University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2016

Jun 21st, 1:45 PM - 2:00 PM

Innovations I: The Fish-Lifting Trough: A Combined Trash-Rack Cleaner and Fish Passage Device

Reinhard Hassinger University of Kassel

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Hassinger, Reinhard, "Innovations I: The Fish-Lifting Trough: A Combined Trash-Rack Cleaner and Fish Passage Device" (2016). *International Conference on Engineering and Ecohydrology for Fish Passage*. 28. https://scholarworks.umass.edu/fishpassage_conference/2016/June21/28

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

The Fish-lifting Trough– a Combined Trash-rack Cleaner and Fish Passage Device

Dr.-Ing. Reinhard Hassinger Hydraulics Laboratory and Testing Facilities University of Kassel, Germany

- Remarks for downstream guidance of fish in Germany
- Concept and function of fish-lifting trough
- Lab tests
- Pilote site Interlaken

Copyright: VPUW, University of Kassel, Germany

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

The Angled Screen

Sluice-way door with 2 cut-outs weir flap

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

2

KASSEL

Design Criteria for Angled Screen

Design criteria (after Courret and Larinier (1)):

- Perpendicular component of approach velocity v_n not greater than 0,50 m/s.
- Tangential component equal or greater than perpendicular component => angle of intersection α between streamlines and surface not greater than 45 degrees

Criterion for unforced and promptly migration into the bypass: limited acceleration and velocity (according to different authors):

• v < 0,60 m/s = > complex hydraulic control, difficult to comply

1: Courret, D.; Larinier, M.: Guide pour la conception de Prises d'eau « ichthyocompatibles » pour les petites centrales hydroelectriques. RAPPORT GHAAPPE RA.08.04; Nov. 2008

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

3 U

Restricted Application of Angled Screens

If the forebay is wider than the aspect width of the screen, streamlines intersect the screen with much larger angles => guidance vanishes in the middle of the screen => no guidance to the bypass entrance sections

Fish is subject to delay and predation

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

Inclined Screen

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

5

Design Criteria for Inclined Screen

Design criteria (after Courret and Larinier (1)):

- Perpendicular component of approach velocity v_n not greater than 0,50 m/s.
- Tangential component equal or greater two times the perpendicular component (v_t >= 2 x v_n) => angle of intersection α between streamlines and surface about 26 degrees (often 30 degrees used)

Criterion for unforced and promptly migration into the bypass: limited acceleration and velocity (according to different authors):

• $v \le 0,60 \text{ m/s} = > \text{ complex hydraulic control, difficult to comply}$

1: Courret, D.; Larinier, M.: Guide pour la conception de Prises d'eau « ichthyocompatibles » pour les petites centrales hydroelectriques. RAPPORT GHAAPPE RA.08.04; Nov. 2008

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

U

Disadvantages of Both Fish Guiding Systems

- Large screen area
- Large building pit
- Long-time interruption of turbine operation
- Long outreach or long track for the trash-rack cleaner
- Hydraulic conditions in bypass difficult to control

Expensive and hard to realize at existing sites!

Department of Civil and Environmental Engineering

7 U

(Not) New Concept of Catch and Carry: Take the fish with the Trash-rack Cleaner

- Combination with "Fish-friendly Trash Screen"
- Screen vertical (not angled, not inclined)
- Cleaner wipes debris off the screen and catches fish in a trough
- Trough is drained close to the water surface
- Fish and debris are washed to the tailrace

The "Fish-friendly Screen" – a product of Klawa GmbH, Germany (www.klawa-gmbh.de)

8

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger

Department of Civil and Environmental Engineering

U

| N | K A S S E | | **E R S | T 'A'** |

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

V E R S I T

Animation of Fish-lifting trough

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

10

Research and Development Project

gefördert durch

Deutsche Bundesstiftung Umwelt

www.dbu.de

Entwicklung und Untersuchung einer neuartigen Kombination von Fischabstiegsvorrichtung und Rechenreiniger. Report dbu project no. 27863 – 24/0 Development and test of a new combination of fish-bypass and trash-screen cleaner

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

11 V

SS

Longitudinal Section of the Test Setup

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

Laboratory Tests with Live Fish

Fish-lifting trough with eels (*Anguilla* anguilla)

Fish-lifting trough with salmon smolts (Salmo salar)

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

13

KASSEL

Eel Capture and Migration

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

14

Salmon Capture and Transport

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

15

Rate of Transported Fish

Auswertung der Fischrinnenversuche Anströmgeschwindigkeit: 0,5 m/s

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

16

Pilote Site in Interlaken/Switzerland

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

17

Technical Data of Pilote Site Hydropower Plant Interlaken (operated by: IBI Industrielle Betriebe Interlaken, Switzerland)

- Max. discharge: 30 m³/s
- Head: 3,50 m
- 3 turbines with separate approach channels
- Width of each channel: 4,50 m
- Water depth upstream screen: 2,11 m
- Approach velocity: 1,05 m/s

Department of Civil and Environmental Engineering

New Fish-related Components at Hydropower Plant Interlaken

- 1. Fish-friendly trash screen; clear spacing 10 mm
- 2. 3 Fish-lifting troughs in a row: 3 x 4,50 m; synchronized operation
- 3. New fish lock with a brush-furnished slope inside; the brushes dissipate hydraulic energy while filling the lock
- 4. Attraction current jet-pumps enhance the attraction flow at the lock's entrance

Department of Civil and Environmental Engineering

Longitudinal Section through Pilote Site Interlaken

- The construction works are just going on.
- Operation starts in September 2016.
- A 2 years intense monitoring on efficiency of the trough and the new fish lock will be conducted.

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering

20 V E

S

FΙ

Advantages of the Fish-lifting Trough

- Very low water demand
- Hydraulic paraconditions are simple to control
- Short construction length (in flow direction) -> easy to install in existing hydroelectric plants
- Mean waiting time for the fish 10 min => no delays
- Iow predation risk in the forebay
- Iow selectivity; high efficiency
- Less cost and effort (compared to guiding screens)
- Fish-related functions are combined with essential functions for hydropower purposes

Department of Civil and Environmental Engineering

Summary

- The Fish-lifting trough is a combined trash screen cleaner and fish transporter.
- I takes fishes of all species which are upstream of the screen (closer than 0,80 - 1,20 m) with a high rate to the tailrace.
- Fish and debris are washed downstream.
- The fish-lifting trough is optimal with a vertical fish-friendly screen (with 10 mm clear spacing: head loss = 7 mm for 0,50 m/s approach velocity)).

Department of Civil and Environmental Engineering

Thank you!

Author: Dr.-Ing. Reinhard Hassinger, University of Kassel eMail: <u>vpuw@uni-kassel.de</u> www: www.unikassel.de/fb14/vpuw

References: Hassinger, R.; Huebner, D.: Entwicklung und Untersuchung einer neuartigen Kombination von Fischabstiegsvorrichtung und Rechenreiniger. Report dbu project no. 27863 – 24/0, Feb. 2013 (available as *.PDF from author)

Hydraulics Laboratory and Testing Facilities Dr.-Ing. Reinhard Hassinger Department of Civil and Environmental Engineering