University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2016

Jun 21st, 1:30 PM - 1:45 PM

Modeling: Effects of Hydraulic Structures on Fish Passage: An Evaluation of 2D vs 3D Hydraulic Analysis Methods

Erin R. Ryan

Brian Bledsoe

Tim Stephens

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Ryan, Erin R.; Bledsoe, Brian; and Stephens, Tim, "Modeling: Effects of Hydraulic Structures on Fish Passage: An Evaluation of 2D vs 3D Hydraulic Analysis Methods" (2016). *International Conference on Engineering and Ecohydrology for Fish Passage*. 40. https://scholarworks.umass.edu/fishpassage_conference/2016/June21/40

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@libraryumass.edu.

EFFECTS OF HYDRAULIC STRUCTURES ON FISH PASSAGE: AN EVALUATION OF 2D VS 3D HYDRAULIC ANALYSIS METHODS

Erin R. Ryan Dr. Brian Bledsoe, Tim Stephens Fish Passage Conference – Amherst, MA June 2016

Acknowledgements

- Colorado State University
 - Dr. Brian Bledsoe
 - Tim Stephens, Brian Fox, Nell Kolden
 - Dr. Chris Myrick, Dr. Peter Nelson
- Colorado Parks and Wildlife
 - Matt Kondratieff
- U.S. Fish and Wildlife Service
 - Bozeman Fish Technology Center
 - Fish Passage Program

Study Objectives

- Lyons Whitewater Park
- Methods
- Results
- Conclusions
- Questions
- References

Study Objectives

- Compare 2D and 3D CFD based fish passage analysis methods for Lyons, Colorado field site
- Assess whether 2D CFD modeling can adequately capture complex flow
- Identify key hydraulic variables for predicting the effects of a structure on upstream fish passage

Study Objectives

Lyons Whitewater Park

- Methods
- Results
- Conclusions
- Questions
- References

Lyons Whitewater Park

- North Fork St. Vrain River at Lyons, Colorado
- Prior to September 2013 flooding event

Images: fwp.mt.gov

Lyons Whitewater Park

$$Fr = rac{V}{\sqrt{gd}}$$

Images: Fox 2013

- Study Objectives
- Lyons Whitewater Park

Methods

- Results
- Implications
- Conclusions
- References

Methods – Overview

Image: www.river2d.ualberta.ca

Methods – Path Hydraulics

Image: Stephens, 2014

Methods – Path Hydraulics

Methods – Physical Criteria

MDC – Minimum Depth Criterion

- MVR Maximum Velocity Ratio
 - 10 BL/s
 - 25 BL/s

velocity ratio =
$$\frac{v_{rms}}{v_{burst}}$$

Methods – Statistical Analysis

- 204 total observations, Boolean
 - Species and body length

Bivariate fits

Variable Selection

Movement

Data

• Stepwise regression

- Logistic Regression
- Various variable combination
 - Prediction accuracy

- Study Objectives
- Lyons Whitewater Park
- Methods

Results

- Conclusions
- Questions
- References

Results – Portion "Impassable"

	Fish body length													
	Discharge	100	125	150	175	200	225	250	275	300	325	350	375	400
	(cms)	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
2D	0.42	0.13	0	0	0	0	0	0	0	0	0	0	0	0
	0.85	0.21	0.05	0	0	0	0	0	0	0	0	0	0	0
	1.70	0.34	0.15	0.03	0	0	0	0	0	0	0	0	0	0
	2.83	0.27	0.21	0.10	0.01	0	0	0	0	0	0	0	0	0
	0.42	0.89	0.20	0.12	0.07	0.02	0.02	0	0	0	0	0	0	0
D	0.85	1	0.44	0.12	0.08	0.01	0	0	0	0	0	0	0	0
ŝ	1.70	1	0.25	0.13	0.06	0.05	0	0	0	0	0	0	0	0
	2.83	1	0.95	0.21	0.07	0	0	0	0	0	0	0	0	0
	Ranges:		1	0.99 -	- 0.80	0.79 -	- 0.60	0.59 -	- 0.40	0.39 -	0.20	0.19 -	- 0.01	0

Results – Portion "Impassable"

	Fish body length													
	Discharge	100	125	150	175	200	225	250	275	300	325	350	375	400
	(cms)	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
2D	0.42	0.95	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
	0.85	0.88	0.83	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	1.70	0.92	0.82	0.75	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
	2.83	0.85	0.82	0.73	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
3D	0.42	0.98	0.72	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68
	0.85	1	0.83	0.62	0.60	0.56	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
	1.70	1	0.98	0.88	0.87	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
	2.83	1	0.96	0.45	0.34	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29
	Ranges: 1 0.99 - 0.80		0.79 -	0.79 - 0.60		0.59 - 0.40		0.39 - 0.20		0.19 - 0.01				

Results – Prediction Accuracy

2D Analysis								3D Analysis							
Predicted								Predicted							
		Observed	Pass	No Pass	% Correct			Observed	Pass	No Pass	% Correct				
	11.0	Pass	46	8	85.2%	0 11	11.0	Pass	44	10	81.5%				
	Š	No Pass	8	142	94.7%	DC		No Pass	8	142	94.7%				
Μ		Overall % Correct			92.2%	Σ		Overall % Correct			91.2%				
0.11	\mathbf{R}_{10}	Pass	4	50	7.4%	MDC _{0.11} & MVR ₁₀	\mathbf{R}_{0}	Pass	0	54	0.0%				
DC	MV	No Pass	8	142	94.7%		MV	No Pass	0	150	100.0%				
Μ	Ś	Overall % Correct			71.6%		S	Overall % Correct			73.5%				
DC0.11	\mathbb{R}_5	Pass	45	9	83.3%	0.11	\mathbb{R}_{5}	Pass	40	14	74.1%				
	MV	No Pass	8	142	94.7%	DC	MV	No Pass	8	142	94.7%				
Μ	Ś	Overall % Correct			91.7%	Μ	Š	Overall % Correct			89.2%				

- Study Objectives
- Lyons Whitewater Park
- Methods
- Results

Conclusions

- Questions
- References

Conclusions

Novel upstream passage assessment methods

Comparing 2D and 3D Analysis Methods

 Comparable prediction accuracy at *this* structure for these species

- Key Hydraulic Variables
 - Depth: > 0.11 m
 Velocity: < 25 BL/s

Questions?

References

- Fox, B., 2013. Eco-Hydraulic Evaluation of Whitewater Parks as Fish Passage Barriers. Masters Thesis, Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO.
- Kolden, E., 2013. Modeling in a Three-dimensional World: Whitewater Park Hydraulics and Their Impact on Aquatic Habitat in Colorado. Masters Thesis, Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO.
- Ryan, E., 2015. Effects of Hydraulic Structures on Fish Passage: An Evaluation of 2D vs 3D Hydraulic Analysis Methods. Masters Thesis. Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO.
- Stephens, T., 2014. Effects of Whitewater Parks on Fish Passage: A Spatially Explicit Hydraulic Analysis. Masters Thesis. Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO.

Results – Prediction Models

	Predicted logit of (passage success) =	Likelihood ratio test (p -value)	Goodness- of-fit test (p -value)	Parameter Estimate (<i>p</i> -value)	Odds ratio (e	β ^β)	Observations accurately predicted (overall %)
	(-48.57) + 58.99*MDC _{0.11}	< 0.0001	< 0.0001	< 0.0001	MDC _{0.11}	4.17E+25	92.2
D Analysis	(-29.61) + 32.11*MDC _{0.11} &MVR ₁₀	< 0.0001	< 0.0001	< 0.0001	MDC _{0.11} & MVR ₁₀	8.78E+13	71.6
2	(-48.57) + 58.97*MDC _{0.11} &MVR ₂₅	< 0.0001	0.899	< 0.0001	MDC _{0.11} & MVR ₂₅	4.07E+25	91.7
	16.61 + (-27.75)*MDC _{0.11}	< 0.0001	< 0.0001	< 0.0001	MDC _{0.11}	8.91E-13	91.2
D Analysis	(-4.33) + 3.34*MDC _{0.11} &MVR ₁₀	0.3483	0.0828	0.3982	MDC _{0.11} & MVR ₁₀	28.35003	73.5
3	20.92 + (-33.22)*MDC _{0.11} &MVR ₂₅	< 0.0001	< 0.0001	< 0.0001	MDC _{0.11} & MVR ₂₅	3.73E-15	89.2