
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Environmental & Water Resources Engineering
Masters Projects Civil and Environmental Engineering

Winter 1-2017

Effects of Sulfidation on the Deposition and
Detachment of Silver Nanoparticles
Joseph Murphy

Follow this and additional works at: https://scholarworks.umass.edu/cee_ewre

Part of the Environmental Engineering Commons

This Article is brought to you for free and open access by the Civil and Environmental Engineering at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Environmental & Water Resources Engineering Masters Projects by an authorized administrator of ScholarWorks@UMass
Amherst. For more information, please contact scholarworks@library.umass.edu.

Murphy, Joseph, "Effects of Sulfidation on the Deposition and Detachment of Silver Nanoparticles" (2017). Environmental & Water
Resources Engineering Masters Projects. 85.
https://doi.org/10.7275/vyer-w108

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/84280858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcee_ewre%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cee_ewre?utm_source=scholarworks.umass.edu%2Fcee_ewre%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cee_ewre?utm_source=scholarworks.umass.edu%2Fcee_ewre%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cee?utm_source=scholarworks.umass.edu%2Fcee_ewre%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cee_ewre?utm_source=scholarworks.umass.edu%2Fcee_ewre%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=scholarworks.umass.edu%2Fcee_ewre%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/vyer-w108
mailto:scholarworks@library.umass.edu


Effects of Sulfidation on the Deposition and Detachment of Silver 

Nanoparticles 

 

 

  
 
 

Joseph Murphy 

 

 

 

 

 

 

 
Submitted to the Department of Civil and Environmental Engineering of the University of 

Massachusetts in partial fulfillment of the requirements for the degree of 

 

 

 

 

 
 

MASTER OF SCIENCE IN ENVIRONMENTAL ENGINEERING 

 

 

 

 
May 2017  



 i 

 

Acknowledgements 

 

 

I would like to gratefully thank my advisor Dr.Boris Lau for the opportunity to be part of the 

continuing effort of research he has committed to and for his guidance and support over the 

years. I would also like to thank Dr. John E. Tobiason for sitting on my committee and being a 

valuable mentor during my time here at the University of Massachusetts Amherst.  

 

I would like to thank my research group, Michael Nguyen, Zehui Xia, Joann Rodriguez, and 

Leigh Hamlet for all the help and advice given to me during my time as a graduate student. 

 

I want to give thanks to all the Faculty members and staff in the Civil and Environmental 

Engineering Department for their commitment to teaching me valuable lessons and for preparing 

me for the field in which they all have greatly excelled in. 

 

Finally, I would like to thank my fellow graduate students, my friends, and my family for the 

constant support and good times during my academic years.  

 
 
  



 ii 

 
  



 iii 

Abstract 

 
The transformation of silver nanoparticles (AgNPs) due to environmental factors can play a role 

in their fate and transport in aquatic systems. Sulfidation has the potential to alter these particles’ 

physio-chemical properties and their subsequent mobilization in aquatic environments. The 

water chemistry (e.g. pH, dissolved organic carbon) of these systems can also change the 

behavior of AgNPs. To better understand the effects of sulfidation on the characteristics and 

deposition of AgNPs, techniques such as quartz crystal microgravimetry (QCM) and dynamic 

light scattering (DLS) were used. In this study, AgNPs with two different ligand types, 

Polyvinylpyrrolidone (PVP)-capped AgNPs (PVP-AgNPs) and Polyethylene glycol (PEG)-

capped AgNPs (PEG-AgNPs), were modified through sulfidation in the presence of natural 

organic matter (NOM). Sulfidation of PVP-AgNPs resulted in a 5 to 23 times greater extent of 

deposition to a silica substrate than unmodified PVP-AgNPs in tested conditions. This probably 

caused by the loss of steric repulsion due to the loss of PVP ligand during sulfidation. The 

dependence of ligand type on the effects of sulfidation were observed in the same conditions 

with sulfidized PEG-AgNPs having a 28%-98% decrease in deposition extent compared to 

pristine PEG-AgNPs. This decrease in particle-substrate interaction is attributed to the increase 

in electrostatic repulsion. Rates of deposition of each particle type were also reported to better 

understand the potential of these AgNPs to persist in engineered and natural aquatic 

environments. Hydrophobicity of AgNP types were not found to play a dominant role in the 

deposition dynamics. AgNP deposition extent to silica substrate provides insight on the potential 

for persistence in aquatic environments as well as a predisposition towards removal through 

media filtration. Based on deposition results, after sulfidation, PEG-AgNPs are more likely to 

persist than that of PVP-AgNPs. 
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1.0 Introduction  
 

1.1 Relevance and Significance of AgNPs 

The emerging use and  incorporation of silver nanoparticles (AgNPs) in commercial 1,2 and 

medical products has grown to make up nearly 25% of all nanomaterials on the consumer market 

largely due to their antimicrobial characteristics.3 Silver (Ag) containing nanoparticles are the 

fastest growing group of nanomaterials in the present market.2 Because of their rapid use in 

consumer products, their emergence in aquatic systems is of increasing concern.4 Benn and 

Westerhoff 5 reported that because more than 70% of the U.S population is served by public 

sewers, the washing of clothes containing AgNPs would release silver that would arrive at a 

wastewater treatment plant (WWTP) where the AgNPs can potentially partition onto biomass 

and find its way into the environment through agricultural applications of treated bio-solids.   

 

1.2 Design and Functionalization of AgNPs 

The most common method of synthesizing AgNPs comes from the utilization of silver nitrate as 

the source of Ag+ ions and the use of a reducing agent, such as citrate and ascorbate,6 to control 

the precipitation and agglomeration of the particles. 6,7 The synthesis and functionalization of 

AgNPs is dependent on their intended application. Controlling shape and size during design of 

these particles plays a role in their characteristics8 such as their optical (decrease in band gap 

with decrease in size9), and catalytic (increase hydrogenation with decreased size10) properties. 

 

In order to control shape and modify the functionalization of these AgNPs, the use of various 

capping agents to passivate the NP surface is crucial for its function. The adsorption of polymer 
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on the AgNP surface to achieve stabilization has also been incorporated into synthesis 

methods.7,11 The addition of a polymer ligand to a solution of NPs will lead to stability as well as 

an enhancement of its properties (e.g. size, shape).11 Since characteristics such as size and 

capping type for AgNPs are constantly being modified, it is important to understand their 

behaviors in the environment. Polymers such as polyvinylpyrrolidone (PVP) are widely used for 

particle stabilization due to its non-toxicity, solubility across many solvents, and inert 

physiochemical properties.12 A PVP molecule contains a hydrophilic moiety and a hydrophobic 

alkyl group that make it desirable for NP stabilization.12Similarly, polyethylene glycol (PEG) has 

been used extensively as it is non-toxic, water soluble, and can increase cell uptake in drug 

delivery for certain systems of the human body.13  

 

1.3 Environmental Behavior of AgNPs 

Due to the increasing applications of AgNPs, there has been considerable research effort in 

recent years on their speciation in natural aquatic14, 15 and engineered aquatic systems.1,16 

Characteristics of the particles after synthesis will play a role on the behavior of AgNPs. In 2013, 

Agnihotri et al.17 reported that AgNPs less than 10 nm in diameter show a strong increase in 

antibacterial efficacy. Similarly, the synthesis of silver-polystyrene core-shell NPs have been 

prepared for the use of antimicrobial characteristics.7 AgNPs have the potential to be transformed 

in the aqueous environment.18-20 Transformation of AgNPs in the environment will depend on the 

specific process as well as the characteristics and properties, such as ligand type,21 of the AgNPs. 
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1.3.1 Photo Reduction 

Ultraviolet radiation from the sun can transform and alter the fate of the NPs.14, 21 Ligand and 

core type also play a significant role on the extent of these affects as well as their behaviors. In 

2011 Li, et al.22 demonstrated that light irradiation can enhance the release of silver ions (Ag+) 

(14% increase) from photoactive citrate-capped AgNPs due to photo reduction of citrate and 

photo-induced morphological changes. It was also found that citrate-capped AgNPs aggregated 

(about double the diameter after 1 day) in the presence of light, potentially from photo induced 

fragmentation and fusion of the NPs. Phototransformation of PEG functionalized  gold NPs has 

been reported to be more susceptible to aggregation due to the fragmentation of polymer on the 

NP surface.19 It was found that PVP-capped AgNPs (19.9 nm average diameter) exhibited a 

slower rate (18% decrease) of dissolution compared to citrate capped-AgNPs (16.6 nm average 

diameter) after UV exposure for 5 hours that may occur in an aquatic environment or during 

wastewater treatment.21 

  

1.3.2 Dissolution 

Once AgNPs enters an aqueous environment, release of Ag+ due to the dissolution of AgNPs can 

occur and result in a potential toxicity concern.23 Many environmental factors will play a role in 

the release of dissolved silver. An increase of pH from 4 to 9 has been shown to decrease 

dissolution by 83%. A decrease in dissolved oxygen concentrations and the addition of natural 

organic matter have also been reported to decrease the extent of release of silver ions from 

AgNPs24 
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1.3.3 Sorption of Environmental Organics 

In many freshwater systems, AgNPs bind with organic macromolecules25-27 and decrease AgNP 

toxicity to aquatic organisms.27 In 2015, Yin et al.28 suggested that the pH, molecular weight of 

the natural organic matter, and the ligand type of the NP play a direct role in their adsorption to 

the AgNP surface. Enhanced steric stabilization has been reported due to the presence of 

dissolved organic carbon (DOC).29 

 

1.3.4 Sulfidation 

The interactions of AgNPs with reactive sulfur species can alter their fate and transport in 

aquatic environments.  When released from consumer products, AgNPs will transport through 

sewer systems and wastewater treatment plants (WWTPs) where anaerobic conditions exist and 

the presence of hydrogen sulfide will promote the generation of Ag2S.16  Acid volatile sulfide 

(AVS) concentrations within a sewer system have been found to range from 120 to 150 mM.30  

The sulfidation of AgNPs will alter their behavior once they are discharged to an aquatic 

environment. In 2013, Kaegi et. al 30, showed that ~15% of PVP capped AgNPs became 

sulfidized within 5 hours of reaction with raw wastewater. Kaegi et. al 31 also reported that >90% 

of AgNPs were partially transformed into Ag2S  2 hours after being spiked into a sample of 

mixed liquor from a non-aerated tank in a WWTP.31 It is also suggested that sulfidation is size 

dependent where after 24 hours 100% of 10 nm AgNPs were sulfidized compared to 10% 

sulfidation of 100 nm AgNPs, this difference dictates NP behavior after discharge into an aquatic 

environment.30 Furthermore, it has been reported that an increase in the sulfidation rate occurred 

at a size difference of 30 nm to 5 nm for citrate-stabilized AgNPs. Understanding the effects of 
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sulfidation on AgNP characteristics is vital in order to assess their fate and transport in the 

environment. 32 

 

 

1.3.5 Aggregation  

Aggregation of particles has been studied extensively for many years. The most common theory 

to explain the interactions between particles and their rate of aggregation is the Derjaguin 

Landau Verwey Overbeak (DLVO) Theory.33,34 It has been used to study particle-particle 

interactions (homoaggregation) and particle attachment to unalike particles (heteroaggregation). 

DLVO theory incorporates the overall sum of the van der Waals attractive forces and the electric 

double layer (EDL)  forces (usually repulsive) to predict the aggregation or attachment of similar 

particles.35The solution chemistry as well as the particle surface effects the EDL repulsion 

between particles.35For example, an increase of the ionic strength results in a compression of the 

EDL and therefore a decrease of the repulsive forces. Similarly, a decrease in ionic strength 

causes an increase in EDL force and therefore induces a stronger repulsion.36 A decrease in the 

ionic strength can in turn reverse the deposition of AgNPs to a collector surface such as silica 

when the extent of the EDL forces is increased.37 

 

Environmental factors such as interactions with NOM have been shown to inhibit aggregation of 

AgNPs with various cappings.28, 30 Depending on the ligand type, aggregation of AgNPs can 

occur due to photoinduced fusion and fragmentation of the NPs.19, 38  
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1.4 Research Objectives 

The purposes of this study are 1) to determine the impact of sulfidation on the deposition and 

detachment dynamics of AgNPs and 2) to understand how these dynamics will differ in various 

water chemistries (e.g. pH, NOM) by characterizing the physicochemical properties (e.g. size, 

zeta potential, and hydrophobicity) of the NPs. A decrease in ionic strength was used to examine 

the reversibility of AgNP deposition. Previous studies have shown the effects of sulfidation and 

NOM interactions on the transformation and deposition of AgNPs.39 Very little is known about 

the extent to which the detachment of these particles occurs after deposition. Alterations of NP 

properties can also be different in various environmental settings. Factors such as pH and 

dissolved organic carbon (DOC) were examined to better understand the role of solution 

chemistry in the deposition and detachment of AgNPs. 

 

Quartz crystal microgravimetry (QCM) was used to determine the deposition and detachment 

kinetics of AgNPs (before and after sulfidation) onto a silica substrate. Furthermore, dynamic 

light scattering (DLS) was used to measure the size and charge of each type of AgNPs to 

determine which properties of the AgNP play a role in its deposition and detachment kinetics. 

2.0 Methods 

2.1 Preparation of AgNP suspensions 

PVP and PEG-coated AgNPs were purchased from NanoComposix (San Diego, CA). Both core 

diameters were reported to be 50 nm by the manufacturer based on transmission electron 

microscopy (TEM). The molecular weight of the PVP and PEG used in the synthesis were 40 

kDa and 5 kDa respectively.  All particle suspensions (1.24x1010 particles mL-1), samples, and 
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stock solutions were prepared using Milli-Q (18.2 mΩ) water using a Millipore system 

(Millipore).  Particle background solutions were prepared in an electrolyte concentration of 50 

mM NaNO3 and 1 mM of buffer (HEPES, phosphate, and sodium bicarbonate for pH 5, 7, and 9 

respectively), pH was adjusted with 100 mM HCl and 100 mM NaOH to achieve a pH of 5.0 ± 

0.2, 7.0 ± 0.2, 9.0 ± 0.2 for each pH condition.  Background solutions without the presence of 

particles were prepared for the phases of rinsing and desorption for testing with QCM. All 

background solution was filtered with a 0.2μm filter before use. 

 

Unfractionated Suwanee River NOM (SRNOM) was purchased from the International Humic 

Substance Society (International Humic Substances Soc. MN). Stock solution of NOM (200 mg 

L-1) was prepared in Milli-Q water and sonicated to insure homogenous mixture.  NOM stock 

solution was stored in the dark at 4°C. NOM was added to NP suspensions to give an overall 

concentration of 5 mg L-1 as C.   

 

2.2 Sulfidation 

AgNPs were sulfidized in the presence of NOM. The sulfidation procedures described by Levard 

et al (2011)40 were used to study the potential transformation of the NPs in a wastewater 

treatment system. Particles were mixed with sodium sulfide (Na2S) in the presence of 40 mg L-1 

NOM with a S/Ag ratio of 1.079. The solutions were mixed for 24 hours in the dark before being 

centrifuged at 5000 rpm for 25 minutes two times to ensure the removal of excess Na2S and 

NOM that had not been bound to the AgNP surface. Pellets formed by centrifugation were then 

suspended in relevant conditions to study different environmental factors as described.  This 

procedure was performed on both PVP-capped and PEG-capped AgNPs. Solutions were purged 
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with nitrogen gas before being suspended. 

 

Four nanoparticle types were analyzed in this study: (1,2). PVP-capped and PEG-capped AgNPs 

that received no used as received (PVP-AgNPs, PEG-AgNPs) and (3,4) PVP-capped and PEG-

capped AgNPs that underwent sulfidation in the presence of NOM (Sulf-PVP-AgNPs, Sulf-PEG-

AgNPs). Each AgNP type was measured in three different pHs (5, 7, and 9) and in the presence 

of/without 5 mg-C L-1 NOM.  

 

2.3 QCM   

 

2.3.1 Deposition and Detachment Extents of AgNP. 

Deposition and desorption extents were quantified for each type of AgNPs in various solution 

chemistry conditions by QCM (Q-Sense AB, Gothenburg, Sweden) at 25°C. Frequency shifts of 

an oscillating quartz crystal (Δf) occur when mass is being deposited onto the sensor surface 

(Δm). The relationship between Δf and Δm is described by the Sauerbrey relation42: 

 

Δ𝑚 =  𝐶 Δ𝑓 𝑛−1 

 

Where C is the sensitivity constant for the quartz crystal (17.7 ng cm2 Hz-1) and n is the overtone 

of which Δf is evaluated.  

 

In this study, silica-coated quartz crystal sensors (QSX 303, Q-Sense AB, Gothenburg, Sweden) 

were used as the substrate surface for the deposition of AgNPs. Sensors were cleaned by soaking 
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in sodium dodecyl sulfate (SDS) over extended periods of time, rinsed with ultrapure water, 

dried with N2 gas and then cleaned in a UV/Ozone cleaner (UV/Ozone Pro Cleaner) for 30 min 

to remove any contaminants or trace organics before each experiment. 

 

Sensors were placed in flow-through modules and all solutions were well mixed and injected at a 

constant flow of 0.1 mL min-1. Background solution (50mM NaNO3) without the particles were 

passed through for 25 min to achieve a baseline (Δf <0.1 Hz min-1). Well-mixed AgNP 

suspensions with the same solution chemistry as the background solution were then allowed to 

pass through the sensor module and real time deposition was recorded. The background solution 

used for to establish a baseline was then being used again as a rinsing buffer for 15 minutes 

before a new buffer with lower ionic strength (5mM NaNO3) was injected to induce detachment 

of particles from the silica substrates.  The extent of mass deposition as well as detachment for 

each type of AgNPs were determined using the Sauerbrey relation. The third overtone of the Δf 

was used as it had the best signal-to-noise ratio. Triplicate measurements were performed. 

 

2.3.2 Rates of AgNP Deposition. 

Deposition rates for each different type of AgNPs were measured as well using QCM. Hughes et 

al.37 developed a QCM-based method to generate sorption isotherms using the Δf recorded at 

varying AgNP concentrations. When an ultimate frequency was achieved, the measured kinetics 

was fit by an equation relating to a Langmuir isotherm adsorption 43, 44: 

 

Δ𝑓(𝑡 − 𝑡0) = Δ𝑓(∞)[1 − exp(−𝑘𝑜𝑏𝑠(𝑡 − 𝑡0))] 
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Where Δ𝑓(∞)the maximum frequency shift for monolayer adsorption, kobs is the observed rate of 

the frequency shift by the real-time QCM measurements, and 𝑡 − 𝑡0 added to eliminate the 

mixing affect of the solution before it reaches the sensor. The data was then fit by a non-linear 

regression using a Gauss-Newton algorithm. Isotherm rates kobs were calculated. The kobs for 

varying concentrations can then be described by the equation  

 

     k𝑜𝑏𝑠 = 𝐶k𝑎 + k𝑏 

 

Where C is concentration and ka and kb are the adsorption and desorption rates respectively. 

Finding values for ka can used to compare the rate of each different particle type to better 

understand the attachment kinetics.  All runs were performed in 50 mM NaNO3 at pH 5.0 ± 0.2. 

 

2.4 Characterization of AgNPs 

 

2.4.1 Size and Zeta Potential. 

The average hydrodynamic diameter (AHD) as well as the electrophoretic mobility of AgNPs 

were measured using a Malvern Zetasizer NS (Worcestershire, U.K.). The zeta potential (ZP) 

was estimated from electrophoretic mobility using the Smoluchowski approximation. All 

measurements were performed at 25°C.  

 

2.4.2 Relative Hydrophobicity  

Procedure for hydrophobicity measurements was adapted from Xiao & Wiesner.45 Rose Bengal 

(RB) dye was purchased from Alfa Aesar. RB dye has been shown to increase their adsorption to 
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particle surfaces with greater hydrophobicity and has been used as a probe molecule for the 

measurement of hydrophobicity of particles related to drug delivery in pharmaceutical studies.46-

48 Briefly, 20 mg L-1 of RB dye was added to different suspensions of AgNP of increasing 

concentration in 1.5mL centrifuge tube in background solution with 1mM phosphate buffer at pH 

7.0 ± 0.2. Solutions were mixed for 3 h in the dark at 25°C. Particles were then centrifuged at 

15000 rcf for 1hr. and 15 min. The supernatant was collected and absorbance was recorded at a 

wavelength of λ=549nm using a Biotek EL800x Plate Reader (Winooski, Vt., U.S.A.).  The 

partitioning quotient (PQ) was calculated by the following equation: 

 

𝑃𝑄 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑅𝐵 𝐷𝑦𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑜𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑁𝑃𝑠

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑅𝐵 𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

 

The total surface area of the AgNP suspension was also calculated by assuming the suspension 

were monodisperse and the particles were spherical and had a diameter equal to the 

hydrodynamic diameter provided by DLS measurements. Plotting the PQ against the Total 

surface areas gave straight lines where linear regression fits gave slopes that were used to 

compare the hydrophobicity of each type of AgNPs in a relative manner. Triplicates of 

measurements were performed.  

 

2.4.3 Relative Contribution of Steric Forces on the stability of AgNPs.  

Steric forces between NPs due to polymer-polymer repulsive interaction will play a role in the 

stabilization of NP suspensions. In a “good” solvent such as water, we expect to see full polymer 

chains that extend and induce steric interactions between NPs. In a “poor” solvent like acetone, 
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the polymer ligand will coil and steric repulsion will be reduced and destabilization will 

potentially occur.  

 

In order to evaluate the contribution of steric forces in the stabilization of the different AgNP 

types, particles were suspended in solvents varying in ratios of acetone to water (from 1:2 

acetone: water to 3:1 acetone: water)  in 50mM NaNO3  at pH 7 with phosphate buffer . Six 

particle types were evaluated: (1,2). PVP-capped and PEG-capped AgNPs used as received (3,4) 

PVP-capped and PEG-capped AgNPs that underwent sulfidation in the presence of NOM (5,6)  

PVP-capped and PEG-capped AgNPs that underwent sulfidation without the precense of NOM. 

Time-resolved DLS were performed for respective particle suspensions to evaluate the change in 

AHD over time.  

 

3.0 Results and Discussion 

 

3.1 Deposition Extent and Rates 

 

3.1.1 Effects of Sulfidation 

The extent of deposited mass (ng cm-2) for each particle type onto the silica substrate was 

reported for various conditions (Apdx.1). Sulfidation of PVP-AgNPs resulted in higher extent of 

deposition onto the silica substrate (Fig.1). A 5 to 23 times increase was observed in the extent of 

PVP-AgNP deposition after sulfidation for the tested pH and DOC conditions. It has been 

reported that a loss of PVP ligand occurs as a result of sulfidation of AgNPs.49 This loss of 

capping can result in a decrease of the steric repulsion and therefore increase the extent of 
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deposition. The steric repulsion induced by the already deposited PVP-AgNP can also hinder 

further particle deposition through steric hindrance.  

 

In contrast, sulfidation of PEG-AgNPs resulted in a decrease of deposition extent at pH 5 (28%-

81% decrease) and 7 (91%-98% decrease) regardless of background NOM concentration in 

solution (Fig. 2). The PEG-AgNPs may have been sulfidized to a larger degree than the PVP-

AgNP due to the molecular weight size difference of the two ligands. Since the PEG ligand is 8 

times smaller than PVP (5kDa vs. 40kDa), sulfide ions may have a faster penetration through the 

ligands to react with the core surface of the AgNPs. Sulfidized PEG-AgNPs always possessed a 

more negative charge than pristine PEG-AgNPs (Fig. 3). This could be due to the formation of 

Ag2S on the particle surface. Therefore, a decreased deposition extent of Sulf-PEG-AgNPs could 

possibly due to stronger electrostatic repulsion induced by the more negatively charged particle 

surface.  In contrast, ZP of PVP-AgNPs became less negative after sulfidation (except pH 7, 5 

mg-C L-1) (Fig. 4).  

 

Deposition rates for each particle type at pH 5 and 0 mg-C L-1 was determined (Table 1) using 

QCM with a range of particle concentrations. Sulfidation of both PVP-AgNPs and PEG-AgNPs 

decreased the rate of deposition (roughly 20 times slower for PVP and 71 times slower for PEG).  

 

The hydrophobicity of each type of AgNPs were compared using the slopes of the linear 

regressions shown in Figure 5. While PEG-AgNPs became more hydrophobic after sulfidation, 

PVP-AgNPs became more hydrophilic after sulfidation. The hydrophobicity of Sulf-PVP-AgNPs 

and Sulf-PEG-AgNPs are very similar in hydrophobicity (slopes = 0.3198 and 0.3135). If 
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sulfidation made the particles more hydrophilic, a reduction in the deposition extent is 

anticipated as the particles will have a higher affinity towards the bulk solution as opposed to the 

silica substrate. However, the opposite was observed in this study. Therefore, hydrophobicity 

does not seem to play a dominant role in controlling the deposition of AgNPs.  

 

3.1.2 Effects of Water Chemistry 

The extent of deposition for all particle types at various pHs are shown in Appendix 1. The pH 

affected the extent of deposition for certain particle types. For example, the extent of Sulf-PVP 

AgNP deposition (Fig.7) decreased nearly 23% (4845.5 ng cm-2 to 3732 ng cm-2) from pH 5 to 

pH 7. No detectable deposition was observed at pH 9 in the absence of NOM. The minimal 

deposition at pH 9 may have been due to a stronger electrostatic repulsion between the Sulf-

PVP-AgNPs and the silica substrate with an increase in pH.  

 

The extent of PEG-AgNP deposition (Fig. 8) also decreased roughly 68% from pH 5 to 7 and no 

deposition at pH 9 in the absence of NOM. As the pH shifted 5 to 9, silica became more 

negatively charged with the hydroxylation of the substrate. The extent of PVP-AgNP deposition 

remained consistent (average of all extents being no more than 23% away from minimum or 

maximum deposition) in all pHs. As seen in Appendix 3, the ZP of the PVP-AgNPs in most pH 

conditions did not vary greatly. Sterically stabilized PVP is an uncharged polymer that does not 

protonate or deprotonate as a function of pH. Therefore a significant change in zeta or size due to 

pH is not anticipated.50 This means electrostatic interactions probably does not play a role in the 

deposition extent. The surface charge of PVP-AgNP which may alter the deposition extent is not 

affected by the pH change and may be due to the deposition being controlled by hydrogen 
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bonding between the carbonyl group in PVP and the hydrogen in the silanol group of the silica 

substrate.51  

 

In the presence of NOM, Sulf-PVP-AgNPs had a decrease in deposition extent (Fig. 11) (43% 

and 55% for pH 5 and 7 respectively). NOM macromolecules may adsorb to the surface of the 

AgNPs during sulfidation. The adsorbed NOM together with the unbound NOM seems may have 

increased electrosteric repulsion to decrease particle-substrate interactions.29  

 

3.1.3 Effects on Steric Stabilization 

 
Results on the contribution of steric forces in different poor and good solvent ratios can be seen 

in Figure 6. PVP-AgNPs began to destabilize in the strongest ratio (3:1 acetone:water) to roughly 

500 nm. Since it took the highest concentration of poor solvent to reduce the steric forces 

between ligands on each particle surface, then it is likely that steric stabilization is a strong 

contributor to the stabilization of these NPs. After sulfidation of PVP-AgNPs without the 

precense of NOM, we see particle aggregation in the 2:1 acetone:water ratio. This means there is 

a reduction in the steric repulsive forces and therefore it took a weaker concentration of poor 

solvent to see destabilization. This is likely due to the loss of PVP ligand during the sulfidation 

process as discussed before. For sulfidation of PVP-AgNPs in the presence of NOM, the 

particles do not destabilize until the highest concentration of poor solvent. Interactions with 

NOM and the NP surface may cause further steric stabilization due to the large organic 

macromolecules. 
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In the case of PEG-AgNPs, there is no size change across the poor solvent rations we see size 

change at a lower concentration of acetone for sulfidized particles in the presence of NOM and 

then no size change with sulfidation in the presence of NOM. The NOM can again be further 

stabilizing the particles after sulfidation.  

 

After sulfidation, PEG-AgNPs begin to destabilize in the 2:1 acetone:water mixture.  

In the presence of NOM, sulfidation does not reduce the steric forces. The same effect from the 

NOM on the PVP-AgNPs may be similar to that of the PEG-AgNP where further stabilization is 

induced by interactions with NOM macromolecules.  

 

3.1.4 Effects of Ligand Type 

When comparing the two pristine particle types, PEG had a higher extent (1-6 times greater) of 

deposition than that of PVP for many background conditions (Fig. 9). This is likely due to the 

steric repulsion caused by the two capping types. PVP having a larger molecular weight (40kDa) 

(Fig.10) possessed higher potential for steric stabilization as opposed to PEG (5kDa). If the 

particles are dispersed due to steric stabilization, it may inhibit particle deposition to the silica 

substrate. Therefore, a polymer with a longer chain such as PVP may inhibit particle deposition 

more than that of PEG. When comparing rates, PEG-AgNPs has a higher rate of adsorption than 

that of PVP.  

 

The contribution of steric forces to particle stabilization for both ligand types was evaluated. As 

seen in Figure 6, the change in AHD over time for various solvent ratios were used to determine 

the reliance of steric stabilzaiton from polymer-polymer interactions for particle stability was 
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used for both PVP-AgNP and PEG-AgNP. From the results, it is seen that after 20 minutes, 

PVP-AgNP increased in AHD to 500 nm.  

 

PEG-AgNPs are more hydrophilic than PVP-AgNPs (Fig. 5). PEG capping used in synthesis is 5 

kDa compared to that of 40 kDa of the PVP capping. The size difference may explain the 

difference in particle hydrophobicity. Again, if PVP-AgNP is more hydrophobic, we expect to 

see a higher deposition extent in the hydrophobic particles having a higher affinity to partition 

out of the water phase and onto the substrate. Based on deposition results we see a higher extent 

of deposition for PEG-AgNP for most cases. Therefore, it seems that other forces play a 

dominant role in the deposition kinetics.  

3.2 Detachment 

A decrease in ionic strength (50mM to 5mM NaNO3) will induce the detachment of particles to 

the silica substrate and the mass change is presented (Apdx. 4).  According to DLVO theory, a 

decrease in the ionic strength of the solution will lead to a relaxation of the EDL and therefore 

increase the repulsive forces.52  

 

Sulf-PVP-AgNPs had the most noticeable extent of detachment when comparing relative to other 

particle cases in all pH and NOM conditions. Without the presence of NOM, there was 

substantial detachment of Sulf-PVP-AgNP compared to other particle types (Fig.12). This may 

be because deposition of the Sulf-PVP-AgNP is dominated by electrostatic interactions.  

 

For PVP-AgNP at pH 5 with 5 mg-C L-1 NOM, we see further deposition was observed during 

the induced detachment from the decrease in ionic strength (Fig.13). Since there are no AgNPs in 
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solution during the detachment phase, the further deposition is probably due to NOM in 

suspension. When comparing the case at pH 5 for PVP-AgNPs and 5 mg-C L-1 to the other pH 

conditions, this trend does not occur. This may be due to the active functional groups prevalent at 

pH 5 for the SRNOM that further inhibit deposition to either the silica substrate or the film of 

already deposited PVP-AgNPs.  

 

The net deposition of each particle was determined by calculating the remaining deposited mass 

after the decrease in the ionic strength (Apdx.5). As shown, Sulf-PVP-AgNPs had the greatest 

mass deposition remaining after the increase of the EDL repulsive forces (Fig.14).  

 

In terms of percent detachment (Apdx. 6) there were no noticeable differences between capping 

agents as well as pristine particles and their sulfidized counterparts. In no case did the average of 

any particle type in all conditions reach 100% detachment in the decrease in the ionic strength 

from 50mM NaNO3 to 5mM, which gives reason to believe that there is attachment that is found 

in the primary minima in of the potential energy between the particles and substrate as suggested 

by DLVO. 

 

4.0 Summary of Finding & Implications 

Results from experiments relating to the characteristics as well as the deposition kinetics of PEG-

AgNP and PVP-AgNP give a better understanding on the effects of sulfidation on the 

environmental implications of these engineered AgNPs. Depending on the ligand type, the 

sulfidation that can occur in a sewer system or WWTP can either enhance or diminish the 

persistence of AgNPs in aquatic environments. 
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The sulfidation of PVP-AgNPs can increase the deposition extent to a silica substrate compared 

to the as prepared pristine particle. This means in a filtration setting these particles will have a 

higher affinity to media such as sand. Similarly, in an aquatic environment, Sulf-PVP-AgNPs 

will more likely to partition out of solution and persist less in water compared to PVP-AgNPs. In 

contrast, the sulfidation of PEG-AgNPs can decrease its deposition extent to a silica substrate 

and therefore enhance the persistence of these particles in aquatic systems. 

 

When looking at capping type, PVP-AgNP will deposit consistently throughout a range of pH. 

At pH 9, PEG-AgNP deposit to a smaller extent and therefore may persist longer in water. After 

the inevitable effects of sulfidation, PVP-AgNPs will be easier to be immobilized than PEG-

AgNPs. Therefore, in synthesis of AgNPs, PVP as a polymer ligand over PEG can decrease the 

exposure of these particles in the environment and therefore might be a more environmentally 

benign polymer.  

 

Water chemistry will also dictate the mobilization in which these AgNPs will persist. Generally, 

lower pH will induce higher deposition and a decrease in these particles persistence. Likewise, 

the presence of NOM will decrease the deposition extent and allow for further mobilization of 

these particles in water. 

 

It is also important to determine the potential of detachment of these AgNPs from a silica 

substrate in order to understand its long-term fate and susceptibility to  remobilization. 

Detachment extent overall was not affected by sulfidation for both particle types. Overall, 
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regardless of conditions, AgNPs that have already deposited will inevitably detach to a certain 

degree. Therefore, it is important to further study not only the deposition kinetics, but also the 

potential for detachment and what factors may further induce it.  
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Figure 1. Effects of sulfidation on the deposition extent of PVP-AgNPs. 
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Figure 2. Effects of sulfidation on the deposition extent of PEG-AgNPs. 
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Figure 3. Zeta Potentials of PEG-AgNPs before and after sulfidation. 
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Figure 4. Zeta Potentials of PVP-AgNPs before and after sulfidation. 
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Figure 5. Relative hydrophobicity of AgNPs before and after sulfidation at pH 5. 
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Figure 6. Time-Resolved DLS Results for AgNPs in varying solvent ratios. 
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Figure 7. Effects of pH on sulfidized PVP-AgNPs. 
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Figure 8. Effects of pH on PEG-AgNPs. 
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Figure 9. Effects of ligand type on the deposition extent of AgNPs. 
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Figure 10. Molecular Structure of mPEG-SH and PVP. 
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Figure 11. Effects of NOM on the deposition extent of sulfidized PVP-

AgNPs. 
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Figure 12. Detachment extent of PVP-AgNPs and PEG-AgNPs before and after sulfidation. 
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Figure 13. Detachment extent of PVP-AgNPs before and after sulfidation. 
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Figure 14. Net deposition of Sulf-PVP-AgNPs. 
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Particle Type C (x 1010 particles mL-1) kobs (s
-1) -Δf(∞) (Hz) ka ( x 10-13mL particles-1 s-1)

3.1 6.908E-04 58.63

4.96 7.153E-04 67.36

6.2 1.158E-03 46.31

0.62 3.202E-03 20.45

2.1 1.545E-02 21.26

4.96 2.590E-02 18.74

1.24 8.590E-06 1671

2.48 1.970E-05 3234

3.72 9.330E-05 3618
0.62 3.462E-04 0.7737
2.48 4.638E-04 5.022
3.72 5.659E-04 4.423

PVP-Sulf-AgNP

PEG-Sulf-AgNP

PVP-AgNP 0.10

PEG-AgNP 5.00

0.005

0.07

Table 1. Observed rates (kobs), Adsorption rates (ka), and ultimate frequency shift (-Δf(∞)) for all particle types. All 

measurements were performed at pH 5. 
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Appendix 1. Deposition extent of AgNPs. 
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Appendix 2. Particle Size Distribution of AgNPs. 
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Appendix 3. Zeta Potential (ZP) values of AgNPs. 
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Appendix 4. Detachment extent of AgNPs before and after sulfidation. 
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Appendix 5. The net deposition extent of AgNPs before and after sulfidation. 
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Appendix 6. Percent detachment before and after the sulfidation. 
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