University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2016

Jun 21st, 1:30 PM - 1:45 PM

Case Studies II: Design and Construction of a Riffle Grade Control for Fish Passage

Eileen Straughan Straughan Environmental

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Straughan, Eileen, "Case Studies II: Design and Construction of a Riffle Grade Control for Fish Passage" (2016). *International Conference on Engineering and Ecohydrology for Fish Passage*. 1. https://scholarworks.umass.edu/fishpassage_conference/2016/June21/1

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Design and Construction of a Riffle Grade Control for Fish Passage

Eileen Straughan Estraughan@Straughanenvironmental.com

Outline

- Background on Mitigation Project
- Design History
 - Assessment
 - Concepts & Agency Feedback
- Final Design
 - Design Constraints
 - Overview
- Construction

Background: I-95 Express Toll Lanes

... creating a sustainable world

EXPRESS

INTERSTATE

TOLL LANES

- I-95 Express Toll LanesSM
- 8-mile segment of I-95 = Section 100
 - 12,199 linear feet of streams impacted
 - 2.89 acres of wetlands impacted
 - Mitigation achieved at King
 Avenue Mitigation Site and
 Whitemarsh Run Mitigation Site

Mitigation Site Location

- Whitemarsh Run
 - Coastal plain sand and gravel-bedded stream located in Baltimore County, Maryland

Whitemarsh Run

Watershed and Site Assessments

Whitemarsh Run Watershed

- Urbanized 13.5-mi² watershed
- History of gravel mining
- Upstream restoration projects have had varying success
- Straughan measured large bedload supply to downstream reaches
 Risk Factors

White Marsh Run Site

- Whitemarsh Run Mitigation Site
 - 184 acres containing streams, forest, and wetlands
 - Degraded streams, wetlands, and habitat
 - History of gravel mining
 - MD 43 and BGE ROW

Site Assessment

Geomorphic and Hydrology Assessment

- Stream gage installations
- Discharge and bedload measurements during storm events
- Sediment transport modeling
- Baseflow analysis

Hydrology Measurements

... creating a sustainable world

Summary of Discharges Used in HEC-RAS Modeling

Whitemarsh Run	Drainage Area	Low Flows (cfs)				High Flows (cfs)	
		50%	90%	1-year	2- year	10- year	100- year
Downstream of U.S. Route 40	10.88	6.7	14.2	1,154	1,694	2,841	4,030
	12.97	4.3	16.9	1,220	1,767	3,453	7,502

Bankfull & Effective Discharge Summary					
	U.S. Route 40				
Bankfull	1,024 cfs				
Effective	555 cfs				

Sediment Transport Model

Sediment Supply

- Primarily sand and gravel
- Annual bedload yield
 - MD Route 7: 5,300 tons
 - MD Route 43: 17,400 tons
 - Ebenezer Road: 8,900 tons
- Localized sources and sinks
- General aggradation

Lane/Borland stable channel stability relation (Borland, 1960)

... creating a sustainable world

STABLE CHANNEL BALANCE

Design Process and Agency Negotiations

Whitemarsh Run: Initial Goals

- Initial mitigation goals
 - Replace the functions and values of impacted wetlands and streams
 - Preserve, enhance, and create wetlands and forest
 - Restore Whitemarsh Run
 - geomorphically stable dimension, pattern, and profile
 - transports sediment and water without aggradation or degradation

- Initial concept design
 Natural channel design
- Limitations
 - Agencies wary due to failures
 - Costly
 - No credit for oxbow wetlands

- Other concept stream designs
 - Shallow braided stream through wetlands
 - Suspended sediment and nitrogen removal
 - Limitations
 - Fish passage may be limited
 - Gravel aggregation expected
 - Historical images and topo maps suggest stream is naturally singlethreaded

- Other concept stream designs
 - Valley plugs to form distributary channels
 - Store 37K tons of sediment
 - Limitations
 - Fish passage a concern
 - Future stability uncertain

- Other concept stream designs
 - In-situ enhancement
 - Limited bank grading
 - Limitations
 - Fish ladder required
 - No sediment storage
 - Improvements at BGE right-ofways not possible

- Other concept stream designs
 - Bypass channel
 - Bypass solely for fish passage at baseflow
 - Primary channel below structural spillway for bedload transport and high discharge conveyance
 - Bypass channel may aggrade and require maintenance

- Revised Goals
 - Primary Objectives

- wetland creation, enhancement, preservation, and restoration selected locations
- Protect existing infrastructure
- Stabilize stream banks at selected locations
- Improve fish passage for selected anadromous species at the Route 40 culvert
 - MDE and NOAA/NMFS recommended a rock riffle grade control structure

Riffle Grade Control Design Process

Whitemarsh Run: Design Constraints

Conflicting Goals

- Fish Passage
 - Minimum Spring baseflow depth = 9 in
 - Maximum Spring baseflow velocity = 3 ft/s
- Structural stability during the 10- and 100-year discharges
- Competence and capacity to transport existing bedloads
- Maintain existing 100-yr floodplain elevation
- Avoid diesel fuel soil contamination area and utility rightof-ways
- Ensure surficial flow

Whitemarsh Run Riffle Grade Control

- Riffle grade controls installed successfully at other Maryland coastal plain streams
 - Previous designs did not consider fish passage, but postconstruction monitoring showed positive results for stability and fish passage
 - White Marsh Run presented challenges because of lower baseflow and higher storm discharges

Fish Passage: Baseflow Constraints

- Goal: Spring baseflow at least 9 inches deep and less than 3 ft/s
 - 4.2-foot vertical barrier at Whitemarsh Run
 - Alaskan fish ladder was not successful
- Target fish: alewife, blueback herring, and white perch

Structural Stability

- <u>Goal:</u> Immobile D30 stone size at the highest expected shear stresses (10-year and 100-year)
- Stability Checks:
 - 1. Mussetter relationship (1989) used to develop Manning's 'N' at baseflow conditions
 - 2. Rosgen's Rock Size Relationship (Rosgen, 2007) for refugia boulders
 - 3. Riprap Sizing Methods from USACE EM 1110-2-1601 for D30
 - 4. Wilcock and Crowe (2003) sediment transport function
 - 5. Modified Andrews critical shear stress
- Grouted sections where needed

Sediment Transport Capacity

- Goal: Threshold Channel
- Utilized iSURF (Wilcock and Crowe, 2003) transport relation to determine the required cross-sectional width, depth, and slope required to transport the sediment supply input through a channel section.
- Steeper channel will be more "efficient" in transporting sediment.

Maintain 100-year Floodplain at Rt. 40

- Goal: Maintain 100-year Floodplain at Rt. 40
- White Marsh Run floods Rt. 40 at ~25 year storm
- Design adds significant fill material near Rt. 40
- Oxbow wetland

Whitemarsh Run Riffle Grade Control

Iterative design process

- Stone size and gradation determine roughness at baseflow
 - Which determines baseflow depth and velocity
- Slope and cross-sectional parameters drive:
 - Baseflow depth and velocity and
 - Required stone sizes for structural stability at 10- and 100-year storms, which must be available stone sizes
- Bedload competence and capacity determined with models including iSURF
- Final depths, velocities, and floodplain elevations modeled with HEC-RAS
- HEC-RAS sheer stress values assisted with stone sizing

Whitemarsh Run Riffle Grade Control

- Riffle Grade Control
 - Plunge pool downstream of U.S. 40 and downstream of RGC
 - Loosely follows the existing stream alignment to maximize length (1,407 ft)
 - Slope = 0.0092 (0.92 %),3X existing stream slope
 - Contains refugia boulders to provide fish resting areas

Construction: Riffle Grade Control

Stream channel/RGC construction (December 2014)

Pump-around established for stream work; note grouted riprap section (lighter area immediately left of pump). (December 2014)

Grading a section of stream prior to placing riprap (December 2014)

Stream channel/RGC construction (January 2015)

ENVIRONMENTAL

Bank Stabilization

Bank Stabilization

Imbricated riprap, bank grading and stabilization at an area downstream of the RGC. (January 2015)

Bank Stabilization

Red line plans were needed due to stream movement from topo (2008) to construction (2014).

Vernal Pool Construction

... creating a sustainable world

Vernal pool after construction; note use of root wads from trees cleared on site. (December 2014)

Vernal Pools Post Construction

... creating a sustainable world

Signs of life in the vernal pools (April 2015)

PARSONS BRINCKERHOFF

Vernal Pool Survey 2016

... creating a sustainable world

25.05.2016 22:37

25 05 2016 22

Wetland Creation

Treatment of Invasive Species

Initial Results are Positive

- The Riffle Grade Control held up after a 10-year storm shortly after construction
 - Isolated damage to new trees
- Anecdotal evidence of fish passage in the spring and fall (gizzard shad)

Discussion

- Regulatory agencies drive priorities
 - Fish passage requirement
 - Resistance to unproven concepts
 - Lengthy negotiations for out of kind mitigation
- Uncertainty drives costs
 - Initial studies, peer reviews, independent experts
 - Iterative designs and multiple models
- Large rock provides stability but drives costs
 - More natural solutions can reduce costs

... creating a sustainable world

ENVIRONMENT

RAUGHAN

Eileen Straughan estraughan@straughanenvironmental.com

Straughan Environmental, Inc. 10245 Old Columbia Road | Columbia, MD 21046 *www.straughanenvironmental.com*