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  Abstract (in English, 250 words or less): 

Fruit fly compound eye is a premier experimental system for modelling human 
neurodegenerative diseases. Disruption of the retinal geometry has been 
historically assessed using time consuming and poorly reliable techniques such 
as histology or pseudopupil manual counting. Recent semiautomated 
quantification approaches rely either on manual ROI delimitation or engineered 
features to estimate the degeneration extent. This work presents a fully 
automated classification pipeline of bright-field images based on HOG 
descriptors and machine learning techniques. An initial ROI extraction is 
performed applying TopHat morphological kernel and Euclidean distance to 
centroid thesholding. Image classification algorithms are trained on these ROIs 
(SVM, Decision Trees, Random Forest, CNN) and their performance is evaluated 
on independent, unseen datasets. HOG + gaussian kernel SVM (0.97 accuracy 
and 0.98 AUC) and fine-tune pre-trained CNN (0.98 accuracy and 0.99 AUC) 
yielded the best results overall. The proposed method provides a robust 
quantification framework that addresses loss of regularity in biological patterns 
similar to the Drosophila eye surface and speeds up the processing of large 
sample batches. 

 

  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de 
aplicación, metodología, resultados y conclusiones del trabajo. 

El ojo de la mosca del vinagre es un modelo clásico de enfermedad 
neurodegenerativa. Históricamente la estimación del nivel de degeneración ha 
consistido en preparaciones histológicas o recuento manual en pseudopupila, 
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técnicas costosas en cuanto a tiempo de ejecución y de fiabilidad limitada. 
Recientemente se han desarrollado aproximaciones semiautomáticas a partir de 
imágenes tomadas a los ojos en luz blanca y por microscopía electrónica, que 
requieren de un paso previo de delimitación manual del área de interés (ROI), y 
una selección de variables prefijadas a partir de las cuales realizar la estimación. 
Con este trabajo se pretende proporcionar una herramienta totalmente 
automática de multiclasificación basada en la extracción de descriptores HOG y 
técnicas de deep learning. Se presenta un algoritmo de segmentación y 
extracción del ROI correspondiente al área del ojo, utilizando transformaciones 
morfológicas TopHat y filtraje por distancia al centroide del conjunto de píxels. 
Sobre estos ROIs se comparan diferentes algoritmos de clasificación (SVM, 
árboles de decisión, Random Forest). Los mejores resultados se obtienen 
mediante HOG+SVM con kernel gaussiano (precisión 0.97 y AUC 0.98) y CNN 
pre-entrenada (precisión 0.98 y AUC 0.99). Aplicándolos sobre un modelo de 
neurodegeneración que se apoya en el ojo de la mosca, con una geometría 
totalmente regular cuando está sano que se pierde a medida que progresa la 
enfermedad, es posible no sólo proporcionar un marco común capaz de analizar 
la pérdida de regularidad en otros patrones biológicos con simetrías similares, 
sino agilizar el procesado de grandes muestras de datos. 
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1. Introduction 

 

1.1 Context and motivations 

 

Drosophila neurodegeneration model 

Drosophila melanogaster stands out as one of the key animal models in 

today’s modern genetic studies, with an estimated 75% of human disease 

genes having orthologs in flies [1]. Its growth as a powerful model of choice 

has been supported by the wide array of genetic and molecular biology 

tools designed with the fruit fly in mind [2], easing the creation of genetic 

deletions, insertions, knock-downs and transgenic lines.  Fly biologists 

have greatly contributed to our knowledge of mammalian biology, making 

Drosophila the historical premier research system in the fields of 

epigenetics, cancer molecular networks, neurobiology and immunology 

[3]. The relative simplicity of Drosophila genetics (4 pairs of homologous 

chromosomes in contrast to 23 in humans) and organization (i.e. ~200,000 

neurons in opposition to roughly 100 billion neurons in humans) makes the 

fruit fly an especially well-suited model for the analysis of subsets of 

phenotypes associated with complex disorders. 

Specifically, the retinal system in Drosophila has been widely used as an 

experimental setting for high throughput genetic screening and for testing 

molecular interactions [4]. Eye development is a milestone in Drosophila 

life cycle, with a massive two-thirds of the essential genes in the fly 

genome required at some point during the process [5, 6]; thus constituting 

an excellent playground to study the genetics underlying general biological 

phenomena, from basic cellular and molecular functions to the pathogenic 

mechanisms involved in multifactorial human diseases, such as diabetes 

or neurodegeneration [7-9].  
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The fruit fly compound eye is a nervous system structured as a stereotypic 

array of 800 simple units, called ommatidia, which display a highly regular 

hexagonal pattern (Fig. 1). Precisely this strict organization allows to 

evaluate the impact of altered gene expression and mutated proteins on 

the external eye morphology, and to detect subtle alterations on the 

ommatidia geometry due to cell degeneration. One special type of cellular 

deterioration largely studied using Drosophila retina encompasses 

polyglutamine-based neurodegenerative diseases, namely Huntington’s 

and the dominant Spinocerebellar ataxias (SCA) [10] 

Polyglutamine disorders are caused by single gene mutations that lead to 

a toxic gain-of-function phenotype, primarily expansions of unstable CAG 

repeats, which translates to abnormally glutamine-enriched proteins that 

end up aggregating in the cell nucleus. Characteristic features in patients 

Figure 1. Drosophila compound eye structure. A Representation of the fruit fly eye 
surface and internal disposition of ommatidia. B Schematic of an ommatidium. Sagittal 
section (left), coronal sections at different planes (right). CL corneal lens; PSC 
pseudocone; PP primary pigment cells; CC cone cells; R1-6, R7, R8 photoreceptor 
cells; SP and TP secondary and tertiary pigment cells.  C-E Different eye imaging 
techniques demonstrating the hexagonal packing of the ommatidia and the trapezoidal 
arrangement of the photoreceptors, C scanning electron micrograph (SEM), D bright 
field microscope, E tangential section through the eye. Adapted from [6]. 
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are motor impairment and age-dependent degeneration, and a varying age 

of onset inversely correlated with the CAG repeat length [10].  

In Drosophila, it is possible to express endogenous and exogenous 

sequences in the tissue of interest using the UAS/Gal4 binary system (Fig. 

2A). This model exploits the P element, a transposable sequence naturally 

found in the fruit fly that can be engineered to manipulate genomic 

insertions of one or multiple transgenes in a tissue-specific manner. 

UAS/Gal4 system uses a yeast transcription factor, Gal4, that binds to the 

so-called Upstream Activating Sequence (UAS) enhancer element, 

triggering the expression of the inserted downstream transgene. Nor Gal4 

gene and UAS sites can be found in wild type Drosophila genome, neither 

fly transcription factors activate expression of UAS-controlled sequences. 

This transcriptional system is then a completely artificial tandem that 

allows for ectopic expression of a desired transgene, depending on the 

tissue-specific enhancer line used to express the Gal4 gene. 

Thus, overexpression of polyQ-expanded proteins via the UAS/Gal4 

system in the fly retina results in a depigmented, rough eye phenotype 

(REP) caused by loss of interommatidial bristles, ommatidial fusion and 

necrotic tissue (Fig. 2B). The vast majority of studies assessing the rough 

eye morphology relies on qualitative examination (i.e., visual inspection) 

of its external appearance to manually rank and categorize mutations 

based on their severity [11-13]. Even though evident degenerated 

phenotypes are easily recognizable, weak modifiers or subtle alterations 

may go undetected for the naked eye. Quantitative approaches addressing 

this issue involve histological preparations from which evaluate the retinal 

thickness, regularity of the hexagonal array or scoring scales for the 

presence of expected features in the retinal surface [14-18]. Recently there 

have been efforts to fully computerize the analysis of Drosophila REP in 

bright field and SEM images in the form of ImageJ plugins, called FLEYE 

and Flynotiper [19, 20]. Whereas both methods propose automatized 

workflows, the former prompts the user to manually delimit the region of 

interest (ROI) to extract hand-crafted features from it, and the other relies  
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upon a single engineered feature and lacks any statistical background to 

support it.  

Hence, there is a need to tackle a fully automatized, statistically 

multivariate assessment of Drosophila eye quantification, given its utmost 

relevance as a simple yet comprehensive model for testing general biology 

hypothesis and human neurological diseases.  

 

Image classification pipelines 

To this day, there is a surprisingly absence of studies that apply image 

classification techniques to the quantitative measurement of Drosophila 

Figure 2. UAS/Gal4 system. A The Gal4 transgenic driver line expresses the tran-
scription factor Gal4 in a specific spatiotemporal pattern, in this case under the gmr 
gene promoter, exclusive to the fly eye. The UAS transgenic line contains the Gal4 
specific binding sites. Upon Gal4 binding to UAS sites, expression of downstream 
sequences is activated, which in our case leads to production of polyQ ataxin-related 
proteins in the fly eyes. For both systems to concur in a single fly, mating is required 
between transgenic lines for a Gal4 driver and a UAS construct, and only the F1 off-
spring will display Gal4 activated expression of UAS-controlled sequences. B Bright 
field images of REP. SCA1 gene modifiers can be tested on the fly eye via the 
UAS/Gal4 system. Complete loss of surface regularity and depigmentation can be 
appreciated between the WT and SCA1 phenotypes. SCA1 modifiers show interme-
diate levels of degeneration. Adapted from [8]. 
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eye surface regularity. Particularly, machine learning algorithms have 

proven to be incredibly efficient image classifiers during the past decade 

[21], rapidly permeating in the fields of cell biology and biomedical image-

based screening [22, 23]. Machine learning methods greatly ease the 

analysis of complex multi-dimensional data by learning processing rules 

from examples that can be later on generalized to classify new, unseen 

data.  

The typical classification workflow consists in a pipeline of image pre- 

processing, object detection and features extraction, which are fed as input 

to the embedded machine learning algorithm. In the training phase, the 

principal goal of the learning task is to infer general properties of the data 

distribution from a few examples annotated according to predefined 

classes. This approach has been termed as ‘supervised’ learning [21, 24] 

and its successful application in bioscience ranges from high-content 

screening and drug development [25, 26] to DNA sequence analysis and 

proteomics [27, 28].  In opposition, there also exists an ‘unsupervised’ 

approach, that mainly attempts to cluster data points on the basis of a 

similarity measure and enables the exploration of unknown phenotypes, 

but we won’t be focusing on it. 

The general workflow for supervised image classification is depicted in 

Fig. 3A. The first pre-processing step usually aims at correcting uneven 

illuminations caused by camera artefacts, normalizing the intensity levels 

as these should not change with the position inside the picture. It may also 

include changes between different colour spaces. Next, the objects of 

interest need to be defined. Object detection is an inherently difficult task 

to generalize, and no single method exists to solve all segmentation 

problems in biological imaging. It is frequent to look for differences in 

region properties (i.e., background removal by intensity thresholding) or 

edges and contours. Morphological transformations with varying kernel 

shapes and sizes may also help to enhance contrast between local 

regions.  

Following segmentation, a feature extraction step is mandatory to translate 

each object into a quantitative vector, suitable as input for the classifier 
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algorithm. Descriptive features are derived from the raw pixel intensities in 

order to discard irrelevant information, such as spatial and spectral 

patterns exclusive to a single image [21, 29]. Features quantifying the pixel 

distribution have been extensively used and tend to measure texture 

properties, granularity, contour roughness or object circularity [30]. The 

histogram of oriented gradients (HOG) is another feature extractor that 

converts a pixel-based representation into a gradient-based one, 

calculating the frequency of a given intensity local change within the pixel 

array [31]. Until the arrival of deep learning, HOG in combination with 

classical machine learning classifiers was among the top performance 

techniques in object recognition [32-37] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Supervised image classification pipelines. Both workflows start with a 
dataset labelled with predefined classes. A final performance assessment is also 
mandatory to test whether the classifier is able to generalize. A Conventional machine 
learning methods heavily depends on raw data pre-processing. Splitting into training 
and test sets occurs only after relevant features have been extracted from the curated 
data. B Deep learning techniques receive raw pixel intensities directly as input, so the 
pipeline begins by splitting the dataset. A simple CNN architecture is depicted as an 
example. Relevant feature representation occurs in the inner layers of the network, 
after subsequent convolution and pooling steps.  
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A labelled feature matrix serves then as the training input a classifier needs 

to automatically infer internal parameters of a learning model. This process 

is guided by an objective function that is subject to optimization and 

evaluates how well different combinations of parameters fit to the training 

data. It is essential to test the ability of the model to properly classify new 

examples not used for training, to ensure the learning rule is a generalized 

solution to the classification problem and the learner is not simply 

memorizing the training set. Splitting the dataset into learning and testing 

fractions may also follow diverse strategies (i.e., k-fold cross-validation) 

[38, 39]. Machine learning techniques typically applied to image 

classification includes support vector machines (SVM) [27], decision trees 

(DT) [33], random forests (RF) [40] and neural networks (NN) [41], and will 

be explained in some detail in subsequent sections.   

Alongside processing power and GPU-dedicated coding, deep learning 

methods have exponentially grown in importance during the last few years 

[42, 43]. Conventional machine learning algorithms aforementioned 

require data processing and feature enrichment prior to the training, as 

they are not suited to work with raw input. In contrast, deep learning 

procedures are general-purpose learners in the sense that they can be fed 

with raw data and automatically suppress irrelevant information and select 

discriminant characteristics, composing simple layers of non-linear 

transformations into a higher, more abstract level representation (Fig. 3B). 

In image classification, the input has the form of an array of pixel values, 

and the deeper a layer is in the network the more complex the features it 

learns. Superficial layers that directly receive the input extract general 

edge and orientation detectors, whereas final layers assemble motifs into 

larger combinations to represent defining parts of objects.  

Convolutional neural networks (CNNs) are a well-known architecture for 

deep learning that have been continuously outperforming previous 

machine learning techniques, especially in computer vision and audio 

recognition [43]. With the increasing availability of large biological 

datasets, its popularity in bioinformatics and bioimaging has quickly 

escalated, and currently CNNs are addressing problems hardly resolvable 
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by former top-notch analysis techniques [44-48]. The striking advantage of 

these networks is that feature hand-crafting and engineering is completely 

avoided, as they implement intricate functions insensitive to perturbations 

thanks to the multilayer mapping representation of discriminant details. 

They have been proven to be a universal approximation algorithm. Crucial 

aspects of a CNN are the network depth (number of layers) and width 

(nodes in each layer), given the computational cost increases with the 

number of training parameters in higher dimensional feature spaces.  

Large sized samples are a big helping hand in maintaining the trade-off 

between network complexity and accuracy, and that’s where some areas 

in biology still fall short off. For this reason, transfer learning approaches 

are becoming a staple alternative when labelled training examples are 

limited or hard to gather [49, 50]. The concept of transfer learning refers to 

applying the knowledge acquired from CNNs already pre-trained on 

thousands of labelled natural images, to different but related tasks (i.e., as 

feature extractors for smaller samples with categories not originally 

present in the network training). Source data don’t even need to be related 

to the new dataset, as images share common patterns like edges and 

contours that can be modelled independently from the actual content of 

the image. 

The novelty of the present work consists in applying and comparing the 

different image classification strategies mentioned so far in an extensively 

used biological model as Drosophila melanogaster, which has been 

scarcely addressed before and is in dire need of a state-of-the-art 

quantification framework. 

 

Feature extraction and learning algorithms 

We’ll end this section by succinctly explaining the basic ideas behind the 

feature descriptor and the machine and deep learning algorithms used in 

the present work. 

Histogram of Oriented Gradients. HOGs are local scale-invariant 

descriptors that result in a compressed and encoded version of an image 
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(Fig. 4). Oriented gradients are vectors of both magnitude and direction of 

the intensity change in a given location. These are weighted by a Gaussian 

window. Then histograms of patched gradients are computed to obtain an 

estimated probability of preferred orientations within that patch. To 

preserve the spatial relation, these features are block-wise concatenated 

into a single vector ready to be used as input for a machine learning 

classifier (SVM, DT, RF, NN). 

 

Support Vector Machines. SVMs evaluates the goodness of all possible 

decision boundaries that can be constructed to separate data points 

belonging to two (line) or more (hyperplane) different classes. SVMs find 

the boundary with maximal margins to the nearest training samples (Fig. 

5A), and the decision function derived is expected to generalize well as it 

minimizes the theoretical risk of error. Most SVM algorithms allows for 

Figure 4. Histogram of Oriented Gradients. Input image is divided into smaller 
blocks. In these cells horizontal and vertical gradient filters are applied pixel-wise, so 
each pixel has an associated orientation and magnitude. A histogram for all the ori-
entations in a block is built using discrete bins. Bigger magnitudes decide which is the 
preferred orientation in a given cell, and finally cell histograms are concatenated into 
a larger HOG descriptor vector. 
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some percentage of misclassifications at a certain penalty parameter C 

(soft margins). When data is not linearly separable in the original input 

space, kernel transformations allow for more sophisticated boundaries in 

a higher-dimensional feature space (i.e., Gaussian kernel or radial basis 

function, RBF) (Fig. 5B).  

Decision Trees. DT classifiers are built using a heuristic called recursive 

partitioning. It iteratively splits the input space into smaller subsets, 

selecting at each node the feature and the threshold that will partition the 

sample, until the remaining data is sufficiently homogenous or a certain 

stopping criterion is met (pre-pruning). A common strategy to avoid 

overfitting involves reducing the size of the final tree (post-pruning). 

Usually the resulting boundaries are parallel to the feature axes (Fig. 5C-

D). The final classifier is easy to interpret in most cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Conventional supervised machine learning classifiers. A SVM with lin-
ear kernel. Dotted lines represent the “support vectors” or maximal margins that de-
termine the best linear boundary. They are “soft margins” as misclassification is al-
lowed. B Non-linear kernels may induce SVMs to learn more intricate decision bound-
aries. C Binary decision tree boundaries are always parallel to the axis. Its corre-
sponding splitting rules are represented in D, where internal nodes account for the 
feature thresholds and the terminal leafs for the final class predicted. E In random 
forest many weak DTs are randomly averaged to form a more robust class prediction. 
Adapted from [21, 24]. 
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Random Forest. RFs are ensemble methods based on the notion that 

combining multiple weak learners results in an overall stronger classifier. 

The combination function to determine the final prediction may vary from 

a majority vote approach to averaging the outcome of randomly weighted 

decision trees (Fig. 5E). The resulting ensemble reduces the global 

variance while keeping the original bias low, and has an implicit feature 

selection that makes it robust and computationally efficient. 

Convolutional Neural Network. CNNs are a type of multilayer perceptron 

(MLP) that reduces the degrees of freedom of spatially- correlated 

features. CNNs are composed of convolution, non-linear activation 

function and pooling layers.  Convolutional layers perform an affine 

transformation of the input images using learned kernels in a local fashion, 

as calculations at each pixel involves only its surrounding neighbours (Fig. 

6A). The computational cost of the convolutions depends on the number 

of filters and the stride (overlapping between kernel operations on the 

same image).  

Convolutional layers greatly increase the number of hidden units as there 

are usually more output feature maps than input maps. The reasoning 

behind the local connectivity is that motifs are invariant to location, so they 

could appear anywhere within the image, hence the advantage of units at 

different locations sharing weights and detecting similar patterns. The 

result of this local weighted sum is passed through an activation non-

linearity such as Rectified Linear Units (ReLu) (Fig. 6B). Subsequent 

pooling layers perform subsampling on the maps learned, merging 

semantically similar features into one (Fig. 6C). This reduces the 

dimension of the representation and gives the network some degree of 

invariance to shifts and distortions.  

The arrangement of convolution, non-linearity and pooling forms a 

processing block that can be concatenated to the desired network depth. 

Lastly, a fully-connected layer encode the global patterns and the final 

output (i.e., predicted classes) is retrieved. Central parameters of a CNN 

are the learning rate (small to avoid convergence problems), batch size, 

momentum, weight initialization (random, pre-defined), decay, dropout 
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rates and regularization. Tweaking these parameters is essential to 

prevent overfitting and find the adequate settings for the solving task. 

 

 

1.2 Objectives 
 

 The main objectives in the present work are: 

 

i) To automatically classify Drosophila melanogaster eye images with 

varying degrees of degeneration. To this extent, it is necessary to pre-

process and segment the images in a way that allows for the extraction of 

non-manually drawn ROIs centred at the focal plane of the eye. 

 

ii) To compare the most recent image classification techniques in terms of 

accuracy and global performance on independent fly eye image sets. This 

includes more classical machine learning algorithms (SVM, DT, RF) and 

state-of-the-art deep learning methods (CNN). 

Figure 6. Computations in CNN inner layers. A Convolutional layers apply filters 
with fixed or varying size and different kernels to detect edges in many directions. The 
filtering is mathematically a discrete convolution. B Activation functions such as sig-
moid, hyperbolic tangent or ReLU transform an initially non-linearly separable prob-
lem into a linear decision boundary. C Pooling strategies include “Max pooling” (high-
est local value) and “Average pooling” (mean local value). 
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1.3 Materials and methods 

 

Fly lines and maintenance 

All stocks and crosses were grown in a temperature-controlled incubator 

at 25ºC, 60% relative humidity, under a 12 h light-dark cycle. They were 

fed on conventional medium containing wet yeast 84 g/l, NaCl 3.3 g/l, agar 

10 g/l, wheat flour 42 g/l, apple juice 167 ml/l, and propionic acid 5 ml/l. To 

drive transgenes expression to the eye photoreceptor we used the line 

gmr:GAL4. REP was triggered using the UAS:hATXN182Q 

neurodegenerative transgene [51], and different UAS:modifier-gene 

constructs were used to test the system capability to recognize 

intermediate phenotypes. 

 

External eye surface digital imaging 

Digital pictures (2880x2048 pixels) of the surface of fly eyes were taken 

with a Nikon DS-Fi3 digital camera, in a Nikon SMZ1000 stereomicroscope 

equipped with a Plan Apo 1x WD70 objective. The flies were anesthetized 

with CO2 and their bodies immobilized on dual adhesive tape, with their 

heads oriented to have an eye in parallel to the microscope objective. Fly 

eyes were illuminated with a homogeneous fiber optic light passing 

through a translucid cylinder, so light rays were dispersed and didn’t 

directly reach the eyes. Images taken with this method show a better 

representation of the surface retinal texture, in contrast to pictures where 

the light fall upon the eye and the lens reflection is captured by the camera, 

forming bright-spotted grids.  

Additional settings include an 8x optical zoom in the stereomicroscope. A 

total of 308 image files were saved using NIS-Elements software in Tiff 

format. 
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ROI selection algorithm 

All image analysis were performed using R programming language [52]. 

Eye images in RGB color space were first resized to a ¼ of their original 

resolution to help fit in memory and a White TopHat morphological 

transformation with a disc kernel of size 9 was applied using the package 

EBImage [53]. Transformed images are converted to grayscale and 

thresholded to keep only pixels with intensity > 0.99 quantile. Centroid of 

the remaining pixels is estimated using the Weiszfeld L1-median [54]. For 

each pixel, the Euclidean distance to the centroid is calculated, and those 

with distances > 0.8 quantile are discarded. A 0.90 confidence level ellipse 

is estimated on the final selected pixels, and its area is superposed to the 

original resized picture to extract the final ROI. 

 

HOG descriptor and machine learning classifiers 

Firstly, RGB ROIs were converted to grayscale maintaining the original 

luminance intensities. Histogram of gradients (HOG) features were 

extracted using the OpenImageR package [55]. A 5x5 cell descriptor with 

5 orientations per cell was estimated in the gradient, resulting in a final 

125-dimensional vector for each ROI.  

SVM, DT and RF algorithms were trained on the extracted HOG features. 

Dataset was split into training and test sets with a 75/25 ratio using 

stratified random sampling to ensure class representation. The modelling 

strategy for all classifiers included cross-validation to assess 

generalization, grid search for parameter selection and performance 

evaluation on test set via confusion matrix, global accuracy, Kappa statistic 

and multiclass pairwise AUC [56]. We tested a RBF kernel SVM, DT, 

adaptative boosting DT and 1000-trees RF, using the R packages kernlab, 

C50 and caret [57, 58]. 
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Deep learning classifiers 

Extracted ROIs were resized to a 224x224x3 RGB array and stored in 

vectorized form, resulting in a final data frame of 308x150528 dimensions. 

Dataset was split into training and test sets with a 75/25 ratio using 

stratified random sampling to ensure class representation. Two CNNs 

were trained on this data: 

i) a simple CNN trained from scratch, with hyperbolic tangent as activation 

function, 2 convolutional layers, 2 pooling layers, 2 fully connected 

layers (200 and 6 nodes), 30 epochs and a typical softmax output. Each 

convolutional layer uses a 5×5 kernel and 20 or 50 filters, respectively. 

The pooling layers apply a classical "max pooling" approach. All the 

parameters in kernels, bias terms and weight vectors are automatically 

learned by back propagation with learning rate equal to 0.05 and 

stochastic gradient descent (SGD) optimizer  to ensure the magnitude 

of the updates stayed small [59]. 

ii) a fine-tuned CNN using a ImageNet pretrained model with a batch-

normalization network structure [60, 61], 30 epochs,  a very slow 

learning rate (0.05) and a SGD optimizer. The final fully connected (6 

nodes) and softmax output layers are tuned to fit the new fly eye ROIs.  

For the CNN training the R package MXNet compiled for CPU was used 

[62]. Performance was assessed in terms of confusion matrix and global 

accuracy using caret package [63]. 

 

1.4 Task planning 

 

For a comprehensive description of the resources required during this 

work, see Materials and methods section. The Gantt diagram shows the 

planned task calendar followed. Estimated days include installation and 

familiarization with the software, task resolution and mentor revision. 

Memory writing was planned to finish a week before the final due date to 

allow for mentor correction: 
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Table 1. Task planning weeks 1 to 5. 

Table 2. Task planning weeks 6 to 10. 

Table 3. Task planning weeks 11 to 16. 
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1.5 Brief product summary 

 

The products that come out from the present work can be summarized as: 

i) An automatic ROI selection algorithm from bright field images of 

Drosophila eyes, that is invariant to the method of illumination and eye 

position or orientation. 

ii) Two classification algorithms based on Fine-tuned CNN (0.98) and 

HOG + rbf SVM (0.90-0.99), and a robust regularity index calculated 

from the model estimated class probabilities that allows direct 

comparison between different REP.  

 

1.6 Brief description of the memory 

 

The memory consists in a Results section, where the experiments 

performed will be explained and graphically portrayed; and a Conclusion 

section, where the results will be discussed in context with the expected 

outcome and the innovation brought to the current state of the art, as well 

as possible future research lines that may follow from the present work. A 

final Supplementary Material section includes the full images dataset 

used in this work as well as the complete R scripts.  
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2. Results 

 

2.1 Detection of Drosophila eye from bright field images 

 

The first step in the quantification workflow is the extraction of pixels 

corresponding to the fly eye from the rest of the image. One concern is 

that the eye is not flat but convex in morphology, so under white light only 

the central surface is at the camera focus. To address this issue, white 

TopHat morphological transformations were performed, defined as the 

difference between the input image and its opening by a structuring kernel. 

The opening operation involves an erosion followed by a dilation of the 

image, retrieving the objects of the input image that are simultaneously 

smaller than the structuring element and brighter than their neighbours.  

Best results were obtained using a 9x9 disc-shaped kernel followed by a 

thresholding of pixels with intensities over the 0.99 percentile (Fig. 7A). 

Afterwards the centroid of the selected pixels was calculated as the L1-

median, which is a more robust estimator of the central coordinates than 

the arithmetic mean. Points with Euclidean distance to the centroid greater 

than 0.8 percentile are more likely to lie outside the eye area and were 

discarded (Fig. 7B). A 0.90 confidence ellipse calculated on the selected 

pixels conforms the area of the final ROI, which was superposed and 

cropped from the original eye image (Fig. 7C). As can be appreciated in 

the example images, the method is invariant to the location of the eye 

within the image. Various combinations of the thresholds and centroid 

estimator were tested (Fig. 8A).  

The proposed segmentation method also works well on bright field images 

where the light falls directly onto the ommatidium and the eye is seen as a 
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Figure 7. Drosophila eye detection strategy. Representative examples of healthy 
and REP eyes are shown. A Morphological transformation and intensity thresholding 
extract pixels mostly contained within the eye. B Euclidean distance to the centroid 
(red dot) and frequency histogram with 0.80 percentile marked as a red dotted line. 
Dark blue points are discarded as potential pixel outliers outside the eye limit. C Se-
lected pixels are superposed to the original image and those within the area of a 0.90 
confidence ellipse are extracted as the final ROI (blue shaded ellipse). 
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 region enriched in reflection spots (Fig. 8B). The full array of final ROIs is 

represented in Fig. S1. 

 

 2.2 Histogram of Oriented Gradients features extraction  

 

Prior to the HOG extraction, ROIs were transformed to grayscale 

preserving the luminance of the original RGB image. ROIs were divided 

into rectangular cells of 5x5 pixels, and for each cell an orientation 

histogram of 5 bins covering a gradient range of 0º to 180º is computed 

(Fig. 9). That means that a 125-dimensional feature vector is extracted for 

each ROI, representing the frequency of a certain gradient within the 

image (Fig. 9). The matrix formed by the 125-D vectors of all ROIs 

conforms the input for the machine learning classifiers. 

 

Figure 8. ROI selection optimization and extensibility. A L1-median centroid 
alongside stricter thresholds improve the eye area detection. B Bright-spotted fly eye 
images can also be successfully segmented using this method. 
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2.3 Machine learning classifiers comparison  

 

SVM with RBF kernel, DT, AdaBoost DT and 1000-trees RF algorithms 

were tested on the HOG features extracted. Sample consisted in 308 fly 

eye images distributed in 5 different phenotype classes with varying 

degrees of retinal surface degeneration. Data was split using stratified 

Figure 9. HOG feature extraction. For each phenotype mean values are repre-
sented. Each cell in the 5x5 grid contains the 5 major orientations within that patch. 
All gradients are concatenated in a 125-D vector (coloured blocks indicate between 
plots correspondence), and its frequency in the cropped ROIs is calculated, resulting 
in the final HOG. The SCA1 modifier#1 HOG is more similar to the WT than pure 
SCA1, and the inverse holds for modifier#3. 
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random sampling in 75% training and 25% test set. Optimal parameters 

for each classifier were found using 10-fold cross-validation on the training 

set. Table 4 shows the confusion matrix and Table 5 represents the global 

accuracy, Kappa statistic and multiclass AUC, defined as the average 

AUC of class pairwise-comparisons (Fig. 10A), calculated on the test data. 

Pairwise ROC plots are represented in Fig. 10B.  

 

Color scheme: SVM  DT  BoostDT  RF 

Table 4. Machine learning classifiers confusion matrix.  

Table 5. Machine learning performance evaluation metrics on test data. Best results are 
shaded in grey. 

Figure 10. Class pairwise AUC and ROC. A SVM with RBF kernel outperforms the other classifiers 
in all comparisons. B ROC plots corresponding to the AUCs in A. 
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In general, the four classifiers performed fairly well on unseen data. Both 

DT algorithms fell on the low spectrum either in accuracy and AUC (<0.80), 

whereas RF achieved a remarkable AUC of 0.90. Overall, SVM 

accomplished the best results among all the error metrics evaluated, with 

a global accuracy of 0.97 (0.90-0.99), Kappa of 0.96 and a multiclass AUC 

of roughly 0.98. Parameters that yield these results were a Gaussian 

kernel (radial basis function), a cost penalty = 1 and sigma = 0.005. WT 

eyes were the most correctly classified phenotype by the four methods.  

From the SVM estimated class probabilities it is possible to derive a 

regularity index, IREG, that ranges from 0 (total degeneration) to 1 (healthy 

eye) [19]. It is based on the knowledge of degeneration intensity of the 

phenotypes involved in the model: WT < Modifier#1 < Modifier#2 < 

Modifier#3 < SCA, from absence to full presence of REP.  IREG is then 

calculated as: 

𝑰𝑹𝑬𝑮 =  
𝟒 · 𝑷(𝒆𝒚𝒆 = 𝑾𝑻) + 𝟑 · 𝑷(𝒆𝒚𝒆 = 𝑴𝒐𝒅#𝟏) + 𝟐 · 𝑷(𝒆𝒚𝒆 = 𝑴𝒐𝒅#𝟐) + 𝑷(𝒆𝒚𝒆 = 𝑴𝒐𝒅#𝟑)

𝟒
 

When estimated on the test data, IREG distribution fits to the expected 

values and properly reflects the intrinsic variability of the fly model and the 

rough eye phenotype (Fig. 11). 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. IREG boxplots. WT and SCA1 eyes show opposing IREG values and no 
distribution overlap. SCA modifiers show intermediate REPs and slight distribution 
overlapping, but the median and central boxes differentiate them. Grey dotted lines 
mark 0.25, 0.5 and 0.75 IREG values. 
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2.4 Deep learning classifiers  

 

In contrast with the previous machine learning classifiers, that needed a 

transformation of the cropped images into an enriched feature space 

(HOG), deep learning algorithms use directly the ROIs pixel intensity 

arrays as input. Features are automatically learned during the learning 

process, from gross edge and contour detection to fine details 

discrimination the deeper the layer is in the network. 

Two different strategies were followed to train the deep networks: learning 

a de novo model and transfer learning. The latter approach takes 

advantage of CNNs pre-trained on very large samples, which is especially 

well-suited for classifying new small datasets, as the majority of patterns 

Figure 12. CNN architectures and learning curve. A Inception-BN is a 15-layered 
CNN pre-trained on thousands of natural images. A 6-nodes fully connected layer and 
softmax output are trained with new fly eye images on top of the Inception blocks. B 
De novo CNN with 5 layers and a 6-nodes fully connected and softmax output. C 
Train accuracy in the pre-trained model starts pretty high and quickly rises in the first 
few epochs. In contrast, de novo model accuracy remains low and fluctuates around 
the initial value with no apparent signs of improving. 
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and motifs commonly found in images are already known to the model 

internal representation. Thus, it is only necessary to fine tune the final 

layers to learn the particularities of the new images, which is many times 

faster than training a CNN from scratch and doesn’t require thousands of 

labelled examples. The architectures of both de novo and pre-trained CNN 

are depicted in Fig. 12A-B. The pre-trained model chosen uses the 

Inception structure, characterized by including mini-batch normalization 

(BN) for each training epoch, which allows for high learning rates and acts 

as regularizer. In comparison, the de novo CNN is much shallower due to 

computational constraints.  

 

 

 

 

 

 

 

 

 

 

 

 

Accuracy during the training phase is usually a reliable indicator of a CNN 

capability to learn discriminative features with the available sample size 

(Fig. 12C). De novo CNN curve is a clear sign that either the network is 

not deep enough or the training sample is too small for the complexity of 

the classification task at hand. One major concern with the pre-trained 

Inception-BN was the possibility that the network was memorizing the 

training set, given the few epochs it needed to achieve perfect training 

accuracy. Performance assessment in an independent test set of unseen 

Color scheme: Inception-BN  de novo CNN 

Table 6. CNN classifiers confusion matrix.  

Table 7. CNN performance evaluation metrics on test 
data. Best results are shaded in grey. 
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images gave impressive accuracy and AUC values closer to 1 (Tables 6, 

7), refuting the possibility of overfitting. The CNN trained from scratch 

predicted every eye to be WT, indicative of the weak classifying rule 

learned in training. Thus, transfer learning with pre-trained Inception-BN 

model is arguably the top performer classifier among all the methods 

tested in this work. 
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3. Conclusion 

 

The present work provides a novel and fully automated method to 

quantitatively assess the degeneration intensity of the fruit flies compound 

eye, using reliable and robust state-of-the-art machine learning 

techniques.  This new method consists in the acquisition of bright-field 

images from the external retinal surface, the extraction of a ROI enriched 

in information of the eye morphology and a classification algorithm built 

around a pre-trained deep learning algorithm, fine-tuned to the 

particularities of REP degeneration images. Additionally, a model based 

on the combination of HOG features extraction and Gaussian kernel SVM 

offered performance on par with the CNN and in fact required much less 

training time. 

In contrast with previous quantification approaches [16, 19, 20], this 

method does not rely on patterns created by light reflecting in the eye 

lenses and can be applied to extract ROIs from a variety of illumination 

conditions. The proposed pipeline can process a 2880x2048 resolution 

image in less than 10 seconds, and batches of 50 images in approximately 

90 seconds, depending on the hardware it runs on.   

One of the major goals of this work was to analyse the potentiality of deep 

learning techniques to extract feature maps directly from the raw pixel 

array, that could be fed as input to other conventional machine learning 

algorithms (i.e, SVM). Due to computational constraints, it was not 

possible to tune up GPU-compiled versions of the software utilized, and 

the prohibitive CPU computational time and memory usage in its absence 

made the evaluation of the former objective not feasible. HOG was chosen 

as an alternative descriptor given its successful application in object 
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detection [32, 33, 36], and ended up resulting in a surprisingly powerful 

classifier in combination with conventional SVM. 

Another drawback of CNNs is the staggering amount of labelled training 

examples they need to learn adequate internal representations of image 

patterns and motifs. Although sample size in Drosophila experiments 

ranks among the largest of any animal model in genetics, it is still a titanic 

effort to go beyond one thousand images in a typical fruit fly assay. This 

limitation affected the performance of the de novo CNN, which led to the 

alternative strategy of transfer learning. Using Inception-BN, a CNN pre-

trained on millions of natural images [61], proved to be a well-thought 

solution that definitely opens up  the field of deep learning to small scale 

biology setups. 

Future lines of work include developing the fly eye detection algorithm 

further to make it extensible to other image capturing techniques (i.e., 

SEM). A more immediate priority is  the creation of a user-friendly Shiny 

application [64] that will allow the researcher to tweak the ROI selection 

parameters to fit the peculiarities of its own dataset prior to the 

degeneration quantification. Depending on the particular hardware 

settings, the app may also offer the user the possibility to train its own SVM 

or deep learning model.  

The highlighted strengths of the proposed framework will enhance the 

sensitivity of high-throughput genetic screens based on rough eye 

phenotypes and demonstrates fly eye imaging is a top-notch technique for 

quantitative modelling human diseases.  
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4. Glossary 
 

 

AdaBoost Adaptative Boosting 

AUC Area under the ROC 

BN Batch normalization 

CNN Convolutional Neural Network 

DT Decision Tree 

gmr glass multimer reporter 

HOG Histogram of Oriented Gradients 

IREG Regularity index 

MLP Multilayer Perceptron 

NN Neural Network 

PolyQ Polyglutaminated 

RBF Radial Basis Function 

RGB Red, Green, Blue (colorspace) 

ReLU Rectified Linear Unit 

REP Rough eye phenotype 

RF Random Forest 

ROC Receiver Operating Curve 

ROI Region of Interest 

SCA Spinocerebellar ataxia 

SEM Scanning electron micrograph 

SVM Support Vector Machine 

Tanh Hyperbolic tangent 

UAS Upstream Activating Sequence 

WT Wild type 
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6. Supplementary material 
 

6.1 Supplementary figures  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure S1. Full dataset of final ROIs. Indirect dispersed light illumination method (308 pictures). Sample used for 
training and testing the models through stratified random splitting. 
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Figure S2. Direct light illumination method ROIs. 149 surface pictures of REPs similar to the ones used to train 
the models. 
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6.2 R Code  

Image segmentation  

######################### 

# 1. Image segmentation # 

######################### 

 

############# 

# Functions # 

############# 

 

# ggplot theme to be used 

plotTheme <- function() { 

  theme( 

    panel.background = element_rect( 

      size = 3, 

      colour = "black", 

      fill = "white"), 

    axis.ticks = element_line( 

      size = 2), 

    panel.grid.major = element_line( 

      colour = "gray80", 

      linetype = "dotted"), 

    panel.grid.minor = element_line( 

      colour = "gray90", 

      linetype = "dashed"), 

    axis.title.x = element_text( 

      size = rel(1.2), 

      face = "bold"), 

    axis.title.y = element_text( 

      size = rel(1.2), 

      face = "bold"), 

    plot.title = element_text( 

      size = 20, 

      face = "bold", 

      hjust = 0.5) 

  ) 

} 

 

# resize function 

resFunc <- function(x) { 

  resize(x, dim(x)[1]/4) 

} 

 

 

# Store RGB into data frame 

RGBintoDF <- function(x) { 

  imgDm <- dim(x) 

  #Assign original image RGB channels to data frame 

  imgOri <- data.frame( 

  x = rev(rep(imgDm[1]:1, imgDm[2])), 

  y = rev(rep(1:imgDm[2], each = imgDm[1])), 

  R = as.vector(x[,,1]), 

  G = as.vector(x[,,2]), 

  B = as.vector(x[,,3]) 

  ) 

  return(imgOri) 
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  y = rev(rep(1:imgDm[2], each = imgDm[1])), 

  R = as.vector(x[,,1]), 

  G = as.vector(x[,,2]), 

  B = as.vector(x[,,3]) 

  ) 

  return(imgOri) 

} 

 

# Store Gray channel into data frame 

GintoDF <- function(x) { 

  imgDm <- dim(x) 

  #Assign original image RGB channels to data frame 

  imgOri <- data.frame( 

  x = rev(rep(imgDm[1]:1, imgDm[2])), 

  y = rev(rep(1:imgDm[2], each = imgDm[1])), 

  G = as.vector(x) 

  ) 

  return(imgOri) 

} 

 

# White TopHat morphological transform 

wTopHat <- function(x, y, z) { 

  imgGrey <- channel(x, "green") 

  imgTop <- whiteTopHat(imgGrey,  

kern=makeBrush(y, shape = z)) 

} 

 

# Display images 

dispImg <- function(x) { 

  display(x, method="raster") 

} 

 

# Select pixels with intensity > 0.99 quantile 

dispImgT <- function(x, y) { 

  display(x > quantile(x, y), method="raster")  

} 

 

# Add ellipse to plot 

ellPlot <- function(z, w) { 

  p <- ggplot(z, aes(x, y)) + 

  geom_point() + 

  labs(title = "Selected pixels") + 

  stat_ellipse(level=w) +  

  plotTheme() 

  return(p) 

} 

 

# Create image from ROI 

roitoImg <- function(z) { 

  R <- xtabs(R~x+y, z) 

  G <- xtabs(G~x+y, z) 

  B <- xtabs(B~x+y, z) 

  imgROI <- rgbImage(R, G, B) 

  return(imgROI) 

} 
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# Create image from ROI 

roitoImg <- function(z) { 

  R <- xtabs(R~x+y, z) 

  G <- xtabs(G~x+y, z) 

  B <- xtabs(B~x+y, z) 

  imgROI <- rgbImage(R, G, B) 

  return(imgROI) 

} 

 

################# 

# Load packages # 

################# 

library(lattice) 

library(ggplot2) 

library(sp) #for points.in.polygon 

library(raster) #for pointDistance 

library(tiff) 

library(EBImage) 

library(Gmedian) 

 

 

####################################################### 

# Morphological transformation and centroid distances # 

####################################################### 

 

## Read images and transform 

 

# Read original images 

tiffFiles <- list.files(pattern="*tif$", full.name=F) 

tiffList <- lapply(tiffFiles, readImage) 

 

# Resize to fit memory 

tiffRes <- lapply(tiffList, resFunc) 

rm(tiffList); invisible(gc()) # free memory space 

 

# Assign resized images RGB channels to data frames 

tiffOri <- lapply(tiffRes, RGBintoDF) 

 

# White TopHat morphological transform 

tiffTop <- lapply(tiffRes, wTopHat) 

 

# Display example images 

par(mfrow=c(3,4)) 

invisible(lapply(tiffRes[1:4], dispImg)) 

invisible(lapply(tiffTop[1:4], function(x) dispImgT(x, 

0.99))) 
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## Threshold and centroids 

 

# Assign gray channel to data frame 

tiffG <- lapply(tiffTop, GintoDF) 

 

# Threshold to keep pixels with intensity > 0.99 #  # # 

# quantile 

tiffThres <- lapply(tiffG,  

function(x) {x[x$G > quantile(x$G, 

0.99), ]}) 

names(tiffThres) <- seq(1:length(tiffThres)) 

 

# Estimate images centroid  

centroids <- lapply(tiffThres,  

function(x) Weiszfeld(x[,1:2])) 

 

# Plot examples 

thresXY <- lapply(tiffThres,  

   function(x) x[,1:2, drop=FALSE]) 

par(mar=c(0.1,0.1,0.1,0.1), mfrow=c(1,4)) 

for (i in 1:4) { 

  plot(thresXY[[i]]) 

  par(new=T) 

  points(centroids[[i]]$median, col="red", pch=19) 

} 

 

## Distances to centroide 

 

#Calculate distances to centroid 

distCent <- list() 

for (i in 1:length(thresXY)) { 

   pdist <- pointDistance(p1=thresXY[[i]], 

 p2=centroids[[i]]$median, 

lonlat=F) 

   # Mark distances > 0.8 quantile, as they belong to     

   # points outside the eye boundary in their majority 

   pLogic <- pdist < quantile(pdist, 0.80) 

   pp <- cbind(distCent = pdist, selected = pLogic) 

   distCent[[i]] <- pp 

} 

 

# Plot example histograms 

par(mfrow=c(2,2)) 

for (i in 1:4) { 

  hist(distCent[[i]][,1]) 

  abline(v=quantile(distCent[[i]][,1], 0.8), col="red", 

lty="dashed", lwd=2) 

} 
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# Join thresholded and distances lists 

thresDist <- mapply(cbind, tiffThres, distCent,  

 SIMPLIFY = FALSE) 

 

# Discard points with distance > quantile 0.8 

distSelect <- lapply(thresDist,  

 function(x) x[x$selected == 1, ]) 

 

# Plot examples 

plotThres <- list() 

for (i in 1:4) { 

  p <- ggplot(data=thresDist[[i]], aes(x=x, y=y,  

color=selected)) + 

     geom_point(show.legend = FALSE) +  

     plotTheme() 

  plotThres[[i]] <- p 

} 

lay <- rbind(c(1,2), c(3,4)) 

gridExtra::grid.arrange(grobs=plotThres, layout_matrix = 

lay) 

 

 

# Overlay to image 

plotOverlay <- list() 

for (i in 1:4) { 

  p <- ggplot(data = tiffOri[[i]], aes(x = x, y = y)) +  

geom_point(colour = rgb(tiffOri[[i]][c("R", "G",  

  "B")])) + 

     labs(title = "Original Eye selected Points",  

  cex=0.5) + 

     xlab("x") + 

     ylab("y") + 

     geom_point(data=distSelect[[i]], alpha=0.2) + 

     plotTheme() 

  plotOverlay[[i]] <- p 

} 

lay <- rbind(c(1,2), c(3,4)) 

gridExtra::grid.arrange(grobs=plotOverlay, layout_matrix 

= lay) 

 

## Subset and confidence ellipse 

 

# Add ellipse to plot 

ellPlots <- lapply(distSelect, function(x) 

ellPlot(x,0.90)) 

 

ggplot_build(x)$data) 

ells <- lapply(build, function(x) x[[2]]) 
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# Extract components 

build <- lapply(ellPlots,  

 function(x) ggplot_build(x)$data) 

ells <- lapply(build, function(x) x[[2]]) 

 

# Select original image points inside ellipse 

origpixList <- list() 

for (i in 1:length(thresXY)) { 

  imgOri <- tiffOri[[i]] 

  ell <- ells[[i]] 

  origEll <- data.frame(imgOri[,1:5],  

in.ell = as.logical(point.in.polygon(imgOri$x, 

imgOri$y, ell$x, ell$y))) 

  origPix <- origEll[origEll$in.ell==TRUE,] 

  origpixList[[i]] <- origPix 

} 

 

# Plot examples 

plotOverlay2 <- list() 

 

for (i in 1:4) { 

  p <- ggplot(data = tiffOri[[i]], aes(x = x, y = y)) +  

geom_point(colour = rgb(tiffOri[[i]][c("R", "G",  

  "B")])) + 

     labs(title = "Original Eye final ROI", cex=0.5) + 

     xlab("x") + 

     ylab("y") + 

     geom_polygon(data=ells[[i]][,1:2], alpha=0.2,  

size=1, color="blue") + 

     plotTheme() 

   

  plotOverlay2[[i]] <- p 

} 

 

lay <- rbind(c(1,2), c(3,4)) 

gridExtra::grid.arrange(grobs=plotOverlay2,  

    layout_matrix = lay) 

 

## Create image from final ROI 

roisImg <- lapply(origpixList, roitoImg) 

 

# Store ROIS as images 

dir.create("ROIS2"); setwd("ROIS2") 

for (i in 1:length(roisImg)) { 

  writeImage(roisImg[[i]], tiffFiles[i], "jpeg") 

} 
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HOG extraction and machine learning classifiers 

 

###################################### 

# 2. Machine learning classification # 

###################################### 

 

############# 

# Functions # 

############# 

 

# Obtain IREG 

IREG <- function(x) { 

  return ((4*x[2]+ 3*x[4] + 2*x[3] + x[5])/4) 

} 

 

################# 

# Load packages # 

################# 

 

library(lattice) 

library(tiff) 

library(jpeg) 

library(EBImage) 

library(caret) 

library(pROC) 

library(kernlab) 

library(C50) 

 

###################### 

# Preprocessing data # 

###################### 

 

# Read original images 

imgFiles <- list.files(pattern="*tif$", full.name=F) 

imgList <- lapply(imgFiles, function(x) readImage(x,  

   type="jpeg")) 

 

# To grayscale preserving RGB luminance 

imgLum <- lapply(imgList, function(x) 

channel(x,"luminance")) 

 

########################### 

# HOG features extraction # 

########################### 

 

# Calculate HOG descriptor 

 

imgHOG <- do.call(rbind.data.frame,  

lapply(imgLum, function(x) OpenImageR::HOG(x,  

  cells=5, orientations=5))) 

colnames(imgHOG) <- paste(rep("HOG",dim(imgHOG)[2]), 

seq(1,dim(imgHOG)[2]),sep="") 
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colnames(imgHOG) <- paste(rep("HOG",dim(imgHOG)[2]),  

  seq(1,dim(imgHOG)[2]),sep="") 

 

# Add labels to images 

fenotype <- read.csv("labels.csv", header = T) 

new <- cbind(fenotype, imgHOG) 

 

# Plot HOG features Example 

gridHOG <- data.frame(x = rev(rep(1:25, 5)), y = 

rev(rep(1:5, each = 25))) 

exHOG <- t(new[c(1,83,145,200,265),-1]) 

classHOG <- c("Healthy", "IntA", "IntB", "IntC", "Deg") 

colnames(exHOG) <- classHOG 

 

par(mfrow=c(5,1)) 

for (i in 1:5) { 

  plot(gridHOG$x, gridHOG$y, pch=19, cex=0.5, 

       col="Blue",xlab="",ylab="", main=classHOG[i], 

       xlim=c(0.5,25.5), ylim=c(0.5,5.5)) 

  length <- 0.6 

  arrows(gridHOG$x, gridHOG$y, 

         x1=gridHOG$x+length*cos(10^4*exHOG[,i]), 

         y1=gridHOG$y+length*sin(10^4*exHOG[,i]), 

         length=0.05, col="Black") 

} 

 

#################### 

# Train/test split # 

#################### 

 

# Seed for reproducibility 

set.seed(12345) 

 

# Stratified random sampling 75/25 

inTrain <- createDataPartition(y = new$Class, p= .75,  

 list = FALSE) 

 

# Store partitions 

train <- new[inTrain,] 

test <- new[-inTrain,] 

 

# Check class representation 

prop.table(table(train$Class)) 

prop.table(table(test$Class)) 
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################# 

# SVM algorithm # 

################# 

 

## Model training  

 

# Build the classifier with gaussian kernel, 10-fold CV 

set.seed(12345) 

SVMrbf <- ksvm(Class ~ ., data = train, kernel = "rbf",  

prob.model=TRUE,  

cross=10,  

kpar="automatic") 

save(SVMrbf, file = "SVMrbf.rda") # save model 

SVMrbf # show basic data 

 

## Evaluating performance 

 

# Make predictions 

SVMrbf.pred <- predict(SVMrbf, test) 

SVMrbf.probs <- predict(SVMrbf, test,  

    type="probabilities") 

all <- data.frame(Class = test$Class,  

   Pred = SVMrbf.pred, SVMrbf.probs) 

 

# Check first results 

head(SVMrbf.pred) 

 

# Comparison 

(SVMrbf.confmat <- confusionMatrix(SVMrbf.pred, 

test$Class)) 

 

## IREG estimation 

 

# Estimate IREG for the test set 

iregscore <- apply(SVMrbf.probs, 1, IREG) 

 

# Plot distribution 

result <- data.frame(Class = test$Class, ireg=iregscore) 

boxplot(ireg ~ Class, result, ylab="IREG") 

 

 

############################ 

# Decision Trees algorithm # 

############################ 

 

## Model training 
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# Build the classifier 

ctgC50 <- C5.0(train[,-1], train$Class) 

ctgC50 

 

## 10 trials boosting 

 

# 10 trials 

ctgC50.boost <- C5.0(train[,-1], train$Class,  

 trials = 10) 

ctgC50.boost 

 

## Evaluating performance  

 

# 1 trial predictions 

ctgC50.pred <- predict(ctgC50, test) 

 

# 10 trials predictions 

ctgBoost.pred <- predict(ctgC50.boost, test) 

 

# Confusion matrix 

C50.confmat <- confusionMatrix(ctgC50.pred, test[,1]) 

C50boost.confmat <- confusionMatrix(ctgBoost.pred,  

  test[,1]) 

C50compar <- data.frame(C50.confmat$overall, 

C50boost.confmat$overall) 

colnames(C50compar) <- c("1-trial", "10-trials") 

 

C50.confmat$table 

C50boost.confmat$table 

round(C50compar[c(1,2,3,4,6),],3) 

 

 

########################### 

# Random Forest algorithm # 

########################### 

 

## Model training 

 

# Build the classifier 

set.seed(12345) 

 

# Specify options 

ctrl <- trainControl(method = "repeatedcv", number = 10,  

 repeats=10,  

                     classProbs = TRUE,  

 summaryFunction = multiClassSummary) 

 

Specify parameter tuning 

grid <- expand.grid( .mtry = c(2, 8, 15, 21, 50)) 

 

#Train the model 

ctgrndFor2 <- train(x = train[2:126], y = train$Class, 

method = "rf",  

                    tuneGrid = grid, trControl = ctrl4,  

                    metric= "ROC", preProc = c("range")) 
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# Specify parameter tuning 

grid <- expand.grid( .mtry = c(2, 8, 15, 21, 50)) 

 

# Train the model 

ctgrndFor2 <- train(x = train[2:126], y = train$Class,  

method = "rf",  

tuneGrid = grid,  

trControl = ctrl,  

metric= "ROC", preProc = c("range")) 

ctgrndFor2 

 

## Evaluating performance 

 

ctgrnd2.pred <- predict(ctgrndFor2, test) 

 

# Confusion matrix 

rndFor2.confmat <- confusionMatrix(ctgrnd2.pred,  

test$Class) 

rndFor2.confmat$table 

 

 

#################### 

# Model comparison # 

#################### 

 

globalcompar <- data.frame(SVMrbf.confmat$overall,  

  C50.confmat$overall,  

  C50boost.confmat$overall,  

  rndFor2.confmat$overall) 

colnames(globalcompar) <- c("SVMrbf", "C50", "C50boost",  

                            "1000 RandomForest") 

round(globalcompar[c(1,2,3,4,6),],3) 

 

## Multiclass AUC 

svmAUC <- multiclass.roc(test$Class,  

as.numeric(predict(SVMrbf, test, 

type="response"))) 

c50AUC <- multiclass.roc(test$Class,  

as.numeric(predict(ctgC50, test,  

type="class"))) 

c50boostAUC <- multiclass.roc(test$Class,  

as.numeric(predict(ctgC50.boost, test, 

type="class"))) 

randForCVAUC <- multiclass.roc(test$Class,  

as.numeric(predict(ctgrndFor2, test, 

type="raw"))) 

listauc <- sapply(list(svmAUC, c50AUC, c50boostAUC, 

randForAUC, randForCVAUC), auc) 

 

vecAUC <- sapply(listauc, auc) 

names(vecAUC) <- c("SVM", "C50", "C50boost", "RF", 

"RFCV") 

vecAUC 
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Fine-tune pre-trained Inception-BN CNN 

 

###################### 

# 3. Pre-trained CNN # 

###################### 

 

################# 

# Load packages # 

################# 

 

library(tiff) 

library(jpeg) 

library(EBImage) 

library(caret) 

library(pROC) 

library(mxnet) 

 

###################### 

# Preprocessing data # 

###################### 

 

##Read image and transform 

 

# Read original images 

imgFiles <- list.files(pattern="*tif$", full.name=F) 

imgList <- lapply(imgFiles,  

   function(x) readImage(x, type="jpeg")) 

 

# Resize to square form 

imgRes <- lapply(imgList,  

  function(x) resize(x, 224, 224)) 

 

# Save to disc 

dir.create("rgb224") 

setwd("rgb224") 

for (i in 1:length(imgRes)) { 

  writeImage(imgRes[[i]], imgFiles[i], "jpeg") 

} 

 

# Output file 

out_file <- "fleyesrgb224.csv" 

 

# List images in path 

images <- list.files("rgb224", pattern="*tif$",  

  full.name=T) 

 

# Set up df 

df <- data.frame() 

 

# Set image size. In this case 224*224*3 

img_size <- 224*224*3 

 

#Main loop. Loop over each image 

for(i in 1:length(images)) 

{ 

    #Read image 

    img <- readImage(images[i], type="jpeg") 

    #Coerce to a vector 
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img_size <- 224*224*3 

 

# Loop over each image 

for(i in 1:length(images)) 

{ 

    # Read image 

    img <- readImage(images[i], type="jpeg") 

    # Coerce to a vector 

    vec <- as.vector(unlist(img)) 

    # Bind rows 

    df <- rbind(df,vec) 

} 

 

# Set names 

names(df) <- c(paste("pixel", c(1:img_size))) 

 

# Write out dataset 

write.csv(df, out_file, row.names = FALSE) 

 

 

#################### 

# Train/test split # 

#################### 

 

## Test and train random shuffle and split 

 

# Load datasets 

fleyes <- data.table::fread("fleyesrgb224.csv",  

    header = T) 

fenotype <- read.csv("labels.csv", header = T) 

new <- cbind(Class = fenotype, fleyes) 

 

# Shuffle new dataset 

set.seed(123456) 

shuffled <- new[sample(1:dim(new)[1]),] 

 

# Train-test split 

# Seed for reproducibility 

set.seed(12345) 

 

# Stratified random sampling 

inTrain <- createDataPartition(y=new$Class, p= .75, list 

= FALSE) 

 

# Store partitions 

train <- new[inTrain,] 

trainNolab <- train[,-1] 

test <- new[-inTrain,] 

testNolab <- test[,-1] 

 

#Fix train and test datasets 

training <- data.matrix(trainNolab) 

train_x <- t(training) 

train_y <- train[,1] 

train_array <- train_x 

dim(train_array) <- c(224, 224, 3, ncol(train_x)) 
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testNolab <- test[,-1] 

 

# Fix train and test datasets 

training <- data.matrix(trainNolab) 

train_x <- t(training) 

train_y <- train[,1] 

train_array <- train_x 

dim(train_array) <- c(224, 224, 3, ncol(train_x)) 

 

testing <- data.matrix(testNolab) 

test_x <- t(testing) 

test_y <- test[,1] 

test_array <- test_x 

dim(test_array) <- c(224, 224, 3, ncol(test_x)) 

 

 

##################### 

# Transfer learning # 

##################### 

 

## Adapted from Dog vs Cats Kaggle competition 

 

# Set seed for reproducibility 

mx.set.seed(100) 

 

# Load pretrained model 

setwd("Inception-BN") 

inception_bn <- mx.model.load("Inception-BN",  

iteration = 126) 

 

symbol <- inception_bn$symbol 

 

# Check symbol$arguments for layer names 

internals <- symbol$get.internals() 

outputs <- internals$outputs 

 

flatten <- internals$get.output(which(outputs ==  

  "flatten_output")) 

 

new_fc <- mx.symbol.FullyConnected(data = flatten,  

                                   num_hidden = 6,  

                                   name = "fc1")  

new_soft <- mx.symbol.SoftmaxOutput(data = new_fc,  

                                    name = "softmax") 

arg_params_new <- mxnet:::mx.model.init.params( 

    symbol = new_soft,  

    input.shape = c(224, 224, 3, ncol(train_x)),  

    initializer = mxnet:::mx.init.uniform(0.1),  

    ctx = mx.cpu(0) 

    )$arg.params 

fc1_weights_new <- arg_params_new[["fc1_weight"]] 

fc1_bias_new <- arg_params_new[["fc1_bias"]] 

 

arg_params_new <- inception_bn$arg.params 

 

arg_params_new[["fc1_weight"]] <- fc1_weights_new  
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ctx = mx.cpu(0) 

    )$arg.params 

 

fc1_weights_new <- arg_params_new[["fc1_weight"]] 

fc1_bias_new <- arg_params_new[["fc1_bias"]] 

 

arg_params_new <- inception_bn$arg.params 

 

arg_params_new[["fc1_weight"]] <- fc1_weights_new  

arg_params_new[["fc1_bias"]] <- fc1_bias_new  

 

## Fine tune 

model <- mx.model.FeedForward.create( 

  symbol             = new_soft, 

  X                  = train_array, 

  y                  = train_y, 

  ctx                = mx.cpu(0), 

  eval.metric        = mx.metric.accuracy, 

  num.round          = 30, 

  learning.rate      = 0.05, 

  momentum           = 0.9, 

  wd                 = 0.00001, 

  kvstore            = "local", 

  array.batch.size   = 20, 

  epoch.end.callback = 

mx.callback.save.checkpoint("inception_bn"), 

  batch.end.callback = mx.callback.log.train.metric(20), 

  initializer        = mx.init.Xavier(factor_type =  

   "in", magnitude = 2.34), 

  optimizer          = "sgd", 

  arg.params         = arg_params_new, 

  aux.params         = inception_bn$aux.params 

) 

 

## Evaluate performance 

predict_probs <- predict(model, test_array) 

predicted_labels <- max.col(t(predict_probs)) – 1 

 

# Confusion matrix 

table(test[,1], predicted_labels) 

 

# Accuracy 

sum(diag(table(test[,1],  

    predicted_labels)))/dim(test)[1] 

 

# Multiclass AUC 

multiclass.roc(test[,1], predicted_labels) 



MSc Bioinformatics and Biostatistics  Machine Learning representation from biological patterns 

52 

De novo CNN 

 

################## 

# 4. De novo CNN # 

################## 

 

################# 

# Load packages # 

################# 

 

library(tiff) 

library(jpeg) 

library(EBImage) 

library(caret) 

library(pROC) 

library(mxnet) 

 

###################### 

# Preprocessing data # 

###################### 

 

##Read image and transform 

 

# Read original images 

imgFiles <- list.files(pattern="*tif$", full.name=F) 

imgList <- lapply(imgFiles,  

   function(x) readImage(x, type="jpeg")) 

 

# Resize to square form 

imgRes <- lapply(imgList,  

  function(x) resize(x, 100, 100)) 

 

# Save to disc 

dir.create("rgb100") 

setwd("rgb100") 

for (i in 1:length(imgRes)) { 

  writeImage(imgRes[[i]], imgFiles[i], "jpeg") 

} 

 

# Output file 

out_file <- "fleyesrgb100.csv" 

 

# List images in path 

images <- list.files("rgb224", pattern="*tif$",  

  full.name=T) 

 

# Set up df 

df <- data.frame() 

 

# Set image size. In this case 100*100*3 

img_size <- 224*224*3 

 

#Main loop. Loop over each image 

for(i in 1:length(images)) 

{ 

    #Read image 

    img <- readImage(images[i], type="jpeg") 

    #Coerce to a vector 
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img_size <- 100*100*3 

 

# Loop over each image 

for(i in 1:length(images)) 

{ 

    # Read image 

    img <- readImage(images[i], type="jpeg") 

    # Coerce to a vector 

    vec <- as.vector(unlist(img)) 

    # Bind rows 

    df <- rbind(df,vec) 

} 

 

# Set names 

names(df) <- c(paste("pixel", c(1:img_size))) 

 

# Write out dataset 

write.csv(df, out_file, row.names = FALSE) 

 

 

#################### 

# Train/test split # 

#################### 

 

## Test and train random shuffle and split 

 

# Load datasets 

fleyes <- data.table::fread("fleyesrgb100.csv",  

    header = T) 

fenotype <- read.csv("labels.csv", header = T) 

new <- cbind(Class = fenotype, fleyes) 

 

# Shuffle new dataset 

set.seed(123456) 

shuffled <- new[sample(1:dim(new)[1]),] 

 

# Train-test split 

# Seed for reproducibility 

set.seed(12345) 

 

# Stratified random sampling 

inTrain <- createDataPartition(y=new$Class, p= .75, list 

= FALSE) 

 

# Store partitions 

train <- new[inTrain,] 

trainNolab <- train[,-1] 

test <- new[-inTrain,] 

testNolab <- test[,-1] 

 

#Fix train and test datasets 

training <- data.matrix(trainNolab) 

train_x <- t(training) 

train_y <- train[,1] 

train_array <- train_x 

dim(train_array) <- c(224, 224, 3, ncol(train_x)) 
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testNolab <- test[,-1] 

 

# Fix train and test datasets 

training <- data.matrix(trainNolab) 

train_x <- t(training) 

train_y <- train[,1] 

train_array <- train_x 

dim(train_array) <- c(100, 100, 3, ncol(train_x)) 

 

testing <- data.matrix(testNolab) 

test_x <- t(testing) 

test_y <- test[,1] 

test_array <- test_x 

dim(test_array) <- c(100, 100, 3, ncol(test_x)) 

 

 

############################## 

# Deep learning from scratch # 

############################## 

 

## Model 

data <- mx.symbol.Variable('data') 

 

# 1st convolutional layer 5x5 kernel, 20 filters 

conv_1 <- mx.symbol.Convolution(data= data,  

  kernel = c(5,5), 

  num_filter = 20) 

tanh_1 <- mx.symbol.Activation(data= conv_1,  

  act_type = "tanh") 

pool_1 <- mx.symbol.Pooling(data = tanh_1,  

    pool_type = "max",  

    kernel = c(2,2), 

    stride = c(2,2)) 

 

# 2nd convolutional layer 5x5 kernel, 50 filters 

conv_2 <- mx.symbol.Convolution(data = pool_1,  

  kernel = c(5,5),  

  num_filter = 50) 

tanh_2 <- mx.symbol.Activation(data = conv_2,  

  act_type = "tanh") 

pool_2 <- mx.symbol.Pooling(data = tanh_2,  

   pool_type = "max",  

   kernel = c(2,2), 

   stride = c(2,2)) 

 

# 1st fully connected layer 

flat <- mx.symbol.Flatten(data = pool_2) 

fcl_1 <- mx.symbol.FullyConnected(data = flat,  

    num_hidden = 200) 

tanh_3 <- mx.symbol.Activation(data = fcl_1,  

  act_type = "tanh") 

#2nd fully connected layer 

fcl_2 <- mx.symbol.FullyConnected(data = tanh_3, 

num_hidden = 6) 

#Output 

NN_model <- mx.symbol.SoftmaxOutput(data = fcl_2) 
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fcl_1 <- mx.symbol.FullyConnected(data = flat,  

    num_hidden = 200) 

tanh_3 <- mx.symbol.Activation(data = fcl_1,  

  act_type = "tanh") 

 

# 2nd fully connected layer 

fcl_2 <- mx.symbol.FullyConnected(data = tanh_3,  

num_hidden = 6) 

 

# Output 

NN_model <- mx.symbol.SoftmaxOutput(data = fcl_2) 

 

# Set seed for reproducibility 

mx.set.seed(12345) 

 

# Device used 

device <- mx.cpu() 

 

# Model training 

model <- mx.model.FeedForward.create(NN_model,  

X = train_array,  

y = train_y,  

ctx = device, 

num.round = 30, 

array.batch.size = 20, 

learning.rate = 0.05, 

momentum = 0.9, 

wd = 0.00001, 

eval.metric = mx.metric.accuracy, 

epoch.end.callback = 

mx.callback.log.train.metric(20), 

optimizer="sgd") 

 

## Evaluating performance 

 

predict_probs <- predict(model, test_array) 

predicted_labels <- max.col(t(predict_probs)) – 1 

 

# Confusion matrix 

table(test[,1], predicted_labels) 

 

# Accuracy 

sum(diag(table(test[,1],  

predicted_labels)))/dim(test)[1] 

 

# Multiclass AUC 

multiclass.roc(test[,1], predicted_labels) 


