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ABSTRACT 

 

Actuator Disk Theory for Compressible Flow  

 

Htet Htet Nwe Oo 

 

Because compressibility effects arise in real applications of propellers and turbines, the Actuator 

Disk Theory or Froude’s Momentum Theory was established for compressible, subsonic flow 

using the three laws of conservation and isentropic thermodynamics. The compressible Actuator 

Disk Theory was established for the unducted (bare) and ducted cases in which the disk was 

treated as the only assembly within the flow stream in the bare case and enclosed by a duct 

having a constant cross-sectional area equal to the disk area in the ducted case.  The primary 

motivation of the current thesis was to predict the ideal performance of a small ram-air turbine 

(microRAT), operating at high subsonic Mach numbers, that would power an autonomous 

Boundary Layer Data System during test flights.  The compressible-flow governing equations 

were applied to a propeller and a turbine for both the bare and ducted cases. The solutions to the 

resulting system of coupled, non-linear, algebraic equations were obtained using an iterative 

approach. The results showed that the power extraction efficiency and the total drag coefficient of 

the bare turbine are slightly higher for compressible flow than for incompressible flow.  As the 

free-stream Mach increases, the Betz limit of the compressible bare turbine slightly increases 

from the incompressible value of 0.593 and occurs at a velocity ratio between the far downstream 

and the free-stream that is lower than the incompressible value of 0.333. From incompressible to 

a free-stream Mach number of 0.8, the Betz limit increases by 0.021 while its corresponding 

velocity ratio decreases by 0.036.  The Betz limit and its corresponding velocity ratio for the 

ducted turbine are not affected by the free-stream Mach and are the same for both incompressible 

and compressible flow. The total drag coefficient of the ducted turbine is also the same regardless 

of the free-stream Mach number and the compressibility of the flow; but, the individual 

contributions of the turbine drag and the lip thrust to the total drag differs between compressible 

and incompressible flow and between varying free-stream Mach numbers.  It was concluded that 

overall compressibility has little influence on the ideal performance of an actuator disk.  
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NOMENCLATURE 

a  = speed of sound, ft/s 

A  = stream tube cross-sectional area, ft
2 

Adisk  = actuator disk area, ft
2 

CD  = total drag coefficient; CD =
Dtotal

1

2
ρ0V0

2Adisk

 

CP  = power coefficient; Cp =
Pinput

Pavailable
 

CT  = total thrust coefficient; CT =
Ttotal

1

2
ρ0V0

2Adisk

 

D  = drag, lbf  

Dtotal  = total drag on duct-and-turbine assembly, lbf 

E  = total energy per unit mass, ft-lbf/slug 

ṁ  = mass flowrate, slug/s 

M  = Mach number; M =
V

a
 

Pt  = total pressure, lbf/ft
2 

P  = static pressure, lbf/ft
2 

Pavailable  = total power available in flow in an area equal to the disk 

area, ft-lbf/s 

Pextracted  = total power extracted from flow by actuator disk, ft-lbf/s 

Pinput  = total power added to flow by actuator disk, ft-lbf/s 

r  = far up-to-downstream velocity ratio; 
V0

V3
 

T  = thrust, lbf 

Tlip  = lip thrust, lbf (ducted case only) 

Ttotal  = total thrust on duct-and-disk assembly, lbf 

V  = velocity, ft/s 



xx 

 

γ  = ratio of specific heats (1.4 for air) 

ρ  = density, slug/ft
2 

ηfan  = fan efficiency 

ηprop  = propulsive efficiency 

ηturb  = extraction efficiency 

Subscripts: 

0  = far upstream 

1  = immediate upstream of actuator disk 

2  = immediate downstream of actuator disk 

3  = far downstream 

i   = duct inlet 

e  = duct exit 

disk  = actuator disk 

fan  = fan 

prop  = propeller 

turb  = turbine 
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1. CLASSICAL ACTUATOR DISK THEORY 

1.1. Introduction 

The classical Actuator Disk Theory, also known as Froude’s Momentum Theory, is a 

mathematical model that uses the conservation laws of mass, linear momentum, and energy to 

determine the ideal performance of an energy-adding or an energy-extracting device, such as a 

propeller or a turbine, in a flow stream that is steady, inviscid, one-dimensional, and 

incompressible. Such work has been explored intensively by Horlock [1], Glauert [2], and 

Küchemann and Weber [3], but much less has been done to apply the Actuator Disk Theory to 

compressible flow.  Since compressibility effects can arise in real applications of energy-adding 

or energy-extracting devices, the goal of the current thesis is to extend the Actuator Disk Theory 

into the regime of compressible flow, with the primary motivation to predict the ideal 

performance of a small ram-air turbine (microRAT) [4] for the applications of the Boundary 

Layer Data System (BLDS). 

The Boundary Layer Data System (BLDS) is a fully autonomous, flow measurement system 

developed by Dr. Russell Westphal and his team of students with the purpose of measuring the 

flow properties of the boundary layer at the surface of an aircraft in flight.  Since the electronic 

components of the BLDS, such as the microcontroller and the sensors, are not rated to perform at 

temperatures below -20°C, their performance diminishes and becomes unreliable during test 

flights at altitudes between 30,000 and 40,000 feet where the air temperature ranges from -40 °C 

to -57 °C or below.  To prevent this sensor drop out, the concept of using a small ram-air turbine 

(microRAT) to extract useful energy from the airflow to provide power to a heating element that 

maintains operable temperatures inside the BLDS was investigated by Victor Villa [4].  Because 

the microRAT will be operating at high subsonic Mach numbers where compressibility effects 

exist, the current thesis will develop the governing equations of the compressible Actuator Disk 

Theory that can be used to determine the ideal performance of the microRAT.  
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Such governing equations of the Actuator Disk Theory will be derived for compressible, subsonic 

flow using isentropic thermodynamics and the three laws of conservation while adopting an 

iterative method of solution demonstrated by Delano and Crigler [5].  The governing 

compressible-flow equations are established for two cases: the first is the bare or the unducted 

case where the actuator disk is treated as the only assembly within the flow stream, while the 

latter is the ducted case where the disk is enclosed by a duct.  The governing equations of the 

compressible Actuator Disk Theory are then applied to determine the theoretical performance of a 

propeller and a turbine for both the bare and ducted cases.  The application of the compressible 

Actuator Disk Theory to the bare propeller has previously been studied by Delano and Crigler [5] 

and is included in the current thesis to show agreement and to confirm the results of the bare and 

ducted turbine in compressible flow, which is the main interest of the current thesis.   

Before the development of the governing equations for the compressible Actuator Disk Theory, 

the current chapter will introduce the classical (incompressible) Actuator Disk Theory and its 

applications to a propeller and a turbine with and without a duct.  Even though the classical 

Actuator Disk Theory and its applications can be found in many Fluid Mechanics textbooks, it is 

included in this thesis for completeness and to provide a basis for comparison between the 

classical and compressible Actuator Disk Theory. 
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1.2. Classical Actuator Disk Theory – Governing Equations 

The classical Actuator Disk Theory, also known as Froude’s Momentum Theory, uses the 

conservation of mass, linear momentum, and energy to determine the theoretical performance of 

an energy-adding or energy-extracting device in a flow that is considered steady, inviscid, one-

dimensional, and incompressible.  The energy-adding or energy-extracting device is represented 

by an ideal actuator disk having a cross-sectional area of Adisk. The ideal actuator disk is 

assumed to be infinitely thin and permeable such that the flow can pass through its cross-sectional 

area fully undisrupted thus producing no swirls in the slipstream.  The energy addition to or 

extraction from the flow occurs instantaneously and uniformly throughout the disk’s cross-

sectional area as the flow passes through the disk. 

Two cases of the actuator disk are considered: the bare and the ducted.  The bare, or unducted, 

case is where the actuator disk is the only assembly in the flow stream as shown in Figure 1, 

while the ducted case is where the actuator disk is enclosed by a duct as shown in Figure 2.  The 

streamtube boundary containing the actuator disk in both cases, as shown in Figure 1 and Figure 

2, is described by four stations: stations 0 and 3 denote the far upstream and downstream of the 

disk, respectively, where the free-stream density and pressure exists. Stations 1 and 2 are 

immediately before and after the disk.   

The complete list of assumptions made for the classical Actuator Disk Theory are given in the 

next section.  Note that these assumptions, with the exception of the first and second, are also 

applicable to the compressible Actuator Disk Theory.  

 

1.2.1. List of Assumptions 

1) The flow is incompressible. 

2) For incompressible flow, the velocity across the actuator disk is continuous, but the 

pressure across the disk is discontinuous: V1 = V2 and P1 ≠ P2. 
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3) The flow is steady, inviscid, and one-dimensional. 

4) The static pressure at the far upstream and downstream stations are equal: P0 = P3. 

5) The ideal actuator disk is an infinitely thin, permeable disk with a cross-sectional area of 

Adisk and is uniformly loaded and has a nonrotating wake.   

6) The stream tube cross-sectional area is continuous throughout the disk such that the areas 

immediately before and after the disk are equal to the disk area: A1 = A2 = Adisk. 

7) Energy is added to or extracted from the flow stream instantaneously and uniformly 

through the actuator disk.  

List of Assumptions Specific to the Ducted Actuator Disk 

8) The actuator disk is enclosed by a straight, constant area duct with the same cross-

sectional area as the disk area Adisk. 

9) The duct produces straight and parallel streamlines at the duct exit that the exit pressure 

is considered equal to the far downstream pressure: Pe = P3. 

Using these assumptions, the governing equations that are necessary to determine the ideal 

performance of the actuator disk will be developed in the next section. 
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1.2.2. Incompressible, Bare Actuator Disk Theory 

 

Figure 1. Schematic of the bare, incompressible Actuator Disk Theory. 

The general governing equations of an ideal bare actuator disk will be established.  Consider the 

actuator disk contained by the streamtube boundary as shown in Figure 1.  The control volume 0-

3 contains the flow from station 0 to 3 and the control volumes 0-1 and 2-3 encloses the flow 

upstream and downstream of the disk, respectively.  Lastly, the control volume 1-2 represents the 

flow through the disk plane.  

It is assumed that the disk is an energy-adding device where it adds power to the flow stream at 

the disk plane and exerts a thrust force on the flow in the direction of the flow.  It is possible that 

the disk is also a power-extractor where it extracts power from the flow and experiences a drag 

force from the flow, but the governing equations will be derived assuming the former.  Thus, the 

performance parameters of interest are the total thrust experienced by the flow, the thrust exerted 

on the flow by the disk, the power added to the flow at the disk plane, and the mass flowrate 

throughout the streamtube. 
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By applying the conservation of linear momentum to the control volume 0-3, the total thrust 

experienced by the flow can be determined  

 Ttotal = ṁ(V3 − V0) ( 1-1 ) 

Likewise, by applying the conversation of energy to the control volume 0-3, the power added by 

the disk to the flow stream can be obtained 

 Pinput =
1

2
ṁ(V3

2 − V0
2) ( 1-2 ) 

To find the thrust produced by the disk, the momentum balance law is applied to the control 

volume 1-2.  Since the velocity is equal before and after the disk, the momentum balance is 

reduced to an equilibrium equation.  By summing the external axial forces at the disk plane gives 

 Tdisk = (P2 − P1)Adisk ( 1-3 ) 

Next, to determine the pressure difference across the disk on the right side of equation 1-3, the 

Bernoulli’s equation is applied to the control volumes 0-1 and 2-3 as follows 

 P0 +
1

2
ρV0

2 = P1 +
1

2
ρV1

2 ( 1-4 ) 

 P2 +
1

2
ρV2

2 = P3 +
1

2
ρV3

2 ( 1-5 ) 

By subtracting equation 1-5 from 1-4 and asserting that P0 = P3 and V1 = V2, the pressure 

difference across the disk is 

 P2 − P1 =
1

2
ρ(V3

2 − V0
2) ( 1-6 ) 

Substituting the pressure difference in equation 1-6 to equation 1-3 gives the disk thrust in terms 

of the far upstream and downstream velocities 

 Tdisk =
1

2
ρAdisk(V3

2 − V0
2) ( 1-7 ) 

Because the mass flowrate is constant throughout the streamtube, the following relations can be 

made   

 ṁ = ρA0V0 = ρAdiskV1 = ρA3V3 ( 1-8 ) 
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From the relations in equation 1-8 and canceling out the density, the far upstream and 

downstream cross-sectional areas can be found in terms of the disk velocity 

 A0 = Adisk
V1

V0
 ( 1-9 ) 

 A3 = Adisk
V1

V3
 ( 1-10 ) 

For the bare case of the classical Actuator Disk Theory, the disk is the only assembly within the 

streamtube boundary, so the total thrust Ttotal exerted on the flow is equal to the thrust produced 

at the disk Tdisk. Note that this can only be said for the bare disk.    

 Ttotal = Tdisk ( 1-11 ) 

By setting the disk thrust in equation 1-7 and the total thrust in equation 1-1 equal to each other 

and using the mass flowrate containing the disk area and velocity in equation 1-8, V1 is found to 

be the average of the far upstream and downstream velocities 

 
1

2
ρAdisk(V3

2 − V0
2) = ṁ(V3 − V0) ( 1-12 ) 

 V1 =
V0+V3

2
 ( 1-13 ) 

Lastly, by substituting equation 1-13, the mass flowrate can be put in terms of the far upstream 

and downstream velocities 

 ṁ = ρAdisk
V0+V3

2
 ( 1-14 ) 

thus concluding the analysis. The governing equations for the bare actuator disk are further 

simplified and rearranged to give the following flow variables in terms of the disk area, free-

stream density and pressure, and the far upstream and downstream velocities:    

 Ttotal = ṁ(V3 − V0) ( 1-15 ) 

 Tdisk =
1

2
ρAdisk(V3

2 − V0
2) ( 1-16 ) 

 Pdisk =
1

2
ṁ(V3

2 − V0
2) ( 1-17 ) 

 ṁ = ρAdisk (
V0+V3

2
) ( 1-18 ) 
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 A0 = Adisk
V1

V0
 ( 1-19 ) 

 A3 = Adisk
V1

V3
 ( 1-20 ) 

 P1 = P0 +
1

2
ρ(V0

2 − V1
2) ( 1-21 ) 

 P2 = P0 +
1

2
ρ(V3

2 − V1
2) ( 1-22 ) 

 V1 =
V0+V3

2
 ( 1-23 ) 

Note that equations 1-19 to 1-22 can be expressed in terms of the far upstream and downstream 

velocities with the substitution of equation 1-23 for V1 but are left in the current form for 

simplicity. Similarly, the governing equations will be developed for the ducted disk in the next 

section. 
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1.2.3. Incompressible, Ducted Actuator Disk Theory 

 

Figure 2. Schematic of the ducted, incompressible Actuator Disk Theory. 

The governing equations for the ducted case of the incompressible Actuator Disk Theory will be 

established.  Note that the assumptions listed in section 1.2.1 also apply to the ducted actuator 

disk.  It is again assumed that the disk adds power to the flow stream and exerts a thrust force on 

the flow in the direction of the flow.  The disk is enclosed by a duct with a constant cross-

sectional area equal to the disk area Adisk as shown in Figure 2, where stations i and e are the 

duct inlet and outlet.  While it is certainly possible that the duct is also of variable cross-sectional 

area, it is assumed to have constant area to keep the scope of the thesis manageable.  The constant 

area duct implies that the areas at the duct inlet and outlet and the far downstream are equal to the 

disk area  

  Ai = A1 = A2 = Adisk = Ae = A3 ( 1-24 ) 

It is also assumed that the duct produces straight and parallel streamlines at the duct exit such that 

the exit pressure is equal to the far downstream pressure, which in turn is equal to the free-stream 

pressure. 
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  P0 = Pe = P3 ( 1-25 ) 

From the conservation of mass and using the area relation in equation 1-24, it can also be 

observed that the velocities at the disk, the duct outlet, and the far downstream are equal. 

 ρAdiskV1 = ρAeVe = ρA3V3 ( 1-26 ) 

 V1 = Ve = V3 ( 1-27 ) 

Therefore, since the area and all the flow variables, which are the density, pressure, and velocity, 

at the duct exit and the far downstream are equal; station e is entirely replaced by station 3 for the 

rest of the analysis. As a result, the governing equations 1-15 to 1-22 derived for the bare actuator 

disk also applies to the ducted disk without any change of subscripts since the control volumes 0-

3, 1-2, and 2-3 encloses the same stations for both the bare and ducted actuator disk. 

Furthermore, with the assertion that V1 = V2 = V3, it can be seen from the Bernoulli’s equation 

applied to the control volume 2-3 that the pressure immediately after the disk is equal to the far 

downstream pressure, which in turn is equal to the free-stream pressure. 

  P2 +
1

2
ρV2

2 = P3 +
1

2
ρV3

2 ( 1-28 ) 

 P0 = P2 = P3 ( 1-29 ) 

Due to the addition of the constant area duct onto the disk assembly, Ttotal given in equation 1-15 

now signifies the total thrust that the disk and the duct exerts altogether on the flow, while Tdisk 

in equation 1-16 represents the thrust exerted only by the disk.  The duct lip also exerts an 

additional thrust force on the flow called the lip thrust [2] [6]. 

Küchemann and Weber [3] and later Greitzer [6] developed the lip thrust by applying the 

conservation of linear momentum to the control volume enclosing the far upstream and the duct 

inlet as shown in Figure 3.  The far upstream is denoted by the subscript 0 while the inlet, which 

is approximated as being a constant section some distance behind the lip, is denoted by the 

subscript i.  
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Figure 3. Control volume used to drive lip thrust. 

The resulting integral momentum equation applied to the control volume in Figure 3 is 

 ρ0V0
2A0 + P0A0 − ρiVi

2Ai − PiAi − (∫ PNdANAN
) 

 −P0(A0 − Ai − AN) − (ρ0V0A0 − ρiViAi)V0 = 0 ( 1-30 ) 

As described by Kuchemann and Weber [3] and Grietzer [6], the first two terms on the left side of 

equation 1-30 represents the momentum of the mass flow, ρV0A0, through the forward surface A0 

of the control volume and the pressure force P0 which acts on that surface.  The third and fourth 

terms are the corresponding quantities for the flow through the internal duct.  The fifth term is the 

integral of the static pressure PN over the surface of the duct inlet where dAN is a surface element 

normal to the direction of the flow.  The sixth term represents the force on the base of the control 

volume outside of the duct inlet where the streamlines are assumed to be straight that the pressure 

is equal to the free-stream value. The last term is the momentum of the mass flow diverted 

through the outer part of the base of the control volume and through its curved surface of the duct 

inlet, with the control volume assumed large enough that the axial velocity component of this 

mass flow is V0. 

Cancelling out terms and simplifying equation 1-30 gives 

 ∫ (PN − P0)dANAN
= ρiViAi(V0 − Vi) − (Pi − P0)Ai ( 1-31 ) 
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Note that equation 1-31 is general and non-specific to the compressibility of the flow.  For 

incompressible flow where ρ0 = ρi = ρ, and using the following Bernoulli’s equation from the 

far upstream to the duct inlet, 

 Pi − P0 =
1

2
ρV0

2 −
1

2
ρVi

2 ( 1-32 ) 

the equation in 1-31 is further reduced to 

 ∫ (PN − P0)dANAN
=

1

2
ρV0

2Ai (1 −
Vi

V0
)

2
 ( 1-33 ) 

The lip thrust is the negative of the integral on the left side of equation 1-33  

 Tlip = − ∫ (PN − P0)dANAN
=

1

2
ρV0

2Ai (
Vi

V0
− 1)

2
 ( 1-34 ) 

and it is the force that the duct lip exerts on the flow.  Note that when the ratio of the duct inlet to 

the far upstream velocity 
Vi

V0
 is equal to 1, the lip thrust goes to zero.  Assuming the streamlines 

are straight and parallel so that the pressure immediately before the disk at station 1 is the same as 

the inlet value, the flow variables at station i and 1 are then equal due to the same logic applied to 

stations e and 3 being equal.  Therefore, replacing the subscript i in equation 1-34 with 1 and 

asserting that A1 = Adisk give 

 Tlip =
1

2
ρV0

2Adisk (
V1

V0
− 1)

2
 ( 1-35 ) 

Alternatively, the lip thrust can also be found by applying the static equilibrium equation on the 

disk-and-duct assembly in the direction of the flow, giving that the lip thrust is the difference 

between the total thrust and the disk thrust.  

 Tlip = Ttotal − Tdisk ( 1-36 ) 

By substituting the total thrust in 1-15 and the disk thrust in 1-16 into 1-36 and carrying out the 

simplification, the lip thrust from the difference of the total thrust and the disk thrust must equal 

the lip thrust determined by Küchemann and Weber [3].  This will be shown in the next following 

steps. 
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 Tlip = ρAdiskV1(V1 − V0) −
1

2
ρAdisk(V1

2 − V0
2) ( 1-37 ) 

One half of the density and the disk area can be factored out from both terms on the right side of 

equation 1-37 to give 

 Tlip =
1

2
ρAdisk (2(V1

2 − V1V0) − (V1
2 − V0

2)) ( 1-38 ) 

where the terms inside the parentheses on the right side of equation 1-38 can be combined to give 

 Tlip =
1

2
ρAdisk(V1 − V0)2 ( 1-39 ) 

By factoring out V0
2 from inside of the parentheses gives the same form of the lip thrust in 

equation 1-35 as expected  

 Tlip =
1

2
ρAdiskV0

2 (
V1

V0
− 1)

2
 ( 1-40 ) 

Asserting that V1 = V3, the lip thrust in equation 1-40 can be put in terms of the far upstream and 

downstream velocities 

 Tlip =
1

2
ρAdiskV0

2 (
V3

V0
− 1)

2
 ( 1-41 ) 

In summary, the assumption of constant duct area implies the following for the ducted case of the 

incompressible Actuator Disk Theory. 

  V1 = Ve = V3 ( 1-42 ) 

  P0 = P2 = Pe = P3 ( 1-43 ) 

Due to these implications, the governing equations for the ducted actuator disk can be 

summarized in terms of the far upstream and downstream velocities as follows 

 Ttotal = ṁ(V3 − V0) ( 1-44 ) 

 Tdisk =
1

2
ρAdisk(V3

2 − V0
2) ( 1-45 ) 

 Tlip =
1

2
ρAdiskV0

2 (
V3

V0
− 1)

2
 ( 1-46 ) 

 Pinput =
1

2
ṁ(V3

2 − V0
2) ( 1-47 ) 

 ṁ = ρAdiskV3 ( 1-48 ) 
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 A0 = Adisk
V3

V0
 ( 1-49 ) 

 P1 = P0 +
1

2
ρ(V0

2 − V3
2) ( 1-50 ) 

The governing equations for the bare and ducted actuator disk are applied in the next sections to 

determine the ideal performance of a propeller and a turbine. 
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1.3. Applications of the Classical Actuator Disk Theory 

The governing equations of the bare and ducted Actuator Disk Theory are applied to the propeller 

and the turbine.  The purpose of a propeller is to produce high propulsive thrust for a given power 

input while the purpose of a turbine is to extract power from the total kinetic energy of the flow 

stream to generate useful work for other applications.  Due to these reasons, a popular figure of 

merit for a propeller is its propulsive efficiency while it is the power extraction efficiency for a 

turbine.  The equations for the figure of merit and other important performance parameters will be 

established for the propeller and the turbine in the following sections, beginning with the bare 

propeller. 

 

1.3.1. Incompressible Bare Propeller 

The performance parameters of the bare propeller will be established using the governing 

equations derived for the bare incompressible Actuator Disk Theory.  The performance 

parameters considered are the power coefficient, the total thrust coefficient, and the propulsive 

efficiency. Note that since the governing equations in section 1.2.2 are derived already assuming 

that the actuator disk is an energy-adding device, much like a propeller, the equations can be 

transferred over to the current analysis without any manipulation or sign change. 

The power coefficient is determined by dividing the power input to the propeller given in 

equation 1-17 by the total available power in the free-stream in an area of Adisk, 

  CP =
Pinput

Pavailable
=

1

2
ṁ(V3

2−V0
2)

1

2
ρAdiskV0

3
 ( 1-51 ) 

By using the mass flowrate given in equation 1-18 and the disk velocity given in equation 1-23, 

the power coefficient can be simplified to the following 

 CP =
1

2
(

V3

V0
+ 1) ((

V3

V0
)

2
− 1)  ( 1-52 ) 
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Likewise, the total thrust coefficient is determined by dividing the total thrust, which is equal to 

the disk thrust in equation 1-16, by the reference force associated with the free-flowing stream’s 

dynamic pressure and the disk area. 

 CT =
Ttotal

Tdynamic
=

1

2
ρAdisk(V3

2−V0
2)

 
1

2
ρAdiskV0

2
 ( 1-53 ) 

The total thrust coefficient in equation 1-53 can be simplified further to the following 

 CT = ((
V3

V0
)

2
− 1) ( 1-54 ) 

Next, the propulsive efficiency is the ratio of the propulsive power produced by the propeller to 

the total power added to the propeller.  The propulsive power is given by the product of the total 

thrust and the free-stream velocity 

  ηprop =
propulsive power

Pinput
=

ṁ(V3−V0)V0
1

2
ṁ(V3

2−V0
2)

 ( 1-55 ) 

By simplifying, the propulsive efficiency is given in terms of the velocity ratio 
V3

V0
 

  ηprop =
2V0

V3+V0
=

2
V3
V0

+1
 ( 1-56 ) 

Alternatively, the propulsive efficiency is also the ratio of the total thrust coefficient to the power 

coefficient 

  ηprop =
CT

Cp
=

((
V3
V0

)
2

−1)

1

2
(

V3
V0

+1)((
V3
V0

)
2

−1) 
 ( 1-57 ) 

Simplifying equation 1-57 gives the same propulsive efficiency given in equation 1-56.  The 

performance parameters of the bare propeller are summarized in terms of the far upstream and 

downstream velocities. 

Dimensional Quantities: 

 Ttotal = ṁ(V3 − V0) ( 1-58 ) 

 Tprop =
1

2
ρAdisk(V3

2 − V0
2) ( 1-59 ) 

 Ttotal = Tprop ( 1-60 ) 
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 Pinput =
1

2
ṁ(V3

2 − V0
2)  ( 1-61 ) 

 ṁ = ρAdisk
V0+V3

2
 ( 1-62 ) 

Dimensionless Quantities: 

 ηprop =
2

V3
V0

+1
 ( 1-63 ) 

 CP =
1

2
(

V3

V0
+ 1) ((

V3

V0
)

2
− 1)  ( 1-64 ) 

 CT = ((
V3

V0
)

2
− 1) ( 1-65 ) 

 
m

ρAdiskV0

̇ =
1

2
(1 +

V3

V0
) ( 1-66 ) 

 

1.3.2. Incompressible Ducted Propeller 

Likewise, the governing equations derived for the incompressible ducted Actuator Disk Theory 

are applied to the ducted propeller. The performance parameters of interest are again the power 

coefficient, the total thrust coefficient, and the propulsive efficiency.  The definition of the power 

and the total thrust coefficient in equations 1-51 and 1-53 also applies to the ducted propeller 

  CP =
Pinput

Pavailable
=

1

2
ṁ(V3

2−V0
2)

1

2
ρAdiskV0

3
 ( 1-67 ) 

 CT =
Ttotal

Tdynamic
=

ṁ(V3−V0)

 
1

2
ρAdiskV0

2
 ( 1-68 ) 

Substituting ρA0V0 for the mass flowrate and the A0 given in equation 1-49, the coefficients can 

be simplified as follows 

  CP =
V3

V0
((

V3

V0
)

2
− 1)  ( 1-69 ) 

 CT = 2
V3

V0
(

V3

V0
− 1) ( 1-70 ) 

Because the equations for the power addition to the flow by the disk and the propulsive power are 

the same as for the bare propeller, the propulsive efficiency in equation 1-63 also applies to the 
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ducted propeller. In summary, the performance parameters for the incompressible ducted 

propeller are summarized below in terms of the far upstream and downstream velocities.  

Dimensional Quantities: 

 Ttotal = ṁ(V3 − V0) ( 1-71 ) 

 Tdisk =
1

2
ρAdisk(V3

2 − V0
2) ( 1-72 ) 

 Tlip =
1

2
ρV0

2Adisk (
V3

V0
− 1)

2
 ( 1-73 ) 

 Pinput =
1

2
ṁ(V3

2 − V0
2) ( 1-74 ) 

 ṁ = ρAdiskV3 ( 1-75 ) 

Dimensionless Quantities: 

 ηprop =
2

V3
V0

+1
 ( 1-76 ) 

  CP =
V3

V0
((

V3

V0
)

2
− 1)  ( 1-77 ) 

 CT = 2
V3

V0
(

V3

V0
− 1) ( 1-78 ) 

 
m

ρAdiskV0

̇ =
V3

V0
 ( 1-79 ) 

Next, these performance parameters of the ducted and the bare propeller are plotted against the 

power coefficient for comparison. 

 

1.3.3. Results and Discussion – Incompressible Bare and Ducted Propeller 

To obtain the solutions to the ducted and bare propeller, the disk area is set to 1 ft
2
, the free-

stream velocity to 10 ft/s, and the free-stream pressure and density to that of sea level static 

conditions, which are 2166.8 lbf/ft
2
 and 2.329 × 10−3 slugs/ft

3
 respectively. The propulsive 

efficiency, the pressure rise across the disk, and the total thrust coefficient are compared between 

the bare and ducted propeller against the power coefficient as shown in Figure 4 to 6. Note that a 

power coefficient of zero corresponds to no power addition to the flow at the disk plane, which 
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results in the far downstream velocity being equal to the free-stream velocity, giving a propulsive 

efficiency of one and a total thrust coefficient of zero. In addition, the contribution of the lip 

thrust and the propeller thrust to the total thrust is shown in Figure 7.  Note that the pressure rise 

across the disk is divided by the dynamic pressure 
1

2
ρV0

2, associated with the free-stream velocity, 

and the lip and the propeller thrusts by the reference force 
1

2
ρV0

2Adisk to be made into 

dimensionless quantities. 

 
Figure 4. Propulsive efficiency versus the power coefficient between the ducted and bare 

propeller for incompressible flow. 
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Figure 5. Comparison of the pressure rise across the disk between the bare and ducted propeller 

for incompressible flow. 

 

 
Figure 6. Comparison of the total thrust between the bare and ducted propeller for incompressible 

flow. 
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Figure 7. The individual contribution of the propeller thrust and the lip thrust to the total thrust for 

the incompressible ducted propeller. 

 

 
Figure 8. Velocity and pressure across the stations for the bare propeller (left) and the ducted 

propeller (right). 
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in Figure 5.  When considering the ducted propeller, Figure 7 conveys that the propeller thrust is 

always greater than the lip thrust and thus contributes more significantly to the total thrust 

especially at high power coefficients.   

An approximation of how the velocity and pressure change throughout the stations for both the 

ducted and bare propeller are shown in Figure 8.  Since power is added to the flow at the disk 

plane, the far downstream velocity is greater than the value at the free-stream while the velocity 

at the disk is the average of the two for the bare propeller and is equal to the far downstream 

velocity for the ducted propeller.  Because the mass flowrate throughout the streamtube is 

constant, the cross-sectional area at the far upstream must be greater than that at the slipstream to 

account for the lower velocity.  It can be observed that the pressure drops from the far upstream 

to the station immediately before the disk, rises abruptly across the disk, and then drops back to 

the free-stream pressure.  Note that all of these results are consistent with Horlock [1], Glauert 

[2], and Küchemann and Weber [3] and can be found in most Fluid Mechanics textbooks. The 

specific case where the free-stream velocity is zero for the bare and ducted propeller is further 

investigated in Appendix A. Next, the classical Actuator Disk Theory is applied to the bare 

turbine. 

 

1.3.4. Incompressible Bare Turbine 

The performance parameters of the bare turbine will be established using the governing equations 

of the classical bare Actuator Disk Theory.  As mentioned previously, a turbine is an energy-

extracting device that extracts useful energy from the total kinetic energy of the free-flowing fluid 

and experiences a drag force exerted by the flow.  Since the governing equations for the classical 

theory are derived assuming that the disk is an energy-adding device, a sign change is necessary 

to the thrust and power equations.  Because a drag force is in the opposite direction of the flow, 

the total drag exerted by the flow is the negative of the total thrust given in equation 1-15   

 Dtotal = −Ttotal = ṁ(V0 − V3) ( 1-80 ) 
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The drag force experienced by the turbine is also the negative of the disk thrust given in equation 

1-16 

 Dturb = −Tdisk =
1

2
ρAdisk(V0

2 − V3
2) ( 1-81 ) 

For the bare turbine, the total drag is equal to the turbine drag. 

 Dtotal = Dturb ( 1-82 ) 

The power extracted by the turbine is the negative of the power added by the disk in equation 1-

17 to signify that work is done on the turbine rather than on the flow 

 Pextracted = −Pdisk =
1

2
ṁ(V0

2 − V3
2) ( 1-83 ) 

Next, the total drag coefficient, the power extraction efficiency, and the Betz Limit for the bare 

turbine will be established. The total drag coefficient of the bare turbine is found by dividing the 

total drag in equation 1-80 by the reference force to give 

 CD =
Dtotal

Tdynamic
=

1

2
ρAdisk(V0

2−V3
2)

 
1

2
ρAdiskV0

2
 ( 1-84 ) 

which simplifies to 

 CD = (1 − (
V3

V0
)

2
) ( 1-85 ) 

The figure of merit for a turbine is its power extraction efficiency, which is a ratio of the power 

extracted by the turbine to the total power available within the free-flowing stream in an area 

equal to the disk area. 

 ηturb =
Pextracted

Pavailable
=

1

2
ṁ(V0

2−V3
2)

1

2
ρAdiskV0

3
 ( 1-86 ) 

By using the mass flowrate given in 1-18, the power extraction efficiency in 1-86 is a function of 

the velocity ratio between the far upstream and far downstream stations 

 ηturb = (1 +
V3

V0
) (1 − (

V3

V0
)

2
) ( 1-87 ) 

The ratio of the far downstream to upstream velocity in equation 1-87 will be defined as r 

 r =
V3

V0
 ( 1-88 ) 
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Note that this velocity ratio can never exceed 1 because the velocity in the slipstream of the 

turbine slows down as the turbine captures useful power from the total kinetic energy of the free-

stream flow.  As a result, V3 is always less than V0 as long as power is being extracted by the 

turbine. Likewise, r can never be zero because it is not possible for the turbine to extract 100% of 

the total kinetic energy in the free-stream flow for useful power.  When r is equal to one, there is 

no power extraction.  

By substituting equation 1-88 into the equation 1-87, the turbine’s power extraction efficiency is 

expressed in terms of r 

 ηturb = (1 + r)(1 − r2) ( 1-89 ) 

Since the power extraction efficiency is in terms of only one independent variable, the maximum 

power extraction efficiency can be determined by taking the derivative of equation 1-89 with 

respect to r and setting it equal to zero.  As a result, the maximum power extraction efficiency is 

16/27, or approximately 0.593, occurring at a velocity ratio of 1/3.  This maximum power 

extraction efficiency is known as the Betz’s limit [7] and signifies the maximum theoretical 

power that can be extracted by a turbine from the free-flowing fluid. The performance parameters 

of the incompressible bare turbine are summarized below in terms of the far upstream and 

downstream velocities 

 

Dimensional Quantities: 

 Dtotal = ṁ(V0 − V3) ( 1-90 ) 

 Dturb =
1

2
ρAdisk(V0

2 − V3
2) ( 1-91 ) 

 Pextracted =
1

2
ṁ(V0

2 − V3
2) ( 1-92 ) 

 ṁ = ρAdisk
V0+V3

2
 ( 1-93 ) 

Dimensionless Quantities: 
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 ηturb = (1 +
V3

V0
) (1 − (

V3

V0
)

2
) ( 1-94 ) 

 CD = (1 − (
V3

V0
)

2
) ( 1-95 ) 

 
m

ρAdiskV0

̇ =
1

2
(1 +

V3

V0
) ( 1-96 ) 

 

1.3.5. Incompressible Ducted Turbine 

Likewise, the governing equations of the incompressible ducted Actuator Disk Theory are applied 

to the ducted turbine.  Note that the total and turbine drag and the power extraction from the flow 

given in equations 1-80, 1-81, and 1-83 also applies to the ducted turbine.  However, the total 

drag is not equal to the turbine drag; it is the difference between the drag on the turbine and the 

lip thrust. 

 Dtotal = Dturb − Tlip ( 1-97 ) 

 The definition of the total drag coefficient and the power extraction efficiency given in equation 

1-84 and 1-86 also applies to the ducted turbine 

 CD =
Dtotal

Tdynamic
=

ṁ(V0−V3)

 
1

2
ρAdiskV0

2
 ( 1-98 ) 

 ηturb =
Pextracted

Pavailable
=

1

2
ṁ(V0

2−V3
2)

1

2
ρAdiskV0

3
 ( 1-99 ) 

Substituting ρA0V0 for the mass flowrate and the A0 given in equation 1-49, the total drag 

coefficient and the power extraction efficiency can be simplified as follows 

  CD = 2
V3

V0
(1 −

V3

V0
)  ( 1-100 ) 

 ηturb =
V3

V0
(1 − (

V3

V0
)

2
) ( 1-101 ) 

To determine the Betz limit for the ducted turbine, the same analysis as for the bare turbine is 

done. Asserting that r =
V3

V0
, the power extraction efficiency can be put in terms of r 

 Cp = r(1 − r2) ( 1-102 ) 
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By differentiating equation 1-102 with respect to r and setting it equal to zero, the Betz limit, or 

the maximum power extraction efficiency, for the ducted turbine is 2/3
3/2

 or approximately 0.385 

when the far down-to-upstream velocity ratio is roughly 0.577.  This shows that the Betz limit for 

the ducted turbine is 0.208 lower and occurs at velocity ratio that is 0.052 higher than the bare 

turbine. The performance parameters of the incompressible ducted turbine are summarized below 

in terms of the far upstream and downstream velocities 

Dimensional Quantities: 

 Dtotal = ṁ(V0 − V3) ( 1-103 ) 

 Dturb =
1

2
ρAdisk(V0

2 − V3
2) ( 1-104 ) 

 Tlip =
1

2
ρAdiskV0

2 (
V3

V0
− 1)

2
 ( 1-105 ) 

 Pextracted =
1

2
ṁ(V0

2 − V3
2) ( 1-106 ) 

 ṁ = ρAdisk
V0+V3

2
 ( 1-107 ) 

Dimensionless Quantities:  

 ηturb =
V3

V0
(1 − (

V3

V0
)

2
) ( 1-108 ) 

 CD = 2
V3

V0
(1 −

V3

V0
)  ( 1-109 ) 

 
m

ρAdiskV0

̇ =
V3

V0
 ( 1-110 ) 

These performance parameters of both the ducted and the bare turbine are plotted against the 

velocity ratio r for comparison. 

 

1.3.6. Results and Discussion – Incompressible Bare and Ducted Turbine 

The solutions are determined for the same disk area and free-stream flow conditions as those of 

the bare and ducted propeller.  The power extraction efficiency, the pressure drop across the disk, 

and the total drag coefficient are compared between the bare and the ducted turbine in Figure 9 to 
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Figure 11 in terms of the velocity ratio r.  The individual contribution of the turbine drag and the 

lip thrust to the total drag is shown for the ducted turbine in Figure 12.  Note that the pressure 

drop, the lip thrust, and the turbine drag are made dimensionless in the same way as were done 

for the propeller case. 

 
Figure 9. Comparison of the power extraction efficiency and the Betz limit between the bare and 

ducted turbine for incompressible flow. 
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Figure 10. Comparison of the pressure drop across the disk between the bare and ducted turbine 

for incompressible flow. 

 

 
Figure 11. Comparison of the total drag between the bare and ducted turbine for incompressible 

flow.  
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Figure 12. The individual contribution of the turbine drag and the lip thrust to the total drag for 

the incompressible ducted turbine.  Note that the total drag and the turbine drag are made 

negative to signify that they are in the opposite direction of the flow. 

 

 
Figure 13. Velocity and pressure throughout the stations for the bare turbine (left) and for the 

ducted turbine (right). 
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Unlike the propeller, Figure 9 shows that the bare turbine has a higher power extraction efficiency 

than the ducted turbine for all velocity ratios r.  Thus, the bare turbine has a higher Betz limit and 

occurs at a lower velocity ratio r than the ducted turbine.  Likewise, the bare turbine has a greater 

total drag coefficient than the ducted turbine as observed in Figure 11; while, the pressure drop 

across the disk is the same for both cases as shown in Figure 10.  Figure 12 shows that the 

magnitude of the turbine drag is greater than that of the lip thrust and thus contributes more 

greatly to the total drag. 

An approximation of the velocity and the pressure throughout the stations are given in Figure 13. 

Since energy is being extracted by the turbine at the disk plane, the far downstream velocity is 

lower than that at the free-stream; while the velocity at the disk is again the average of the two 

velocities for the bare turbine and is the same as the far downstream velocity for the ducted 

turbine.  This means that the free-stream area is smaller than that at the far downstream to account 

for the higher free-stream velocity since the density and the mass flowrate throughout the 

streamtube are constant. Lastly, the pressure increases from the free-stream to immediately before 

the disk, drops discontinuously across the disk, and increases to the free-stream pressure for the 

bare turbine and drops to the free-stream pressure for the ducted turbine.  Again, these results 

agree with Horlock [1], Glauert [2], and Küchemann and Weber [3] and can be found in many 

Fluids Mechanics textbooks.  Next, the method of solution will be briefly discussed. 
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1.4. Method of Solution to the Classical Actuator Disk Theory 

Although the performance of the propeller and the turbine has been determined and discussed, the 

method to obtaining the performance parameters will be briefly established.  This is mainly done 

to later support the reasoning behind the method of solution for the compressible Actuator Disk 

Theory—a topic that will be touched upon in Chapters 2 to 4. 

The governing equations of the classical Actuator Disk Theory provide a system of equations 

necessary to perform a complete analysis of the flow and the actuator disk.  A complete analysis 

is one where the performance parameters of the disk are determined and all of the flow variables 

such as the density, pressure, velocity, and the streamtube cross-sectional area are known at each 

of the four stations. Since the governing equations are a set of non-linear algebraic equation 

ns, the desired solutions can be determined if there is an equal number of unknowns and 

equations.  The desired solutions, which are the performance parameters of the disk and the flow 

variables at each station, are determined in terms of a few selected inputs. Usually, the inputs are 

the disk area, the far downstream velocity, and the free-stream density, pressure, and velocity. 

Consider the application of the bare turbine in section 1.3.4. With the five inputs, which are 

ρ, P0, V0, Adisk, and V3, the unknown variables left to determine are the following flow variables 

A0, P1, V1, P2, and A3 and the following performance parameters of the turbine 

Dtotal, Dturb, Pextracted, ṁ, CD, and ηturb.  These eleven unknown variables can be solved 

explicitly using the eleven governing equations from 1-19 to 1-23 and 1-90 to 1-95.  The same 

can be done for other applications of the classical Actuator Disk Theory. 

In addition, the unknown variables in these equations can easily be isolated and expressed solely 

in terms of the inputs.  They can also easily be made dimensionaless by the given parameters 

ρ, P0, V0, V3, and Adisk.  

In concluding remarks, the governing equations for the classical Actuator Disk Theory provides 

the means to solve for the flow variables at each station along with the performance parameters of 

the actuator disk given the free-stream flow conditions, the far downstream velocity, and the disk 
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area.  The solutions to the governing equations can easily be determined explicitly, separated and 

be put solely in terms of the inputs, and be made into dimensionless quantities.  It will be shown 

in later chapters that these characteristics are not inherent in the governing equations for the 

compressible Actuator Disk Theory.  
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2. COMPRESSIBLE ACTUATOR DISK THEORY 

2.1. Introduction 

Since compressibility effects arise in real applications of energy-adding or energy-extracting 

devices, the Actuator Disk Theory will be extended to the regime of compressible subsonic 

flow, which will be referred to as the compressible Actuator Disk Theory or the compressible 

theory throughout the current work.  The motivation for the current work is to develop a set 

of governing equations necessary to predict the ideal performance of the microRAT [4] in 

compressible flow operating at high subsonic Mach numbers, in an effort to prevent sensor 

dropout of the Boundary Layer Data Systems (BLDS) as discussed in Chapter 1.  The 

governing equations for the compressible Actuator Disk Theory will be established in this 

chapter for the bare (unducted) and the ducted cases using isentropic thermodynamics and the 

three conservation laws of mass, momentum, and energy.  These governing equations provide 

a system of equations that is necessary to solve for the flow variables at each station as shown 

in Figure 14 and to determine the ideal performance of the actuator disk in terms of some 

input variables.  The mechanics of determining the solutions will be discussed in the Method 

of Solutions.  Note that the solutions to the compressible Actuator Disk Theory and its 

applications are obtained only for subsonic flow, which is the scope of the current thesis. 

The compressible theory will be derived for the same assumptions that were made for the 

classical theory under the List of Assumptions in section 1.2.1, with the exception of the first 

two as they only apply to incompressible flow.  Additional assumptions made specifically for 

the compressible theory are listed below.  The compressible theory differs from the classical 

theory in ways that the density now varies throughout the streamtube and the Mach number is 

thus included as a flow variable at each station as shown in Figure 14. In addition to the 

pressure discontinuity across the disk as observed in the classical theory, the density and 

velocity are also discontinuous across the disk for compressible flow. Using these 
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assumptions, the governing equations for the compressible Actuator Disk Theory will be 

developed beginning with the bare actuator disk in the next section. 

Additional Assumptions for Compressible Flow 

10) The flow is compressible and isentropic. 

11) The total pressure is constant between stations 0 and 1 and stations 2 and 3. 

12) The velocity, pressure, and density across the actuator disk are discontinuous. 

13) The Mach number at any station never exceeds 1 because the scope of the thesis at hand 

is to observe the compressibility effects on the Actuator Disk Theory only in the subsonic 

flow regime. 

 

Figure 14. Schematic of the bare, compressible Actuator Disk Theory. 

Adisk  

ρ0 
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2.2. Compressible, Bare Actuator Disk Theory 

The governing equations of the compressible Actuator Disk Theory will be developed for the 

unducted (bare) actuator disk that is contained within the streamtube boundary as shown in Figure 

14. Stations 0 and 3 are the far upstream and downstream where the free-stream pressure exists, 

while stations 1 and 2 are immediately before and after the actuator disk.  The control volume 0-3 

contains the flow from station 0 to 3, the control volumes 0-1 and 2-3 encloses the flow upstream 

and downstream of the disk, and lastly the control volume 1-2 contains the flow through the disk 

plane.  Note that the station designations and the control volumes are the same as those for the 

classical theory. The actuator disk is treated as an energy-adding device where it adds power to 

the flow at the disk plane and exerts a thrust force on the flow in the direction of the flow.    

Since isentropic flow is assumed, the isentropic flow relations are heavily involved in the 

derivation of the governing equations. The details of the relations will not be discussed but can be 

found in the NACA report titled “Equations, Tables, and Charts for Compressible Flow” [8].  

To begin, the far upstream and downstream densities are shown to be equal by asserting that 

P0 = P3 into the isentropic pressure-density relation  

 
ρ3

ρ0
= (

P3

P0
)

1

γ
= 1 ( 2-1 ) 

to give   

 ρ0 = ρ3 ( 2-2 ) 

Next, the flow variables at station 1 are found in terms of the free-stream flow properties. 

Asserting that Pt0
= Pt1

into the isentropic pressure ratios as shown and combining,  

 
Pt0

P0
= (1 +

γ−1

2
M0

2)

γ

γ−1
 ( 2-3 ) 

 
Pt1

P1
= (1 +

γ−1

2
M1

2)

γ

γ−1
 ( 2-4 ) 

the static pressure immediately before the disk P1 is given as a function of the Mach number at 

stations 0 and 1 
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P1

P0
= (

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ

γ−1

 ( 2-5 ) 

A ratio of the cross-sectional area at station 0 to that at station 1 can be established using the 

isentropic flow relation between area and Mach number and noting that A1 = Adisk 

 
A0

Adisk
=

M1

M0
(

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ+1

2(γ−1)

 ( 2-6 ) 

Next, the density at station 1 is obtained through the isentropic pressure-density relation 

 
ρ1

ρ0
= (

P1

P0
)

1

γ
 ( 2-7 ) 

The velocity at station 1 can be found using the conservation of mass on the control volume 0-1. 

 
V1

V0
=

ρ0

ρ1

A0

Adisk
 ( 2-8 ) 

Next, the flow variables at station 3 are related to those at station 0.  By applying the conservation 

of energy on the control volume 0-3, it can be observed that the total energy at station 3 E3 is the 

sum of the total energy at station 0 E0 and the energy added to the flow by the disk.  The energy 

added is denoted as the power addition per unit mass flow across the disk as shown 

  E0 +
Pinput

ṁ
= E3 ( 2-9 ) 

where E0 and E3 are 

   E0 =
V0

2

2
+

γ

γ−1
∙

P0

ρ0
 ( 2-10 ) 

  E3 =
V3

2

2
+

γ

γ−1
∙

P3

ρ3
 ( 2-11 ) 

By substitution, the energy equation in equation 2-9 can be expanded as follows 

  
V0

2

2
+

γ

γ−1
∙

P0

ρ0
+

Pinput

ṁ
=

V3
2

2
+

γ

γ−1
∙

P3

ρ3
 ( 2-12 ) 

By rearranging and noting that P3 = P0, the total power added by the disk per unit mass flow is 

the sum of two terms  

  
Pinput

ṁ
=

V3
2−V0

2

2
+  

γ

γ−1

P0

ρ0
(

ρ0

ρ3
− 1)  ( 2-13 ) 
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The second term on the right of equation 2-19 goes to zero by asserting that ρ0 = ρ3, thus the 

total power added by the disk is 

  Pinput = ṁ
V3

2−V0
2

2
 ( 2-14 ) 

Observe that this is identical to the incompressible power equation in 1-17.  From the power 

equation, the far downstream velocity V3 can be determined for a given disk power.  Next, M3 

can be found by applying the isentropic speed of sound relation 

  a3 = √γ ∙
P3

ρ3
= √γ ∙

P0

ρ0
 ( 2-15 ) 

to the definition of Mach number 

 M3 =
V3

a3
 ( 2-16 ) 

to give 

 M3 = V3 (γ ∙
P0

ρ0
)

−
1

2
 ( 2-17 ) 

Likewise, the area at the far downstream A3 can be determined using the conservation of mass 

applied to the control volume 0-3 along with ρ0 = ρ3 

  
A3

A0
=

ρ0

ρ3
∙

V0

V3
=

V0

V3
 ( 2-18 ) 

Next, the flow variables at station 2 will be determined related to those at station 3. 

The Mach number immediately after the disk M2 is obtained using the isentropic relation between 

area and Mach number between station 2 and 3 

  
A3

Adisk
=

M2

M3
(

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ+1

2(γ−1)

 ( 2-19 ) 

Next, the pressure immediately after the disk P2 is obtained by applying that Pt2
= Pt3

into the 

isentropic pressure ratios at stations 2 and 3 

  
Pt2

P2
= (1 +

γ−1

2
M2

2)

γ

γ−1
 ( 2-20 ) 
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Pt3

P3
=

Pt3

P0
= (1 +

γ−1

2
M3

2)

γ

γ−1
 ( 2-21 ) 

to give 

  
P2

P0
= (

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ

γ−1

 ( 2-22 ) 

Again, the density at station 2 is found by the isentropic pressure-density relation 

  
ρ2

ρ3
=

ρ2

ρ0
= (

P2

P3
)

1

γ
 ( 2-23 ) 

The velocity at station 2 is found by using the conservation of mass on the control volume 1-2. 

  V2 =
ρ1

ρ2
V1 ( 2-24 ) 

By applying the conservation of linear momentum to the control volume 0-3, the total thrust is 

found 

  Ttotal = ṁ(V3 − V0) ( 2-25 ) 

Note that this is the same total thrust given in equation 1-15 for incompressible Actuator Disk 

Theory. The thrust produced by the disk can be determined by applying the conservation of linear 

momentum to the control volume 1-2  

  Tdisk = ṁ(V2 − V1) + Adisk(P2 − P1)  ( 2-26 ) 

Lastly, the mass flowrate can be found from 

 ṁ = ρ1AdiskV1 ( 2-27 ) 

At this point in the analysis, it is important to note that all the equations derived above for 

compressible Actuator Disk Theory from equation 2-1 to 2-27 can be applied to any ideal disk 

that adds power to the flow stream and generates a thrust force, whether the disk is bare or 

ducted.  

Lastly, since there are no other assemblies besides the actuator disk within the flow stream, the 

total thrust exerted on the flow is then the thrust produced by the disk, which is only true for the 

bare case. 
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  Ttotal = Tdisk ( 2-28 ) 

This concludes the derivation of the governing equations for the compressible bare Actuator Disk 

Theory, which are summarized in the next section.  

 

2.2.1. Summary of Governing Equations 

In summary, the governing equations of the compressible bare Actuator Disk Theory relates the 

flow variables at each station, the mass flowrate, the total thrust, the disk thrust, and the power 

addition by the disk to the free-stream flow properties, which are γ, P0, ρ0, and V0 and the disk 

area.   The governing equations are summarized below: 

 M0 = V0 (γ ∙
P0

ρ0
)

−
1

2
 ( 2-29 ) 

 
A0

Adisk
=

M1

M0
(

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ+1

2(γ−1)

 ( 2-30 ) 

 
P1

P0
= (

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ

γ−1

 ( 2-31 ) 

 
ρ1

ρ0
= (

P1

P0
)

1

γ
 ( 2-32 ) 

 
V1

V0
=

ρ0

ρ1

A0

Adisk
 ( 2-33 ) 

 M3 = V3 (γ ∙
P0

ρ0
)

−
1

2
 ( 2-34 ) 

  
A3

A0
=

V0

V3
 ( 2-35 ) 

  
A3

Adisk
=

M2

M3
(

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ+1

2(γ−1)

 ( 2-36 ) 

  
P2

P0
= (

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ

γ−1

 ( 2-37 ) 

  
ρ2

ρ0
= (

P2

P0
)

1

γ
 ( 2-38 ) 
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  V2 =
ρ1

ρ2
V1 ( 2-39 ) 

 ṁ = ρ1AdiskV1 ( 2-40 ) 

  Ttotal = ṁ(V3 − V0) ( 2-41 ) 

  Tdisk = ṁ(V2 − V1) + Adisk(P2 − P1)  ( 2-42 ) 

  Pinput = ṁ
V3

2−V0
2

2
 ( 2-43 ) 

  Ttotal = Tdisk ( 2-44 )  

In comparison to the classical bare Actuator Disk Theory, the thrust produced by the disk in 

equation 2-42 now contains an additional term due to the velocity discontinuity across the disk, 

while the total thrust and the total power addition by the disk in equation 2-41 and 2-43 remains 

the same as for incompressible flow. In the next section, the governing equations will be 

considered for the ducted case of the compressible Actuator Disk Theory. 
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2.3. Compressible, Ducted Actuator Disk Theory 

 

Figure 15. Schematic of the ducted, compressible Actuator Disk Theory. 

This section will focus on establishing the governing equations specific to the ducted case of the 

compressible Actuator Disk Theory, following the assumptions made in section 2.1.  The actuator 

disk is again assumed to be an energy-adding device that adds power to the flow and exerts a 

thrust force on the flow in the direction of the flow.  The actuator disk is now also enclosed by a 

duct of the same cross-sectional area as the disk as shown in Figure 15. Stations 0 and 3 

represents the far upstream and downstream; stations i and e represents the duct inlet and outlet; 

and stations 1 and 2 are immediately before and after the disk.  As mentioned in Chapter 1, the 

duct can be of variable cross-sectional area, but it is assumed to have constant area to keep the 

scope of the thesis manageable.  The constant area duct entails that the inlet and outlet duct areas 

as well as the area at the far downstream area equal to the disk area 

  Ai = A1 = A2 = Adisk = Ae = A3 ( 2-45 ) 

In addition, the duct is also assumed to produce straight and parallel streamlines at the duct exit 

such that the exit pressure is considered equal to the far downstream pressure, which in turn is 

equal to the free-stream pressure. 



42 

 

  Pe = P3 = P0 ( 2-46 ) 

With Pe = P3, it is also apparent that ρe is equal to ρ3 from the isentropic pressure-density 

relation   

  
ρe

ρ3
= (

Pe

P3
)

1

γ
= 1 ( 2-47 ) 

  ∴ ρe = ρ3 ( 2-48 ) 

With ρe = ρ3 and Ae = A3, the conservation of mass applied to control volume e-3 indicates that 

Ve is also equal to V3 

  ρeAeVe = ρ3A3V3 ( 2-49 ) 

  ∴ Ve = V3 ( 2-50 ) 

Lastly, it can be shown that Me = M3 using the isentropic pressure ratio 

  
P3

Pe
= (

1+
γ−1

2
Me

2

1+
γ−1

2
M3

2
)

γ

γ−1

= 1 ( 2-51 ) 

  ∴ Me = M3 ( 2-52 ) 

Therefore, since all the flow variables and the area at the duct exit and the far downstream are 

equal, station e can be replaced entirely by station 3, and this will be done for the rest of the 

analysis.  As a result, the governing equations from 2-29 to 2-43 that were derived for the 

compressible bare Actuator Disk Theory also apply to the current analysis of the ducted case 

without any change of subscripts. Furthermore, the assumption of constant duct area simplifies 

the isentropic flow relations between stations 2 and 3.  Since Adisk = A3, the isentropic relation 

between area and Mach number shows that M2 is equal to 3. 

  
A3

Adisk
= 1 =

M2

M3
(

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ+1

2(γ−1)

 ( 2-53 ) 

  ∴ M2 = M3 ( 2-54 ) 

With M2 equal to M3, the isentropic relation between pressure and Mach number shows that P2 is 

equal to P3. 
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P3

P2
= (

1+
γ−1

2
M2

2

1+
γ−1

2
M3

2
)

γ

γ−1

= 1 ( 2-55 ) 

  ∴ P2 = P3 ( 2-56 ) 

The implication that P2 is equal to P3 further suggests that ρ2 is equal to ρ3 when considering the 

isentropic pressure-density relation 

  
ρ2

ρ3
= (

P2

P3
)

1

γ
= 1 ( 2-57 ) 

  ∴ ρ2 = ρ3 ( 2-58 ) 

Since ρ2 is equal to ρ3, the conservation of mass conveys that V2 is also equal to V3.   

  ρ2A2V2 = ρ3A3V3 ( 2-59 ) 

  ∴ V2 = V3 ( 2-60 ) 

Since all the flow variables and the area immediately after the disk and the far downstream are 

equal, it can be stated that the flow properties after the disk remain constant all throughout the 

remaining section of the duct and out to the far downstream.  
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2.3.1. Lip Thrust Analysis 

 

Figure 16. Control volume used to drive lip thrust. 

The addition of the constant area duct onto the disk assembly also introduces the concept of lip 

thrust much like in the case of the ducted incompressible Actuator Disk Theory.  As mentioned in 

Chapter 1, Küchemann and Weber [3] have derived this lip thrust by applying the conservation of 

momentum to the control volume enclosing the far upstream and the duct inlet as shown in Figure 

16, where the subscript 0 denotes the far upstream and the subscript i denotes the inlet at some 

distance behind the lip.  The resulting momentum equation is given below 

  ∫ (PN − P0)dANAN
= ρiViAi(V0 − Vi) − (Pi − P0)Ai ( 2-61 ) 

where the lip thrust is the negative of the integral and is the force that the duct inlet exerts on the 

flow. 

  Tlip = − ∫ (PN − P0)dANAN
 

  Tlip = −ρiViAi(V0 − Vi) + (Pi − P0)Ai ( 2-62 ) 

Note that the above lip thrust equation, resulting from the momentum balance, is general and can 

be applied to both compressible and incompressible flow.  It will be tailored to the compressible 

ducted case in the next steps. 

Factoring V0 from the first term and P0 from the second term gives  
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  Tlip = −ρiViAiV0 (1 −
Vi

V0
) + P0Ai (

Pi

P0
− 1) ( 2-63 ) 

To non-dimensionalize the lip thrust, both sides of the equation are divided by the reference force  

  
Tlip

1

2
ρ0V0

2Ai

= −
ρiViAiV0
1

2
ρ0V0

2Ai

(1 −
Vi

V0
) +

P0Ai
1

2
ρ0V0

2Ai

(
Pi

P0
− 1) ( 2-64 ) 

and simplified to give 

  
Tlip

1

2
ρ0V0

2Ai

= 2
ρi

ρ0

Vi

V0
(

Vi

V0
− 1) + 2

P0

ρ0V0
2 (

Pi

P0
− 1) ( 2-65 ) 

Using the isentropic speed of sound relation, 

  a0
2 =

γP0

ρ0
 ( 2-66 ) 

along with the definition of the Mach number, 

  M0 =
V0

a0
 ( 2-67 ) 

the lip thrust equation can be expressed as follows 

  
Tlip

1

2
ρ0V0

2Ai

= 2
ρi

ρ0

Vi

V0
(

Vi

V0
− 1) +

2

γM0
2 (

Pi

P0
− 1) ( 2-68 ) 

The last step of the manipulation is to put the non-dimensional lip thrust in terms of free-stream 

and inlet velocities.  This is done by using the compressible energy equation, E0 = Ei: 

  
γ

γ−1

P0

ρ0
+

V0
2

2
=

γ

γ−1

Pi

ρi
+

Vi
2

2
 ( 2-69 ) 

along with the isentropic pressure-density ratio 

  
Pi

P0
= (

ρi

ρ0
)

γ
 ( 2-70 ) 

to develop relations for the pressure and density ratios as shown. 

  
Pi

P0
= (1 +

γ−1

2
M0

2 (1 − (
Vi

V0
)

2
))

γ

γ−1

 ( 2-71 ) 

  
ρi

ρ0
= (1 +

γ−1

2
M0

2 (1 − (
Vi

V0
)

2
))

1

γ−1

   ( 2-72 ) 
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Lastly, the pressure and density ratios are substituted back into the equation to give the final non-

dimensional lip thrust in terms of M0, γ, and the velocity ratio 
Vi

V0
 

  
Tlip

1

2
ρ0V0

2Ai

= 2 (
Vi

V0
) (

Vi

V0
− 1) (1 +

γ−1

2
M0

2 (1 − (
Vi

V0
)

2
))

1

γ−1

  

  +
2

γM0
2 ((1 +

γ−1

2
M0

2 (1 − (
Vi

V0
)

2
))

γ

γ−1

− 1) ( 2-73 ) 

Note that when the ratio of the duct inlet to the far upstream velocity 
Vi

V0
 is equal to 1, the lip thrust 

goes to zero, which is consistent with the lip thrust for incompressible flow.   

Assuming the streamlines are straight and parallel so that the pressure at station 1 is the same as 

that at the inlet, the flow variables at stations i and 1 are equal for the same reasons that the flow 

variables at stations e and 3 are equal. As a result, replacing the subscript i in equation 2-73 with 

1 and asserting that A1 = Adisk gives 

  
Tlip

1

2
ρ0V0

2Adisk

= 2 (
V1

V0
) (

V1

V0
− 1) (1 +

γ−1

2
M0

2 (1 − (
V1

V0
)

2
))

1

γ−1

  

  +
2

γM0
2 ((1 +

γ−1

2
M0

2 (1 − (
V1

V0
)

2
))

γ

γ−1

− 1) ( 2-74 ) 

Alternately, the lip thrust can also be derived by applying the static equilibrium equation in the 

direction of the flow on the disk-and-duct assembly.  By doing so, the lip thrust is also the 

difference between the total and the disk thrust. 

  Tlip = Ttotal − Tdisk ( 2-75 ) 

Logically, the lip thrust from this derivation must equal the lip thrust determined by Küchemann 

and Weber [3] using the control volume encasing the flow from the far upstream to the duct inlet.  

To have a more complete and collective analysis of the ducted case of compressible Actuator 

Disk Theory, it is shown in Appendix B that it is indeed the case.  This concludes the derivation 
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of the governing equations for the ducted case of the compressible Actuator Disk Theory, which 

are summarized in the following section. 

 

2.3.2. Summary of Governing Equations 

In summary, the assumption of constant duct area implies the following for the ducted case of the 

compressible Actuator Disk Theory. 

  M2 = Me = M3 ( 2-76 ) 

  V2 = Ve = V3 ( 2-77 ) 

  P0 = P2 = Pe = P3 ( 2-78 ) 

  ρ0 = ρ2 = ρe = ρ3 ( 2-79 ) 

Due to these results from the assumption of constant duct area, the governing equations are 

reduced to the following below. These governing equations relate the flow variables at each 

station, the mass flowrate, the power addition by the disk, and the total, disk, and lip thrusts to the 

free-stream flow conditions which are γ, P0, ρ0, and V0 and the disk area.  

 M0 = V0 (γ ∙
P0

ρ0
)

−
1

2
 ( 2-80 ) 

 
A0

Adisk
=

M1

M0
(

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ+1

2(γ−1)

 ( 2-81 ) 

 
P1

P0
= (

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ

γ−1

 ( 2-82 ) 

 
ρ1

ρ0
= (

P1

P0
)

1

γ
 ( 2-83 ) 

 
V1

V0
=

ρ0

ρ1

A0

Adisk
 ( 2-84 ) 

 M3 = V3 (γ ∙
P0

ρ0
)

−
1

2
 ( 2-85 ) 

 ṁ = ρ1AdiskV1 ( 2-86 ) 
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Tlip

1

2
ρ0V0

2Adisk

= 2 (
V1

V0
) (

V1

V0
− 1) (1 +

γ−1

2
M0

2 (1 − (
V1

V0
)

2
))

1

γ−1

  

  +
2

γM0
2 ((1 +

γ−1

2
M0

2 (1 − (
V1

V0
)

2
))

γ

γ−1

− 1) ( 2-87 ) 

  Ttotal = ṁ(V3 − V0) ( 2-88 ) 

  Tdisk = ṁ(V2 − V1) + Adisk(P2 − P1) ( 2-89 ) 

  Tlip = Ttotal − Tdisk ( 2-90 ) 

  Pinput = ṁ
V3

2−V0
2

2
 ( 2-91 ) 

In comparison, the assumption of the constant duct area gives the same results for both the 

incompressible and compressible Actuator Disk Theory where the flow properties are constant 

from the immediate downstream of the disk, throughout the remaining section of the duct and out 

to the far downstream.  The disk thrust contains an additional term due to the discontinuity in 

velocity across the disk, while the total thrust and the power addition given in equation 2-88 and 

2-91 are identical to those for the ducted case of the classical Actuator Disk Theory. Lastly, the 

lip thrust cannot be expressed in terms of the far downstream velocity as can be done for 

incompressible flow due to the fact that velocity is discontinuous across the disk. Next, the 

method for determining the flow variables and the disk performance will be discussed. 
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2.4. Method of Solution 

For both the compressible and classical Actuator Disk Theory, the governing equations provide a 

system of equations necessary to determine the flow variables at each station and the performance 

of the actuator disk in terms of some given inputs.  The inputs are the free-stream flow conditions 

which are γ, P0, ρ0, and V0 and the disk cross-sectional area Adisk.  Along with these inputs, an 

additional variable is specified depending on whether energy is added to or extracted from the 

flow. Usually, this independent variable is the power addition to the flow in the case of an 

energy-adding device and the far downstream velocity in the case of an energy-extracting device.    

As discussed in Chapter 1, the unknown variables in the governing equations for the classical 

Actuator Disk Theory can be expressed solely in terms of the given inputs and be solved 

explicitly, which is not true for the compressible theory.  Some of the flow variables in the 

governing equations for the compressible theory cannot be isolated such as M1 in the isentropic 

area-to-Mach relation between station 0 and 1 in equation 2-30.  As a result, the governing 

equations are a mixture of both inputs and outputs on the right side of the equations; whereas, the 

incompressible-flow equations have the outputs separated to the left side and the inputs to right 

side.  

Therefore, the compressible-flow equations, for both the bare and ducted case, cannot be solved 

explicitly and require an iterative method.  One iterative method has been presented and 

employed by Delano and Crigler [5] to obtain the compressible-flow solutions for the bare 

propeller, which is an energy-adding device.  In addition to specifying the power addition by the 

disk Pinput, the free-stream flow conditions γ, P0, ρ0, and V0, and the disk area Adisk, the Mach 

number immediately before the disk M1 is also initially specified to begin marching through the 

compressible equations listed in section 2.2.1 (equations 2-29 to 2-44) to determine the flow 

variables at each station.  The flow variables associated with the assumed M1 are then used to 

solve for the total thrust Ttotal and the thrust at the disk plane Tdisk separately, which are also 
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equal to each other for the bare actuator disk.  If Ttotal and Tdisk are not equal, then the process of 

assuming a new M1 and solving for the flow variables with the assumed M1 is repeated until 

Ttotal and Tdisk are approximately equal.  The same iterative approach can also be taken for the 

ducted case of compressible Actuator Disk Theory, where the total thrust Ttotal, the disk thrust 

Tdisk, and the lip thrust Tlip can be found separately for the assumed M1.  Then, a new M1 is 

assumed until the lip thrust is equal to the difference between total and disk thrust: Tlip = Ttotal −

Tdisk. 

Due to the accessibility of numerical computing software today, the iterative method is 

implemented into EES (Engineering Equation Solver), a program that can solve numerous 

coupled non-linear algebraic and differential equations using numerical methods.  Thus, by 

providing the same number of equations as the number of unknowns into EES, all compressible-

flow solutions presented in this thesis work can be determined. 
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3. APPLICATIONS OF THE COMPRESSIBLE ACTUATOR DISK THEORY - 

PROPELLER 

3.1. Introduction 

In this chapter, the governing equations derived for the bare and ducted case of the compressible 

Actuator Disk Theory in Chapter 2 will be applied to a propeller.  A propeller is considered an 

energy-adding device, adding power to the flow stream at the disk plane and exerting a thrust 

force on the flow in the direction of the flow.  Its purpose is to generate high propulsive thrust for 

a given power input; hence, a well-accepted measure of its performance is its propulsive 

efficiency against the power addition to the flow by the propeller.  The dimensionless quantities 

such as the propulsive efficiency and the thrust and power coefficients are developed in this 

chapter for the bare and ducted propeller.   

The governing equations for the compressible Actuator Disk Theory are used to determine the 

flow variables at each station and the performance of both the bare and ducted propeller in terms 

of the free-stream flow conditions, the disk area, and the power coefficient.  The solutions to the 

compressible bare and ducted propeller are made dimensionless by the free-stream conditions and 

are compared with the results obtained by Delano and Crigler [5] for agreement.    

To begin, the propeller is assumed to have an infinite number of blades such that it becomes an 

actuator disk with an area of Adisk.  Because the governing equations for the compressible 

Actuator Disk Theory are derived in Chapter 2 already assuming that the disk is an energy-adding 

device, much like a propeller, they can be utilized here without any sign change, starting with the 

case of the bare propeller. 
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3.2. Compressible, Bare Propeller 

The dimensionless parameters—the power coefficient, the total thrust coefficient, and the 

propulsive efficiency—will be established for the compressible, bare propeller.  The power 

coefficient is found by dividing the power addition to the flow in equation 2-43 by the available 

power in the free-stream in an area of Adisk, 

  CP =
Pinput

Pavailable
=

1

2
ṁ(V3

2−V0
2)

1

2
ρ0AdiskV0

3
 ( 3-1 ) 

Similarly, the total thrust coefficient is found by dividing the total thrust in equation 2-41 by the 

reference force 

  CT =
Ttotal

1

2
ρ0AdiskV0

2
=

ṁ(V3−V0)
1

2
ρ0AdiskV0

2
 ( 3-2 ) 

Lastly, the propulsive efficiency ηprop is the ratio of the propulsive power to the total power 

added by the propeller where the propulsive power is the product of the total thrust and the free-

stream velocity 

  ηprop =
propulsive power

Pinput
=

ṁ(V3−V0)V0
1

2
ṁ(V3

2−V0
2)

 ( 3-3 ) 

By simplifying, the propulsive efficiency is given in terms of the velocity ratio 
V3

V0
 

  ηprop =
2V0

V3+V0
=

2
V3
V0

+1
 ( 3-4 ) 

Alternatively, the propulsive efficiency is also the ratio of the total thrust coefficient to the power 

coefficient 

  ηprop =
CT

Cp
=

2
A0

Adisk
(

V3
V0

−1)

A0
Adisk

((
V3
V0

)
2

−1)
 ( 3-5 ) 

By canceling the area ratio 
A0

Adisk
 in the numerator and the denominator of equation 3-5 and 

expanding the denominator, the propulsive efficiency is 

  ηprop =
2(

V3
V0

−1)

(
V3
V0

−1)(
V3
V0

+1)
 ( 3-6 ) 



53 

 

Simplifying equation 3-6will give the propulsive efficiency in equation 3-4.  An alternative form 

of the power coefficient and the total thrust coefficient will be shown.   

By substituting the following mass flowrate  

  ṁ = ρ0A0V0 ( 3-7 ) 

into equation 3-1 and simplifying, the power coefficient becomes 

  Cp =
A0

Adisk
((

V3

V0
)

2
− 1) ( 3-8 ) 

Equation 3-8 can be rearranged to give the following velocity ratio as a function of the power 

coefficient CP and the ratio between the free-stream and the disk area 
A0

Adisk
  

  
V3

V0
= (1 +

CP
A0

Adisk

)

1

2

 ( 3-9 ) 

Likewise, the thrust coefficient can be simplified to the following form by using the mass 

flowrate given in equation 3-7 

  CT = 2
A0

Adisk
(

V3

V0
− 1) ( 3-10 ) 

Although the form of the power coefficient and the total thrust coefficient given in equations 3-8 

and 3-10 is unconventional, it is useful when comparing the results that are presented later in the 

chapter. 

 

3.2.1. Summary of Governing Equations 

The complete set of the governing equations, including the power coefficient, the total thrust 

coefficient, and the propulsive efficiency, for the compressible bare propeller are given.  Note 

that these equations are a non-linear, coupled algebraic set.   

  M0 = V0 (γ ∙
P0

ρ0
)

−
1

2
 ( 3-11 ) 

  
A0

Adisk
=

M1

M0
(

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ+1

2(γ−1)

 ( 3-12 ) 
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P1

P0
= (

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ

γ−1

 ( 3-13 )) 

  
ρ1

ρ0
= (

P1

P0
)

1

γ
 ( 3-14 ) 

  
V1

V0
=

ρ0

ρ1

A0

Adisk
 ( 3-15 ) 

  M3 = V3 (γ ∙
P0

ρ0
)

−
1

2
 ( 3-16 ) 

  
A3

A0
=

V0

V3
 ( 3-17 ) 

  
A3

Adisk
=

M2

M3
(

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ+1

2(γ−1)

 ( 3-18 ) 

  
P2

P0
= (

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ

γ−1

 ( 3-19 ) 

  
ρ2

ρ0
= (

P2

P0
)

1

γ
 ( 3-20 ) 

  V2 =
ρ1

ρ2
V1 ( 3-21 ) 

  ṁ = ρ1AdiskV1 ( 3-22 ) 

  Ttotal = ṁ(V3 − V0) ( 3-23 ) 

  Tprop = ṁ(V2 − V1) + Adisk(P2 − P1)  ( 3-24 ) 

  Ttotal = Tprop ( 3-25 ) 

  
V3

V0
= (1 +

CP
A0

Adisk

)

1

2

 ( 3-26 ) 

  Pinput = ṁ
V3

2−V0
2

2
 ( 3-27 ) 

  CT = 2
A0

Adisk
(

V3

V0
− 1) ( 3-28 ) 

  ηprop =
2

V3
V0

+1
 ( 3-29 ) 
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Given the free-stream conditions, the disk area, and the power addition to the flow, these 

governing equations provide a system of equations to determine the flow variables before the disk 

and throughout the slipstream and the performance of the bare propeller. 

 

3.2.2. Method of Solution 

The purpose of the current analysis is to solve for the flow variables at stations 0 to 4 and to 

determine the performance of the bare propeller using the governing equations given in section 

3.2.1.  To do so, the disk area Adisk, the power addition to the flow Pinput, and the free-stream 

conditions γ, ρ0, P0, and V0 are specified. With these six inputs, γ, ρ0, P0, V0, Adisk, and Pinput, the 

unknown variables left to solve are the following flow variables A0, M0, M1, ρ1, P1, V1, M2, ρ2, P2, 

V2, A3, M3, and V3 and the performance parameters of the bare propeller Tprop, Ttotal, CP, CT, 

ηprop,  and ṁ, giving a total of nineteen unknown variables.  The governing equations in section 

3.2.1 give the necessary nineteen equations to solve for these nineteen unknown variables.  

Next, the dimensionless independent variables are determined using Buckingham Pi Theorem to 

express the propulsive efficiency of the bare propeller as a function of the given variables 

γ, V0, ρ0, P0, Adisk, and Pinput.  With a total of seven variables and three physical dimensions, the 

four resulting dimensionless parameters are  
Pinput

1

2
ρ0AdiskV0

3
, V0 (γ ∙

P0

ρ0
)

−
1

2
,  γ, and ηprop of which the 

first and second are the power coefficient CP and the free-stream Mach number M0.  The power 

coefficient CP and the free-stream Mach number M0 are made into independent variables while γ 

is kept as a constant. As a result, for a given γ, ρ0, P0, and Adisk, the nineteen unknown variables 

are solved in Engineering Equation Solver (EES) in terms of CP for varying values of M0. Due to 

the power addition by the propeller at the disk plane, the velocity immediately before the disk is 

greater than the free-stream velocity and thus it is expected that M1 reaches 1 before M0. To keep 

the scope of the thesis within the subsonic regime, the solutions are solved for increasing Cp, 
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starting from 0.001, until the Mach number immediately before the actuator disk reaches one.  

Note that a CP of zero means that no power is added to the flow at the disk plane and the flow 

variables at the disk and in the slipstream are thus equal to those at the free-stream. 

Lastly, the solutions are nondimensionalized by the disk area and the free-stream pressure, 

density, velocity, and Mach number to obtain the following dimensionless variables 

ρ1

ρ0
,

ρ2

ρ0
,

P1

P0
,

P2

P0
,

V1

V0
,

V2

V0
,

V3

V0
,

M1

M0
,

M2

M0
,

M3

M0
,

A0

Adisk
, and

A3

Adisk
.  The pressure-rise across the disk is also made 

dimensionless by the dynamic pressure associated with the free-stream velocity giving the 

pressure-rise coefficient 
P2−P1
1

2
ρ0V0

2
.   

Due to the implicit nature of the compressible flow equations given in section 3.2.1, it is more 

effective to make the dimensional solutions obtained from EES into dimensionless parameters 

than it is to develop dimensionless representations of the flow variables. As a result, dimensional 

equations are presented but dimensionless solutions are presented in the next section. 

 

3.2.3. Results 

For comparison, both compressible- and incompressible-flow solutions are determined for the 

bare propeller for a disk area of 1 ft2 and for the free-stream flow at sea level static conditions as 

given in Table 1.  The compressible-flow solutions are obtained for M0 of 0.25, 0.40, 0.55, and 

0.70, while the incompressible-flow solutions are obtained for a free-stream velocity V0 

equivalent to Mach 0.55 at sea level static conditions.   

Table 2 gives important compressible- and incompressible-flow solutions of the bare propeller 

obtained at the maximum power coefficient before the flow is sonic at station 1 for various free-

stream Mach numbers M0.  

Figure 17 shows the maximum power coefficient that can be specified before M1is one for 

various free-stream Mach numbers.  It is observed that the maximum power coefficient that is 
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required for sonic flow immediately before the disk decreases rapidly with increasing free-stream 

Mach number M0.  The propulsive efficiency, the total thrust coefficient, the dimensionless mass 

flowrate, the ratios of the far upstream and downstream areas to the disk area, and the 

dimensionless flow variables immediately before and after the disk and at the far downstream are 

plotted against the power coefficient Cp for M0 of 0.25, 0.40, 0.55, and 0.70 in Figure 18 to 

Figure 31.  When applicable, the dimensionless incompressible-flow solutions for V0 equivalent 

to Mach 0.55 at sea level static conditions are included in the plots for comparison.  Note that the 

point where the flow becomes sonic before the disk is denoted by the symbol “X” in all of the 

plots.  

Table 1. Table of given free-stream pressure and density and the disk area. 

Given Parameters Value 

γ (compressible) 1.4 

P0 (lbf/ft2) 2166.8 

ρ0 (slugs/ft3) 2.329 × 10−3 

Adisk (ft3) 1 

 

Table 2. Table of flow solutions of the bare propeller obtained at the maximum power coefficient 

before the flow is sonic at station 1 for various free-stream Mach numbers. Note that * means 

incompressible flow values.  

M0 0.20 0.30 0.40 0.55 0.60 0.70 0.80 0.90 

CP (M1 = 1) 59.682 15.450 5.572 1.570 1.054 0.457 0.173 0.039 

ηprop 0.357 0.509 0.641 0.800 0.843 0.913 0.962 0.991 

ηprop* 0.352 0.504 0.638 0.799 0.842 0.913 0.962 0.991 

A0/Adisk 2.964 2.035 1.590 1.255 1.188 1.094 1.038 1.009 

A0/Adisk* 2.844 1.983 1.567 1.251 1.187 1.095 1.040 1.010 

A3/Adisk 0.645 0.694 0.749 0.836 0.865 0.919 0.961 0.990 

A3/Adisk* 0.607 0.669 0.734 0.833 0.864 0.920 0.963 0.991 

V3/V0 4.598 2.931 2.122 1.500 1.374 1.191 1.080 1.019 

V3/V0* 4.689 2.965 2.134 1.502 1.374 1.191 1.080 1.019 

 



58 

 

 
Figure 17. The plot gives the maximum power coefficient to drive the propeller before the flow is 

sonic at station 1 against the free-stream Mach number for the bare propeller. 

 

 
Figure 18. Propulsive efficiency of the bare propeller for incompressible flow and compressible 

flow of varying free-stream Mach numbers.  
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Figure 19. Comparison of the total thrust coefficient between incompressible flow and 

compressible flow of varying free-stream Mach numbers for the bare propeller. 

 

 
Figure 20. Comparison of the dimensionless mass flowrate between incompressible flow and 

compressible flow of varying free-stream Mach numbers for the bare propeller.  
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Figure 21. Comparison of the far upstream cross-sectional area between incompressible flow and 

compressible flow of varying free-stream Mach numbers for the bare propeller. 

 

 
Figure 22. Comparison of the far downstream cross-sectional area between incompressible flow 

and compressible flow of varying free-stream Mach numbers for the bare propeller. 
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Figure 23. Comparison of the far downstream velocity between varying free-stream Mach 

numbers for the bare propeller. 

 

 
Figure 24. Comparison of the far downstream Mach number between varying free-stream Mach 

numbers for the bare propeller. 
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Figure 25. Comparison of the velocities immediately before and after the bare propeller for 

varying free-stream Mach numbers. 

 

 
Figure 26. Comparison of the Mach numbers immediately before and after the bare propeller for 

varying free-stream Mach numbers. 
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Figure 27. Comparison of the densities immediately before and after the bare propeller for 

varying free-stream Mach numbers. 

 

 
Figure 28. Comparison of the pressures immediately before and after the bare propeller for 

varying free-stream Mach numbers. 
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Figure 29. Comparison of the pressure rise across the bare propeller for incompressible flow and 

compressible flow of varying free-stream Mach numbers. 

 

 
Figure 30. Comparison of the velocities throughout the streamtube between incompressible and 

compressible flow of the same free-stream velocity for the bare propeller. 
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Figure 31. Comparison of the pressures immediately before and after the bare propeller between 

incompressible and compressible flow of the same free-stream velocity. 
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Mach numbers M0.  This is because at high free-stream Mach numbers the flow immediately 

before the disk becomes sonic at very low power coefficients that little to no change in the 

propulsive efficiency can be observed as shown in Figure 18. When looking at the case for M0 of 

0.2 where an extremely large power coefficient is required to have sonic flow before the disk, a 

0.005 increase in the propulsive efficiency between the compressible and incompressible flow is 

observed in  

Table 2. As M0 increases, the change in the efficiency practically goes to zero.  

Since the propulsive efficiency is only dependent on the ratio of the far downstream and upstream 

velocities as seen in equation 3-29, and if the propulsive efficiency for the bare propeller is the 

same for compressible and incompressible flow, then logically the same conclusion can be made 

for the velocity ratio 
V3

V0
. Furthermore, since the velocity ratio  

V3

V0
 given in equation 3-26 only 

depends on the area ratio 
A0

Adisk
 for a given power coefficient, the same conclusion can also be said 

for  
A0

Adisk
.  However,  

Table 2 shows a 0.038 difference in 
A0

Adisk
 and a 0.091 difference in 

V3

V0
 between compressible and 

incompressible flow for M0 of 0.2 at a maximum power coefficient of 58.7, showing that the 

propulsive efficiency do differ in the most extreme cases.  This slight difference in 
A0

Adisk
 is visible 

in Figure 21 for M0 of 0.40 and 0.25 and the difference increases with increasing CP up to the 

point where the flow before the disk is sonic. Again as a check, the values given in  

Table 2 for 
A0

Adisk
 and 

V3

V0
 are found to be consistent with the results in the NACA report for M0 of 

0.6, 0.7, 0.8, 0.85, and 0.9. 

The same trend can be seen throughout the total thrust coefficient, the dimensionless mass 

flowrate, the area ratio 
A3

Adisk
, the velocity ratio 

V3

V0
, and the Mach ratio 

M3

M0
 as shown in Figure 19 to 
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Figure 24.  The curves for these dimensionless variables appear to fall on top of each other up to 

the point where the flow becomes sonic before the disk.  This is more evident in the total thrust 

coefficient, the velocity ratio 
V3

V0
, and the Mach ratio 

M3

M0
 where there is no deviation in the curves 

even at the lower free-stream Mach numbers such as 0.4 and 0.25.  However, a slight deviation 

can be observed for the dimensionless mass flowrate and the area ratio 
A3

Adisk
 at the lower Mach 

numbers. 

Next, the flow variables across the bare propeller are compared for compressible flow between 

varying free-stream Mach numbers.  Figure 25 to Figure 29 show that there is a rise in pressure 

and density but a drop in velocity and in turn the Mach number across the disk.  The difference in 

the pressure, density, and the velocity across the disk increases with the power coefficient and is 

more prominent when the free-stream Mach number is higher. When comparing the solutions 

between the compressible and incompressible flow of the same free-stream velocity, the pressure 

rise across the disk is much greater for compressible flow than for incompressible flow while the 

incompressible disk velocity is between the values of the velocity immediately before and after 

the disk for compressible flow as observed Figure 30 and Figure 31.  These results are consistent 

with the findings of Delano and Crigler [5]. 
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3.3. Compressible, Ducted Propeller 

This section will focus on the governing equations for the compressible, ducted propeller.  The 

propeller is treated an actuator disk that is encased by a constant area duct having a cross-

sectional area of Adisk.   

Note that the development of the performance parameters and the method of solution for the 

ducted propeller are similar if not the same to what was done for the bare propeller.  Note that the 

power addition by the propeller Pinput, the total thrust Ttotal, the propeller thrust Tprop, the power 

coefficient, the total thrust coefficient, and the propulsive efficiency in equations 3-1 to 3-4 that 

were established for the bare propeller also apply to the ducted propeller.  However, due to the 

addition of the duct to the propeller assembly, the total thrust experienced by the flow is now the 

sum of the thrust exerted by the propeller and the lip thrust exerted by the duct lip 

  Ttotal = Tprop + Tlip ( 3-30 ) 

Next, the alternative forms of the power and thrust coefficient in equations 3-8 and 3-10 will be 

put only in terms of the velocity ratio 
V3

V0
.  By asserting that A3 = Adisk and ρ0 = ρ3 to the 

conservation of mass between station 0 and 3,  

  ρ0A0V0 = ρ3A3V3 ( 3-31 ) 

the ratio of the far upstream area to the disk area can be found  

  
A0

Adisk
=

V3

V0
 ( 3-32 ) 

By substituting equation 3-32 into 3-8 and 3-10, the power coefficient and the total thrust 

coefficient are now only in terms of 
V3

V0
 

  Cp =
V3

V0
((

V3

V0
)

2
− 1) ( 3-33 ) 

  CT = 2
V3

V0
(

V3

V0
− 1) ( 3-34 ) 

This form of the power and total thrust coefficients are only for the ducted propeller since the 

relation between the area ratio and the velocity ratio in equation 3-32 is not true for the bare 
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propeller. Note that this form of the power and the total thrust coefficients are also the same for 

the incompressible ducted propeller.  

 

3.3.1. Summary of Governing Equations 

The complete set of the governing equations for the compressible ducted propeller are 

summarized below.  

  M0 = V0 (γ ∙
P0

ρ0
)

− 
1

2
 ( 3-35 ) 

  
Adisk

A0
=

M0

M1
(

1+
γ−1

2
M1

2

1+
γ−1

2
M0

2
)

γ+1

2(γ−1)

 ( 3-36 ) 

  
P1

P0
= (

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ

γ−1

 ( 3-37 ) 

  
ρ1

ρ0
= (

P1

P0
)

1

γ
 ( 3-38 ) 

  
V1

V0
=

ρ0

ρ1

A0

Adisk
 ( 3-39 ) 

  M3 = V3 (γ ∙
P0

ρ0
)

−
1

2
 ( 3-40 ) 

  ṁ = ρ1AdiskV1 ( 3-41 ) 

  Ttotal = ṁ(V3 − V0) ( 3-42 ) 

  Tprop = ṁ(V2 − V1) + Adisk(P2 − P1) ( 3-43 ) 

  Tlip = Ttotal − Tprop ( 3-44 ) 

  
Tlip

1

2
ρ0V0

2Adisk

= 2 (
V1

V0
) (

V1

V0
− 1) (1 +

γ−1

2
M0

2 (1 − (
V1

V0
)

2
))

1

γ−1

  

  +
2

γM0
2 ((1 +

γ−1

2
M0

2 (1 − (
V1

V0
)

2
))

γ

γ−1

− 1) ( 3-45 ) 

  Cp =
V3

V0
((

V3

V0
)

2
− 1) ( 3-46 ) 
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  Pinput = ṁ
V3

2−V0
2

2
 ( 3-47 ) 

  CT = 2
V3

V0
(

V3

V0
− 1) ( 3-48 ) 

  ηprop =
2

V3
V0

+1
 ( 3-49 ) 

As stated previously for the bare propeller, these governing equations provide a system of 

equations to determine the flow variables before the actuator disk and throughout the slipstream 

and the performance of the ducted propeller in terms of the free-stream flow variables γ, ρ0, P0, 

and V0 and the disk area Adisk.  

 

3.3.2. Method of Solution 

The method of solution for the ducted propeller is the same as for the bare propeller.  The power 

addition by the propeller to the flow Pinput is specified, along with the disk area Adisk, and the 

following free-stream flow variables γ, ρ0, P0, and V0.  With these six inputs, there are a total of 

fifteen unknown variables left to determine, which are the following flow variables A0, M0, M1, 

ρ1, P1, V1, M3, and V3 and the following performance parameters of the ducted propeller Tdisk, 

Ttotal, Tlip, CT, CP, ηprop,and ṁ. These fifteen unknown variables are solved in Engineering 

Equation Solver (EES) for the same γ, ρ0, P0, and Adisk in terms of the power coefficient CP for 

varying values of M0 using the fifteen non-linear governing equations summarized in section 

3.3.1.  Beginning from 0.001, the power coefficient CP is increased until the flow before the 

actuator disk becomes sonic for each value of M0. 

The solutions are nondimensionlized by the given free-stream flow variables and the disk area 

giving 
ρ1

ρ0
,

P1

P0
,

V1

V0
,

M1

M0
,

A0

Adisk
, 

ṁ

ρ0V0Adisk
, and 

P2−P1
1

2
ρ0V0

2
.  The lip thrust and the propeller thrust are also 

made dimensionless by the reference force to give the lip thrust and propeller thrust coefficients, 
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Tlip
1

2
ρ0AdiskV0

2
 and 

Tprop
1

2
ρ0AdiskV0

2
, respectively.  The dimensionless solutions are represented against the 

power coefficient CP for varying values of M0 in the following section. 

 

3.3.3. Results 

The solutions to the ducted propeller are determined for the same free-stream flow conditions and 

disk area as the bare propeller given in Table 1.  Compressible-flow solutions are obtained for the 

free-stream Mach number of 0.25, 0.40, 0.55, and 0.7, while incompressible-flow solutions are 

obtained for the free-stream velocity equal to Mach 0.55 at sea level static conditions for 

comparison. Figure 32 shows the maximum power coefficient required to obtain sonic flow 

immediately before the disk plotted against the free-stream Mach number M0. Other 

dimensionless parameters are plotted against the power coefficient in Figure 33 to Figure 43. 

 
Figure 32. The plot gives the maximum power coefficient to drive the propeller before the flow is 

sonic at station 1 against the free-stream Mach number for the ducted propeller. 
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Figure 33. Propulsive efficiency of the bare and ducted propeller for incompressible flow and 

compressible flow of varying free-stream Mach numbers. 

 

 
Figure 34. Comparison of the dimensionless mass flowrate between incompressible flow and 

compressible flow of varying free-stream Mach numbers for the ducted propeller. 
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Figure 35. Comparison of the far upstream cross-sectional area for incompressible flow and 

compressible flow of varying free-stream Mach numbers for the ducted propeller. 

 

 
Figure 36. Comparison of the velocity immediately after the ducted propeller for incompressible 

flow and compressible flow of varying free-stream Mach numbers. Note that 𝐕𝟐 = 𝐕𝟑. 
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Figure 37. Comparison of the Mach number immediately after the ducted propeller for varying 

free-stream Mach numbers. Note that 𝐌𝟐 = 𝐌𝟑. 

 

 
Figure 38. Contribution of the propeller thrust and lip thrust to the total thrust at various 

freestream Mach numbers for incompressible and compressible flow. 
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Figure 39. Comparison of the velocity immediately before the ducted propeller for 

incompressible flow and compressible flow of varying free-stream Mach numbers. 

 

 
Figure 40. Comparison of the Mach number immediately before the ducted propeller for varying 

free-stream Mach numbers. 
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Figure 41. Comparison of the density immediately before the ducted propeller for varying free-

stream Mach numbers. 

 

 
Figure 42. Comparison of the pressure immediately before the ducted propeller for 

incompressible flow and compressible flow of varying free-stream Mach numbers. 
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Figure 43. Comparison of the pressure rise across the disk for incompressible flow and 

compressible flow of varying free-stream Mach number for the ducted propeller. 
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the lip thrust to the total thrust differs not only between incompressible and compressible flow but 

also between varying free-stream Mach numbers for compressible flow.   

Figure 39 to Figure 43 show that the velocity and thus the Mach number increase but the density 

and pressure are decrease immediately before the disk with increasing free-stream Mach 

numbers.  When comparing between incompressible and compressible flow of the same free-

stream velocity, the drop across the disk is much greater for compressible flow than for 

incompressible flow as shown in Figure 43. 
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3.4. Chapter Summary 

In concluding remarks, it is found that the results of the bare propeller agree with those of Delano 

and Crigler [5].  When measured against the power coefficient, the propulsive efficiency of the 

bare propeller is approximately the same for both incompressible and compressible flow, 

regardless of the free-stream Mach number, up to the point where the flow immediately before 

the disk is sonic.  When looking at the extreme cases of very low subsonic Mach numbers at very 

high power coefficients, the propulsive efficiency of the bare propeller does differ between 

compressible and incompressible flow, but such cases are impractical in real applications of 

propellers. It is also found that the ducted propeller also achieves the same propulsive efficiency 

and has the same total thrust coefficient, regardless of compressibility or the free-stream Mach 

number.  However, the individual contribution of the propeller thrust and the lip thrust to the total 

thrust differ greatly between compressible and incompressible flow. Agreements with the results 

of Delano and Crigler [5] not only builds confidence in the current method of solution and the 

compressible-flow results obtained for the bare and ducted propeller but also the results that will 

be presented for the compressible bare and ducted turbine, which is the main interest of the 

current study. The specific case where the free-stream velocity is zero for the bare and ducted 

compressible propeller is further investigated in Appendix C.  
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4. APPLICATIONS OF THE COMPRESSIBLE ACTUATOR DISK THEORY - 

TURBINE 

4.1. Introduction 

This chapter will focus on applying the compressible Actuator Disk Theory developed in Chapter 

2 to the cases of the bare and ducted turbine.  A turbine is an energy-extracting device that 

extracts useful energy from the total kinetic energy of the flow stream at the disk plane and 

experiences a drag force exerted by the flow. A well-known measure of its performance is its 

power extraction efficiency against the ratio of the far upstream and downstream velocities. 

Hence, the dimensionless parameters such as the power extraction efficiency and the total drag 

coefficient are established in this chapter for both the bare and ducted turbine. 

The governing equations of the Compressible Actuator Disk Theory are used to determine the 

flow variables at each station and the performance of both the bare and ducted turbine in terms of 

the free-stream flow conditions, the disk area, and the velocity ratio at the far upstream to the far 

downstream. The solutions to the bare and ducted turbine are made dimensionless by the free-

stream conditions and are compared between varying free-stream Mach Numbers for 

compressible flow and between incompressible and compressible flow.  It is important to note 

that this thesis is motivated by the need to derive the parameters that can be used to predict the 

performance of an ideal, small ram-air turbine (microRAT) [4] for high subsonic Mach number. 

Therefore, this chapter involving the compressible Actuator Disk Theory application for the bare 

and ducted turbine will be the main focus of the thesis. 

To begin, the turbine is treated as an actuator disk having an area of Adisk.  Because the governing 

equations for the compressible Actuator Disk Theory are derived in Chapter 2 assuming that the 

disk is an energy-adding device, some of the equations will be tailored for an energy-extracting 

device, starting with the case of the bare turbine. 
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4.2. Compressible, Bare Turbine 

The power extraction efficiency and the total drag coefficient will be established for the 

compressible, bare turbine. Recall that the governing equations for the compressible Actuator 

Disk Theory are derived for an energy-adding device that exerts a thrust force on the flow.  Since 

a turbine is a power-extracting device that experiences a drag force exerted by the flow, a change 

of sign is necessary to the power and the total thrust equations in Chapter 2.   The power extracted 

by the turbine Pextracted is the negative of the input power Pinput in equation 2-43 to signify that 

work is done on the turbine by the flow 

 Pextracted = −Pinput = ṁ
V0

2−V3
2

2
 ( 4-1 ) 

The drag force on the turbine is in the opposite direction of the flow.  So, the total drag Dtotal 

exerted by the flow and the drag experienced by the turbine at the disk plane Dturb are in the 

opposite direction of the total thrust Ttotal and the disk thrust Tdisk given in equation 2-41 and 2-

42  

 Dtotal = −Ttotal = ṁ(V0 − V3) ( 4-2 ) 

 Dturb = −Tdisk = ṁ(V1 − V2) + Adisk(P1 − P2) ( 4-3 ) 

Since the turbine is the only assembly within the stream tube, the total drag exerted by the flow is 

equal to the drag experienced by the turbine, analogous to the equivalence of the total thrust and 

the disk thrust for the compressible actuator disk  

 Dtotal = Dturb ( 4-4 ) 

Next the power extraction efficiency and the total drag coefficient are established.  The turbine’s 

power extraction efficiency is introduced by dividing the extracted power in equation 4-2 by the 

available power in the free-stream in an area equal to Adisk 

 ηturb =
Pextracted

Pavailable
=

ṁ
V0

2−V3
2

2
1

2
ρ0AdiskV0

3
 ( 4-5 ) 
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Similarly, the total drag coefficient is found by dividing the total drag in equation 4-1 by the 

reference force 

 CD =
Dtotal

1

2
ρ0AdiskV0

2
=

ṁ(V0−V3)
1

2
ρ0AdiskV0

2
 ( 4-6 ) 

An alternative form of the power extraction efficiency and the total drag coefficient will be 

shown.  By substituting the following mass flowrate into equation 4-6 and simplifying, 

 ṁ = ρ0A0V0 ( 4-7 ) 

the turbine extraction efficiency becomes 

 ηturb =
A0

Adisk
(1 − (

V3

V0
)

2
) ( 4-8 ) 

Likewise, the total drag coefficient can be simplified to the following form using the mass 

flowrate in equation 4-7 

 CD = 2
A0

Adisk
(1 −

V3

V0
) ( 4-9 ) 

While this form of the turbine extraction efficiency and the total drag coefficient may seem 

unconventional, it is useful when comparing the results that are presented later in the chapter.  

With the performance parameters established, the complete set of the governing equations for the 

compressible bare turbine are summarized in the next section. 
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4.2.1. Summary of Governing Equations 

  M0 = V0 (γ ∙
P0

ρ0
)

−
1

2
 ( 4-10 ) 

  
A0

Adisk
=

M1

M0
(

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ+1

2(γ−1)

 ( 4-11 ) 

  
P1

P0
= (

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ

γ−1

 ( 4-12 ) 

  
ρ1

ρ0
= (

P1

P0
)

1

γ
 ( 4-13 ) 

  
V1

V0
=

ρ0

ρ1

A0

Adisk
 ( 4-14 ) 

  M3 = V3 (γ ∙
P0

ρ0
)

−
1

2
 ( 4-15 ) 

  
A3

A0
=

V0

V3
 ( 4-16 ) 

  
A3

Adisk
=

M2

M3
(

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ+1

2(γ−1)

 ( 4-17 ) 

  
P2

P0
= (

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ

γ−1

 ( 4-18 ) 

  
ρ2

ρ0
= (

P2

P0
)

1

γ
 ( 4-19 ) 

  V2 =
ρ1

ρ2
V1 ( 4-20 ) 

  ṁ = ρ1AdiskV1 ( 4-21 ) 

  Pextracted = ṁ
V0

2−V3
2

2
 ( 4-22 ) 

  Dtotal = ṁ(V0 − V3) ( 4-23 ) 

  Dturb = ṁ(V1 − V2) + Adisk(P1 − P2) ( 4-24 ) 

  Dtotal = Dturb ( 4-25 ) 

 CD = 2
A0

Adisk
(1 −

V3

V0
) ( 4-26 ) 
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 ηturb =
A0

Adisk
(1 − (

V3

V0
)

2
) ( 4-27 ) 

These governing equations provide the necessary system of equations to determine the flow 

variables throughout the slipstream and the performance of the turbine in terms of the free-stream 

conditions, the disk area, and the far downstream velocity. 

 

4.2.2. Method of Solution 

The governing equations are derived for given free-stream conditions which are γ, ρ0, P0, and V0, 

the disk area Adisk, and the far downstream velocity V3.  With these six inputs, the unknown 

variables left to determine are the following flow variables A0, M0, M1, ρ1, P1, V1, M2, ρ2, P2, V2, 

A3, M3 and the turbine’s performance parameters Dturb, Dtotal, Pextracted, CD, ηturb, and ṁ, all of 

which sums to eighteen unknown variables.  These eighteen unknown variables can be solved 

using the eighteen non-linear coupled equations summarized in section 4.2.1. 

The main variable of interest, the extracted power Pextracted, is nondimensionalized using 

Buckingham Pi Theorem to find the dimensionless independent variables. Pextracted can be 

expressed as a function of the given variables γ, V0, ρ0, P0, Adisk, and V3. With a total of seven 

variables and three physical dimensions, the four resulting nondimensional parameters are  

Pextracted
1

2
ρ0AdiskV0

3
, V0 (γ ∙

P0

ρ0
)

−
1

2
,  γ, and 

V3

V0
 of which the first and second are the power extraction 

efficiency and the free-stream Mach number M0.  The velocity ratio 
V3

V0
, which will be denoted by 

r, and the free-stream Mach number M0 are made into independent variables while γ is kept as a 

constant. Note that r can never be zero since it is impossible to extract 100% of the flow’s kinetic 

energy into useful power.  The maximum value of r is 1 which corresponds to no power 

extraction made by the turbine.  Therefore, for a given γ, ρ0, P0, and Adisk, the eighteen unknown 

variables are solved in Engineering Equation Solver (EES) in terms of r, ranging from 0.001 to 1, 

for varying values of M0.   
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Lastly, the solutions are made dimensionless by the free-stream flow conditions and the disk area 

to give the following nondimensional parameters 
ρ1

ρ0
,

ρ2

ρ0
,

P1

P0
,

P2

P0
,

V1

V0
,

V2

V0
,

M1

M0
,

M2

M0
,

A0

Adisk
, 

ṁ

ρ0V0Adisk
 and 

A3

Adisk
.  The pressure-difference across the disk is also non-dimensionalized by the dynamic 

pressure associated with the free-stream velocity introducing the pressure-difference coefficient 

P2−P1
1

2
ρ0V0

2
, which is positive for a pressure rise and negative for a pressure drop across the disk. Note 

that due to the implicit nature of the compressible flow equations given in section 4.2.1, it is more 

effective to turn the dimensional solutions obtained in EES into dimensionless parameters than it 

is to develop dimensionless representations of the flow variables. As a result, dimensional 

equations are presented but dimensionless solutions are presented in the next section. 

 

4.2.3. Results  

The compressible-flow solutions are determined for the disk area and the sea level static free-

stream flow conditions given in Table 1 and for the free-stream Mach numbers of 0.4, 0.6, and 

0.8, as was done for the compressible propeller.  To see the effects of compressibility on the flow 

variables, incompressible-flow solutions are also obtained for the same given variables in Table 1 

and for the free-stream velocity V0 equivalent to Mach 0.6 at sea level static conditions.   

The Betz limit for the compressible bare turbine and the velocity ratio r at which it occurs are 

given in Table 3 for M0 ranging from 0.4 to 0.8.  The effect of the free-stream Mach number on 

the Betz limit and its corresponding velocity ratio r is also presented in Figure 45 to Figure 47.  

The power extraction efficiency, the total drag coefficient, the dimensionless mass flowrate, the 

ratios of the far upstream and downstream areas to the disk area, and the dimensionless flow 

variables immediately before and after the disk are plotted against the velocity ratio r for M0 of 

0.4, 0.6, and 0.8 in Figure 44 and Figure 48 to Figure 57.  When applicable, the dimensionless 
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incompressible-flow solutions for V0 equivalent to Mach 0.6 at sea level static conditions are also 

included in the plots.  These plots are discussed in the next section. 

Table 3. Table of the Betz limit for the bare turbine between compressible and incompressible 

flow.  

M0 0.8 0.7 0.6 0.5 0.4 Incompressible 

velocity ratio 0.297 0.307 0.315 0.321 0.325 0.333 

Betz limit 0.614 0.609 0.605 0.601 0.598 0.593 

 

 
Figure 44. Comparison of the bare turbine’s power extraction efficiency for incompressible flow 

and for compressible flow of varying free-stream Mach numbers. 
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Figure 45. Comparison of the Betz Limit of the bare turbine for incompressible flow and for 

compressible flow of varying free-stream Mach numbers. The black dots represent the Betz Limit 

of each curve: note that as 𝐌𝟎 increases, the black dot slightly moves higher and more to the left.  

 

 
Figure 46. The Betz Limit (maximum power extraction efficiency) versus the free-stream Mach 

number 𝐌𝟎 for the compressible, bare turbine. 
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Figure 47. The Betz Limit (maximum power extraction efficiency) versus the corresponding 

velocity ratio r for the compressible, bare turbine. 

 

 
Figure 48. Comparison of the bare turbine’s total drag coefficient for incompressible flow and for 

compressible flow of varying free-stream Mach numbers. 

 

0.590

0.595

0.600

0.605

0.610

0.615

0.620

0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340

M
ax

im
u

m
 P

o
w

er
 E

xt
ra

ct
io

n
 E

ff
ic

ie
n

cy
 

Velocity Ratio r at Maximum Power Extraction Efficiency 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

To
ta

l D
ra

g 
C

o
ef

fi
ci

en
t,

 C
D
 

Velocity Ratio, r = V3/V0 

M0 = 0.8

M0 = 0.6

M0 = 0.4

Incompressible



89 

 

 
Figure 49. Comparison of the bare turbine’s total drag coefficient for incompressible flow and for 

compressible of varying free-stream Mach numbers within a smaller domain and range 

(enlarged). 

 

 
Figure 50. Comparison of the bare turbine’s dimensionless mass flowrate for incompressible flow 

and compressible flow of varying free-stream Mach numbers. 
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Figure 51. Comparison of the area at the far downstream between incompressible flow and 

compressible flow of varying free-stream Mach numbers for the bare turbine.  

 

 
Figure 52. Comparison of the area at the far upstream between incompressible flow and 

compressible flow of varying free-stream Mach numbers for the bare turbine. Note that 
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approaches infinity as r goes to zero.      
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Figure 53. Comparison of the Mach numbers immediately before and after the bare turbine for 

varying free-stream Mach numbers. Note that 𝐌𝟐 surpasses 𝐌𝟎 between an r value of 0.5 and 

0.55 for the curve 𝐌𝟎 = 𝟎. 𝟖. 

 

   
Figure 54. Comparison of velocities immediately before and after the bare turbine for 

incompressible flow and compressible flow of varying free-stream Mach numbers. Note that 𝐕𝟐 

surpasses 𝐕𝟎 between an r value of 0.6 and 0.65 for the curve 𝐌𝟎 = 𝟎. 𝟖. 
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Figure 55. Comparison of the densities immediately before and after the bare turbine for varying 

free-stream Mach numbers. 

 

  
Figure 56. Comparison of the pressures immediately before and after the bare turbine for 

compressible flow and incompressible flow of varying free-stream Mach numbers. 
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Figure 57. Comparison of the pressure drop across the bare turbine for incompressible flow and 

compressible flow of varying free-stream Mach numbers. 
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Figure 44 shows that the bare turbine has a slightly higher power extraction efficiency at small 

values of r for compressible flow than for incompressible flow.  Figure 45 further shows that as 

the free-stream Mach number M0 increases, the Betz limit slightly increases from the well-known 

value of 0.593 for incompressible flow and occurs at a lower velocity ratio r than that of 

incompressible flow. This trend is also observed in Figure 46 where the maximum power 

extraction efficiency increases with increasing M0.  Likewise, Figure 47 shows that as the 

maximum power extraction efficiency increases, the velocity ratio r at which it is achieved 

decreases.  

The slight increase in the Betz limit and the decrease in the corresponding velocity ratio r with the 

higher M0 are shown to be different to the third decimal place in Table 3.  When comparing 

between incompressible and a M0 of 0.8, the Betz limit roughly increased by 0.021 while the 

corresponding velocity ratio r decreased by 0.036. 

Total Drag Coefficient 

For small velocity ratios r, a slight increase in the total drag coefficient with increasing M0 can be 

observed in Figure 48 and Figure 49.  As r approaches 1, however, the slight increase in the total 

drag coefficient becomes negligible. 

Mass Flowrate  

The dimensionless mass flowrate has a trend consistent to that of the total drag coefficient.  

Figure 50 shows that the dimensionless mass flowrate slightly increases as M0 increases for small 

values of r but becomes indistinguishable between varying M0as r approaches 1. 

Area Ratios 

For small values of r, Figure 51 and Figure 52 shows a slight difference in the ratios of the far 

upstream and downstream areas to the disk area (
A0

Adisk
 and 

A3

Adisk
)  not only between compressible 

and incompressible flow but also between varying M0 for compressible flow.  Given the same 

disk area Adisk, the far upstream area A0 and the far downstream area A3 are slightly larger for 
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compressible flow than for incompressible flow.  The same areas are also larger for a higher M0 

for compressible flow.  This observation is consistent with the statements made for the Betz limit 

and the total drag coefficient.  At any given r, the power extraction efficiency in equation 4-8 and 

the total drag coefficient in equation 4-9 varies only with  
A0

Adisk
, and since 

A0

Adisk
 is slightly greater 

for a higher M0, the power extraction efficiency and the total drag coefficient follows the same 

trend. Note that for r equal to 1, A0 and A3 are equal to the disk area since no power is being 

extracted by the turbine.  

Flow Variables Immediately Before and After the Disk 

Figure 53to Figure 57 show that there is a rise in velocity and thus the Mach number but a drop in 

density and pressure across the disk for compressible flow and that the difference in the flow 

variables immediately before and after the disk is greater for the higher M0.  Note that the Mach 

after the disk is greater than the free-stream Mach when M0 is equal to 0.8 for r roughly greater 

than 0.52 as shown in Figure 53.  This is also true for the velocity after the disk for r roughly 

greater than 0.6 as seen in Figure 54. 

Compressible and Incompressible Flow 

The compressible- and incompressible-flow solutions for the bare turbine are compared for the 

same free-stream velocity V0, which is equivalent to Mach 0.6 at sea level static conditions.  For 

small values of r, the power extraction efficiency, the total drag coefficient, and the dimensionless 

mass flowrate are slightly greater for compressible flow than for incompressible flow, although 

the difference becomes negligible as r approaches unity.  Figure 57 also shows that the pressure 

drop across the disk is also greater for compressible flow than for incompressible flow. In the 

next section, the compressible Actuator Disk Theory will be extended to the ducted case of the 

turbine.  



96 

 

4.3. Compressible, Ducted Turbine 

The following section will focus on the compressible ducted turbine. Note that the establishment 

of the performance parameters and the method of solution for the ducted turbine are very much 

similar if not the same to what was done for the bare turbine.  The power extracted by the turbine 

Pextracted, the total drag exerted by the flow Dtotal, the drag experienced by the turbine at the 

disk plane Dturb, the power extraction efficiency, and the total drag coefficient established for the 

bare turbine in equations 4-22 to 4-27 also apply to the ducted turbine. However due to the duct 

enclosing the turbine, the total drag exerted by the flow on the duct-turbine assembly is now the 

difference of the drag experienced by the turbine and the lip thrust exerted by the duct inlet on the 

flow 

  Dtotal = Dturb − Tlip ( 4-28 ) 

Next, the alternative forms of the power extraction efficiency and the total drag coefficient in 

equations 4-26 and 4-27 are further simplified. By asserting that A3 = Adisk and ρ0 = ρ3 to the 

conservation of mass between the far upstream and the far downstream stations  

  ρ0A0V0 = ρ3A3V3 ( 4-29 ) 

 the ratio of the free-stream area to the disk area 
A0

Adisk
 is found 

  
A0

Adisk
=

V3

V0
= r ( 4-30 ) 

By substituting equation 4-30 into 4-26 and 4-27, the power extraction efficiency and the total 

drag coefficient are now only in terms of the velocity ratio r   

  ηturb =
V3

V0
(1 − (

V3

V0
)

2
) ( 4-31 ) 

  CD = 2
V3

V0
(1 −

V3

V0
) ( 4-32 ) 

Note that this form of the power extraction efficiency and the total drag coefficient are specific to 

the ducted turbine since the relation between 
A0

Adisk
 and r in equation 4-30 is not true for the bare 

turbine. This form of ηturb and CD is also the same for both the compressible and incompressible 
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ducted turbine. The complete set of governing equations for the compressible ducted turbine are 

summarized below. 

 

4.3.1. Summary of Governing Equations 

  V0 = M0 (γ ∙
P0

ρ0
)

1

2
 ( 4-33 ) 

  
Adisk

A0
=

M0

M1
(

1+
γ−1

2
M1

2

1+
γ−1

2
M0

2
)

γ+1

2(γ−1)

 ( 4-34 ) 

  
P1

P0
= (

1+
γ−1

2
M0

2

1+
γ−1

2
M1

2
)

γ

γ−1

 ( 4-35 ) 

  
ρ1

ρ0
= (

P1

P0
)

1

γ
 ( 4-36 ) 

  
V1

V0
=

ρ0

ρ1

A0

Adisk
 ( 4-37 ) 

  M3 = V3 (γ ∙
P0

ρ0
)

−
1

2
 ( 4-38 ) 

  ṁ = ρ1AdiskV1 ( 4-39 ) 

  Pextracted = ṁ
V0

2−V3
2

2
 ( 4-40 ) 

  Dtotal = ṁ(V0 − V3) ( 4-41 ) 

  Dturb = ṁ(V1 − V2) + Adisk(P1 − P2) ( 4-42 ) 

  Tlip = Dturb − Dtotal ( 4-43 ) 

  
Tlip

1

2
ρ0V0

2Adisk

= 2 (
V1

V0
) (1 −

V1

V0
) (1 +

γ−1

2
M0

2 ((
V1

V0
)

2
− 1))

1

γ−1

  

  +
2

γM0
2 ((1 +

γ−1

2
M0

2 ((
V1

V0
)

2
− 1))

γ

γ−1

− 1) ( 4-44 ) 

  CD = 2
V3

V0
(1 −

V3

V0
) ( 4-45 ) 
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  ηturb =
V3

V0
(1 − (

V3

V0
)

2
) ( 4-46 ) 

Again, these governing equations provide the necessary system of equations to solve for the flow 

variables before the disk and throughout the slipstream and the performance of the ducted turbine 

in terms of the free-stream flow conditions γ, ρ0, P0, and V0 and the disk area Adisk. 

 

4.3.2. Method of Solution  

The method of solution for the ducted turbine is the same as for the bare turbine. With the 

implications of the constant duct area given in equation 2-76 to 2-79, the unknown variables to 

determine for the ducted turbine are reduced to the following fourteen variables A0, M0, M1, ρ1, 

P1, V1, M3, Dturb, Dtotal, Tlip, Pextracted, CD, ηturb and ṁ. These fourteen unknown variables are 

solved in Engineering Equation Solver (EES) for a given γ, ρ0, P0, and Adisk in terms of the 

velocity ratio r ranging from 0.001 to 1 for varying values of M0, as was done for the bare 

turbine, using the fourteen non-linear coupled governing equations summarized in section 4.3.1. 

Lastly, the solutions are made dimensionless by the free-stream flow conditions and the disk area 

giving 
ρ1

ρ0
,

P1

P0
,

V1

V0
,

M1

M0
,

A0

Adisk
, 

ṁ

ρ0V0Adisk
, and 

P2−P1
1

2
ρ0V0

2
.  In addition, the lip thrust and the turbine drag are 

also nondimensionlized by the reference force which introduces the lip thrust and the turbine drag 

coefficients, 
Tlip

1

2
ρ0AdiskV0

2
 and 

Dturb
1

2
ρ0AdiskV0

2
, respectively.  These dimensionless parameters are 

presented in the next section. 

 

4.3.3. Results 

The compressible-flow solutions for the ducted turbine are determined for the same disk area and 

free-stream conditions as the bare turbine, which are given in Table 1.  The compressible-flow 

solutions are again obtained for M0 of 0.4, 0.6, and 0.8, while the incompressible-flow solutions 

are obtained for V0 equivalent to Mach 0.6 at sea level static conditions. The power extraction 
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efficiency, the total drag coefficient, the dimensionless mass flowrate, the ratios of the far 

upstream area to the disk area, and the dimensionless flow variables immediately before the disk 

are plotted against the velocity ratio r for M0 of 0.4, 0.6, and 0.8 in Figure 58 to Figure 66. When 

applicable, the dimensionless incompressible-flow solutions are also included in the plots for 

comparison purposes.  These plots are discussed in the next section. 

 
Figure 58. Comparison of the power extraction efficiency between the bare and the ducted turbine 

for incompressible flow and compressible of varying free-stream Mach numbers. 
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Figure 59. Contribution of the turbine drag and the lip thrust to the total drag for incompressible 

flow and for compressible flow of varying free-stream Mach numbers. Note that the total drag 

and the turbine drag are made negative to signify that they are in the opposite direction of the 

flow.  

 

 
Figure 60. Comparison of the dimensionless mass flowrate of the ducted turbine between 

incompressible flow and compressible flow of varying free-stream Mach numbers. 
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Figure 61. Comparison of the cross-sectional free-stream area of the ducted turbine for 

incompressible flow and compressible flow of varying free-stream Mach numbers. 

 

 
Figure 62. Comparison of the Mach numbers immediately before the ducted turbine for varying 

free-stream Mach numbers. Note that 𝐌𝟐 = 𝐌𝟑. 
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Figure 63. Comparison of velocities immediately before the ducted turbine for incompressible 

flow and compressible flow of varying free-stream Mach numbers. Note that 𝐕𝟐 = 𝐕𝟑. 
 

 

 
Figure 64. Comparison of the densities immediately before the ducted turbine for varying free-

stream Mach numbers.  
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Figure 65. Comparison of the pressures immediately before the ducted turbine for incompressible 

and compressible flow of varying free-stream Mach numbers. 

 

 
Figure 66. Comparison of the pressure drop across the ducted turbine for incompressible and 

compressible flow of varying free-stream Mach numbers. 
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4.3.4. Discussion 

The resulting plots are discussed below in the order that they appear beginning the power 

extraction efficiency and the Betz limit of the ducted turbine. Note that when the velocity ratio r 

is 1, the flow variables immediately before the disk are equal to those of the free-stream and the 

pressure-drop across the disk is zero due to no power extraction by the ducted turbine.    

Betz Limit 

Contrary to the observations made for the bare turbine, Figure 58 shows that the power extraction 

efficiency of the ducted turbine is not affected by the free-stream Mach number M0 and that it is 

the same for incompressible and compressible flow. This indicates that compressibility and M0 

also have no effect on the Betz limit and the velocity ratio r at which it occurs.  The power 

extraction efficiency given in equation 4-46 is differentiated with respect to the velocity ratio r to 

find the value of the Betz limit and its corresponding r.  The resulting Betz limit is 0.385 

occurring at a velocity ratio r of 0.577.  In closed form expression, the Betz limit is 2 (3−
3

2) while 

its corresponding r is 
√3

3
.  This means that the ducted turbine cannot capture more than 38.5% of 

the total kinetic energy in the flow for useful power.  Figure 58 shows that the Betz limit is 

significantly lower and occurs at a higher velocity ratio r for the ducted turbine than for the bare 

turbine.  

Drag and Lip Thrust Coefficient 

Figure 59 shows the total drag coefficient is also not affected by the free-stream Mach number 

M0 or the compressibility of the flow. This is expected since the total drag coefficient given in 

equation 4-45 is only dependent on the velocity ratio r and is the same equation for 

incompressible and compressible flow. However, the individual contribution of the turbine drag 

and the lip thrust to the total drag differs greatly not only between compressible and 

incompressible flow but also between varying M0 as evident in Figure 59.  The difference 
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between the lip thrust and the turbine drag is the smallest for incompressible flow while the 

difference increases with increasing M0 for compressible flow. 

Mass Flowrate 

Consistent to the trend of the total drag coefficient, Figure 60 shows that the dimensionless mass 

flowrate is independent of the free-stream Mach number M0 and is the same for incompressible 

and compressible flow.   

Area Ratio 

Likewise, the ratio of the far upstream area to the disk area 
A0

Adisk
 is found to be the same for 

incompressible and compressible flow regardless of  the free-stream Mach number M0.  

Flow Variables Across the Disk 

When comparing the compressible-flow variables immediately before the disk between varying 

M0, the pressure and the density increases while the velocity and thus the Mach number decreases 

with increasing M0 as evident in Figure 62 to Figure 66 given the same free-stream pressure and 

density. Note that the flow variables immediately after the disk are equal to the flow variables at 

the far downstream due the constant duct area in the slipstream. As a result, the ratio of the 

velocity after the disk to the free-stream velocity is the same for compressible and incompressible 

flow regardless of M0.  When comparing the compressible- and incompressible-flow solutions of 

the same V0, the pressure-drop across the disk is greater for compressible flow than for 

incompressible flow for all velocity ratios r as shown in Figure 66. 
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4.4. Chapter Summary 

In closing remarks, given the same free-stream density and pressure and the disk area, the bare 

turbine achieves a slightly higher extraction efficiency—and total drag—for compressible flow 

than for incompressible flow.  When considering compressible flow, the maximum extraction 

efficiency or the Betz limit is found to slightly increase while the velocity ratio r at which it 

occurs decreases with increasing free-stream Mach numbers M0.  This means that the 

compressible bare turbine can theoretically extract slightly more useful energy from the total 

kinetic energy of the free-stream flow when the free-stream flow has a higher V0. The bare 

turbine can also extract more energy from the free-stream flow than the ducted turbine of the 

same disk area.  In fact, the maximum percentage of power that can theoretically be extracted by 

the bare turbine from the total kinetic energy of the flow is significantly greater than that of the 

ducted turbine. The Betz limit of the ducted turbine and the velocity ratio r at which it occurs is a 

constant regardless of the compressibility of the flow. 
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5. CONCLUSION AND RECOMMENDATIONS 

The classical Actuator Disk Theory, also known as Froude’s Momentum Theory, is a theory that 

determines the ideal performance of an energy-adding or an energy-extracting device such as a 

propeller or a turbine by applying the conservation of mass, momentum, and energy to a flow 

stream that is considered steady, inviscid, one-dimensional, and incompressible.  Because 

compressibility effects arise in real applications of such devices, the current thesis extends the 

classical Actuator Disk Theory into the regime of subsonic compressible flow. The specific 

motivation for the present work is to develop a mathematical model that predicts the performance 

limits of a small ram-air turbine (microRAT) [4] operating at high subsonic Mach numbers for 

the application of the Boundary Layer Data System (BLDS). Developed by Dr. Russell Westphal 

and his team of students, the BLDS is a fully autonomous system that measures the flow 

properties of the boundary layer at the surface of an aircraft in flight.  Because the electronic 

components of the BLDS are not rated to perform below -20°C, their performance becomes 

unreliable during test flights at attitudes between 30,000 and 40,000 feet where the air 

temperature ranges from -40°C to -57°C or below.  The concept of utilizing a small ram-air 

turbine (microRAT) to provide power to a heating element that maintains operable temperatures 

inside the BLDS has previously been investigated by Victor Villa [2].  The goal of the current 

thesis is to develop the compressible Actuator Disk Theory using the three laws of conservation 

and isentropic thermodynamics to provide the necessary equations to predict the ideal 

performance of the microRAT.   

The governing equations of the compressible Actuator Disk Theory were established for two 

cases: the unducted (bare) and the ducted.  The unducted (bare) case considered the actuator disk 

as the only assembly within the flow stream, while the ducted case considered the disk as 

enclosed by a duct of the same cross-sectional area as of the disk.  The compressible-flow 

governing equations were then applied to determine the ideal performance of a propeller and a 

turbine for both the bare and ducted cases.  The application of the compressible Actuator Disk 
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Theory to the bare propeller has already been investigated by Delano and Crigler [5] but was 

included in the current thesis to show agreement and to build confidence in the results of the bare 

and ducted turbine in compressible flow, which was the main focus of the current thesis. 

The governing equations of both the classical and the compressible Actuator Disk Theory provide 

a system of equations to determine the performance of the actuator disk and the flow variables 

and the cross-sectional area at each of the four stations throughout the streamtube in terms of the 

disk area and the free-stream flow conditions. It was shown in Chapter 1 that the unknown 

variables within the governing equations of the classical Actuator Disk Theory can be made 

dimensionless solely in terms of the given inputs and be solved explicitly.  For the compressible 

Acutator Disk Theory, some of the unknown variables within the governing equations cannot be 

isolated or be expressed as a function of only the independent variables and thus have to be 

solved implicitly using a numerical method.  As a result, the governing equations for the 

compressible theory have a mixture of both the inputs and the outputs and thus cannot cleanly be 

presented as dimensionless quantities. Therefore, the governing equations were derived in 

dimensional forms, and the solutions were presented in dimensionless forms.    

Compressible-flow and incompressible-flow solutions were obtained for the bare and ducted 

cases of the propeller and the turbine for an actuator disk cross-sectional area of 1 ft
2 
and the free-

stream pressure, density, and specific heat ratio at sea level static conditions.  The compressible-

flow solutions were determined for varying values of the free-stream Mach number while, for 

comparison, the incompressible-flow solutions were determined for a free-steam velocity 

equivalent to one of the various free-stream Mach numbers chosen for the compressible-flow 

solutions.  All of the solutions were made dimensionless by the disk area and the free-stream flow 

conditions.  The following conclusions were found for the ducted and bare cases of the energy-

adding device or the propeller. 
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5.1. Propeller – Energy-addition 

1) When considering the case of the compressible bare propeller, the maximum power 

coefficient that is required for the flow to be sonic immediately before the disk decreases 

rapidly with increasing free-stream Mach number M0. 

2) The propulsive efficiency is approximately the same for compressible and incompressible 

flow for high subsonic free-stream Mach numbers M0 because the flow before the disk 

becomes sonic at lower power coefficients so that negligible change can be observed in 

the efficiency, which agrees with what was concluded by Delano and Crigler [5]. 

However, the propulsive efficiency of the bare propeller differs very slightly between 

compressible and incompressible flow at very large power coefficients for low subsonic 

free-stream Mach numbers. When looking at the case for M0 of 0.2 at a maximum power 

coefficient of 58.7, a 0.005 increase in the propulsive efficiency is observed between the 

compressible and incompressible flow.  Since the equation for the propulsive efficiency 

is dependent only on 
V3

V0
, and if the propulsive efficiency for the bare propeller is the same 

for compressible and incompressible flow, then logically the same conclusion can be 

made for the velocity ratio 
V3

V0
. In addition, since the equation for 

V3

V0
 only depends on the 

area ratio 
A0

Adisk
 for a given power coefficient, the same conclusion can also be said for  

A0

Adisk
. It was found that there is a 0.038 difference in 

A0

Adisk
 and a 0.091 difference in 

V3

V0
 

between compressible and incompressible flow for M0 of 0.2 with a maximum power 

coefficient of 58.7, further showing that the propulsive efficiency for the bare propeller is 

not be the same for compressible and incompressible flow.  However, such power 

coefficients are impractical in real life applications of propellers.  The same conclusion is 

true for the total thrust coefficient of the compressible bare propeller.  The total thrust 

coefficient is the same for compressible and incompressible flow for high subsonic free-
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stream Mach numbers M0 but is observed to differ very slightly at large power 

coefficients for low subsonic M0. 

3) The ducted propeller has the same propulsive efficiency in both compressible and 

incompressible flow at given power coefficients, regardless of the free-stream Mach 

number. 

4) The total thrust coefficient of the ducted propeller is the same for compressible and 

incompressible flow, although the individual contributions of the lip thrust and the 

propeller thrust to the total thrust change with varying M0 for compressible flow.  The 

difference between the lip thrust and the propeller thrust is found to decrease as the free-

stream Mach number increases for compressible flow, while this difference is the greatest 

for incompressible flow. 

5) When comparing compressible and incompressible flow of the same V0, the pressure-rise 

across the disk is greater for compressible flow than for incompressible flow for both the 

bare and ducted propeller. 

It was found that the results of the bare propeller agree with those obtained by Delano and Crigler 

[5]. In addition, it was also found that the lip thrust derived from the difference of the total thrust 

and the disk thrust also agrees with the lip thrust derived by Küchemann and Weber [3].  Such 

agreements built confidence not only in the current method of solution and the compressible-flow 

results obtained for the bare and ducted propeller but also in the results that were also found for 

the compressible bare and ducted turbine, which are presented next. 
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5.2. Turbine – Energy-extraction  

6) The power extraction efficiency and the total drag coefficient of the bare turbine are 

slightly higher for compressible flow than for incompressible flow.  As the free-stream 

Mach M0 increases, the maximum extraction efficiency or the Betz limit for the 

compressible bare turbine slightly increases from the incompressible value of 0.593, 

while the ratio of the far downstream velocity to the free-stream velocity r at which the 

Betz limit occurs decreases slightly from the incompressible value of 0.333.  When the 

free-stream Mach number is increased from incompressible to 0.8, the Betz limit is found 

to increase by 0.021 while the corresponding r decreases by 0.036, showing that the 

compressible bare turbine can theoretically extract slightly more useful energy from the 

free-stream flow when it has a higher velocity.  

7) The power extraction efficiency and the Betz limit and its corresponding velocity ratio r 

of the ducted turbine are not affected by the free-stream Mach number M0 and are found 

to be the same for incompressible and compressible flow.  The Betz limit of the ducted 

turbine is found to be 0.385 occurring at a velocity ratio r of 0.577.  This Betz limit is 

0.208 lower and occurs at a velocity ratio r that is 0.244 higher than that of the 

incompressible bare turbine. 

8) The total drag coefficient of the ducted turbine is also found to be the same for 

incompressible and compressible flow regardless of the free-stream Mach number M0. 

While this is true, the individual contribution of the turbine drag and the lip thrust to the 

total drag differs greatly not only between compressible and incompressible flow but also 

between varying M0. The difference between the lip thrust and the turbine drag is the 

smallest for incompressible flow and increases with increasing M0 for compressible flow. 

9) The pressure-drop across the disk is greater for compressible flow than for 

incompressible flow for all velocity ratios r for both the bare and ducted turbine when 

compared at equal values of the upstream velocity V0. 
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Overall, the analysis done in this current thesis shows that compressibility has very little 

influence on the ideal performance of an actuator disk.  Thus, the ideal performance of the small 

ram-air turbine (mircroRAT), which was the motivation of the current work, can be determined 

using the classical Actuator Disk Theory without having to worry about the effects of 

compressibility.  
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5.3. Recommendations 

Based on these conclusions of the current thesis, it is recommended that future work considers 

implementing important parameters such as rotation in the slipstream and the effect of entropy 

changes due to profile and shock losses to the compressible Actuator Disk Theory for both the 

bare and ducted cases.  As was done in this current thesis, the compressible theory that accounts 

for such parameters should be applied to determine the performance of the propeller and the 

turbine with and without a duct enclosing the actuator disk.  When considering the bare and 

ducted propeller, solutions should also be investigated for a supersonic wake immediately behind 

the actuator disk assuming that the power addition at the disk plane is greater than what is 

required to produce sonic flow (M1 = 1) immediately before the disk.  In addition, a duct of 

variable area or various inlet contour would also be useful extensions to the compressible 

Actuator Disk Theory. 
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APPENDICES 

 

 

A.  Incompressible Bare and Ducted Fan 

This appendix will investigate the specific case of the incompressible bare and ducted propeller 

where the freestream velocity is zero.  This specific case corresponds to the applications of a fan 

since its purpose is to generate a mass flow for a given power input when the freestream fluid is 

at rest.  Therefore, the performance parameters of the incompressible bare and the ducted fan will 

be established using the governing equations of the classical Actuator Disk Theory given in 

section 1.2.2 for the bare case and section 1.2.3 for the ducted case, given the following is true   

 V0 = 0 ( A-1 ) 

 

A.1.  Bare Fan 

Because the bare fan is simply a specific case of the bare propeller where the freestream velocity 

is zero, the dimensional performance parameters of the bare propeller can be applied to the case 

of the bare fan. By asserting that the freestream velocity is zero, the performance parameters from 

equation 1-58 to 1-62 can be put in terms of the far downstream velocity as shown 

 Ttotal = ṁV3 ( A-2 ) 

 Tfan =
1

2
ρAdiskV3

2 ( A-3 ) 

 Ttotal = Tfan ( A-4 ) 

 Pinput =
1

2
ṁV3

2  ( A-5 ) 

 ṁ = ρAdisk
V3

2
 ( A-6 ) 

Because a popular figure of merit of a fan is its ability to provide mass flowrate for a given power 

input, the mass flowrate through the fan will be determined in terms of the input power and the 

disk area.  From equation A-5, the slipstream velocity V3 can be rearranged as follows 
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 V3 = (
2Pinput

ṁ
)

1

2
 ( A-7 ) 

By substituting the slipstream velocity in A-7 into the mass flowrate in A-6   

 ṁ =  ρAdisk
1

2
(

2Pinput

ṁ
)

1

2
 ( A-8 ) 

and simplifying, the mass flowrate is expressed in terms of the input power 

 ṁ = (
1

2
ρAdisk)

2

3
(2Pinput)

1

3 ( A-9 ) 

Likewise, by substituting the slipstream velocity and the mass flowrate in equations A-7 and A-9 

into the fan thrust in equation A-3, the static thrust produced by the fan can also be expressed 

solely in terms of the input power to the fan and the disk area 

 Ttotal = (
1

2
ρAdisk)

1

3
(2Pinput)

2

3 ( A-10 ) 

Note that the form of the mass flowrate and the total thrust in equation A-9 and A-10 applies to 

both the bare and the ducted fan.  Similarly, the same analysis can be done for the ducted fan. 

 

A.2. Ducted Fan 

The dimensional performance parameters of the ducted propeller from can be applied to the 

ducted fan by asserting that the freestream velocity is zero.  

 Ttotal = ṁV3 ( A-11 ) 

 Tfan =
1

2
ρAdiskV3

2 ( A-12 ) 

 Tlip = Ttotal − Tfan ( A-13 ) 

 Pinput =
1

2
ṁV3

2  ( A-14 ) 

 ṁ = ρAdiskV3 ( A-15 ) 
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Furthermore, the lip and the fan thrust are put in terms of the power input and the disk area, as 

was done for the total thrust, to show that the lip thrust is equal to the fan thrust for the ducted 

fan.  The fan thrust can be determined by substituting the slipstream velocity in equation A-7 and 

the mass flowrate in equation A-15 into the fan thrust in equation A-12 

 Tfan =
1

2
(ρAdisk)

1

3(2Pinput)
2

3 ( A-16 ) 

By comparing the equations of the fan thrust and the total thrust for the ducted fan, it can be 

observed that the total thrust exerted on the flow is twice the thrust produced at the fan 

 Ttotal = 2 (
1

2
(ρAdisk)

1

3(2Pinput)
2

3) ( A-17 ) 

 Ttotal = 2Tfan ( A-18 ) 

 From equation A-13, the lip thrust is also the difference between the total and the fan thrust.  By 

substituting equation A-20 into A-13, it is shown that the lip thrust is equal to the fan thrust 

 Tlip = 2Tfan − Tfan ( A-19 ) 

 Tlip = Tfan ( A-20 ) 

The mass flowrate and the total thrust between the ducted and bare fan for two different disk 

areas are compared in Figure 67 and Figure 68. 

 

A.3.  Results and Discussion – Incompressible Bare and Ducted Fan 

The mass flowrate and the total thrust are obtained in Figure 67 and Figure 68 for an actuator disk 

area of 3 ft
2
 and 6 ft

2
 and for the free-stream pressure and density equal to that of sea level static 

conditions, which are 2166.8 lbf/ft
2
 and 2.329 × 10−3 slugs/ft

3
 respectively. Note that the curves 

for the mass flowrate and the total thrust of the ducted fan with a disk area of 6 ft
2
 and the bare 
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fan with a disk area of 3 ft
2
 are on top of each other in Figure 67 and Figure 68, showing that the 

ducted fan achieves the same mass flowrate and total static thrust as the bare fan of twice the disk 

area.  In addition, Figure 69 gives the contribution of the lip thrust and the fan thrust to the total 

thrust for the case of the ducted fan.  It can be observed in Figure 69 that the contribution of the 

lip thrust and the fan thrust are the same, as expected from the equation A-22. 

Figure 67. Comparison of mass flowrate between the incompressible ducted and bare fan for two 

different disk cross-sectional areas. Note that the curves for the ducted fan with a disk area of 6 

ft
2
 and the bare fan with a disk area of 3 ft

2
 are on top of each other. 
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Figure 68. Comparison of the total thrust between the incompressible ducted and bare fan for two 

different disk cross-sectional areas. Note that the curves for the ducted fan with a disk area of 6 

ft
2
 and the bare fan with a disk area of 3 ft

2
 are on top of each other. 

 
Figure 69. Comparison of the total thrust, fan thrust, and the lip thrust of the incompressible 

ducted fan for a disk cross-sectional area of 6 ft
2
. Note that the curves for the fan thrust and the 

lip thrust are on top of each other.  
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B.  Lip Thrust Analysis of the Compressible, Ducted Actuator Disk Theory 

To have a more complete and collective analysis of the ducted case of compressible Actuator 

Disk Theory, it will be shown that the lip thrust is the difference between the total thrust and the 

disk thrust as stated in section 2.3.1. Refer to Figure 15 for the station designations. 

  Tlip = Ttotal − Tdisk ( B-1 ) 

The total thrust and the disk thrust that has previously been determined are listed below again for 

easy reference.   

  Tdisk = ṁ(V2 − V1) + Adisk(P2 − P1) ( B-2 ) 

  Ttotal = ṁ(V3 − V0) ( B-3 ) 

These two thrust equations will be substituted into equation B-1.  

  Tlip = ṁ(V3 − V0) − ṁ(V2 − V1) − Adisk(P2 − P1) ( B-4 ) 

Using the conservation of mass, the far downstream velocity can be put in terms of the following 

  ρ0A0V0 = ρ3A3V3 ( B-5 ) 

  V3 =
ρ0

ρ3
∙

A0

A3
V0 ( B-6 ) 

Since the density at the far up and downstream are equal and the area at station 3 is equal to the 

disk area, the velocity at station 3 can be simplified. 

  ρ0 = ρ3 ( B-7 ) 

  A3 = Adisk ( B-8 ) 

  V3 =
A0

Adisk
V0 ( B-9 ) 

From the assumption of constant duct area, a change of subscript can be applied since the velocity 

at station 2 and 3 are equal. 

  V2 = V3 ( B-10 ) 

  V2 =
A0

Adisk
V0 ( B-11 ) 

Therefore, by substituting equations B-10 and B-11 into the lip thrust equation in B-1 
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  Tlip = ṁ (
A0

Adisk
V0 − V0) − ṁ (

A0

Adisk
V0 − V1) − Adisk(P2 − P1)( B-12 ) 

The velocity at station 1 can be factored out from the first and second term of the lip thrust 

equation. 

  Tlip = ṁV0 (
A0

Adisk
− 1) − ṁV0 (

A0

Adisk
−

V1

V0
) − Adisk(P2 − P1)( B-13 ) 

The mass flowrate at station 0 can be substituted in. 

  Tlip = ρ0V0
2A0 (

A0

Adisk
− 1) 

  −ρ0V0
2A0 (

A0

Adisk
−

V1

V0
) − Adisk(P2 − P1) ( B-14 ) 

Due to the assumption of constant duct area, a change of subscript can be applied since the static 

pressure at station 2 is equal to the pressure at station 0. 

  P0 = P2 = P3 ( B-15 ) 

  Tlip = ρ0V0
2A0 (

A0

Adisk
− 1) 

  −ρ0V0
2A0 (

A0

Adisk
−

V1

V0
) − Adisk(P0 − P1) ( B-16 ) 

Next, the first and second term will be multiplied by the quantity 
2Adisk

2Adisk
 and simplified as shown 

  Tlip = ρ0V0
2A0

2Adisk

2Adisk
(

A0

Adisk
− 1) 

  −ρ0V0
2A0

2Adisk

2Adisk
(

A0

Adisk
−

V1

V0
) − Adisk(P0 − P1) ( B-17 ) 

  Tlip =
1

2
ρ0V0

2Adisk2
A0

Adisk
(

A0

Adisk
− 1) 

  −
1

2
ρ0V0

2Adisk2 (
A0

Adisk
) (

A0

Adisk
−

V1

V0
 

) − Adisk(P0 − P1)  ( B-18 ) 

Using the conservation of mass flowrate from the control volume 0-1, a relation of the ratio 
A0

Adisk
 

can be found. 

  ρ0A0V0 = ρ1AdiskV1 ( B-19 ) 

  
A0

Adisk
=

ρ1

ρ0

V1

V0
 ( B-20 ) 
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Then, the area ratio is then substituted into the lip thrust equation. 

  Tlip =
1

2
ρ0V0

2Adisk2 (
ρ1

ρ0

V1

V0
) ((

ρ1

ρ0

V1

V0
) − 1) 

  −
1

2
ρ0V0

2Adisk2 (
ρ1

ρ0

V1

V0
) ((

ρ1

ρ0

V1

V0
) −

V1

V0
 

) − Adisk(P0 − P1) ( B-21 ) 

Next, the third term of the lip thrust equation will be manipulated individually. 

  Term3 = Adisk(P0 − P1) ( B-22 ) 

The pressure at station 0 can be factored out. 

  Term3 = AdiskP0 (1 −
P1

P0
) ( B-23 ) 

Using the isentropic speed of sound relation, P0 can be put in terms of ρ0, a0, and γ. 

  Term3 = Adisk (
ρ0a0

2

γ
) (1 −

P1

P0
) ( B-24 ) 

Next, the speed of sound at station 0 can be put in terms of the velocity to Mach number ratio.  

By multiplying top and bottom by 2, the final result for the third term is the following: 

  Term3 = Adisk (
ρ0

γ

V0
2

M0
2) (1 −

P1

P0
) ( B-25 ) 

  Term3 =
1

2
ρ0V0

2Adisk
2

γM0
2 (1 −

P1

P0
) ( B-26 ) 

By substituting the manipulated term back, the lip thrust is now the following: 

  Tlip =
1

2
ρ0V0

2Adisk2 (
ρ1

ρ0

V1

V0
) ((

ρ1

ρ0

V1

V0
) − 1) −

1

2
ρ0V0

2Adisk2 (
ρ1

ρ0

V1

V0
) ((

ρ1

ρ0

V1

V0
) −

V1

V0
 

) 

  −
1

2
ρ0V0

2Adisk
2

γM0
2 (1 −

P1

P0
) ( B-27 ) 

By dividing both sides by the quantity 
1

2
ρ0V0

2Adisk and simplifying the right hand side, the final 

lip thrust is as shown: 

  
Tlip

1

2
ρ0V0

2Adisk

= 2 (
ρ1

ρ0

V1

V0
) (

V1

V0
− 1) +

2

γM0
2 (

P1

P0
− 1) ( B-28 ) 
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Because the duct area at station 1 and the inlet are equivalent and the flow is isentropic, the flow 

conditions at station 1 are the same as the inlet flow conditions.  Therefore, the subscript 1 can be 

replaced with i for inlet conditions. 

  
Tlip

1

2
ρ0V0

2Adisk

= 2 (
Vi

V0
) (

Vi

V0
− 1) (

ρi

ρ0
) +

2

γM0
2 (

Pi

P0
− 1) ( B-29 ) 

For isentropic, compressible flow, the following pressure and density ratios can be obtained from 

the energy equation and equation of state: 

  
Pi

P0
= (1 +

γ−1

2
M0

2 (1 − (
Vi

V0
)

2
))

γ

γ−1

 ( B-30 ) 

  
ρi

ρ0
= (1 +

γ−1

2
M0

2 (1 − (
Vi

V0
)

2
))

1

γ−1

  ( B-31 ) 

By substituting the above pressure and density ratios, the final lip thrust per reference force is the 

following. 

  
Tlip

1

2
ρ0V0

2Adisk

= 2 (
Vi

V0
) (

Vi

V0
− 1) (1 +

γ−1

2
M0

2 (1 − (
Vi

V0
)

2
))

1

γ−1

  

  +
2

γM0
2 ((1 +

γ−1

2
M0

2 (1 − (
Vi

V0
)

2
))

γ

γ−1

− 1) ( B-32 ) 

Therefore, the resulting lip thrust from the difference between the total and disk thrust is 

equivalent to the lip thrust derived by Küchemann and Weber [3] in equation 2-73 by applying 

the conservation of momentum on the control volume 0-i, as it should.  
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C.  Compressible Bare and Ducted Fan 

This appendix will investigate the specific case of the compressible bare and ducted propeller 

where the freestream velocity is zero. As mentioned in Appendix A, this specific case 

corresponds to the applications of a fan because a fan generates a mass flow for a given power 

input when the freestream fluid is at rest. The performance parameters of the bare and ducted fan 

will be developed using the governing equations of the compressible Actuator Disk Theory given 

in section 2.2.1 for the bare case and section 2.3.2 for the ducted case, with the following 

statement 

  V0 = 0 ( C-1 ) 

 

C.1. Bare Fan 

Because the bare fan is simply the specific case of the propeller where the freestream velocity is 

zero, the governing equations established for the bare propeller can be applied to the bare fan 

asserting equation C-1.  However, because V0 cannot be in the denominator of any equation, the 

velocity ratio 
V1

V0
 in equation 3-15 has been replaced by the energy equation applied to the control 

volume 0-1. In addition, the area ratio 
A3

A0
 in equation 3-17 has also been replaced by the 

conservation of mass applied to the control volume 1-3.  By doing so, the governing equations of 

the bare fan are summarized below: 

  
P1

P0
= (

1

1+
γ−1

2
M1

2
)

γ

γ−1

 ( C-2 ) 

  
ρ1

ρ0
= (

P1

P0
)

1

γ
 ( C-3 ) 

  
γ

γ−1
∙

P0

ρ0
=

V1
2

2
+

γ

γ−1
∙

P1

ρ1
 ( C-4 ) 

  M3 = V3 (γ ∙
P0

ρ0
)

−
1

2
 ( C-5 ) 
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A3

Adisk
=

ρ1

ρ3
∙

V1

V3
 ( C-6 ) 

  
A3

Adisk
=

M2

M3
(

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ+1

2(γ−1)

 ( C-7 ) 

  
P2

P0
= (

1+
γ−1

2
M3

2

1+
γ−1

2
M2

2
)

γ

γ−1

 ( C-8 ) 

  
ρ2

ρ0
= (

P2

P0
)

1

γ
 ( C-9 ) 

  V2 =
ρ1

ρ2
V1 ( C-10 ) 

  ṁ = ρ1AdiskV1 ( C-11 ) 

  Ttotal = ṁV3 ( C-12 ) 

  Tfan = ṁ(V2 − V1) + Adisk(P2 − P1)  ( C-13 ) 

  Ttotal = Tfan ( C-14 ) 

  Pinput =
1

2
ṁV3

2 ( C-15 ) 

Due to the implicit nature of the governing equations for the compressible bare fan, the mass 

flowrate and the total thrust cannot be expressed solely in terms of the disk area and the power 

input to the fan, as was done for the incompressible case.  Therefore, the mass flowrate and the 

total thrust are solved numerically. Next, the performance parameters will be developed for the 

ducted fan. 

 

C.2.  Ducted Fan 

Likewise, the governing equations that were established for the compressible ducted propeller can 

be applied to the ducted fan.  Thus, the governing equations for the ducted fan are summarized as 

shown, including the energy equation applied to the control volume 0-1, as was done for the bare 

fan, and the implications of assuming a constant-area duct: 

  V2 = V3 ( C-16 ) 
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  P0 = P2 = P3 ( C-17 ) 

  
P1

P0
= (

1

1+
γ−1

2
M1

2
)

γ

γ−1

 ( C-18 ) 

  
ρ1

ρ0
= (

P1

P0
)

1

γ
 ( C-19 ) 

  
γ

γ−1
∙

P0

ρ0
=

V1
2

2
+

γ

γ−1
∙

P1

ρ1
 ( C-20 ) 

  M3 = V3 (γ ∙
P0

ρ0
)

−
1

2
 ( C-21 ) 

  ṁ = ρ1AdiskV1 ( C-22 ) 

  Ttotal = ṁV3 ( C-23 ) 

  Tfan = ṁ(V2 − V1) + Adisk(P2 − P1) ( C-24 ) 

  Tlip = Ttotal − Tfan ( C-25 ) 

  Pinput =
1

2
ṁV3

2 ( C-26 ) 

However, unlike the bare fan, the performance parameters, which includes the mass flowrate and 

the total, fan, and lip thrusts can be expressed in terms of the disk area and the power input to the 

fan, which will be done so next. By asserting that ρ0 = ρ3 and A3 = Adisk for the ducted fan, the 

mass flowrate can also be expressed in the following form 

 ṁ = ρ3A3V3 = ρ0AdiskV3 ( C-27 ) 

The power input to the ducted fan in equation C-26 can be rearranged to give the far freestream 

velocity in terms of the mass flowrate and the power input 

 V3 = (
2Pinput

ṁ
)

1

2
 ( C-28 ) 

By substituting the slipstream velocity found in C-28 into equation C-27, the mass flowrate is a 

function of the power into to the fan 

 ṁ = (ρ0Adisk)
2

3(2Pinput)
1

3 ( C-29 ) 
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Notice that the mass flowrate in equation C-29 is the same result for the incompressible, ducted 

fan given in Appendix A. Therefore, given any power input to the fan and the same disk area, the 

mass flowrate is the same for both the incompressible and compressible flow. 

Likewise, by substituting the slipstream velocity in C-28 into C-23, the total thrust becomes 

 Ttotal = ṁ (
2Pinput

ṁ
)

1

2
  ( C-30 ) 

 Ttotal = ṁ
1

2(2Pinput)
1

2 ( C-31 ) 

By using the mass flowrate in C-29 and simplifying, the total thrust is the same as the 

incompressible, ducted fan given in Appendix A. 

 Ttotal = (ρAdisk)
1

3(2Pinput)
2

3 ( C-32 ) 

Furthermore, it can be shown that the fan thrust of the incompressible ducted fan, which will be 

denoted as Tfan,incomp,is the average of the lip and fan thrust of the compressible ducted fan. By 

asserting equation C-16 and C-17 into equation C-24, the fan thrust can be expressed as 

 Tfan = ṁ(V3 − V1) + Adisk(P3 − P1) ( C-33 ) 

By substituting in the total thrust in C-23 and the fan thrust in C-24, the lip thrust in C-25 

becomes 

 Tlip = ṁV3 − (ṁ(V3 − V1) + Adisk(P3 − P1)) ( C-34 ) 

By simplifying, the lip thrust is 

 Tlip = ṁV1 − Adisk(P3 − P1) ( C-35 ) 

Recall from Appendix A that the fan thrust of the incompressible ducted fan is 

 Tfan,incomp =
1

2
(ρAdisk)

1

3(2Pinput)
2

3 ( C-36 ) 

Now, it will be shown that the fan thrust of the incompressible ducted fan is the average of the fan 

and lip thrust of the compressible ducted fan 

 Tfan,incomp =
1

2
(Tfan + Tlip) ( C-37 ) 
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By substituting the lip thrust in C-35 and the fan thrust in C-33, 

 Tfan,incomp =
1

2
(ṁ(V3 − V1) + Adisk(P3 − P1) 

 +ṁV1 − Adisk(P3 − P1)) ( C-38 ) 

and simplifying, the incompressible fan thrust is 

 Tfan,incomp =
1

2
ṁV3 ( C-39 ) 

Next by substituting the slipstream velocity in C-28 and the mass flowrate in C-29,  

 Tfan,incomp =
1

2
ṁ (

2Pinput

ṁ
)

1

2
 ( C-40 ) 

 Tfan,incomp =
1

2
ṁ

1

2(2Pinput)
1

2 ( C-41 ) 

 Tfan,incomp =
1

2
(ρ0Adisk)

1

3(2Pinput)
1

6(2Pinput)
1

2 ( C-42 ) 

and simplifying, the incompressible fan thrust is the same as that was given in C-36.  Therefore, 

the incompressible fan thrust is the average of the compressible fan and lip thrust.  Next, the 

performance parameters of the fan will be compared between compressible and incompressible 

flow. 

 

C.3.  Results and Discussion – Compressible Bare and Ducted Fan 

All solutions are determined for the free-stream pressure and density equal to that of sea level 

static conditions, which are 2166.8 lbf/ft
2
 and 2.329 × 10−3 slugs/ft

3
 respectively.  The mass 

flowrate and the total thrust of the compressible fan are compared between the bare and the 

ducted case in Figure 70 and Figure 71 for an actuator disk area of 3 ft
2
 and 6 ft

2
.  It can be 

observed that the compressible bare fan of twice the disk area performs slightly better than the 

ducted fan, providing slightly more mass flowrate and total thrust.  This is different from the 

incompressible case where the bare fan of twice the disk area performs the same as the ducted 

fan.  In addition, the mass flowrate and the total thrust of the bare fan are compared between 
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incompressible and compressible flow in Figure 72 and 73, respectively, at two different disk 

areas of 3 ft
2
 and 6 ft

2
.  These two figures show that the bare fan provides slightly more mass 

flowrate and total thrust at high input power when the flow is considered compressible.  

Likewise, the mass flowrate and the total thrust of the ducted fan are also compared between 

incompressible and compressible flow in Figure 74 and 75; however, these two performance 

parameters are the same for both compressible and incompressible flow for any power input to 

the fan at a given disk area.  Lastly, Figure 76 shows that the average of the lip and fan thrust of 

the compressible ducted fan is equal to the lip thrust (and in turn, the fan thrust) of the 

incompressible case, as expected by the equation given in C-37.  

 

Figure 70. Comparison of the mass flowrate between the compressible ducted and bare fan at two 

difference disk areas. 
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Figure 71. Comparison of the total thrust between the compressible ducted and bare fan at two 

different disk areas. 

 

Figure 72. Comparison of the mass flowrate between the bare compressible and incompressible 

fan at two different disk areas. 
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Figure 73. Comparison of the total thrust between the bare compressible and incompressible fan 

at two different disk areas. 

 

Figure 74. Comparison of the mass flowrate between the ducted incompressible and compressible 

fan at two different disk areas. 
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Figure 75. Comparison of the total thrust between the ducted compressible and incompressible 

fan at two different disk areas. 

 
Figure 76. Comparison of the total, fan, and lip thrust between the ducted compressible and 

incompressible fan at a disk area of 6 ft
2
. 
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D.  EES Sheets – Compressible Bare Propeller 
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E.  EES Sheets – Compressible Ducted Propeller 
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F.  EES Sheets – Compressible Bare Turbine 
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G.  EES Sheets – Compressible Ducted Turbine 
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