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ABSTRACT
Actuator Disk Theory for Compressible Flow
Htet Htet Nwe Oo

Because compressibility effects arise in real applications of propellers and turbines, the Actuator
Disk Theory or Froude’s Momentum Theory was established for compressible, subsonic flow
using the three laws of conservation and isentropic thermodynamics. The compressible Actuator
Disk Theory was established for the unducted (bare) and ducted cases in which the disk was
treated as the only assembly within the flow stream in the bare case and enclosed by a duct
having a constant cross-sectional area equal to the disk area in the ducted case. The primary
motivation of the current thesis was to predict the ideal performance of a small ram-air turbine
(microRAT), operating at high subsonic Mach numbers, that would power an autonomous
Boundary Layer Data System during test flights. The compressible-flow governing equations
were applied to a propeller and a turbine for both the bare and ducted cases. The solutions to the
resulting system of coupled, non-linear, algebraic equations were obtained using an iterative
approach. The results showed that the power extraction efficiency and the total drag coefficient of
the bare turbine are slightly higher for compressible flow than for incompressible flow. As the
free-stream Mach increases, the Betz limit of the compressible bare turbine slightly increases
from the incompressible value of 0.593 and occurs at a velocity ratio between the far downstream
and the free-stream that is lower than the incompressible value of 0.333. From incompressible to
a free-stream Mach number of 0.8, the Betz limit increases by 0.021 while its corresponding
velocity ratio decreases by 0.036. The Betz limit and its corresponding velocity ratio for the
ducted turbine are not affected by the free-stream Mach and are the same for both incompressible
and compressible flow. The total drag coefficient of the ducted turbine is also the same regardless
of the free-stream Mach number and the compressibility of the flow; but, the individual
contributions of the turbine drag and the lip thrust to the total drag differs between compressible
and incompressible flow and between varying free-stream Mach numbers. It was concluded that
overall compressibility has little influence on the ideal performance of an actuator disk.

Keywords: Actuator Disk Theory, Froude’s Momentum Theory, compressible flow, Betz limit
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NOMENCLATURE

a = speed of sound, ft/s

A = stream tube cross-sectional area, ft2

Aisk = actuator disk area, ft?

Co = total drag coefficient; Cp, = ﬁﬁ

Cr = power coefficient; C, = P:;ﬁ

Ct = total thrust coefficient; Cp = %p:\/‘gﬁ

D = drag, Ibf

Diotal = total drag on duct-and-turbine assembly, Ibf

E = total energy per unit mass, ft-1bf/slug

h = mass flowrate, slug/s

M = Mach number; M = Z

P, = total pressure, Ibf/ft?

P = static pressure, Ibf/ft?

Pavaitable = total power available in flow in an area equal to the disk
area, ft-1bf/s

Pextracted = total power extracted from flow by actuator disk, ft-Ibf/s
Pinput = total power added to flow by actuator disk, ft-Ibf/s
r = far up-to-downstream velocity ratio; X—:

T = thrust, Ibf

Tip = lip thrust, Ibf (ducted case only)

Tiotal = total thrust on duct-and-disk assembly, Ibf

\ = velocity, ft/s

XiX



Y = ratio of specific heats (1.4 for air)

p = density, slug/ft*

Nfan = fan efficiency

Mprop = propulsive efficiency

Nturb = extraction efficiency

Subscripts:

0 = far upstream

1 = immediate upstream of actuator disk
2 = immediate downstream of actuator disk
3 = far downstream

i = duct inlet

e = duct exit

disk = actuator disk

fan = fan

prop = propeller

turb = turbine

XX



1. CLASSICAL ACTUATOR DISK THEORY
1.1. Introduction

The classical Actuator Disk Theory, also known as Froude’s Momentum Theory, is a
mathematical model that uses the conservation laws of mass, linear momentum, and energy to
determine the ideal performance of an energy-adding or an energy-extracting device, such as a
propeller or a turbine, in a flow stream that is steady, inviscid, one-dimensional, and
incompressible. Such work has been explored intensively by Horlock [1], Glauert [2], and
Kichemann and Weber [3], but much less has been done to apply the Actuator Disk Theory to
compressible flow. Since compressibility effects can arise in real applications of energy-adding
or energy-extracting devices, the goal of the current thesis is to extend the Actuator Disk Theory
into the regime of compressible flow, with the primary motivation to predict the ideal
performance of a small ram-air turbine (microRAT) [4] for the applications of the Boundary
Layer Data System (BLDS).

The Boundary Layer Data System (BLDS) is a fully autonomous, flow measurement system
developed by Dr. Russell Westphal and his team of students with the purpose of measuring the
flow properties of the boundary layer at the surface of an aircraft in flight. Since the electronic
components of the BLDS, such as the microcontroller and the sensors, are not rated to perform at
temperatures below -20°C, their performance diminishes and becomes unreliable during test
flights at altitudes between 30,000 and 40,000 feet where the air temperature ranges from -40 °C
to -57 °C or below. To prevent this sensor drop out, the concept of using a small ram-air turbine
(microRAT) to extract useful energy from the airflow to provide power to a heating element that
maintains operable temperatures inside the BLDS was investigated by Victor Villa [4]. Because
the microRAT will be operating at high subsonic Mach numbers where compressibility effects
exist, the current thesis will develop the governing equations of the compressible Actuator Disk

Theory that can be used to determine the ideal performance of the microRAT.



Such governing equations of the Actuator Disk Theory will be derived for compressible, subsonic
flow using isentropic thermodynamics and the three laws of conservation while adopting an
iterative method of solution demonstrated by Delano and Crigler [5]. The governing
compressible-flow equations are established for two cases: the first is the bare or the unducted
case where the actuator disk is treated as the only assembly within the flow stream, while the
latter is the ducted case where the disk is enclosed by a duct. The governing equations of the
compressible Actuator Disk Theory are then applied to determine the theoretical performance of a
propeller and a turbine for both the bare and ducted cases. The application of the compressible
Actuator Disk Theory to the bare propeller has previously been studied by Delano and Crigler [5]
and is included in the current thesis to show agreement and to confirm the results of the bare and
ducted turbine in compressible flow, which is the main interest of the current thesis.

Before the development of the governing equations for the compressible Actuator Disk Theory,
the current chapter will introduce the classical (incompressible) Actuator Disk Theory and its
applications to a propeller and a turbine with and without a duct. Even though the classical
Actuator Disk Theory and its applications can be found in many Fluid Mechanics textbooks, it is
included in this thesis for completeness and to provide a basis for comparison between the

classical and compressible Actuator Disk Theory.



1.2. Classical Actuator Disk Theory — Governing Equations

The classical Actuator Disk Theory, also known as Froude’s Momentum Theory, uses the
conservation of mass, linear momentum, and energy to determine the theoretical performance of
an energy-adding or energy-extracting device in a flow that is considered steady, inviscid, one-
dimensional, and incompressible. The energy-adding or energy-extracting device is represented
by an ideal actuator disk having a cross-sectional area of Agisx. The ideal actuator disk is
assumed to be infinitely thin and permeable such that the flow can pass through its cross-sectional
area fully undisrupted thus producing no swirls in the slipstream. The energy addition to or
extraction from the flow occurs instantaneously and uniformly throughout the disk’s cross-
sectional area as the flow passes through the disk.

Two cases of the actuator disk are considered: the bare and the ducted. The bare, or unducted,
case is where the actuator disk is the only assembly in the flow stream as shown in Figure 1,
while the ducted case is where the actuator disk is enclosed by a duct as shown in Figure 2. The
streamtube boundary containing the actuator disk in both cases, as shown in Figure 1 and Figure
2, is described by four stations: stations 0 and 3 denote the far upstream and downstream of the
disk, respectively, where the free-stream density and pressure exists. Stations 1 and 2 are

immediately before and after the disk.

The complete list of assumptions made for the classical Actuator Disk Theory are given in the
next section. Note that these assumptions, with the exception of the first and second, are also

applicable to the compressible Actuator Disk Theory.

1.2.1. List of Assumptions
1) The flow is incompressible.
2) For incompressible flow, the velocity across the actuator disk is continuous, but the

pressure across the disk is discontinuous: V; =V, and P; # P,.



3) The flow is steady, inviscid, and one-dimensional.
4) The static pressure at the far upstream and downstream stations are equal: Py = P;.
5) The ideal actuator disk is an infinitely thin, permeable disk with a cross-sectional area of
Agisk and is uniformly loaded and has a nonrotating wake.
6) The stream tube cross-sectional area is continuous throughout the disk such that the areas
immediately before and after the disk are equal to the disk area: A; = A, = Agjsk-
7) Energy is added to or extracted from the flow stream instantaneously and uniformly
through the actuator disk.
List of Assumptions Specific to the Ducted Actuator Disk
8) The actuator disk is enclosed by a straight, constant area duct with the same cross-
sectional area as the disk area Agjsk-
9) The duct produces straight and parallel streamlines at the duct exit that the exit pressure
is considered equal to the far downstream pressure: P, = Ps.
Using these assumptions, the governing equations that are necessary to determine the ideal

performance of the actuator disk will be developed in the next section.



1.2.2. Incompressible, Bare Actuator Disk Theory

|

Stream tube Actuator disk

boundary of area Agisk
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VO Tmml == Triisk \3
Ag A3

Figure 1. Schematic of the bare, incompressible Actuator Disk Theory.
The general governing equations of an ideal bare actuator disk will be established. Consider the
actuator disk contained by the streamtube boundary as shown in Figure 1. The control volume 0-
3 contains the flow from station 0 to 3 and the control volumes 0-1 and 2-3 encloses the flow
upstream and downstream of the disk, respectively. Lastly, the control volume 1-2 represents the

flow through the disk plane.

It is assumed that the disk is an energy-adding device where it adds power to the flow stream at
the disk plane and exerts a thrust force on the flow in the direction of the flow. It is possible that
the disk is also a power-extractor where it extracts power from the flow and experiences a drag
force from the flow, but the governing equations will be derived assuming the former. Thus, the
performance parameters of interest are the total thrust experienced by the flow, the thrust exerted
on the flow by the disk, the power added to the flow at the disk plane, and the mass flowrate

throughout the streamtube.



By applying the conservation of linear momentum to the control volume 0-3, the total thrust
experienced by the flow can be determined
Trotal = (V3 — Vo) (1-1)

Likewise, by applying the conversation of energy to the control volume 0-3, the power added by
the disk to the flow stream can be obtained

Pnput = 5 M(VZ — V&) (1-2)
To find the thrust produced by the disk, the momentum balance law is applied to the control
volume 1-2. Since the velocity is equal before and after the disk, the momentum balance is
reduced to an equilibrium equation. By summing the external axial forces at the disk plane gives

Taisk = (P2 — P1)Aqgisk (1-3)
Next, to determine the pressure difference across the disk on the right side of equation 1-3, the

Bernoulli’s equation is applied to the control volumes 0-1 and 2-3 as follows
1 2 1 vz
Po+-pVy =P +-pVi (1-4)
1 v2 1 2
P +-pVy =P +-pV3 (15)
By subtracting equation 1-5 from 1-4 and asserting that P, = P; and V; =V,, the pressure
difference across the disk is
1
Pz—P1=§P(V32_V02) (1-6)
Substituting the pressure difference in equation 1-6 to equation 1-3 gives the disk thrust in terms
of the far upstream and downstream velocities
1
Taisk = 5 PAaisk (V5 — V&) (1-7)
Because the mass flowrate is constant throughout the streamtube, the following relations can be

made

m = pAgVy = pAgiskVi = pA3 V3 (1-8)



From the relations in equation 1-8 and canceling out the density, the far upstream and

downstream cross-sectional areas can be found in terms of the disk velocity

\'

Ay = Adiskv_; (1-9)
v,
A; = Adiskv_3 (1-10)

For the bare case of the classical Actuator Disk Theory, the disk is the only assembly within the
streamtube boundary, so the total thrust T,,., exerted on the flow is equal to the thrust produced
at the disk Tg;sx. Note that this can only be said for the bare disk.
Tiotal = Taisk (1-11)

By setting the disk thrust in equation 1-7 and the total thrust in equation 1-1 equal to each other
and using the mass flowrate containing the disk area and velocity in equation 1-8, V; is found to
be the average of the far upstream and downstream velocities

= PAgisk(VZ = V) = (Vs — Vo) (1-12)

_ VotV;

\'A >

(1-13)
Lastly, by substituting equation 1-13, the mass flowrate can be put in terms of the far upstream

and downstream velocities

. Vo+V.
th = pAgisk — o (1-14)

thus concluding the analysis. The governing equations for the bare actuator disk are further

simplified and rearranged to give the following flow variables in terms of the disk area, free-

stream density and pressure, and the far upstream and downstream velocities:

Tiotal = m(Vz — Vo) (1-15)
1 2 2
Taisk = 5 PAqisk(Vs — Vo) (1-16)
1.
Paisk = 5(V§ — V§) (1-17)
: Vo+V
th = pAassc (*452) (1-18)



\%

Ay = Adiskv_; (1-19)
vV,
A; = Adiskv_3 (1-20)
P =Py +2p(VE — VD) (1-21)
1
P, =P +EP(V3?—V12) (1-22)
v, = tVs (1-23)

2

Note that equations 1-19 to 1-22 can be expressed in terms of the far upstream and downstream
velocities with the substitution of equation 1-23 for V; but are left in the current form for
simplicity. Similarly, the governing equations will be developed for the ducted disk in the next

section.



1.2.3. Incompressible, Ducted Actuator Disk Theory

Stream tube Actuator disk

boundary of area Ay

0 i 1 2 e 3
Figure 2. Schematic of the ducted, incompressible Actuator Disk Theory.

The governing equations for the ducted case of the incompressible Actuator Disk Theory will be
established. Note that the assumptions listed in section 1.2.1 also apply to the ducted actuator
disk. It is again assumed that the disk adds power to the flow stream and exerts a thrust force on
the flow in the direction of the flow. The disk is enclosed by a duct with a constant cross-
sectional area equal to the disk area Agjsik s shown in Figure 2, where stations i and e are the
duct inlet and outlet. While it is certainly possible that the duct is also of variable cross-sectional
area, it is assumed to have constant area to keep the scope of the thesis manageable. The constant
area duct implies that the areas at the duct inlet and outlet and the far downstream are equal to the
disk area
Aj = A = Ay = Agisk = Ae = A (1-24)

It is also assumed that the duct produces straight and parallel streamlines at the duct exit such that
the exit pressure is equal to the far downstream pressure, which in turn is equal to the free-stream

pressure.



P,=P. =P (1-25)
From the conservation of mass and using the area relation in equation 1-24, it can also be
observed that the velocities at the disk, the duct outlet, and the far downstream are equal.
PAgiskV1 = PAeVe = pA3V3 (1-26)
Vi=V.=V; (1-27)
Therefore, since the area and all the flow variables, which are the density, pressure, and velocity,
at the duct exit and the far downstream are equal; station e is entirely replaced by station 3 for the
rest of the analysis. As a result, the governing equations 1-15 to 1-22 derived for the bare actuator
disk also applies to the ducted disk without any change of subscripts since the control volumes 0-
3, 1-2, and 2-3 encloses the same stations for both the bare and ducted actuator disk.
Furthermore, with the assertion that V; = V, = V3, it can be seen from the Bernoulli’s equation
applied to the control volume 2-3 that the pressure immediately after the disk is equal to the far
downstream pressure, which in turn is equal to the free-stream pressure.
P, +pVE = Py +5pV3 (1-28)
Pp=P,=P; (1-29)
Due to the addition of the constant area duct onto the disk assembly, Ti.:, given in equation 1-15
now signifies the total thrust that the disk and the duct exerts altogether on the flow, while Tg;sx
in equation 1-16 represents the thrust exerted only by the disk. The duct lip also exerts an
additional thrust force on the flow called the lip thrust [2] [6].
Kichemann and Weber [3] and later Greitzer [6] developed the lip thrust by applying the
conservation of linear momentum to the control volume enclosing the far upstream and the duct
inlet as shown in Figure 3. The far upstream is denoted by the subscript O while the inlet, which
is approximated as being a constant section some distance behind the lip, is denoted by the

subscript i.
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Figure 3. Control volume used to drive lip thrust.

The resulting integral momentum equation applied to the control volume in Figure 3 is

PoVEA, + PoAg — piVEA; — RA; — ([, PydAy)

—Py(Ag — Aj — An) — (poVoAo — piViADV, = 0 (1-30)
As described by Kuchemann and Weber [3] and Grietzer [6], the first two terms on the left side of
equation 1-30 represents the momentum of the mass flow, pVyA,, through the forward surface A,
of the control volume and the pressure force P, which acts on that surface. The third and fourth
terms are the corresponding quantities for the flow through the internal duct. The fifth term is the
integral of the static pressure Py over the surface of the duct inlet where dAy is a surface element
normal to the direction of the flow. The sixth term represents the force on the base of the control
volume outside of the duct inlet where the streamlines are assumed to be straight that the pressure
is equal to the free-stream value. The last term is the momentum of the mass flow diverted
through the outer part of the base of the control volume and through its curved surface of the duct
inlet, with the control volume assumed large enough that the axial velocity component of this
mass flow is V.

Cancelling out terms and simplifying equation 1-30 gives
fAN(PN — Pp)dAy = piViAi(Vo — Vi) — (B, — Po)A;  (1-31)
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Note that equation 1-31 is general and non-specific to the compressibility of the flow. For
incompressible flow where py = p; = p, and using the following Bernoulli’s equation from the

far upstream to the duct inlet,
1 2 1 (02
P =P =2pVo —5pVi (1-32)
the equation in 1-31 is further reduced to

_ 1 vza (1= %) -
[y (B = Po)dAy = 3pVEA; (1 - 31) (1-33)

The lip thrust is the negative of the integral on the left side of equation 1-33

Tip = — J, (Py — Po)dAy = 2pVZA, (£ — )2 (1-34)
lip — AgS N 0 N—2p01V0
and it is the force that the duct lip exerts on the flow. Note that when the ratio of the duct inlet to
the far upstream velocity % is equal to 1, the lip thrust goes to zero. Assuming the streamlines
0

are straight and parallel so that the pressure immediately before the disk at station 1 is the same as
the inlet value, the flow variables at station i and 1 are then equal due to the same logic applied to
stations e and 3 being equal. Therefore, replacing the subscript i in equation 1-34 with 1 and
asserting that A; = Agjsk give

Tip = 2pV3Aac (2~ 1) (135)
Alternatively, the lip thrust can also be found by applying the static equilibrium equation on the
disk-and-duct assembly in the direction of the flow, giving that the lip thrust is the difference
between the total thrust and the disk thrust.

Tiip = Trotal — Taisk (1-36)

By substituting the total thrust in 1-15 and the disk thrust in 1-16 into 1-36 and carrying out the
simplification, the lip thrust from the difference of the total thrust and the disk thrust must equal
the lip thrust determined by Kichemann and Weber [3]. This will be shown in the next following

steps.
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Tip = PAaiskV1 (V1 — Vo) — %pAdisk(Vlz —-V§)  (137)
One half of the density and the disk area can be factored out from both terms on the right side of
equation 1-37 to give
Tip = 3 PAaisk (20V2 —ViVo) = (V2= V3))  (1-38)
where the terms inside the parentheses on the right side of equation 1-38 can be combined to give
Tiip = 5 PAaisk(Vs — Vo)? (1-39)
By factoring out VZ from inside of the parentheses gives the same form of the lip thrust in

equation 1-35 as expected
1 \% 2
Thip = 3 PAaisk V5 (v_; - 1) (1-40)
Asserting that V; = V3, the lip thrust in equation 1-40 can be put in terms of the far upstream and

downstream velocities
Tip = 2 pAaia¥é (2 - 1)’ (141)
In summary, the assumption of constant duct area implies the following for the ducted case of the
incompressible Actuator Disk Theory.
V=V, =V, (1-42)
Ph=P, =P, =P (1-43)
Due to these implications, the governing equations for the ducted actuator disk can be

summarized in terms of the far upstream and downstream velocities as follows

Tiotal = M(V3 — V) (1-44)
1 2 2
Taisk = 5 PAdgisk(V3 — Vi) (1-45)
1 A 2
Tiip = 5 PAqisk V6 (V_Z - 1) (1-46)
1.
l)input = Em(v?:z - V(?) (1-47)
m = pAgiskVs (1-48)
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v
Ay = Adiskv_z (1-49)

1
Py =Py +5p(VE — V3) (1-50)
The governing equations for the bare and ducted actuator disk are applied in the next sections to

determine the ideal performance of a propeller and a turbine.
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1.3.  Applications of the Classical Actuator Disk Theory
The governing equations of the bare and ducted Actuator Disk Theory are applied to the propeller
and the turbine. The purpose of a propeller is to produce high propulsive thrust for a given power
input while the purpose of a turbine is to extract power from the total kinetic energy of the flow
stream to generate useful work for other applications. Due to these reasons, a popular figure of
merit for a propeller is its propulsive efficiency while it is the power extraction efficiency for a
turbine. The equations for the figure of merit and other important performance parameters will be
established for the propeller and the turbine in the following sections, beginning with the bare

propeller.

1.3.1. Incompressible Bare Propeller
The performance parameters of the bare propeller will be established using the governing
equations derived for the bare incompressible Actuator Disk Theory. The performance
parameters considered are the power coefficient, the total thrust coefficient, and the propulsive
efficiency. Note that since the governing equations in section 1.2.2 are derived already assuming
that the actuator disk is an energy-adding device, much like a propeller, the equations can be
transferred over to the current analysis without any manipulation or sign change.
The power coefficient is determined by dividing the power input to the propeller given in
equation 1-17 by the total available power in the free-stream in an area of Agjsk,

1.
_  Pinpur  _ Em(V%—V%)
Cp = =

1
Pavailable EPAdiskvg

(1-51)

By using the mass flowrate given in equation 1-18 and the disk velocity given in equation 1-23,

the power coefficient can be simplified to the following

co=3(2+1) ((X—Z)Z _ 1) (1-52)
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Likewise, the total thrust coefficient is determined by dividing the total thrust, which is equal to
the disk thrust in equation 1-16, by the reference force associated with the free-flowing stream’s

dynamic pressure and the disk area.

1
_ Tiotal _ PAdisk(V3-V5)
Cr =

- 1
Tdynamic EPAdiskV(Z)

(1-53)

The total thrust coefficient in equation 1-53 can be simplified further to the following

Cp = ((X—)Z _ 1) (1-54)

Next, the propulsive efficiency is the ratio of the propulsive power produced by the propeller to
the total power added to the propeller. The propulsive power is given by the product of the total

thrust and the free-stream velocity

__ propulsive power _ m(V3-V()V,

= = 1-
Mprop Pinput %m(V%—V%) ( 55 )
By simplifying, the propulsive efficiency is given in terms of the velocity ratio %
0
Vo _ 2 (1-56)

Mprop = V3+Vy Y34
Vo
Alternatively, the propulsive efficiency is also the ratio of the total thrust coefficient to the power
coefficient

o (@)

Mprop = ¢ = L)) )

2\Vp Vo

(1-57)

Simplifying equation 1-57 gives the same propulsive efficiency given in equation 1-56. The
performance parameters of the bare propeller are summarized in terms of the far upstream and
downstream velocities.

Dimensional Quantities:

Tiotal = m(Vz — Vp) (1-58)

1
Tprop = EpAdisk(V:%z - VOZ) (1-59)
Tiotal = Tprop (1-60)
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1.
Pinput = Em(VSZ - Vg) (1-61)

Vo+V3

m = pAgisk —, (1-62)
Dimensionless Quantities:
2
Mprop = 5 (1-63)
Vo
1(V Va2
CP=E(V_2+1)<(V_Z) —1) (1-64)
Cp = ((E)2 - 1) (1-65)
T Vo
m__1 Vs -
PAdiskVo T2 (1 + VO) ( 1-66 )

1.3.2. Incompressible Ducted Propeller
Likewise, the governing equations derived for the incompressible ducted Actuator Disk Theory
are applied to the ducted propeller. The performance parameters of interest are again the power
coefficient, the total thrust coefficient, and the propulsive efficiency. The definition of the power

and the total thrust coefficient in equations 1-51 and 1-53 also applies to the ducted propeller

1.
_ ;m(V3-vg)

P.
Cp = input 1_67
P Pavailable 3PAdiskV3 ( )
Cp = Ttotal  _ M(V3—V)) (1-68)

- Tdynamic %pAdiskV(Z)
Substituting pA,V, for the mass flowrate and the A, given in equation 1-49, the coefficients can

be simplified as follows

_ Vs ((Va)? _ ]
Cp =2 ((VO) 1) (1-69)
V3 (V.
CT=2v_z(v_Z‘ ) (1-70)
Because the equations for the power addition to the flow by the disk and the propulsive power are

the same as for the bare propeller, the propulsive efficiency in equation 1-63 also applies to the
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ducted propeller. In summary, the performance parameters for the incompressible ducted
propeller are summarized below in terms of the far upstream and downstream velocities.

Dimensional Quantities:

Trotal = (V3 — V) (1-71)
1
Taisk = 5 PAaisk (V3 — V&) (1-72)
1 A\ 2
Tiip = 5 PVG Adisk (V—Z - 1) (1-73)
1.
Pinput =3 m(v32 - V(%) (1-74)
m = pAgisk V3 (1-75)
Dimensionless Quantities:
n - (1-76)
ProP = Ba41
Vs (V32
Cp = V_Z((V_Z) - 1) (1-77)
— Vs (Vs _ -
Cr=23(3-1) (1-78)
m__ Y (1-79)

PAdiskVo - V_O
Next, these performance parameters of the ducted and the bare propeller are plotted against the

power coefficient for comparison.

1.3.3. Results and Discussion — Incompressible Bare and Ducted Propeller
To obtain the solutions to the ducted and bare propeller, the disk area is set to 1 ft?, the free-
stream velocity to 10 ft/s, and the free-stream pressure and density to that of sea level static
conditions, which are 2166.8 Ibf/ft> and 2.329 x 1073 slugs/ft® respectively. The propulsive
efficiency, the pressure rise across the disk, and the total thrust coefficient are compared between
the bare and ducted propeller against the power coefficient as shown in Figure 4 to 6. Note that a

power coefficient of zero corresponds to no power addition to the flow at the disk plane, which
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results in the far downstream velocity being equal to the free-stream velocity, giving a propulsive
efficiency of one and a total thrust coefficient of zero. In addition, the contribution of the lip

thrust and the propeller thrust to the total thrust is shown in Figure 7. Note that the pressure rise

across the disk is divided by the dynamic pressure %pvg, associated with the free-stream velocity,

and the lip and the propeller thrusts by the reference force %pV&Adisk to be made into

dimensionless quantities.

1.0
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Figure 4. Propulsive efficiency versus the power coefficient between the ducted and bare
propeller for incompressible flow.
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Figure 6. Comparison of the total thrust between the bare and ducted propeller for incompressible
flow.
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Figure 7. The individual contribution of the propeller thrust and the lip thrust to the total thrust for
the incompressible ducted propeller.
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Figure 8. Velocity and pressure across the stations for the bare propeller (left) and the ducted
propeller (right).

Figure 4 and Figure 6 shows that the ducted propeller has a higher propulsive efficiency and a
total thrust coefficient than the bare propeller, respectively, for all power coefficients. However,

the bare propeller has a larger pressure rise across the disk than the ducted propeller as observed
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in Figure 5. When considering the ducted propeller, Figure 7 conveys that the propeller thrust is
always greater than the lip thrust and thus contributes more significantly to the total thrust
especially at high power coefficients.

An approximation of how the velocity and pressure change throughout the stations for both the
ducted and bare propeller are shown in Figure 8. Since power is added to the flow at the disk
plane, the far downstream velocity is greater than the value at the free-stream while the velocity
at the disk is the average of the two for the bare propeller and is equal to the far downstream
velocity for the ducted propeller. Because the mass flowrate throughout the streamtube is
constant, the cross-sectional area at the far upstream must be greater than that at the slipstream to
account for the lower velocity. It can be observed that the pressure drops from the far upstream
to the station immediately before the disk, rises abruptly across the disk, and then drops back to
the free-stream pressure. Note that all of these results are consistent with Horlock [1], Glauert
[2], and Kiichemann and Weber [3] and can be found in most Fluid Mechanics textbooks. The
specific case where the free-stream velocity is zero for the bare and ducted propeller is further
investigated in Appendix A. Next, the classical Actuator Disk Theory is applied to the bare

turbine.

1.3.4. Incompressible Bare Turbine

The performance parameters of the bare turbine will be established using the governing equations
of the classical bare Actuator Disk Theory. As mentioned previously, a turbine is an energy-
extracting device that extracts useful energy from the total kinetic energy of the free-flowing fluid
and experiences a drag force exerted by the flow. Since the governing equations for the classical
theory are derived assuming that the disk is an energy-adding device, a sign change is necessary
to the thrust and power equations. Because a drag force is in the opposite direction of the flow,
the total drag exerted by the flow is the negative of the total thrust given in equation 1-15

Dtotal = —Trotal = m(Vo — Vi) (1-80)
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The drag force experienced by the turbine is also the negative of the disk thrust given in equation
1-16

Deurb = —Taisk = %pAdisk(Vg -V (1-81)
For the bare turbine, the total drag is equal to the turbine drag.

Dtotal = Dturb (1-82)

The power extracted by the turbine is the negative of the power added by the disk in equation 1-
17 to signify that work is done on the turbine rather than on the flow

Pextracted = —Paisk = 5 (V¢ — V2) (1-83)
Next, the total drag coefficient, the power extraction efficiency, and the Betz Limit for the bare
turbine will be established. The total drag coefficient of the bare turbine is found by dividing the

total drag in equation 1-80 by the reference force to give

1 2_\72
Deotal ZPAdisk(VE—V3)
= = 1-84
CD Tdynamic %pAdiSkvg ( 8 )
which simplifies to
VAY
cD=(1—(V—0) ) (1-85)

The figure of merit for a turbine is its power extraction efficiency, which is a ratio of the power
extracted by the turbine to the total power available within the free-flowing stream in an area
equal to the disk area.

1 (v3-v3)

_ Pextracted _

rb — =1
Neurb Pavailable EPAdiskvg

(1-86)

By using the mass flowrate given in 1-18, the power extraction efficiency in 1-86 is a function of

the velocity ratio between the far upstream and far downstream stations

Nturb = (1 + X_Z) (1 - (X—Z)Z) (1-87)

The ratio of the far downstream to upstream velocity in equation 1-87 will be defined as r

_ V3

r=
Vo

(1-88)

23



Note that this velocity ratio can never exceed 1 because the velocity in the slipstream of the
turbine slows down as the turbine captures useful power from the total kinetic energy of the free-
stream flow. As a result, V5 is always less than V|, as long as power is being extracted by the
turbine. Likewise, r can never be zero because it is not possible for the turbine to extract 100% of
the total kinetic energy in the free-stream flow for useful power. When r is equal to one, there is
no power extraction.

By substituting equation 1-88 into the equation 1-87, the turbine’s power extraction efficiency is
expressed in terms of r

Neurb = (1 +1)(1 —1?) (1-89)

Since the power extraction efficiency is in terms of only one independent variable, the maximum
power extraction efficiency can be determined by taking the derivative of equation 1-89 with
respect to r and setting it equal to zero. As a result, the maximum power extraction efficiency is
16/27, or approximately 0.593, occurring at a velocity ratio of 1/3. This maximum power
extraction efficiency is known as the Betz’s limit [7] and signifies the maximum theoretical
power that can be extracted by a turbine from the free-flowing fluid. The performance parameters
of the incompressible bare turbine are summarized below in terms of the far upstream and

downstream velocities

Dimensional Quantities:

Diotal = m(Vp — V3) (1-90)
Deurb = 5 PAdisk(VE — V3) (1-91)
Petracted = 3 M(VE — V3) (1-92)

m = pAdisk% (1-93)

Dimensionless Quantities:
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e = (1+2) (1 - (2)) (1-94)

Cp = (1 - (V—2)2) (1-95)
PAdI:kVO - %(1 + X_Z) (1-96)

1.3.5. Incompressible Ducted Turbine
Likewise, the governing equations of the incompressible ducted Actuator Disk Theory are applied
to the ducted turbine. Note that the total and turbine drag and the power extraction from the flow
given in equations 1-80, 1-81, and 1-83 also applies to the ducted turbine. However, the total
drag is not equal to the turbine drag; it is the difference between the drag on the turbine and the
lip thrust.
Dtotal = Dturb — Tlip (1-97)

The definition of the total drag coefficient and the power extraction efficiency given in equation

1-84 and 1-86 also applies to the ducted turbine

CD _ Dtotal — ri'1(‘/0_\/3) ( 1'98)

- 1
Tdynamic ~ PAdiskV3

1. 2 _y2

Neurb = Pextracted __ Zm(VO V3)
turb — -1

Pavailable  5PAdiskVp

(1-99)

Substituting pA,V, for the mass flowrate and the A, given in equation 1-49, the total drag

coefficient and the power extraction efficiency can be simplified as follows

_ V(Y2 _

Cp =2 (1 VO) (1-100)
\ A

s =32 (1= (32)) (1-101)

To determine the Betz limit for the ducted turbine, the same analysis as for the bare turbine is

done. Asserting that r = % the power extraction efficiency can be put in terms of r
0
Cp =r(1-r?) (1-102)

25



By differentiating equation 1-102 with respect to r and setting it equal to zero, the Betz limit, or
the maximum power extraction efficiency, for the ducted turbine is 2/3*? or approximately 0.385
when the far down-to-upstream velocity ratio is roughly 0.577. This shows that the Betz limit for
the ducted turbine is 0.208 lower and occurs at velocity ratio that is 0.052 higher than the bare
turbine. The performance parameters of the incompressible ducted turbine are summarized below
in terms of the far upstream and downstream velocities

Dimensional Quantities:

Diotal = m(Vp — V3) (1-103)
Deurb = 5 PAisk(VE — V3) (1-104)
Tip = 2pAamcV3 (2~ 1) (1-105)
Pextracted = 5 M(VE — V3) (1-106)
th = pAgjg e (1-107)
Dimensionless Quantities:
e = 2 (1 (2)) (1-108)
CD=ZX_Z(1‘X_Z) (1-109)
m__Vs (1-110)

PAGskVo Vo
These performance parameters of both the ducted and the bare turbine are plotted against the

velocity ratio r for comparison.

1.3.6. Results and Discussion — Incompressible Bare and Ducted Turbine
The solutions are determined for the same disk area and free-stream flow conditions as those of
the bare and ducted propeller. The power extraction efficiency, the pressure drop across the disk,

and the total drag coefficient are compared between the bare and the ducted turbine in Figure 9 to
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Figure 11 in terms of the velocity ratio r. The individual contribution of the turbine drag and the
lip thrust to the total drag is shown for the ducted turbine in Figure 12. Note that the pressure
drop, the lip thrust, and the turbine drag are made dimensionless in the same way as were done

for the propeller case.
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Figure 9. Comparison of the power extraction efficiency and the Betz limit between the bare and

ducted turbine for incompressible flow.
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Figure 13. Velocity and pressure throughout the stations for the bare turbine (left) and for the
ducted turbine (right).
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Unlike the propeller, Figure 9 shows that the bare turbine has a higher power extraction efficiency
than the ducted turbine for all velocity ratios r. Thus, the bare turbine has a higher Betz limit and
occurs at a lower velocity ratio r than the ducted turbine. Likewise, the bare turbine has a greater
total drag coefficient than the ducted turbine as observed in Figure 11; while, the pressure drop
across the disk is the same for both cases as shown in Figure 10. Figure 12 shows that the
magnitude of the turbine drag is greater than that of the lip thrust and thus contributes more
greatly to the total drag.

An approximation of the velocity and the pressure throughout the stations are given in Figure 13.
Since energy is being extracted by the turbine at the disk plane, the far downstream velocity is
lower than that at the free-stream; while the velocity at the disk is again the average of the two
velocities for the bare turbine and is the same as the far downstream velocity for the ducted
turbine. This means that the free-stream area is smaller than that at the far downstream to account
for the higher free-stream velocity since the density and the mass flowrate throughout the
streamtube are constant. Lastly, the pressure increases from the free-stream to immediately before
the disk, drops discontinuously across the disk, and increases to the free-stream pressure for the
bare turbine and drops to the free-stream pressure for the ducted turbine. Again, these results
agree with Horlock [1], Glauert [2], and Kiichemann and Weber [3] and can be found in many

Fluids Mechanics textbooks. Next, the method of solution will be briefly discussed.
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1.4. Method of Solution to the Classical Actuator Disk Theory
Although the performance of the propeller and the turbine has been determined and discussed, the
method to obtaining the performance parameters will be briefly established. This is mainly done
to later support the reasoning behind the method of solution for the compressible Actuator Disk
Theory—a topic that will be touched upon in Chapters 2 to 4.
The governing equations of the classical Actuator Disk Theory provide a system of equations
necessary to perform a complete analysis of the flow and the actuator disk. A complete analysis
is one where the performance parameters of the disk are determined and all of the flow variables
such as the density, pressure, velocity, and the streamtube cross-sectional area are known at each
of the four stations. Since the governing equations are a set of non-linear algebraic equation
ns, the desired solutions can be determined if there is an equal number of unknowns and
equations. The desired solutions, which are the performance parameters of the disk and the flow
variables at each station, are determined in terms of a few selected inputs. Usually, the inputs are
the disk area, the far downstream velocity, and the free-stream density, pressure, and velocity.
Consider the application of the bare turbine in section 1.3.4. With the five inputs, which are
p, Py, Vo, Aqisk, @and Vs, the unknown variables left to determine are the following flow variables
Ay, P, Vi, P, and Az and the following performance parameters of the turbine
Diotal Dturbs Pextracted» M, Cp, @nd Murp-  These eleven unknown variables can be solved
explicitly using the eleven governing equations from 1-19 to 1-23 and 1-90 to 1-95. The same
can be done for other applications of the classical Actuator Disk Theory.
In addition, the unknown variables in these equations can easily be isolated and expressed solely
in terms of the inputs. They can also easily be made dimensionaless by the given parameters
p, Py, Vo, V3, and Agisk-
In concluding remarks, the governing equations for the classical Actuator Disk Theory provides
the means to solve for the flow variables at each station along with the performance parameters of

the actuator disk given the free-stream flow conditions, the far downstream velocity, and the disk
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area. The solutions to the governing equations can easily be determined explicitly, separated and
be put solely in terms of the inputs, and be made into dimensionless quantities. It will be shown
in later chapters that these characteristics are not inherent in the governing equations for the

compressible Actuator Disk Theory.
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2. COMPRESSIBLE ACTUATOR DISK THEORY

2.1. Introduction

Since compressibility effects arise in real applications of energy-adding or energy-extracting
devices, the Actuator Disk Theory will be extended to the regime of compressible subsonic
flow, which will be referred to as the compressible Actuator Disk Theory or the compressible
theory throughout the current work. The motivation for the current work is to develop a set
of governing equations necessary to predict the ideal performance of the microRAT [4] in
compressible flow operating at high subsonic Mach numbers, in an effort to prevent sensor
dropout of the Boundary Layer Data Systems (BLDS) as discussed in Chapter 1. The
governing equations for the compressible Actuator Disk Theory will be established in this
chapter for the bare (unducted) and the ducted cases using isentropic thermodynamics and the
three conservation laws of mass, momentum, and energy. These governing equations provide
a system of equations that is necessary to solve for the flow variables at each station as shown
in Figure 14 and to determine the ideal performance of the actuator disk in terms of some
input variables. The mechanics of determining the solutions will be discussed in the Method
of Solutions. Note that the solutions to the compressible Actuator Disk Theory and its
applications are obtained only for subsonic flow, which is the scope of the current thesis.

The compressible theory will be derived for the same assumptions that were made for the
classical theory under the List of Assumptions in section 1.2.1, with the exception of the first
two as they only apply to incompressible flow. Additional assumptions made specifically for
the compressible theory are listed below. The compressible theory differs from the classical
theory in ways that the density now varies throughout the streamtube and the Mach number is
thus included as a flow variable at each station as shown in Figure 14. In addition to the
pressure discontinuity across the disk as observed in the classical theory, the density and

velocity are also discontinuous across the disk for compressible flow. Using these
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assumptions, the governing equations for the compressible Actuator Disk Theory will be

developed beginning with the bare actuator disk in the next section.

Additional Assumptions for Compressible Flow

10) The flow is compressible and isentropic.

11) The total pressure is constant between stations 0 and 1 and stations 2 and 3.

12) The velocity, pressure, and density across the actuator disk are discontinuous.

13) The Mach number at any station never exceeds 1 because the scope of the thesis at hand

is to observe the compressibility effects on the Actuator Disk Theory only in the subsonic

flow regime.

Stream tube

boundary

Tm!al = T«Iisk

0

Actuator disk
of area Adisk

1 2 3

Figure 14. Schematic of the bare, compressible Actuator Disk Theory.
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2.2. Compressible, Bare Actuator Disk Theory

The governing equations of the compressible Actuator Disk Theory will be developed for the
unducted (bare) actuator disk that is contained within the streamtube boundary as shown in Figure
14. Stations 0 and 3 are the far upstream and downstream where the free-stream pressure exists,
while stations 1 and 2 are immediately before and after the actuator disk. The control volume 0-3
contains the flow from station 0 to 3, the control volumes 0-1 and 2-3 encloses the flow upstream
and downstream of the disk, and lastly the control volume 1-2 contains the flow through the disk
plane. Note that the station designations and the control volumes are the same as those for the
classical theory. The actuator disk is treated as an energy-adding device where it adds power to
the flow at the disk plane and exerts a thrust force on the flow in the direction of the flow.

Since isentropic flow is assumed, the isentropic flow relations are heavily involved in the
derivation of the governing equations. The details of the relations will not be discussed but can be
found in the NACA report titled “Equations, Tables, and Charts for Compressible Flow” [8].

To begin, the far upstream and downstream densities are shown to be equal by asserting that

P, = P; into the isentropic pressure-density relation

1
P3 _ (Pa)y _ .
p0_(})0) =1 (2-1)
to give
Po = P3 (2-2)

Next, the flow variables at station 1 are found in terms of the free-stream flow properties.

Asserting that P, = P, into the isentropic pressure ratios as shown and combining,

Pro _ Y=1y2\v-1 -
P0_(1+ - MO) (2-3)
ﬁ=(1+y—‘1mz)ﬁ (2-4)
P, 2 1

the static pressure immediately before the disk P, is given as a function of the Mach number at

stations 0 and 1
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Y
Py _ <1+YTIM(2,>Y—1 (2:5)

Py 1+YT_1M§
A ratio of the cross-sectional area at station O to that at station 1 can be established using the

isentropic flow relation between area and Mach number and noting that A; = Agisk

Y+1

bty o)

- -1
Adisk Mo \ 1+¥2M3

Next, the density at station 1 is obtained through the isentropic pressure-density relation

1
P1_ (Pa)y -
Po (Po) (2-7)
The velocity at station 1 can be found using the conservation of mass on the control volume 0-1.

Vi _ po Ao
—_— == 2-8
Vo p1Adisk ( )

Next, the flow variables at station 3 are related to those at station 0. By applying the conservation
of energy on the control volume 0-3, it can be observed that the total energy at station 3 E; is the
sum of the total energy at station 0 E, and the energy added to the flow by the disk. The energy

added is denoted as the power addition per unit mass flow across the disk as shown

Eo+%=E3 (2‘9)
where E, and E; are
_Vi, v P
EO —_ 2 +Y—1 po (2'10)
_Vi, v PBs -
Eg—2+y_1 . (2-11)

Vi, ¥ .Po Pinpur V5, v Ps (2-12)
3
By rearranging and noting that P; = P, the total power added by the disk per unit mass flow is

the sum of two terms

l:’input V%_V(Z) Y Py (pO
Pioput _ V56 1. Y Po (b0 _4) 2.13
m 2 Y=1po \p3 ( )
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The second term on the right of equation 2-19 goes to zero by asserting that p, = p3, thus the

total power added by the disk is

. V3-V%
Pinput = 32 . (2-14)

Observe that this is identical to the incompressible power equation in 1-17. From the power
equation, the far downstream velocity V5 can be determined for a given disk power. Next, M3

can be found by applying the isentropic speed of sound relation

— P .Po .

ag= Jy-=2= [y (215)

to the definition of Mach number

A\
M; = a—: (2-16)
to give
_1
P

M3=V3(Y'p—2) i (217)

Likewise, the area at the far downstream A5 can be determined using the conservation of mass

applied to the control volume 0-3 along with py = p5

Az _po Vo _ Vo
A3 _Po, Yo _ Yo 2-1
Ay p3 V3 V3 ( 8)
Next, the flow variables at station 2 will be determined related to those at station 3.
The Mach number immediately after the disk M, is obtained using the isentropic relation between

area and Mach number between station 2 and 3

Y+1

A; _ M <1+VT_1M§>2”'” (2-19)

- -1
Adisk Mz \ 1+¥2M3

Next, the pressure immediately after the disk P, is obtained by applying that P, = P, into the

isentropic pressure ratios at stations 2 and 3

2= (14+2M3)" (2-20)
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Prg _ Prg _ Y=1yz)v-t ]
o= P0_(1+-2 M3) (2-21)
to give
P, 1+YT_1M§ % .99
Po T \rhMg (2:22)

Again, the density at station 2 is found by the isentropic pressure-density relation

1

P2 _ Pz _ (P2)v -
pP3  Po (P3) (2-23)

The velocity at station 2 is found by using the conservation of mass on the control volume 1-2.
v, =2y (2-24)
P2

By applying the conservation of linear momentum to the control volume 0-3, the total thrust is
found
Trotal = M(Vz — Vp) (2-25)
Note that this is the same total thrust given in equation 1-15 for incompressible Actuator Disk
Theory. The thrust produced by the disk can be determined by applying the conservation of linear
momentum to the control volume 1-2
Taisk = m(Vy — Vq) + Agisk (P, — Pp) (2-26)
Lastly, the mass flowrate can be found from
m = p;AgiskV1 (2-27)
At this point in the analysis, it is important to note that all the equations derived above for
compressible Actuator Disk Theory from equation 2-1 to 2-27 can be applied to any ideal disk
that adds power to the flow stream and generates a thrust force, whether the disk is bare or
ducted.
Lastly, since there are no other assemblies besides the actuator disk within the flow stream, the
total thrust exerted on the flow is then the thrust produced by the disk, which is only true for the

bare case.
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Tiotal = Taisk (2-28)
This concludes the derivation of the governing equations for the compressible bare Actuator Disk

Theory, which are summarized in the next section.

2.2.1. Summary of Governing Equations
In summary, the governing equations of the compressible bare Actuator Disk Theory relates the
flow variables at each station, the mass flowrate, the total thrust, the disk thrust, and the power
addition by the disk to the free-stream flow properties, which are y, Py, po, and V, and the disk

area. The governing equations are summarized below:

1

Mo = Vo (v 22) * (2-29)
Y12\ Ty
e (2) 20
p,  [1+57M3 =
Py (1+Y%1M§> (2-31)
1
= (3) (2-32)
z—; = %% (2-33)
p _1
M3=V3(y-p—§) ’ (2-34)
2—2 = X—Z (2-35)
Y12\ Ty
=) (2:36)
P, 1+1m2 =
p 1
b = (P—O)y (2-38)

39



V, = %vl (2-39)

m = p;AgiskV1 (2-40)

Tiotal = M(Vz — Vp) (2-41)

Taisk = MV — V1) + Agisk(P2 — P1) (2-42)
Papuc = 8 (2-43)

Tiotal = Taisk (2-44)

In comparison to the classical bare Actuator Disk Theory, the thrust produced by the disk in
equation 2-42 now contains an additional term due to the velocity discontinuity across the disk,
while the total thrust and the total power addition by the disk in equation 2-41 and 2-43 remains
the same as for incompressible flow. In the next section, the governing equations will be

considered for the ducted case of the compressible Actuator Disk Theory.

40



2.3. Compressible, Ducted Actuator Disk Theory

Stream tube Actuator disk
boundary of area A yjsx

P2
P Py put

Figure 15. Schematic of the ducted, compressible Actuator Disk Theory.
This section will focus on establishing the governing equations specific to the ducted case of the
compressible Actuator Disk Theory, following the assumptions made in section 2.1. The actuator
disk is again assumed to be an energy-adding device that adds power to the flow and exerts a
thrust force on the flow in the direction of the flow. The actuator disk is now also enclosed by a
duct of the same cross-sectional area as the disk as shown in Figure 15. Stations 0 and 3
represents the far upstream and downstream; stations i and e represents the duct inlet and outlet;
and stations 1 and 2 are immediately before and after the disk. As mentioned in Chapter 1, the
duct can be of variable cross-sectional area, but it is assumed to have constant area to keep the
scope of the thesis manageable. The constant area duct entails that the inlet and outlet duct areas
as well as the area at the far downstream area equal to the disk area
Aj = A = Ay = Agisk = Ae = A (2-45)

In addition, the duct is also assumed to produce straight and parallel streamlines at the duct exit
such that the exit pressure is considered equal to the far downstream pressure, which in turn is

equal to the free-stream pressure.
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Pe=P3 =P0 (2'46)

With P, = P, it is also apparent that p. is equal to p; from the isentropic pressure-density

relation
1
Pe _ (Pe)y _ .
Pe (P) 1 (2-47)
“ Pe = P3 (2-48)

With p. = p3 and A, = Az, the conservation of mass applied to control volume e-3 indicates that
V. is also equal to V;
PeAeVe = p3AzV3 (2-49)
Vo=V, (2-50)

Lastly, it can be shown that M, = M using the isentropic pressure ratio

Y
Py _ (1HEME\ ]
oM, =M, (2-52)

Therefore, since all the flow variables and the area at the duct exit and the far downstream are
equal, station e can be replaced entirely by station 3, and this will be done for the rest of the
analysis. As a result, the governing equations from 2-29 to 2-43 that were derived for the
compressible bare Actuator Disk Theory also apply to the current analysis of the ducted case
without any change of subscripts. Furthermore, the assumption of constant duct area simplifies
the isentropic flow relations between stations 2 and 3. Since Agisx = As, the isentropic relation

between area and Mach number shows that M, is equal to 3.

y+1

Ay Mg (1403 2D _
Adisk 1= M3 <1+Y2LIM§ (2:53)
2 M, = M, (2-54)

With M, equal to M, the isentropic relation between pressure and Mach number shows that P, is

equal to Ps.
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Y
Py _ 1+yT_1M% y-1 _ i
P2 <1+VT_1M§ =1 (255)
# P, =P (2-56 )

The implication that P, is equal to P; further suggests that p, is equal to p; when considering the

isentropic pressure-density relation

1

Pz _ (P2\v _ -
p3_(1,3) =1 (2-57)
< P2 =P3 (2-58)

Since p, is equal to p3, the conservation of mass conveys that V, is also equal to V.
P2A2V, = p3A3V3 (2-59)
WV, =V (2-60)
Since all the flow variables and the area immediately after the disk and the far downstream are
equal, it can be stated that the flow properties after the disk remain constant all throughout the

remaining section of the duct and out to the far downstream.
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2.3.1. Lip Thrust Analysis

Control Volume Lip

j(_ Duct

Po
Po

Vo
Ap

Figure 16. Control volume used to drive lip thrust.
The addition of the constant area duct onto the disk assembly also introduces the concept of lip
thrust much like in the case of the ducted incompressible Actuator Disk Theory. As mentioned in
Chapter 1, Kiichemann and Weber [3] have derived this lip thrust by applying the conservation of
momentum to the control volume enclosing the far upstream and the duct inlet as shown in Figure
16, where the subscript 0 denotes the far upstream and the subscript i denotes the inlet at some

distance behind the lip. The resulting momentum equation is given below
fAN(PN — Pp)dAy = p;iViAi(Vo — Vi) — (B, — Po)A;  (2-61)

where the lip thrust is the negative of the integral and is the force that the duct inlet exerts on the

flow.

Thip = — fAN(PN —Py)dAy
Tiip = —piViAi(Vo — Vi) + (B — Pp)A; (2-62)
Note that the above lip thrust equation, resulting from the momentum balance, is general and can
be applied to both compressible and incompressible flow. It will be tailored to the compressible
ducted case in the next steps.
Factoring V,, from the first term and P, from the second term gives
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Tiip = —piViAiVo ( - \\,/—;) + PoAj (E—; - ) (2-63)

To non-dimensionalize the lip thrust, both sides of the equation are divided by the reference force

- ) e

Tlip
1 2A. 1 2
2PoVoA; 2PoVoA;

and simplified to give
2o (2 -1) (2-65)

k—zﬁﬂ(ﬁ_l)_kz

ZpoV3a;  poVo \Vo poV3 \Po
Using the isentropic speed of sound relation,
aj =L (2-66)
Po
along with the definition of the Mach number,
'
M, = a—;’ (2-67)
the lip thrust equation can be expressed as follows
_Tip  _5piVi(Vi 2 (ki _ N

~PoV3A; ~ “poVo
The last step of the manipulation is to put the non-dimensional lip thrust in terms of free-stream

and inlet velocities. This is done by using the compressible energy equation, E, = E;:

Y Po V§_ v Pi Vi (2-69)
Y-1po 2 Y-1pi 2

along with the isentropic pressure-density ratio

o (o) (2-70)

to develop relations for the pressure and density ratios as shown.

n-(epm(-@)”T e
. (1 + Mg (1 (\‘,’—)2))_ (272)
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Lastly, the pressure and density ratios are substituted back into the equation to give the final non-

dimensional lip thrust in terms of My, v, and the velocity ratio %
0

1

w26 (e (- )

2 =12 (+ _ (Vi)2)\"" _ i
to (1 + =M (1 (Vo) )) 1 (2-73)
Note that when the ratio of the duct inlet to the far upstream velocity \% is equal to 1, the lip thrust
0

goes to zero, which is consistent with the lip thrust for incompressible flow.

Assuming the streamlines are straight and parallel so that the pressure at station 1 is the same as
that at the inlet, the flow variables at stations i and 1 are equal for the same reasons that the flow
variables at stations e and 3 are equal. As a result, replacing the subscript i in equation 2-73 with

1 and asserting that A; = Agjsk gives

=2 () (- ) (1 5w (1 ()))

2 (1t (1= (2))) 7 - _
+2 (1+ 3 (1- () )> 1 (2-74)

Alternately, the lip thrust can also be derived by applying the static equilibrium equation in the
direction of the flow on the disk-and-duct assembly. By doing so, the lip thrust is also the
difference between the total and the disk thrust.

Tiip = Trotal — Taisk (2-75)
Logically, the lip thrust from this derivation must equal the lip thrust determined by Kiichemann
and Weber [3] using the control volume encasing the flow from the far upstream to the duct inlet.
To have a more complete and collective analysis of the ducted case of compressible Actuator

Disk Theory, it is shown in Appendix B that it is indeed the case. This concludes the derivation
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of the governing equations for the ducted case of the compressible Actuator Disk Theory, which

are summarized in the following section.

2.3.2.  Summary of Governing Equations
In summary, the assumption of constant duct area implies the following for the ducted case of the

compressible Actuator Disk Theory.

M, = M, = M, (2-76)
V, =V, = Vs (2-77)
Py=P, =P, =P, (2-78)
Po = P2 = Pe = P3 (2-79)

Due to these results from the assumption of constant duct area, the governing equations are
reduced to the following below. These governing equations relate the flow variables at each
station, the mass flowrate, the power addition by the disk, and the total, disk, and lip thrusts to the

free-stream flow conditions which are y, Py, po, and V,, and the disk area.

Mo = Vo (v 22) * (2-80)
Y=1y2\ 20y-
i) (281)
Y=1y\2 L1
ol
b= (B (2-83)
!
M; =V; (Y ) l;_Z)_E (2-85)
m = p1AgiskV1 (2-86)
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1

2 () (- 1) (14 2 (1- ()

v

2 vtz (1 ()7 ]
o <1+ _ M0<1 (Vo) )) 1 (2-87)
Tiotal = I’h(V3 - VO) ( 2-88 )
Taisk = m(Vy — Vp) + Agisk (P, — Pp) (2-89)
Tiip = Tiotal — Taisk (2-90)

. Vi-v3

1:)input =m 32 . (2-91)

In comparison, the assumption of the constant duct area gives the same results for both the
incompressible and compressible Actuator Disk Theory where the flow properties are constant
from the immediate downstream of the disk, throughout the remaining section of the duct and out
to the far downstream. The disk thrust contains an additional term due to the discontinuity in
velocity across the disk, while the total thrust and the power addition given in equation 2-88 and
2-91 are identical to those for the ducted case of the classical Actuator Disk Theory. Lastly, the
lip thrust cannot be expressed in terms of the far downstream velocity as can be done for
incompressible flow due to the fact that velocity is discontinuous across the disk. Next, the

method for determining the flow variables and the disk performance will be discussed.
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2.4. Method of Solution

For both the compressible and classical Actuator Disk Theory, the governing equations provide a
system of equations necessary to determine the flow variables at each station and the performance
of the actuator disk in terms of some given inputs. The inputs are the free-stream flow conditions
which are y, Py, pg, and V, and the disk cross-sectional area Agisx. Along with these inputs, an
additional variable is specified depending on whether energy is added to or extracted from the
flow. Usually, this independent variable is the power addition to the flow in the case of an
energy-adding device and the far downstream velocity in the case of an energy-extracting device.

As discussed in Chapter 1, the unknown variables in the governing equations for the classical
Actuator Disk Theory can be expressed solely in terms of the given inputs and be solved
explicitly, which is not true for the compressible theory. Some of the flow variables in the
governing equations for the compressible theory cannot be isolated such as M; in the isentropic
area-to-Mach relation between station 0 and 1 in equation 2-30. As a result, the governing
equations are a mixture of both inputs and outputs on the right side of the equations; whereas, the
incompressible-flow equations have the outputs separated to the left side and the inputs to right
side.

Therefore, the compressible-flow equations, for both the bare and ducted case, cannot be solved
explicitly and require an iterative method. One iterative method has been presented and
employed by Delano and Crigler [5] to obtain the compressible-flow solutions for the bare
propeller, which is an energy-adding device. In addition to specifying the power addition by the
disk Pipput, the free-stream flow conditions v, Py, po, and Vy, and the disk area Agqx, the Mach
number immediately before the disk M, is also initially specified to begin marching through the
compressible equations listed in section 2.2.1 (equations 2-29 to 2-44) to determine the flow
variables at each station. The flow variables associated with the assumed M; are then used to

solve for the total thrust T, and the thrust at the disk plane Tg;g Separately, which are also
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equal to each other for the bare actuator disk. If T4 and Tg;si are not equal, then the process of
assuming a new M; and solving for the flow variables with the assumed M; is repeated until
Tiorar @Nd Tg;sx are approximately equal. The same iterative approach can also be taken for the
ducted case of compressible Actuator Disk Theory, where the total thrust Tyya;, the disk thrust
Taisk, and the lip thrust Tj;, can be found separately for the assumed M;. Then, a new M, is
assumed until the lip thrust is equal to the difference between total and disk thrust: Tj;, = Tyoral —
Taisk-

Due to the accessibility of numerical computing software today, the iterative method is
implemented into EES (Engineering Equation Solver), a program that can solve numerous
coupled non-linear algebraic and differential equations using numerical methods. Thus, by
providing the same number of equations as the number of unknowns into EES, all compressible-

flow solutions presented in this thesis work can be determined.
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3. APPLICATIONS OF THE COMPRESSIBLE ACTUATOR DISK THEORY -
PROPELLER
3.1. Introduction

In this chapter, the governing equations derived for the bare and ducted case of the compressible
Actuator Disk Theory in Chapter 2 will be applied to a propeller. A propeller is considered an
energy-adding device, adding power to the flow stream at the disk plane and exerting a thrust
force on the flow in the direction of the flow. Its purpose is to generate high propulsive thrust for
a given power input; hence, a well-accepted measure of its performance is its propulsive
efficiency against the power addition to the flow by the propeller. The dimensionless quantities
such as the propulsive efficiency and the thrust and power coefficients are developed in this
chapter for the bare and ducted propeller.

The governing equations for the compressible Actuator Disk Theory are used to determine the
flow variables at each station and the performance of both the bare and ducted propeller in terms
of the free-stream flow conditions, the disk area, and the power coefficient. The solutions to the
compressible bare and ducted propeller are made dimensionless by the free-stream conditions and
are compared with the results obtained by Delano and Crigler [5] for agreement.

To begin, the propeller is assumed to have an infinite number of blades such that it becomes an
actuator disk with an area of Ayg. Because the governing equations for the compressible
Actuator Disk Theory are derived in Chapter 2 already assuming that the disk is an energy-adding
device, much like a propeller, they can be utilized here without any sign change, starting with the

case of the bare propeller.
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3.2. Compressible, Bare Propeller
The dimensionless parameters—the power coefficient, the total thrust coefficient, and the
propulsive efficiency—will be established for the compressible, bare propeller. The power
coefficient is found by dividing the power addition to the flow in equation 2-43 by the available
power in the free-stream in an area of Agjsx,

1.
_ 1:)input _ Em(V§_V(2))
Cp = =

1
Pavailable EpoAdiskvg

(3-1)

Similarly, the total thrust coefficient is found by dividing the total thrust in equation 2-41 by the
reference force

Teotal  _ Mm(V3—Vo)
1 -1
7PoAdiskVs  3PoAdiskVo

Cr= (3-2)

Lastly, the propulsive efficiency ny,,p, is the ratio of the propulsive power to the total power

added by the propeller where the propulsive power is the product of the total thrust and the free-

stream velocity

__ propulsive power _ m(V3-V()V,

Mprop = Pinput B %ri’l(V%—V%) ( 3-3 )
By simplifying, the propulsive efficiency is given in terms of the velocity ratio %
0

2V 2 (3-4)

Mlprop = Vs+Vo Y3y
Vo

Alternatively, the propulsive efficiency is also the ratio of the total thrust coefficient to the power

coefficient
Ao (V3
_Sr_ 2Adisk(V0 1) (3-5)
nprop Cp Ag ((ﬁ)z—l)
Adisk\\Vo

By canceling the area ratio Ai in the numerator and the denominator of equation 3-5 and
disk

expanding the denominator, the propulsive efficiency is

2(3—3— 1)

(3-6)
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Simplifying equation 3-6will give the propulsive efficiency in equation 3-4. An alternative form
of the power coefficient and the total thrust coefficient will be shown.
By substituting the following mass flowrate

m = pyAyVy (3-7)

into equation 3-1 and simplifying, the power coefficient becomes

o) 0

Equation 3-8 can be rearranged to give the following velocity ratio as a function of the power

coefficient Cp and the ratio between the free-stream and the disk area AA"
disk
1
\% C 2
—3:<1+ A") (3-9)
Vo _Ao_
Adisk

Likewise, the thrust coefficient can be simplified to the following form by using the mass

flowrate given in equation 3-7

Cr=2.2(2-1) (3-10)

Agisk \Vo
Although the form of the power coefficient and the total thrust coefficient given in equations 3-8
and 3-10 is unconventional, it is useful when comparing the results that are presented later in the

chapter.

3.2.1. Summary of Governing Equations
The complete set of the governing equations, including the power coefficient, the total thrust
coefficient, and the propulsive efficiency, for the compressible bare propeller are given. Note

that these equations are a non-linear, coupled algebraic set.

1

_ .Po) 2 -
Mo—Vo(Y Po) (3-11)
Y+1
Ay My [1H05ME\OD _
Agisk My <1+VT_1M§ (3-12)

53



Y
Y=1pz\y-1
i_; - <1+ 2 0> ( 3-13 ))

Y-1n,2

1

P1_ (Pa)y -
o (P) (3-14)
Vi _ po_Ag ]
Vo p1Adisk (3-15)
_1
P
My = V3 (y-72) * (3-16)
As _ Vo -
AV, (3-17)
1 Y+1
As & 1+V%M§ 2(y-1) i
Adisk M3 <1+VT_1M§ (3-18)
=12\ 7%
ﬁ _ 1+TM3 y-1 )
Po (1+Y%1M%> (3-19)
p 1
P2 _ (Zz)v -
2 (PO) (3-20)
v, =2y, (3-21)
P2
m = p;AgiskV1 (3-22)
Trotal = M(V3 — Vo) (3-23)
Tprop =m(V, — V) + Agisk(P, — Py) (3-24)
Teotal = Tprop (3-25)
1
\% C 2
V—3=<1+ Az) (3-26)
o _Ao_
Adisk
. V3-v3
Pinput =m 32 . ( 3-27 )
_ o B0 (Vs -
Cr =2, (Vo 1) (3-28)
2
T]prop &_‘_1 ( 3-29 )
Vo
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Given the free-stream conditions, the disk area, and the power addition to the flow, these
governing equations provide a system of equations to determine the flow variables before the disk

and throughout the slipstream and the performance of the bare propeller.

3.2.2. Method of Solution

The purpose of the current analysis is to solve for the flow variables at stations 0 to 4 and to
determine the performance of the bare propeller using the governing equations given in section
3.2.1. To do so, the disk area Ayjsk, the power addition to the flow P, and the free-stream
conditions y, po, Py, and Vj, are specified. With these six inputs, v, pg, Py, Vo, Agisk, and Pippyt, the
unknown variables left to solve are the following flow variables Ao, Mo, My, p1, P1, Vi, My, p2, Pa,
V,, Az, M3, and V; and the performance parameters of the bare propeller Tyop, Tiota, Cp, Cr,
Nprop: and m, giving a total of nineteen unknown variables. The governing equations in section
3.2.1 give the necessary nineteen equations to solve for these nineteen unknown variables.

Next, the dimensionless independent variables are determined using Buckingham Pi Theorem to
express the propulsive efficiency of the bare propeller as a function of the given variables

Y, Vo, Pos Po, Adisk, and Pippye. With a total of seven variables and three physical dimensions, the

1

Vo (y . %)_5, Y, and nprop Of Which the

. ) P;
four resulting dimensionless parameters are ———,
5PoAdiskVo

first and second are the power coefficient Cp and the free-stream Mach number M,. The power
coefficient Cp and the free-stream Mach number M, are made into independent variables while y
is kept as a constant. As a result, for a given vy, po, Py, and Agjsk, the nineteen unknown variables
are solved in Engineering Equation Solver (EES) in terms of Cp for varying values of M. Due to
the power addition by the propeller at the disk plane, the velocity immediately before the disk is
greater than the free-stream velocity and thus it is expected that M; reaches 1 before M,,. To keep

the scope of the thesis within the subsonic regime, the solutions are solved for increasing Cp,
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starting from 0.001, until the Mach number immediately before the actuator disk reaches one.
Note that a Cp of zero means that no power is added to the flow at the disk plane and the flow
variables at the disk and in the slipstream are thus equal to those at the free-stream.

Lastly, the solutions are nondimensionalized by the disk area and the free-stream pressure,

density, velocity, and Mach number to obtain the following dimensionless variables

P1 P2 P1 Py Vi Vo Vs My My M3 A

Az
) ) ’ ) ’ ) ) ) ) i) ) and
Po Po Po Po Vo Vo Vo My My Mg Agisk Agisk

. The pressure-rise across the disk is also made

dimensionless by the dynamic pressure associated with the free-stream velocity giving the

Py—Py
T .
ZPo 5

pressure-rise coefficient

Due to the implicit nature of the compressible flow equations given in section 3.2.1, it is more
effective to make the dimensional solutions obtained from EES into dimensionless parameters
than it is to develop dimensionless representations of the flow variables. As a result, dimensional

equations are presented but dimensionless solutions are presented in the next section.

3.2.3. Results
For comparison, both compressible- and incompressible-flow solutions are determined for the
bare propeller for a disk area of 1 ft? and for the free-stream flow at sea level static conditions as
given in Table 1. The compressible-flow solutions are obtained for M,, of 0.25, 0.40, 0.55, and
0.70, while the incompressible-flow solutions are obtained for a free-stream velocity V,

equivalent to Mach 0.55 at sea level static conditions.

Table 2 gives important compressible- and incompressible-flow solutions of the bare propeller
obtained at the maximum power coefficient before the flow is sonic at station 1 for various free-
stream Mach numbers M,,.

Figure 17 shows the maximum power coefficient that can be specified before M;is one for

various free-stream Mach numbers. It is observed that the maximum power coefficient that is
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required for sonic flow immediately before the disk decreases rapidly with increasing free-stream
Mach number M,. The propulsive efficiency, the total thrust coefficient, the dimensionless mass
flowrate, the ratios of the far upstream and downstream areas to the disk area, and the
dimensionless flow variables immediately before and after the disk and at the far downstream are
plotted against the power coefficient C, for M, of 0.25, 0.40, 0.55, and 0.70 in Figure 18 to
Figure 31. When applicable, the dimensionless incompressible-flow solutions for V,, equivalent
to Mach 0.55 at sea level static conditions are included in the plots for comparison. Note that the

point where the flow becomes sonic before the disk is denoted by the symbol “X” in all of the

plots.
Table 1. Table of given free-stream pressure and density and the disk area.
Given Parameters Value
y (compressible) 1.4
P, (Ibf/ft?) 2166.8
po (slugs/ft3) 2.329x 1073
Agisk (ft%) 1

Table 2. Table of flow solutions of the bare propeller obtained at the maximum power coefficient
before the flow is sonic at station 1 for various free-stream Mach numbers. Note that * means
incompressible flow values.

Mo 020 | 030 | 040 | 055 | 060 | 0.70 | 0.80 | 0.90
Co (M, =1) | 59.682 | 15.450 | 5.572 | 1.570 | 1.054 | 0.457 | 0.173 | 0.039
Noron 0.357 | 0.509 |0.641 | 0.800 | 0.843 | 0.913 | 0.962 | 0.991
Noroo™ 0.352 | 0.504 |0.638 | 0.799 | 0.842 | 0.913 | 0.962 | 0.991
Ao/ Adisk 2.964 | 2.035 | 1.590 | 1.255 | 1.188 | 1.094 | 1.038 | 1.009
AJAge* | 2844 | 1.983 | 1.567 | 1.251 | 1.187 | 1.095 | 1.040 | 1.010
A/ Adisk 0.645 | 0.694 | 0.749 | 0.836 | 0.865 | 0.919 | 0.961 | 0.990
AdJAge* | 0.607 | 0.669 |0.734 | 0.833 | 0.864 | 0.920 | 0.963 | 0.991
ViV, 4598 | 2.931 |2.122 | 1.500 | 1.374 | 1.191 | 1.080 | 1.019
V/Vo* 4.689 | 2.965 | 2.134 | 1.502 | 1.374 | 1.191 | 1.080 | 1.019
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Figure 17. The plot gives the maximum power coefficient to drive the propeller before the flow is
sonic at station 1 against the free-stream Mach number for the bare propeller.
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Figure 18. Propulsive efficiency of the bare propeller for incompressible flow and compressible
flow of varying free-stream Mach numbers.
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compressible flow of varying free-stream Mach numbers for the bare propeller.
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Figure 21. Comparison of the far upstream cross-sectional area between incompressible flow and
compressible flow of varying free-stream Mach numbers for the bare propeller.
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Figure 22. Comparison of the far downstream cross-sectional area between incompressible flow
and compressible flow of varying free-stream Mach numbers for the bare propeller.
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Figure 23. Comparison of the far downstream velocity between varying free-stream Mach

numbers for the bare propeller.
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Figure 24. Comparison of the far downstream Mach number between varying free-stream Mach

numbers for the bare propeller.
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Figure 25. Comparison of the velocities immediately before and after the bare propeller for
varying free-stream Mach numbers.
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Figure 26. Comparison of the Mach numbers immediately before and after the bare propeller for
varying free-stream Mach numbers.
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Figure 27. Comparison of the densities immediately before and after the bare propeller for
varying free-stream Mach numbers.
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Figure 28. Comparison of the pressures immediately before and after the bare propeller for
varying free-stream Mach numbers.
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Figure 29. Comparison of the pressure rise across the bare propeller for incompressible flow and
compressible flow of varying free-stream Mach numbers.
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Figure 30. Comparison of the velocities throughout the streamtube between incompressible and
compressible flow of the same free-stream velocity for the bare propeller.
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3.2.4. Discussion
It is concluded in the NACA report “Compressible-Flow Solutions for the Actuator Disk Theory”
[5] that the isentropic propulsive efficiency of the bare propeller is the same for compressible and
incompressible flow. It is found that the propulsive efficiency of the bare propeller does differ,
although very slightly, between compressible and incompressible flow at very large power

coefficients for low subsonic free-stream Mach numbers.

Table 2 gives the propulsive efficiency of both the compressible and incompressible bare
propeller at the maximum power coefficient before the flow is sonic at station 1 for free-stream
Mach numbers ranging from very low to very high subsonic values. As a check, these propulsive
efficiencies are found to be consistent with the values obtained by the NACA report for M,, of
0.6, 0.7, 0.8, 0.85, and 0.9. The propulsive efficiency of the bare propeller is observed to be

approximately the same for compressible and incompressible flow for high subsonic free-stream
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Mach numbers M. This is because at high free-stream Mach numbers the flow immediately
before the disk becomes sonic at very low power coefficients that little to no change in the
propulsive efficiency can be observed as shown in Figure 18. When looking at the case for M,, of
0.2 where an extremely large power coefficient is required to have sonic flow before the disk, a
0.005 increase in the propulsive efficiency between the compressible and incompressible flow is

observed in

Table 2. As M,, increases, the change in the efficiency practically goes to zero.
Since the propulsive efficiency is only dependent on the ratio of the far downstream and upstream
velocities as seen in equation 3-29, and if the propulsive efficiency for the bare propeller is the

same for compressible and incompressible flow, then logically the same conclusion can be made

for the velocity ratio % Furthermore, since the velocity ratio % given in equation 3-26 only
0 0

Ag
disk

depends on the area ratio for a given power coefficient, the same conclusion can also be said

A
for —2. However,
Adisk

Ay
Aqisk

Table 2 shows a 0.038 difference in

and a 0.091 difference in % between compressible and
0

incompressible flow for M, of 0.2 at a maximum power coefficient of 58.7, showing that the

Ao
disk

is visible

propulsive efficiency do differ in the most extreme cases. This slight difference in

in Figure 21 for M, of 0.40 and 0.25 and the difference increases with increasing Cp up to the

point where the flow before the disk is sonic. Again as a check, the values given in

Table 2 for Ai and % are found to be consistent with the results in the NACA report for M,, of
disk 0

0.6, 0.7, 0.8, 0.85, and 0.9.

The same trend can be seen throughout the total thrust coefficient, the dimensionless mass

AA3 the velocity ratio % and the Mach ratio % as shown in Figure 19 to
i 0

i) i)
disk 0

flowrate, the area ratio
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Figure 24. The curves for these dimensionless variables appear to fall on top of each other up to

the point where the flow becomes sonic before the disk. This is more evident in the total thrust

coefficient, the velocity ratio % and the Mach ratio % where there is no deviation in the curves
0

0’
even at the lower free-stream Mach numbers such as 0.4 and 0.25. However, a slight deviation

Az
Aqisk

can be observed for the dimensionless mass flowrate and the area ratio at the lower Mach

numbers.

Next, the flow variables across the bare propeller are compared for compressible flow between
varying free-stream Mach numbers. Figure 25 to Figure 29 show that there is a rise in pressure
and density but a drop in velocity and in turn the Mach number across the disk. The difference in
the pressure, density, and the velocity across the disk increases with the power coefficient and is
more prominent when the free-stream Mach number is higher. When comparing the solutions
between the compressible and incompressible flow of the same free-stream velocity, the pressure
rise across the disk is much greater for compressible flow than for incompressible flow while the
incompressible disk velocity is between the values of the velocity immediately before and after
the disk for compressible flow as observed Figure 30 and Figure 31. These results are consistent

with the findings of Delano and Crigler [5].

67



3.3. Compressible, Ducted Propeller

This section will focus on the governing equations for the compressible, ducted propeller. The
propeller is treated an actuator disk that is encased by a constant area duct having a cross-
sectional area of Agjsk-

Note that the development of the performance parameters and the method of solution for the
ducted propeller are similar if not the same to what was done for the bare propeller. Note that the
power addition by the propeller Py, the total thrust Ty, the propeller thrust Ty, the power
coefficient, the total thrust coefficient, and the propulsive efficiency in equations 3-1 to 3-4 that
were established for the bare propeller also apply to the ducted propeller. However, due to the
addition of the duct to the propeller assembly, the total thrust experienced by the flow is now the
sum of the thrust exerted by the propeller and the lip thrust exerted by the duct lip

Tiotal = Tprop + Tiip (3-30)
Next, the alternative forms of the power and thrust coefficient in equations 3-8 and 3-10 will be

put only in terms of the velocity ratio % By asserting that A; = Agisx and po = p3 to the
0

conservation of mass between station 0 and 3,
PoAoVo = p3A3V;3 (3-31)
the ratio of the far upstream area to the disk area can be found

Ay _ V3
Agisk Vo

(3-32)
By substituting equation 3-32 into 3-8 and 3-10, the power coefficient and the total thrust

- . \
coefficient are now only in terms of V—3
0

C, = X—Z(Q’—Z)z - 1) (3-33)
cT=zz—z(z—z—1) (3-34)

This form of the power and total thrust coefficients are only for the ducted propeller since the
relation between the area ratio and the velocity ratio in equation 3-32 is not true for the bare
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propeller. Note that this form of the power and the total thrust coefficients are also the same for

the incompressible ducted propeller.

3.3.1. Summary of Governing Equations
The complete set of the governing equations for the compressible ducted propeller are

summarized below.

.
Mo = Vo (v-22) ° (3-35)
Adisk _ Mo [1+5M? #tll)
A_los M <1+VT'1M3> (3-36)
Y=1yz2 %1
p 1
. (P—:)y (3-38)
X—; = %% (3-39)
p _1
M3=V3(y-p—§) i (3-40)
m = p;AgiskV1 (3-41)
Trotal = M(V3z — Vo) (3-42)
Torop = M(Vz — Vy) + Agisk(P, — Py) (3-43)
Tlip = Tiotal — Tprop (3-44)
5 1
. _ Y-1
=2 (3) (- 1) (1 2 (1- ()
i
+ i (1 TRV (1 - (X—)2)>Y —1 (3-45)
C, = z—((z—)z - 1) (3-46)



vi-v§

Pinput =m > (3-47)
—2Vs(Vs _ -
CT_ZVO(VO 1) (3-48)

2
MNprop = 5 (3-49)
Vo

As stated previously for the bare propeller, these governing equations provide a system of
equations to determine the flow variables before the actuator disk and throughout the slipstream
and the performance of the ducted propeller in terms of the free-stream flow variables vy, pg, Py,

and V; and the disk area Agjsk-

3.3.2. Method of Solution
The method of solution for the ducted propeller is the same as for the bare propeller. The power
addition by the propeller to the flow Py, is specified, along with the disk area Ag;sk, and the
following free-stream flow variables y, po, Py, and V,. With these six inputs, there are a total of
fifteen unknown variables left to determine, which are the following flow variables Ag, My, My,
p1, P1, V1, M3, and V3 and the following performance parameters of the ducted propeller T sk,
Tiotab Tiip, C1y Cp, Mprop.and m. These fifteen unknown variables are solved in Engineering
Equation Solver (EES) for the same v, po, Py, and Agisx in terms of the power coefficient Cp for
varying values of M, using the fifteen non-linear governing equations summarized in section
3.3.1. Beginning from 0.001, the power coefficient Cp is increased until the flow before the
actuator disk becomes sonic for each value of M.

The solutions are nondimensionlized by the given free-stream flow variables and the disk area
-p,

giving 2o th and 22
Po’ Po’ Vo' Mg’ Agisk’ PoVoAdisk’ %povg '

The lip thrust and the propeller thrust are also

made dimensionless by the reference force to give the lip thrust and propeller thrust coefficients,
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Tlip nd Tprop

I > I >, respectively. The dimensionless solutions are represented against the
5PoAdiskVo >PoAdisk Vo

power coefficient Cp for varying values of M, in the following section.

3.3.3. Results

The solutions to the ducted propeller are determined for the same free-stream flow conditions and
disk area as the bare propeller given in Table 1. Compressible-flow solutions are obtained for the
free-stream Mach number of 0.25, 0.40, 0.55, and 0.7, while incompressible-flow solutions are
obtained for the free-stream velocity equal to Mach 0.55 at sea level static conditions for
comparison. Figure 32 shows the maximum power coefficient required to obtain sonic flow
immediately before the disk plotted against the free-stream Mach number M,. Other
dimensionless parameters are plotted against the power coefficient in Figure 33 to Figure 43.

14

10 A

Maximum Power Coefficient, C, (M

O T T T T T T T T T T T T T T T T T T T T T T
020 025 030 035 040 045 050 055 060 065 070 0.75 0.80

Free-stream Mach Number, M,

Figure 32. The plot gives the maximum power coefficient to drive the propeller before the flow is
sonic at station 1 against the free-stream Mach number for the ducted propeller.
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Figure 33. Propulsive efficiency of the bare and ducted propeller for incompressible flow and
compressible flow of varying free-stream Mach numbers.
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Figure 34. Comparison of the dimensionless mass flowrate between incompressible flow and
compressible flow of varying free-stream Mach numbers for the ducted propeller.
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Figure 35. Comparison of the far upstream cross-sectional area for incompressible flow and
compressible flow of varying free-stream Mach numbers for the ducted propeller.
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Figure 36. Comparison of the velocity immediately after the ducted propeller for incompressible
flow and compressible flow of varying free-stream Mach numbers. Note that V, = V;.
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Figure 37. Comparison of the Mach number immediately after the ducted propeller for varying

free-stream Mach numbers. Note that M, = M3.
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Figure 38. Contribution of the propeller thrust and lip thrust to the total thrust at various

freestream Mach numbers for incompressible and compressible flow.
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Figure 39. Comparison of the velocity immediately before the ducted propeller for
incompressible flow and compressible flow of varying free-stream Mach numbers.
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Figure 40. Comparison of the Mach number immediately before the ducted propeller for varying
free-stream Mach numbers.
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Figure 41. Comparison of the density immediately before the ducted propeller for varying free-
stream Mach numbers.
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Figure 42. Comparison of the pressure immediately before the ducted propeller for
incompressible flow and compressible flow of varying free-stream Mach numbers.
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Figure 43. Comparison of the pressure rise across the disk for incompressible flow and
compressible flow of varying free-stream Mach number for the ducted propeller.

3.3.4. Discussion
Figure 33 shows that the ducted propeller achieves the same propulsive efficiency for
compressible and incompressible flow regardless of the free-stream Mach number. Figure 34 to

Figure 37 also conveys that the dimensionless mass flowrate, the area ratio AA"

, the velocity
disk

ratio :’,—3 and the Mach ratio % are the same for both incompressible and compressible flow,
0 0

which all give consistent results. If AA"

is the same for the ducted propeller regardless of the
disk

compressibility of the flow, then it must also be true for % and the dimensionless mass flowrate
0
Ao

since they only depends on
Adisk

other than the power coefficient. When compared to the bare

propeller, the ducted propeller has a higher propulsive efficiency, which is also consistent with
the results for the incompressible ducted propeller.
Figure 38 shows that the ducted propeller also achieves the same total thrust for both

compressible and incompressible flow, but the individual contribution of the propeller thrust and

7



the lip thrust to the total thrust differs not only between incompressible and compressible flow but
also between varying free-stream Mach numbers for compressible flow.

Figure 39 to Figure 43 show that the velocity and thus the Mach number increase but the density
and pressure are decrease immediately before the disk with increasing free-stream Mach
numbers. When comparing between incompressible and compressible flow of the same free-
stream velocity, the drop across the disk is much greater for compressible flow than for

incompressible flow as shown in Figure 43.
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3.4. Chapter Summary
In concluding remarks, it is found that the results of the bare propeller agree with those of Delano
and Crigler [5]. When measured against the power coefficient, the propulsive efficiency of the
bare propeller is approximately the same for both incompressible and compressible flow,
regardless of the free-stream Mach number, up to the point where the flow immediately before
the disk is sonic. When looking at the extreme cases of very low subsonic Mach numbers at very
high power coefficients, the propulsive efficiency of the bare propeller does differ between
compressible and incompressible flow, but such cases are impractical in real applications of
propellers. It is also found that the ducted propeller also achieves the same propulsive efficiency
and has the same total thrust coefficient, regardless of compressibility or the free-stream Mach
number. However, the individual contribution of the propeller thrust and the lip thrust to the total
thrust differ greatly between compressible and incompressible flow. Agreements with the results
of Delano and Crigler [5] not only builds confidence in the current method of solution and the
compressible-flow results obtained for the bare and ducted propeller but also the results that will
be presented for the compressible bare and ducted turbine, which is the main interest of the
current study. The specific case where the free-stream velocity is zero for the bare and ducted

compressible propeller is further investigated in Appendix C.
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4. APPLICATIONS OF THE COMPRESSIBLE ACTUATOR DISK THEORY -
TURBINE
4.1. Introduction

This chapter will focus on applying the compressible Actuator Disk Theory developed in Chapter
2 to the cases of the bare and ducted turbine. A turbine is an energy-extracting device that
extracts useful energy from the total kinetic energy of the flow stream at the disk plane and
experiences a drag force exerted by the flow. A well-known measure of its performance is its
power extraction efficiency against the ratio of the far upstream and downstream velocities.
Hence, the dimensionless parameters such as the power extraction efficiency and the total drag
coefficient are established in this chapter for both the bare and ducted turbine.

The governing equations of the Compressible Actuator Disk Theory are used to determine the
flow variables at each station and the performance of both the bare and ducted turbine in terms of
the free-stream flow conditions, the disk area, and the velocity ratio at the far upstream to the far
downstream. The solutions to the bare and ducted turbine are made dimensionless by the free-
stream conditions and are compared between varying free-stream Mach Numbers for
compressible flow and between incompressible and compressible flow. It is important to note
that this thesis is motivated by the need to derive the parameters that can be used to predict the
performance of an ideal, small ram-air turbine (microRAT) [4] for high subsonic Mach number.
Therefore, this chapter involving the compressible Actuator Disk Theory application for the bare
and ducted turbine will be the main focus of the thesis.

To begin, the turbine is treated as an actuator disk having an area of Ags. Because the governing
equations for the compressible Actuator Disk Theory are derived in Chapter 2 assuming that the
disk is an energy-adding device, some of the equations will be tailored for an energy-extracting

device, starting with the case of the bare turbine.
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4.2 Compressible, Bare Turbine

The power extraction efficiency and the total drag coefficient will be established for the
compressible, bare turbine. Recall that the governing equations for the compressible Actuator
Disk Theory are derived for an energy-adding device that exerts a thrust force on the flow. Since
a turbine is a power-extracting device that experiences a drag force exerted by the flow, a change
of sign is necessary to the power and the total thrust equations in Chapter 2. The power extracted
by the turbine Peyiracted IS the negative of the input power P,y in equation 2-43 to signify that
work is done on the turbine by the flow

. Vi-v3
Pextracted = _Pinput =m— (4-1)

The drag force on the turbine is in the opposite direction of the flow. So, the total drag Dyga
exerted by the flow and the drag experienced by the turbine at the disk plane Dy, are in the
opposite direction of the total thrust T,,.,; and the disk thrust Tg;sx given in equation 2-41 and 2-
42
Diotal = —Trotal = m(Vy — V3) (4-2)
Deurb = —Taisk = m(Vy — V2) + Agisk(Py — P) (4-3)
Since the turbine is the only assembly within the stream tube, the total drag exerted by the flow is
equal to the drag experienced by the turbine, analogous to the equivalence of the total thrust and
the disk thrust for the compressible actuator disk
Dtotal = Dturb (4-4)
Next the power extraction efficiency and the total drag coefficient are established. The turbine’s
power extraction efficiency is introduced by dividing the extracted power in equation 4-2 by the
available power in the free-stream in an area equal to Ag4jsk

. V3-v3
Neurb = Pextracted _ ™ 5 (4_5)
rb = -1
tu Pavailable EPoAdiskvg
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Similarly, the total drag coefficient is found by dividing the total drag in equation 4-1 by the

reference force

Diotat  _ m(Vo—V3)

1 2 1 2
3PoAdiskVo  5PoAdiskVo

CD = (4'6)

An alternative form of the power extraction efficiency and the total drag coefficient will be
shown. By substituting the following mass flowrate into equation 4-6 and simplifying,
m = peAoVo (4-7)

the turbine extraction efficiency becomes

A V2\2
ur = (1 (&) ) (4-8)

Likewise, the total drag coefficient can be simplified to the following form using the mass

flowrate in equation 4-7

Cp =22 (1-3) (4-9)

Adisk Vo
While this form of the turbine extraction efficiency and the total drag coefficient may seem
unconventional, it is useful when comparing the results that are presented later in the chapter.
With the performance parameters established, the complete set of the governing equations for the

compressible bare turbine are summarized in the next section.
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4.2.1. Summary of Governing Equations

My =Vp (Y : E)_%

y+1
1 o\NTe—
Ao _ M <1+VTM6>2(V Y

Agisk Mg 1+VT_1M§
1 .
P, 1+Y%M% y-1
Py 1+YT_1M%
1
(B,
Po Po

Vi _ po_Ao
Vo  p1Adisk

1

M3:V3(Y'%) ’

Az _ Vo
Ay V3
Y+1
Y=1,,2\ 2(v—1)
As M, (15 ME\2OD
Adisk M3 1+YT_1M§

Y
P, 1+—y;1M§ y-1
P2 _ 2
Py 1+=m3

m = pyAgiskVa

. V3-V3
Pextracted = M >

Diotal = rh(VO - V3)

Deyrp = m(Vy — V3) + Agis(Py — P2)

Dtotal = Dturb

Cp=2:"-(1-32)

Aqisk Vo
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ears = 1 (1 (2)') (427)

Aqgisk
These governing equations provide the necessary system of equations to determine the flow
variables throughout the slipstream and the performance of the turbine in terms of the free-stream

conditions, the disk area, and the far downstream velocity.

4.2.2. Method of Solution

The governing equations are derived for given free-stream conditions which are y, pg, Py, and Vy,
the disk area Agjsk, and the far downstream velocity V;. With these six inputs, the unknown
variables left to determine are the following flow variables Ay, My, My, p1, P1, V1, My, p2, P2, Vs,
Az, M3 and the turbine’s performance parameters Dy, Diotal, Pextracted» Cb» Neurb, and m, all of
which sums to eighteen unknown variables. These eighteen unknown variables can be solved
using the eighteen non-linear coupled equations summarized in section 4.2.1.

The main variable of interest, the extracted power Poyiracted: 1S NOndimensionalized using
Buckingham Pi Theorem to find the dimensionless independent variables. Peyiracteq Can be
expressed as a function of the given variables v, Vy, po, Py, Agisk,» and V5. With a total of seven

variables and three physical dimensions, the four resulting nondimensional parameters are

1

P Po\ 2 V. . . .
poxtacted Ty (y-—“) 2.y, and =% of which the first and second are the power extraction
EpoAdiskvo Po Vo

efficiency and the free-stream Mach number M,. The velocity ratio % which will be denoted by
0

r, and the free-stream Mach number M, are made into independent variables while y is kept as a
constant. Note that r can never be zero since it is impossible to extract 100% of the flow’s kinetic
energy into useful power. The maximum value of r is 1 which corresponds to no power
extraction made by the turbine. Therefore, for a given vy, po, Py, and Agjsk, the eighteen unknown
variables are solved in Engineering Equation Solver (EES) in terms of r, ranging from 0.001 to 1,

for varying values of M.
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Lastly, the solutions are made dimensionless by the free-stream flow conditions and the disk area

P1 P2 P1 P2 Vi Vo My My A m

to give the following nondimensional parameters 00 00" Pe o' Vo' Vo' My My Aqia PeVoha and

A . N . N .
n 2. The pressure-difference across the disk is also non-dimensionalized by the dynamic
disk

pressure associated with the free-stream velocity introducing the pressure-difference coefficient

P—Py

1
ZPoV3

, Which is positive for a pressure rise and negative for a pressure drop across the disk. Note

that due to the implicit nature of the compressible flow equations given in section 4.2.1, it is more
effective to turn the dimensional solutions obtained in EES into dimensionless parameters than it
is to develop dimensionless representations of the flow variables. As a result, dimensional

equations are presented but dimensionless solutions are presented in the next section.

4.2.3. Results

The compressible-flow solutions are determined for the disk area and the sea level static free-
stream flow conditions given in Table 1 and for the free-stream Mach numbers of 0.4, 0.6, and
0.8, as was done for the compressible propeller. To see the effects of compressibility on the flow
variables, incompressible-flow solutions are also obtained for the same given variables in Table 1
and for the free-stream velocity V, equivalent to Mach 0.6 at sea level static conditions.

The Betz limit for the compressible bare turbine and the velocity ratio r at which it occurs are
given in Table 3 for M, ranging from 0.4 to 0.8. The effect of the free-stream Mach number on
the Betz limit and its corresponding velocity ratio r is also presented in Figure 45 to Figure 47.
The power extraction efficiency, the total drag coefficient, the dimensionless mass flowrate, the
ratios of the far upstream and downstream areas to the disk area, and the dimensionless flow
variables immediately before and after the disk are plotted against the velocity ratio r for M, of

0.4, 0.6, and 0.8 in Figure 44 and Figure 48 to Figure 57. When applicable, the dimensionless
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incompressible-flow solutions for V, equivalent to Mach 0.6 at sea level static conditions are also

included in the plots. These plots are discussed in the next section.

Table 3. Table of the Betz limit for the bare turbine between compressible and incompressible
flow.

Mo 0.8 0.7 0.6 0.5 0.4 | Incompressible
velocity ratio | 0.297 | 0.307 | 0.315 | 0.321 | 0.325 0.333
Betz limit | 0.614 | 0.609 | 0.605 | 0.601 | 0.598 0.593
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Figure 44. Comparison of the bare turbine’s power extraction efficiency for incompressible flow
and for compressible flow of varying free-stream Mach numbers.
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4.2.4. Discussion
The plots in the previous section are discussed below in the order that they appear starting with
the power extraction efficiency and the Betz limit for the compressible bare turbine. Note that
when the velocity ratio r is 1, the flow variables immediately before the disk and in the slipstream
are equal to those of the free-stream and the pressure drop across the disk is zero since no power
extraction is being made by the turbine.
Power Extraction Efficiency and the Betz Limit for the Compressible, Bare Turbine
The Betz limit is the maximum percentage of power that a turbine can theoretically capture from
the total kinetic energy of the flow. For incompressible flow, the Betz limit and the
corresponding velocity ratio r was determined algebraically in Chapter 1 by differentiating the
power extraction efficiency with respect to r and setting the derivative equal to zero. For

compressible flow, however, the Betz limit cannot be solved in closed-form due to the implicit

nature of the compressible-flow equations and is therefore determined numerically.
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Figure 44 shows that the bare turbine has a slightly higher power extraction efficiency at small
values of r for compressible flow than for incompressible flow. Figure 45 further shows that as
the free-stream Mach number M, increases, the Betz limit slightly increases from the well-known
value of 0.593 for incompressible flow and occurs at a lower velocity ratio r than that of
incompressible flow. This trend is also observed in Figure 46 where the maximum power
extraction efficiency increases with increasing M,. Likewise, Figure 47 shows that as the
maximum power extraction efficiency increases, the velocity ratio r at which it is achieved
decreases.

The slight increase in the Betz limit and the decrease in the corresponding velocity ratio r with the
higher M,, are shown to be different to the third decimal place in Table 3. When comparing
between incompressible and a M, of 0.8, the Betz limit roughly increased by 0.021 while the
corresponding velocity ratio r decreased by 0.036.

Total Drag Coefficient

For small velocity ratios r, a slight increase in the total drag coefficient with increasing M,, can be
observed in Figure 48 and Figure 49. As r approaches 1, however, the slight increase in the total
drag coefficient becomes negligible.

Mass Flowrate

The dimensionless mass flowrate has a trend consistent to that of the total drag coefficient.
Figure 50 shows that the dimensionless mass flowrate slightly increases as M,, increases for small
values of r but becomes indistinguishable between varying Myas r approaches 1.

Area Ratios

For small values of r, Figure 51 and Figure 52 shows a slight difference in the ratios of the far

0

. A A
upstream and downstream areas to the disk area ( " and —2
di

sk Aqisk

) not only between compressible

and incompressible flow but also between varying M, for compressible flow. Given the same

disk area Agjsk, the far upstream area A, and the far downstream area A are slightly larger for
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compressible flow than for incompressible flow. The same areas are also larger for a higher M,
for compressible flow. This observation is consistent with the statements made for the Betz limit

and the total drag coefficient. At any given r, the power extraction efficiency in equation 4-8 and

the total drag coefficient in equation 4-9 varies only with

%0 and since -2 s slightly greater
d

Adisk’ Adisk
for a higher My, the power extraction efficiency and the total drag coefficient follows the same
trend. Note that for r equal to 1, A, and A5 are equal to the disk area since no power is being
extracted by the turbine.

Flow Variables Immediately Before and After the Disk

Figure 53to Figure 57 show that there is a rise in velocity and thus the Mach number but a drop in
density and pressure across the disk for compressible flow and that the difference in the flow
variables immediately before and after the disk is greater for the higher M,. Note that the Mach
after the disk is greater than the free-stream Mach when M, is equal to 0.8 for r roughly greater
than 0.52 as shown in Figure 53. This is also true for the velocity after the disk for r roughly
greater than 0.6 as seen in Figure 54.

Compressible and Incompressible Flow

The compressible- and incompressible-flow solutions for the bare turbine are compared for the
same free-stream velocity V, which is equivalent to Mach 0.6 at sea level static conditions. For
small values of r, the power extraction efficiency, the total drag coefficient, and the dimensionless
mass flowrate are slightly greater for compressible flow than for incompressible flow, although
the difference becomes negligible as r approaches unity. Figure 57 also shows that the pressure
drop across the disk is also greater for compressible flow than for incompressible flow. In the
next section, the compressible Actuator Disk Theory will be extended to the ducted case of the

turbine.

95



4.3. Compressible, Ducted Turbine
The following section will focus on the compressible ducted turbine. Note that the establishment
of the performance parameters and the method of solution for the ducted turbine are very much
similar if not the same to what was done for the bare turbine. The power extracted by the turbine
Pextracted, the total drag exerted by the flow Dy, the drag experienced by the turbine at the
disk plane Dy,,, the power extraction efficiency, and the total drag coefficient established for the
bare turbine in equations 4-22 to 4-27 also apply to the ducted turbine. However due to the duct
enclosing the turbine, the total drag exerted by the flow on the duct-turbine assembly is now the
difference of the drag experienced by the turbine and the lip thrust exerted by the duct inlet on the
flow
Dtotal = Dturb — Tlip (4-28)

Next, the alternative forms of the power extraction efficiency and the total drag coefficient in
equations 4-26 and 4-27 are further simplified. By asserting that A; = Agisx and py = p3 to the

conservation of mass between the far upstream and the far downstream stations

PoAoVo = p3A3V;3 (4-29)
the ratio of the free-stream area to the disk area AA° is found
disk
Ao _ Vs _ .
Agisk Vo r (4 30 )

By substituting equation 4-30 into 4-26 and 4-27, the power extraction efficiency and the total

drag coefficient are now only in terms of the velocity ratio r

\ VA
s = 2 (1= (&)) (4-31)
_oVa(1 Vs _
cD_zVO(1 VO) (4-32)

Note that this form of the power extraction efficiency and the total drag coefficient are specific to

Ao
disk

the ducted turbine since the relation between

and r in equation 4-30 is not true for the bare

turbine. This form of 1, and Cp is also the same for both the compressible and incompressible
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ducted turbine. The complete set of governing equations for the compressible ducted turbine are

summarized below.

4.3.1. Summary of Governing Equations

1

_ .Po)z .
Vo = Mo (v-22) (4-33)
L v+1
Adisk _ Mo 1+V%M% 2= _
Y—1,,2 L
ﬁ _ 1+TM0 y-1 )
Po (1+Y%1M§> (4-35)
p 1
P _ (H1\v -
o (PO) (4-36)
Vi_Po_ Ao -
Vo p1Adisk (4-37)
p _1
_ .Po) 2 i
M3 = Vs (v 22) (4-38)
m = p1AgiskVi (4-39)
. V2-V?Z
Pextracted = M 02 2 (4-40)
Diotal = rh(VO - V3) (4-41)
Deyrp = m(Vy — V3) + Agis(Py — P2) (4-42)
Tlip = Dturb — Dtotal (4-43)
1
Tip o (Va) (1 V2 =1z (Y2)? 1))
e =2 (1) (1- ) (1+ 225 (3 1)
v
2 vz (Y 1)) =
o (1 TR EYE ((V) 1)) 1 (4-44)
—9Vs(, Vs .
co-22(1-9 (o5
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e = 2 (1= (2)) (446)

Again, these governing equations provide the necessary system of equations to solve for the flow
variables before the disk and throughout the slipstream and the performance of the ducted turbine

in terms of the free-stream flow conditions vy, p,, Py, and V,, and the disk area Agjsx-

4.3.2. Method of Solution

The method of solution for the ducted turbine is the same as for the bare turbine. With the
implications of the constant duct area given in equation 2-76 to 2-79, the unknown variables to
determine for the ducted turbine are reduced to the following fourteen variables Ay, Mo, My, p1,
P1, V1, M3, Dum, Diotas Tiips Pextracteds Co, Neurp @nd m. These fourteen unknown variables are
solved in Engineering Equation Solver (EES) for a given vy, pg, Py, and Agjisk in terms of the
velocity ratio r ranging from 0.001 to 1 for varying values of M,, as was done for the bare
turbine, using the fourteen non-linear coupled governing equations summarized in section 4.3.1.

Lastly, the solutions are made dimensionless by the free-stream flow conditions and the disk area

P, Vi M A m P,-P
glvmg——l—l—1 : and £—

Py’ Vo' Mg’ Agisk’ PoVoAdisk’ %povg'

In addition, the lip thrust and the turbine drag are

also nondimensionlized by the reference force which introduces the lip thrust and the turbine drag

Ty D . . .
coefficients, 1# and % respectively.  These dimensionless parameters are
ZPo dlSkVO pOAdlskV

presented in the next section.

4.3.3. Results
The compressible-flow solutions for the ducted turbine are determined for the same disk area and
free-stream conditions as the bare turbine, which are given in Table 1. The compressible-flow
solutions are again obtained for M, of 0.4, 0.6, and 0.8, while the incompressible-flow solutions

are obtained for V, equivalent to Mach 0.6 at sea level static conditions. The power extraction
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efficiency, the total drag coefficient, the dimensionless mass flowrate, the ratios of the far
upstream area to the disk area, and the dimensionless flow variables immediately before the disk
are plotted against the velocity ratio r for M, of 0.4, 0.6, and 0.8 in Figure 58 to Figure 66. When
applicable, the dimensionless incompressible-flow solutions are also included in the plots for

comparison purposes. These plots are discussed in the next section.
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for incompressible flow and compressible of varying free-stream Mach numbers.
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4.3.4. Discussion

The resulting plots are discussed below in the order that they appear beginning the power
extraction efficiency and the Betz limit of the ducted turbine. Note that when the velocity ratio r
is 1, the flow variables immediately before the disk are equal to those of the free-stream and the
pressure-drop across the disk is zero due to no power extraction by the ducted turbine.

Betz Limit

Contrary to the observations made for the bare turbine, Figure 58 shows that the power extraction
efficiency of the ducted turbine is not affected by the free-stream Mach number M, and that it is
the same for incompressible and compressible flow. This indicates that compressibility and M,
also have no effect on the Betz limit and the velocity ratio r at which it occurs. The power
extraction efficiency given in equation 4-46 is differentiated with respect to the velocity ratio r to

find the value of the Betz limit and its corresponding r. The resulting Betz limit is 0.385

3
occurring at a velocity ratio r of 0.577. In closed form expression, the Betz limit is 2 (3_5) while

its corresponding r is ? This means that the ducted turbine cannot capture more than 38.5% of

the total kinetic energy in the flow for useful power. Figure 58 shows that the Betz limit is
significantly lower and occurs at a higher velocity ratio r for the ducted turbine than for the bare
turbine.

Drag and Lip Thrust Coefficient

Figure 59 shows the total drag coefficient is also not affected by the free-stream Mach number
M, or the compressibility of the flow. This is expected since the total drag coefficient given in
equation 4-45 is only dependent on the velocity ratio r and is the same equation for
incompressible and compressible flow. However, the individual contribution of the turbine drag
and the lip thrust to the total drag differs greatly not only between compressible and

incompressible flow but also between varying M, as evident in Figure 59. The difference
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between the lip thrust and the turbine drag is the smallest for incompressible flow while the
difference increases with increasing M, for compressible flow.

Mass Flowrate

Consistent to the trend of the total drag coefficient, Figure 60 shows that the dimensionless mass
flowrate is independent of the free-stream Mach number M, and is the same for incompressible
and compressible flow.

Area Ratio

Ao

is found to be the same for
Adisk

Likewise, the ratio of the far upstream area to the disk area

incompressible and compressible flow regardless of the free-stream Mach number M,,.

Flow Variables Across the Disk

When comparing the compressible-flow variables immediately before the disk between varying
M,, the pressure and the density increases while the velocity and thus the Mach number decreases
with increasing M, as evident in Figure 62 to Figure 66 given the same free-stream pressure and
density. Note that the flow variables immediately after the disk are equal to the flow variables at
the far downstream due the constant duct area in the slipstream. As a result, the ratio of the
velocity after the disk to the free-stream velocity is the same for compressible and incompressible
flow regardless of M,. When comparing the compressible- and incompressible-flow solutions of
the same V,, the pressure-drop across the disk is greater for compressible flow than for

incompressible flow for all velocity ratios r as shown in Figure 66.
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4.4, Chapter Summary
In closing remarks, given the same free-stream density and pressure and the disk area, the bare
turbine achieves a slightly higher extraction efficiency—and total drag—for compressible flow
than for incompressible flow. When considering compressible flow, the maximum extraction
efficiency or the Betz limit is found to slightly increase while the velocity ratio r at which it
occurs decreases with increasing free-stream Mach numbers M,. This means that the
compressible bare turbine can theoretically extract slightly more useful energy from the total
kinetic energy of the free-stream flow when the free-stream flow has a higher V,. The bare
turbine can also extract more energy from the free-stream flow than the ducted turbine of the
same disk area. In fact, the maximum percentage of power that can theoretically be extracted by
the bare turbine from the total kinetic energy of the flow is significantly greater than that of the
ducted turbine. The Betz limit of the ducted turbine and the velocity ratio r at which it occurs is a

constant regardless of the compressibility of the flow.
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5. CONCLUSION AND RECOMMENDATIONS

The classical Actuator Disk Theory, also known as Froude’s Momentum Theory, is a theory that
determines the ideal performance of an energy-adding or an energy-extracting device such as a
propeller or a turbine by applying the conservation of mass, momentum, and energy to a flow
stream that is considered steady, inviscid, one-dimensional, and incompressible. Because
compressibility effects arise in real applications of such devices, the current thesis extends the
classical Actuator Disk Theory into the regime of subsonic compressible flow. The specific
motivation for the present work is to develop a mathematical model that predicts the performance
limits of a small ram-air turbine (microRAT) [4] operating at high subsonic Mach numbers for
the application of the Boundary Layer Data System (BLDS). Developed by Dr. Russell Westphal
and his team of students, the BLDS is a fully autonomous system that measures the flow
properties of the boundary layer at the surface of an aircraft in flight. Because the electronic
components of the BLDS are not rated to perform below -20°C, their performance becomes
unreliable during test flights at attitudes between 30,000 and 40,000 feet where the air
temperature ranges from -40°C to -57°C or below. The concept of utilizing a small ram-air
turbine (microRAT) to provide power to a heating element that maintains operable temperatures
inside the BLDS has previously been investigated by Victor Villa [2]. The goal of the current
thesis is to develop the compressible Actuator Disk Theory using the three laws of conservation
and isentropic thermodynamics to provide the necessary equations to predict the ideal
performance of the microRAT.

The governing equations of the compressible Actuator Disk Theory were established for two
cases: the unducted (bare) and the ducted. The unducted (bare) case considered the actuator disk
as the only assembly within the flow stream, while the ducted case considered the disk as
enclosed by a duct of the same cross-sectional area as of the disk. The compressible-flow
governing equations were then applied to determine the ideal performance of a propeller and a
turbine for both the bare and ducted cases. The application of the compressible Actuator Disk
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Theory to the bare propeller has already been investigated by Delano and Crigler [5] but was
included in the current thesis to show agreement and to build confidence in the results of the bare
and ducted turbine in compressible flow, which was the main focus of the current thesis.

The governing equations of both the classical and the compressible Actuator Disk Theory provide
a system of equations to determine the performance of the actuator disk and the flow variables
and the cross-sectional area at each of the four stations throughout the streamtube in terms of the
disk area and the free-stream flow conditions. It was shown in Chapter 1 that the unknown
variables within the governing equations of the classical Actuator Disk Theory can be made
dimensionless solely in terms of the given inputs and be solved explicitly. For the compressible
Acutator Disk Theory, some of the unknown variables within the governing equations cannot be
isolated or be expressed as a function of only the independent variables and thus have to be
solved implicitly using a numerical method. As a result, the governing equations for the
compressible theory have a mixture of both the inputs and the outputs and thus cannot cleanly be
presented as dimensionless quantities. Therefore, the governing equations were derived in
dimensional forms, and the solutions were presented in dimensionless forms.

Compressible-flow and incompressible-flow solutions were obtained for the bare and ducted
cases of the propeller and the turbine for an actuator disk cross-sectional area of 1 ft?and the free-
stream pressure, density, and specific heat ratio at sea level static conditions. The compressible-
flow solutions were determined for varying values of the free-stream Mach number while, for
comparison, the incompressible-flow solutions were determined for a free-steam velocity
equivalent to one of the various free-stream Mach numbers chosen for the compressible-flow
solutions. All of the solutions were made dimensionless by the disk area and the free-stream flow
conditions. The following conclusions were found for the ducted and bare cases of the energy-

adding device or the propeller.
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5.1.

1)

2)

Propeller — Energy-addition

When considering the case of the compressible bare propeller, the maximum power
coefficient that is required for the flow to be sonic immediately before the disk decreases
rapidly with increasing free-stream Mach number M,,.

The propulsive efficiency is approximately the same for compressible and incompressible
flow for high subsonic free-stream Mach numbers M, because the flow before the disk
becomes sonic at lower power coefficients so that negligible change can be observed in
the efficiency, which agrees with what was concluded by Delano and Crigler [5].
However, the propulsive efficiency of the bare propeller differs very slightly between
compressible and incompressible flow at very large power coefficients for low subsonic
free-stream Mach numbers. When looking at the case for M, of 0.2 at a maximum power
coefficient of 58.7, a 0.005 increase in the propulsive efficiency is observed between the

compressible and incompressible flow. Since the equation for the propulsive efficiency

is dependent only on % and if the propulsive efficiency for the bare propeller is the same
0

for compressible and incompressible flow, then logically the same conclusion can be

made for the velocity ratio % In addition, since the equation for % only depends on the
0 0

area ratio

A - .. . .
® for a given power coefficient, the same conclusion can also be said for
d

Adisk

A0 1t was found that there is a 0.038 difference in —2

and a 0.091 difference in AE}
disk disk \Y

0

between compressible and incompressible flow for M, of 0.2 with a maximum power
coefficient of 58.7, further showing that the propulsive efficiency for the bare propeller is
not be the same for compressible and incompressible flow. However, such power
coefficients are impractical in real life applications of propellers. The same conclusion is
true for the total thrust coefficient of the compressible bare propeller. The total thrust

coefficient is the same for compressible and incompressible flow for high subsonic free-
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stream Mach numbers M, but is observed to differ very slightly at large power
coefficients for low subsonic M,.

3) The ducted propeller has the same propulsive efficiency in both compressible and
incompressible flow at given power coefficients, regardless of the free-stream Mach
number.

4) The total thrust coefficient of the ducted propeller is the same for compressible and
incompressible flow, although the individual contributions of the lip thrust and the
propeller thrust to the total thrust change with varying M, for compressible flow. The
difference between the lip thrust and the propeller thrust is found to decrease as the free-
stream Mach number increases for compressible flow, while this difference is the greatest
for incompressible flow.

5) When comparing compressible and incompressible flow of the same V,,, the pressure-rise
across the disk is greater for compressible flow than for incompressible flow for both the
bare and ducted propeller.

It was found that the results of the bare propeller agree with those obtained by Delano and Crigler
[5]. In addition, it was also found that the lip thrust derived from the difference of the total thrust
and the disk thrust also agrees with the lip thrust derived by Kichemann and Weber [3]. Such
agreements built confidence not only in the current method of solution and the compressible-flow
results obtained for the bare and ducted propeller but also in the results that were also found for

the compressible bare and ducted turbine, which are presented next.
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5.2.

6)

7)

8)

9)

Turbine — Energy-extraction

The power extraction efficiency and the total drag coefficient of the bare turbine are
slightly higher for compressible flow than for incompressible flow. As the free-stream
Mach M, increases, the maximum extraction efficiency or the Betz limit for the
compressible bare turbine slightly increases from the incompressible value of 0.593,
while the ratio of the far downstream velocity to the free-stream velocity r at which the
Betz limit occurs decreases slightly from the incompressible value of 0.333. When the
free-stream Mach number is increased from incompressible to 0.8, the Betz limit is found
to increase by 0.021 while the corresponding r decreases by 0.036, showing that the
compressible bare turbine can theoretically extract slightly more useful energy from the
free-stream flow when it has a higher velocity.

The power extraction efficiency and the Betz limit and its corresponding velocity ratio r
of the ducted turbine are not affected by the free-stream Mach number M, and are found
to be the same for incompressible and compressible flow. The Betz limit of the ducted
turbine is found to be 0.385 occurring at a velocity ratio r of 0.577. This Betz limit is
0.208 lower and occurs at a velocity ratio r that is 0.244 higher than that of the
incompressible bare turbine.

The total drag coefficient of the ducted turbine is also found to be the same for
incompressible and compressible flow regardless of the free-stream Mach number M,.
While this is true, the individual contribution of the turbine drag and the lip thrust to the
total drag differs greatly not only between compressible and incompressible flow but also
between varying M,. The difference between the lip thrust and the turbine drag is the
smallest for incompressible flow and increases with increasing M, for compressible flow.
The pressure-drop across the disk is greater for compressible flow than for
incompressible flow for all velocity ratios r for both the bare and ducted turbine when

compared at equal values of the upstream velocity V.
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Overall, the analysis done in this current thesis shows that compressibility has very little
influence on the ideal performance of an actuator disk. Thus, the ideal performance of the small
ram-air turbine (mircroRAT), which was the motivation of the current work, can be determined
using the classical Actuator Disk Theory without having to worry about the effects of

compressibility.
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5.3. Recommendations
Based on these conclusions of the current thesis, it is recommended that future work considers
implementing important parameters such as rotation in the slipstream and the effect of entropy
changes due to profile and shock losses to the compressible Actuator Disk Theory for both the
bare and ducted cases. As was done in this current thesis, the compressible theory that accounts
for such parameters should be applied to determine the performance of the propeller and the
turbine with and without a duct enclosing the actuator disk. When considering the bare and
ducted propeller, solutions should also be investigated for a supersonic wake immediately behind
the actuator disk assuming that the power addition at the disk plane is greater than what is
required to produce sonic flow (M; = 1) immediately before the disk. In addition, a duct of
variable area or various inlet contour would also be useful extensions to the compressible

Actuator Disk Theory.
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APPENDICES

A Incompressible Bare and Ducted Fan
This appendix will investigate the specific case of the incompressible bare and ducted propeller
where the freestream velocity is zero. This specific case corresponds to the applications of a fan
since its purpose is to generate a mass flow for a given power input when the freestream fluid is
at rest. Therefore, the performance parameters of the incompressible bare and the ducted fan will
be established using the governing equations of the classical Actuator Disk Theory given in
section 1.2.2 for the bare case and section 1.2.3 for the ducted case, given the following is true

Vo=0 (A-1)

A.l. BareFan
Because the bare fan is simply a specific case of the bare propeller where the freestream velocity
is zero, the dimensional performance parameters of the bare propeller can be applied to the case
of the bare fan. By asserting that the freestream velocity is zero, the performance parameters from

equation 1-58 to 1-62 can be put in terms of the far downstream velocity as shown

Tiotal = MV3 (A-2)
Tran = %PAdiskV32 (A-3)
Total = Ttan (A-4)
Prnput = 5 MV? (A5)
m = pAdisk% (A-6)

Because a popular figure of merit of a fan is its ability to provide mass flowrate for a given power
input, the mass flowrate through the fan will be determined in terms of the input power and the

disk area. From equation A-5, the slipstream velocity V5 can be rearranged as follows
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1

vy = (Flper)? (A7)

m

By substituting the slipstream velocity in A-7 into the mass flowrate in A-6

m

1
. 1 (2Pinput))2
m = PAoliskg(—pt)2 (A-8)

and simplifying, the mass flowrate is expressed in terms of the input power

2 1
. 1 =
m = (E pAdisk)3 (ZPinput)3 (A-9)
Likewise, by substituting the slipstream velocity and the mass flowrate in equations A-7 and A-9
into the fan thrust in equation A-3, the static thrust produced by the fan can also be expressed

solely in terms of the input power to the fan and the disk area

1 2
1 2
Teotal = (5 PAdisk )’ (ZPinput)? (A-10)
Note that the form of the mass flowrate and the total thrust in equation A-9 and A-10 applies to

both the bare and the ducted fan. Similarly, the same analysis can be done for the ducted fan.

A.2. Ducted Fan
The dimensional performance parameters of the ducted propeller from can be applied to the

ducted fan by asserting that the freestream velocity is zero.

Tiotal = MV3 (A-11)
Tran = 5 PAdiskVZ (A-12)
Tiip = Trotal — Tfan (A-13)

Pinput = 5 MV? (A-14)

m = pAgiskVz (A-15)
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Furthermore, the lip and the fan thrust are put in terms of the power input and the disk area, as
was done for the total thrust, to show that the lip thrust is equal to the fan thrust for the ducted
fan. The fan thrust can be determined by substituting the slipstream velocity in equation A-7 and

the mass flowrate in equation A-15 into the fan thrust in equation A-12

1 1 2
Tean = 2 (PAgisk)? (Zpinput)3 (A-16)

By comparing the equations of the fan thrust and the total thrust for the ducted fan, it can be

observed that the total thrust exerted on the flow is twice the thrust produced at the fan

1 1 2
Teotal = 2 (g (PAdisi)*(2Pinput )’ ) (A-17)
Tiotal = 2Ttan (A'18 )

From equation A-13, the lip thrust is also the difference between the total and the fan thrust. By

substituting equation A-20 into A-13, it is shown that the lip thrust is equal to the fan thrust
Tlip = 2Tfan — Tan (A-19)
Tlip = Tfan ( A-20 )

The mass flowrate and the total thrust between the ducted and bare fan for two different disk

areas are compared in Figure 67 and Figure 68.

A.3.  Results and Discussion — Incompressible Bare and Ducted Fan
The mass flowrate and the total thrust are obtained in Figure 67 and Figure 68 for an actuator disk
area of 3 ft* and 6 ft* and for the free-stream pressure and density equal to that of sea level static
conditions, which are 2166.8 Ibf/ft> and 2.329 x 1073 slugs/ft* respectively. Note that the curves

for the mass flowrate and the total thrust of the ducted fan with a disk area of 6 ft* and the bare
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fan with a disk area of 3 ft” are on top of each other in Figure 67 and Figure 68, showing that the
ducted fan achieves the same mass flowrate and total static thrust as the bare fan of twice the disk
area. In addition, Figure 69 gives the contribution of the lip thrust and the fan thrust to the total
thrust for the case of the ducted fan. It can be observed in Figure 69 that the contribution of the

lip thrust and the fan thrust are the same, as expected from the equation A-22.
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Figure 67. Comparison of mass flowrate between the incompressible ducted and bare fan for two

different disk cross-sectional areas. Note that the curves for the ducted fan with a disk area of 6

ft* and the bare fan with a disk area of 3 ft? are on top of each other.

118



2800

.C
2400 Ay =6 T2 Lee®®
o°®
o....
o’

2000 - o’
— o'..
ey o'..
— L]
= 1600 - A = 6 ft2 (bare) ...-"
> ]
.!E ..... AdISk=3ft2
= o®
= 1200 - oot
ks

o* A = 3 ft? (ducted)
800 i ...0 IS
L]
..
..
i L]
400 ..- Bare
eee e e Ducted
0 T T T T T T T T T
0 200 400 600 800 1000

Input Power, P, . (HP)
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B. Lip Thrust Analysis of the Compressible, Ducted Actuator Disk Theory
To have a more complete and collective analysis of the ducted case of compressible Actuator
Disk Theory, it will be shown that the lip thrust is the difference between the total thrust and the
disk thrust as stated in section 2.3.1. Refer to Figure 15 for the station designations.
Tiip = Tiotal — Taisk (B-1)
The total thrust and the disk thrust that has previously been determined are listed below again for
easy reference.
Taisk = m(Vy — Vq) + Agisi (P, — Pp) (B-2)
Trotal = M(V3 — Vo) (B-3)
These two thrust equations will be substituted into equation B-1.
Tip = m(Vz = Vo) —m(Vy — Vi) — Agisk(P, —P1)  (B-4)

Using the conservation of mass, the far downstream velocity can be put in terms of the following

PoAgVp = p3A3V3 (B-5)
_ Po Ao .
Vy =20 20y, (B-6)

Since the density at the far up and downstream are equal and the area at station 3 is equal to the

disk area, the velocity at station 3 can be simplified.

Po = P3 (B-7)

Az = Agisk (B-8)
A

Vs = Adiosk Vo (B9)

From the assumption of constant duct area, a change of subscript can be applied since the velocity

at station 2 and 3 are equal.

V2 = V3 ( B-lO )
Vv, = 20y, (B-11)
Adisk

Therefore, by substituting equations B-10 and B-11 into the lip thrust equation in B-1
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Ay
Agisk

Tip = 1h (2 Vo = Vo ) = 1 (522-Vo = Vi) — Aaisi (P> = Py)( B-12)

The velocity at station 1 can be factored out from the first and second term of the lip thrust

equation.

Tiip = Vp (2= — 1) — Vo

disk

Adlsk_v_o) Agisk(P; —P1)(B-13)

The mass flowrate at station 0 can be substituted in.

Tip = PoVEAo (2 — 1)
Ao

~PoVEAo (=~ %) — Adisk(P2 — P1) (B-14)

Due to the assumption of constant duct area, a change of subscript can be applied since the static
pressure at station 2 is equal to the pressure at station 0.

P0:P2:P3 (B'15)

Tip = PoVAo (1 — 1)

A \%
—PoVEAo (=~ %) — Adisk(Po — P1) (B-16)

Next, the first and second term will be multiplied by the quantlty 22qisk and simplified as shown

2Agisk Ap
Ty = poVZA (— -1
lip = PoYo 02Adlsk Adisk

2Agis A
—PoVAg gt (B — ) — A (P — ) (B-17)

Aqisk

Ay _
Thip = poVo Adisk2 7~ Ad sk (Adisk 1)

Ay Vg
-3 Povo Agisk2 ( Sk) (Adlsk VO) — Aqisk(Po —P;) (B-18)

Using the conservation of mass flowrate from the control volume 0-1, a relation of the ratio 2o
disk

can be found.
PoAoVo = p1AdiskV1 (B-19)

Ao _P1Va

Adisk  Po Vo (B-20)
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Then, the area ratio is then substituted into the lip thrust equation.
P1Va) [ (PLVa) _
Tip = 3 PoVé Adgiar2 (2272) ((povo) 1)

v\ ((PeVa) _Va
~ 0oV Aan2 (22) (3272) = 72) — AP — ) (B21)
Next, the third term of the lip thrust equation will be manipulated individually.
Terms = Agjsi(Po — Pr) (B-22)
The pressure at station 0 can be factored out.
P
Terms = AgiqcPo (1 - P—O) (B-23)
Using the isentropic speed of sound relation, P, can be put in terms of py, ag, and y.
Podo _k _
Term; = Adlsk( ” ) (1 Po) (B-24)
Next, the speed of sound at station 0 can be put in terms of the velocity to Mach number ratio.

By multiplying top and bottom by 2, the final result for the third term is the following:

v P
Termsz = Agisk (‘:’ Mg) (1 - P_i) (B-25)
1 2 P
Termz = - po V5 Agisk T (1 - P—;) (B-26)

By substituting the manipulated term back, the lip thrust is now the following:

Tip = 3poV3Aaisi2 (232) ((ﬁz—;) - 1) ~2poviAan (22 ((32) - %)

~3PoVéAdsk gz (1~ 22) (B-27)

By dividing both sides by the quantity%pongdisk and simplifying the right hand side, the final

lip thrust is as shown:

cpn = 2 ) (1) (828
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Because the duct area at station 1 and the inlet are equivalent and the flow is isentropic, the flow
conditions at station 1 are the same as the inlet flow conditions. Therefore, the subscript 1 can be

replaced with i for inlet conditions.
_Tip o (Vi) (Vi_ Py, 2 (Bi_ -
ZpoV3Adiskc 2 (vo) (VO 1) (po) + yM2 (PO ) (B-29)
For isentropic, compressible flow, the following pressure and density ratios can be obtained from

the energy equation and equation of state:
P _ y-1 024 (Vi )\
P = <1 +5-Mg (1 (—VO) )) (B-30)

2 <1 + 225 (1- (“j—o)z))y_ (B-31)

By substituting the above pressure and density ratios, the final lip thrust per reference force is the

following.
=2 () (- 1) (14 23 (1- ()

2 y=1yz (1 — (W)?)) 7 ]
o <1+ _ M0(1 (vo) )> 1 (B-32)

Therefore, the resulting lip thrust from the difference between the total and disk thrust is
equivalent to the lip thrust derived by Kiichemann and Weber [3] in equation 2-73 by applying

the conservation of momentum on the control volume 0-i, as it should.

123



C. Compressible Bare and Ducted Fan

This appendix will investigate the specific case of the compressible bare and ducted propeller
where the freestream velocity is zero. As mentioned in Appendix A, this specific case
corresponds to the applications of a fan because a fan generates a mass flow for a given power
input when the freestream fluid is at rest. The performance parameters of the bare and ducted fan
will be developed using the governing equations of the compressible Actuator Disk Theory given
in section 2.2.1 for the bare case and section 2.3.2 for the ducted case, with the following
statement

Vo =0 (C-1)

C.1. BareFan
Because the bare fan is simply the specific case of the propeller where the freestream velocity is
zero, the governing equations established for the bare propeller can be applied to the bare fan

asserting equation C-1. However, because V, cannot be in the denominator of any equation, the

velocity ratio % in equation 3-15 has been replaced by the energy equation applied to the control
0

Az

= in equation 3-17 has also been replaced by the
0

volume 0-1. In addition, the area ratio

conservation of mass applied to the control volume 1-3. By doing so, the governing equations of

the bare fan are summarized below:

po_ (1 \7 i
1
P _ (P1)y .

2
Vi, vy B (C-4)

M3=V3(Y'_)Z (C-5)



Az p1 Vi
As e h C-6
Agisk Pz V3 ( )

Ay M, [1+2M2 -0
Adisk - My <1+éM%) (C-7)
Y=1y2 %1
= () ()
p 1
o= (c9)
w=%w (C-10)
m = p1AgiskV1 (C-11)
Tiotal = MV3 (C-12)
Tean = m(Vy — V1) + Agisk(P2 — P1) (C-13)
Ttotal = Ttan (C-14)
Prnput = 5 V3 (C-15)

Due to the implicit nature of the governing equations for the compressible bare fan, the mass
flowrate and the total thrust cannot be expressed solely in terms of the disk area and the power
input to the fan, as was done for the incompressible case. Therefore, the mass flowrate and the
total thrust are solved numerically. Next, the performance parameters will be developed for the

ducted fan.

C.2.  Ducted Fan
Likewise, the governing equations that were established for the compressible ducted propeller can
be applied to the ducted fan. Thus, the governing equations for the ducted fan are summarized as
shown, including the energy equation applied to the control volume 0-1, as was done for the bare
fan, and the implications of assuming a constant-area duct:

V, =V, (C-16)
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P0=P2=P3 (C'l?)

Pr_ (1 \7 ]
Po (1+Y%1M§> (C-18)
p 1
P1 _ (F1)vy -
— (PO) (C-19)
¥ Po_Vi, v Py (C-20)
Y-1 po 2 Y-1 p1
1
_
M3 = Vs (y-22) ° (C21)
m = pyAgisk Vi (C-22)
Tiotal = MmV3 ( C-23 )
Tean = m(VZ - Vl) + Adisk(Pz - Pl) ( C-24 )
Tlip = Tiotal — Tfan (C-25)
1.
Pinput = Emv32 (C-26)

However, unlike the bare fan, the performance parameters, which includes the mass flowrate and
the total, fan, and lip thrusts can be expressed in terms of the disk area and the power input to the
fan, which will be done so next. By asserting that p, = p; and A; = Ag;sx for the ducted fan, the
mass flowrate can also be expressed in the following form
m = p3A3V3 = poAgiskV3 (C-27)
The power input to the ducted fan in equation C-26 can be rearranged to give the far freestream
velocity in terms of the mass flowrate and the power input
2P; 3
o = () (c2)
By substituting the slipstream velocity found in C-28 into equation C-27, the mass flowrate is a

function of the power into to the fan

2 1
m = (F’OAdisk)3(2pinput)3 ( C-29 )
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Notice that the mass flowrate in equation C-29 is the same result for the incompressible, ducted
fan given in Appendix A. Therefore, given any power input to the fan and the same disk area, the
mass flowrate is the same for both the incompressible and compressible flow.

Likewise, by substituting the slipstream velocity in C-28 into C-23, the total thrust becomes

1
. (2Pinput)2

Tyotal = th (Rt )? (C-30)
1 1

Tiotal = rile(ZPinput)z (C-31)

By using the mass flowrate in C-29 and simplifying, the total thrust is the same as the

incompressible, ducted fan given in Appendix A.

Tiotal = (pAdisk)%(ZPinput)g (C-32)
Furthermore, it can be shown that the fan thrust of the incompressible ducted fan, which will be
denoted as Tgap incomp.iS the average of the lip and fan thrust of the compressible ducted fan. By
asserting equation C-16 and C-17 into equation C-24, the fan thrust can be expressed as
Tran = m(V3 — V1) + Agisk(Ps — Py) (C-33)
By substituting in the total thrust in C-23 and the fan thrust in C-24, the lip thrust in C-25

becomes

Tyip = mVs — (Vs = Vi) + Agisc(Ps —P))  (C-34)
By simplifying, the lip thrust is
Tiip = mV; — Agisk(Ps — Py) (C-35)

Recall from Appendix A that the fan thrust of the incompressible ducted fan is

1 1 2
Tfan,incomp = E (pAdisk)3(2Pinput)3 ( C-36 )
Now, it will be shown that the fan thrust of the incompressible ducted fan is the average of the fan

and lip thrust of the compressible ducted fan

1
Tfan,incomp =3 (Tfan + Tlip) (C-37)
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By substituting the lip thrust in C-35 and the fan thrust in C-33,

1..
Tfan,incomp = 3 (m(V3 - Vl) + Adisk(P3 - Pl)
+mV; — Agisk(P3 — Pp)) (C-38)
and simplifying, the incompressible fan thrust is
1.
Tfan,incomp = Py mV; ( C-39 )

Next by substituting the slipstream velocity in C-28 and the mass flowrate in C-29,

1
1 . (2Pinput)2z

Tfan,incomp = 2 m (Tpt)z ( C-40 )
1.1 2

Tfan,incomp = Erhz(zpinput)2 (C-41)

Tranincomp = %(poAdisk)i(ZPinput)%(zPinput)% (C-42)
and simplifying, the incompressible fan thrust is the same as that was given in C-36. Therefore,
the incompressible fan thrust is the average of the compressible fan and lip thrust. Next, the
performance parameters of the fan will be compared between compressible and incompressible

flow.

C.3.  Results and Discussion — Compressible Bare and Ducted Fan
All solutions are determined for the free-stream pressure and density equal to that of sea level
static conditions, which are 2166.8 Ibf/ft* and 2.329 x 1073 slugs/ft* respectively. The mass
flowrate and the total thrust of the compressible fan are compared between the bare and the
ducted case in Figure 70 and Figure 71 for an actuator disk area of 3 ft*> and 6 ft>. It can be
observed that the compressible bare fan of twice the disk area performs slightly better than the
ducted fan, providing slightly more mass flowrate and total thrust. This is different from the
incompressible case where the bare fan of twice the disk area performs the same as the ducted

fan. In addition, the mass flowrate and the total thrust of the bare fan are compared between
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incompressible and compressible flow in Figure 72 and 73, respectively, at two different disk
areas of 3 ft” and 6 ft>. These two figures show that the bare fan provides slightly more mass
flowrate and total thrust at high input power when the flow is considered compressible.
Likewise, the mass flowrate and the total thrust of the ducted fan are also compared between
incompressible and compressible flow in Figure 74 and 75; however, these two performance
parameters are the same for both compressible and incompressible flow for any power input to
the fan at a given disk area. Lastly, Figure 76 shows that the average of the lip and fan thrust of
the compressible ducted fan is equal to the lip thrust (and in turn, the fan thrust) of the

incompressible case, as expected by the equation given in C-37.
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Figure 70. Comparison of the mass flowrate between the compressible ducted and bare fan at two
difference disk areas.
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Figure 71. Comparison of the total thrust between the compressible ducted and bare fan at two
different disk areas.
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Figure 72. Comparison of the mass flowrate between the bare compressible and incompressible

fan at two different disk areas.
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Figure 73. Comparison of the total thrust between the bare compressible and incompressible fan
at two different disk areas.
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Figure 74. Comparison of the mass flowrate between the ducted incompressible and compressible
fan at two different disk areas.
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Figure 75. Comparison of the total thrust between the ducted compressible and incompressible
fan at two different disk areas.
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Figure 76. Comparison of the total, fan, and lip thrust between the ducted compressible and
incompressible fan at a disk area of 6 ft’.
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NOMENCLATURE
Known: Py, mog Mg

Far upstream
symbols: Vg, P, Mg, rhog, Ag. Py

Immeqdiately upstream of actuator disk
symbols: Vy, Py, My, oy, Agizi. Py

Immediately downstream of acfuator disk
symbols: Vz, Pp, My, Moy, Prp

Far downstream
Symbols: Vg, Pz, M, mos, Az, Pis

NOTES

The speed of sound is denoted by the letter 'c' instead of 'a’ as defined in the thesis.

SPECIFICATIONS
Specify P, o, M, and A, of the freestream
Po = 147 - 144 [bif]

pr = 0.002329 [slug/ft]

Mo = 0.4
Agsk = 1 [
r = 1.4

Specify power coefficient of the actuator disk

Ce = 041

Note: The power coefficient is commented out when a parametric table is used.
Assumptions

Pg = Py

pr = p3

Short hands

o v
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ORDER OF EQUATION
SOLVING FOR ALL NECESSARY CONDITIONS AT 1

Far upstream conditions at 0

Po
Cto = - —
po
W)
Mo = —
Co
Solve for Vi
Vefocity ratio at 3 to 0
V3 Ce [1 ! 2]
—_ = i+
Va Ap
Adisk
Solve for Vs

Far downstream condifions at 3

Ps
s = f
p:
W
Ma = —
C3
Solve for M3
Tofal Thrust

T = m - [Ws — Vo]
Solve for T

Pressure Ratio 0-1

P =]
ﬁ=[1 + K1 - Mo?]
P 2
?=[1 + Kkl - Mi?]
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Pu = Pn
Solve for P4
Density ratio 0-1

1
pt _ [P [_]
po Po
Solve for rhoy

Energy equation 0-1

Ea = Vo + K2 - P_]
2 po

E1 = Vi + k2 - P_1
2 pt

Ea = Es

Solve for V¢

Velocity ratio 0-1

Vio= Vo - e Ar

pt Adex
Solve for A g,

SOLVING FOR ALL NECESSARY CONDITIONS AT 2
Area Ratio 0-3

A pn Vo

A pr Vi

Sofve for Az
Area ratio 2-3

7+ 1
A Mz 1+ K1 - M2 Ilq-rn)
Adist UK} 1+ K1 - Mz?
Solve for M;

Pressure ratio 2-3
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Z: S e k- Mp2]"
P 2 K2
— = |1 k1 - M:
=1 ]
Pz = Ps

Solve for P»

Density ratio 2-3

o [P]H

p3 Fo

Solve for rho,

Energy equation

Ez = V2 + k2 - L
2 pz

Es = Vs + k2 - P_3
2 p3

Ez = E:

Solve for Ve

Thrust equation af disk

NEED Vy Vg Py Pa
Toeg = M - [Va = V1] + A - [P2 - P4 ]

Tiotal = Tpmp

Efficiency and Coefiicients

Power available within free-flowing wind in area equal to rofor area A gz,

s A
Pawiase = po - Vo© - ——
2
Power coefficient
Pinput
Cp = ——t
Pavaiianie
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Total Thrust Coefficient

Cr = Tiotal —
po - o2 - %
Efficiency
-
Cp

Mass Flowrate

m = Vi - pi - Adsk

NORMALIZATIONS
Ratios
W
W = —
10 va
W2
W = -
20 Va
W
Ve = g
M1
M = 0
10 Mo
Mz
M =
20 Mo
Mz
Msg =
30 Mo
P4
P =
1 Pa
Pz
=1 = =
= Pa
pin = AR
po
_ Pz
pzm =
po
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Ao
A =
o Adisk
Az
Az =
! Adizk

Pressure-rise Coefficient

Pz — P4

Cep = ——
05 - po - Vo~

Dimensionless mass flowrate
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NOMENCLATURE
Knowrn: Py, rhog My

Far upstream
symbols: Viy, P, My, mhog, Ag. Py

Immeqdiately upstream of actuator disk
symbols: Vy, Py, My, Moy, Agae. Py

Immeqdiately downstream of acfuator disk
symbols: Vo, Po, Mo, Mog, P

Far downstream
symbols: Vg, Py, Mg, mog, Ag, P

NOTES

The speed of sound is denoted by the letter ‘¢’ instead of '3’ as defined in the thesis.

SPECIFICATIONS

SPECHY Pingys 0, M, 8nd A ey, OF the freestream
Mo = 0.4

Po = 147 - 144 [IbffitY)

po = 0002329 [slugfft]

Specify power coefficient at aciuator disk

Ce = 01

Note: The power coefficient is commented out when a parametric table is used.
Assumptions

Pa = P

pr = p3

Az = Amec

Short hands
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o oI
2
k2 = —1
y — 1
ORDER OF EQUATION

SOLVING FOR ALL NECESSARY CONDITIONS AT 1

Far upstream conditions at 0

Po
co = r -
po
W)
Mo = —-
Cao
Solve for Vi
Velocity ratio at 0-2
Vs co 107721
—_— = 1 +
Vo Ag
Adiek
Solve for Vs

Far downstream conditions at 3

V3
C3

Solve for M3

Total Thrust

Tow = M- [Vz - Vg ]
Soive for T

Pressure Ratio 0-1

Pm _ . 2 &
ﬁ_[1+k1 Mo* ]
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Pu 2 k2
— =1 +kl - M

P1 L ]
Pu = Pn

Solve for Py

Density ratio 0-1

1
pt _ [Py [_]
po Po
Solve for rhoy

Energy egquation 0-1

Eq = Vo + k2 - P_']
2 po

E1 = —Vl + k2 - P_1
2 pt

Ea = Ei

Solve for V¢

Velocity ratio 0-1

Vi _ et A

Vo p1 Aask

Solve for A g,

SOLVING FOR ALL NECESSARY CONDITIONS AT 2
Area Ratio (-3

A pr Vo

Aa p: Vs

Solve for Az
Area ratio 2-3
voe 1

Az Mg H1 + k1 - M:? ]{J-m )J

Adx Mz 1+ K1 - Mz?

Solva for Mz
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Pressure ratio 2-3

P 2 K2
— = [1 + k1 - M;

Pz [ ]
Pz = Pn

Solve for P»

Density ratio 2-3

o [P_=]H

p3 Po

Solve for rhoz

Energy equation

Ez: = V2 + k2 - P_Z
2 p2

E; = Vs + K2 - P_3
2 H

Ez = Es

Solve for V;

Thrust eguations

NEED V, V. P, P,
Tweg = M - [Va — W1 ] + Asee - [Pz — P1]

T = Twa — T

Efficiency and Coefficients
Power avaiiable within free-flowing wind in area equal to rofor area A gig.

Adisx

Pawiate = po - Vot - >

Power coefficient
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Co = Pinput
P avaiianie

Total Thrust Coefficient

Cr = Thatal —

po - ol - —;’k
Efficiency
o
n- (]

Mass Flowrate

m = Vi - pi - Agsk

NORMALIZATIONS
Ratios
vie =
1o = Vo
Vs
W, = =
20 Vo
V3
W = —
30 Vo
M4
M = 1
" Mo
Mz
Mz =
20 Mo
Mz
Mz =
30 o
P1
P =
" Pa
P2
Pa = —
= Pa
p1
pin = —
po
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pm = e
po
An
A =
o Adick
Az
Az =
. Aisk

Pressure-tise Coefficient

Pz — P+

Cep = ———
05 - pl - WVo©

Dimensionless mass flowrate
.

B m

po - Vo - Adsxc

Lip Thrust Coefficient

Crip = L
0 - Vol - Adse
P 2
Propeller Thrust Coefficient
T
Cromp = = Adisk
S Wat - =
pa g 5
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NOMENCLATURE
Known: Py, riiog Mg

Far upstream
symbols. Vg, Py, Mg, mog, 4, Py

Immeqdiately upstream of actuator disk
symbols: Vy, Py My, MOy, Agigye, Pry

Immeadiately downstream of actuator disk
Symbols: Vp, Pz, My, Moz, Pz

Far downstream
Symbols: Vg, Pz, M, mos, Az, Pis

NOTES

The speed of sound is denoted by the letter '¢' instead of 'a’ as defined in the thesis.

SPECIFICATIONS

Specily Pegracteq, 0. M, and Agg, Of the freestream
Mg = 0.4

Pg = 147 - 144 [IbffY

pr = 0002329 [slug/it’]

Agsx = 1 [f]

o= 14
Specify velocity ratio r

oY
Vi

r = 0.85

Note: The velocity ratio r is commented out when a parametric table is used.
Assumptions

Po = P:

pl = p2

Short hands
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k1

ORDER OF EQUATION
SOLVING FOR ALL NECESSARY CONDITIONS AT 1

Far upstream conditions af 0

Fo
o = v
pr
Wi
Mg = —L
o
Solve for Vo

Far downstream conditions at 3

Pz
t3 = f
p2
W
Mz = —=
C3
Solve for Vs
Tofal Thrust

Dww = M - [Va — Vz]
Solve for Dyges

Pressure Ratio 0-1

F|

%:[1 <kt M2 )"
P

o= [ kw?)®
Fu = Pn

Solve for P4

Density ratio 0-1
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LU [P1 ]H

po Po
Solve for rhoy

Energy equation 0-1

Ea = Va + K2 - P_]
2 po
Vit P

Ev = ——+ k2 —
2 p1

Ea = E1

Solve for V;

Velocity ratio -1

Vi _opn Ao

Vo p1 Agizx

Solve for A g

SOLVING FOR ALL NECESSARY CONDITIONS AT 2

Area Ratio 0-3

A _pe Vo

Aa p: Vs

Solve for Az
Area ratio 2-3
v+t

As _M_z_[[1+k1-n.132]{a-m )}

B 1+ K - Me?

Adizk M3
Solve for Mz
Pressure ratio 2-3

i—‘z:ﬁ k1 - M22 )"
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P 2
— = [1 + Kl - M;
Pz L ]

2

Pz = Pn
Solve for Pz

Density ratio 2-3

o [P]H

pa Po

Solve for rhoa

Energy equation

E: = Vz + k2 - P_Z
2 pz

Ez: = —V3 + k2 - P_3
2 p3

Ez = Es

Solve for Vs

Thrust equation af disk

NEED V4 Vg Py Pa
Duww = M - [Vi - Vz] + Asx - [P — P2

D = Dwm

Fower equations

Pegractes  _ wo® - wst

m 2

Power available within free-flowing wind in area equal to rotor area A gy,

3 Adisx
Pavatae = po - Vo© - ——
2
Power Extraction Efficiency
P extracted
n =5
P avananie
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Total Thrust Coefficient

Diotal
Co =
Adisk

g Vol
P 2

Mass Flowrate

m = Vi ©p1 - Audisk

NORMALIZATIONS
Ratios
v Vs
0 = —
Va
V2
Vi = —
Va
V3
Vao = —
Va
M
Muw = —
Mo
Mz
Mz =
Mp
Mz
Maz =
Mg
Py
Pin = —
Pa
P2
P = —
Pa
p1
pin = —
po
_ Pt
pum = —
po
Ag
Am =
Aiek
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Az
Adizk

Az =

Pressure-tise Coefficient

Pz — Ps
05 - po - Vat
Dimensionless mass flowrate
. m

ma =z —_—
po - Vo - Ams
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NOMENCLATURE
Known: Py, riiog Mg

Far upstream
symbols. Vg, Py, Mg, mog, 4, Py

Immeqdiately upstream of actuator disk
symbols: Vy, Py My, MOy, Agigye, Pry

Immeadiately downstream of actuator disk
Symbols: Vp, Pz, My, Moz, Pz

Far downstream
Symbols: Vg, Pz, M, mos, Az, Pis

NOTES

The speed of sound is denoted by the letter '¢' instead of 'a’ as defined in the thesis.

SPECIFICATIONS

Specify Pingy o, M, and A, of the freestream
Mo = 08

Py = 147 - 144 [Ibffit]

pr = 0002329 [slug/it’]

Ac = 1 [f]
o= 14
Velocity Ratio
S
Vi
r = 0.557
Assumptions
Pa = Ps:
pr = ps
Az = Adek
Short hands
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k1

ORDER OF EQUATION
SOLVING FOR ALL NECESSARY CONDITIONS AT 1

Far upstream conditions af 0

Fo
o = v
pr
Wi
Mg = —L
o
Solve for Vo

Far downstream conditions at 3

Pz
t3 = f
p2
W
Mz = —=
C3
Solve for Vs
Tofal Drag

Dww = M - [Va — Vz]
Solve for Dyges

Pressure Ratio 0-1

F|

%:[1 <kt M2 )"
P

o= [ kw?)®
Fu = Pn

Solve for P4

Density ratio 0-1
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LU [P1 ]H

po Po
Solve for rhoy

Energy equation 0-1

Ea = Va + K2 - P_]
2 po
Vit P

Ev = ——+ k2 —
2 p1

Ea = E1

Solve for V;

Velocity ratio -1

Vi _opn Ao

Vo p1 Agizx

Solve for A g

SOLVING FOR ALL NECESSARY CONDITIONS AT 2

Area Ratio 0-3

A _pe Vo

Aa p: Vs

Solve for Az
Area ratio 2-3
v+t

As _M_z_[[1+k1-n.132]{a-m )}

B 1+ K - Me?

Adizk M3
Solve for Mz
Pressure ratio 2-3

i—‘z:ﬁ k1 - M22 )"
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P 2
— = [1 + Kl - M;
Pz L ]

2

Pz = Pn
Solve for Pz

Density ratio 2-3

o [P]H

pa Po

Solve for rhoa

Energy equation

E: = Vz + k2 - P_Z
2 pz

Ez: = —V3 + k2 - P_3
2 p3

Ez = Es

Solve for Vs

Turbine Drag

NEED V4 Vg Py Pa
Duww = M - [Vi - Vz] + Asx - [P — P2
Tin

Tw = Dur — Dot

Coefficients
Diatal
C =—-1-
B oo - Vg? - Adisk
T
Crip = P A
2 disk
po - Wog® - ——
D
Comwe = —1 - e
IV Augisk
e 2
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Power equations
Power available within free-flowing wind in area equal to rofor area A gis.

: A
Pawaliate = po - Vo~ - %

Power production at turbine

P extractes _ vo? - vs?

m 2

Power extraction efficiency

_  Peaared

P avaianie

Mass Flowrate

m = Vi ©p1 - Audisk

NORMALIZATIONS
Ratios
Vie =
0 = v
V2
W = ==
20 Ve
V3
W = =
30 Vo
M
M = -0
° Mo
Mz
M =
@ Mp
Mz
M =
30 M
Py
Piop = —
" Pa
P2
Pa = —
= Pa
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1
pia = P
po
_ P
pam =
po
Ao
Am =
Adizk
Az
Az =
Adiek

Pressure-rise Coefficient

Fz: — Py
05 - po - Va?

Dimensionless mass flowrate

m
po - Vo - Adsk
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