that

research question is to propose a national prevalence estimator based on Bayesian

hierarchical models.

In summary, the thesis is organized as follows. Chapter 2 presents the RDS

sampling methodology and includes a literature review of the traditional RDS preva-

lence estimators. It is followed by Chapter 3 which discusses methods to correct

RDS prevalence estimators for misclassification on the outcome variable. Proposed

methodologies to adjust inference for participants’ non random recruitment behaviors

are then discussed in Chapter 4. Finally, a Bayesian hierarchical model combining

regional prevalence estimates into a national estimate is described in Chapter 5.
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CHAPTER 2

RESPONDENT-DRIVEN SAMPLING

Respondent-Driven-Sampling (RDS) [Heckathorn, 1997], is a network based sam-

pling procedure designed to sample hard-to-reach populations when members of such

populations are well socially connected. We begin this chapter by describing the RDS

methodology. Then, we briefly introduce in Section 2.2 the notation used throughout

this thesis. It is followed in Section 2.3 by a description of common simplifying mod-

els to represent RDS for inference purposes. Finally, we present a number of RDS

prevalence estimators and their associated uncertainty estimators in Section 2.4.

2.1 Sampling Methodology

This section outlines the procedure to collect a respondent-driven sample. As-

suming that the studied human population is connected by a social network, the

objective of RDS is to leverage this relational structure to reach members who would

not otherwise be accessible through a conventional sampling framework. Typically,

researchers select the initial participants, the seeds, through convenience sampling.

Once the seeds are enrolled in the survey, they receive a small number of uniquely

identified coupons to distribute among their social ties in the target population. In-

dividuals receiving coupons who return to the survey center are enrolled in the study.

The individuals who were recruited from the seeds are said to be part of the first wave

of recruitment. The subsequent waves occur in the same fashion, that is, participants

in each wave are given the same number of coupons to distribute to their contacts

until a desired sample size is achieved. By restricting the number of referrals per par-
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ticipant, a given sample size forces samples many steps away from the initial sample,

reducing the dependence of the final sample on the initial convenience sample. The

respondents commonly receive a small financial incentive both for their participation

and for each successful recruitment. Finally, the coupon mechanism helps diminish

serious confidentiality issues related to the recruitment of stigmatized populations,

contributing to its wide adoption by public health organizations.

All RDS participants are asked to report on their number of contacts in the target

population, their self-reported degree. Similarly to other link-tracing samples, RDS

allows the recruitment of individuals otherwise unknown to researchers.

2.2 Notation

Suppose a hard-to-reach human population consists of N individuals, also called

the nodes of the network. We assign the labels 1, 2, ..., N to the nodes. This pop-

ulation of N nodes is connected by social ties which may be represented by a so-

ciomatrix Y ∈ {0, 1}N×N . Entries in the sociomatrix, yij, are equal to 1 if nodes i

and j are connected or 0 otherwise. Ties are assumed to be reciprocated such that

yij = yji ∀ i, j ∈ {1, 2, ..., N}.

The outcome of interest is represented by a vector z ∈ {0, 1}N . We refer to the

outcome of interest as the “infection status” since RDS studies have found many

applications in public health settings, such as HIV/AIDS surveillance of at-risk pop-

ulations [Johnston et al., 2008, Malekinejad et al., 2008, Montealegre et al., 2013].

However, z may be interpreted as any binary vector of length N. The i− th entry of

this vector is such that:

zi =

 1 person i is infected

0 otherwise.
i ∈ {1, 2, ..., N}
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Note that z represents the true infection status, typically assumed to be observ-

able. We introduce notation for the misclassification of z in Chapter 3. Finally, we

define the set of infected individuals and uninfected individuals as Z1 = {i : zi = 1}

and Z0 = {i : zi = 0}, respectively.

The RDS estimators described in the remainder of this section estimate the preva-

lence of the infection status in the target population. The actual population preva-

lence is denoted µ. RDS estimates are based on a sample of n individuals for whom

the self-reported degree is observed and is assumed to be equal to the true degree

di =
∑N

j=1 yij. The vector S ∈ {0, 1}N indicates whether the nodes were sampled

such that:

Si =

 1 person i has been sampled

0 otherwise
i ∈ {1, 2, ..., N}.

Similar to notation for infected individuals, we define the set of sampled nodes as

S1 = {i : Si = 1}.

2.3 Approximating RDS

Respondent-driven sampling is a complex sampling method and estimating the

probability of sampling any given individuals from the target population is a chal-

lenging problem since a large portion of the network typically remains unobserved.

RDS prevalence estimators commonly rely on simplifying models to approximate the

RDS mechanism. In this Section, we describe two of these simplifications, that is,

a discrete Markov chain on the network nodes and probability proportional to size

without replacement sampling (PPSWOR) or equivalently successive sampling (SS)

[Yates and Grundy, 1953].
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2.3.1 Discrete Markov Chains

A number of RDS prevalence estimators assume that RDS may be well approxi-

mated by a discrete Markov chain (MC) on the state space of the network nodes [Sal-

ganik and Heckathorn, 2004, Volz and Heckathorn, 2008, Lu, 2013]. Conceptually, the

transition from one state (e.g. node i) to another state (e.g. node j) represents peer

recruitment (e.g. i recruited j) as if nodes may only recruit one participant. Further-

more, even though in reality members of the target population may only participate

once in RDS studies, this model allows for multiple participation. Participants are

also assumed to recruit completely at random among all their contacts in the target

population, that is, among their alters. In addition, these estimators typically assume

that the recruitment process occurs on a single component network solely constituted

of reciprocated ties. In summary, RDS is represented by a random walk (RW) on a

the nodes of a fully connected undirected network.

The probability of node j entering the survey at step t under this RW model

strictly depends on the recruiter i at step t−1. Let P denote the transition probability

matrix of a RW and pij the entry on the i-th row and j-th column. Since node i is

constrained to recruit among its alters, the probability that node j is selected at step

t conditional on recruiter i is equal to pij = yij/di for all i and j ∈ {1, 2, ..., N}.

Figure 2.1 illustrates a simple example of a transition probability matrix charac-

terizing the RW on the nodes of the undirected network showed in panel (2.1a). The

probability in any given cell pij is the conditional probability of transitioning to node

j (column) given chain’s current state i (row).

Under the presumed network structure, the MC is irreducible. Furthermore, the

with-replacement assumption effectively leads to the positive recurrence of all states

of the MC. The combination of these properties results in the existence of a unique

stationary distribution denoted π. Under random recruitment, it may be proven that

the stationary distribution of this RW on the network node is as stated in Result 2.1.
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(a) Small Network (b) Transition matrix P

Figure 2.1: Transition probability matrix (b) for a random walk on the nodes of
the network depicted in (a) under a random recruitment regime.

Result 2.1. Let RWt denotes the state at step t of a MC on the nodes of a fully

connected undirected network without self ties. Assume that this MC has the following

transition probabilities: pij =
yij
di

. Then the stationary distribution of this random

walk is such that:

πi =
di∑N
i=1 di

∝ di for ∀ i ∈ {1, 2, ..., N}. (2.1)

The resulting stationary distribution may be interpreted as the proportion of time

the process visits each state in the long run. The RDS estimators developed under

this framework assume the sampling starts at stationarity. This implies that the seed

is selected with a probability proportional to its degree. If this holds, all participants’

sampling probabilities are proportional to their degree. In other words, the more

people someone is connected to, the greater the chances this person is recruited and

participates in the study.
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2.3.2 Successive Sampling

The RW approximation to RDS provides a convenient model to make inference

with RDS data. However it over simplifies many features of the RDS process. Re-

cent work has relaxed some of the RW assumptions. The Successive Sampling (SS)

representation of RDS proposed by Gile [2011], for example, captures the without

replacement nature of the RDS sampling.

Under an SS or PPSWOR process, units in a population are sampled without

replacement and with sampling probability proportional to its unit size from among

the remaining unsampled units. Let u = {u1, u2, ..., uN} denote the sizes of all units

in the population and let G = {G1, G2, ..., Gn} denote the order in which the units

are sampled. The transition probabilities of such an SS process are as follows:

P (Gi = i|G1, G2, ..., Gi−1 = (g1, g2, ..., gi−1), U = u)

=


ui∑N

j 6∈{g1,g2,...,gi−1} uj
i 6∈ {g1, g2, ..., gi−1}

0 i ∈ {g1, g2, ..., gi−1}
(2.2)

Determining the unit sizes of all members in the target population is therefore

central to the parametrization of an SS process. For the SS approximation to RDS,

Gile [2011] argues that the unit sizes are equal to the individuals’ degree. This finding

assumes that the SS takes place over the nodes of all networks generated from a

configuration network model [Molloy and Reed, 1995] with a fixed degree distribution

and that participants recruit at random. These unit sizes are then used in a algorithm

which jointly estimates the sampling probabilities and the degree distribution.

2.4 Existing Methodology for Respondent-Driven Sampling

The random walk and successive sampling approximation to RDS are used to de-

rive the sampling probabilities for each individuals participating in the RDS survey.
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Those probabilities are then used to make inference about the prevalence of an out-

come variable such as the prevalence of HIV in the target population. In this section,

we describe some of these RDS prevalence estimators and their associated variance

estimators.

2.4.1 Hájek Estimator

A number of design-based estimators have been developed for RDS data to esti-

mate the prevalence of an outcome variable, µ =
∑N

i=1 zi
N

. Several of those estimators

are closely related to the Hájek estimator:

µ̂Hájek =

∑N
i=1

Sizi
πi∑N

i=1
Si

πi

, (2.3)

where πi is the sampling probability for individual i.

Due to the complexity of RDS, the sampling probabilities are unknown. A number

of methodologies have been proposed to estimate them. We refer to an estimator of

the Hájek form but based on estimated sampling probability as an estimator of the

Hájek style. Such an estimator is of the form:

µ̃Hájek =

∑N
i=1

Sizi
π̂i∑N

i=1
Si

π̂i

. (2.4)

The sample mean, the Volz-Heckathorn estimator [Volz and Heckathorn, 2008] and

the Successive Sampling estimator [Gile, 2011] all are of the Hájek style and rely on

distinct methodologies to estimate the sampling probabilities. These methodologies

are described in Section 2.4.1.1 - 2.4.1.3. Next, in Section 2.4.2, we present the esti-

mator introduced by Salganik and Heckathorn [2004], which under certain conditions,

may also be formulated as an estimator of the Hájek style.
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2.4.1.1 Sample Mean

The naive approach to making inference with RDS data is to consider the sam-

ple mean as an estimator for the total population mean. This implicitly assumes a

common sampling probability for all members in the target population. However,

this assumption almost never holds in practice in the context of RDS. Therefore, the

sample mean estimator is not expected to perform well in most circumstances. The

estimator shown in equation (2.4) with constant sampling probabilities results in the

sample mean:

µ̂mean =

∑N
i=1 Sizi∑N
i=1 Si

. (2.5)

2.4.1.2 Volz-Heckathorn Estimator

The Volz and Heckathorn [2008] estimator is an estimator of the Hájek style which

is based on the RW approximation to RDS as described in Section 2.3.1. The authors

therefore argue that the sampling probabilities are proportional to the nodal degrees,

di and the resulting prevalence estimator is as follows:

µ̂V H =

∑N
i=1 Si

zi
di∑N

i=1 Si
1
di

. (2.6)

2.4.1.3 Successive Sampling Estimator

The Volz-Heckathorn estimator relies on the strong assumption that the sampling

is performed with replacement. However, in practice this assumption is violated as

members of the target population are only allowed to participate once in the survey.

The contribution of the Successive Sampling estimator [Gile, 2011] is to address this

issue. The sampling procedure is instead approximated by a SS process. The resulting

µ̂SS outperforms µ̂V H for large sampling fractions.

This estimator uses a successive sampling procedure [Yates and Grundy, 1953]

with unit size equal to degree to estimate the sampling probabilities jointly with the

population degree distribution. The author suggests an algorithm iterating between
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the estimation of the population degree distribution and the inclusion probabilities.

The obtained estimated sampling probabilities are then used in the expression for

estimators of Hájek style (2.4).

2.4.2 Salganik-Heckathorn

2.4.2.1 Salganik-Heckathorn Estimator

The estimator introduced by Salganik and Heckathorn [2004] relies on the argu-

ment that if all ties are reciprocated, then the total number of ties from infected

to uninfected individuals equals the total number of ties from uninfected to infected

individuals. This quantity is referred to as the number of cross ties and is denoted

T(k,1−k) =
∑N

i=1

∑N
j=1 zi(1− zj)yij for k ∈ {0, 1}. Multiplying by terms which conve-

niently cancel out leads to this alternate expression for the number of cross-ties:

T(k,1−k) = p(k,1−k) · D̄k · (µk + (1− µ)(1− k)) · N, (2.7)

where:

1. k ∈ {0, 1},

2. p(k,1−k) =
∑N

i=1

∑N
j=1 zi(1−zj)yij∑N

i=1

∑N
j=1(kzi+(1−k)(1−zi))yij

, i.e. the proportion of cross-ties for nodes

belonging to Zk.

3. D̄k =
∑N

i=1

∑N
j=1(kzi+(1−k)(1−zi))yij

|Zk| , the average degree of nodes belonging to Zk.

Using the argument that all ties are reciprocated, and thus T(0,1) equals T(1,0),

and equation (2.7) the following expression for the actual population proportion is

obtained:

µ =
p(0,1)D̄0

p(1,0)D̄1 + p(0,1)D̄0

. (2.8)

The quantities in equation (2.8) are not directly observable from a sample. How-

ever, the authors argue that they may be estimated from the collected data. The
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methodology they proposed assumes that RDS may be reasonably well represented

by a with-replacement random walk on the space of network nodes at stationarity. Be-

cause of the implied unform distribution of edge sampling, the cross-ties proportions,

p(k,1−k), may be estimated from the observed recruitment patterns, such that:

p̂(k,1−k) =
r(k,1−k)

r(k,1−k) + r(k,k)

, (2.9)

where r(k,1−k) and r(k,k) are the number of recruitment from nodes belonging to

{Zk,S1} to nodes belonging to {Z1−k,S1} and {Zk,S1}, respectively, for k ∈ {0, 1}.

The random walk assumption also leads to the average degrees, D̄0 and D̄1, to be

estimated as follows:

ˆ̄Dk =
nk∑N

i=1 Si
(kzi+(1−k)(1−zi))

di

, (2.10)

where nk = |{Zk,S1}|. The following expression for the estimator µ̂SH is therefore

derived by substituting p(k,1−k)’s by p̂(k,1−k)’s and D̄k’s by ˆ̄Dk’s in expression (2.8):

µ̂SH =
p̂(0,1)

ˆ̄D0

p̂(1,0)
ˆ̄D1 + p̂(0,1)

ˆ̄D0

, (2.11)

which may be expressed as:

µ̂SH =

∑N
i=1 Si

zi
di∑N

i=1 Si
zi
di

+ c
∑N

i=1 Si
(1−zi)
di

, where c =

(
n1

n0

r(0,0) + r(0,1)

r(1,1) + r(1,0)

r(1,0)

r(0,1)

)
. (2.12)

2.4.2.2 Relation Between µ̂SH and µ̂V H

In this section, we establish a relation between µ̂SH and µ̂V H .

The Salganik-Heckathorn estimator may be formulated as a function of the Volz-

Heckathorn estimator:

µ̂SH =
µ̂V H

µ̂V H + c (1− µ̂V H)
. (2.13)
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The value c in the above relation has a number of important implications. First,

we observe that for c = 1, µ̂SH = µ̂V H , or equivalently, the Salganik-Heckathorn

estimator is of the Hájek style. Secondly, c approaches 1 under the assumption that

the sampling may be approximated by a Markov Chain at stationarity. However, c

may significantly differ from 1 in RDS data.

2.4.2.3 SH Estimator With Ego-Network Data

The extension of the SH estimator proposed by Lu [2013] provides an improved

estimator for the proportion of cross-ties, that is, p̂(k,1−k). In lieu of estimating this

proportion with the observed recruitment patterns as shown in equation (2.9), Lu

proposed to estimate this proportion with a generalized Hansen and Hurwitz [1943]

estimator. This procedure however requires the collection of ego-network composition

data. In the context of this estimator, the ego-network composition data refers to the

number of ties in the target population to infected individuals (di1). More specifically,

the introduced estimator is as follows:

p̂ego(k,1−k) =

∑N
i=1 Si(kzi + (1− k)(1− zi))

di1−k
di∑N

i=1 Si(kzi + (1− k)(1− zi)
, (2.14)

where dik =
∑

j 6=i yij(kzj+(1−k)(1−zj)) and k ∈ {0, 1}. For instance, the estimated

proportion of cross-ties from a non-infected individuals is:

p̂ego(0,1) =

∑N
i=1 Si(1− zi)

di1
di∑N

i=1 Si(1− zi)
=

∑N
i=1 Si(1− zi)

di1
di∑N

i=1 Si(1− zi)
di
di

. (2.15)

In that expression, the numerator and the denominator represent estimates, up to

the same constant of proportionality, of the total degree to infected individuals di1

and total degree to the entire population di, respectively, for uninfected individuals.

14



The form of the estimator is identical to the earlier version of the SH estimator.

However p̂(k,1−k) is substituted by p̂ego(k,1−k) in the derivation of equation (2.12). Impor-

tantly, both estimators assume that RDS may be approximated by a random walk at

stationarity on the space of the network nodes.

Similarly to µ̂SH , µ̂egoSH may be expressed as a function of the µ̂V H such that:

µ̂egoSH =
µ̂V H

µ̂V H + cego (1− µ̂V H)
, where cego =

n1

n0

( ∑N
i=1 Sizidi0/di∑N

i=1 Si(1− zi)di1/di

)
. (2.16)

2.4.3 Variance Estimation

2.4.3.1 Salganik Bootstrap

In this section, we describe the bootstrap procedure proposed by Salganik [2006]

to estimate the variability of RDS estimators. Since RDS does not produce a clas-

sic probability sample, Salganik introduced a non-parametric bootstrap that would

capture the recruitment dependencies between infected and non-infected nodes. The

algorithm consists of the following steps:

1. Resampling A new RDS sample is drawn from the observed data:

(a) A first node is selected at random among all nodes in the observed RDS

sample.

(b) Two vectors are constructed: w0 and w1 ∈ {0, 1}n. The ith entry in each

vector indicates whether node i was recruited by a non-infected or by an

infected node, respectively.

(c) Nodes are subsequently resampled node-by-node by sampling at random

with replacement with weights proportional to w0 if the infection status of

the recruiting node is non-infected or proportional to w1 otherwise. The

resampling is performed with replacement.

(d) The process stops when n nodes are recruited.
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2. RDS estimates: A prevalence estimate is calculated based on the resampled

data from step 1.

3. Confidence Interval for µ: Steps 1 and 2 are repeated a large number of

times. For the purpose of this paper, the variability of the resulting resampled

estimates is used to construct t-intervals.

2.4.3.2 SH-ego’s Bootstrap

The variance estimator for µ̂egoSH proposed by Lu [2013], that is, the SH-ego Boot-

strap, extends the Salganik Bootstrap procedure described above in two ways. First,

the author modifies the sampling weights to sample from the revised estimated sta-

tionary distribution of the random walk. For instance, after selecting the first node

i1 at random, the random walk transitions to a node of status 1 − k with probabil-

ity p̂ego(k1,1−k) or to a node of status k with probability 1 − p̂ego(k1,1−k), where k1 = zi1 .

Subsequent re-sampled nodes are selected in a similar manner, where transition prob-

abilities are sequentially updated to appropriately reflect the infection status of the

recruiting node. The second extension simply substitutes the prevalence estimator

µ̂SH in the RDS estimates step by µ̂egoSH .

2.4.3.3 Successive Sampling Bootstrap

The Successive Sampling Bootstrap (SS Bootstrap) is a procedure that was pro-

posed by Gile [2011] to estimate the variance of µ̂SS, described in Section 2.4.1.3.

The SS Bootstrap procedure is based on a sampling model similar to the one

assumed for the Successive Sampling estimator (µ̂SS), but it allows for additional

RDS features, such as multiple seeds and a fixed number of recruits per participants.

It is also formulated to capture network homophily on the infection status.

In order to simulate sampling under Successive Sampling design [Yates and Grundy,

1953], the unit size of each element in the population is required. Therefore, each SS
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Bootstrap replicate is initiated by the simulation of a unit size distribution, i.e. the

degree distribution, of a population of N individuals. This distribution is also divided

between the infection status classes, i.e. infected or uninfected, so an RDS estimate

may be computed.

The author argues however that drawing a successive sample based on these units

would likely result in anti-conservative estimates of the variance. Consequently, she

extended the proposed methodology to account for network homophily on the infec-

tion status. The homophily is represented by an estimated mixing matrix partitioned

relative to the infection status, which is estimated based on the observed recruitment

patterns.

The resampling process stops when n nodes are sampled. An RDS prevalence

estimate based on the bootstrap sample is calculated. This process is repeated a

large number of times. The SS Bootstrap variance estimator is the sample variance

of the RDS estimates from the replicates.
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CHAPTER 3

MISCLASSIFICATION ON NODAL ATTRIBUTE

RDS is a novel sampling mechanism and inference from RDS data relies on a num-

ber of strong assumptions regarding the network properties and the sampling process.

Due to the great interest in this sampling methodology, the research community has

made significant progress in understanding some of the critical RDS assumptions.

Various concerns have been raised regarding the participants’ self-reported de-

gree accuracy since current methodology heavily relies on this metric. For instance,

researchers have studied whether relationships may safely be assumed to be recipro-

cated [Mccreesh et al., 2012, Rudolph et al., 2013] and the potential sensitivity of the

estimators to directed ties Lu et al. [2012]. Lu et al. [2013] proposed an extension

of the Salganik and Heckathorn [2004] which accounts for directed ties. Another as-

sumption related to the degrees is that participants are commonly presumed to report

their degree accurately. Several studies have recently assessed the impacts of inaccu-

rately self-reported degrees on RDS estimators [Lu et al., 2012, Rudolph et al., 2013],

finding that RDS estimators are robust to many forms of mis-reporting of degrees,

but subject to bias in special circumstances such as when mis-reporting patterns are

related to the outcome of interest or when respondents report degrees rounded to

multiples of five, ten and one hundred [Mills et al., 2014].

To date, however, the assumption that the outcome of interest is measured ac-

curately has not been discussed in the context of RDS data. In this chapter, we

show that neglecting such misclassification may lead to biased estimates. This may

be a source of concerns for many RDS studies. For instance, dozens of RDS studies
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have been implemented to estimate HIV prevalence among key populations [John-

ston et al., 2008, Malekinejad et al., 2008, Montealegre et al., 2013]. Accuracy of HIV

diagnosis is considered crucial in that erroneous results may lead to severe repercus-

sions for misdiagnosed individuals [Smith et al., 2008] and to serious consequences

for epidemic prevention [Marks et al., 2005]. As pointed out by the World Health

Organization in their recent consolidated guidelines on HIV testing services [World

Health Organization, 2015], HIV misdiagnoses have occurred in numerous settings

nonetheless.

The main contribution of this chapter is to extend two existing methods for in-

ference in the presence of misclassification to the dependent-sampling weighted-data

case of RDS. The first method is an analytical adjustment, also referred to as the

matrix method [Barron, 1977], to correct a population proportion.

Despite the fact that it is not possible to assume independence and identical dis-

tribution for the sampled units in RDS studies, we demonstrate that this correction

is applicable to RDS estimators of the Hájek style such as the sample mean, the Volz-

Heckathorn estimator [Volz and Heckathorn, 2008] and the Successive-Sampling esti-

mator [Gile, 2011]. We also introduce a novel formulation for the Salganik-Heckathorn

estimator [Salganik and Heckathorn, 2004]. This formulation elucidates the reasons

for the suboptimal performance of the analytical adjustment with this estimator. We

then discuss the Simulation Extrapolation Misclassification (SIMEX MC) [Kuchen-

hoff et al., 2006] approach which does not rely on the form of the estimator, but

instead requires that the estimator may be expressed as a function of the misclassi-

fication error present in the data. Both methods assume a classical misclassification

model with known error rates. As the error rates may not be known in practice but

instead estimated from external validation studies for instance, we assess the effect

of uncertain error rates on the correction methods’ ability to reduce misclassifica-
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tion bias in our simulation study. We also extend two RDS Bootstrap uncertainty

estimation procedures to account for misclassification.

We have applied the correction methods to RDS surveys conducted in India among

people who inject drugs and men who have sex with men. In those studies, the

participants were asked to answer questions regarding their knowledge of their HIV

infection status. In addition, on-site biological testing was performed to determine

their actual HIV infection status. The self-reported data contained substantial false

negative rates as participants were largely unaware of their infection status. Their

lack of knowledge of their infection status may occur for a number of reasons, such as

the fact that they may not have been tested recently. In our application, we address

the challenge of inference based on only the self-reported HIV status and known error

rates. We compare our results to analysis based on biological test data. We find that

inference from self-reported data may be significantly improved when applying the

correction methods discussed in this paper.

In Section 3.1 we describe the two correction methods as well as our proposed

methodology to estimate the variance of the corrected estimators. In Section 4.5,

we present a simulation study illustrating the performance of the proposed methods.

Section 3.3 discusses the results from the RDS application in India. Finally, in Section

3.4, we present a discussion of the proposed methods.

3.1 Methods to Correct For Misclassification

In many contexts, it is not possible to directly observe the outcome variable zi. For

example, the medical procedure to determine the infection status of an individual may

not be perfectly accurate. Failure to account for misclassification may lead to biased

estimates. In this section, we describe two methods to adjust RDS estimators for

bias resulting from misclassification on a binary nodal attribute. We first introduce

an analytical adjustment for estimators of the Hájek style. Then, we describe the
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Simulation-Extrapolation Misclassification algorithm, as it may be applied to RDS

prevalence estimators. Finally, we also propose methods to estimate the variance of

the corrected estimators.

Before describing adjustments for measurement error, we need to introduce the

error-prone binary random variable Z∗i which takes value one if the observed infection

status is positive and zero otherwise. The observed infection status may differ from the

actual one. Our approach assumes that the risk of misdiagnosis occurs at known false

positive and false negative rates, f+ and f−. These probabilities are the conditional

probability of observing a positive or negative infection status when the actual status

differs:

f+ = P (Z∗i = 1|zi = 0)

f− = P (Z∗i = 0|zi = 1).

For simplicity, we refer to these rates as either misdiagnosis or testing error rates

interchangeably. We recognize though that in practice more than one tests may be

needed to obtain a diagnosis.

An estimate based on taking the observed data, z∗i at face value, is referred to as

the naive estimator. An expression for the naive estimator of Hájek style is given by:

µ̂naive =

∑N
i=1

Siz
∗
i

π̂i∑N
i=1

Si

π̂i

, (3.1)

the same form as equation (2.4) but with zi replaced by the observed status, z∗i .
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3.1.1 Corrected Prevalence Estimators

3.1.1.1 Analytical Adjustment Estimator

The analytical adjustment, also referred to as the matrix method [Barron, 1977],

discussed in this section applies to estimators of the Hájek style (2.4). We denote the

resulting adjusted estimator µ̂adj.

Equation (3.1) may be interpreted as a ratio of estimators. The numerator repre-

sents an estimate of the number of observed infected individuals, |̂Z∗1|, where Z∗1 is

the set of individuals for whom a positive infection status would be observed. As for

the denominator, it is an estimate of the total number of individuals in the population,

N̂ . Therefore, equation (3.1) may alternatively be expressed as:

µ̂naive =
|̂Z∗1|
N̂

.

Provided that the π̂i’s were true for all i, then N̂ would be unbiased for N . Also,

under the assumption that the misclassification is the result of a mechanism that is

independent of the sampling procedure, we have that E(|̂Z∗1|) = N
[
µ(1− f−) + (1−

µ)f+
]
. Therefore, the ratio of estimators leads to an analytical form for a corrected

estimator, µ̂adj, which is approximately unbiased for µ in large samples:

µ̂adj =
µ̂naive − f+

1− f+ − f−
. (3.2)

The analytical adjustment may result in a corrected estimate smaller than zero or

greater than one. In such cases, the corrected estimate may be set to zero and one,

respectively [Buonaccorsi, 2010].

Equation (3.2) provides a general way to correct estimators of the Hájek style for

misclassification on the nodal attribute. The specific estimators are denoted µ̂adjmean,

µ̂adjV H and µ̂adjSS depending on which of the naive estimator is used.
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Under the Salganik-Heckathorn estimator assumptions, the term c in equation

(2.12) approaches one for large sample size. This implies that µ̂SH may be close

enough to the Hájek style for the analytical correction to apply. Similarly to the es-

timators of the Hájek style, we denote its corrected estimator µ̂adjSH . Our simulations

show that for c significantly departing from 1 or for large discrepancies between c and

c∗ (i.e. the apparent c-factor based on the observed infection status), the effective-

ness of the analytical adjustment in reducing the bias induced by misclassification is

diminished.

3.1.1.2 SIMEX MC Estimators

In this section, we present an alternative method to correct for misclassification

on the nodal attribute, the Simulation Extrapolation Misclassification (SIMEX MC)

introduced by Kuchenhoff et al. [2006]. This method is a discrete version of a the

Simulation Extrapolation (SIMEX) procedure [Cook and Stefanski, 1994]. Contrary

to the analytical correction discussed in Section 3.1.1.1, this method does not make

any assumption on the form of the estimator and therefore is particularly useful when

it is not possible to derive a tractable expression for analytical adjustment. However,

it requires that the estimator may be expressed as function of the error structure

which is presumed to be known.

Cook and Stefanski [1994] describe their simulation-based method SIMEX which

corrects estimators for measurement error generated from an additive measurement

error model with known variance. The general idea is that if an estimator, say θ̂,

may be expressed as a function of measurement error variance then it is possible to

extrapolate such function to the theoretical level where such variance is zero.

To illustrate the SIMEX procedure, let’s suppose that each observation, X∗i , comes

from an additive measurement error model such that X∗i = Xi + ξi, where Xi is the

true unobserved data and ξi is the random error with known variance σ2
ξ . Also,
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we assume that Xi is independent of ξi for i ∈ {1 . . . n}. Furthermore, let g(·) be

the function mapping the estimator θ̂ to the measurement error variability. Their

proposed two-stage algorithm consists of the following steps:

1. Simulation: In the simulation step, for each of K levels of perturbation, a

large number of data sets, B, are simulated by perturbing the observed data

according to a variant of the assumed error model. In our example, this trans-

lates into X∗i,b = X∗i + λk · ξi,b, where λk is a multiplicative scalar that inflates

the measurement error variability present in the simulated data and where ξi,b

has the same distribution as ξi. For each of the K levels of λk, B data sets are

simulated which all contain the same measurement error variability. Estimates

θ̂b(λk) are computed for each of the data sets at this variability level and are

subsequently averaged to obtain θ̂(λk).

2. Extrapolation: The outcome of the simulation step is a set of K θ̂(λk). These

θ̂(λk) are estimates for the function g(·) at the measurement error variance

level (1 + λk)σ
2
ξ . The purpose of the extrapolation is to use those points on the

estimated curve to derive a function that can be evaluated at λk = −1, that

is, the point where the estimate is based on data free of measurement error

variability. The choice of the functional form is critical as it may significantly

impact the estimate. The resulting extrapolated estimate is referred to as the

SIMEX estimate.

Kuchenhoff et al. [2006] have extended the Cook and Stefanski [1994] method to

misclassified discrete data, referring to their approach as SIMEX MC. The main dif-

ference from the continuous version of SIMEX lies in the simulation of the perturbed

data sets. Analog to the parametric model for continuous data, SIMEX MC parame-

terizes the error process with a misclassification matrix, Π. The matrix Π is a matrix

of conditional probabilities of observing a specific value of the data given the true
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value. Each entry of the Π matrix is therefore πz∗i ,zi = P (Z∗i = z∗i |Zi = zi). As with

SIMEX, it is assumed that the Π matrix is known. In the context of misclassification

on a binary outcome variable, the Π matrix is:

Π =

π0,0 π0,1

π1,0 π1,1

 =

1− f+ f−

f+ 1− f−

 .

A spectral decomposition of the Π matrix is the first step in simulating data

at different misclassification magnitudes. The spectral decomposition of Π is Π =

EΛE−1, where Λ is a diagonal matrix with the eigenvalues of Π on the diagonal

and where the columns of E are the corresponding eigenvectors. The level of the

additional misclassification applied to the observed data is controlled by λk. For a

given λk, data are simulated according to the conditional probabilities specified by

the matrix Πk = EΛλkE−1. The simulated data are consequently related to the true

unobserved data by the matrix EΛ(1+λk)E−1. Extrapolation to λk = −1 gets rid of

the misclassification present in the data in principle. Therefore, once the data are

simulated, the remainder of the algorithm remains the same as the SIMEX algorithm

and the SIMEX MC estimator is the extrapolated estimate at λk = −1.

In the present manuscript, the estimators from the SIMEX MC procedure are

denoted µ̂lin and µ̂quad when the form for g(·) is assumed linear and quadratic, re-

spectively. Similarly to the analytical adjustment, the specific RDS estimators are in-

dicated in the subscript. For example, the symbol µ̂quadV H refers to the Volz-Heckathorn

estimator corrected for misclassification with the SIMEX MC procedure based on a

quadratic functional form.
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3.1.2 Uncertainty of the Corrected Estimators

3.1.2.1 Salganik Bootstrap Extensions

A naive approach to estimating the variance of a corrected estimator of the Hájek

style would be to perform the Salganik Bootstrap procedure [Salganik, 2006] described

in Section 2.4.3.1 based on the observed data without any modifications. However,

this fails to take into account the variability from the correction procedure and the

fact that the observed infection statuses are measured with uncertainty. In this sec-

tion, we propose two extensions to the current methodology to address these issues.

Alternatively, one could estimate the variance using the methodology proposed by

Kuchenhoff et al. [2007]. Here we have nonetheless chosen to extend existing uncer-

tainty estimators to reflect the recruitment structure relevant to the RDS data.

The choice of procedure to correct the naive estimate for misclassification impacts

the sampling distribution of the corrected prevalence estimator. The first extension

is designed to reflect this source of variability. Simply replacing the naive estimates

(µ̂naive) in step (2) of the bootstrap (i.e. “RDS estimates”) by the corrected estimates

(µ̂adj, µ̂lin, or µ̂quad) using the selected correction procedure accounts for the inherent

variability due to the correction method.

The purpose of the second extension is to adjust for the variability associated

with the potential misclassification of the recruiters’ infection status. The re-sampling

weights, w0 and w1, defined in step (1) of the bootstrap algorithm (i.e. “Resampling”)

implicitly assume that the infection statuses are measured accurately. We suggest to

substitute those weights with the vectors w∗0 and w∗1 defined as the conditional

probabilities that the recruiter’s infection status is negative (w∗0) or positive (w∗1)

given his or her observed status. For instance, let’s assume individual i was recruited

by j, then:

w∗ki = P (Zj = k|Z∗j = z∗j ) = (kµ+ (1− k)(1− µ))
P (Z∗j = z∗j |Zj = k)

P (Z∗j = z∗j )
,
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where k ∈ {0, 1}. One limitation of this method is that these resampling weights

require the true population proportion µ and P (Z∗j = z∗j ). We suggest that µ may

be approximated by the selected corrected estimator. Likewise, P (Z∗j = 1) and

P (Z∗j = 0) may be approximated by µ̂naive and 1− µ̂naive, respectively.

An additional modification to this algorithm is proposed to incorporate the uncer-

tainty arising from using uncertain misclassification rates, if applicable. The known

error rates correcting the naive prevalence estimates are replaced with draws from

the error rates’ distribution. For the SIMEX MC algorithm, this involves updating

Π, the misclassification matrix, used in the Simulation step.

3.1.2.2 Successive Sampling Bootstrap Extension

It is possible to adapt the first extension discussed in Section 3.1.2.1 to the succes-

sive sampling Bootstrap procedure [Gile, 2011], reflecting the variability associated

with the correction procedure. Similarly to the extension for the Salganik Bootstrap

algorithm, the naive estimates are substituted for the corrected estimates which are

calculated either with the known misclassification rates or with draws from the best

estimate distributions. Because the resampling step of the successive sampling boot-

strap is more complex, the second extension described in the previous section is not

applicable.

3.2 Simulation Study

Because of the inherent complexity of the RDS process, and the inadequacy of any

approximating model for it, we use simulation as the primary tool for evaluating the

performance of the proposed methods. In the next sections, we describe the design

and present the results of a simulation study assessing the performance of the two

misclassification correction methods for RDS estimators: the analytical correction

and the SIMEX MC, and also assessing the uncertainty estimators. All prevalence
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and variance estimates based on true or observed data in this simulation study, as

well as in the RDS application discussed in Section 3.3, are calculated with functions

available in the R package RDS [Handcock et al., 2015a].

3.2.1 Simulation Study Design

3.2.1.1 Network, Sampling and Misclassification Rates Simulation Con-

ditions

This simulation study’s main objective is to assess the performance of the correc-

tion methods under a variety of conditions capturing the main sources of randomness

involved in the RDS estimation procedure. These sources include the random process

underlying the network structure, the RDS sampling procedure and the misclassifi-

cation mechanism. The selected scenarios were constructed to capture those sources

of uncertainty.

Our first objective was to design a baseline scenario where the effect of misclas-

sification errors could be isolated from other factors. Our second objective consisted

in evaluating the robustness of the correction methods to conditions inducing biases

in RDS estimators from sources unrelated to misclassification. Under those circum-

stances, the misclassification correction methods are expected to retrieve the estimate

based on the true infection statuses rather than the actual population parameter µ.

Our third objective was to assess the ability of the methods to eliminate the misclas-

sification bias for large asymmetric misclassification rates such as those found in the

RDS application in India discussion in Section 3.3. Our last objective was to ensure

that the performance of the methods is not significantly degraded by uncertain mis-

classification rates, such as rates obtained from external validation studies. Scenarios’

features intended to assess those objectives are summarized in Table 3.1.
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Baseline scenario (S1): The purpose of this scenario is to isolate the effect of mis-

classification. The average prevalence estimates based on the true outcome variable

(z′is) approach the true population prevalence so that the bias in the naive prevalence

estimates is mainly attributable to misclassification. Methodology to simulate the

networks, RDS samples and misclassified infection statuses are outlined below.

1. Network Simulation: One thousand undirected networks are generated at random

using the exponential-family random graph model (ERGM) [Frank and Strauss,

1986, Hunter et al., 2008, Hunter and Handcock, 2006]. Networks are simulated

such that on average, each individual is connected to 7 members of the popula-

tion. The total population size is 1000 individuals. Each individual is assigned an

infection status at random, with the true infection prevalence maintained at ex-

actly 20% for each network. Networks are simulated using the R package statnet

[Handcock et al., 2015b].

2. Sampling: One RDS sample is drawn per network with a sample size of 200. A total

of 10 seeds are selected completely at random among all nodes. Each respondent

recruits 2 participants completely at random among their contacts. The sampling

is performed without replacement.

3. Misclassification: One set of misclassified infection statuses is generated for every

network. For the baseline case, a false positive rate of 10.3% and false negative

rate of 0.5% are assumed. The false positive rate corresponds to the findings of a

study conducted in the Democratic Republic of Congo [Shanks et al., 2013].

Sampling and network assumption violations (S2): In S2, network and sampling fea-

tures are simulated to purposively induce bias in the RDS prevalence estimators. The

objective is to assess whether the performance of the correction methods is altered

by those biases.
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Table 3.1: Network and sampling features included in the simulation study scenarios.

Condition Parametrization S1 S2 S3

Homophily
P (Yij = 1|zi = 1, zj = 1)

P (Yij = 1|zi 6= zj)
1.0 5.0 1.0

Seed Selection(1) P (i ∈ S0|zi = 1) 1/N 1/|Z1| 1/N
P (i ∈ S0|zi = 0) 1/N 0 1/N

Diff. Recruitment(2) P (Si,t = 1| Sj,t−1 = 1, zi = 1, Yij = 1)

P (Si,t = 1| Sj,t−1 = 1, zi = 0, Yij = 1)
1.0 2.0 1.0

Diff. Activity

1
|Z1|
∑

i∈Z1 di
1
|Z0|
∑

i∈Z0 di
1.0 1.0 1.4

f+ rate (%) 10.3 10.3 1.0
f− rate (%) 0.5 0.5 57.0

(1) S0: Set of initial participants in the survey, that is, the seeds.
(2) Si,t: Indicates if i is sampled at step t assuming a random walk on the network
nodes.

Networks were simulated with elevated homophily and the sampling procedure

with seed bias and differential recruitment. The mathematical parametrization of

those terms is given in Table 3.1. Conceptually, homophily is a network feature which

represents the propensity of alike nodes to tie more often than expected at random.

Networks under S2 were produced with an average homophily of five whereas the

ones in S1 displayed no homophily on average. The seed selection regime was also

modified in S2 to force initial participants to be selected among the infected nodes.

We refer to this notion as seed bias. Gile and Handcock [2010] demonstrate that

the selection of the participants starting the referral chains may bias the estimates.

Finally, differential recruitment denotes the propensity of participants to recruit indi-

viduals with a given characteristic with higher probability. Literature discusses how

this form of differential recruitment induces bias in many RDS estimators [Gile and

Handcock, 2010, Lu, 2013, Tomas and Gile, 2011, Verdery et al., 2015]. Although one
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RDS estimator has shown robustness to this source of bias [Lu, 2013, Verdery et al.,

2015] when information about the participants’ ego network is available, none of the

estimators included in this study adjust for this type of bias. Differential recruitment

in S2 is such that infected individuals are twice as likely to be recruited than the

non-infected ones.

Large asymmetric misclassification rates (S3): Under S3, the misclassification rates

were chosen to replicate the average misclassification rates from the RDS application

discussed in Section 3.3, that is, f+ = 1% and f− = 57%. Data from this application

also suggest an average differential activity of approximately 1.4. Differential activity

exists when one group has more social connections than the other. More specifically,

differential activity is defined as the ratio of mean degree of the infected individuals

in the population to the mean degree of the non-infected ones. The baseline scenario

was produced with an average differential activity of one, or in other words, without

differential activity, while S3 used 1.4.

In the three scenarios, we assumed known misclassification rates. In practice

however, researchers may instead have to rely on uncertain error rates such as rates

estimated from an external validation study for instance. To assess the performance

of the correction methods with uncertain error rates, Scenarios 1 to 3 were repeated

with infection statuses (z∗i ’s) simulated with rates generated from Beta distributions.

The parameters of the Beta distributions were chosen so the expected values would

equal the known error rates. For S1 and S2, the parameters of the Beta generating

the false positive rates were also chosen to reproduce the precision of the rate in the

work of Shanks et al. [2013]. The 95% confidence interval for the error rates under

S1 to S3 are as follows:

• S1 and S2: (.071, .14) for f+ and (.002, .009) for f−; and

• S3: (.005, .017) for f+ and (.52, .62) for f−.
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The naive estimates are subsequently corrected with the best guess misclassification

rates, that is, the expected value of the distributions.

3.2.1.2 SIMEX Misclassification Parameters

The objective of SIMEX Misclassification (SIMEX MC) is to express the estimator

as a function of the magnitude of misclassification in the data. This procedure relies

on a number of tuning parameters, one of which controls the amount of misclassifi-

cation at which the function g(·) is evaluated. This parameter is λk and is described

in Section 3.1.1.2. For the simulations, we have used λk ∈ {0, 0.4, 0.8, 1.2, 1.6, 2}

which is a slightly finer grid than what found in the literature related to SIMEX.

Our analysis of the RDS application also suggested that in presence of greater mis-

classification, the optimal choice of λk’s might differ. As such, we have instead used

λk ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} for S3. We have simulated B = 100 data sets for each

levels of λk with the exception of λk = 0 for which θ̂(λk) = µ̂naive.

For the purpose of our simulation study, and subsequently for the RDS application

in India, we have selected two functional forms to extrapolate the simulated estimates

to the theoretical level where there is no misclassification, that is, to λk = −1. We

have selected the linear and quadratic functional forms based on standard practice in

the literature, visual inspection of the functions, and on a comparison of a number of

model selection criteria. These two functional forms appear to reasonably fit the data

simulated with additional misclassification. However, the objective model-selection

criterion favor the quadratic form approximately 80% to 90% of the time under the

selected scenarios.

3.2.2 Simulation Study: Point Estimates

Simulation study results for all estimators, under the three scenarios and calcu-

lated with known and uncertain misclassification rates are presented in Figure 3.1.

32



Results in Figure 3.1 are organized in three panels on the horizontal axis corre-

sponding to the three scenarios. In addition, two panels on the vertical axis separate

the results produced with known rates from those produced with uncertain error rates.

In each of the six sections of the plot, the naive and corrected prevalence estimates

are summarized by box plots for each of the four estimators (µ̂Mean, µ̂V H , µ̂SS and

µ̂SH). The average estimates based on the true infection statuses over one thousand

simulations for a given estimator and scenario are depicted by the horizontal lines.

Those lines represent the best case value to retrieve. Since RDS estimators may be

subject to other sources of biases than misclassification and we expect the correction

methods to strictly address the misclassification bias, the placement of the blue line

may differ from the population prevalence of 20%. Finally, the “*”’s indicate that

the method belongs to the set of methods achieving the lowest misclassification bias,

for a given scenario and estimator based on a Bonferroni pairwise comparison at a

family-wise error rate of 5%.

The first key finding that Figure 3.1 reveals is that the corrected estimates exhibit

significantly less misclassification bias than the naive approach. However, the methods

do not perform equally well under all circumstances.

For the estimators of the Hájek style, the analytical adjustment is the best method

to reduce the misclassification bias in all presented scenarios. For practical purposes

though, the SIMEX MC with quadratic extrapolation displays similar performance

under S1 and S2. The large false negative rates used in S3 however alters this method’s

ability to reduce the misclassification bias.

Similar conclusions may be reached for the Salganik-Heckathorn estimator under

S1 and S3. However we observe a poorer performance of the analytical adjustment

under S2. As demonstrated in Section 2.4.2.2, the Salganik-Heckathorn estimator is

exactly of the Hájek style when c in equation (2.12) equals one. Consequently, the

analytical adjustment is expected to do reasonably well for a c of one. As discussed
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Figure 3.1: Estimates under the three scenarios summarized in Table 3.1 and under
known and uncertain misclassification rates. The estimates were calculated based on
the observed data (µ̂naive) and on the observed data but adjusted for misclassification
with the correction methods (µ̂adj, µ̂lin and µ̂quad). A “*” on the horizontal axis
indicates that the method is in the set of methods producing the least biased estimates
based on a Bonferroni pairwise comparison at a family-wise error rate of 5%. The
horizontal lines are set at the average estimates based on the true infection statuses.

in Appendix A, discrepancies between c and its analog observed version c∗ may also

impact the efficiency of the analytical adjustment. The average c and c∗ factors

over the one thousand simulations under S2 are 2.37 and 1.65, respectively. This

discrepancy combined with the magnitude of c explain the inability of the analytical

adjustment to eliminate a substantial portion of the misclassification bias in S2. For

comparison purposes, those averages were 1.00 and 1.00 for S1 and 0.99 and 0.99

for S3. Lastly, since the SIMEX MC algorithm does not depend on the form of
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the estimator the performance of this method with quadratic extrapolation is mostly

unaffected by the assumption violations simulated under S2.

Although SIMEX MC with linear extrapolation displays significantly less misclas-

sification bias than the naive approach, it consistently results in larger error than the

quadratic extrapolation. This agrees with our prior findings which suggested a better

fit for the quadratic form.

The distribution of the prevalence estimates with known and uncertain error rates

appear similar in Figure 3.1. The main difference is the increased variability of the

estimates computed with the uncertain rates. The increase in standard deviation

ranges from 9.5% to 27.1% in the selected scenarios. More details regarding the

absolute bias, standard deviation and root mean-squared-error (RMSE =
√
MSE)

may be found in Appendix B.

The performance of the correction methods have also been assessed at various

levels of miclassification. Results are presented in Appendix B. In most instances,

the RMSE based on the analytical adjustment is substantially lower than the naive

RMSE, with a maximum reduction of approximately 84%. The few exceptions occur

when the estimates contain little misclassification bias. In those cases, our analysis

suggests that the benefits from the reduction in misclassification bias are offset by

the increase in the uncertainty of the corrected prevalence estimates.

The discussed correction methods rely on the knowledge of the misclassification

rates f+ and f−. In practice however, those rates may be uncertain and possibly con-

tain measurement error. In Appendix B we have evaluated the impact of inaccurate

error rates on the correction methods. We found lower misclassification bias in the

corrected estimates than in the naive estimates when using moderate departure from

the true error rate for either f+ or f− for S1 to S3.

Overall, the correction methods perform better than the naive approach in all

scenarios presented in our simulation study. The performance of the analytical ad-
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justment and the SIMEX MC with quadratic extrapolation is similar with two excep-

tions: when misclassification rates are very large (analytical preferred) and when the

analytical adjustment is not suitable for the Salganik-Heckathorn estimator (SIMEX

MC preferred).

3.2.3 Simulation Study: Variance Estimates

In Section 3.1.2 we proposed extensions to the existing bootstrap procedures to

account for the additional variability of the RDS estimators due to the correction

methods, the misclassification on the outcome variable and the uncertainty of the

misclassification rates, if applicable. In this section, we evaluate the performance of

these extended variance estimation procedures against the naive application of the

original method.

Ideally, a bootstrap variance estimator should produce results aligned with the

total variance of the stochastic process. Our closest estimate of this total variance is

the variability among the estimates in the simulation study for each scenario (s’s).

Figure 3.2a displays the relative differences between the average estimated standard

deviation under the various bootstrap methodologies (¯̂σ’s) and their respective sample

standard deviation (s’s). The relative bias is computed as
¯̂σ−s
s

.

Figure 3.2a presents, for each of the three scenarios, six versions of the extended

Salganik Bootstrap procedure to estimate the variance of µ̂V H and µ̂SH and three

versions of the extended Successive Sampling Bootstrap procedure to estimate the

variance of µ̂SS. For the Salganik Bootstrap procedure, each of the three correction

methods produce a set of two variance estimators. The first estimator of that set only

accounts for the first extension, i.e. corrected resampled estimates, while the second

one also reflects the second extension, i.e. modified resampling weights. Results

produced with uncertain misclassification rates include the additional modifications to
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(a) Relative bias of the standard deviation estimates calculated as
¯̂σ−s
s , where ¯̂σ is the

average estimated standard deviation under a bootstrap methodology and s is the sample
standard deviation.

(b) 95% confidence interval coverage rates, where the coverage rates are the percentage
of the intervals including the true population proportion µ of 20%.

Figure 3.2: Standard deviation estimation and 95% confidence interval coverage
results for µ̂V H , µ̂SH and µ̂SS and for the various versions of the Bootstrap procedures
under S1 to S3 with known or uncertain misclassification rates. The notation ‘adj”,
“lin” or “quad” indicates whether the variance is being estimated for µ̂adj, µ̂lin or
µ̂quad whereas “c.” and “w.” refers to the first and second bootstrap extensions,
respectively.
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the algorithm described in Section 3.1.2.1, that is, the known error rates are replaced

by draws from the error rates’ distribution.

In Figure 3.2a, we observe that including both extensions to the Salganik Boot-

strap variance estimator for µ̂adjV H and µ̂adjSH reduces the relative bias in most instances.

The main exception is under S2 for µ̂adjSH , that is, when µ̂adjSH is not of the Hájek style.

The improvement from the second extension, if any, is negligible when applied to the

SIMEX MC correction. Overall though, no methods appear to consistently be the

best method across all conditions.

For the variance estimation of µ̂SS, the extended Bootstrap with the three cor-

rected methods perform in a similar fashion. There is a slightly higher relative bias

when uncertain error rates are used as opposed to known rates. Again however, none

of the methods systematically lead to the best performance under all circumstances.

Figure 3.2a suggests that the naive Bootstrap procedure sometimes outperform

the extended Bootstrap estimators with uncertain misclassification rates. However,

the decrease in relative bias with uncertain rates is mainly caused by the fact that

the uncertainty of the error rates is not accounted for in the naive procedure rather

than by superior properties of the procedure. Larger uncertainty around the error

rates would deteriorate its performance.

In conclusion, we recommend using the variance estimator corresponding to the

appropriate correction method for the problem at hand. For the Salganik Bootstrap,

one has to further decide between applying the first extension or both of them. We

suggest applying both extensions solely with the analytical adjustment. The two

extensions showed smaller relative bias in our simulation study with this correction

method, which was not systematically the case when used in combination with the

SIMEX-MC algorithm.

Figure 3.2b helps evaluate the combined performance of the point estimation and

the variance estimation procedures. The 95% confidence interval coverage rates with
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respect to the true population proportion of µ = 20% for µ̂V H , µ̂SH and µ̂SS under

three scenarios with known or uncertain error rates and using the different Bootstrap

variance estimators are shown in this plot. This figure clearly highlights that the

naive approach is either worse than or, at best, equivalent to the correction methods.

Also the analytical adjustment and the SIMEX MC with quadratic extrapolation have

similar coverage for each scenario. In addition, their coverage rates are comparable

to the coverage calculated based on the true infection statuses. For µ̂SH under S2,

since the analytical adjustment does not strictly apply, SIMEX MC with quadratic

extrapolation performs better. Similarly, since the analytical correction reduces a

larger proportion of the misclassification bias with large error rates, this inference

is slightly better with this method under S3. Finally, the SIMEX MC with linear

extrapolation tends to do worse than the other two correction methods.

Consequently, we conclude that for the scenarios examined in this simulation

study, the methodologies proposed do improve the statistical inference when compared

to the naive approach and that unless the Salganik-Heckathorn is far from the Hájek

style, the analytical approach is preferred to the other correction methods.

3.3 Application to High Risk Populations in India

RDS has been used extensively in the context of HIV/AIDS surveillance for pop-

ulations at high risk of infection such as people who inject drugs (PWID), men who

have sex with men (MSM) and female sex workers (FSW) [Johnston et al., 2008,

Malekinejad et al., 2008, Montealegre et al., 2013]. In this section, we present HIV

prevalence estimates for RDS studies conducted in India among two of these key pop-

ulations, that is, among PWID and MSM. We compare two sets of estimates which

are either derived from self-report HIV status or from blood testing. The former is

likely an inaccurate measurement of the actual HIV infection status since, as discussed

by the gap report [UNAIDS, 2014], around 54% of people living with HIV-positive
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status are unaware of their status. Therefore, in this section we show that in most

cases, it is possible to reduce the misclassification bias present in the estimates based

on self-reported status by using the methods proposed in this paper.

The first study on which our analysis is based consists of 15 RDS samples collected

in 2013 in multiple cities in India [Lucas et al., 2015]. In that study, a total of 14,481

PWID were surveyed. Two to three seeds were selected to initiate the sampling in

each city. Every respondent could recruit up to two individuals. With the exception

of one location, all sites recruited approximately one thousand individuals from the

target population.

Participants’ HIV status was determined based on three rapid HIV testing kits

[Lucas et al., 2015]. The results from the on-site HIV test were compared with the

self-reported HIV status. This status was determined based on questions regarding

their past HIV testing and result history. Participants who answered that their last

HIV test was positive are treated as positive HIV self-reports whereas participants

who had never been tested or who reported a non-positive test result are treated as

negative self-reports. Finally, for the purpose of our analysis, we assume the on-site

HIV test is 100% specific and sensitive. All indeterminate results were confirmed

using western blot, and this assumption is likely to be quite accurate. Therefore,

these values are treated as the truth for estimating error rates and the evaluation of

our methods.

The Volz-Heckathorn HIV prevalence estimates without misclassification for the

15 sites range from 5.9% to 44.8% with a weighted average of 18.2%. The Volz-

Heckathorn naive estimates are much lower, ranging from 0.9% to 30.2% with a

weighted average of 8.9%. The large discrepancy between the two sets of estimates

is attributable to large false negative rates (weighted average of 53.9%). These false

negative rates may be imputable to non recent testing, for example, and indicate that

individuals in the populations are largely unaware of their positive infection status.
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The false positive rates (weighted average of 1.3%) are not compensating for the

observed unawareness. The weighting is proportional to the sample sizes.

We have applied similar analysis to another RDS study which was conducted

among MSM in India [Solomon et al., 2015]. This study covered 12 locations for a

total of 12,022 participants. The data collection was performed under nearly the same

methodology as the PWID study. The weighted HIV false negative and false positive

average rates, 59.3% and 0.2%, are comparable to the ones in the PWID populations.

Figure 3.3 displays the absolute relative bias, as defined as the difference between

the corrected or naive estimate and the corresponding estimate based on the true

infection status divided by the latter, as a function of the false negative rates. The

results are shown for µ̂V H , µ̂SS and µ̂SH , for all PWID populations. One MSM site is

omitted since the analytical adjustment could not be evaluated in that instance. In

that sample, no false positives were observed and all HIV positive individuals were

unaware of their infection status.

For all data sets, the factor c discussed in Section 2.4.2.2 is close to one and to c∗.

This implies that we expect the analytical adjustment to perform well in adjusting

the Salganik-Heckathorn estimator. In general, c and c∗ may substantially differ from

one in RDS studies. They may be close to their theoretical values, as well as close

to each other in these examples because of the small number of seeds and the large

sample sizes.

A similar analysis to the one performed in the simulation study was conducted to

decide on the SIMEX tuning parameters and extrapolation function. We concluded

that a larger number of simulated data sets is necessary to improve the model fit.

Consequently, B = 500 was selected in all but two scenarios where even greater

B’s were chosen. Also, we established a false negative error rate threshold of 25%

to determine whether the lambdas would be {0, 0.4, 0.8, 1.2, 1.6, 2} (f− < 25%) or

{0, 0.1, 0.2, 0.3, 0.4, 0.5} (f− > 25%). This choice is justified by improvement to
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model selection criteria. Finally, the quadratic function appears to be a better choice

based on model selection criteria.

Both studies lead to similar methodological findings. For all but one study the

naive estimates are more biased than estimates produced by any of the three correc-

tion methods. We also observe that the SIMEX procedure tends to perform better

for lower false negative rates. This suggests that the functional form fitted with large

error rates may not be representative of the functional form at lower error rates. The

performance of the analytical correction is also poorer for large error rates, but to

a lesser extent. These findings are consistent with results from S3 in our simulation

study. Under that scenario, the conditions were purposely chosen to mimic on average

some of the conditions in this application.

One of the sites in the PWID study appears to have a greater relative bias than

the remaining sites despite the false negative rate being small in comparison to other

cities. The noticeable deviation is explained by the larger false positive rate observed

at that site (f+ = 7.6%). The weighted average for the remainder of the sites is 0.8%.

Results from the implementation of the adjusted estimates along with the ex-

tended Bootstrap procedures are summarized in Table 3.2. In this table, we compare

the number of 95% confidence intervals that include the corresponding “true” value

without misclassification for the different sites, treated as a favorable-case for evalu-

ating coverage performance. For comparison purposes, results from the naive point

estimates and variance estimates are also presented. As expected, since the false

negative rates are so high, very few of the intervals for the 15 PWID and 11 MSM

samples based on the naive methodologies include the estimate without misclassi-

fication. However, it is clear from this table that the corrected estimates used in

combination with the extended versions of the Bootstrap procedures significantly in-

crease the number of confidence intervals including the prevalence estimates based on

the true data.
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(a) PWID: 15 sites

(b) MSM: 11 sites

Figure 3.3: Point estimate relative bias as a function of the false negative rates for
PWID and MSM for a) 15 PWID sites and b) 11 MSM sites of the studies conducted
in India. The estimates using the naive and the corrected estimators are shown for the
Volz-Heckathorn, the Salganik-Heckathorn and the Successive Sampling estimators.
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An additional finding from these results is that, perhaps not surprisingly, the

intervals based upon the analytical adjustment produce higher coverage than their

SIMEX MC counterparts in all but one case. From Figure 3.3, it is clear that the

misclassification bias is smaller for the former method in most instances. Finally,

since all correction methods are reasonably applicable to all estimators, the coverage

is similar across the three estimators.

Table 3.2: Number of sites for which the estimate without misclassification lies
inside the 95% confidence interval, out of a total of 15 PWID and 11 MSM sites.

Prevalence Variance Estimators
Study Estimator σ̂naive σ̂c.adj σ̂c.lin σ̂c.quad σ̂w.adj σ̂w.lin σ̂w.quad

P
W

ID

µ̂V H 2 15 7 11 15 7 11
µ̂SH 2 15 7 10 15 7 11
µ̂SS 2 15 5 8 — — —

M
S
M

µ̂V H 2 8 4 6 8 4 6
µ̂SH 3 8 4 6 8 4 6
µ̂SS 1 8 6 9 — — —

Overall, adjusting for misclassification on the outcome variable in the presented

examples improves the inference made from RDS data. The three correction methods

all reduce the misclassification bias in the estimates, although the analytical adjust-

ment tends to perform best in the studies discussed in this section.

3.4 Discussion

The main contribution of this article is to introduce approaches to correct existing

RDS estimators for the bias introduced by the misclassification on a binary nodal

attribute, and associated novel estimators of uncertainty. We also have highlighted

circumstances for which the performance of the correction methods is impaired in the

specific context of RDS.
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The first approach is an analytical adjustment, applicable to estimators of the

Hájek style. Under the conditions explored in our simulation studies and with the

RDS application, this method has shown to substantially reduce the misclassification

bias present in the naive estimates.

In some scenarios the ability of the analytical adjustment to reduce the misclassi-

fication bias was compromised. We found this to be the case in particular when the

SH estimator, which is not of the Hájek style, diverges most from the Hájek style.

This issue has arisen in instances where the observed recruitment patterns could not

be used as a proxy to estimate the network mixing matrix partitioned on the infection

status. In such cases, the c-factor introduced in Section 2.4.2 is different than one. In

practice, since we do not observe this c-factor directly, we have to rely on the related

observed c∗-factor to determine whether the analytical adjustment is suitable. Since

the c- and c∗-factors are positively correlated (see Appendix A), c∗ may be used as a

proxy for c to evaluate whether the analytical adjustment is likely to be appropriate.

The second approach we discussed is the SIMEX MC procedure. Although it does

not require that the estimators be of the Hájek style, it necessitates that the estimator

may be expressed as a function of the measurement error present in the data. In many

instances, this method produced comparable results to the analytical adjustment in

terms of the reduction of the misclassification bias. However, in cases where large

error rates prevailed, this method did not eliminate as much misclassification bias.

This suggests that the function mapping the estimates to the measurement error

variance at higher error rates may not be representative of the function when little to

no misclassification is present. The main advantage of using this method is therefore

for situations where the Salganik-Heckathorn estimator is far from the Hájek style,

in which case, the SIMEX MC with quadratic extrapolation provided the largest

reduction in the misclassification bias.
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In this paper, we have also extended procedures to estimate the variance of the

corrected estimators. The extensions are intended to capture the variance component

attributable to the misclassification on the outcome variable, to the adopted correction

methodology and to the uncertain misclassification rates, if applicable. The first

extension substitutes the corrected estimates for the naive estimates in the naive

bootstrap procedures. The main innovation is the modification to the resampling

weights applicable to the Salganik Bootstrap procedure only. We have seen that

in most instances, with known error rates, the extended methodology for variance

estimation does better or at least similarly to the naive approach for estimators of

the Hájek style. The second extension provides only marginal improvements, if any,

over the first extension for the SIMEX MC corrected estimator, but does appreciably

improve the estimators corrected with the analytical adjustment. All versions of the

SS Bootstrap procedure perform similarly and the first extension does not appear to

significantly improve the performance of the SS Bootstrap procedure. No method

systematically outperformed the other, especially in the case of uncertain error rates.

The application to the RDS data from India led to similar findings. Inference

based on the self-reported HIV status displayed large misclassification error as par-

ticipants were widely unaware of their actual HIV status. The 95% confidence in-

terval coverage rates illustrating the combined performance of the point estimation

and variance estimation procedures showed that the naive estimation procedures may

severely compromise the validity of the inference from self-reported HIV status. The

analytical correction performed best in most instances especially with the largest

misclassification rates.

One limitation of the proposed methodology is that it relies on the assumption that

f+ and f− are known and uniform in the population. In many cases this assumption

might not hold. The results from our simulation study however suggest that using
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uncertain misclassification rates from an external validation study result in nearly

unbiased estimates when the uncertain rates are unbiased.
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CHAPTER 4

DIFFERENTIAL RECRUITMENT

4.1 Introduction

Inference from RDS data relies on a number of strong assumptions which are

often unrealistic in conventional settings. Despite the growing empirical evidence

[Frost et al., 2006, Iguchi et al., 2009, Liu et al., 2012, Mccreesh et al., 2012] that

participants systematically favor the selection of alters with particular characteristics

for instance, random recruitment generally remains the default assumption. Sensitiv-

ity analysis performed with simulated and real data demonstrate that non-random

recruitment potentially yields large biases in RDS prevalence estimators when the

favored characteristics are associated with the outcome variable [Frost et al., 2006,

Gile and Handcock, 2010, Tomas and Gile, 2011, Lu et al., 2012, Verdery et al., 2015].

The contribution of this work is to identify and measure recruitment dynamics and

correct the prevalence estimators for their induced bias.

Most of the RDS prevalence estimators assume that respondents recruit com-

pletely at random among their peers. Many have proposed diagnostics to detect non

random recruitment patterns in data [Wejnert and Heckathorn, 2008, Liu et al., 2012,

Yamanis et al., 2013, Gile et al., 2015].

Subsequently, some have measured its impact on prevalence estimates [Frost et al.,

2006, Tomas and Gile, 2011, Verdery et al., 2015] .

Recent advancements also include an extension of the Salganik and Heckathorn

[2004] estimator to reduce the bias introduced by non random recruitment behaviors

[Lu, 2013].
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Lu [2013] extended Salganik and Heckathorn [2004] estimator to incorporate data

on self-reported ego-network composition in the estimation of the recruitment matrix.

The resulting estimator is considerably more robust to differential recruitment than its

original counterpart and displays significantly lower variability. The extended version

of the SH estimator proposed by Lu [2013] relies on an improved estimation of the

recruitment matrix. However, the suggested methodology implicitly assumes that

differential recruitment does not affect participants’ probability of being sampled. In

addition, the method in its current form does not allow differential recruitment to

take place on any other variables than the outcome variable. This is a major concern

for the main application of RDS study, that is, estimation of disease prevalence such

as HIV. For instance, UNAIDS recently estimated that only 48% of people living with

HIV know their infection status [UNAIDS, 2014]. It is therefore even more unlikely

that participants could report their contacts’ HIV status accurately. Such level of

misclassification would inevitably result in an underestimation of HIV prevalence.

In this chapter, we develop methods to reduce differential recruitment bias. The

first set of estimators we propose are design-based estimators. They extend the Volz-

Hechatorn and Lu’s estimators described in Sections 2.4.1.2 and 2.4.2.3, respectively.

Similar to the estimator proposed by Lu, our estimators require ego-network data on

the variable over which the differential recruitment takes place. However, our estima-

tors provide greater flexibility in that they allow for additional forms of differential

recruitment and the variable inducing differential recruitment may differ from the

outcome variable. The proposed design-based prevalence estimators along with the

parametrization of the differential recruitment forms are discussed in Section 4.2. It

is followed in Section 4.3 by a description of a model-based estimator designed to

address one of the limitations of the design-based estimators. A comparison of their

performance under various sampling conditions and network features is assessed in a
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simulation study presented in Section 4.5. Finally, we conclude with a discussion of

the proposed methods in Section 4.6.

4.2 Design-Based Inference - Random Walk Approximation

In Section 2.4.1.2 and 2.4.2.3 we described the RDS estimators µ̂V H and µ̂egoSH .

Those two estimators are design-based estimators and consequently, no population

model is assumed for the outcome variable. The randomness instead stems from

the sampling design and each observed unit is weighted based on their sampling

probability to obtain a prevalence estimate representative of the target population.

An exact determination of the sampling probabilities under RDS is not however

possible due to the complexity of this sampling method. These estimators resort

to a random walk (RW) approximation to the RDS process and the sampling prob-

abilities are presumed equal to the RW stationary distribution (πi = di/
∑N

i=1 di).

Conveniently, the unobserved constant of proportionality (
∑N

i=1 di) is eliminated due

to the ratio nature of these estimators. As per equations (2.6) and (2.16), µ̂V H and

µ̂egoSH are as follows:

µ̂V H =

∑N
i=1 Sizi/di∑N
i=1 Si/di

, and

µ̂egoSH =
µ̂V H

µ̂V H + cego (1− µ̂V H)
, where cego =

n1

n0

( ∑N
i=1 Sizidi,0/di∑N

i=1 Si(1− zi)di,1/di

)
.

In this section, we extend these estimators. We begin by parameterizing the

concept of differential recruitment. Then, we specify the transition matrices reflecting

three forms of differential recruitment and derive the RW’s stationary distributions.

A maximum likelihood estimator is subsequently proposed to estimate the differential

recruitment parameters factored in the sampling probabilities. Lastly, we present the

extended version of µ̂V H and µ̂egoSH and discuss how they are derived.
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4.2.1 Parametrization

Under a random recruitment regime, participants are assumed to recruit among

their alters completely at random. Because recruitment is a social act, it is naive

to assume this is always the case. Systematic violations of the random recruitment

assumption are referred to as differential recruitment.

Differential recruitment may arise in a variety of ways. For instance, participants

may favor the recruitment of individuals based on their characteristics (nodal at-

tributes), or based on the nature of their relationship (tie attributes). The nodal

characteristic inducing differential recruitment is represented by the indicator vec-

tor x ∈ {0, 1}N whereas the tie characteristic is represented by the indicator matrix

W ∈ {0, 1}N×N .

Consistent with Tomas and Gile [2011], differential recruitment on the nodal at-

tributes may be partitioned into two categories: within groups and between groups

differential recruitment. Within groups differential recruitment occurs when partici-

pants select alters similar to themselves, such as contacts of the same ethnic group,

whereas between groups differential recruitment results from all classes of respondents

preferentially recruiting their contacts with a given characteristic. Gile et al. [2015]

find, for example, that respondents in four studies of injecting drug users in the Do-

minican Republic seem to systematically recruit their employed contacts more often

than their unemployed contacts, perhaps due to the recruiters elevated confidence

that these more reliable contacts would follow through in participating in the study.

Differential recruitment on the tie attribute is the result of participants preferably

selecting individuals on the basis of their relationship with them. In an attempt to

assess the reciprocity of the network ties, Wang et al. [2005] found that 78.9% of re-

spondents in an MDMA users study reported being recruited by a friend as opposed

to 14.9% by an acquaintance and 3.4% by a relative. Participants’ actual tie compo-
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sition differing from those proportions would be evidence of recruitment based on tie

characteristic. In this section, we address these three forms of differential recruitment.

The magnitude of those behaviors is quantified by the parameter φ. In each

case, this parameter represents the ratio of the probability of selecting a member

of the target population with the nodal or tie preferred attribute to the probability

of recruiting a member without it. For example, survey participants systematically

recruiting males with a probability twice as high as other genders translates into a φ

of two. Also, a recruitment regime completely at random implies that φ is equal one.

Our definition for the three parameters are presented in Table 4.1. The subscripts

b, w, t indicate the form of differential recruitment, that is, between groups, within

groups, and on tie attribute, respectively. Furthermore, the superscript RW specifies

that RDS is represented by a RW.

Table 4.1: Parametrization of the three forms of differential recruitment (DR) under
the RW scheme. Si,t indicates if node i is sampled at step t of the RW.

DR Form Parametrization

Between groups φRWb =
P (Si,t = 1| Sj,t−1 = 1, yij = 1, xi = 1)

P (Si,t = 1| Sj,t−1 = 1, yij = 1, xi = 0)

Within groups φRWw =
P (Si,t = 1| Sj,t−1 = 1, yij = 1, xi = xj)

P (Si,t = 1| Sj,t−1 = 1, yij = 1, xi 6= xj)

Tie φRWt =
P (Si,t = 1| Sj,t−1 = 1, yij = 1, wij = 1)

P (Si,t = 1| Sj,t−1 = 1, yij = 1, wij = 0)

4.2.2 Sampling Probabilities

Deriving the sampling probabilities under this framework is equivalent to obtain-

ing the stationary distributions of the random walks with differential recruitment.

Consequently, we define in this Section the transition matrices characterizing the
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three Markov chains and prove the existence and uniqueness of their stationary dis-

tributions contingent on some network features.

The transition matrices, denoted P , specify the conditional probabilities of getting

to any states given the previous state visited. The entry in the i-th row and j-th

column of that matrix, denoted pij, for instance, is the probability of getting to node

j given that node i is the recruiting node.

Figure 4.1 shows a simple example of transition matrices for each of the three cases

of differential recruitment of magnitude two (φ = 2). Let us suppose that the size

of the nodes in figure 4.1a and 4.1b represents a nodal attribute inducing differential

recruitment. For instance, let the large nodes indicate that the individual resides in

neighborhood N1 as opposed to living in neighborhood N2 depicted by the smaller

size nodes. Under the previously introduced notation, x = {0, 0, 1, 0, 1, 0} where the

nodes are arranged in alphabetic order. Figure 4.1a illustrates the case of between

group differential recruitment so that all classes of participants favor the recruitment

of nodes in N1. This represents a hypothetical situation where every participant

systematically favors the recruitment of their contacts living in the neighborhood

where the study is conducted for instance. As the left hand side of Figure 4.1a

suggests, when the RW is in state B, the probability of selecting node C or E (pBC =

pBE = 2/6) is twice as high as the probability of selecting node A or D (pBA = pBD =

1/6), that is, φRWb = 2. Also, to ensure that the sum of the probabilities equals one,

the denominator has to be equal to six, i.e.
∑N

j=1(φRWb xj + (1 − xj))yij = 6. The

full transition matrix P for this small network may be found in the right hand side

of Figure 4.1a. More generally,

pij =
(φRWb xj + (1− xj))yij∑N
j=1(φRWb xj + (1− xj))yij

(4.1)

in the presence of between group differential recruitment. In this expression, the

summand in both the numerator and denominator includes the term yij. This ensures
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that the process is restricted to visiting adjacent nodes to the current state. For

example, pBF is equal to zero in the illustration due to the lack of a tie between those

two nodes (i.e. yBF = 0). Finally, it may be observed that for φRWb = 1, that is, for

a recruitment regime completely at random, pij =
yij∑N
j=1 yij

=
yij
di

as expected.

The derivation of within group differential recruitment transition probabilities is

similar. However, instead of always favoring individuals residing in N1, participants

recruit more heavily alters living in the same neighborhood as themselves. Node B

in Figure 4.1b for instance recruits A or D with a probability twice as large as the

probability of selecting node C or E (φRWw = 2). Consequently, we obtain the following

expression for the within group transition probability between node i and j:

pij =
(φRWw xj + (1− xj))xiyij + (φRWw (1− xj) + xj)(1− xi)yij∑N
j=1(φRWw xj + (1− xj))xiyij + (φRWw (1− xj) + xj)(1− xi)yij

. (4.2)

An illustration for transition probabilities for tie attribute differential recruitment

is provided in Figure 4.1c. Thicker ties in the plot on the left panel signify that

the relationship type induces differential recruitment. Participants may exhibit the

tendency to recruit more frequently close friends than acquaintances for example.

According to this figure, only six entries in the underlying matrix of tie attributes

W are equal to one, wAD, wAE, wBD, and the corresponding reciprocal relationships

wDA, wEA and wDB. Under this RW, B is twice as likely to select D over the other

nodes. The complete matrix P for this example is provided in the right panel of

Figure 4.1c but the expression for any entry pij is given below:

pij =
(φRWt wij + (1− wij))yij∑N
j=1(φRWt wij + (1− wij))yij

. (4.3)

The three random walks now being fully specified, we may now discuss the asso-

ciated stationary distributions which are used as sampling weights in the extended

version of µ̂V H and µ̂egoSH . To ensure the Markov chains (MC) are irreducible, we
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(a) Between group differential recruitment

(b) Within group differential recruitment

(c) Tie attribute differential recruitment

Figure 4.1: Transition probability matrix (right) for a random walk on the nodes
of the networks depicted on the left with three forms of differential recruitment of
magnitude two (φ = 2).
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strictly consider random walks on fully connected undirected networks where self ties

are not permitted, a standard assumption for RDS, and assume all φ’s are greater

than zero. Finally, we assume a finite network to ensure the MC is positive recurrent.

If those conditions are met, then there exists a unique stationary distribution for each

of those stochastic processes.

Result 4.1. Let RWt denote the state at step t of a MC on the nodes of a fully

connected undirected network without self ties. Assume that there exists at least one

yij = 1 such that xi ∈ X 1 and xj ∈ X 0 and that this MC has the following transition

probabilities (i.e. between group differential recruitment):

pij =
(φRWb xj + (1− xj))yij∑N
j=1(φRWb xj + (1− xj))yij

, (4.4)

where φRWb > 0. Then the stationary distribution of this random walk is such that:

πi ∝ dbi = (φRWb xi + (1− xi))(φRWb di1 + di0) for i ∈ {1, 2, ..., N}. (4.5)

Proof.

By assumption, pij =
(φRWb xj + (1− xj))yij∑N
j=1(φRWb xj + (1− xj))yij

.Therefore, we have that:

N∑
i=1

πipij =
N∑
i=1

[
(φRWb xi + (1− xi))(φRWb di1 + di0)

K

][
(φRWb xj + (1− xj))yij∑N
j=1(φRWb xj + (1− xj))yij

]

=
N∑
i=1

[
(φRWb xi + (1− xi))

K

]
(φRWb xj + (1− xj))yij

=
(φRWb xj + (1− xj))

K

N∑
i=1

(φRWb xi + (1− xi))yij

=
(φRWb xj + (1− xj))(φRWb dj1 + dj0)

K
= πj,

where K is a normalizing constant such that
∑N

i=1 πi = 1. Therefore, πi satisfies

the global balance equations for all i ∈ {1, 2, ..., N} and π = {π1, π2, ..., πN} is the

stationary distribution for this RW.
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Result 4.2. Let RWt denote the state at step t of a MC on the nodes of a fully

connected undirected network without self ties. Assume that there exists at least one

yij = 1 such that xi ∈ X 1 and xj ∈ X 0 and that this MC has the following transition

probabilities (i.e. within group differential recruitment):

pij =
(φRWw xj + (1− xj))xiyij + (φRWw (1− xj) + xj)(1− xi)yij∑N
j=1(φRWw xj + (1− xj))xiyij + (φRWw (1− xj) + xj)(1− xi)yij

,

where φRWw > 0. Then the stationary distribution of this random walk is:

πi ∝ dwi = (φRWw xi + (1− xi))di1 + (φRWw (1− xi) + xi)di0 (4.6)

for i ∈ {1, 2, ..., N}.

Proof.

By assumption, pij =
(φRWw xj + (1− xj))xiyij + (φRWw (1− xj) + xj)(1− xi)yij∑N
j=1(φRWw xj + (1− xj))xiyij + (φRWw (1− xj) + xj)(1− xi)yij

.

Therefore, we have that:

N∑
i=1

πipij =
N∑
i=1

[
(φRWw xi + (1− xi))di1 + (φRWw (1− xi) + xi)di0

K

]
[

(φRWw xj + (1− xj))xiyij + (φRWw (1− xj) + xj)(1− xi)yij∑N
j=1(φRWw xj + (1− xj))xiyij + (φRWw (1− xj) + xj)(1− xi)yij

]

=
N∑
i=1

(φRWw xj + (1− xj))xiyij + (φRWw (1− xj) + xj)(1− xi)yij
K

=
(φRWw xj + (1− xj))dj1 + (φRWw (1− xj) + xj)dj0

K
= πj,

where K is a normalizing constant such that
∑N

i=1 πi = 1. Therefore, πi satisfies

the global balance equations for all i ∈ {1, 2, ..., N} and π = {π1, π2, ..., πN} is the

stationary distribution for this RW.
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Result 4.3. Let RWt denote the state at step t of a MC on the nodes of a fully

connected undirected network without self ties. Assume that the MC has the following

transition probabilities (i.e. tie attribute differential recruitment):

pij =
(φRWt wij + (1− wij))yij∑N
j=1(φRWt wij + (1− wij))yij

,

where φRWt > 0. Then the stationary distribution of this random walk is:

πi ∝ dti = φRWt wi1 + wi0 i ∈ {1, 2, ..., N}. (4.7)

Proof.

By assumption, pij =
(φRWt wij + (1− wij))yij∑N
j=1(φRWt wij + (1− wij))yij

.

Therefore, we have that:

N∑
i=1

πipij =
N∑
i=1

[
(φRWt wi1 + wi0)

K

][
(φRWt wij + (1− wij))yij∑N
j=1(φRWt wij + (1− wij))yij

]

=
N∑
i=1

(φRWt wij + (1− wij))yij
K

=
φRWt wj1 + wj0

K
= πj,

where K is a normalizing constant such that
∑N

i=1 πi = 1. Therefore, πi satisfies

the global balance equations for all i ∈ {1, 2, ..., N} and π = {π1, π2, ..., πN} is the

stationary distribution for this RW.

The resulting stationary distributions all involve the φ parameters which are gen-

erally unknown since the sampling is driven by the respondents. However, these

parameters may be estimated by maximizing the following likelihood functions:

L(φ|G = g) ∝
∏

i∈S1\S0

p(Gi = gi|Gi−1 = gi−1, φ),

=
∏

i∈S1\S0

pgi−1gi , (4.8)
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where:

G : n-dimensional vector of random variables specifying nodes’ sampling order.

S0 : set of seeds.

pij : transition probabilities between node i and node j for the given form of dif-

ferential recruitment.

The resulting estimate for φ’s may be replaced in the stationary distributions so

that the estimated stationary distributions for node i ∈ {1, 2, ..., N} in equations

(4.5), (4.6) and (4.7) respectively become proportional to:

d̂bi = (φ̂RWb xi + (1− xi))(φ̂RWb di1 + di0), (4.9)

d̂wi = (φ̂RWw xi + (1− xi))di1 + (φ̂RWw (1− xi) + xi)di0, and (4.10)

d̂ti = φ̂RWt wi1 + wi0. (4.11)

4.2.3 Extended Design-Based Estimators

Obtaining the extended version of µ̂V H is straightforward. The only modification

to the original estimator consists in replacing the sampling probabilities by the ap-

propriate RW estimated stationary distribution. For instance, in the case of between

group differential recruitment, the extended estimator is:

µ̂bV H.dr =

∑N
i=1 Sizi/d̂

b
i∑N

i=1 Si/d̂
b
i

. (4.12)

In addition, similar to equation (2.16), the extended version of µ̂egoSH may be ex-

pressed as a function of the corresponding µ̂V H.dr. For instance, in the case of between

group differential recruitment, we have that:
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µ̂bSH.dr =
µ̂bV H.dr

µ̂bV H.dr + cb (1− µ̂bV H.dr)
, where cb =

n1

n0

∑N
i=1 Sixidi0/d̂

b
i∑N

i=1 φ̂
RW
b Si(1− xi)di1/d̂bi

(4.13)

The extended design-based estimators for all forms of differential recruitment are

summarized in Table 4.2. We note that for all estimators, the ego-network compo-

sition of every participant i, that is, di1 and di0 for between and within group and

wi1 and wi0 for tie attribute differential recruitment, are necessary to compute the

estimate. This information has not traditionally been collected in RDS surveys, but

an increasing number of studies now include this information [Liu et al., 2009, 2012].

Furthermore, for the tie attribute differential recruitment, information about zjwij

and (1− zj)wij also need to be collected for every individual i in the sample. These

data represent the allocation of preferred ties by outcome variable.
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4.3 Bayesian Inference - Successive Sampling Approximation

One of the main limitations of our design-based estimators presented in the previ-

ous section is that the estimation of φ’s does poorly with RDS data in the presence of

an important form of dependency in social networks, that is, homophily. Homophily

is a network property which arises when members of the target population form ties

with alike members more frequently than with other members of the population. For

instance, we say that there is homophily on X if the probability of Yij being equal to

one is greater when xi = xj than when xi 6= xj.

In this Section, we propose a model-based framework to estimating the prevalence

of an outcome variable Z for RDS samples collected with differential recruitment.

Our approach extends the Bayesian methodology proposed by West [1996] and later

extended to RDS data by Handcock et al. [2014]. In their work, the authors leverage

the information about the order in which the items are sampled as well as the observed

unit sizes to make inference about the target population sizeN when data are collected

exactly or approximately from an SS process. Our work is similar in that respect with

the exception that N is presumed known and the object of inference is instead the

prevalence µ. The key contributions of our work lie in our choice of:

1. definition of unit sizes; and

2. super population model responsible for the distribution of those unit sizes.

Together, these choices allow for both network homophily and differential recruitment

to be captured and estimated.

In Section 4.3.1 we describe the likelihood function for the super-population model

parameters η as well as the sampling parameter φ. It is followed in Section 4.3.2 by a

description of the proposed Bayesian framework to estimate those parameters. The

methodology is developed assuming between group differential recruitment, which is
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denoted φ throughout this section for simplicity of notation. Also, it is presumed

that the characteristic inducing differential recruitment is the outcome of interest Z.

4.3.1 Likelihood For the Network and Sampling Parameters

Under a model-based inference framework, the observations are assumed to be the

realization of a super population model. The parameter of that model, η, may be

estimated through likelihood inference. In the case where the population variable V

is fully observed then the likelihood for η is:

L(η|V ) ∝ p(V = v|η). (4.14)

In the situation at hand, a super population model is posited for the participants’

degree, D = {D1, D2, ..., DN} and their outcome variable Z = {Z1, Z2, ..., ZN}, that

is, V = (D,Z). The set of parameters for the super population model is η = (Γ, µ),

where Γ is the vector of parameters for D and µ is the parameter for Z. Therefore,

for a fully observed degree distribution and outcome variable, the likelihood function

in equation (4.14) becomes:

L(Γ, µ|D,Z) ∝ p(D = d, Z = z|Γ, µ). (4.15)

In the current problem however, the participants’ degree and outcome variable are

only partially observed since RDS studies typically sample a fraction of the entire

network. Furthermore, as we discuss in Section 4.3.1.1, the data are not missing

at random (NMAR). Consequently, likelihood inference must include a missing data

mechanism [Little and Rubin, 2002]. Under the SS approximation to RDS, the SS

process is the mechanism responsible for the missing data. Therefore, similarly to

Handcock et al. [2014], the likelihood which reflects this missing data process is:
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L(Γ, µ,φ|G = g, V obs = vobs) ∝ p(G = g, V obs = vobs|Γ, µ, φ)

=
∑

vunobs∈V(vobs)

p(G = g, V = (vobs + vunobs)|Γ, µ, φ)

=
∑

vunobs∈V(vobs)

p(G = g|V = (vobs + vunobs), φ) p(V = (vobs + vunobs)|Γ, µ),

(4.16)

where

1. G = (G1, G2, ..., Gn) denotes the random variable indicating the items’ sampling

order and g = (g1, g2, ..., gn) is its realized valued. In the remainder of this

chapter, to simplify the notation and without loss of generality, we assume that

g = (g1, g2, ..., gn) is equal to (1, 2, ..., n).

2. V obs = (Dobs, Xobs) and V unobs = (Dunobs, Xunobs) denote the observed and un-

observed portion of the degree distribution and outcome variable, respectively.

Also, V = V obs + V unobs = (Dobs +Dunobs, Xobs +Xunobs).

3. V(vobs) is the set of populations of size N consistent with the observed degrees

and outcomes.

As noted by Handcock et al. [2014], the high dimension of vunobs ∈ V(vobs, N)

often makes it impractical to perform likelihood inference. Therefore, we augment

the data and also carry out Bayesian inference to simultaneously estimate the super-

population model and sampling parameters. All parameters in the model with the

exception of µ are nuisance parameters.

4.3.1.1 Successive Sampling With Differential Recruitment

The SS sampling estimator developed by Gile [2011] is based on a network config-

uration model [Molloy and Reed, 1995]. Under such model, the degree distribution is
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fixed and pairs of edge-ends are randomly attached. For instance, in Figure 4.2, “A”

could be paired at random with any edge-ends in {B,C, ..., H} to form a tie.

Figure 4.2: Example of edge-ends in a configuration network model.

The author argues that a self-avoiding random walk on the nodes marginalized

over all networks generated by this model has the following transition probabilities:

P (Gi = i|G1, G2, ..., Gi−1 = (1, 2, ..., i− 1), D = d)

=


di∑N
j=i dj

i 6∈ {1, 2, ..., i− 1}

0 i ∈ {1, 2, ..., i− 1}
(4.17)

which is equivalent to a successive sampling process with unit size equal to the de-

gree of the individuals in the population. Therefore, this justifies why in absence of

differential recruitment the degrees are commonly used for unit size.

Alternative definitions of unit sizes may however be used to reflect various recruit-

ment patterns. Consider instead a self-avoiding RW on the nodes of all networks from

a configuration model with between group differential recruitment of magnitude φ as

defined in the equation below:

φ =
P (Gi = i| G1, G2, ..., Gi−1 = (1, 2, ..., i− 1), zi = 1)

P (Gi = i| G1, G2, ..., Gi−1 = (1, 2, ..., i− 1), zi = 0)
. (4.18)

This sampling process yields the following transition probabilities:
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P (Gi = i|G1, G2, ..., Gi−1 = (1, 2, ..., i− 1), Z = z,D = d, φ)

=


φzidi∑N
j=i φ

zjdj
i 6∈ {1, 2, ..., i− 1}

0 i ∈ {1, 2, ..., i− 1},
(4.19)

which is also equivalent to a SS process. The unit sizes of this SS process may be

formulated as a function of the participants’ degree, their outcome and the differential

recruitment parameter φ such that:

ui = h(di, zi, φ) = φzidi (4.20)

= (φzi + (1− zi))di ∀i ∈ {1, 2, ..., N}. (4.21)

Furthermore, the probability of observing a sequence of n units under this SS process

is as follows:

P (G = (1, 2, ..., n)|Z = z,D = d, φ)

=
N !

(N − n)!

n∏
i=1

P (Gi = i|G1, G2, ..., Gi−1 = (1, 2, ..., i− 1), Z = z,D = d, φ)

=
N !

(N − n)!

n∏
i=1

φzidi∑N
j=i φ

zjdj
, (4.22)

which may be rewritten as:

P (G = (1, 2, ..., n)|V = v, φ) =
N !

(N − n)!

n∏
i=1

φzidi∑n
j=i φ

zjdj +
∑N

j=n+1 φ
zjdj

(4.23)

to emphasize that this expression depends on the unobserved unit sizes through∑N
j=n+1 φ

zjdj. This demonstrates that data collected under this sampling design

are NMAR since the following condition is not satisfied:
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P (G = (1, 2, ..., n)|V = v, φ) = P (G = (1, 2, ..., n)|V obs = vobs, φ). (4.24)

Therefore, the missing data mechanism is nonignorable. This confirms that the sam-

pling process needs to be incorporated in the model when performing inference about

the population parameters.

4.3.1.2 Super-population Model

Under a model-based framework, the observations are presumed to be realization

of a super-population model with unknown parameters. The purpose of the inference

is to estimate those parameters. In the methodology developed by Handcock et al.

[2014], the participants’ degrees, which are used as unit sizes, are assumed to be

generated by a degree distribution. However, in our extension of their methodology,

the unit sizes are a function of both the participants’ degree D and their outcome

variable Z as shown in equation (4.22). Therefore, our super-population model must

jointly model these variables. In this section, we justify our selected model for D and

Z which is denoted f(D,Z|η).

The core objective motivating the development of this prevalence estimator is to

account for network homophily in the presence of differential recruitment. Conse-

quently, the super-population model is specifically designed to capture the depen-

dency between D and Z in a way that reflects this network feature. In particular, the

degree distribution conditional on the nodal attribute is derived from an exponential-

family random graph model (ERGM) [Frank and Strauss, 1986, Hunter et al., 2008,

Hunter and Handcock, 2006] including a term for network homophily. This approach

contrasts with the work of Handcock et al. [2014] in which the degrees are modeled

independently of any nodal characteristics.
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Under our model specification, the probability of observing a tie between node i

and j is as follows:

P (Yij = 1|zi = zj) = γ (4.25)

P (Yij = 1|zi 6= zj) = γ10, (4.26)

where γ and γ10 are the rate of ties among alike nodes and the rate of cross-ties, respec-

tively. Equivalently, conditional on the outcome variable Z, the ties are i.i.d. Bernoulli

trials with parameters γ or γ10.

Figure 4.3 depicts an empty socio-matrix that has been partitioned into four

regions based on the outcome zi’s displayed in the margins. This network contains

twelve nodes, out of which seven nodes have a positive outcome. Based on this

network model, the probability that any off-diagonal entries in quadrant I and IV are

equal to one is γ since those regions are connecting alike members of the population.

The entries in the shaded diagonal are always set to zero since this network model

does not allow ties to self. Similarly, entries in regions II and III have a probability

γ10 to be equal to one since they represent ties among nodes with dissimilar outcome.

Figure 4.3: Socio-matrix
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It is possible to derive the underlying degree distribution for this network model.

All ties are presumed independent. Since the rates of ties differ by quadrant, the

degree distribution is developed by decomposing the distribution into four pieces

which corresponds to the quadrants displayed in Figure 4.3, so that:

f(D|Z,Γ) = p(D00 = d00|Z = z, γ) p(D11 = d11|Z = z, γ)

p(D10 = d10|D01 = d01, Z = z, γ10) p(D01 = d01|Z = z, γ10), (4.27)

where Γ = (γ, γ10) and Dkl’s are N-dimensional vectors such that for k, l ∈ {0, 1} the

i-th element of this vector ([Dkl]i) is equal to:

Di,kl =
N∑
j=1

Yij [kZi + (1− k)(1− Zi)] [lZj + (1− l)(1− Zj)] . (4.28)

The quantity Di,kl essentially represents the number of ties node i has with any

member j in the target population such that zj = l and zi = k.

Starting with the first quadrant in Figure 4.3, we illustrate how the probability

distribution for D00 is obtained. The degree of the fourth node, for instance, to nodes

with covariate equal to zero, corresponds to the sum of the ties in the green highlighted

cells. More specifically, D4,00 =
∑12

j=1 Y4j(1−Z4)(1−Zj) =
∑

j∈{1,2,3,5} Y4j. Therefore,

conditional on Z, D4,00 is the summation of N0− 1 independent Bernoulli trials with

probability γ, where

Nk =
N∑
i=1

kZi + (1− k)(1− Zi) for k ∈ {0, 1}. (4.29)

Simply put, Nk is the number of nodes in Zk = {i : zi = k}. It follows that the

probability distribution for D00 is:

p(D00 = d00|Z = z, γ) =
N∏
i=1

[(
N0 − 1

di0

)
γdi0(1− γ)N0−1−di0

]1−zi
, (4.30)

69



where di0 is the number of ties to individuals with zj = 0 regardless of the outcome

zi or more generally, for k, l ∈ {0, 1} and for i ∈ {1, 2, ..., N}

dik =
N∑
j=1

yij(kzj + (1− k)(1− zj)). (4.31)

In other words, the probability distribution for D00 conditional on Z is simply the

product of N0 Binomial distributions. The same reasoning may be applied to develop

the distribution for the vectors D11 and D01. However, an additional constraint is

imposed on the distribution for D10. In equation (4.27) the distribution of D10 is

conditional on D01. This constraint ensures that the number of ties in quadrant II

of a network is the same as the number of ties in its third quadrant. Although this

does not guarantee a symmetric network this constraint preserves some aspect of the

symmetry, that is, the total number of ties. This constraint implies that the degrees

in the third quadrant follows a multivariate hypergeometric distribution such that:

p(D10 = d10|D01 = d01, Z = z, γ10) =

∏N
i=1

(
N0

di0

)zi(
N1N0

t10

) , where t10 =
N∑
i=1

[d01]i . (4.32)

In summary, the degree distribution conditional on Z is provided below:

f(D|Z,Γ) = p(D00 = d00|Z = z,Γ) p(D11 = d11|Z = z,Γ)

p(D10 = d10|D01 = d01, Z = z, γ10) p(D01 = d01|Z = z, γ10)

=

(
N1N0

t10

)−1 N∏
i=1

[(
N1 − 1

di1

)
γdi1(1− γ)N1−1−di1

(
N0

di0

)]zi
[(
N0 − 1

di0

)
γdi0(1− γ)N0−1−di0

(
N1

di1

)
γdi110 (1− γ10)N1−di1

]1−zi
, (4.33)

Thus far we have discussed the probability distribution f(D|Z,Γ). However, the

complete super-population model is the joint distribution f(D,Z|η) = f(D|Z,Γ)f(Z|µ).
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Therefore, a model for the outcome variable Z needs to be formulated, where Z is a

vector of binary variables. The outcome variables are assumed to be i.i.d. Bernoulli

trials with parameter µ such that Zi
iid∼ Bernoulli(µ). Although each random variable

Zi is presumed independent, the stochastic mechanism responsible for generating the

network captures the tendency of alike nodes to preferentially attach. It is noteworthy

to emphasize that the rate µ is the primary object of inference.

4.3.2 Full Conditional Distributions For Gibbs Sampler

The full conditional posterior distributions for the parameters µ, Γ, φ, Zunobs

and Dunobs = (Dunobs
00 , Dunobs

01 , Dunobs
10 , Dunobs

11 ) are developed in this section. Their

distributions rely on the sampling and super-population models discussed in Sections

4.3.1.1 and 4.3.1.2. However, obtaining a straightforward expression for some of

the posterior distributions is not possible and therefore, the data are augmented to

circumvent this issue. In this section, we begin by describing the data augmentation

technique used by West [1996] and Handcock et al. [2014] in similar modeling settings.

Then, we present the iterative steps of the Gibbs sampler algorithm and the derivation

of the posterior distributions. Finally, we discuss our choice of prior distributions.

4.3.2.1 Data Augmentation

Data augmentation is used in order to simplify the denominator included in the

SS model stated in equation (4.22), that is:

n∏
i=1

ri =
n∏
i=1

N∑
j=i

φzjdj =
n∏
i=1

N∑
j=i

(φzj + (1− zj))dj. (4.34)

The ri terms in this expression represent the remainder of the unsampled units when

i − 1 units have been sampled. West [1996] observed that augmenting the sampling

model by a series of n exponential random variables ψi’s with parameter ri having

the following density function:

71



fΨi
(ψi|ri) = rie

−riψi , where ri > 0 (4.35)

yields a simpler model to manipulate. In our proposed methodology, this model is as

follows:

P (Ψ = (ψ1, ψ2, ..., ψn), G = (1, 2, ..., n)|Z = z,D = d, φ)

= P (Ψ = (ψ1, ψ2, ..., ψn)|G = (1, 2, ..., n), Z = z,D = d, φ)

P (G = (1, 2, ..., n)|Z = z,D = d, φ)

=
N !

(N − n)!

n∏
i=1

e−riψiφzidi. (4.36)

Consequently, the denominator term depending on ri’s is now absent in the resulting

augmented sampling model. However, this simplification is at the expense of an

additional component for Ψ’s in the Gibbs sampler which is described in Section

4.3.2.2.

4.3.2.2 Gibbs Sampler

In this section we describe the Gibbs sampler designed to sample from the aug-

mented joint posterior below:

p(µ,Γ, φ, Zunobs, Dunobs,Ψ|V obs, G = g) (4.37)

It has a total of six components. The algorithm is similar to the one proposed by

West [1996] and extended by Handcock et al. [2014]. The main differences are that:

1. the total population size N is presumed known; and

2. the unit sizes distribution captures network homophily and differential recruit-

ment. Therefore three Gibbs components are necessary for this distribution
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instead of one: unobserved degrees, unobserved outcome variable and the dif-

ferential recruitment parameter φ.

3. the main object of inference is the prevalence µ.

The full conditional posterior distributions for each parameter are derived within

each step of the Gibbs sampler below. The mean of the posterior distribution for µ

is used to estimate the prevalence of the outcome variable and is denoted µ̂bSS.dr.

1. Initialize zunobsi , dunobsi0 and dunobsi1 for all i ∈ {n+ 1, n+ 2, ..., N}

2. Sample µ from (4.39):

p(µ|Z = z,D = d,G = g, φ,Γ,Ψ) ∝ π(µ)p(Z = z|µ)

∝ π(µ)µ
∑N

i=1 zi(1− µ)N−
∑N

i=1 zi

∴ µ|Z = z,D = d,G = g, φ,Γ,Ψ ∼ beta

(
aµ +

N∑
i=1

zi, bµ +N −
N∑
i=1

zi

)
(4.38)

when µ ∼ beta (aµ, bµ)

3. Sample γ from (4.40) and γ10 from (4.41):

(i) p(γ|Z = z,D = d,G = g, µ, φ, γ10,Ψ) ∝ π(γ) p(D = d|Z = z, γ)

= π(γ)
N∏
i=1

[
γdi1(1− γ)N1−1−di1

]zi [
γdi0(1− γ)N0−1−di0

]1−zi
= π(γ) γ

∑N
i=1 di1zi+di0(1−zi) (1− γ)N1(N1−1)+N0(N0−1)−

∑N
i=1 di1zi−

∑N
i=1 di0(1−zi)

∴ γ|Z = z,D = d,G = g, µ, φ, γ10,Ψ ∼ beta (αγ, βγ) (4.39)

where αγ = aγ +
N∑
i=1

(1− zi)di0 +
N∑
i=1

zidi1

βγ = bγ +N0(N0 − 1) +N1(N1 − 1)−
N∑
i=1

(1− zi)di0 −
N∑
i=1

zidi1

when γ ∼ beta (aγ, bγ)
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(ii) p(γ10|Z = z,D = d,G = g, µ, φ, γ,Ψ) ∝ π(γ10) p(D = d|Z = z, γ)

= π(γ10)
N∏
i=1

[
γdi110 (1− γ10)N1−di1

]1−zi
= π(γ10) γ

∑N
i=1 di1(1−zi)

10 (1− γ10)N0N1−
∑N

i=1 di1(1−zi)

∴ γ10|Z = z,D = d,G = g, µ, φ, γ,Ψ ∼ beta (αγ10 , βγ10) (4.40)

where αγ10 = aγ10 +
N∑
i=1

(1− zi)di1 and βγ10 = bγ10 +N1N0 −
N∑
i=1

(1− zi)di1

when γ10 ∼ beta (aγ10 , bγ10)

4. Sample ψi for i ∈ {1, 2, ..., n} from

ψi|Z = z,D = d,G = g, µ, φ,Γ ∼ exp
(
ri), where ri =

N∑
j=i

φzjdj (4.41)

5. Sample joint unobserved degreesDunobs
1 = (Dunobs

11 , Dunobs
01 ) andDunobs

0 = (Dunobs
00 , Dunobs

10 )

from (4.42),(4.43),(4.44) and (4.45), respectively.

p(Dunobs
0 = dunobs0 , Dunobs

1 = dunobs1 |Z = z,Dobs = dobs, G = g, φ,Γ,Ψ)

∝ p(Ψ|Z = z,D = d,G = g, φ) p(G = g|Z = z,D = d, φ)

p(D = d|Z = z,Γ)

∝
n∏
j=1

[
rje
−rjψj

] [φzidj
rj

]
p(D00 = d00|Z = z, γ)p(D11 = d11|Z = z, γ)

p(D10 = d10|D01 = d01, Z = z, γ10)p(D01 = d01|Z = z, γ10)

∝
n∏
j=1

[
e−ψj

∑N
i=j(φzi+(1−zi))(di1+di0)

] N∏
i=1

[(
N1 − 1

di1

)
γdi1(1− γ)N1−1−di1

(
N0

di0

)]zi
[(
N0 − 1

di0

)
γdi0(1− γ)N0−1−di0

(
N1

di1

)
γdi110 (1− γ10)N1−di1

]1−zi

∝
N∏

i=n+1

[
e−(φzi+(1−zi))(di1+di0)

∑n
j=1 ψj

] [(N1 − 1

di1

)
γdi1(1− γ)N1−1−di1

(
N0

di0

)]zi
[(
N0 − 1

di0

)
γdi0(1− γ)N0−1−di0

(
N1

di1

)
γdi110 (1− γ10)N1−di1

]1−zi
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∝
N∏

i=n+1

[(
N1 − 1

di1

)
(γe−φ

∑n
j=1 ψj)di1(1− γ)N1−1−di1

(
N0

di0

)
e−φdi0

∑n
j=1 ψj

]zi
[(
N0 − 1

di0

)
(γe−

∑n
j=1 ψj)di0(1− γ)N0−1−di0

]1−zi

[(
N1

di1

)
(γ10e

−
∑n

j=1 ψj)di1(1− γ10)N1−di1
]1−zi

Therefore,

• Dunobs
i11 |Z = z,D = d,G = g, µ, φ,Ψ,Γ ∼ Bin(N1 − 1, δ11), (4.42)

where δ11 =
γe−φ

∑n
j=1 ψj

γe−φ
∑n

j=1 ψj + (1− γ)

• Dunobs
i01 |Z = z,D = d,G = g, µ, φ,Ψ,Γ ∼ Bin(N1, δ01), (4.43)

where δ01 =
γ01e

−
∑n

j=1 ψj

γ01e
−

∑n
j=1 ψj + (1− γ01)

• Dunobs
i00 |Z = z,D = d,G = g, µ, φ,Ψ,Γ ∼ Bin(N0 − 1, δ00), (4.44)

where δ00 =
γe−

∑n
j=1 ψj

γe−
∑n

j=1 ψj + (1− γ)

• Dunobs
i10 |Z = z,D = d,G = g, µ, φ,Ψ,Γ ∼

Hypergeometric(N1−n1)(m = N0 · 1N1−n1 , N = T10 − tobs10 ), (4.45)

where n1 =
∑n

i=1 zi and tobs10 =
∑n

i=1 di0zi

6. Sample unobserved outcome variable Zunobs from (4.46):

p(Zunobs = zunobs|Zobs = zobs, D = d,G = g, µ, φ,Γ,Ψ)

∝ p(Ψ|Z = z,D = d,G = g, φ) p(G = g|Z = z,D = d, φ)

p(D = d|Z = z,Γ) p(Z = z|µ)

∝
n∏
j=1

[
rje
−rjψj

] [φzidj
rj

] N∏
i=1

µzi(1− µ)1−zi

p(D00 = d00|Z = z, γ) p(D11 = d11|Z = z, γ)

p(D10 = d10|D01 = d01, Z = z, γ10) p(D01 = d01|Z = z, γ10)
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∝
n∏
j=1

[
e−ψj

∑N
i=j(φzi+(1−zi))(di1+di0)

]
(
N0N1

T10

)−1 N∏
i=1

[
µ

(
N1 − 1

di1

)
γdi1(1− γ)N1−1−di1

(
N0

di0

)]zi
[
(1− µ)

(
N0 − 1

di0

)
γdi0(1− γ)N0−1−di0

(
N1

di1

)
γdi110 (1− γ10)N1−di1

]1−zi

∝
(
N0N1

T10

)−1 N∏
i=1

[
µ

(
N1 − 1

di1

)
(γe−φ

∑n
j=1 ψj)di1(1− γ)N1−1−di1

(
N0

di0

)
e−φdi0

∑n
j=1 ψj

]zi
[
(1− µ)

(
N0 − 1

di0

)
(γe−

∑n
j=1 ψj)di0(1− γ)N0−1−di0

]1−zi

[(
N1

di1

)
(γ10e

−
∑n

j=1 ψj)di1(1− γ10)N1−di1
]1−zi

(4.46)

Therefore, since there is no closed form distribution for the joint distribution of the

unobserved outcome, a Gibbs sampler is used to sample from this distribution one

unobserved nodal outcome at a time. Contrary to traditional Gibbs samplers which

sequentially draw from the posterior distribution of each variable, the outcome

variable to be sampled are instead sequentially selected at random.

7. Sample φ from (4.47):

p(φ|Z = z,D = d,G = g, µ,Γ,Ψ)

∝ p(Ψ|Z = z,D = d,G = g, φ) p(G = g|Z = z,D = d, φ) π(φ)

∝
n∏
i=1

[
rie
−ψi

∑N
j=i zjdjφ

] [φzi
ri

]
π(φ)

∝ π(φ) φ
∑n

i=1 zi exp

[
−

n∑
i=1

ψi

N∑
j=i

zjdjφ

]
∴ φ|Z = z,D = d,G = g, φ,Γ,Ψ ∼ gamma

(
αφ, βφ

)
(4.47)

where αφ = aφ +
n∑
i=1

xi and βφ = bφ +
n∑
i=1

ψi

N∑
j=1

xjdj

when φ ∼ gamma (aφ, bφ)
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8. Repeat steps (2) to (7) until convergence.

4.3.2.3 Prior Distributions

In the previous section, the selected prior distributions are shown in the derivation

of the full conditional distributions. The prior distributions for µ, γ, γ10 and φ are

chosen so that they are conjugate to their respective data models. In this section we

describe how the prior parameters for these prior distributions were selected.

First, a vague prior is assumed for the parameter φ. The prior for that param-

eter is simply: φ ∼ gamma (aφ = 0.001, bφ = 0.001) which reflects the lack of prior

knowledge of the participants’ sampling preferences.

Second, a common approach is used in the selection of the prior parameters for

µ, γ and γ10 since these three parameters all have a beta prior distribution and a

binomial data model. An empirical Bayesian procedure is utilized to determine the

prior means of the distributions. The prior mean is chosen so that it is equal to

the design based estimate for the parameter in equations (4.13), (4.48) and (4.49).

Furthermore, the prior variance is calculated to obtain a coefficient of variation of 10

for all priors. This prior selection has helped improve the stability and convergence

of the algorithm.

γ̂ =
ˆ̄d11θ̂ + ˆ̄d00(1− θ̂)

θ̂(θ̂N − 1) + (1− θ̂)((1− θ̂)N − 1)
(4.48)

γ̂10 =
ˆ̄d10θ̂ + ˆ̄d01(1− θ̂)

2Nθ̂(1− θ̂)
(4.49)

where θ̂ = µ̂bSH.dr and where ˆ̄dlk =
∑n

i=1

(kzi + (1− k)(1− zi))di,kl
dbi

.

4.4 Uncertainty of The Estimators

So far, we have discussed methodology to estimate the prevalence of an outcome of

variable Z with RDS data when participants preferentially recruit individuals based
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on their characteristic or on their relationship with them. In this section we develop

methodology to assess the uncertainty of the proposed estimators µ̂V H.dr, µ̂SH.dr under

all three forms of differential recruitment and of µ̂bSS.dr.

4.4.1 Design-Based Estimators

The variance estimator described in this section extends the SH-ego bootstrap

procedure proposed by Lu [2013] summarized in Section 2.4.3.2. The revised method-

ology is designed to estimate the uncertainty of µ̂V H.dr or µ̂SH.dr under any of the three

forms of differential recruitment discussed in this chapter. The two modifications to

the existing methodology are as follows:

• Sampling weights. Similarly to the SH-ego bootstrap procedure, with the

exception of the first node being selected completely at random, every resampled

node is selected according to the estimated probability of transitioning from the

group to which the recruiting node belongs to any other groups. For instance,

suppose that the characteristic of the resampled node at step t is zero (xit = 0).

Furthermore, assume that the recruitment displays between group differential

recruitment at an estimated rate of φ̂RWb . Then, the probability of selecting a

node such that xit+1 = 1 is equal to the average estimated proportion of cross

recruitment given by:

p̂b(0,1) =

∑N
i=1 Si(1− xi)φ̂RWb di1/d̂bi∑N

i=1 Si(1− xi)
. (4.50)

Table 4.3 summarizes all transition probabilities from any group k to any group

l used in our proposed bootstrap variance estimator.

• Estimates. As usual, prevalence estimates are computed for all replicates. In

the present case, the prevalence is determined based on the extended prevalence

estimator for which the variability is estimated. For example, if the objective is
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to estimate the variability of µ̂bV H.dr, then the prevalence estimates are calculated

with equation (4.12). Since the extended design-based estimators all depend

on the estimated φ’s, this quantity is re-evaluated for each replicate prior to

calculating the resampled estimates. The determination of the resampled φ’s

is based on the characteristics of the resampled nodes. Therefore, information

about the nodes’ differential recruitment variable and ego-network compositions

is recorded for every resampled nodes.

Table 4.3: Transition probabilities used in the bootstrap procedure for
the extended design-based estimators under various recruitment regimes

DR Form Transition Probability

Between Group pb(k,l) =

∑N
i=1 Si1(xi=k)(φ̂

RW
b )ldil/d̂bi∑N

i=1 Si1(xi=k)

Within Group pw(k,l) =

∑N
i=1 Si1(xi=k)dil(φ

RW
w )1−|k−l|/d̂wi∑N

i=1 Si1(xi=k)

Tie Attribute pt(k,l) =

∑N
i=1 Si1(zi=k)

∑N
j=1 1(zj=l)(φ̂

RW
t )wijyij/d̂ti∑N

i=1 Si1(zi=k)

The resulting bootstrap procedure is intended to capture the uncertainty pertain-

ing to the sampling process assuming a random walk approximation to RDS. Also,

by recalculating φ for each replicate, we adjust for the variability of this parameter.

However, neither the variability due to a super-population model nor the variability

induced by other RDS-specific characteristics is reflected in this bootstrap estimator.
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4.4.2 Bayesian Estimator

Deriving a variance estimator for µ̂bSS.dr is straightforward. The posterior distri-

bution for the parameter µ is obtained as part of the Bayesian estimation procedure.

Therefore, measures of uncertainty may be obtained directly from a summary statis-

tic of the posterior samples, such as the standard deviation. The standard deviation

of the posterior samples reflects the sources of uncertainty modeled in the estimation

framework, such as the uncertainty due to the super-population model and the succes-

sive sampling procedure. However, again, variability induced by other RDS-specific

features is not reflected in this uncertainty estimator.

4.5 Simulation Study

4.5.1 Simulation Study Design

The complexity of the RDS sampling method prevents an analytical assessment of

the performance of the proposed prevalence estimators. Therefore, we have designed a

simulation study to compare their performance under a variety of sampling conditions

and network features. In this section, we present the design and results from the

simulation study consisting of the scenarios intended to capture randomness due to

the population model and to the sampling. We also describe the tuning parameters

of the MCMC. The simulation study was performed with the statistical software R

and the packages statnet [Handcock et al., 2015b] and RDS [Handcock et al., 2015a].

4.5.1.1 Network Features

There is a vast body of literature studying the tendency of people to form ties

with individuals with whom they share common attributes [Kandel, 1978, McPherson

et al., 2001, Currarini et al., 2009]. Therefore, one of the primary objectives of this

simulation study it to evaluate the sensitivity of the proposed methodology to this

social behavior.
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Exponential-family random graph model (ERGM) provides the flexibility to in-

corporate this feature. This may be done for instance by adding a homophily term

which differentiates between the rate of ties among alike members, γ in equation

(4.25), from the rate of ties among members belonging to different groups, γ10 in

equation (4.26). This parametrization of homophily is then given by:

homophily = τ = γ/γ10. (4.51)

The simulated networks were generated using τ = 1 (no homophily) and τ = 5

(elevated homophily) with respect to the outcome variable Z. The rate of ties were

also chosen so to produce an average degree of ten and all ties were reciprocated.

Furthermore, the number of positive outcomes were randomly drawn from a Binomial

distribution with probability µ = 0.35 or µ = 0.30 when comparing the three forms

of differential recruitments.

A total of one thousand networks were generated with functions in the R packages

statnet [Handcock et al., 2015b] for each of the two attachment regimes. Each one

of those populations comprises a thousand members.

4.5.1.2 Sampling

The simulated RDS process in this study is intended to exhibit features approach-

ing those of actual RDS studies. For instance, the nodes are sampled without replace-

ment. Also, a set of ten seeds initiate the sample instead of one as assumed by the

proposed design-based and Bayesian estimators. Such seeds are selected completely

at random. Each node subsequently recruits a maximum of two participants. A

smaller number of recruits is allowed when there are less than two unsampled alters

connected to the recruiting node. Nodes are presumed to recruit under one of the

three recruitment regimes:

• recruitment completely at random (i.e. φ = 1),
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• moderate differential recruitment (i.e. φ = 2), or

• elevated differential recruitment (i.e. φ = 4)

with respect to the outcome variable Z or the tie attribute matrix W . Nodes receiving

an invitation to participate into the survey are presumed to systematically accept the

invitation. Finally, the sampling process stops when the target sample size of two

hundred is attained. One RDS sample is drawn from each network.

In summary, the six basic scenarios correspond to the sampling conditions and

network features described above simulated with one of the three levels of differential

recruitment and one of the two homophily levels.

4.5.1.3 MCMC parameters

The Gibbs sampler algorithm requires a number of tuning parameters. For in-

stance, a set of starting values for the unobserved outcome variable and degrees has

to be generated. For the purpose of the simulation study, the unobserved outcomes

are sampled from a Bernouilli distribution. The probability of a positive outcome of

such distribution is assumed to be equal to the estimated prevalence (based on µ̂SH.dr)

among the remaining nodes. As for the unobserved degrees, they are simulated from

the prior distributions described in Section 4.3.2.3.

4.5.2 Results: Point Estimates

Results from the simulation study for between group differential recruitment are

presented in Figure 4.4. This figure displays results for the six scenarios described in

the previous section. The two levels of network homophily are shown on the horizon-

tal panels, τ ∈ {1, 5} and the three levels of differential recruitment are shown on the

vertical panels, φ ∈ {1, 2, 4}. Estimates from seven estimators are summarized by box

plots which appear in the following order for each scenario: µ̂V H , µ̂bV H.dr, µ̂SH , µ̂egoSH ,

µ̂bSH.dr, µ̂SS and µ̂bSS.dr. Estimators are grouped into three categories µ̂V H , µ̂SH and

82



µ̂SS on the x-axis of each scenario and the box plot color within each category indi-

cates the specific version of the estimator: original estimators (green), Lu’s extension

(purple) and finally, the extended estimators for differential recruitment proposed in

this chapter (red). The Bayesian estimator is grouped with the SS estimator even

though it is not an extension of the original SS design-based estimator per se. How-

ever, both estimators in this category are based on a SS approximation to RDS. The

true population parameter µ is represented by the horizontal blue line on that figure.

Finally, we note that the last scenario (τ = 5 and φ = 4) is based on 979 populations

as opposed to 1000 for all the other scenarios. The algorithm failed to converge for

twenty one populations under those simulated conditions.

We first observe from this figure that all estimators have little to no bias in the two

scenarios in which no differential recruitment is simulated. In addition, most extended

estimators under those two scenarios have reduced variability. This reduction in

the uncertainty is partly attributable to the fact that although φ is approximately

equal to one on average, it slightly varies from this value in any particular simulated

sample. These small departures from recruitment completely at random are corrected

for in the extended estimators and therefore, produce estimates with smaller errors.

For µ̂bV H.dr, the bias introduced by the network homophily offset this effect. For

estimators in the SH category, the decrease in variability is also explained by the

improved estimation of the c-factors.

Our simulation corroborates the findings discussed in various studies that differ-

ential recruitment induces strong biases [Frost et al., 2006, Gile and Handcock, 2010,

Tomas and Gile, 2011, Lu et al., 2012, Verdery et al., 2015]. This holds even for a

moderate value for φ. A between group differential recruitment of magnitude two for

instance yields an average bias of roughly 11% in the original estimators in scenarios

without homophily and an average bias of 18% with homophily.
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Figure 4.4: Estimates produced with varying level of network homophily, that is,
τ ∈ {1, 5}, (horizontal panels) and between group differential recruitment, that is,
φ ∈ {1, 2, 4} (vertical panels). Estimators are presented in the following order: µ̂V H ,
µ̂bV H.dr, µ̂SH , µ̂egoSH , µ̂bSH.dr, µ̂SS and µ̂bSS.dr. The blue horizontal line represents the true
population prevalence.

As observed in Figure 4.4 all discussed extended estimators reduce substantially

the differential recruitment bias under all scenarios. All estimators however do not

perform equally well under all circumstances. The estimator proposed by Lu for in-

stance, µ̂egoSH , is far more robust to differential recruitment than the original estimator

under all assessed scenarios, but a residual bias remain when φ 6= 1. This bias is

explained by the fact that the sampling probabilities on which the estimator relies do

not account for differential recruitment. The estimators µ̂V H.dr and µ̂SH.dr which mod-

ify the sampling weights are therefore outperforming the µ̂egoSH in the scenarios where
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there is no homophily. In the presence of homophily however, φ is overestimated due

to the branching and without replacement nature of RDS and the resulting estimates

are therefore overcorrected. The Bayesian estimator which specifically accounts for

network homophily reduces a greater portion of the bias under those circumstances.

Table 4.4 displays the performance of the estimators with respect to the root mean-

squared-error (RMSE =
√
MSE) for all six scenarios. For each scenario, the RMSE

for the four estimators are compared using a Bonferroni comparison at a family-wise

error rate of 5%. Results displayed in bold characters indicate that the estimator is

in the set of best estimator for the particular scenario. Those results suggest that

µ̂bSH.dr systematically appears in the best set of estimators when there is no network

homophily and µ̂bSS.dr outperforms all estimators otherwise.

Table 4.4: RMSE for the extended estimators under S1-S6.
The RMSE’s in bold indicates that the method is in the best
set of estimators for a particular scenario based on Bonferroni
pairwise comparison at a family-wise error rate of 5%.

Parameters Estimators

Scenario τ φ µ̂bV H.dr µ̂egoSH µ̂bSH.dr µ̂bSS.dr

S1 1 1 .0249 .0210 .0213 .0202
S2 1 2 .0265 .0247 .0227 .0225
S3 1 4 .0260 .0297 .0227 .0273
S4 5 1 .1025 .0355 .0375 .0225
S5 5 2 .0985 .0365 .0358 .0214
S6 5 4 .1206 .0391 .0415 .0258

For the extended design-based estimators, the ability of the estimators to reduce

differential recruitment bias has also been assessed for the other forms of differential

recruitment. Figure 4.5 presents the results of this analysis using a φ = 2 and τ = 1.

The findings are similar to the results for between group differential recruitment. In

other words, extended estimators decrease the differential recruitment bias and Lu’s
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estimator appears to have a residual bias except for the within group differential

recruitment. Also, µ̂SH.dr tend to display less variability than µ̂V H.dr.

Figure 4.5: Design-based estimates produced under three forms of differential re-
cruitment (vertical panels). Networks are simulated with τ = 1 and samples with
φ = 2. µ̂V H is compared with the corresponding µ̂V H.dr in the upper horizontal panel
and µ̂SH with µ̂egoSH , and µ̂SH.dr in the lower panel. The blue horizontal line represents
the true population prevalence.

The analysis presented above suppose that the variable inducing differential re-

cruitment is the outcome variable Z. However, a simulation study has also been

performed to assess the performance of the design-based estimators when the vari-

able inducing is an arbitrary variable nodal X. The results were similar to the ones

presented. However, the differential recruitment bias is smaller in instances where

the variable X is not closely related to the outcome variable Z.

86



In addition, the convergence of the Gibbs Sampler was assessed using standard

MCMC diagnostics. A total of 1500 samples were drawn from the full posterior

distribution of which five hundred were discarded for the burnin. Trace plots showed

slow mixing of the chains but they appeared to converge. The effective sample size

[Heidelberger and Welch, 1981, Geweke, 1992] for some parameters was small and

therefore, we will increase the number of posterior draws in our future work.

4.5.3 Results: Variance Estimates

In this section, we assess the performance of the proposed bootstrap variance

estimators described in Section 2.4.3 and Section 4.4 at various levels of between

group differential recruitment and network homophily. We also evaluate the impact

of differential recruitment on the overall inference by comparing coverage rates of

the 95% confidence intervals for the traditional RDS estimators and their extended

versions.

Similarly to the approach in Section 3.2.3, the performance of the uncertainty

estimators is evaluated by comparing the estimated standard deviation (σ̂) to our

best estimates of the true variability which consists of the standard deviation of the

simulated prevalence estimates under each scenario (s’s).

Figure 4.6a presents the relative differences between the average estimated vari-

ability and the variability of the simulated estimated such that the relative bias =
¯̂σ−s
s

.

The results are shown for the seven prevalence estimators discussed in this section

and for between group differential recruitment only. This figure is organized in the

same way as Figure 4.4, that is, the two horizontal blocks display the results for the

two levels of network homophily (τ ∈ {1, 5}) and the vertical panels are divided ac-

cording to the differential recruitment parameter φ ∈ {1, 2, 4}. The estimators are

presented in the following order within each scenario: σ̂(µ̂V H), σ̂(µ̂bV H.dr), σ̂(µ̂SH),

σ̂(µ̂egoSH), σ̂(µ̂bSH.dr), σ̂(µ̂SS) and σ̂(µ̂bSS.dr).
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(a) Relative bias of the standard deviation estimates calculated as
¯̂σ−s
s , where ¯̂σ is the

average estimated standard deviation under a bootstrap methodology and s is the sample
standard deviation.

(b) 95% confidence interval coverage rates, where the coverage rates are the percentage
of the intervals including the true population proportion µ of 35%. The dashed line is set
at 95%.

Figure 4.6: Standard deviation estimation and 95% confidence interval coverage
results for using the bootstrap procedures for the various versions of µ̂V H , µ̂SH and
µ̂SS. 88



As suggested by this figure, the estimated uncertainty of the extended prevalence

estimators is most often underestimating the variance. The relative bias ranges from

approximately 3% to -63%. These large negative biases may be explained by the fact

that the RW and the successive sampling processes ignore some RDS-specific sampling

features, such as the branching. The variability associated with those features is not

captured in the Bootstrap procedures.

We note however that the overall inference with the extended estimators is not

severely impaired by the underestimation of the variability. As seen in Figure 4.6b

coverage rates for the 95% confidence intervals are either rather comparable (φ = 1) or

much higher (φ > 1) than the coverage rates for the traditional estimators. However,

inference using µ̂bV H.dr in the presence of network homophily is an exception. Under

those circumstances, the prevalence estimator is largely biased and therefore, the true

population parameter falls within the constructed intervals less often.

In summary, despite the underestimation of the variance of the extended preva-

lence estimators, the inference from RDS data is improved by the extensions proposed

in this section in the presence of differential recruitment. As seen in Figure 4.6, infer-

ence with µ̂bSH.dr and µ̂bSS.dr appear to have the best performance in most scenarios.

4.6 Discussion

Sampling hard-to-reach populations is a challenging problem. RDS has provided

ways to circumvent some of the issues specific to those populations that make the use

of traditional sampling methods unpractical. However, the sampling process under

RDS is out of the control of the researchers conducting the studies and therefore, this

sampling method is highly susceptible to biases induced by participants’ behaviors.

The main contribution of this work is to introduce inferential methodologies correct-

ing existing RDS prevalence estimators and their uncertainty estimators for biases

induced by various forms of differential recruitment.
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Our first approach to correct for differential recruitment extends the traditional

design-based RDS estimators. Conventional estimators under this framework sup-

pose that participants’ sampling probabilities may be estimated from the stationary

distribution of a random walk (RW) on the state space of the network nodes. The

derivation of the stationary distribution assumes that participants recruit completely

at random among their contacts in the target population. Our approach modifies this

assumption and instead proposes three sampling schemes under which participants

systematically recruit individuals based on one of their nodal characteristics or based

on their relationship nature with them. By explicitly defining those sampling schemes

we were able to derive the RW characterizing those behaviors and their associated

stationary distributions. The revised estimators rely on the stationary distributions

of the modified RW. Results from the simulation study show that this methodol-

ogy greatly reduces biases induced by the various forms of differential recruitment.

However, these methods require additional data about participants’ ego-network com-

positions.

One of the important limitation of the proposed design-based approach is its poor

performance with networks featuring homophily. To address this issue, we have ex-

tended a model-based approach which allows us to simultaneously estimate network

homophily and between group differential recruitment on the outcome variable. Un-

der this framework, Bayesian inference is performed about the parameters of the

super-population model and the sampling model. Since the super-population model

explicitly allows for network homophily, this method has shown to substantially re-

duce the traditional estimators’ differential recruitment bias present in homophilous

networks. However, similarly to the design-based inference, this model-based estima-

tion framework also requires ego-network compositions data to be collected.

The comparison of the root mean-squared-error (RMSE) in our simulation study

suggests that the design-based estimator µ̂SH.dr generally outperforms alternative
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estimators for networks simulated with random attachment. The same criteria favors

the model-based estimator µ̂SS.dr in the presence of network homophily.

We have also proposed uncertainty estimators in this section. For design-based

prevalence estimators, the uncertainty is estimated through a bootstrap procedure

capturing the variability associated with the RW sampling as well as with the es-

timation of the magnitude of the differential recruitment φ. For the model-based

approach, the standard deviation is simply calculated from the posterior draws of

the prevalence parameter µ. In addition to reflecting the variability induced by the

successive sampling model, this variance also takes into account the variability of the

super-population model. Results from the simulation study show that the variance

estimators tend to underestimate variability. This may be explained by the fact that

those procedures do not reflect some of the RDS specific features. Although the un-

derestimation of the variance affects the width of the 95% confidence intervals, the

coverage rates for µ̂SH.dr and µ̂SS.dr are significantly better than those produced by

the conventional estimators when with φ = 2 or 4. We conclude that the proposed

extended methods improve the inference in the presence of differential recruitment

despite the underestimation of the variance.

Additional analysis not presented in this section shows that one of the limitations

of the model-based estimator is its sensitivity to the mispecification of the network

model. To address this issue, we intend to examine in our future work alternative

and more flexible ways to formulate this model.

The model-based approach also assumes a known target population size N . This

assumption is often unrealistic in most RDS studies. One possible extension to our

work would be to treat this quantity as a parameter to be estimated along with the

other model parameters. Similar methodology has been developed by West [1996]

and Handcock et al. [2014], but sensitivity to an additional parameter in the problem

at hand has not been evaluated yet.
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One of the major advantage of the design-based framework is its ability to correct

for differential recruitment on any nodal or tie characteristics. Although our prelimi-

nary work to allow this feature to be incorporated in the model-based framework has

not been conclusive, we intend to pursue this objective in our future work.

A number of questions could be further investigated to ensure that the proposed

methodologies are both sounded and practical for practitioners. For instance, since we

have identified homophily as a key factor in determining which of the two approaches

is the most suitable, providing RDS users with measures of network homophily based

on RDS data would represent a useful addition to our work. Similarly, in the event

that the model-based approach remains sensitive to model choices, providing diag-

nostic tools to assess the fit of the data to those choices would represent a critical

future contribution. Besides, since RDS surveys relies on self-reported ego-network

data, studying the sensitivity of the methods to misclassified data remains a key ob-

jective of our future work. Finally, we hope to work with practitioners to develop

guidance on prior determination of variables that could lead to differential recruit-

ment so that ego-network information about those variables may be included in RDS

questionnaires.

Overall, we believe that the proposed methodologies are promising and could sig-

nificantly improve traditional estimators when participants do not recruit at random.
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CHAPTER 5

NATIONAL PREVALENCE ESTIMATION

5.1 Introduction

Public Health organizations studying concentrated HIV epidemics commonly con-

duct a series of surveys within a country among its populations at elevated risk of

infection, such as men who have sex with men (MSM), sex workers (SW) and people

who inject drugs (PWID). Collecting information from those hard-to-reach popula-

tions is however often challenging and expensive and specialized sampling techniques,

such as RDS [Heckathorn, 1997], are used. Consequently, it is not uncommon that

only a subset of the key populations of a given country are sampled. For instance,

samples may be collected in twenty of the thirty major cities of a country. Estimates

of quantities of interest, such as disease prevalence and key population size, are there-

fore often available only for a subset of the country’s key populations. This specific

nature of the data collection poses a challenge when national estimates are sought.

Recent methodological advances have allowed the derivation of national estimates

from local estimates. For instance, Bao et al. [2015] developed a Bayesian hierarchi-

cal model to estimate national key population size from regional estimates. Their

method incorporates many of the data sources typically available in the context of

HIV surveillance. It also reflects the uncertainty and some biases inherent to the

conventional data sources.

National prevalence estimates, denoted π̂, are commonly derived by computing the

average of the regional prevalence estimates (yj’s) weighted by their target population

size estimates (nj’s):
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π̂ =

∑J
j=1 yjnj∑J
j=1 nj

, (5.1)

where J is the number of regions where data were collected. This methodology

however raises two main concerns related to (1) the estimation of uncertainty of

national prevalence estimate, and (2) the treatment of regions for which no survey

data are available. We discuss each of these in turn.

(1) Estimation of uncertainty of national prevalence estimates A com-

monly used approach to constructing confidence intervals is to ignore the uncertainty

of the population size estimates. The bounds of the confidence interval are calculated

in a similar fashion to the prevalence point estimate, that is, as weighted average of

the regional confidence interval bounds. This would in principle be an appropriate

procedure if the regional population sizes were known with certainty, which is rarely

the case in the context of hard-to-reach populations. Therefore, this approach often

underestimates the uncertainty of the national prevalence estimate.

(2) Treatment of regions for which no survey data are available Often

regional estimates are not available for all the regions of the studied country, although

national estimates are desired. The national estimator in its current form does not

explicitly model the missing regions. It instead assumes that these regions have the

same disease prevalence as the national estimate. Although it may sometimes be a

reasonable assumption, this could potentially be problematic in other instances. In

resource limited settings for example, studies may be conducted only in regions with

the most susceptible populations. By design, the prevalence estimates in the selected

areas may be substantially higher than the prevalence in the unobserved areas. Con-

sequently, the overall national prevalence would be overestimated. Additionally, if a

large number of regions are missing, this could translate into an underestimation of

the national prevalence estimate uncertainty.
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The contribution of our research is to address some of these issues. For instance,

using a similar approach to Bao et al. [2015] for population sizes, our proposed

method naturally incorporates uncertainty in regional population sizes. Our proposed

Bayesian approach also allows for direct modeling of prevalence in regions where no

data are available.

In this chapter, we discuss a proposed approach to estimating the national preva-

lence. The chapter is organized as follows. Section 5.2 describes the data used in

our research. The prevalence and population size models are subsequently presented

in Section 5.3. Assessment of the models’ fit is discussed in Section 5.4 along with

the derivation of the national prevalence estimate. We conclude in Section 5.5 with a

brief overview of the methodology discussed, its current limitations and thoughts for

future research.

5.2 Data

Data from two target populations of a given country are used for this study. The

country name is however not identified for confidentiality purposes. Data from the

country may be divided into two categories: prevalence data and key population size

data. These two types of data are described in this section followed by a discussion

about additional data.

We denote observed data with lower case letters and parameters to be estimated

from the Bayesian models presented in Section 5.3 with Greek letters. It should

therefore be clear from the context if, for example, we refer to the prevalence point

estimates from the RDS surveys, which are treated as observed data, or whether we

refer to the prevalence estimates obtained from the Bayesian model.
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5.2.1 Survey Prevalence Estimates

Prevalence estimates and their respective variance were derived from survey data.

In particular, data were collected with RDS surveys, which were conducted in five

of the country’s regions (J = 5). For two of these regions, the surveys included

participants residing in various cities. Our analysis demonstrated that participants

recruited almost exclusively individuals living in their city. Consequently, the regional

surveys for these two regions were subsequently divided into two or three surveys to

reflect the fact that the samples were obtained from different populations. This

yielded a total of eight surveys (I = 8) from five regions for each of the two key

populations, denoted KP1 and KP2. Therefore, the data contain a total of sixteen

point estimates.

The prevalence estimates are derived from the Volz and Heckathorn [2008] esti-

mator described in Section 2.4.1.2 and are denoted yi for i ∈ {1, 2, ...8}. Although

the variance of the prevalence estimates, vi, are determined by a bootstrap procedure

[Salganik, 2006], they assumed to be known with certainty for this study.

The prevalence data are presented in Figure 5.1. This plot shows the sixteen

point estimates along with their respective 95% confidence intervals. The estimates

are presented separately for the two key populations and are grouped by region, when

applicable. The colors pink and blue represent KP1 and KP2, respectively, and the

vertical lines delimit the five regions. We observe that the prevalence estimates vary

significantly across regions both in magnitude and in variability.

5.2.2 Population Size Data

Our model incorporates three sources of information regarding the size of the tar-

get population: object multiplier estimates [Archibald and Sutherland, 2001], wisdom

of the crowd estimates and experts’ estimates of the proportion of the reference pop-
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Figure 5.1: Survey prevalence estimates yi (data) along with their 95%
confidence intervals. The prevalence are grouped by regions and shown sep-
arately for the two key populations.

ulation who belongs to the key population. All these data sources are also used in

the work of Bao et al. [2015].

The unique object multiplier method is equivalent to a capture-recapture method.

The first step of this method consists in distributing characteristic objects to members

of the target population. The objects are sometimes distributed at venues typically

attended by members of the target population for example. Secondly, a survey is

performed shortly after and the number of participants having received the object

are counted.

It is possible to estimate the size of the target population with this collected

information with a method of moments estimator. The method of moments estimator

97



commonly used with this type of data assumes that the proportion of participants

who received the objects in the survey is approximately equal to the proportion of

people who were given the objects in the overall target population such that:

oj
rj

=
dj
nj

⇔ nj =
dj
oj/rj

, (5.2)

where

oj

rj

dj

nj

number of objects observed in the surveys in region j,

number of participants in the survey in region j,

number of objects distributed in region j,

target population size estimate for region j.

This estimator is unbiased as long as the two sources of data are independent

and as long as the survey is representative of the target population. However, as

pointed out by the WHO and UNAIDS in their guideline on population size estimation

[UNAIDS/WHO, 2010], the properties of this estimator heavily depend on the quality

of the collected data. In the present study, unique object multiplier estimates of the

population sizes are available at the regional level, that is, for the five regions and for

the two key populations.

In addition to the unique object multiplier estimates, wisdom of the crowd es-

timates were also collected for the five regions. Under this method, the population

size estimate is simply the average of the survey participants’ best estimate of the

target population size. This method however often leads to large biases and does not

provide any measure of uncertainty.

Finally, field experts also provided their best guess estimate of the proportion of

the reference population, pe, belonging to the target populations. This proportion is

a global estimate for the entire country.
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5.2.3 Additional Data

In addition to prevalence and key population size estimates, the number of individ-

uals in the general population, i.e. the reference population size, is also used as a pre-

dictor in the model to estimate the size of the key populations. Other predictive vari-

ables have been considered from the Demographic Health Survey (https://dhsprogram

.com/) and from UNAIDS Key Populations Atlas (http://www.aidsinfoonline.org/

kpatlas). None of the tested variables have shown strong predictive power. Therefore

they are not discussed in this chapter.

5.3 Methods

The main objective of this study is to determine the national prevalence of HIV

among two susceptible key populations from a given country. In this Section, we de-

scribe our proposed approach to obtain a national prevalence estimate. The methodol-

ogy relies on hierarchical Bayesian models for both the prevalence and the population

size estimates. The hierarchical structure of the models is designed to reflect both

the variability within cities or regions as well as across them. Sections 5.3.1 and 5.3.2

describe two possible models for either the prevalence or the target population size.

In those Sections, the two key populations are treated as two different groups. In

other words, the models are the same for the two key populations but they are fitted

separately for each dataset. It is then followed in Section 5.3.3 by a description of

the national prevalence estimator.

5.3.1 Prevalence Model

Multiple models were considered and evaluated in our analysis. In this Section

however, we only describe two models. A description of alternative models along with

results may be found in Appendix C.
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Since RDS is a complicated sampling process, the prevalence estimators do not

follow a known distribution. The two models below assume that the logarithm of

the prevalence follows a Normal distribution. Also, the variance of the distributions

(vlogyi) is parameterized based on the known variability for yi which is estimated by

a standard RDS Bootstrap procedure [Salganik, 2006].

Model 1 - Partial Pooling by City

log(yi)|τm1
i , vlogyi ∼ N(τm1

i , vlogyi)

τm1
i |µτm1 , σ2

τm1 ∼ N(µτm1 , σ2
τm1). (5.3)

Model 2 - Partial Pooling by Region

log(yi)|τm2
j[i] , vlogyi ∼ N(τm2

j[i] , vlogyi)

τm2
j |µτm2 , σ2

τm2 ∼ N(µτm2 , σ2
τm2). (5.4)

In the expressions above, yi is the HIV prevalence for city i ∈ {1, 2, ..., 8}, and

vlogyi is determined based on the known variance of yi, that is, vi. In particular,

vlogyi = log

[
1

2

(
1 +

√
1 +

4vi
e2τi

)]
, (5.5)

where τi represents τm1
i or τm2

j for model 1 or 2, respectively.

The parameters µτm1 and µτm2 represent the overall mean prevalence across all

cities (model 1) or regions (model 2). As for σ2
τm1 and σ2

τm2 , they represent the

variability across cities and across regions, respectively. Vague prior distributions for

those parameters are assumed to reflect our lack of prior knowledge of the national

HIV prevalence and the variability across cities or regions:
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µτm1 ∼ Normal(0, 1000)

µτm2 ∼ Normal(0, 1000)

στm1 ∼ U(0, 5)

στm2 ∼ U(0, 5). (5.6)

The two models differ in their treatment of the surveys within a region. Model

2 implies that there exists a unique mean τm2
j ’s for each region. This assumption is

appropriate when individuals from the various cities of a given region may be viewed

as belonging to a common target population. Should this not be the case, then model

1 would be more suitable since under model 1, each prevalence point estimate has its

own mean.

In the present case, for example, some regions have multiple prevalence estimates

yi. However, the data were truly obtained from one survey per region. The results

were subsequently divided into two and three estimates for two of the regions. The

reason behind this decision is related to the recruitment chains which were highly

clustered on the city variable. In other words, except a few exceptions, individuals

only recruited participants living in the same city as themselves. This indicates

that the network is not very well connected between cities and therefore, the data

in fact represent samples from different populations and therefore, model 1 is more

appropriate for the data.

5.3.2 Population Size Estimates

We also propose two models for the the population size parameters (η’s): complete

pooling and partial pooling models. The method closest to the work of Bao et al.

[2015] is the partial pooling model. Both models account for the three sources of

data:
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• Service Multiplier: Since the service multiplier follows a capture-recapture

approach, the number of objects observed in the survey, oj, are modeled with a

hypergeometric distribution.

• Wisdom of the crowd: Similar to Bao et al. [2015], the wisdom of the crowd

estimates, i.e. zj is modeled on a log scale with a bias component. The bias is

expressed as a proportion of the regional reference population size, qj.

• Expert’s opinion: The expert’s opinion, i.e. the proportion of the reference

population who belongs to the target population (pe), has been accounted for

in the specification of the prior distributions.

Model 1, the complete pooling model:

oj|dj, ηj, rj ∼ Hypergeometric(dj, ηj, rj)

ηj|θ, qj ∼ Bin(qj, θ)

log(zj)|ηj, qj, σ2
z ∼ N(log(ηj) + βlog(qj), σ

2
z)

with the following prior distributions:

θ ∼ N(pe, σθ = 0.0005)

β ∼ N(0, σβ = 10)

σz ∼ U(0, 100)

and where,

ηj Parameter for the target population size in region j;

oj Number of objects retrieved in the sample of region j ∈ {1, 2, ..., J};

dj Number of objects distributed in region j;

rj Survey sample size in region j;
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qj Reference population size in region j;

zj Wisdom of the crowd estimate of ηj; and

pe Expert’s opinion of the proportion of reference population who belong to the

target population.

This model is referred to as the “complete pooling” model since the parameter θ,

which represents the proportion of the reference population who belongs to the tar-

get population, is the same for all regions. In other words, the information of all

regions is completely pooled into a single estimate. Model 2 differs in that respect

such that regional proportions are instead modeled with a hierarchical structure.

The hierarchical structure allows information to be shared across regions, i.e. to be

“partially pooled”. Model 2, the partial pooling model is given by:

oj|dj, ηj, rj ∼ Hypergeometric(dj, ηj, rj)

ηj|θj, qj ∼ Bin(θj, qj)

logit(θj) ∼ N(µθ, σ
2
θ)

log(zj)|ηj, qj, σ2
z ∼ N(log(ηj) + βlog(qj), σ

2
z)

with the following prior distributions:

µθ ∼ N(logit(pe), 4)

β ∼ N(0, σβ = 10)

σz ∼ U(0, 100).

The prior distribution for θ and µθ were chosen to be centered at the experts’

guess. As no measure of uncertainty is provided with the experts’ opinion, we had to

choose this prior parameter. We chose it so that the prior was informative. To verify
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that the prior distributions were indeed informative, we plotted the posterior and the

prior distributions for those parameters. Figure 5.2 illustrates our findings for KP1.

In that figure, the histograms represent the posterior distribution whereas the red

lines represent the prior distributions. We conclude that the prior distributions are

informative. Similar results were obtained for KP2.

Figure 5.2: KP1 prior and posterior distributions (θ and µθ)

5.3.3 National Prevalence Estimator

Current national prevalence estimator is in the form of a weighted average as

described in equation (5.1). Our proposed Bayesian estimator has a similar form but

takes into account different sources of data and uncertainty and also reflects the fact

that data might be missing for a number of regions or cities. In this section, we

describe our proposed approach and highlight the main differences with the current

estimator.

The proposed prevalence estimators for the prevalence models 1 and 2, respec-

tively, are as follows:
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π
(s)
m1 =

∑Iall
i=1 π

(s)
m1,iη

(s)
i∑Iall

i=1 η
(s)
i

and π
(s)
m2 =

∑Jall

j=1 π
(s)
m2,jη

(s)
j∑Jall

j=1 η
(s)
j

, (5.7)

where “s” indicates the “s”-th posterior draw and where Iall and Jall refer to the total

number of cities (model 1) or regions (model 2), including cities and regions where

no data were collected.

Firstly, we notice that the observed prevalence estimates yi shown in equation

(5.1) are substituted by π
(s)
m1,i and π

(s)
m2,i, respectively. These values are derived from

the posterior draws for τm1’s and τm2’s. Since the prevalence models are on a log-

scale, the posterior prevalence estimates are obtained by taking the exponential of the

posterior parameters τm1’s and τm2’s such that, π
(s)
m1,i = exp

[
(τm1
i )(s)

]
and π

(s)
m2,j =

exp
[
(τm2
j )(s)

]
. For cities and regions with observed prevalence estimates, the posterior

draws for τm1’s and τm2’s are available directly from the model fit. However, for cities

and regions with missing data, obtaining posterior draws for τm1’s and τm2’s requires

two steps. For example, for model 1, the two steps are as follows:

1. sample (µ
(s)

τm1 , σ
(s)

τm1) from their posterior distribution p(µτm1 , στm1|y)

2. sample (τm1)(s) from its posterior distribution p(τm1|µ(s)

τm1 , σ
(s)

τm1).

These two steps are equivalent to sampling from the posterior distribution of τm1
i

since its posterior distribution may be expressed as follows:

p(τm1
i |y) =

∫
p(τm1

i |y, α)p(α|y)dα, where α = (µτm1 , στm1). (5.8)

As such, since we have posterior draws for all cities, it is possible to sum over Iall in

equation (5.7). A similar approach may be adopted for model 2.

Secondly, the observed population size estimates nj shown in equation (5.1) are

substituted by η
(s)
i and η

(s)
j , respectively. The posterior draws are obtained from the
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population size model 2 described in Section 5.3.1. For regions without observed

population size estimates, the posterior draws are obtained using a 2-step procedure

similar to the one used for the prevalence parameters. It is worth noting however

that posterior draws for the population size estimates η’s are only available at the

regional level. Therefore, for model 1, to evaluate the sum in equation (5.7), we need

to formulate an assumption regarding the allocation of the regional population size

estimates between their respective cities. Results presented in Section 5.4 assume

that cities in a given region are of equal size. As such, for region j containing cj

cities, the estimated target population size for a city i in that region is ηi = ηj/cj.

This approach was adopted due to the lack of sufficient data to obtain city specific

estimates. Our model could however easily be extended should the necessary data

become available.

Finally, the Bayesian national prevalence estimate is obtained by taking the mean

of the posterior distribution for π
(s)
m1 or π

(s)
m2. Similarly, the uncertainty of this estimator

may be estimated directly from the posterior draws. Results in Section 5.4 were

produced from 3000 draws. This therefore led to 3000 π
(s)
m1 and π

(s)
m2 samples from

which we could derive the posterior mean (i.e. the Bayesian estimate) as well as the

2.5% and 97.5% quantiles to obtain the credible interval.

5.4 Results

In this Section, we present results from fitting the different models to the data.

Section 5.4.1 discusses results for the two prevalence models, Section 5.4.2 discusses

results for the population size models and finally, Section 5.4.3 describes the results

for the national prevalence estimates.
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5.4.1 Prevalence Estimates

The first validation to assess whether the models provide a reasonable fit to the

data is to examine the residuals. The residuals are calculated as follows:

resi = yi − πm1,i for model 1

resi = yi − πm2,j[i] for model 2, (5.9)

where πm1,i =
∑S

s=1 π
(s)
m1,i/S, πm2,i =

∑S
s=1 π

(s)
m2,j[i]/S and S is the number of posterior

draws. Under the two models and for the two key populations, the average residuals

are nearly zero, which is ideal.

Figure 5.3 also provides a visualisation of the model fit. This graph shows the

95% predictive intervals (PI’s) for each yi as well as these observed estimates (red

dots). The results are displayed for the two key populations (horizontal panels) and

the two prevalence models (vertical panels). All data points fall inside the PIs for

both models. The model fit again appears to be reasonable.

We have also compared the two models in terms of Relative Mean Absolute Er-

ror (RMAE), Root Square Mean Error (RSME) and Deviance Information Criterion

(DIC) [Spiegelhalter et al.]. Results are shown in Table 5.1. Lower values indicate

a better model fit to the data. In the present case, model 2 achieves the lowest val-

ues for almost all criteria. However, as discussed in Section 5.3.1, model 1 is more

appropriate in our case due to the nature of the prevalence data.

Table 5.1: In-sample predictive accuracy and DIC for prevalence models

Key Relative Mean Root Square
Population Absolute Error Mean Error DIC

M1 M2 M1 M2 M1 M2
KP1 0.247 0.205 0.052 0.044 19.2 15.4
KP2 0.138 0.123 0.044 0.061 22.3 13.7
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Figure 5.3: 95% predictive intervals (PI) for the prevalence of the two key
populations along with the observed prevalence estimates yi depicted by red dots.

Finally, the convergence of the models has been assessed by visual inspection of

trace plots as well as with other traditional MCMC diagnostic statistics, such as the

R̂ [Gelman and Rubin, 1992] and the effective sample size [Heidelberger and Welch,

1981, Geweke, 1992]. All measures appear to indicate convergence of the chains to

the target distributions.

5.4.2 Population Size Estimates

We have also verified the model fit for the two target population size models.

All validations suggest that model 2 strongly outperforms model 1. For instance

Figure 5.4 displays the 95% predictive intervals (PI’s) for the observed population

size estimates as a proportion of the reference population with dashed lines (nj/qj).
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The PI’s for the first model are depicted with the lighter lines and with thicker lines

for model 2. These PI’s are compared with the observations (nj/qj) represented by

dashed lines. As expected, for model 1, the proportions are fairly constant across

regions. We note that the observed data always lie inside the 95% PI’s for model 2,

whereas it is generally not true for the first model. Model 2 has a much better fit.

Figure 5.4: 95% predictive intervals (PI) for the population size estimates ex-
pressed as a proportion of the reference population. Model 1 PI’s are depicted
with the lighter lines and model 2 PI’s with thicker lines. Dashed lines represents
the observed data.

We have also compared the models using in-sample predictive accuracy and DIC

information criteria. Table 5.2 shows the results. Again, all metrics indicate model 2

vastly outperforms model 1.
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Table 5.2: In-sample predictive accuracy and DIC for population size models

Model Key Relative Relative Mean DIC
Population MSE Absolute Error

1 1 25.452 1.743 177.4
2 3.255 .590 157.1

2 1 .035 .079 55.6
2 .011 .043 55.5

We have also verified that the inclusion of the variable qj as a predictor of the

bias for the wisdom of the crowd estimate was appropriate. Based on the posterior

estimates for β (model 2) shown in Table 5.3, we conclude that qj explains some of

the variability in these estimates.

Table 5.3: Posterior estimates and 95% CI for β

Key Population Posterior Estimates

1 -0.25 (-0.40, -0.10)
2 -0.13 (-0.24, -0.03)

Finally, similarly to the prevalence models, convergence to the target distribution

was assessed with trace plots and MCMC diagnostic tools. No convergence issues

were diagnosed.

5.4.3 National Prevalence Estimates

The national prevalence estimates that are presented in this section for the two

key populations are based on model 1 for the prevalence and on model 2 for the

population size.

Table 5.4 displays estimates based on the current methodology and compares them

to the proposed revised estimates. We first note that both methods produce point

estimates that are lower than the current methodology. This is due to the fact that
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the larger prevalence point estimates have larger variability than the smaller point

estimates. Therefore, the larger estimates are pulled towards the smaller estimates.

The 95% CI is substantially wider for KP2 than the one produced from current

methodology. This is due to the fact that the revised estimator accounts for the

target population size estimates uncertainty as well as the additional uncertainty for

including regions for which no data were collected. This effect is however not observed

for KP1 since the prevalence point estimates do not vary as much across cities.

Table 5.4: Comparison of national prevalence estimates

Key Current Bayes
Population Method Estimates

1 .082 (.034, .128) .060 (.037, .117)
2 .222 (.146, .298) .163 (.070, .346)

5.5 Conclusion and discussion

In summary, we have developed Bayesian models to improve the estimation of the

national HIV prevalence among high risk populations. The developed methodology

overcomes some of the issues encountered with the current practice. First, the devel-

oped estimator incorporates the target population size estimate uncertainty. Also, it

accounts for regions where no data have been collected. Finally, similar to the work of

Bao et al. [2015], it incorporates multiple sources of data about the target population

size which are often available.

The main limitations of the proposed methodology are that, first, the model as-

sumes that the unobserved regions are similar to the observed ones. However, this

assumption may not always be reasonable in practice. As discussed in the Section

5.1, in resource limited settings, the regions might not be missing at random. In our

future work, we would like to include predictive variables for the prevalence and the
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target population size estimates that would help factor potential dissimilarities across

regions or cities.

A second limitation to our work is that our analysis depends on only five surveys

in the entire country. Ideally, it would be better to have a larger number of surveys

to fit the models.

Finally, the choice of prior for the target population size estimates is rather in-

formative. Determining the sensitivity of the results to the choice of prior will be

assessed in future work.
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APPENDIX A

PERFORMANCE OF THE ANALYTICAL ADJUSTMENT
WITH THE SALGANIK-HECKATHORN ESTIMATOR

We discuss here why the c-factor and its observed version c∗ both play a role in

whether or not the linear adjustment applies to the Salganik-Heckathorn estimator.

The argument is based on the fact that, if we assume a random walk at stationarity,

this implies that c→ 1 and c∗ → 1. As such, we also have that:

1. limc→1
µ̂adjV H

µ̂adjV H+c(1−µ̂adjV H)
= µ̂adjV H and

2. limc∗→1 µ̂
naive
V H = µ̂naiveSH or equivalently, limc∗→1 µ̂

adj
V H = µ̂adjSH

Therefore, under those conditions,

µ̂adjSH ≈
µ̂adjV H

µ̂adjV H + c(1− µ̂adjV H)
.

By definition of the analytical adjustment given by equation (3.2), we also have

that:

µ̂adjSH =
µ̂naive
SH −f+

1−f+−f− .

By relating the right hand side of the two equations above and by using the

following relations:

1. µ̂naiveSH =
µ̂naive
V H

µ̂naive
V H +c∗(1−µ̂naive

V H )

2. µ̂adjV H =
µ̂naive
V H −f+

1−f+−f− ,
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Figure A.1: Relation between c∗ and c under the three scenarios of the simulation
study.

we obtain:

µ̂naiveV H

µ̂naiveV H + c∗(1− µ̂naiveV H )

≈ (µ̂naiveV H − f+)(1− f+ − f−) + f+(µ̂naiveV H − f+ + c(1− f− − µ̂naiveV H ))

µ̂naiveV H − f+ + c(1− f− − µ̂naiveV H )
.

Therefore, when the random walk at stationarity assumption is met, that is, when

c→ 1 and c∗ → 1, the limit on each side of the equation when c∗ → 1 and c→ 1, re-

spectively, are equal. However, other values for c and/or c∗ may create a discrepancy

between the two sides of the equation thus indicating that the analytical adjustment

will have a poor performance. This has been found to indeed create biases in the sim-

ulations. In practice, it is not possible to calculate c in presence of misclassification.

Although no exact linear relationship exists between c and c∗, as seen in Figure from

our simulations, they tend to be positively correlated. As such, a high c∗ may imply

an elevated c and should serve as an indicator that the analytical adjustment might

not be the best correction method for the Salganik-Heckathorn estimator.
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APPENDIX B

ADDITIONAL RESULTS FROM MISCLASSIFICATION
SIMULATION STUDY

Root Mean-Squared-Error
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RMSE at Various Levels of Misclassification Rates

Figure B.1 presents the average RMSE improvement when using the analytical

adjustment compared to the naive approach, that is:

RMSEnaive −RMSEadj

RMSEnaive

.

The calculations were performed with false positive and negative rates varying from

0 to 0.4 by 0.04 increments and under scenario 1 for the Volz-Heckathorn estimator.

The average improvement is expressed as a function of the average misclassification

bias present in the estimates. In most instances, the RMSE is significantly lower

than under the naive approach. The limited instances where the average RMSE with

the analytical adjustment is higher than the naive one occur when the estimates

contain little misclassification bias. In those cases, the benefits from the reduction in

misclassification bias are offset by the increase in the uncertainty of the estimates.

Figure B.1: Relative decrease in the average RMSE for the Volz-Heckathorn esti-
mator under S1 as a function of the average misclassification bias in the estimates.
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Sensitivity to Erroneous Error Rates

Figure B.2 shows the misclassification bias still present in the Volz-Heckathorn

estimates after applying the analytical adjustment when inaccurate misclassification

error rates (i.e. f+ and f−) are used in equation (3.2). The impact of inaccurate rates

is presented for S1 to S3 at various levels of inaccuracy in f+ and f−. The relation

is shown in terms of f+ for S1 and S2 and f− for S3 since those rates significantly

deviate from the true rates under the corresponding scenarios. As for the dash line,

it represents the average misclassification bias in the naive point estimate. Very few

point estimates in either of the three scenarios contain more misclassification bias than

the one present in the average naive point estimate. This suggests that for moderate

departure from the true misclassification rates, the correction methods may still result

in less misclassification bias than the naive approach. Although Figure B.2 is based

on inaccurate f+ and f− for all scenarios, the uncertain f−’s in S1 and S2 and f+’s

in S3 are fairly close to the true rate.
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Figure B.2: Misclassification error remaining in the VH estimates (µ̂V H) after ap-
plying the analytical adjustment for S1 to S3 as a function of the inaccuracy in the
error rates (either f+ or f−). The dash line represents the average misclassification
bias in the naive point estimate.
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APPENDIX C

NATIONAL PREVALENCE ESTIMATION SUPPLEMENT

C.1 Alternative Prevalence Models and Results

In this section, we describe alternative models that were assessed to model preva-

lence. Similarly to the log-normal model proposed in Section 5.3.1, each data model

has two versions: one partial pooling by city and one partial pooling by region.

Model 1 (Normal) - Partial Pooling by City

yi|πm1
i , vi ∼ N(πm1

i , vi)

πm1
i |µπm1 , σ2

πm1 ∼ N(µπm1 , σ2
πm1).

Model 2 (Normal) - Partial Pooling by Region

yi|πm1
j[i] , vi ∼ N(πm2

j[i] , vi)

πm2
j |µπm2 , σ2

πm2 ∼ N(µπm2 , σ2
πm2).

The prior distributions are as follows:

πm1 ∼ Uniform(0, 1)

σπm1 ∼ Uniform(0, 1)

πm2 ∼ Uniform(0, 1)

σπm2 ∼ Uniform(0, 1).
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Model 1 (Beta) - Partial Pooling by City

yi|ai, bi ∼ beta(ai, bi)

πi ∼ beta(απ, βπ),where

ai = π2
i ((1− πi)/vi − 1/πi) and bi = ai(1/πi − 1)

Model 2 (Beta) - Partial Pooling by Region

yi|ai, bi ∼ beta(ai, bi)

πj ∼ beta(απ, βπ),where

ai = π2
j[i]((1− πj[i])/vi − 1/πj[i]) and bi = ai(1/πj[i] − 1)

The prior distributions are as follows:

απ ∼ gamma(0.001, 0.001)

βπ ∼ gamma(0.001, 0.001)

The priors distributions were chosen to be vague. Also, in all models, the variance of

the data models is assumed known.
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Figure C.2: 95% predictive intervals (PI) for the prevalence of key population
1 along with the observed prevalence estimates yi depicted by red dots under six
models.
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Figure C.3: 95% predictive intervals (PI) for the prevalence of key population
2 along with the observed prevalence estimates yi depicted by red dots under six
models.
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