# Modeling: What is in your Toolbox? Analytical Tools for Fish Passage Alternatives Analysis 

MaryLouise Keefe<br>R2 Resource Consultants, Inc.<br>Phil Hilgert<br>R2 Resource Consultants, Inc.<br>Alice Shelly<br>R2 Resource Consultants, Inc.<br>Tim Sullivan<br>R2 Resource Consultants, Inc.

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

[^0]
# What is in your Toolbox? Analytical tools for fish passage alternatives analysis. 

Dr. MaryLouise Keefe, Phil Hilgert, Alice Shelly and Tim Sullivan R2 Resource Consultants, Inc.


## Project variation requires integration of site-specific information



## Passage Projects often rely heavily on expert opinion



COSO'S PROFESSIONAL JUDGMENT PROCESS


Define the problem and identify fundamental objectives,Consider alternatives,Gather and evaluate information,Reach a conclusion, and
(5) Articulate and document your rationale.

For higher-quality decisions, don't cut short steps 1 and 2 of the decision process. Make sure you carefully identify the objective and consider all alternatives and diverging views. Encourage the expression of different opinions.

Source: Adapted from KPMG LLP, Steven M. Glover, and Douglas F. Prawitt, "Enhancing Source: Adapted from KPMGLLP, Steven M. Glover, and Douglas F. Prawitt, "Enhancing Board Oversight: Avoiding Judgment Traps and Biases, Committee of Sponsoring
zations of the Treadway Commission (COSO), March 2012, http://bit.Jy/1bS5zdy.

## Can we improve decision making and increase our fish passage effectiveness?


"WHAT'S YOUR BIG RUSH? THEY'RE STACKED UP AT THE FISH LADDER ANYWAY!"

We are striving for "known unknowns" or at least ... a better understanding of which unknowns are important and which are not.


## Example 1: Downstream Migrant Mortality Model (DM3)

## Complex Hydroelectric Project <br> - 3 powerhouses <br> - 4 dam structures <br> - Multiple potential migratory pathways

-DM3 apportioned fish through migratory pathways
-Used existing data on passage efficiency and mortality at each node
-Output = total system survival

## Incorporating Uncertainty

- To learn how the uncertainty in individual parameters affects uncertainty in the system-wide mortality estimate.
- Gaming identifies advantages of alternate protection and passage measures at each node.


## Incorporate uncertainty around parameters



## Outcome: A survival rate with confidence interval to define a measurable system performance metric



## Example 2: The Biological Performance Tool (BPT)

- Provides a structured analytical process for downstream passage
- Relative comparison of passage alternatives
- Facility design, location, size, operation
- Visual Basic program
- Keep it as simple as needed to address questions
- Process transparency for stakeholders


## BPT Assumptions for Downstream Alternatives

- Periodicity
- Response to freshets
- Capture efficiencies at collectors
- Collection and transport mortality
- Reservoir mortality
- Passage capture and mortality


| Species | Freshwater Life Phase | Jan |  | Feb |  | Mar |  | Apr |  | May |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1-15 | 16-31 | 1-15 | 16-28 | 1-15 | 16-31 | 1-15 | 16-30 | 1-15 | 16-31 | 1-15 | 16-30 | 1-15 | 16-31 | 1-15 | 16-31 | 1-15 | 16-30 | 1-15 | 16-31 | 1-15 | 16-30 | 1-15 | 16-31 |
| Steel head | Upstream Migration |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Spawning |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Incubation |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Juvenile Rearing |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Juvenile Outmigration |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Assumptions

- Response functions (assumptions) are userspecified and easily modified
- Assumptions reflect significant uncertainty
- Low and high estimates provides sensitivity analyses

* Output used to compare performance of alternate facilities, not an indication of future passage rate


## Example BPT Framework



## Example BPT Results



## Example 3: Incorporating biological uncertainty into a decision network

- Existing passage model estimates flows below an existing diversion for multiple operational scenarios
- 71-year historic flow record.
- Flow record provides a measure of environmental stochasticity, additional variability in other system uncertainties/model assumptions.
- For example...
- What flow conditions best support adult passage? juvenile passage?
- What is the migration timing and duration?
- How hydrologically different will the next 20 years be from the last 71 years?
- Important to establish whether uncertainties of assumptions could impact operational decisions.


## Model Framework

## 1. Select scenario: operational condition.



## 3. Outcomes:

 distribution of 71year average passage days distribution by life stage and total.2. Define assumptions: hydrology, migration period, critical riffle flow by lifestage.


## Decision Network Display \#1: Fixed Assumptions, One Scenario, Assumptions Fixed



Selecting different sets of assumptions will change the distribution of annual results and average estimate.

## Decision Network Display \#2- Probabilistic weighting of assumptions for one scenario



## Decision Network Display \#3 - Probabilistic weighting of assumptions to compare scenarios



R2 Resource Consultants, Inc.

## Comparison of two scenarios with uncertainty



Difference in Upstream Passage Days

- $80 \%$ of years have negative differences- one scenario better
- $50 \%$ or years diff $<5$ days
- Some years -other scenario better
- Is there too much uncertainty to differentiate?
- Added sensitivity analysis, to identify strongest influence of uncertainties....migration timing.


## Conclusion

These models help us take available information to the next level by...
-gaming possible outcomes,
-quantifying the importance of data gaps
-designing future monitoring to achieve project objectives.

In the end, we can make better decisions that reduce risk for all parties.

## Questions?




[^0]:    Keefe, MaryLouise; Hilgert, Phil; Shelly, Alice; and Sullivan, Tim, "Modeling: What is in your Toolbox? Analytical Tools for Fish Passage Alternatives Analysis" (2016). International Conference on Engineering and Ecohydrology for Fish Passage. 43.
    https://scholarworks.umass.edu/fishpassage_conference/2016/June21/43

