University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage

International Conference on Engineering and Ecohydrology for Fish Passage 2016

Jun 21st, 4:45 PM - 5:00 PM

Fish Passage Studies III: Flow and Turbulence Structure in Brush Fish Pass

Serhat Kucukali

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Kucukali, Serhat, "Fish Passage Studies III: Flow and Turbulence Structure in Brush Fish Pass" (2016). International Conference on Engineering and Ecohydrology for Fish Passage. 24. https://scholarworks.umass.edu/fishpassage_conference/2016/June21/24

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Flow and turbulence structure in brush fish pass

Prof. Serhat Kucukali

Advantages of Brush Fish Pass

1) Vibrations of Bristles: Guidance for Fishes and Favorable Hydraulic Conditions

2) Suitable for Small and Weak Swimming Capacity Fish

3) Social Benefit: Passage of Canoes

Shared Value

Fish Monitoring Studies in Brush Fish Pass : Spreewald, Berlin

UNESCO Biosphere Reserve

Comparison of Fish Length Distributions in Brush and Vertical Slot Passes

Physical Model of Brush Fish Pass Scale=1:2 (Froude Similarity)

This work is supported by the Scientific and Technical Research Council of Turkey under Scientific and Technological Research Projects Funding Program (3001 TUBITAK) grant with agreement number 214M518

Flow Resistance of Brush Elements

$$f = fun\left(\frac{d}{h}; A_w; S_o; Layout\right)$$

Point Velocity Distributions

5

0

0.3

Akım

Field Measurments

Data Source: Mosch (2007)

Messpunkt	v _{avr} [m/s]	v _{min} [m/s]	v _{max} [m/s]		
A	0,67	0,59	0,74		
D	0,51	0,51	0,39		
В	0,30	0,08	0,54		
C + E	0,11	0,04	0,21		

Experimental Test Results

Test No	So	Q (I/s)	d (mm)	d/h	A_w (m ² /m ²)	V (m/s)	f	Re	Fr	ΔP (W/m³)
1	2%	8.5	111.5	0.48	0.016	0.19	3.10	5.46E+04	0.18	37.4
2	2%	15.1	153.7	0.67	0.016	0.25	2.26	8.54E+04	0.20	48.2
3	2%	18.3	173.5	0.75	0.016	0.26	2.10	9.80E+04	0.20	51.7
4	2%	21.2	192.5	0.84	0.016	0.28	2.03	1.08E+05	0.20	54.0
5	2%	24.9	209.8	0.91	0.016	0.30	1.83	1.22E+05	0.21	58.2
6	2%	27.2	225.9	0.98	0.016	0.30	1.84	1.28E+05	0.20	59.1
7	4%	8.5	93.3	0.41	0.016	0.23	3.85	5.80E+04	0.24	89.4
8	4%	15.1	131.5	0.57	0.016	0.29	3.02	9.11E+04	0.25	112.7
9	4%	18.3	150.0	0.65	0.016	0.30	2.89	1.05E+05	0.25	119.7
10	4%	21.2	169.6	0.74	0.016	0.31	2.95	1.15E+05	0.24	122.6
11	4%	24.9	186.0	0.81	0.016	0.33	2.70	1.29E+05	0.25	131.3
12	4%	27.2	201.7	0.88	0.016	0.34	2.77	1.35E+05	0.24	132.3
13	6%	8.5	83.9	0.36	0.016	0.25	4.33	5.99E+04	0.28	149.2
14	6%	15.1	117.3	0.51	0.016	0.32	3.36	9.52E+04	0.30	189.4
15	6%	18.3	135.2	0.59	0.016	0.34	3.32	1.09E+05	0.29	199.1
16	6%	21.2	151.1	0.66	0.016	0.35	3.29	1.21E+05	0.29	206.5
17	6%	24.9	168.0	0.73	0.016	0.37	3.13	1.35E+05	0.29	218.1
18	6%	27.2	182.3	0.79	0.016	0.37	3.23	1.42E+05	0.28	219.5

 $A_{w} = \frac{n_{b}\pi D_{b}^{2}}{4BL} \qquad f = \frac{8S_{o}Rg}{V^{2}} \qquad Fr = \frac{V}{\sqrt{dg}} \qquad \Delta P = \frac{\gamma QS_{o}}{Bd}$

Tumbling Flow Regime

L=72 cm >5L_x (Spacing Between Brush Bars)

Friction Factor

Discharge Rating Curves

for $A_w = 0.016 \text{ m}^2/\text{m}^2$

Velocity Field Around Brush Blocks (Q=27 L/s, L=35 cm)

So=2%

So=6%

Velocity Field around Concrete Blocks

Top view of some flow characteristics around the simple habitat structures through the measurement area. Measurements were employed at central flow depths. (a) velocity vectors; (b) contour lines of vertical turbulence intensity: relative submergence=0.8, blockage ratio=0.6, q=0.8 m²/s (unit discharge)

Turbulent Kinetic Energy (m²/s²) Distribution Between Brush Bars, L=35 cm

So=2%

Plan View

So=6%

$$\varepsilon = 0.168 \times \frac{k^{3/2}}{L}$$

Energy Dissipation: Vibration of Bristels

 $St = \frac{fD}{V}$

Thank you for your kind interest

Prof. Serhat Kucukali

E-mail: <u>kucukali78@gmail.com</u>